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Abstract. We provide a new description of logarithmic topologi-
cal André–Quillen homology in terms of the indecomposables of an
augmented ring spectrum. The new description allows us to interpret
logarithmic TAQ as an abstract cotangent complex, and leads to a
base-change formula for logarithmic topological Hochschild homology.
The latter is analogous to results of Weibel–Geller for Hochschild ho-
mology of discrete rings, and of McCarthy–Minasian and Mathew for
topological Hochschild homology. For example, our results imply that
logarithmic THH satisfies base-change for tamely ramified extensions
of discrete valuation rings.
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1 Introduction

Ramification is a notion in ordinary algebra which has no clear generalization
to the context of E∞-rings. For example, there is evidence that the complexifi-
cation map KO→ KU relating the real and complex periodic K-theory spectra
should be regarded an unramified extension. It fails to be an étale map in the
sense of Lurie [Lur17, Chapter 7], as the map of graded rings

π0(KU)⊗π0(KO) π∗(KO) −→ π∗(KU)

fails to be an isomorphism. Nonetheless, it enjoys a strong formal étaleness
property in that the unit map

KU→ THHKO(KU)
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from KU to its topological Hochschild homology relative to KO is a stable
equivalence. For ordinary Hochschild homology of discrete rings, the analogous
property is satisfied for any étale map [WG91].

In general, suppose that R→ A is a map of E∞-rings such that the unit map

A→ THHR(A)

from A to its topological Hochschild homology relative to R is a stable equiv-
alence. This implies that the topological André–Quillen homology TAQR(A),
the A-module corepresenting derivations, is contractible. As we review be-
low, these formal étaleness properties are, up to a mild finiteness condition,
equivalent to being étale once attention is restricted to connective ring spectra.

1.1 Examples of ramified extensions of E∞-rings

Notions of formal étaleness are less useful if one wants to distinguish between
tame and wild ramification. We give an example of a map of E∞-rings which
we think of as tamely ramified, and one which we think of as wildly ramified.
Both are maps of connective E∞-rings that fail to be étale, and so neither map
satsifies any of the formal étaleness properties discussed above.

Let p be an odd prime and consider the inclusion ℓp → kup of the p-
complete connective Adams summand. On homotopy rings, this is the map
Zp[v] → Zp[u] sending v to up−1. Thinking of the coefficients v and u as
uniformizers, this is reminiscent of a tamely ramified extension of number
rings. As the ring spectra involved are connective, one might expect that the
inclusion of the Adams summand should be regarded as tamely ramified.

Consider now the complexification map ko→ ku relating the real and complex
connective K-theory spectra. The map of homotopy rings is more compli-
cated. However, restricting attention to the behavior of the Bott classes, the
fact that the Bott class w ∈ π8(ko) maps to u4 leads us to expect that the
complexification map is wildly ramified at the prime 2.

As pointed out by Rognes [Rog14, Remark 7.3], there is evidence for both of
the above expectations through a natural interpretation of Noether’s theorem
relating tame ramification for ordinary rings to the existence of a normal basis.
However, it is not clear how the tame and wild ramification of these maps
of E∞-rings should be interpreted in terms of TAQ and THH. The following
idea from logarithmic geometry has proven useful in addressing this issue:
rigidifying schemes with the extra data of a logarithmic structure allows one to
treat some tamely ramified extensions as if they were unramified. For example,
a finite extension of complete discrete valuation rings in mixed characteristic it
is at most tamely ramified if and only if it is log étale. The essential property
enjoyed by the tamely ramified extensions is the vanishing of a certain module
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of logarithmic differentials. These generalize the classical Kähler differentials
Ω1

C|B associated to a map B → C of discrete rings, which vanish for any étale
map. The converse fails to hold: For example, any map of perfect Fp-algebras
is formally étale.

In this paper we generalize results relating various notions of formal étaleness
from E∞-ring spectra to logarithmic ring spectra. The latter for instance arise
as approximations of periodic ring spectra that are finer than the connective
covers, but nevertheless retain some characteristics enjoyed by connective ring
spectra. This generalization is desirable for at least two reasons: first, it sheds
light on the nature of tame and wild ramification in the context of E∞-rings.
For example, we will see below that the unit map from kup to the logarithmic
THH of kup relative to the Adams summand is a stable equivalence, while the
corresponding statement fails for the complexification map ko→ ku. Secondly,
it relaxes the necessary connectivity hypotheses that appear in results relating
formal étaleness properties for ordinary E∞-rings.

The core ingredient in this generalization is a new description of logarithmic
topological André–Quillen homology, which was initially introduced by Rognes
[Rog09] and later studied by Sagave [Sag14]. The new description involves
Rognes’ notion of repletion in a manner reminiscent of how it is employed in the
definition of logarithmic THH of Rognes, Sagave and Schlichtkrull [RSS15]; see
also Remark 6.14 for an algebro-geometric interpretation of the new description.
Our formulation is simultaneously more reminiscent of the definition of ordinary
TAQ of Basterra [Bas99] in that it arises as the module of indecomposables of an
augmented ring spectrum. It therefore allows us to describe the relationship
between log TAQ and log THH in a manner largely analogous to the non-
logarithmic case.

1.2 The étale descent formula for THH

To put our results in context, we first review the results which we aim to
generalize. Let f : R→ A be a map of E∞-ring spectra. We say that f

0. is étale is the map π0(R)→ π0(A) of discrete commutative rings is étale
and the map of graded rings π0(A) ⊗π0(R) π∗(R) −→ π∗(A) is an isomor-
phism;

1. satisfies étale descent if the canonical map A ∧R THH(R) −→ THH(A) is
an equivalence;

2. is formally THH-étale if the unit map A −→ THHR(A) is an equivalence;

3. is formally TAQ-étale if the A-module spectrum TAQR(A) is contractible.

The above properties go by various names in the literature; we choose to follow
the terminology of Richter [Ric17, Definitions 8.3 and 8.8]. These notions are
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for instance useful for studying morphisms which are not necessarily étale, but
exhibit similar formal properties. The most prominent class of examples is
perhaps the faithful Galois extensions of Rognes [Rog08].

Properties (0) and (3) are closely related, since the topological André–Quillen
homology TAQR(A) is a model for the cotangent complex LA|R. For maps
between connective ring spectra, formally TAQ-étale implies étale as soon as
π0(A) is finitely presented over π0(R) by [Lur11, Lemma 8.9]. It is always the
case that étale morphisms are formally TAQ-étale by [Lur17, Corollary 7.5.4.5].
We now present an alternative proof of this fact, which highlights how THH
naturally fits into this story.

Let B → C be an étale morphism of discrete commutative rings. Weibel–
Geller [WG91] prove that Hochschild homology satisfies the base-change prop-
erty

HH∗(C) ∼= C ⊗B HH∗(B),

and they relate this to descent for Hochschild homology along B → C; hence
the name étale descent for this property. Mathew [Mat17] generalizes the
étale descent formula of Weibel–Geller to E∞-ring spectra: if f : R → A is
étale, then it satisfies étale descent. It is largely formal (cf. Section 7.1) to
see that this implies that f is formally THH-étale, and an argument due to
Rognes [Rog08, Lemma 9.4.4] based on work of Basterra and Mandell [BM05]
applies to show that f is formally TAQ-étale in this case.

For morphisms between connective E∞-ring spectra, one finds that the étale
descent formula holds as soon as TAQR(A) is contractible, since [Lur17, Proof
of Proposition 7.5.1.15] exhibits R → A as what Mathew calls strongly 0-
cotruncated in this case. Mathew shows that any such morphism satisfies étale
descent, and together this shows:

Theorem 1.3. Let f : R → A be a formally TAQ-étale morphism between
connective E∞-ring spectra. Then f satisfies étale descent, i.e. the canonical
map

A ∧R THH(R) −→ THH(A)

is a stable equivalence.

We remark that this strengthens the étale descent formula of McCarthy–
Minasian [MM03, Section 5], where the authors impose a finiteness hypothesis
roughly amounting to A being perfect as an R-module.

From the above discussion, we have that the following implications always hold
true:

étale descent =⇒ formally THH-étale =⇒ formally TAQ-étale.
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Moreover, the content of Theorem 1.3 is that the converse statements hold as
soon as the ring spectra involved are connective. Both reverse implications are
known to fail in general, the first due to Mathew [Mat17] and the second due
to McCarthy–Minasian [MM03]. One of the main results of the present paper,
Theorem 1.7, is an analogue of Theorem 1.3 for logarithmic ring spectra.

1.4 Logarithmic ring spectra

A pre-logarithmic ring (R,P, β) consists of a discrete commutative ring
R, a commutative monoid P and a map β : P → (R, ·) of commu-
tative monoids to the underlying multiplicative monoid of R. A map
(f, f ♭) : (R,P, β)→ (A,M,α) of pre-log rings consists of a map f ♭ : P →M of
commutative monoids and a map f : R → A of commutative rings such that
α ◦ f ♭ = (f, ·) ◦ β. A pre-log ring (A,M,α) determines a localization A[M−1],
and we think of the pre-log ring itself as an intermediate localization between
A and A[M−1].

Pre-logarithmic ring spectra can be defined using commutative J -space monoids
as introduced by Sagave and Schlichtkrull [SS12]. These can be thought of
as QS0-graded E∞-spaces. Every commutative (symmetric) ring spectrum A
gives rise to a commutative J -space monoid ΩJ (A), which we think of the
underlying multiplicative graded monoid of A. Examples of pre-logarithmic
ring spectra arise via homotopy classes: for example, the Bott class u ∈ π2(ku)
gives rise to a pre-log structure D(u)→ ΩJ (ku). The localization it determines
is the periodic theory KU. We refer to Sections 2 and 4 of the present paper
and [Rog09,SS12,Sag14,RSS15] for more detailed introductions to logarithmic
ring spectra.

1.5 The étale descent formula for logarithmic THH

We now aim to generalize Theorem 1.3 to the context of pre-logarithmic
ring spectra. For this we shall make use of logarithmic TAQ as developed in
[Rog09, Sag14] and the present paper, and logarithmic THH as developed in
[Rog09,RSS15].

We can make definitions analogous to those already discussed for TAQ and
THH in the context of pre-logarithmic ring spectra.

Definition 1.6. Let (f, f ♭) : (R,P ) −→ (A,M) be a map of pre-logarithmic
ring spectra. The morphism (f, f ♭)

1. satisfies log étale descent the natural map A ∧R THH(R,P ) −→
THH(A,M) is a stable equivalence;

2. is formally log THH-étale if the unit map A −→ THH(R,P )(A,M) is a
stable equivalence;
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3. is formally log TAQ-étale if the A-module spectrum TAQ(R,P )(A,M) is
contractible.

