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Abstract. We show that the category of motivic spaces with trans-
fers along finite flat morphisms, over a perfect field, satisfies all the
properties we have come to expect of good categories of motives. In
particular we establish the analog of Voevodsky’s cancellation theo-
rem.
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1 Introduction

1.1 Main results

Let k be a perfect field. Denote by Corflf(k) the (2, 1)-category with objects
the smooth k-schemes and groupoid of morphisms the spans X

p
←− Z → Y ,

where p is finite flat (equivalently, finite locally free). We write Spcflf(k) for
the motivic localization of the non-abelian derived category PΣ(Cor

flf(k)) of
Corflf(k) and SHflf(k) for the stabilization of Spcflf(k) with respect to (the
image of) P1. Our main result (see Theorem 4.1) is that the canonical functor

Spcflf(k)gp → SHflf(k)

is fully faithful, where Spcflf(k)gp denotes the subcategory of grouplike objects.
We also show (see Theorem 4.2) that under the induced adjunction

SH(k) ⇆ SHflf(k) : µ∗

we have µ∗(1) ≃ kgl, the effective algebraic K-theory spectrum [SØ12, Defini-
tion 5.5].1

1I.e. the effective (or equivalently very effective) cover of the algebraic K-theory spectrum
KGL.
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1.2 Proof overview

Voevodsky and Suslin have provided us with a recipe for proving results of the
above style [Voe10, Sus03] which has since been replicated several times; see
e.g. [FØ17, BF17, AGP16]. Essentially, for any sufficiently nice category of cor-
respondences, the motivic localization functor always takes the form LZarLA1

and consequently can be controlled quite effectively. Fully faithfulness of sta-
bilization then reduces to constructing for every correspondence

α : X ×Gm ← Z → Y ×Gm

new correspondences ρn(α) from X to Y , satisfying certain properties. In fact
in all known cases the correspondences ρn(α) are obtained by intersecting with
a family of specific cycles on Gm × Gm; the complication that always arises is
that this intersection need not be “nice” any more, e.g. in our case it need no
longer be finite flat over X . The main result of this work is Corollary 3.4, where
we show that flatness holds for n sufficiently large. Cancellation is then proved
by closely following Voevodsky’s original argument, just taking into account
that Corflf(k) is no longer a 1-category nor locally group complete or Z-linear.
The identification of µ∗(1) proceeds in two steps. We first show that µ∗(1) ∈
SH(k)veff. By an argument of Suslin, this follows from a certain property of
Corflf(k) called rational contractibility (see Definitions 2.17 and A.1). This is
again established by essentially imitating Suslin’s proof of rational contractibil-
ity for finite correspondences, taking into account the small adjustments needed
working with categories that are neither locally group complete, Z-linear nor 1-
categories. Once this is proved, the identification of µ∗(1) with kgl is essentially
the main theorem of [HJN+20].

1.3 Organization

In §2 we review and extend the Voevodsky–Suslin formalism for proving proper-
ties of motives built out of sufficiently good categories of correspondences. The
most interesting result here is perhaps Proposition 2.16, which reformulates
Voevodsky’s proof of the cancellation theorem in an abstract setting. In §3 we
study the category of motivic spaces with finite flat transfers, by showing that
it satisfies the assumptions on a “good” category of correspondences exposed
in the previous section. Using this together with the formalism, we easily es-
tablish our main results in §4. In Appendix A we reformulate part of Suslin’s
theory of rationally contractible presheaves of abelian groups for presheaves of
spaces.

1.4 Notation

Unless stated otherwise, by a presheaf we mean a presheaf of spaces. We write
Smk for the category of smooth (qcqs) k-schemes, and Smess

k for the category of
essentially smooth k-schemes (by this we mean schemes obtained as cofiltered
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Cancellation for Finite Flat Transfers 1123

limits of diagrams of smooth k-schemes with affine étale transition maps). In a
closed symmetric monoidal ∞-category, we denote by Map(−,−) the internal
mapping object. We denote by Spc the ∞-category of spaces, and by SH the
∞-category of spectra. Given a category C with finite coproducts, we denote
by PΣ(C) its nonabelian derived category [Lur09, §5.5.8].

Acknowledgments

My understanding of the cancellation theorem comes primarily from discussions
with Håkon Kolderup and the participants of the Harvard Thursday seminar,
which studied motivic infinite loop space theory in fall of 2019. I would like to
heartily thank all of them.

2 The motivic formalism

2.1 Generalities

2.1.1

Let S be a scheme. We denote by Corfr(S) the symmetric monoidal∞-category
with objects the smooth S-schemes and morphism spaces given by the tangen-
tially framed correspondences [EHK+17, §4].

Definition 2.1. By a motivic category of correspondences over S we mean a
symmetric monoidal functor µ : Corfr(S) → C satisfying the following condi-
tions:

1. C is semiadditive, and its tensor product commutes with finite coproducts,

2. µ preserves finite coproducts and is essentially surjective,

3. µ is compatible with the Nisnevich topology, a notion to be explained
below.

Given any functor µ : Corfr(S) → C preserving finite coproducts, there is an
induced adjunction

µ : PΣ(Cor
fr(S)) ⇆ PΣ(C) : µ

∗.

Recall also the adjunction [EHK+17, §3.2.11]

γ∗ : PΣ(SmS)∗ ⇆ PΣ(Cor
fr(S)).

We put
hC := γ∗µ

∗µγ∗ : PΣ(SmS)∗ → PΣ(SmS)∗

and
U = γ∗µ

∗ : PΣ(C)→ PΣ(SmS)∗,
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and we write

hC
+ = hC((−)+) : PΣ(SmS)→ PΣ(SmS)∗

and

µ+ = µ(γ∗(−)+) : PΣ(SmS)→ PΣ(C).

When no confusion can arise, we denote also by µ the composite functors

PΣ(SmS)∗ → PΣ(C), SmS∗ → C,

by µ+ the composite functor SmS → C, and so on.

Definition 2.2. Let U → X ∈ SmS be a Nisnevich covering and write R →֒ X
for its associated sieve. Then R ∈ PΣ(SmS) and we say that µ is compatible
with the Nisnevich topology if hC

+(R) → hC
+(X) ∈ PΣ(SmS)∗ is a Nisnevich

equivalence.

Example 2.3. C = Corfr(S) and µ = id defines a motivic category of correspon-
dences, by [EHK+17, §3.2].

2.1.2

Now let (µ, C) be a motivic category of correspondences. Day convolution turns
PΣ(C) into a presentably symmetric monoidal category and µ : PΣ(Cor

fr(S))→
PΣ(C) into a symmetric monoidal functor [Lur16, Proposition 4.8.1.10].

2.1.3

We call F ∈ PΣ(C) A1-local or Nisnevich local if the same is true for the
restriction of F to SmS , and motivically local if it is both A1-local and Nisnevich
local. We write LA1 , LNis and Lmot for the associated localization functors.

Lemma 2.4. The forgetful functors µ∗ : PΣ(C) → PΣ(Cor
fr(S)) and U :

PΣ(C)→ PΣ(SmS)∗ commute with LA1 , LNis and Lmot.