The following generalizes Theorem 1.3 to pre-logarithmic ring spectra:

Theorem 1.7. Let (R,P )→ (A,M) be a map of pre-logarithmic ring spectra.
Then the following implications always hold true:

log étale descent =⇒ formally log THH-étale =⇒ formally log TAQ-étale.

Moreover, if the pre-logarithmic ring spectra involved are connective, then the
reverse implications hold.

In the theorem, connectivity means that both the underlying commutative ring
spectrum and a graded analogue of the spherical monoid ring of the underlying
graded E∞-space are connective. We make this precise in Definition 7.7.

We remark that our terminology differs from that used used in [RSS18], where
the term “formally log THH-étale” is used for what we have called “log étale
descent.” With our terminology, the main result of [RSS18, Section 6] reads as
follows:

Theorem 1.8 (Rognes–Sagave–Schlichtkrull). Let p be an odd prime and let
kup be the p-complete connective complex K-theory spectrum. The inclusion
of the Adams summand ℓp induces a map (ℓp, D(v)) → (kup, D(u)) of pre-
logarithmic ring spectra which satisfies log étale descent.

As a corollary, the results of [RSS18] combined with Theorem 1.7 provide the
following description of the relative logarithmic topological Hochschild homol-
ogy THH(ℓp,D(v))(kup, D(u)):

Corollary 1.9. The morphism (ℓp, D(v)) −→ (kup, D(u)) is formally log THH-
étale; that is, the unit map

kup
≃
−→ THH(ℓp,D(v))(kup, D(u))

is a stable equivalence of commutative symmetric ring spectra.

In particular, the inclusion of the Adams summand satisfies all three properties
in Definition 1.6. As a map of connective ring spectra that fails to be étale,
the inclusion of the Adams summand does not satisfy any of the analogous
properties for ordinary THH and TAQ.

The complexification map ko → ku participates in a map (ko, D(w)) →
(ku, D(u)) of pre-logarithmic ring spectra that realizes the periodic complexifi-
cation map KO→ KU on localizations. Höning–Richter prove that the associ-
ated logarithmic TAQ is not contractible [HR21, Theorem 3.2]. Consequently,
Theorem 1.7 implies that this map fails to satisfy any of the formal log étaleness
properties discussed here, providing further evidence that the complexification
map should be regarded a wildly ramified extension.
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1.10 Log étale descent for tamely ramified extensions

In the context of discrete log rings, examples of log étale maps arise as tamely
ramified extensions of discrete valuation rings. A discrete valuation ring R al-
ways has a natural log structure given by the inclusion of the non-zero elements
R ∩ GL1(K) of R, where K denotes the fraction field of R. In Section 8 we
relate the usual notion of log étaleness in the sense of Kato [Kat89] to formal
étaleness properties in such a way that Theorem 1.7 applies to obtain:

Theorem 1.11 (Theorem 8.1). Let R→ A be a tamely ramified finite extension
of complete discrete valuation rings in mixed characteristic (0, p) with perfect
residue fields. Let K → L be the induced map of fraction fields. Then the
induced map (R,R∩GL1(K))→ (A,A∩GL1(L)) of log rings satisfies log étale
descent; that is, the canonical map

A ∧R THH(R,R ∩GL1(K))→ THH(A,A ∩GL1(L))

is a stable equivalence.

1.12 Logarithmic topological André–Quillen homology

Let A be a commutative ring spectrum and let A→ B → A be an augmented
commutative A-algebra. A homotopically meaningful construction of the inde-
composables was introduced and studied by Basterra [Bas99], and gives rise to
a functor

taqA : CAlgA//A → ModA

from the category of commutative augmented A-algebras to that of A-modules.
The topological André–Quillen homology TAQR(A) associated to a map of
commutative ring spectra R→ A is by definition the A-module taqA(A∧R A).

For a morphism (R,P ) → (A,M) of pre-logarithmic ring spectra, Sagave

[Sag14] constructs an A-module T̃AQ(R,P )(A,M) which corepresents logarith-
mic derivations, which we review in Section 6 of the present paper. The defi-
nition of this A-module involves certain Segal Γ-spaces defined in terms of the
morphism P →M of commutative J -space monoids. We revisit the construc-
tion of logarithmic derivations to provide a new formulation of log TAQ which
is more reminiscent of the non-logarithmic definition:

Theorem 1.13 (Definition 6.12, Theorem 6.13). The A-module

T̃AQ(R,P )(A,M) is naturally weakly equivalent to taqA(C), where C is
an explicitly defined augmented commutative A-algebra dependent on the
morphism (R,P )→ (A,M).

This prompts us to redefine the logarithmic topological André–Quillen homology
TAQ(R,P )(A,M) as the A-module taqA(C). As we explain in Remark 6.14, our
definition is analogous to the description of the log Kähler differentials as the
conormal of the log diagonal studied by Kato–Saito [KS04].
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1.14 Logarithmic TAQ as a cotangent complex

From the point of view of Lurie’s cotangent complex formalism [Lur17, Section
7], the results of Basterra–Mandell [BM05] exhibit ModA as the tangent
category of the category CAlg of commutative algebras at A, and topological
André–Quillen homology TAQR(A) as its corresponding cotangent complex
LA|R.

By definition, the stable category Sp(PreLog(A,M)//(A,M)) is the tangent cat-
egory of the category of pre-logarithmic ring spectra at (A,M). A variant
of this category has been proposed as a category of log modules Mod(A,M) in
[Rog09, Remark 8.8]. In Section 9 we recover an analogue of this category by
stabilizing a replete model structure PreLogrep(A,M)//(A,M). With this model

structure, TAQ(R,P )(A,M) arises as the A-module underlying the (A,M)-
module L

rep
(A,M)|(R,P ) obtained by forming the associated cotangent complex.

In addition, the replete model structure gives rise to an interpretation of log
THH as a cyclic bar construction in the category of pre-log ring spectra.

1.15 A logarithmic André–Quillen spectral sequence

As part of the proof of Theorem 1.7, we apply a theorem due to Kuhn [Kuh06,
Theorem 3.10] to express logarithmic THH as the homotopy limit of a tower of
fibrations, where the fiber of each map in the tower can be described in terms
of logarithmic TAQ. This gives rise to a conditionally convergent spectral
sequence

Es,t
1 = πt−s(

[

s
∧

A

ΣTAQ(R,P )(A,M)
]

hΣs
) =⇒ πt−s(THH

(R,P )(A,M)),

see [BK72, IX.4.2], [Boa99] and Section 7 of the present paper. In the case
of ordinary THH, this recovers a version of the spectral sequence constructed
by Minasian [Min03]. Related results leading to a version of the logarithmic
André–Quillen spectral sequence above appear in the unpublished PhD thesis
of Franklin [Fra15]. To the best of the author’s understanding, the arguments in
loc. cit. are highly dependent on the arguments of McCarthy–Minasian [Min03,
MM03], on which the present work does not rely.

1.16 Outline

In Section 2 we review our conventions and some basic properties of commu-
tative J -space monoids. In Section 3 we review the cyclic and replete bar
constructions, and we interpret both in terms of appropriate simplicial tensors.
Section 4 recalls basic properties of logarithmic ring spectra and the logifica-
tion construction, while in Section 5 we discuss relative logarithmic THH and
its basic properties. In Section 6 we provide the new description of log TAQ,
while in Section 7 we give the proof of Theorem 1.7. In Section 8 we discuss log
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étale descent for tamely ramified extensions of discrete valuation rings, while
in Section 9 we give the cotangent complex interpretation of log TAQ.
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2 Commutative J -space monoids

2.1 Conventions on symmetric spectra

We denote by SpΣ = (SpΣ,∧, S) the symmetric monoidal category of symmetric
spectra in simplicial sets as introduced in [HSS00]. When referenced as a model
category, we always reference the positive stable model structure on SpΣ, from
which the category of commutative symmetric ring spectra CSpΣ inherits a
proper simplicial model structure [MMSS01]. It is necessary to assume that a
given commutative symmetric ring spectrum is positive fibrant for many of our
constructions, and we will do so without further comment.

2.2 J -spaces

We give a rough recollection of the terminology involved in the theory of
topological logarithmic structures based on commutative J -space monoids as
developed in [Sag14,RSS15,RSS18]. A more detailed recollection is provided
in [RSS15, Section 2], while we refer to [SS12, Section 4] for further details.

Denote by J the category obtained via Quillen’s localization construction on
the category of finite sets n = {1, . . . , n} and bijections. By convention, 0
denotes the empty set. The category J has pairs (m1,m2) as objects. The
category SJ of J -spaces is the category of functors from J to the category S
of simplicial sets. This category has a symmetric monoidal product ⊠ defined
as the left Kan extension along the ordered concatenation −⊔− : J ×J → J ,
i.e.

(X ⊠ Y )(n1,n2) = colim(k1,k2)⊔(l1,l2)→(n1,n2)X(k1,k2)× Y (l1, l2).

Here the colimit is taken in the slice category ⊔ ↓ J , and the monoidal unit
UJ is the J -space J ((0,0),−). The category CSJ of commutative J -space
monoids is the category of commutative monoids with respect to this symmet-
ric monoidal structure.
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By [SS12, Proposition 4.10], the category of commutative J -space monoids ad-
mits a positive J -model structure in which a mapM → N is a weak equivalence
if and only if it induces a weak equivalence MhJ → NhJ of simplicial sets on
Bousfield–Kan homotopy colimits over J . We refer to the weak equivalences
of this model structure as J -equivalences. This model structure is cofibrantly
generated, proper and simplicial. With respect to this model structure there is
a Quillen adjunction

SJ [−] : CSJ ⇆ CSpΣ : ΩJ (−)

relating the category of commutative J -space monoids with that of commuta-
tive symmetric ring spectra. If A is a commutative symmetric ring spectrum,
we think of the commutative J -space monoid ΩJ (A) as the underlying graded
monoid of A.

To every commutative J -space monoid M one can associate a graded dis-
crete monoid π0,∗(M) such that π0,∗(Ω

J (A)) ∼= (π∗(A), ·), the underlying

graded multiplicative monoid of π∗(A). There is a subobject GLJ
1 (A) of

ΩJ (A); the graded units of A. As opposed to the E∞-space of units GL1(A)
or its commutative I-space model GLI

1 (A), this captures units outside of
π0(A); in particular, the associated map π0,∗(GLJ

1 (A)) → π0,∗(Ω
J (A)) of

graded discrete commutative monoids is the inclusion of the units in (π∗(A), ·)
[SS12, Proposition 4.26].

We will need the following statement on numerous occasions:

Lemma 2.3. [Sag14, Lemma 2.11] Let K and L be commutative J -space
monoids, and assume that at least one of the two is cofibrant. Then the
monoidal structure map

KhJ × LhJ
≃
−→ (K ⊠ L)hJ

is a weak equivalence of simplicial sets.

In loc. cit. the statement is proved under the weaker cofibrancy hypothesis of
flatness, however this will make no difference for us.

2.4 The group completion model structure and repletion

We now discuss group completion of commutative J -space monoids. A commu-
tative J -space monoid N is grouplike if π0(NhJ ) is a group. By [Sag16, The-
orem 5.5], the category of commutative J -space monoids admits a group com-
pletion model structure in which N → M is a weak equivalence if and only
if B(NhJ ) → B(MhJ ) is a weak equivalence. The cofibrations coincide with
those of the positive J -model structure, while the fibrant objects are the pos-
itive fibrant M which are grouplike. This model structure arises as a left
Bousfield localization of the positive J -model structure; in particular, it is left
proper.
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Definition 2.5. LetN →M be a morphism of commutative J -space monoids.

1. The group completion of a N is defined by a functorial factorization

N Ngp ∗≃

in the group completion model structure.

2. The repletion N rep of N relative to M is defined by a functorial factor-
ization

N N rep M≃

in the group completion model structure (so that N rep = Ngp in the case
where M is terminal).

3. The morphism N → M virtually surjective if the induced map
π0(N

gp
hJ )→ π0(M

gp
hJ ) is a surjection of abelian groups.

Lemma 2.6. Let N → M be a virtually surjective morphism of commutative
J -space monoids. There is a homotopy cartesian square of the form

N rep (Ngp)f

M Mgp

in the positive J -model structure, where (Ngp)f participates in a factorization

Ngp (Ngp)f Mgp≃

in this model structure. In particular, the square

N rep (N rep)gp

M Mgp

is homotopy cartesian.

Remark 2.7. In situations where we apply the latter formulation of Lemma
2.6, we will abuse notation slightly and simply write Ngp in place of (N rep)gp.

Proof of Lemma 2.6. The existence of the first homotopy cartesian square is
the content of [RSS15, Lemma 3.17]. To see that the second square is homotopy
cartesian, we use the lifting properties of the group completion model structure

to obtain a J -equivalence (N rep)gp
≃
−→ (Ngp)f over Mgp. Since the positive J -

model structure is right proper, [Hir03, Proposition 13.3.4] applies to compare
the two squares.
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2.8 Group completion commutes with homotopy pushouts

Suppose that we are given a diagram M ←− P −→ N of commutative J -space
monoids with P cofibrant and P →M a cofibration. We may assume without
loss of generality that P gp →Mgp is a cofibration as well, so that the induced
morphism

M ⊠P N −→Mgp
⊠P gp Ngp

is a weak equivalence in the group completion model structure. The universal
property of the pushout provides a natural map

Mgp
⊠P gp Ngp −→ (M ⊠P N)gp (2.1)

which is a weak equivalence in the group completion model structure.

Lemma 2.9. In the context described above, the morphism (2.1) is a J -
equivalence.

Proof. Since Mgp is cofibrant, the monoidal structure map

Mgp
hJ ×Ngp

hJ
≃
−→ (Mgp

⊠Ngp)hJ

is a weak equivalence of simplicial sets by Lemma 2.3. Hence the map

π0((M
gp

⊠Ngp)hJ ) −→ π0((M
gp

⊠P gp Ngp)hJ )

is a surjection. The domain of this map being a group implies that its codomain
is a group as well. By definition, this means that Mgp

⊠P gp Ngp is grouplike,
which concludes the proof since (2.1) is now a weak equivalence in the group
completion model structure between grouplike commutative J -space monoids.

2.10 The repletion of augmented commutative J -space monoids

Let P be a cofibrant commutative J -space monoid and let P → M → P
be a cofibrant commutative J -space monoid over and under P , that is, the
morphism P → M is a cofibration of commutative J -space monoids and the
composite is the identity on P . This clearly implies that the augmentation mor-
phism M → P is virtually surjective, and as such we may describe the repletion
M rep of this morphism as the (homotopy) pullback of P −→ P gp ←− (Mgp)f as in
Lemma 2.6. Recall that UJ is the initial object in the category of commutative
J -space monoids; its homotopy colimit UJ

hJ over J is contractible.

Definition 2.11. Define W (M) as the (homotopy) pullback of the diagram

UJ −→ P gp ←− (Mgp)f

of commutative J -space monoids.
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The universal property of the coproduct induces a natural map

P ⊠W (M)→ P ×P gp (Mgp)f (2.2)

over and under P . In the special case where M = Bcy(P ) is the cyclic bar
construction on P , the content of the following lemma appears implicitly in
[RSS18, Proof of Proposition 3.1]. Our definition of W (M) is analogous to
(but different from) a similar construction in loc. cit. In the context of discrete
commutative monoids, a version of this result appears in [Rog09, Lemma 3.11].

Lemma 2.12. The map (2.2) is a J -equivalence.

Proof. Let B⊠(−,−,−) denote the two-sided bar construction in J -spaces. It
suffices to show that the square

B⊠(P,UJ ,W (M)) B⊠(P gp, P gp, (Mgp)f)

B⊠(P,UJ , UJ ) B⊠(P gp, P gp, P gp)

is homotopy cartesian in the positive J -model structure. We apply
[SS12, Corollary 11.4], which states that (−)hJ detects and preserves homo-
topy cartesian squares. Combining this with our cofibrancy hypotheses and
Lemma 2.3, we reduce to proving that the square

B×(PhJ , UJ
hJ ,W (M)hJ ) B×(P gp

hJ , P gp
hJ , (Mgp)fhJ )

B×(PhJ , UJ
hJ , UJ

hJ ) B×(P gp
hJ , P gp

hJ , P gp
hJ )

(2.3)

is a homotopy cartesian square of simplicial sets.

For this we apply the Bousfield–Friedlander theorem [BF78, Theorem B.4].
The square arises as the realization of a square of bisimplicial sets, and it is
clear that this square is pointwise homotopy cartesian. The bisimplicial sets

B×
• (P gp

hJ , P gp
hJ , (Mgp)fhJ ) and B×

• (P gp
hJ , P gp

hJ , P gp
hJ )

satisfy the π∗-Kan condition as the simplicial commutative monoids involved
are grouplike. Moreover, the map between them induces a Kan fibration on
vertical path components, as the map on vertical path components is a surjec-
tion of simplicial abelian groups. Hence the Bousfield–Friedlander theorem is
applicable to infer that the square (2.3) is homotopy cartesian, which concludes
the proof.

3 The cyclic bar construction and simplicial tensors

We review the cyclic and replete bar constructions, and we define topological
Hochschild homology as an instance of the cyclic bar construction in the cate-
gory of symmetric spectra. Our approach to this content largely follows that of
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[RSS15, Section 3], with the appropriate modifications and additions necessary
to pass from the absolute context in loc. cit. to the relative one to be discussed
here.

3.1 The relative cyclic bar construction

Throughout this section we denote byM = (M,⊠, U) a cocomplete symmetric
monoidal category. The category CM of commutative monoids in M is also
cocomplete in this case. The coproduct in CM is given by the symmetric
monoidal product in M. Given a diagram M ←− P −→ N in CM, we write
M ⊠P N for its pushout. This is the coproduct of M and N in the category
CMP/ of commutative monoids over P .

Definition 3.2. Let P → M be a morphism in CM. The cyclic bar con-
struction Bcy

P (M)• is the following simplicial object in CM: the q-simplices
are given by the (1 + q)-fold coproduct

M ⊠P M ⊠P · · ·⊠P M

of M in CMP/. The simplicial structure maps are informally given as follows
(see e.g. [RSS15, Section 3] for the precise definitions): the ith face map uses
the multiplication map M ⊠P M → M on the ith and (i + 1)st factor for as
long as it makes sense to do so. The last face map multiplies the last and first
factor together by precomposing with one of the symmetry isomorphisms. The
jth face map inserts the unit between the (j − 1)st and jth factor. We omit P
from the notation when it equals the monoidal unit.

Notice that the isomorphisms (resp. iterated multiplication maps)

M
∼=
−→M ⊠P P ⊠P · · ·⊠P P (resp. M ⊠P M ⊠P · · ·⊠P M −→M)

exhibit Bcy
P (M)• as a simplicial object in the pointed catgeory CMM//M of

commutative monoids inM over and under M .

Definition 3.3. Let P →M be a morphism in CM and let L be an object in
CMK//K for a given commutative monoid K inM.

1. Let X be a finite simplicial set. The tensor X• ⊗P M is defined as the
simplicial object [q] 7→ M⊠PXq in CMP/. The q-simplices are the |Xq|-
fold coproduct of M in CMP/, and the simplicial structure arises via that
of X•, and the multiplication and unit maps of M .

2. Let X = (X, ∗) be a finite pointed simplicial set. The pointed tensor
X ⊙K L is defined by the pushout of the diagram K ←− L −→ X• ⊗K L in
the category of simplicial objects in CMK//K . The map L → X• ⊗K L
is induced by the basepoint in X•.

Both of the above constructions may be extended to allow for arbitrary sim-
plicial sets by realizing a given set as a colimit of its finite subsets.
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We shall use the geometric realizations of the above constructions in the
simplicial model categories CSJ and CSpΣ, in which case we omit the bullets
from the notation. In these cases, the unpointed tensor participates in the
simplicial structure of the respective positive model structures. In particular,
the functors X ⊗− are left Quillen for any simplicial set X .

The following result summarizes the properties that we shall use about the
relative cyclic bar construction and its relation to simplicial tensors. We model
the simplicial circle by S1

• := ∆[1]/∂∆[1], which is pointed at its unique 0-
simplex.

Proposition 3.4. Let P →M be a morphism of commutative monoids inM.
There are natural isomorphisms

P ⊠Bcy(P )• B
cy(M)• ∼= Bcy

P (M)• ∼= S1
• ⊗P M ∼= S1

• ⊙M (M ⊠P M)

over and under M .

Proof. The first isomorphism follows from the definition of the cyclic bar con-
struction. For example, for the 1-simplices, this is the isomorphism

P ⊠P⊠UP (M ⊠U M) ∼= (P ⊠P P )⊠P⊠UP (M ⊠U M) ∼= M ⊠P M,

where the last isomorphism follows from commuting colimits. For the second
isomorphism, the argument given in [RSS15, Lemma 3.3] applies also for this
relative construction, while the third similarly follows from the definition of the
pointed tensor.

3.5 Group completion of the cyclic bar construction

We will use the fact that group completion interacts well with the cyclic bar
construction of commutative J -space monoids.