Proof. By construction, the forgetful functors preserve and detect local objects
and equivalences; it hence suffices to show that they preserve weak equivalences.
It is enough to prove the second claim, since γ∗ preserves and detects weak
equivalences by [EHK+17, Proposition 3.2.14]. Using [BH20, Lemma 2.10], we
reduce to proving that hC preserves A1-homotopy equivalences and generating
Nisnevich equivalences. The first case is formal (see e.g. the proof of [EHK+17,
Lemma 2.3.20]) and the second case follows from our assumption of compati-
bility with the topology, since if R →֒ X is the Nisnevich sieve generated by a
covering {Ui → X} then LΣR is the sieve generated by

∐

i Ui → X .

Lemma 2.5. The category PΣ(C) is semiadditive and µ∗ preserves all colimits.
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Proof. Since C is semiadditive by assumption, the same holds for PΣ(C) by
[GGN16, Corollary 2.4]. The functor µ∗ preserves sifted colimits essentially
by construction [Lur09, Proposition 5.5.8.10(4)], and finite products being a
right adjoint. Hence it preserves finite coproducts since source and target are
semiadditive, and thus all colimits by [BH20, Lemma 2.8].

We write SpcC for the motivic localization of PΣ(C).

Proposition 2.6. 1. SpcC is presentably symmetric monoidal and com-
pactly generated under sifted colimits by the images of smooth schemes.

2. SpcC is semiadditive.

3. There is an induced adjunction

µ : Spcfr(S) ⇆ SpcC : µ∗

with µ symmetric monoidal and µ∗ cocontinuous and conservative.

Proof. Immediate from Lemmas 2.4 and 2.5, see e.g. [EHK+17, proofs of
Propositions 3.2.10 and 3.2.15].

2.1.4

Being semiadditive, SpcC has a subcategory of grouplike objects which we
denote by SpcCgp ⊂ SpcC . We write

(−)gp : SpcC → SpcCgp

for the reflection. Note that this is a symmetric monoidal localization. Note
also that F ∈ SpcC ⊂ PΣ(C) is grouplike if and only if F (X) is grouplike for
every X ∈ SmS . Note finally that a commutative monoid M is grouplike if and
only if the shearing map M ×M → M ×M is an equivalence; this condition
is clearly stable under limits and sifted colimits, and hence under arbitrary
colimits of monoids.

2.1.5

Put SHS1C = SpcC [(S1)−1] and SHC = SpcC [(P1)−1]. (Here for a presentably
symmetric monoidal ∞-category C and an object X ∈ C, we denote by C[X−1]
the initial presentably symmetric monoidal ∞-category under C in which X
becomes invertible [Rob15, §2.1].) We thus get a commutative diagram of left
adjoints

Spc(S)∗ Spcfr(S) SpcC

SHS1

(S) SHS1fr(S) SHS1C

SH(S) SHfr(S) SHC .

γ∗

Σ∞

S1

µ

Σ∞

S1 Σ∞

S1

Σ∞γ∗

σ∞

µ

σ∞ σ∞

γ∗ µ
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The right adjoints of Σ∞,Σ∞
S1 , σ∞ are respectively denoted Ω∞,Ω∞

S1 , ω∞. Re-
call that γ∗ : SH(S)→ SHfr(S) is an equivalence [Hoy18, Theorem 18].

2.2 The case of perfect fields

From now on we assume that S = Spec(k) is the spectrum of a perfect field.

Proposition 2.7. Let F ∈ PΣ(C)
gp. Then the canonical map

LA1F → LmotF

induces an equivalence on sections over essentially smooth2, semilocal k-
schemes. In particular

LmotF ≃ LNisLA1F

and
ULmotF ≃ LZarLA1UF.

Proof. Since µ∗ commutes with LNis, LA1 , Lmot (Lemma 2.4), we are reduced
to the case C = Corfr(k), which is treated in [EHK+17, Theorem 3.4.11].

Proposition 2.8. Let F ∈ PΣ(C)
gp. Then the canonical map

LmotΩGm
F → ΩGm

LmotF

is an equivalence.

Proof. ΩGm
preserves grouplike objects and commutes with LA1 (see e.g.

[Bac19, Lemma 4]). It thus suffices (using Proposition 2.7) to prove that
if F is grouplike and A

1-local, then LZarΩGm
UF → ΩGm

LZarUF is an equiva-
lence. Using hypercompleteness (see e.g. [BH20, Proposition A.3]), we may
check this on homotopy sheaves. Since homotopy sheaves are strictly A1-
invariant [EHK+17, Corollary 3.4.13] and hence unramified [Mor12, Definition
2.1][Mor05, Lemma 6.4.4], we need only check that we have an isomorphism on
generic stalks, i.e. finitely generated fields K/k. It thus suffices to show that

Hi
Zar(Spec(K)+ ∧Gm, πjF ) ≃

{

πj(F )(Spec(K)+ ∧Gm) i = 0

0 else
.

Here by πjF we mean the homotopy presheaf of F . Since ΣSpec(K)+ ∧Gm
A

1

≃
P1 ∧ Spec(K)+ and LZarπjF is motivically local (by Proposition 2.7), we have

Hi
Zar(Spec(K)+ ∧Gm, πjF ) ≃ Hi+1

Zar (P
1 ∧ Spec(K)+, πjF ) = 0 for i > 0,

for cohomological dimension reasons. It remains to prove the first isomorphism,
for which it suffices to show that the restriction of πjF to A1

K is already a Zariski

2Recall our conventions regarding essentially smooth schemes from §1.4.
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sheaf. If K is infinite we can, arguing as in [EHK+17, proof of Theorem 3.4.11],
refer to [GP15, Theorem 2.15(2)] for this.
The theorem is thus proved if k is infinite. Since Lmot and ΩGm

commute with
essentially smooth base change, we may reduce to this case using [EHK+17,
Corollary B.2.5].

Corollary 2.9. The functor ΩGm
: SpcCgp → SpcCgp preserves colimits.

Proof. The functor preserves finite products, whence by semiadditivity we need
only prove that it preserves sifted colimits [BH20, Lemma 2.8]. Via Proposi-
tion 2.8, we are reduced to proving that ΩGm

commutes with sifted colimits on
PΣ(C)

gp. Since sifted colimits in this category are computed sectionwise, this is
clear for ΩGm+

. Since colimits are stable under retracts, the result follows.

2.3 Cancellation

We still assume that S is the spectrum of a perfect field.

Lemma 2.10. The transformation id → ΩΣ of endofunctors of SpcCgp is an
equivalence.

Proof. Since µ∗ preserves limits (being a right adjoint), and also colimits (by
Lemma 2.5), it preserves the final object ∗ and thus commutes with Ω and Σ.
We may thus reduce to C = Corfr, in which case the result is an immediate
consequence of [EHK+17, Corollary 3.5.6].

Definition 2.11. We say that C satisfies cancellation if for every X ∈ Smk

the canonical map

µ+(X)gp → ΩGm
ΣGm

µ+(X)gp ∈ SpcCgp

is an equivalence.

Lemma 2.12. Suppose that C satisfies cancellation. Then the transformations
id→ ΩGm

ΣGm
and id→ ΩP1ΣP1 of SpcCgp are equivalences.

Proof. We first treat ΩGm
ΣGm

. Since the functor preserves colimits by Corol-
lary 2.9, we need only show that the transformation induces an equivalence
on generators, which holds by assumption. Now we treat ΩP1ΣP1 . Since
P1 ≃ S1 ∧ Gm we get ΩP1 ≃ ΩS1ΩGm

and ΣP1 ≃ ΣGm
ΣS1 ; thus the claim

reduces via lemma 2.10 to the one about ΩGm
ΣGm

.

Proposition 2.13. If C satisfies cancellation, then the functors

SpcCgp → SHS1C → SHC

are fully faithful.
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Proof. If D is a compactly generated, presentably symmetric monoidal ∞-
category, T ∈ D a compact symmetric object,

Σ∞ : D ⇆ D[T−1] : Ω∞

is the stabilization adjunction, X ∈ D compact and E ∈ D arbitrary, then
[Hoy16, p. 467]

Map(X,Ω∞Σ∞E) ≃ colim
n

Map(Σn
TX,Σn

TE).

In particular, if id → ΩTΣT is an equivalence, then D → D[T−1] is fully
faithful.
We first apply this with D = SpcCgp and T = S1. The assumptions are satisfied
by Lemma 2.10 and hence SpcCgp → SHS1C is fully faithful. Next we apply this
with D = SpcCgp and T = P

1. The assumptions are satisfied by Lemma 2.12
and [EHK+17, Lemma 3.3.3]. Now let X,Y ∈ SpcCgp and N + i ≥ 0, N ≥ 0.
Then

Map(σ∞ΣiΣ∞
S1X, σ∞Σ∞

S1Y ) ≃ Map(Σ∞Σi+NX,Σ∞ΣNY ) ≃

Map(Σi+NX,ΣNY ) ≃ Map(Σ∞
S1Σi+NX,Σ∞

S1ΣNY ) ≃Map(ΣiΣ∞
S1X,Σ∞

S1Y ),

or in other words

Map(ΣiΣ∞
S1X,ω∞σ∞Σ∞

S1Y ) ≃Map(ΣiΣ∞
S1X,Σ∞

S1Y ).

Since SHS1C is generated under colimits by objects of the form ΣiΣ∞
S1X we

deduce that ω∞σ∞Σ∞
S1Y ≃ Σ∞

S1Y . Since ω∞σ∞ preserves colimits and desus-

pensions (by stability and compact generation) and SHS1C is generated un-
der colimits and desuspensions by objects of the form Σ∞Y , we deduce that
ω∞σ∞ ≃ id, as needed.

Lemma 2.14. Let X ∈ SpcC. Then ΣX ∈ SpcCgp.

Proof. Grouplike objects are preserved by LNis and LA1 and hence Lmot,
whence it suffices to prove the analogous claim for PΣ(C). In this case sus-
pension is computed sectionwise when viewed as taking values in monoids (see
the proof of Lemma 2.10). We are reduced to the well-known observation that
if Y ∈ CMon(Spc) then ΣY (= BY ) is grouplike (indeed connected).

Corollary 2.15. Assume that C satisfies cancellation. Consider the adjunc-
tion

µ : SH(k) ≃ SHfr(k) ⇆ SHC : µ∗.

Then

µ∗(1C) ≃ (Lmoth
C
+(∗)

gp, Lmoth
C(P1), Lmoth

C((P1)∧2), . . . ) ∈ SH(k)

is the presentation of µ∗(1C) as a motivic P1-Ω-spectrum.
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Proof. We need to determine Ω∞(µ∗(1C)∧ (P
1)∧n). Since (P1)∧n is invertible,

we have µ∗(− ∧ (P1)∧n) ≃ µ∗(−) ∧ (P1)∧n.3 Since µ∗ commutes with Ω∞, we
get using Lemmas 2.12 and 2.4 that

Ω∞(µ∗(1) ∧ (P1)∧n) ≃ Ω∞µ∗(Σ∞µ((P1)∧n))

≃ µ∗Ω∞Σ∞µ((P1)∧n) ≃ µ∗µ((P1)∧n)gp ≃ Lmoth
C((P1)∧n)gp.

It remains to prove that for n ≥ 1 we have

Lmoth
C((P1)∧n)gp ≃ Lmoth

C((P1)∧n);

since P1 ≃ ΣGm this is immediate from Lemma 2.14.

2.4 Proving cancellation

Proposition 2.16. Let C be an additive, symmetric monoidal, ordinary 1-

category, G ∈ C and 1

i
−→ G

p
−→ 1 a retraction which admits a complement Ḡ.

Assume that ΣG := G ⊗ − admits a right adjoint ΩG. Suppose given a set S
of objects of C with 1 ∈ S and closed under tensor products with G, as well as
for each X ∈ S a map

ρX : ΩGΣGX → X.

Assume that the following hold.

1. For X ∈ S, the following diagram commutes

G⊗ ΩGΣGX
G⊗ρX

−−−−→ G⊗X




y

∥

∥

∥

ΩGΣG(G⊗X)
ρG⊗X

−−−−→ G⊗X

where the left hand vertical map is an instance of the general type of
map A ⊗ ΩGΣGX → ΩGΣG(A ⊗X) (adjoint to ΣGA ⊗ ΩGΣGX ≃ A⊗
ΣGΩGΣGX → A⊗ ΣGX ≃ ΣGA⊗X).

2. For X ∈ S, the following diagram commutes

ΩGΣG(X)
ρX

−−−−→ X

ΩGΣGi⊗X





y
i⊗X





y

ΩGΣG(G⊗X)
ρG⊗X

−−−−→ G⊗X

ΩGΣGp⊗X





y

p⊗X





y

ΩGΣG(X)
ρX

−−−−→ X.
3We use the following well-known fact: given an adjunction F : C ⇆ D : G with F

symmetric monoidal, X ∈ C strongly dualizable and Y ∈ D, then the canonical map X ⊗
GY → G(FX ⊗ Y ) is an equivalence.
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3. For X ∈ S, the composite

X
ū
−→ ΩḠΣḠX ⊂ ΩGΣGX

ρX

−−→ X

is the identity.

4. The object Ḡ is symmetric.4

Then for all X ∈ S the unit map X
ū
−→ ΩḠΣḠX is an equivalence.

Proof. Write ρ̄ for the composite ΩḠΣḠX ⊂ ΩGΣGX
ρX

−−→ X . By assumption,
ρ̄ū = idX . It remains to prove that ūρ̄ = idΩḠΣḠX .
As a warm-up, note that there are two natural maps ΩḠΣḠX → Ω2

Ḡ
Σ2

Ḡ
X ,

corresponding to “inserting an identity on the left or right factor”. The map
ū1 = ΩḠuΣḠX inserts the identity on the left, and the map ū′

1 inserting the
identity on the right is obtained by conjugating with the twist map. More
generally we have a map

ūn = Ωn
Ḡ
uΣn

Ḡ
X : Ωn

Ḡ
Σn

Ḡ
X → Ωn+1

Ḡ
Σn+1

Ḡ
X

inserting an identity on the left, and other natural maps with the same source
and target are obtained by acting with the symmetric group Sn+1.
Write Σn

GX = Σn
Ḡ
X ⊕R. We can think of ρΣn

G
X as a two by two matrix, with

upper left hand corner a map

ρΣn

Ḡ
X : ΩGΣGΣ

n
Ḡ
X → Σn

Ḡ
X.