Lemma 3.6. Let P → M be a cofibration of cofibrant commutative J -space
monoids. There is a chain of J -equivalences under Bcy

P (M) and over Mgp

relating Bcy
P gp(Mgp) and Bcy

P (M)gp.

Proof. In [RSS15, Proof of Lemma 3.19], it is proven that S1⊗P gp ∼= Bcy(P gp)
is grouplike since P gp is. Hence this is also the case for Bcy

P gp(Mgp), as it is
isomorphic to P gp

⊠Bcy(P gp) B
cy(Mgp) by Proposition 3.4. Since P → M is

assumed to be a cofibration, there is no loss of generality in assuming that
P gp →Mgp is a cofibration as well. In particular, Bcy(P gp)→ Bcy(Mgp) is a
cofibration in this case, and so the morphism

Bcy
P (M) ∼= P ⊠Bcy(P ) B

cy(M) −→ P gp
⊠Bcy(P gp) B

cy(Mgp) ∼= Bcy
P gp(M

gp)

is a weak equivalence in the group completion model structure. The lifting
properties of the group completion model structure provides the dashed arrow
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in the diagram

Bcy
P (M) Bcy

P gp(Mgp) (Bcy
P gp(Mgp))′

Bcy
P (M)gp Mgp,

≃gp

≃gp ≃gp

which is a weak equivalence in this model structure. Here (Bcy
P gp(Mgp))′

appears in the indicated factorization of the augmentation Bcy
P gp(Mgp) →

Mgp. This concludes the proof, as weak equivalences in the group comple-
tion model structure between grouplike commutative J -space monoids are J -
equivalences.

3.7 Topological Hochschild homology

We use the cyclic bar construction to model topological Hochschild homology:

Definition 3.8. Let R → A be a cofibration of cofibrant commutative sym-
metric ring spectra. The topological Hochschild homology THHR(A) is the
commutative symmetric ring spectrum Bcy

R (A) given by the geometric realiza-
tion of the cyclic bar construction A relative to R in symmetric spectra.

When R = S is the sphere spectrum, we shall simply write THH(A) in place
of THHS(A). We remark that it follows from strong symmetric monoidality

of the functor SJ [−] that THHS
J [P ](SJ [M ]) ∼= SJ [Bcy

P (M)]. We deduce the
following from Proposition 3.4:

Proposition 3.9. Let R → A be a cofibration of cofibrant commutative sym-
metric ring spectra. There is a chain of natural isomorphisms

R ∧THH(R) THH(A) ∼= THHR(A) ∼= S1 ⊗R A ∼= S1 ⊙A (A ∧R A)

of augmented commutative A-algebras.

Here S1 ⊙A − is the pointed simplicial tensor with S1 in the pointed cate-
gory CSpΣA//A of commutative augmented A-algebras. This is a model for the

suspension functor in CSpΣA//A. As we explain in Section 7, this structure is
essential for the proof of Theorem 1.7.

3.10 The relative replete bar construction

We now discuss the repletion of the augmented commutative J -space monoid

M → Bcy
P (M)→M.

Due to its central role, we single out this case as a seperate definition:

Definition 3.11. Let P → M be a cofibration of cofibrant commutative J -
space monoids. The replete bar construction Bcy

P (M)rep is the repletion of the
augmentation map Bcy

P (M)→M .

Documenta Mathematica 26 (2021) 1187–1236



On Log TAQ and Log THH 1203

This is equivalent (but not equal) to the replete bar construction discussed in
[RSS15], see Remark 5.2.

The isomorphism Bcy(P ) ∼= S1 ⊗ P of Proposition 3.4 gives that the map
Bcy(P ) → Bcy(M) is a cofibration if P → M is. Therefore there is no loss of
generality in assuming that Bcy(P )rep → Bcy(M)rep is a cofibration as well.
We now wish to prove an analogue of the isomorphism P ⊠Bcy(P ) B

cy(M) ∼=
Bcy

P (M) of Proposition 3.4 for the replete bar construction. The universal
property of the pushout provides a natural map P ⊠Bcy(P )rep Bcy(M)rep −→
(P ⊠Bcy(P ) B

cy(M))rep of commutative J -space monoids.

Lemma 3.12. Let P →M be as above. There are J -equivalences

P ⊠Bcy(P )rep Bcy(M)rep
≃
−→ (P ⊠Bcy(P ) B

cy(M))rep
∼=
−→ Bcy

P (M)rep

under Bcy
P (M) and over M .

Proof. The second map in the composite is an isomorphism since it arises from
applying (−)rep to the isomorphism P ⊠Bcy(P ) B

cy(M) ∼= Bcy
P (M) of Proposi-

tion 3.4. Applying the functor (−)gp to this isomorphism and Lemma 2.9, we
see that it suffices by Lemma 2.6 to argue that

P ⊠Bcy(P )rep Bcy(M)rep P gp
⊠Bcy(P )gp Bcy(M)gp

M Mgp

(3.1)

is homotopy cartesian. To see this, we model homotopy pushouts of commu-
tative J -space monoids by the two-sided bar construction B⊠(−,−,−), and
notice that the square in question may be rewritten as

B⊠(P,Bcy(P )rep, Bcy(M)rep) B⊠(P gp, Bcy(P )gp, Bcy(M)gp)

B⊠(P, P,M) B⊠(P gp, P gp,Mgp).

Since the squares

Bcy(P )rep Bcy(P )gp

P P gp

and
Bcy(M)rep Bcy(M)gp

M Mgp

are homotopy cartesian, we may argue with the Bousfield–Friedlander theorem
as in the proof of Lemma 2.12 to conclude that (3.1) is homotopy cartesian.

We now provide an analogue of the isomorphism Bcy
P (M) ∼= S1 ⊙M (M ⊠P

M) of Proposition 3.4, which is an essential ingredient in the description of
logarithmic THH as a suspension in a category of augmented algebras given in
Proposition 5.8.
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Proposition 3.13. There is a chain of J -equivalences

S1 ⊙M (M ⊠P M)rep ≃ (S1 ⊙M (M ⊠P M))rep
∼=
−→ Bcy

P (M)rep

under Bcy(M) and over M , where all repletions are taken with respect to the
natural augmentations to M .

Proof. The second map is an isomorphism since it arises from applying (−)rep

to the isomorphism of Proposition 3.4. By Lemma 2.6 and Remark 2.7, we
know that there is a homotopy cartesian square

(S1 ⊙M (M ⊠P M))rep (S1 ⊙M (M ⊠P M))gp

M Mgp

(3.2)

with respect to the positive J -model structure. We observe that there are
J -equivalences

(S1 ⊙M (M ⊠P M))gp ∼= (Bcy
P (M))gp ≃ Bcy

P gp(M
gp)

∼=
←− S1 ⊙Mgp (Mgp

⊠P gp Mgp)
≃
−→ S1 ⊙Mgp (M ⊠P M)gp

over Mgp. Here the first isomorphism arises from applying (−)gp

to the isomorphism of Proposition 3.4. The chain of J -equivalences
(Bcy

P (M))gp ≃ Bcy
P gp(Mgp) refers to the chain constructed in Lemma 3.6,

the following isomorphism is another application of Proposition 3.4, while the
last J -equivalence comes from applying the left Quillen functor S1 ⊙Mgp − to

the J -equivalence of cofibrant objects Mgp
⊠P gp Mgp ≃

−→ (M ⊠P M)gp from
Lemma 2.9.

Following the same strategy as in the proof of Lemma 2.12, we observe that
the square

B⊠(M, (M ⊠P M)rep,M) B⊠(Mgp, (M ⊠P M)gp,Mgp)

B⊠(M,M,M) B⊠(Mgp,Mgp,Mgp)

(3.3)

is homotopy cartesian by the Bousfield–Friedlander theorem, Lemma 2.6 and
Remark 2.7. Since the two-sided bar construction B⊠(Mgp, (M⊠P M)gp,Mgp)
is a model for the suspension S1 ⊙Mgp (M ⊠P M)gp, the result follows by
comparing the homotopy cartesian squares (3.2) and (3.3).

4 Logarithmic ring spectra

We introduce the necessary background material on logarithmic ring spectra.
Our main references for this section are [RSS15, Section 4] and [Sag14, Sec-
tion 4].
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Definition 4.1. A pre-logarithmic ring spectrum (A,M) = (A,M,α) con-
sists of a commutative symmetric ring spectrum A, a commutative J -space
monoid M and a morphism of commutative J -space monoids α : M → ΩJ (A).
It is a logarithmic ring spectrum if the map α−1GLJ

1 (A) → GLJ
1 (A) in the

(homotopy) pullback square

α−1GLJ
1 (A) GLJ

1 (A)

M ΩJ (A)α

(4.1)

is a J -equivalence. A morphism (f, f ♭) : (R,P )→ (A,M) of pre-log ring spec-
tra consists of a map of commutative symmetric ring spectra f : R→ A and a
map of commutative J -space monoids f ♭ : P →M such that ΩJ (f)◦β = α◦f ♭.

Using basic model category techniques, we find that the category P = PreLog
of pre-logarithmic ring spectra admits a projective model structure in which a
map (f, f ♭) is a weak equivalence or fibration if and only if f and f ♭ is a weak
equivalence or fibration. We choose this model structure for consistency with
[RSS15,RSS18]; as we explain in Remark 5.2, the nature of our constructions
make our arguments go through for the injective model structure as well. This
may be advantageous if one wants to employ spectral variants of the log model
structure constructed in [SSV16, Section 3], but we have not made use of this
material here.

Example 4.2. We provide a series of natural examples of pre-log ring spectra
and maps relating them:

1. If A is a commutative symmetric ring spectrum, the inclusion GLJ
1 (A) ⊂

ΩJ (A) gives rise to the trivial log structure on A, and (A,GLJ
1 (A)) is

the trivial log ring spectrum.

2. If (A,M) is a pre-log ring spectrum, there is a map

(A,M)→ (A ∧SJ [M ] S
J [Mgp],GLJ

1 (A ∧SJ [M ] S
J [Mgp]))

from (A,M) to its localization A[M−1] := A ∧SJ [M ] S
J [Mgp] equipped

with its trivial log structure.

3. Let A be a discrete valuation ring and let π ∈ A be a uniformizer. Denote
by 〈x〉 the free commutative monoid on one generator x, and define a
map 〈x〉 → (A, ·) by sending x to π. Then (A, 〈x〉) is a pre-log ring,
and we obtain a pre-log ring spectrum by (HA,FJ

(0,0)〈x〉), where H(−)

denotes the Eilenberg–MacLane spectrum and FJ
(0,0)(−) is left adjoint

to the evaluation functor sending a commutative J -space monoid M to
M(0,0).
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4. Let A be a commutative symmetric ring spectrum and let x ∈ πn2−n1(A)
be a homotopy class, represented by a map x : Sn2 → An1 . Then x can
be regarded as a point

x : ∗ → ΩJ (A)(n1,n2) := Ωn2(An1 ).