Similarly ūΣn

G
X can be though of as a two by two matrix, but this time a

diagonal one (by naturality). Since ρΣn

G
X ūΣn

G
X is the identity, we deduce that

also ρΣn

Ḡ
X ūΣn

Ḡ
X must be the identity. In other words, (3) also holds for objects

of the form Σn
Ḡ
X .

Define a map

ρ̄n : Ωn+1
Ḡ

Σn+1
Ḡ

X ⊂ Ωn
Ḡ
ΩGΣGΣ

n
Ḡ
X

ρΣn

Ḡ
X

−−−−→ Ωn
Ḡ
Σn

Ḡ
X.

Then
ρ̄nūn = id; (2.1)

indeed this map is obtained by applying Ωn
Ḡ

to the composite

Σn
Ḡ
X

ū
−→ ΩḠΣḠ(Σ

n
Ḡ
X)

ρΣn

Ḡ
X

−−−−→ Σn
Ḡ
X,

which is the identity by the extended version of (3) that we just established.

4I.e. the cyclic permutation on Ḡ⊗n is the identity for some n ≥ 2, in which case Ḡ is
called n-symmetric.
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For N ≥ 2 and σ ∈ SN acting on Ḡ⊗N , consider the composite

ΩḠΣḠX
ū1−→ Ω2

Ḡ
Σ2

Ḡ
X

ū2−→ · · · → ΩN
Ḡ
ΣN

Ḡ
X

σ
−→ ΩN

Ḡ
ΣN

Ḡ
X

ρ̄N−1

−−−→ ΩN−1
Ḡ

ΣN−1
Ḡ

X → . . .
ρ̄1
−→ ΩḠΣḠX

which we denote by p(σ). If σ = id then by iterated application of (2.1) we get

p(id) = id .

On the other hand if σ = σl is the permutation “cycling to the left” we find
that (suppressing subscripts for readability)

σl ◦ ū ◦ · · · ◦ ū = ū ◦ · · · ◦ ū ◦ ū′
1,

i.e. “one of the identities has been inserted at the right”. Consequently p(σl) =
ρ̄1ū

′
1 (again using (2.1) repeatedly). If furthermore Ḡ is N -symmetric then we

obtain

idΣḠΩḠ
X = p(id) = p(σl) = ρ̄1ū

′
1.

It thus suffices to show that the following diagram commutes

ΩḠΣḠX
ū′
1−−−−→ Ω2

Ḡ
Σ2

Ḡ
X

ρ̄





y

ρ̄1





y

X
ū

−−−−→ ΩḠΣḠX.

By adjunction and definition of ρ̄, this is equivalent to the commutativity the
outer square in the following diagram

Ḡ⊗ ΩḠΣḠX −−−−→ ΩḠΣḠ(Ḡ⊗X)




y





y

Ḡ⊗ ΩGΣGX −−−−→ ΩGΣG(Ḡ⊗X)

idḠ ⊗ρX





y

ρΣ
Ḡ

X





y

Ḡ⊗X Ḡ⊗X.

The top square commutes without any assumptions. For the bottom square, it
will suffice to prove that ρΣGX respects the decomposition ΣGX ≃ ΣḠX ⊕ X .
Indeed then we may replace all instances of Ḡ by G, and hence have commuta-

tivity by (1). We can write ρΣGX as the matrix

(

ρΣḠ f
g h

)

. Then in condition

(2) the upper square implies that f = 0 (and h = ρX), whereas the lower
square implies that g = 0 (and h = ρX). The result follows.
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2.5 Rational contractibility

We recall the notion of a rationally contractible presheaf in Appendix A.

Definition 2.17. We say that C satisfies rational contractibility if for every
n > 0 the presheaf hC(G∧n

m )gp is rationally contractible.

Proposition 2.18. Suppose that C satisfies cancellation and rational con-
tractibility. Then

µ∗(1SHC) ∈ SH(k)veff.

Proof. By [BF17, Theorem 4.4], in order to show that µ∗(1) ∈ SH(k)eff we
need to show that for all n > 0 and K/k finitely generated we have

|ω∞(µ∗(1) ∧G
∧n
m )(∆̂•

K)| ≃ 0.

Similarly by [Bac17, §3], assuming that µ∗(1) ∈ SH(k)eff, in order to show
that µ∗(1) ∈ SH(k)veff we need to show that ω∞(µ∗(1)) has vanishing negative
homotopy sheaves. For this it suffices to show that

|Ω∞(µ∗(1) ∧G
∧n
m )(∆̂•

K)| ≃ 0 and Ω∞(Σiµ∗(1) ∧G
∧n
m ) ∈ Spc(k)≥i (2.2)

for all i ≥ 0. Indeed the second condition implies that (µ∗(1)∧G∧n
m )(∆̂•

K) takes
values in SH≥0 (using Proposition 2.7, say), and then Ω∞ commutes with the
geometric realization [Lur16, Proposition 1.4.3.8].
As in Corollary 2.15 we have Σiµ∗(1) ∧G∧n

m ≃ µ∗(Σ∞µ(ΣiG∧n
m )) and hence

Ω∞(Σiµ∗(1) ∧G
∧n
m ) ≃ Lmoth

C(Σi
G

∧n
m )gp;

here we have used Lemma 2.12. The functor hC commutes with Σi, when viewed
as taking values in presheaves of commutative monoids. By Proposition 2.7
we have Lmot = LNisLA1 , which takes sectionwise n-connected presheaves to
Nisnevich locally n-connected presheaves. This implies the second condition
in (2.2). Again by Proposition 2.7, we have Lmot ≃ LA1 when evaluated on
semilocal schemes; thus

|Ω∞(µ∗(1) ∧G
∧n
m )(∆̂•

K)| ≃ |(LA1hC(G∧n
m )gp)(∆̂•

K)|.

The first condition in (2.2) thus follows from Corollary A.8.

Remark 2.19. In order to prove that hC(G∧n
m )gp is rationally contractible, it

suffices to prove that hC((A1 \ 0)×n, x0) is rationally contractible as a presheaf
of commutative monoids, where x0 = (1, 1, . . . , 1) is the base point. Indeed this
implies that hC((A1 \ 0)×n, x0)

gp is rationally contractible by Lemma A.9, and
hC(G∧n

m )gp is a retract of hC((A1 \0)×n, x0)
gp, so we conclude by Example A.4.