The point x is adjoint to a morphism C(x)→ ΩJ (A) of commutative J -
space monoids, where C(x) denotes the free commutative J -space monoid
on a point in degree (n1,n2). Its localization is the commutative sym-
metric ring spectrum A[1/x] by [Sag14, Proposition 3.19].

5. Building on the previous example, we define the direct image pre-log
structure D(x) associated with x as follows: form a homotopy pullback
square

D′(x) ΩJ (A)

C(x)gp ΩJ (A[1/x])

and define D(x) via a cofibrant replacement of D′(x) relative to C(x); see
[Sag14, Construction 4.2] for the precise construction. The localization of
this pre-log ring spectrum is also A[1/x] by [Sag14, Theorem 4.4]. This
construction is independent of the choice of the representative x and will
be our preferred choice of pre-log structure associated to a homotopy
class.

4.3 The logification construction

We now recall a functorial procedure for passing from a pre-log ring spectrum
(A,M) to a log ring spectrum (A,Ma):

Construction 4.4. Let (A,M) = (A,M,α) be a pre-log ring spectrum. Form
a factorization

α−1GLJ
1 (A) G GLJ

1 (A)≃

in the positive J -model structure of the natural map α−1GLJ
1 (A)→ GLJ

1 (A)
(see (4.1)), and consider the (homotopy) pushout

α−1GLJ
1 (A) G

M Ma

of commutative J -space monoids. The maps

G→ GLJ
1 (A)→ ΩJ (A) and M

α
−→ ΩJ (A)

give rise to a map αa : Ma → ΩJ (A), and (A,Ma, αa) is called the logification
of (A,M,α). By [Sag14, Lemma 3.12], this is indeed a log structure.
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We discuss the effect of the logification construction for some of the pre-log
ring spectra discussed in Example 4.2.

Example 4.5. Consider the discrete pre-log ring (A, 〈x〉) from Example 4.2(3).
Its logification (in discrete pre-log rings) is the log ring (A,A∩GL1(K)), where
K denotes the fraction field of the discrete valuation ring A and A∩GL1(K) =
〈π〉 × GL1(A) consists of all non-zero elements of A. As there is a pullback
square

A ∩GL1(K) (A, ·)

GL1(K) (K, ·),

this is an instance of a direct image log structure on A induced by the trivial
log structure on K and the localization map A→ K. This example is a special
case of [Kat89, Example (2.5)].

Example 4.6. For the next examples, we fix the following setup: the commu-
tative symmetric ring spectrum A is connective and the map x : Sn2 → An1

represents a nontrivial homotopy class in πn2−n1(A) of even positive degree,
and the localization map A→ A[1/x] is a model for the connective cover map
of A[1/x]. Examples of this kind include the real and complex connective
K-theory spectra ko and ku and the Adams summand ℓ.

1. Consider the pre-log ring spectrum (A,C(x)) discussed in Example 4.2(4).
By [Sag14, Lemma 4.9], the associated log structure is weakly equivalent
to (A,C(x) ⊠GLJ

1 (A)).

2. Consider the pre-log ring spectrum (A,D(x)) discussed in Exam-
ple 4.2(5). By [Sag14, Lemma 4.7], the associated log structure is weakly
equivalent to (A, j∗GLJ

1 (A[1/x])), the direct image log structure asso-
ciated to the connective cover map j : A → A[1/x] and the trivial log
structure on A[1/x].

The two log ring spectra above are not weakly equivalent, and this displays
an interesting distinction which is not visible for discrete pre-log rings, as
Example 4.5 illustrates in the case of discrete valuation rings. We refer to
[Sag14, Remark 4.8] for further comments in this direction.

4.7 Mapping spaces of pre-log ring spectra

Let (A,M) and (B,N) be pre-logarithmic ring spectra.

Definition 4.8. The space of maps MapP((A,M), (B,N)) is the pullback of

MapCSJ (M,N) −→ MapCSpΣ(SJ [M ], B)←− MapCSpΣ(A,B),

where the morphisms are induced by the structure maps. This captures a well-
defined homotopy type as soon as (A,M) is cofibrant and (B,N) is fibrant, as
the structure map SJ [M ]→ A is a cofibration in this case.
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We will often use the following description of mapping spaces in the over/under-
category P(R,P )//(C,K): the mapping space MapP(R,P )//(C,K)

((A,M), (B,N))
arises as the pullback of

MapCSJ

P//K
(M,N) −→ MapCSpΣ

SJ [P ]//C

(SJ [M ], B)←− MapCSpΣ

SJ [P ]//C

(A,B),

(4.2)
where the morphisms are induced by the structure maps.

5 Logarithmic topological Hochschild homology

We now introduce a variant of logarithmic topological Hochschild homology
relative to a map (R,P ) → (A,M) of pre-logarithmic ring spectra. On one
hand, we prove that it enjoys properties analogous to those of the relative
topological Hochschild homology THHR(A). On the other we prove that it
enjoys properties analogous to those of the absolute construction THH(A,M)
of [RSS15].

Definition 5.1. Let (R,P ) → (A,M) be a cofibration of cofibrant pre-
logarithmic ring spectra. The logarithmic topological Hochschild homology
THH(R,P )(A,M) is the commutative symmetric ring spectrum given by the
pushout

SJ [Bcy
P (M)] SJ [Bcy

P (M)rep]

THHR(A) THH(R,P )(A,M)

of commutative symmetric ring spectra.

We remark that THH(R,P )(A,M) is naturally an object of the category
CSpΣA//A of augmented commutative A-algebras.

Remark 5.2 (The circle action on logarithmic THH). In the above definition
we have chosen to model the replete bar construction by a relative fibrant
replacement in the group completion model structure. Equivalently, one could
have defined the “relative” replete bar construction by a (homotopy) cartesian
square

Brep
P (M) Bcy

P gp(Mgp)

M ′ Mgp,

where M
≃
−→ M ′ −→ Mgp is factorization in the positive J -model structure on

commutative J -space monoids. By Lemma 3.6 there is a chain of equivalences
Bcy

P gp(Mgp) ≃ (Bcy
P (M))gp, and as such it follows from virtual surjectivity of

the augmentation to Mgp that Brep
P (M) and Bcy

P (M)rep are J -equivalent, see
Lemma 2.6. One advantage that the replete bar construction Brep

P (M) enjoys
over the repletion Bcy

P (M)rep is that it inherits a cyclic action from the cyclic
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bar construction Bcy
P gp(Mgp).

While we are not free to exchange Bcy
P (M)rep with Brep

P (M) in our definition of

THH(R,P )(A,M) since the map Bcy
P (M) → Brep

P (M) may fail to be a cofibra-
tion, it is easy to see that our definition is weakly equivalent to that of [RSS15]
in the case of absolute case of THH(A,M).

5.3 The relation between absolute and relative log THH

We now provide an analogue of the isomorphism P ⊠Bcy(P )B
cy(M) ∼= Bcy

P (M)
from Proposition 3.4 for logarithmic THH. To ensure that the relevant balanced
smash product captures a well-defined homotopy type, we form a cofibrant
replacement

Bcy(A)c ←− SJ [Bcy(M)]c −→ SJ [Bcy(M)rep]c (5.1)

of the (∗ ←− ∗ −→ ∗)-shaped diagram defining THH(A,M) relative to that
defining THH(R,P ) in the projective model structure (see [DS95, Proposition
10.6]). We shall denote by THH(A,M)c the pushout of the diagram (5.1).
There is a commutative diagram

R Bcy(R) Bcy(A)c

SJ [P ] SJ [Bcy(P )] SJ [Bcy(M)]c

SJ [P ] SJ [Bcy(P )rep] SJ [Bcy(M)rep]c
=

(5.2)

of commutative symmetric ring spectra. We shall denote by THH(R,P )(A,M)c

the commutative symmetric ring spectrum obtained as the colimit of the dia-
gram (5.2) by first forming the horizontal pushouts.

Lemma 5.4. There is a chain of stable equivalences

R ∧THH(R,P ) THH(A,M)c
≃
−→ THH(R,P )(A,M)c

≃
←− THH(R,P )(A,M)

of commutative symmetric ring spectra.

Proof. This follows from commuting homotopy pushouts in the diagram (5.2),
Proposition 3.4 and Lemma 3.12.

5.5 Logification invariance of relative log THH

We now discuss the effect of logification on log THH:

Proposition 5.6. The logification construction induces stable equivalences

THH(R,P )(A,M)
≃
−→ THH(R,P )(A,Ma)

≃
−→ THH(R,Pa)(A,Ma)

of commutative symmetric ring spectra.
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In the absolute setting we remark that, unlike in the context of [RSS15, Section
4.3], it is not necessary to form an additional cofibrant replacement of A when
passing from THH(A,M) to THH(A,Ma), as the pushout of

THH(A)←− SJ [Bcy(M)] −→ SJ [Bcy(M)rep]

defining THH(A,M) captures a well-defined homotopy type without further
assumptions on A.

Proof. In the case of absolute log THH, this is [RSS15, Theorem 4.24]. We
reduce from the relative to the absolute case using Lemma 5.4: there is a
commutative diagram

R ∧THH(R,P ) THH(A,M)c THH(R,P )(A,M)c THH(R,P )(A,M)

R ∧THH(R,P ) THH(A,Ma)c THH(R,P )(A,Ma)c THH(R,P )(A,Ma)

R ∧THH(R,Pa) THH(A,Ma)c THH(R,Pa)(A,Ma)c THH(R,P )(A,Ma)

≃

≃

≃

≃

≃ ≃

≃ ≃

of commutative symmetric ring spectra, in which the indicated morphisms are
stable equivalences. We obtain the desired statement by the two-out-of-three
property.

5.7 Logarithmic THH as a suspension

Proposition 3.13 describes the replete bar construction Bcy
P (M)rep as a suspen-

sion in the category of augmented commutative J -space monoids, while Propo-
sition 3.9 describes the ordinary topological Hochschild homology THHR(A) as
a suspension in the category of augmented commutative A-algebras. Gluing
these facts together, we can prove the analogous statement for logarithmic
topological Hochschild homology:

Proposition 5.8. Let (R,P ) → (A,M) be a cofibration of cofibrant pre-
logarithmic ring spectra. There is a chain of stable equivalences of augmented
commutative A-algebras relating THH(R,P )(A,M) and

S1 ⊙A ((A ∧R A) ∧SJ [M⊠PM ] S
J [(M ⊠P M)rep]), (5.3)

the suspension of (A ∧R A) ∧SJ [M⊠PM ] S
J [(M ⊠P M)rep] in the category of

augmented commutative A-algebras.

Proof. Keeping Definition 3.3 in mind, we consider the commutative diagram

A A ∧R A S1 ⊗A (A ∧R A)

SJ [M ] SJ [M ⊠P M ] S1 ⊗SJ [M ] S
J [M ⊠P M ]

SJ [M ] SJ [(M ⊠P M)rep] S1 ⊗SJ [M ] S
J [(M ⊠P M)rep]

=
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of commutative symmetric ring spectra. Commuting homotopy pushouts re-
veals that the suspension (5.3) is naturally stably equivalent to

(S1 ⊙A (A ∧R A)) ∧S1⊙
SJ [M]

SJ [M⊠PM ] (S
1 ⊙SJ [M ] S

J [(M ⊠P M)rep]). (5.4)

There are isomorphisms S1 ⊙A (A ∧R A) ∼= Bcy
R (A) and S1 ⊙SJ [M ] S

J [M ⊠P

M ] ∼= Bcy
SJ [P ]

(SJ [M ]) by Proposition 3.4. Moreover, there is a chain of stable

equivalences

S1 ⊙SJ [M ] S
J [(M ⊠P M)rep] ≃ SJ [S1 ⊙M (M ⊠P M)rep] ≃ SJ [Bcy

P (M)rep],

where the second chain of stable equivalences arises from applying SJ [−] to the
chain of J -equivalences of Proposition 3.13. The maps remain equivalences af-
ter applying SJ [−], as all maps in the chain are augmented over the cofibrant
commutative J -space monoid M , so that [RSS15, Corollary 8.8] is applica-
ble. Moreover, since the maps in the chain are under Bcy

P (M), they induce
a chain of equivalences relating (5.4) to Bcy

R (A) ∧SJ [Bcy
P (M)] S

J [Bcy
P (M)rep] =

THH(R,P )(A,M), which concludes the proof.

6 Logarithmic topological André–Quillen homology

We now proceed to review the notion of logarithmic derivations following
[Sag14], before we introduce our new definition of log TAQ. This section
contains many constructions involving mapping spaces in comma categories
Cx//y. Our preferred notation for these mapping spaces is MapCx//y

(−,−).
When the category C is clear from context, we will on occasion shorten this to

Map
x/
/y(−,−).

6.1 Derivations and TAQ

Let A be a positive fibrant commutative symmetric ring spectrum and let X
be an A-module. Then we can form the square-zero extension A ∨ X : this
has a multiplication coming from that on A, the A-module structure on X
and the trivial map X ∧ X → ∗. This construction comes with a natural
augmentation A ∨ X → A. To ensure that various mapping spaces capture
the correct homotopy type, we fibrantly replace A∨X over A. We borrow the
following notation from [Sag14, Definition 5.2]:

Definition 6.2. We let A ∨f X denote a fibrant replacement over A in the
positive model structure on commutative symmetric ring spectra:

A ∨X A ∨f X A.≃

Suppose now that R → A is a cofibration of commutative symmetric ring
spectra. Then the space of R-algebra derivations from A to X is the mapping
space

DerR(A,X) := MapCSpΣ
R//A

(A,A ∨f X).
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In analogy with the situation in ordinary algebra, where derivations are
corepresented by the module of Kähler differentials, the space DerR(A,X)
is corepresented by the A-module TAQR(A), the topological André–Quillen
homology of A, whose definition we now briefly recall. All statements made
here are well-known and were first proven in [Bas99].

The (already derived, by our cofibrancy hypothesis) smash product A∧RA is an
augmented commutative A-algebra, with augmentation map the multiplication
A ∧R A → A. One can form the augmentation ideal IA(A ∧R A) as the non-
unital commutative A-algebra arising as the point-set fiber of the augmentation
map. This functorial procedure is the right adjoint in a Quillen equivalence
between the categories of non-unital commutative A-algebras and augmented
commutative A-algebras; the left adjoint is given by formally adding a unit:

NucaA CSpΣA//A

A∨−

IA

Moreover, given any non-unital commutative A-algebra N , one can form the
A-module of indecomposables QA(N), defined as the point-set cofiber of the
multiplication map. This construction is the left adjoint in a Quillen adjunction
between the categories of A-modules and non-unital commutative A-algebras,
where the right adjoint is given by considering any A-module as a non-unital
commutative A-algebra with trivial multiplication. In conclusion, there are
Quillen adjunctions

ModA NucaA CSpΣA//A

QA A∨−

IA
(6.1)

with left adjoints on top, and the right-hand adjunction is a Quillen equivalence.

Definition 6.3. Let B be an augmented commutative A-algebra, and define
the A-module

taqA(B) := QL

AI
R

A(B)

by evaluating the composite of the derived functors IR and QL at B. If R→ A
is a cofibration of cofibrant commutative symmetric ring spectra, we define the
topological André–Quillen homology of A relative to R to be the A-module

TAQR(A) := taqA(A ∧R A),

where A ∧R A is considered an augmented commutative A-algebra via the
multiplication map A ∧R A→ A.

Proposition 6.4. [Bas99, Proposition 3.2] The space of R-algebra derivations
from A to X is corepresented by TAQR(A): that is, there is a natural weak
equivalence

MapModA
(TAQR(A), X) ≃ DerR(A,X).
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Proof sketch. The adjunctions (6.1), using that the right-hand adjunction is a
Quillen equivalence, provides a natural weak equivalence

MapModA
(TAQR(A), X) ≃MapCSpΣ

A//A
(A ∧R A,A ∨f X).

The result follows by restriction of scalars.

The following change-of-rings lemma will be used on numerous occasions:

Lemma 6.5. Let C be a cofibrant commutative augmented A-algebra and let
A → B be a cofibration of commutative symmetric ring spectra. Then the B-
module spectra B∧Ataq

A(C) and taqB(B∧AC) are naturally weakly equivalent.

Proof. By restriction of scalars and the adjunctions (6.1), there is a natural
weak equivalence

MapModB
(B ∧A taqA(C), X) ≃ MapCSpΣ

A//A
(C,A ∨f X)

for any fibrant B-module X , which can be considered an A-module via the
map A→ B. Using the homotopy cartesian square

A ∨f X B ∨f X

A B

and extension of scalars, we infer a natural weak equivalence

MapCSpΣ
A//A

(C,A ∨f X) ≃ MapCSpΣ
B//B

(B ∧A C,B ∨f X),

from which the result follows from the adjunctions (6.1).

We will also need the transitivity sequence for TAQ as established in [Bas99].

Proposition 6.6. Let R
f
−→ A

g
−→ B be cofibrations of cofibrant commutative

symmetric ring spectra. Then there is a homotopy cofiber sequence

B ∧A TAQR(A)→ TAQR(B)→ TAQA(B)

of B-module spectra.

Proof. This follows from observing that

DerR(A,X)←− DerR(B,X)←− DerA(B,X)

is a homotopy fiber sequence for any fibrant B-module X .
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6.7 Logarithmic derivations

Following [Sag14], we introduce derivations in the context of pre-logarithmic
ring spectra.

Construction 6.8 (Square-zero extensions of pre-logarithmic ring spectra).
Let (A,M) be a pre-logarithmic ring spectrum and let X be an A-module.
We may then form the square-zero extension A ∨f X as in Definition 6.2. We
define a pre-logarithmic structure (M +X)J → ΩJ (A ∨f X) as follows: form
the (homotopy) pullback

(1 +X)J GLJ
1 (A ∨f X)

UJ GLJ
1 (A)

of commutative J -space monoids, where we recall that UJ is the initial com-
mutative J -space monoid. The coproduct M ⊠ (1 + X)J admits a map to
ΩJ (A ∨f X) induced by the two composites

M → ΩJ (A) −→ ΩJ (A ∨f X) and (1 +X)J −→ GLJ
1 (A ∨f X) −→ ΩJ (A ∨f X).

We define (M +X)J via a factorization

M ⊠ (1 +X)J (M +X)J M≃

of this morphism in the positive J -model structure, whose lifting properties
provides the desired pre-logarithmic structure (M +X)J → ΩJ (A ∨f X):

M ⊠ (1 +X)J ΩJ (A ∨f X)

(M +X)J M ΩJ (A).

≃

Here we have used that ΩJ (−) is right Quillen, so that A∨f X → A gives rise
to a positive fibration ΩJ (A ∨f X)→ ΩJ (A).

Definition 6.9. Let (A,M) be a pre-logarithmic ring spectrum and let X be
an A-module. The square-zero extension of (A,M) by X is the pre-logarithmic
ring spectrum (A ∨f X, (M +X)J ) of Construction 6.8.

Definition 6.10. Let (R,P )→ (A,M) be a morphism of pre-logarithmic ring
spectra and let X be an A-module. The space of logarithmic derivations with
values in X is the mapping space

Der(R,P )((A,M), X) := MapP(R,P )//(A,M)
((A,M), (A ∨f X, (M +X)J )).

We recover the usual notion of derivation by embedding the category of commu-
tative symmetric ring spectra in the category of pre-logarithmic ring spectra
by means of the trivial log structures. The above definition is analogous to
that of logarithmic derivations of pre-log rings, which are corepresented by the
module of logarithmic Kähler differentials [Rog09, Proposition 4.27].
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6.11 Logarithmic TAQ

We are now prepared to explain our new construction of log TAQ. By the
description given in (4.2), the space Der(R,P )((A,M), X) of logarithmic deriva-
tions fits in a homotopy cartesian square

Der(R,P )((A,M), X) MapCSpΣ
R//A

(A,A ∨f X)

MapCSJ

P//M
(M, (M +X)J ) MapCSpΣ

SJ [P ]//A

(SJ [M ], A ∨f X).

(6.2)

In [Sag14, Proposition 5.19], it is proven that the lower left-hand mapping
space is corepresented by (the connective spectrum associated to) a certain
quotient of Segal Γ-spaces. As the two right-hand mapping spaces are corepre-
sented by appropriate TAQ-terms, one obtains an A-module spectrum, which

we denote here by T̃AQ(R,P )(A,M), by forming the homotopy pushout of the
corepresenting objects. By construction, this A-module spectrum corepresents
logarithmic derivations.

We now propose a new definition of log TAQ. This makes use of the functor
taqA of Definition 6.3.

Definition 6.12. Let (R,P ) → (A,M) be a cofibration of cofibrant pre-
logarithmic ring spectra. The logarithmic topological André–Quillen homology
of (A,M) relative to (R,P ) is the A-module spectrum

TAQ(R,P )(A,M) := taqA((A ∧R A) ∧SJ [M⊠PM ] S
J [(M ⊠P M)rep]),

where (M ⊠P M)rep denotes the repletion of the multiplication map M ⊠P

M → M .