Corollary 2.20. Suppose that C satisfies cancellation and rational con-
tractibility. Then

µ∗(1SHC ) ≃ Σ∞
fr µ

∗(µ+(∗)).
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Proof. Since µ∗(1SHC ) is very effective and Spcfr(k)gp ≃ SH(k)veff [EHK+17,
Theorem 3.5.14], we deduce that

µ∗(1SHC ) ≃ Σ∞
fr Ω

∞
fr µ

∗Σ∞µ+(∗) ≃ Σ∞
fr µ

∗Ω∞Σ∞µ+(∗)

≃ Σ∞
fr µ

∗(µ+(∗)
gp) ≃ Σ∞

fr µ
∗(µ+(∗)),

using Lemma 2.12 as well as that µ∗ commutes with group completion and Σ∞
fr

inverts group completion.

3 The case of finite flat correspondences

3.1 Generalities

Let S be a scheme. Write Corflf(S) for the symmetric monoidal, semiadditive
(2, 1)-category with the same objects as SmS and morphisms the groupoids of
spans

X
p
←− Z → Y,

where p is required to be finite locally free (see e.g. [Bar17, §5] for a construction
of span categories in a much more general context). Denote by Corfsyn(S) the
category obtained in a similar way, but requiring p to be finite syntomic. There
is an evident symmetric monoidal functor Corfsyn(S) → Corflf(S) which pre-
serves finite coproducts. Since a functor Corfr(S)→ Corfsyn(S) was constructed
in [EHK+17, §4.2.37], we all in all obtain a functor µ : Corfr(S) → Corflf(S).
This satisfies all the axioms of a motivic category of correspondences (see Def-
inition 2.1). The only non-trivial part is the following.

Lemma 3.1. The category Corflf(S) is compatible with the Nisnevich topology.

Proof. Let U → X ∈ SmS be a Nisnevich covering with one element, and R
the associated sieve. Then hflf

+ (R) →֒ hflf
+ (X) consists of those spans

Y ← Z
q
−→ X

where q factors through U . (Indeed by universality of colimits of spaces and
since h+ preserves sifted colimits, the fiber over Y ← Z

q
−→ X is given by

|U×X• ×X Z|, which is either empty or contractible depending on whether q
factors through U .) In particular this is a map of 1-truncated presheaves,
which is a Nisnevich equivalence if and only if it induces an equivalence on
stalks [Lur09, Lemma 6.5.2.9]; i.e. we may assume that Y is Nisnevich local
and need to show that every q factors through U . But now Z is a finite disjoint
union of Nisnevich local schemes [Sta18, Tag 04GH(1)], so this is clear.

3.2 Cancellation

Lemma 3.2. Let X be smooth over a perfect field k and (p, t) : Z → X × Gm

finite locally free. Let f ∈ O(Z) and let

Zn = Z(1− tnf) ⊂ Z.
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Then for N sufficiently large and all n > N , the canonical map Zn → X is
flat.

Proof. We first show that there is a Nisnevich covering family {Ui → X}i∈I

such that ZUi
→ Ui × Gm is finite free. It suffices to show that if L is the

henselization of a smooth k-variety in a point, then all vector bundles of rank d
on L×Gm are trivial (for any d). We use the existence of a motivic space Grd ∈
Spc(k)∗ such that for Y ∈ Smk affine [Y+,Grd] is the set of vector bundles on Y
up to isomorphism [AHW17, Theorem 5.2.3]. The cofiber sequence

L+ ≃ L+ ∧ S0 → L+ ∧Gm+ ≃ (L ×Gm)+ → L+ ∧Gm

induces a fiber sequence

Map(L+,ΩGm
Grd)→ Map((L ×Gm)+,Grd)→ Map(L+,Grd).

We seek to show that the middle space is connected. The motivic space Grd
is connected (vector bundles being locally trivial), and hence so is ΩGm

Grd
by [Mor12, Theorem 6.13]. Thus the two outer spaces are connected, and the
claim follows.
Since being flat is fpqc local on the base [Sta18, Tag 02L2], we may replace X
by Ui and so assume that Z → X × Gm is finite free. We may further assume
that X = Spec(A) is affine. Write Z = Spec(B). Then B is an A-algebra, we
are provided with elements f, t ∈ B, and B is finite free over A[t, t−1]. We need
to show that Bn = B/(1− tnf)B is flat over A, for n sufficiently large. We may
assume that B has constant rank over A[t, t−1] and choose a basis e1, . . . , ed.
We can write

fei =
∑

j

aijej ,

with aij ∈ A[t, t−1]. Thus for n sufficiently large we have tnaij ∈ tA[t], for all
i, j. This implies that (1 − tnf) : B → B is universally injective over A: if A′

is any A-module, then (1 − tnf) is injective on

B′ := B ⊗A A′ ≃ A′[t, t−1]{e1, . . . , ed}.

Indeed we can write 0 6= b′ ∈ B′ as

b′ =
∑

k≥k0

tkbk,

with bk ∈ A′{e1, . . . , ed} and bk0
6= 0, and then

(1− tnf)b′ ∈ tk0bk0
+ tk0+1A′[t]{e1, . . . ed}

is non-zero as well. The desired flatness now follows from [Sta18, Tags 058I
and 058P].
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Remark 3.3. The argument shows that given f1, f2 ∈ O(Z) and N sufficiently
large, then

Z(1− tn(f1t
a + f2t

b))→ X

is flat for all n > N and a, b ≥ 0.

Define maps g+n , g
−
n : Gm ×Gm → A1 via

g+n (t1, t2) = tn1 + 1 and g−n (t1, t2) = tn1 + t2.

Further define maps A1 ×Gm ×Gm → A1 via

h±
mn(s, t1, t2) = sg±n (t1, t2) + (1− s)g±m(t1, t2).

Given a span
X ×Gm ← Z → Y ×Gm,

put
Z±
mn = Z(h±

mn) ⊂ Z × A
1;

note that there are induced spans

X × A
1 ← Z±

mn → Y.

Corollary 3.4. Let X be smooth over a perfect field and suppose given a span

X ×Gm
p
←− Z → Y ×Gm

with p finite locally free. Then for N sufficiently large and m,n > N the induced
maps Z±

mn → X × A1 are finite locally free.

Proof. Voevodsky’s original argument [Voe10, Lemma 4.1], explained in slightly
more detail in [BE19, Lemma 4.20], shows that Z±

mn → X × A1 is finite for
m,n sufficiently large. It thus remains to establish flatness. Note that for
m = n+ r ≥ m we have

h+
mn = tn1 (s+ (1 − s)tr1) + 1

and
h−
mn = tn1 (s+ (1− s)tr1) + t2.

The result thus follows via Remark 3.3 from Lemma 3.2 applied to Z×A1 p×A
1

−−−→
X ×Gm × A1, with

f = −(s+ (1− s)tr1) and f = −(s+ (1− s)tr1)t
−1
2 ,

respectively. The case m < n is treated similarly.
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Given any span α : X×Gm ← Z → Y ×Gm (with Z → X not necessarily finite
locally free), denote by ρ±mn(α) the span X × A1 ← Z±

mn → Y . One checks
immediately (see [BE19, Lemma 4.17] for a more conceptual explanation) that
if β : X ′ → X and γ : Y → Y ′ are arbitrary spans, then

ρ±mn(γ ◦ α) ≃ γ∗ρ
±
mn(α) and ρ±mn(α ◦ β) ≃ β∗ρ±mn(α). (3.1)

Let G = µ+(Gm). For Y ∈ Smk, define

FiΩGΣGµ+(Y ) ⊂ ΩGΣGµ+(Y )

as the subpresheaf of those spans X × Gm ← Z → Y × Gm such that for all
m,n ≥ i the maps Z±

mn → X are finite locally free. It follows from (3.1) that

γ∗(FiΩGΣGµ+Y (X)) ⊂ FiΩGΣGµ+Y
′(X)

and
β∗FiΩGΣGµ+Y (X) ⊂ β∗FiΩGΣGµ+Y (X ′).

In particular FiΩGΣGµ+Y defines a presheaf on Corflf(k). By construction we
have

FiΩGΣGµ+Y ⊂ Fi+1ΩGΣGµ+Y ⊂ . . . ,

and by Corollary 3.4 we have

colim
i

FiΩGΣGµ+Y ≃ ΩGΣGµ+Y.

For m,n ≥ i define maps

ρ̃±mn,i : FiΩGΣGµ+Y → ΩA1
+
µ+Y

via Z 7→ Zmn. By construction Zmn is finite locally free over X × A
1, and

by (3.1) ρ̃±mn,i defines a morphism in PΣ(Cor
flf(k)). By adjunction we obtain

morphisms
ρ±mn,i : µ+(A

1) ∧ FiΩGΣGµ+Y → µ+Y ;

i.e. we obtain A1-homotopies between the various

ρ±m : FiΩGΣGµ+Y → µ+Y

for m ≥ i (obtained by restriction to 0 or 1). By construction, for m ≥ j ≥ i,
the following diagram commutes

FiΩGΣGµ+Y FjΩGΣGµ+Y

µ+Y.

ρm

ρm
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It follows that in the following diagram, all cells commute up to A1-homotopy

F1ΩGΣGµ+Y −−−−→ F2ΩGΣGµ+Y −−−−→ . . . −−−−→ ΩGΣGµ+Y

ρ
±
1





y
ρ
±
2





y

µ+Y µ+Y · · · .

Consequently after motivic localization we obtain induced maps in the colimit

ρ± : LmotΩGΣGµ+Y ≃ colim
i

LmotFiΩGΣGµ+Y → Lmotµ+Y.

Group-completing and taking the difference yields

ρ := ρ+ − ρ− : Lgp
motΩGΣGµ+Y → Lgp

motµ+Y.

Theorem 3.5. The category Corflf(k) satisfies cancellation.

Proof. We shall apply Proposition 2.16 with C the homotopy category of
Spcflf(k)gp; thus Ḡ = µ(Gm). This object is symmetric since Gm is symmetric
in Spcfr(k)gp, being semi-invertible there (see also [EHK+17, Lemma 3.3.3]).
Thus assumption (4) holds. Since Lgp

motΩGΣGµ+Y ≃ ΩGΣGL
gp
motµ+Y by

Proposition 2.8, our map ρ takes the required form. Assumptions (1) and (2)
already hold for all the ρ±m, i.e. before any localization; assumption (2) is a spe-
cial case of (3.1) and assumption (1) is equally formal. It remains to verify (3).
The composite

µ+Y
uY−−→ FiΩGm

ΣGm
µ+Y

ρi

−→ µ+Y

is easily checked to send a span α to α ⊗ (ρiu1 id). Consequently ρū =
id⊗ρ(ū

1

(id)). Since ū
1

(id) = idG−p, where p : G → ∗ → G is the projec-
tor onto the trivial summand, the result follows from Lemma 3.6 below.

Lemma 3.6. For each n > 0 we have

1. ρ+n (p) = ρ−n (p), and

2. ρ+n (idG)
A

1

≃ ρ−n (idG) + id
1

.

Proof. This is essentially [Voe10, Lemma 4.3].

Note that p is represented by the correspondence G
≃
←− G

1
−→ G, so that by

Construction, ρ±n (p) is represented by ∗ ← Z(g±n (t, 1)) → ∗ But g+n (t, 1) =
g−n (t, 1), whence (1).
Similarly ρ±n (idG) is represented by Z± := Z(g±n (t, t)), so Z+ = Z(tn + 1) and
Z− = Z(tn + t), where both tn + 1, tn + t are viewed as functions on A1 \ 0.
For a function f : X × A1 → A1 denote by D(f) the span

X ← Z(f)→ ∗.
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Consider the span H = D(tn + ts+ 1− s), which is immediately verified to be
finite flat. Then H provides an A1-homotopy between D(tn+1) and D(tn+ t),
where this time we view tn + 1, tn + t as functions on A1. Now

Z(tn + 1|A1) = Z(tn + 1|A1 \ 0) = Z+,

whereas
Z(tn + t|A1) = Z(tn + t|A1 \ 0)

∐

{0} = Z−
∐

{0}.

Since ∗ ← {0} → ∗ is the identity correspondence, H provides the desired
homotopy.
This concludes the proof.

3.3 Rational contractibility

Proposition 3.7. Let X be a smooth connected scheme over k and x0 ∈ X be
a rational point of X. Assume that there exists an open subscheme W ⊂ X×A1

containing (X × {0, 1}) ∪ (x0 × A1) and a morphism of schemes f : W → X
such that f |X×0 = x0, f |X×1 = idX and f |x0×A1 = x0. Then hflf(X, x0) is
rationally contractible (as a presheaf of monoids).

Proof. We follow closely Suslin’s proof in [Sus03, Proposition 2.2]. We shall
construct a commutative diagram in CMon(P(Smk))

hflf
+ (x0)

s0−−−−→ Ĉ1h
flf
+ (x0)

j





y





y

hflf
+ (X)

s
−−−−→ Ĉ1h

flf
+ (X)

such that i∗0s0 ≃ idx0
≃ i∗1s0, i

∗
0s ≃ idX , and i∗1s factors through j. Since Ĉ1

commutes with colimits of monoids (it commutes with finite products, i.e. co-
products of monoids, and sifted colimits) the above diagram induces

s̄ : hflf(X, x0)→ Ĉ1h
flf
+ (X) � Ĉ1h

flf
+ (x0) ≃ Ĉ1(h

flf(X, x0)),

where � means quotient as presheaf of commutative monoids. By construction,
this exhibits hflf(X, x0) as rationally contractible.
The morphism s is constructed as follows. Write V ⊂ X × A

1 for the closed
complement of W . Given Y ∈ Smk and a correspondence

α = (Y
p
←− Z

q
−→ X) ∈ hflf

+ (X)(Y ),

denote by p, q also the maps Z × A1 → Y × A1 and Z × A1 → X × A1. Let
V ′ = q−1(V ) ⊂ Z × A1, V ′′ = p(V ′), U = Y × A1 \ V ′′ and W ′ = p−1(U).
Note that V ′ does not contain any point above 0 or 1 and is closed. Since p is
finite, V ′′ is also closed and contains no point above 0 or 1. Thus U is open
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and contains Y ×{0, 1}. Moreover W ′ ⊂ Z ×A1 \V ′ = q−1(W ). There is thus
a well-defined correspondence

s(α) = (U ←W ′ → W
f
−→ X) ∈ Ĉ1h

flf
+ (X)(Y ).