We remark that TAQ(R,P )(A,M) fits in a homotopy cocartesian square

A ∧SJ [M ] taq
S
J [M ](SJ [M ⊠P M ]) A ∧SJ [M ] taq

S
J [M ](SJ [(M ⊠P M)rep])

taqA(A ∧R A) TAQ(R,P )(A,M).

of A-module spectra, where the left-hand vertical map is by definition the

natural map A ∧SJ [M ] TAQ
S
J [P ](SJ [M ]) → TAQR(A). This bears a close

resemblance to the defining homotopy cocartesian square of logarithmic THH
from Definition 5.1. This gives rise to a close relationship between the two
notions which we exploit in Section 7.

Theorem 6.13. The A-module TAQ(R,P )(A,M) corepresents logarithmic
derivations. That is, there is a natural weak equivalence

MapModA
(TAQ(R,P )(A,M), X) ≃ Der(R,P )((A,M), X)
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for any fibrant A-module X. In particular, the A-module TAQ(R,P )(A,M) is
naturally weakly equivalent to the version of log TAQ studied in [Sag14].

Remark 6.14. After proving Theorem 6.13, we learned that there is a close
analogy between our description of log TAQ and a description of the log Kähler
differentials studied by Kato–Saito [KS04, Section 4]. In the same way that the
module of Kähler differentials Ω1

A|R associated to a map of discrete rings arise

as the conormal of the diagonal map Spec(A)→ Spec(A⊗R A), the log Kähler
differentials Ω1

(A,M)|(R,P ) often arise as the conormal of a log diagonal map out

of Spec(A). Unwinding their definitions, we find that the definition of the log
diagonal can be phrased in terms of repletion: For a map of discrete pre-log
rings (R,P )→ (A,M), it corresponds precisely to the augmentation map

(A⊗R A)⊗Z[M⊕PM ] Z[(M ⊕P M)rep]→ A.

This perspective will be elaborated upon in forthcoming joint work with Binda–
Park–Østvær, in which we study Hochschild–Kostant–Rosenberg-type results
in the context of log schemes.

Proof of Theorem 6.13. By extension of scalars, the square (6.2) can be rewrit-
ten as

Der(R,P )((A,M), X) MapCSpΣ
A//A

(A ∧R A,A ∨f X)

MapCSJ

M//M
(M ⊠P M, (M +X)J ) MapCSpΣ

SJ [M]//A

(SJ [M ⊠P M ], A ∨f X).

(6.3)
Here we have used that SJ : CSJ → CSpΣ is strong symmetric monoidal, so
that SJ [M ] ∧SJ [P ] S

J [M ] ∼= SJ [M ⊠P M ] as commutative symmetric ring
spectra.

We know that the right-hand morphism in the diagram (6.3) is corepresented

by the morphism A ∧SJ [M ] TAQ
S
J [P ](SJ [M ])→ TAQR(A) by Proposition 6.4

and Lemma 6.5. Hence our only remaining task is two produce a chain of
equivalences relating the mapping space

MapCSJ

M//M
(M ⊠P M, (M +X)J ) (6.4)

and the mapping space

MapCSpΣ
SJ [M]//A

(SJ [(M ⊠P M)rep], A ∨f X) (6.5)

which are compatible with the maps to MapCSpΣ
SJ [M]//A

(SJ [M ⊠P M ], A∨f X).

Indeed, using Lemma 6.5 it is easy to see that the latter of the two mapping

spaces is corepresented by A ∧SJ [M ] taq
S
J [M ](SJ [(M ⊠P M)rep]), and so the
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result follows by considering homotopy cocartesian square of corepresenting
objects associated to (6.3).

By Lemmas 6.15, 6.16 and 6.17 below and the paragraphs between them, we
obtain the following diagram with the indicated weak equivalences:

Map
M/
/M (M ⊠P M, (M +X)J ) Map

S
J [M ]/

/A (SJ [M ⊠P M ], A ∨f X)

Map
M/
/M ((M ⊠P M)rep, (M +X)J ) Map

S
J [M ]/

/A (SJ [(M ⊠P M)rep], A ∨f X)

Map
M/
/M ((M ⊠P M)rep, (M +X)J ) Map

S
J [M ]/

/SJ [M ]
(SJ [(M ⊠P M)rep], SJ [M ] ∨f X)

Map/M (W, (M +X)J ) Map/SJ [M ](S
J [W ], SJ [M ] ∨f X)

Map/M (W, (M +X)J ) Map/SJ [M ]f (S
J [W ], SJ [M ]f ∨f X)

Map/UJ (W, (1 +X)J ) Map/ΩJ (SJ [M ]f )(W,ΩJ (SJ [M ]f ∨f X)).

≃ Lemma 6.15

≃ Lemma 6.16

=

≃ Lemma 6.16

≃ Pullback along S
J [M ]→A

= ≃ Pullback along S
J [M ]→S

J [M ]f

≃ Lemma 6.17

≃

Lemma 6.17

≃ (SJ ,ΩJ )-adjunction

(6.6)
By the two-out-three-property, the lower horizontal map in the top square of
the diagram (6.6) is therefore a weak equivalence. This provides a chain of weak
equivalences relating the mapping spaces (6.4) and (6.5), and commutativity
of the top square in the diagram (6.6) gives the desired compatability. As we
have previously reduced the theorem to the existence of such a chain of weak
equivalences, this concludes the proof.

The following series of lemmas were used in the above proof.

Lemma 6.15. Let M be a cofibrant commutative J -space monoid. Then the
repletion map (M + X)J −→ ((M + X)J )rep over M is a J -equivalence. In
particular, the repletion map M ⊠P M → (M ⊠P M)rep induces a weak equiv-
alence

Map
M/
/M ((M ⊠P M)rep, (M +X)J )

≃
−→ Map

M/
/M (M ⊠P M, (M +X)J )

of mapping spaces.

Proof. The natural map (M +X)J →M is virtually surjective, as it arises as
factorization of the projection

M ⊠ (1 +X)J →M ⊠ UJ ∼= M.
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By Lemma 2.6 it suffices to show that the square

M ⊠ (1 +X)J (M ⊠ (1 +X)J )gp

M Mgp.

is homotopy cartesian with respect to the positive J -model structure. Since
Mgp is cofibrant and (1 +X)J is grouplike, there are J -equivalences

Mgp
⊠ (1 +X)J

≃
−→Mgp

⊠ ((1 +X)J )gp
≃
−→ (M ⊠ (1 +X)J )gp,

where the last J -equivalence arises from Lemma 2.9. In conclusion, the square
which we wish to prove is homotopy cartesian is of the form

M ⊠ (1 +X)J Mgp
⊠ (1 +X)J

M Mgp

up to J -equivalence. This square is homotopy cartesian precisely when the
induced square on Bousfield–Kan homotopy colimits over J is [SS12, Corollary
11.4], and so the first claim follows. This gives rise to a commutative diagram

Map
M/
/M ((M ⊠P M)rep, (M +X)J ) Map

M/
/M (M ⊠P M, (M +X)J )

Map
M/
/M ((M ⊠P M)rep, ((M +X)J )rep) Map

M/
/M (M ⊠P M, ((M +X)J )rep).

≃ ≃

≃

The vertical maps are weak equivalences by the first part of the lemma. The
lower horizontal map is a weak equivalence since ((M + X)J )rep is fibrant
over M in the group completion model structure, in which the repletion map
is a weak equivalence by definition. This gives the second statement.

Pulling back along SJ [M ]→ A and arguing as in the proof of Lemma 6.5, one
obtains the second square from the top in the diagram (6.6). The following
observation provides the third square. We remark that in the statement we
consider W (M ⊠P M) (as defined in Definition 2.11) as a commutative J -
space monoid over M via its augmentation to the initial commutative J -space
monoid UJ . For brevity, we shall simply write W for the commutative J -space
monoid W (M ⊠P M).

Lemma 6.16. The weak equivalence M ⊠W → (M ⊠P M)rep of Lemma 2.12
and restriction of scalars induce a commutative diagram

Map
M/
/M ((M ⊠P M)rep, (M +X)J ) Map/M (W, (M +X)J )

Map
S
J [M ]/

/SJ [M ](S
J [(M ⊠P M)rep], SJ [M ] ∨f X) Map/SJ [M ](S

J [W ], SJ [M ] ∨f X)

in which the horizontal maps are weak equivalences.
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Let SJ [M ]f denote a fibrant replacement of the commutative symmetric ring
spectrum SJ [M ]. The lifting properties of the positive projective model
structure provides a map SJ [M ]f → A under SJ [M ], under which we can
consider the A-module X as an SJ [M ]f -module by restriction of scalars. This
provides the fourth square from the top in the diagram (6.6) by pullback along
SJ [M ]→ SJ [M ]f .

We now provide the bottom square in the diagram (6.6). For this we shall again
exploit the fact that W is a grouplike commutative J -space monoid augmented
over the initial object UJ :

Lemma 6.17. There is a commutative solid arrow diagram

Map/M (W, (M +X)J ) Map/SJ [M ]f (S
J [W ], SJ [M ]f ∨f X)

Map/UJ (W, (1 +X)J ) Map/ΩJ (SJ [M ]f )(W,ΩJ (SJ [M ]f ∨f X))

≃

≃

≃

≃

in which all maps are weak equivalences.

Proof. As homotopy cartesian squares of commutative J -space monoids are
detected on Bousfield–Kan homotopy colimits [SS12, Corollary 11.4] and UJ

hJ

is contractible, the square

(1 +X)J (M +X)J

UJ M

is homotopy cartesian, from which we infer the left-hand weak equivalence. By
definition, there is a homotopy cartesian square

(1 +X)J GLJ
1 (SJ [M ]f ∨f X)

UJ GLJ
1 (SJ [M ]f),

from which we infer that the map

Map/UJ (W, (1 +X)J )
≃
−→ Map/GLJ

1 (SJ [M ]f )(W,GLJ
1 (SJ [M ]f ∨f X)) (6.7)

is a weak equivalence.

The functor which assigns to any commutative J -space monoidM its unitsM×

is a right adjoint of the inclusion of grouplike commutative J -space monoids
to all commutative J -space monoids. Applying this to the situation at hand,
the fact that W is grouplike implies that the map

Map/GLJ

1 (SJ [M ]f )(W,GLJ
1 (SJ [M ]f ∨f X))

Map/ΩJ (SJ [M ]f )(W,ΩJ (SJ [M ]f ∨f X))

≃ (6.8)
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induced by the inclusion of units is a weak equivalence. Composing the maps
(6.7) and (6.8) we obtain the bottom weak equivalence.