This assignment is readily promoted to a morphism of presheaves. The mor-
phism s0 just sends Y ← Z → x0 to Y × A1 ← Z × A1 → Z → x0. The
required commutativity and factorization are readily established.

Proposition 3.8. Corflf(k) satisfies rational contractibility.

Proof. By Remark 2.19, it suffices to show that hflf((A1 \ 0)×n, x0) is ratio-
nally contractible as a presheaf of monoids. As usual this follows from Propo-
sition 3.7 by taking W to be defined by uti+(1− u) 6= 0 and f(t1, . . . , tn, u) =
u(t1, . . . , tn) + (1− u)x0.

4 Applications

Theorem 4.1. Let k be a perfect field. The functor

Spcflf(k)gp → SHflf(k)

is fully faithful.

Proof. Immediate from Theorem 3.5 and Proposition 2.13.

Write
µ : SH(k) ⇆ SHflf(k) : µ∗

for the canonical adjunction. Recall from [HJN+20, §5] the motivic spectrum
kgl of (very) effective algebraic K-theory.

Theorem 4.2. Let k be a perfect field. We have µ∗(1SHflf (k)) ≃ kgl, and this
spectrum is presented as a P1-Ω-spectrum via

kgl ≃ (Lmoth
flf
+ (∗)

gp
, Lmoth

flf(P1), Lmoth
flf((P1)∧2), . . . ).

Proof. It is immediate from Theorem 3.5 and Corollary 2.15 that µ∗(1) has
a presentation as claimed. Moreover by Proposition 3.8 and Corollary 2.20
we have µ∗(1) ≃ Σ∞

fr h
flf
+ (∗). But by construction hflf

+ (∗) = FF latk, so the
remaining claim follows from [HJN+20, Theorem 5.4].

Corollary 4.3. Let k be perfect of exponential characteristic e. We have

SHflf(k)[1/e] ≃ kgl[1/e]-Mod.

Proof. This is a formal consequence of compact-rigid generation (which is why
we invert e [LYZR19, Corollary B.2]) and Theorem 4.2; see e.g. the proof of
[BF17, Lemma 5.3].
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A Rational contractibility

We review Suslin’s notion of rational contractibility [Sus03, §2] and extend
the basic properties of this notion to presheaves of spaces. All results in this
section are essentially straightforward reformulations of Suslin’s. Throughout k
denotes a field (not necessarily perfect).
For a presheaf F (of spaces) on Smk, define a new presheaf Ĉ1F on Smk by

(Ĉ1F )(X) = colim
X×{0,1}⊂U⊂X×A1

F (U);

here the colimit is over open subschemes of X × A
1. Note that pullback to 0

or 1 defines two maps of presheaves

i∗0, i
∗
1 : Ĉ1F → F.

Definition A.1. A presheaf F is called rationally contractible if there is a map
s : F → Ĉ1F such that i∗0s ≃ idF and i∗1s is constant (i.e. factors through the
terminal presheaf ∗).

Example A.2. F is called A1-contractible if there is a map H : A1×F → F such
that i∗0H ≃ idF and i∗1H is constant. Equivalently there is a map H ′ : F →
Map(A1, F ) with i∗0H

′ ≃ idF and i∗1H
′ constant. Since there is a canonical

map Map(A1, F )→ Ĉ1F , we see that A1-contractible presheaves are rationally
contractible.

Example A.3. We have Ĉ1(F × G) ≃ Ĉ1(F ) × Ĉ1(G). It follows that if F,G
are rationally contractible then so is F ×G.

Example A.4. Consider a retraction G
α
−→ F

β
−→ G and let s : F → Ĉ1F

exhibit F as rationally contractible. Then one easily checks that G
α
−→ F

s
−→

Ĉ1F
Ĉ1β
−−→ Ĉ1G exhibits G as rationally contractible. In other words, rationally

contractible presheaves are stable under retracts.

Write ∆̂• = ∆̂•
k for the standard cosimplicial semilocal scheme [Lev08, §5.1].

Recall that the category Smess

k embeds into the category of pro-objects in Smk

[Gro67, Proposition 8.13.5]. Thus F (∆̂•) makes sense and is a simplicial space,
and we write |F (∆̂•)| for its geometric realization.

Lemma A.5. Let F be rationally contractible. Then |F (∆̂•)| is contractible.

Proof. Write r : ∆→ Smess

k for the cosimplicial object ∆̂•, and also for the left
Kan extension P(∆)→ P(Smess

k ). There are canonical maps

r(∆1 ×∆n)→ r(∆1)× r(∆n) = ∆̂1 × ∆̂n → ∆̂1×̂∆̂n =: r′(∆n),

where ∆̂1×̂∆̂n denotes the semilocalization of A1 × An in the vertices. This
way we obtain a morphism of simplicial spaces

s′ : r∗F
r∗s
−−→ r∗Ĉ1F ≃ r′∗F → r(∆1 ×∆•)∗(F ) ≃ Map(∆1, r∗F ).
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By construction i∗0s
′ ≃ idr∗F and i∗1s

′ is constant; thus r∗F ≃ F (∆̂•) is simpli-
cially contractible and hence |r∗F | ≃ |F (∆̂•)| is contractible.5

Lemma A.6. Let p : Spec(K) → Spec(k) be a separable (not necessarily alge-
braic) field extension. Then for F ∈ P(Smk) we have p∗Ĉ1F ≃ Ĉ1p

∗F . In
particular if F is rationally contractible then so is p∗F .

Proof. The proof of [BF17, Lemma 2.2] goes through unchanged.

Lemma A.7. Let F be rationally contractible, and assume that F promotes to
a presheaf of grouplike commutative monoids. Then Map(An, F ) is rationally
contractible.

Proof. Since ∗ → A
n admits a retraction, the group structure allows us to split

the fibration sequence

Map
∗
(An, F )→ Map(An, F )→ F,

i.e. Map(An, F ) ≃ Map
∗
(An, F ) × F . By Examples A.3 and A.2 it thus suf-

fices to show that Map
∗
(An, F ) is A

1-contractible, which is well-known (an
A1-homotopy contracting An to the base point induces an A1-homotopy con-
tracting Map

∗
(An, F ) to its base point).

Corollary A.8. Let F be a presheaf of grouplike commutative monoids on
Smk such that the underlying presheaf of spaces is rationally contractible. Let K
be the field of fractions of a smooth connected k-scheme. Then

|(LA1F )(∆̂•
K)| ≃ ∗.

Proof. Write p : Spec(K) → Spec(k) for the base change. Since p∗ commutes
with LA1 (e.g. by [Hoy15, Lemma A.4]) and Ĉ1 (by Lemma A.6), we may
assume that K = k. Since colimits commute we find that

|(LA1F )(∆̂•
K)| ≃ colim

n∈∆op
(LA1F )(∆̂n) ≃ colim

n∈∆op
colim
m∈∆op

F (Am × ∆̂n)

≃ colim
m∈∆op

colim
n∈∆op

Map(Am, F )(∆̂n).

By Lemmas A.7 and A.5, each of the inner colimits is contractible, and hence
so is the total colimit, ∆ being sifted and hence contractible [Lur09, Proposi-
tion 5.5.8.7].

If F is a presheaf of commutative monoids then so is Ĉ1F . Indeed the col-
imit defining (Ĉ1F )(X) is filtered, and hence may be computed in commu-
tative monoids or spaces, with the same result. We say that F is rationally
contractible as a presheaf of commutative monoids if there is a morphism of

5Indeed by adjunction we obtain H : ∆1 × r∗F → r∗F , and since geometric realiza-
tion commutes with finite products (being a sifted colimit [Lur09, Lemma 5.5.8.11, Remark
5.5.8.11]), |H| : |∆1 × r∗F | ≃ |∆1| × |r∗F | → |r∗F | is a contracting homotopy.
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presheaves of commutative monoids s : F → Ĉ1F such that i∗0s ≃ idF and
i∗1s ≃ ∗, as morphisms of presheaves of commutative monoids. Clearly if F
is rationally contractible as a presheaf of commutative monoids then it is also
rationally contractible in the previous sense.

Lemma A.9. On presheaves of commutative monoids, Ĉ1 commutes with group
completion. In particular if F is rationally contractible as a presheaf of com-
mutative monoids, then F gp is also rationally contractible (as a presheaf of
commutative monoids).

Proof. It suffices to show that group completion of commutative monoids pre-
serves filtered colimits and final objects. The first statement holds since group
completion is a localization and grouplike monoids are closed under filtered col-
imits, and the second statement is obvious since the final commutative monoid
is grouplike.

References

[AGP16] Alexey Ananyevskiy, Grigory Garkusha, and Ivan Panin. Cancella-
tion theorem for framed motives of algebraic varieties. Adv. Math.
383, Article ID 107681, 38 p., 2021.

[AHW17] Aravind Asok, Marc Hoyois, and Matthias Wendt. Affine repre-
sentability results in a

1 -homotopy theory, I: Vector bundles. Duke
Math. J. 166(10):1923–1953, 2017.

[Bac17] Tom Bachmann. The generalized slices of hermitian K-theory. J.
Topol. 10(4):1124–1144, 2017. arXiv:1610.01346.

[Bac19] Tom Bachmann. Affine grassmannians in A1-homotopy theory. Se-
lecta Math. (N.S.) 25(2):paper 25, 2019. arXiv:1801.08471.

[Bar17] Clark Barwick. Spectral Mackey functors and equivariant algebraic
K-theory, I. Adv. Math. 304(2):646–727, 2017.

[BE19] Tom Bachmann and Elden Elmanto. Notes on motivic infinite loop
space theory, 2019. arXiv:1912.06530.

[BF17] Tom Bachmann and Jean Fasel. On the effectivity of spectra rep-
resenting motivic cohomology theories, 2017. arXiv:1710.00594.

[BH20] Tom Bachmann and Marc Hoyois. Norms in motivic homotopy the-
ory. Accepted for publication in Asterisque, 2020. arXiv:1711.03061.

[EHK+17] Elden Elmanto, Marc Hoyois, Adeel A. Khan, Vladimir Sos-
nilo, and Maria Yakerson. Motivic infinite loop spaces, 2017.
arXiv:1711.05248.

Documenta Mathematica 26 (2021) 1121–1144

https://arxiv.org/abs/1610.01346
https://arxiv.org/abs/1801.08471
https://arxiv.org/abs/1912.06530
https://arxiv.org/abs/1710.00594
https://arxiv.org/abs/1711.03061
https://arxiv.org/abs/1711.05248


Cancellation for Finite Flat Transfers 1143

[FØ17] J. Fasel and P. A. Østvær. A cancellation theorem for Milnor-Witt
correspondences, 2017. arXiv:1708.06098.

[GGN16] David Gepner, Moritz Groth, and Thomas Nikolaus. Universality
of multiplicative infinite loop space machines. Algebr. Geom. Topol.
15(6):3107–3153, 2016.

[GP15] Grigory Garkusha and Ivan Panin. Homotopy invariant presheaves
with framed transfers. Camb. J. Math. 8(1):1–94, 2020.
arXiv:1504.00884.

[Gro67] A. Grothendieck. Éléments de géométrie algébrique. IV: Étude lo-
cale des schémas et des morphismes de schémas. Rédigé avec la
colloboration de Jean Dieudonné. Publ. Math., Inst. Hautes Étud.
Sci. 32:1–361, 1967.

[HJN+20] Marc Hoyois, Joachim Jelisiejew, Denis Nardin, Burt Totaro, and
Maria Yakerson. The Hilbert scheme of infinite affine space and
algebraic K-theory, 2020. arXiv:2002.11439.

[Hoy15] Marc Hoyois. From algebraic cobordism to motivic cohomology. J.
Reine Angew. Math. 702:173–226, 2015.

[Hoy16] Marc Hoyois. Cdh descent in equivariant homotopy K-theory. Doc.
Math. 25:457–482, 2020. arXiv:1604.06410.

[Hoy18] Marc Hoyois. The localization theorem for framed motivic spaces.
Compos. Math. 157(1):1–11, 2021. arXiv:1807.04253.

[Lev08] Marc Levine. The homotopy coniveau tower. J. Topol. 1(1):217–267,
2008.

[Lur09] Jacob Lurie. Higher topos theory. Annals of Mathematics Studies
170. Princeton University Press, 2009.

[Lur16] Jacob Lurie. Higher algebra, May 2016.

[LYZR19] Marc Levine, Yaping Yang, Gufang Zhao, and Joël Riou. Algebraic
elliptic cohomology theory and flops, I. Math. Ann. 375(3):1823–
1855, 2019.

[Mor05] Fabien Morel. The stable A1-connectivity theorems. K-Theory
35(1):1–68, 2005.

[Mor12] Fabien Morel. A1-Algebraic Topology over a Field. Lecture Notes
in Mathematics 2052. Springer Berlin Heidelberg, 2012.

[Rob15] Marco Robalo. k-theory and the bridge from motives to noncom-
mutative motives. Adv. Math. 269:399–550, 2015.

Documenta Mathematica 26 (2021) 1121–1144

https://arxiv.org/abs/1708.06098
https://arxiv.org/abs/1504.00884
https://arxiv.org/abs/2002.11439
https://arxiv.org/abs/1604.06410
https://arxiv.org/abs/1807.04253


1144 T. Bachmann

[SØ12] Markus Spitzweck and Paul Arne Østvær. Motivic twisted K–
theory. Algebr. Geom. Topol. 12(1):565–599, 2012.

[Sta18] The Stacks Project Authors. Stacks Project, 2018.
http://stacks.math.columbia.edu.

[Sus03] Andrei Suslin. On the Grayson spectral sequence. Proc. Steklov
Inst. Math., 241:202–237, 2003.

[Voe10] Vladimir Voevodsky. Cancellation theorem. Doc. Math., Extra
Volume: A. Suslin’s Sixtieth Birthday:671–685, 2010.

Tom Bachmann
LMU Munich
Mathematisches Institut
Theresienstr. 39
80333 München
Germany

Documenta Mathematica 26 (2021) 1121–1144

http://stacks.math.columbia.edu