We now recall from Construction 6.8 that the morphism SJ [(M + X)J ] →
SJ [M ]f ∨f X arises as the adjoint of a morphism (M +X)J → ΩJ (SJ [M ]f ∨f
X), which induces the dashed morphism in the diagram. Hence the upper
triangle cut out by the dashed arrow is commutative. Moreover, the morphism

(1 +X)J → ΩJ (SJ [M ]f ∨f X)

factors through (M +X)J by construction, and so the lower triangle is com-
mutative as well.

6.18 The transitivity sequence for log TAQ

Logarithmic TAQ enjoys the following transitivity sequence:

Proposition 6.19. Let (R,P )
(f,f♭)
−−−−→ (A,M)

(g,g♭)
−−−−→ (B,N) be cofibrations of

cofibrant pre-logarithmic ring spectra. There is a homotopy cofiber sequence

B ∧A TAQ(R,P )(A,M) −→ TAQ(R,P )(B,N) −→ TAQ(A,M)(B,N)

of B-module spectra.

The following argument is effectively that given in [Rog09, Proposition 11.28].

Proof. We claim that there is a homotopy fiber sequence

Der(R,P )((A,M), X)←− Der(R,P )((B,N), X)←− Der(A,M)((B,N), X)

for any fibrant B-module X , from which the result will follow by considering
the corresponding cofiber sequence of corepresenting objects. By definition, the
space of logarithmic derivations arises as a homotopy pullback in which one leg
is a map of spaces corepresented by appropriate TAQ-terms. Since we know
that ordinary TAQ satisfies transitivity by Proposition 6.6, it suffices to show
that the sequence

Map
P/
/M (M, (M+X)J ) Map

P/
/N (N, (N+X)J ) Map

M/
/N (N, (N+X)J )

relating the involved mapping spaces of commutative J -space monoids is a
homotopy fiber sequence for any fibrant B-module X . Since the square

(M +X)J (N +X)J

M N

is homotopy cartesian, there is a natural weak equivalence

MapCSJ

P//M
(M, (M +X)J ) ≃ MapCSJ

P//N
(M, (N +X)J ).

It follows that the sequence in question is a homotopy fiber sequence.
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6.20 Logification invariance of log TAQ

It is proved in [Sag14, Corollary 6.7] that the version of log TAQ studied in loc.
cit. is logification invariant. As this construction is naturally weakly equivalent
to ours, we obtain the following:

Proposition 6.21. Let (R,P ) → (A,M) be a cofibration of cofibrant pre-
logarithmic ring spectra. The logification construction induces weak equiva-
lences

TAQ(R,P )(A,M)
≃
−→ TAQ(R,P )(A,Ma)

≃
−→ TAQ(R,Pa)(A,Ma)

of A-modules.

7 The log étale descent formula

We prove Theorem 1.7 in a series of propositions, each of which we motivate
with the analogous result for ordinary THH.

7.1 Log étale descent implies formally log THH-étale

Suppose R→ A is a cofibration of cofibrant commutative symmetric ring spec-
tra which satisfies étale descent, that is, the natural map

A ∧R THH(R)
≃
−→ THH(A)

is a stable equivalence. Then there are stable equivalences

A
∼=
−→ R ∧THH(R) (THH(R) ∧R A)

≃
−→ R ∧THH(R) THH(A)

≃
−→ THHR(A),

so that R → A is formally THH-étale. Here the last isomorphism is Proposi-
tion 3.9, while the second stable equivalence is due to étale descent.

Proposition 7.2. Any cofibration (R,P ) −→ (A,M) of cofibrant pre-
logarithmic ring spectra satisfying log étale descent is formally log THH-étale.

Proof. The argument is analogous to that of the classical case: there are equiv-
alences

A
∼=
−→ R ∧THH(R,P ) (THH(R,P ) ∧R A)

≃
−→ R ∧THH(R,P ) THH(A,M)c

≃
−→ THH(R,P )(A,M)c

≃
←− THH(R,P )(A,M),

where the second stable equivalence is due to log étale descent and the following
chain is Lemma 5.4. As all maps in the chain are under A, the result follows
by the two-out-of-three property.
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7.3 Formally log THH-étale implies formally log TAQ-étale

The key observation in relating log TAQ and log THH is the following:

Lemma 7.4. The A-modules

taqA(THH(R,P )(A,M)) and ΣTAQ(R,P )(A,M)

are naturally weakly equivalent.

Proof. Propostion 5.8 realizes THH(R,P )(A,M) as the suspension of the com-
mutative augmented A-algebra

(A ∧R A) ∧SJ [M⊠PM ] S
J [(M ⊠P M)rep].

By definition, the functor taqA(−) is the composite of a Quillen equivalence
and a left Quillen functor, both of which commute with suspensions. This
means that the A-modules

taqA(THH(R,P )(A,M)) and ΣtaqA((A ∧R A) ∧SJ [M⊠PM ] S
J [(M ⊠P M)rep])

are naturally weakly equivalent.

Proposition 7.5. Let (R,P )
(f,f♭)
−−−−→ (A,M) be a formally log THH-étale mor-

phism. Then (f, f ♭) is also formally log TAQ-étale.

Proof. By assumption, the unit map A
≃
−→ THH(R,P )(A,M) is a stable equiv-

alence. The result follows from applying taqA(−) to this map and from
Lemma 7.4.

7.6 Formally log TAQ-étale implies log étale descent

We finally discuss the log étale descent formula under the hypothesis of con-
tractible log TAQ. As we noted in the introduction, this fails already for
ordinary THH unless one adds connectivity hypotheses. In the setting of pre-
logarithmic ring spectra, we employ the following notion of connectivity:

Definition 7.7. A pre-logarithmic ring spectrum (A,M) is connective if both
the underlying commutative symmetric ring spectrum A and SJ [M ] are con-
nective.

For example, the pre-logarithmic ring spectra (A,D(x)) discussed in Example
4.2(5) are connective. Our definition of connectivity is made so that the full
strength of the following result, which is a reformulation of [Kuh06, Theorem
6.10], will be applicable:

Theorem 7.8. Let B → C → B be an augmented commutative B-algebra.
There is a natural tower of fibrations

· · · → PB,2(C)→ PB,1(C)→ PB,0(C)

of augmented commutative B-algebras satisying the following properties:
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1. There is a weak equivalence PB,0(C) ≃ B, under which the map C →
PB,0(C) corresponds to the augmentation map C → B.

2. The fiber of the fibration PB,n(C) → PB,n−1(C) is weakly equivalent to
the extended powers

[

n
∧

B

taqB(C)]hΣn

as B-modules.

3. If IRB(C) is 0-connected, then the map C → PB,n(C) is n-connected.

For example, the above result applies for the augmented commutative symmet-
ric ring spectrum

A→ THH(A)→ A

for A connective. In this case, the augmentation map is an isomorphism on
π0 and, having a section, a surjection on π1. Hence the above theorem applies
to describe THH(A) as the homotopy limit of the tower {PA,n(THH(A))}.
Moreover, we can describe the homotopy fibers of the maps in the tower:
applying Lemma 7.4 in the setting of ordinary THH gives that these are
merely extended powers of a suspension of TAQ(A). We will show that, under
the connectivity hypothesis described in Definition 7.7, we may draw similar
conclusions about log THH.

The above formulation of Theorem 7.8 differs from the one given by Kuhn,
as he employs a different formulation of topological André–Quillen homology.
The equivalence between the various notions is already alluded to in loc. cit.,
and is by now a well-known consequence of the work of Basterra and Mandell
[BM05]. As the present work is highly dependent upon the above formulation,
we provide a proof explaining how one may pass between the two different
setups. The author first learned of the below line of argument from a discussion
on MathOverflow between Yonatan Harpaz and Bruno Stonek.1

Proof of Theorem 7.8. By [BM05, Theorems 3 and 4], the stabilization of the
adjunctions (6.1) gives rise to a chain of Quillen equivalences

ModB Sp(ModB) Sp(NucaB) Sp(CSpΣB//B).
Σ∞ QB B∨−

IB
(7.1)

By [Kuh06, Theorem 3.10], there is a tower of fibrations of commutative aug-
mented B-algebras satisfying properties (1) and (3). Moreover, the fibers of the
maps in the tower are described as extended powers of the B-module underlying
the non-unital commutative B-algebra

taqB(C) := hocolimnΩ
n(Sn ⊙ IRB(C)),

1https://mathoverflow.net/questions/316418/
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where the tensor Sn ⊙− is taken in the pointed model category of non-unital
commutative B-algebras. This is the 0th level of an Ω-spectrum replacement
of the suspension spectrum {Sn ⊙ IRB(C)} in the stable category Sp(NucaB).
By [BM05, Proposition 3.8], it makes homotopically no difference whether one
applies the levelwise indecomposables QB or the levelwise forgetful functor
Sp(NucaB)→ Sp(ModA) ≃ ModA. In particular, taqB(C) is naturally weakly
equivalent to the B-module underlying taqB(C), which concludes the proof.

Remark 7.9. Since the augmentation ideal functor IB is the right adjoint in
a Quillen equivalence, we also have the stabilization formula

taqB(C) ≃ hocolimnΩ
n(IRB(S

n ⊙B C)),

involving instead the pointed tensor in augmented commutative B-algebras.
Setting B = A and C = (A ∧R A) ∧SJ [M⊠PM ] S

J [(M ⊠P M)rep], this gives a
stabilization formula for log TAQ.

The following result provides the necessary connectivity property for the aug-
mentation ideal of THH(R,P )(A,M) → A for Theorem 7.8 to be applicable in
the context of log THH. In its proof we use the following basic consequence of
the Tor-spectral sequence [EKMM97, Theorem IV.4.1], which is for example
spelled out in [Lur17, Corollary 7.2.1.23]: if R is a connective ring spectrum and
X and Y are connective R-module spectra, then there is a natural isomorphism

π0(X ∧
L

R Y ) ∼= π0(X)⊗π0(R) π0(Y ). (7.2)

Proposition 7.10. Let (R,P ) → (A,M) be a cofibration of cofibrant
and connective pre-logarithmic ring spectra. Then the augmentation

THH(R,P )(A,M)→ A induces an isomorphism π0THH
(R,P )(A,M)

∼=
−→ π0A of

commutative rings.

Proof. The chain of stable equivalences

R ∧THH(R,P ) THH(A,M)c
≃
−→ THH(R,P )(A,M)c

≃
←− THH(R,P )(A,M)

from Proposition 5.4 and the isomorphism (7.2) allow us to reduce to the case of
absolute log THH. Moreover, the definition of log THH as a (derived) balanced
smash product

THH(A,M) = THH(A) ∧SJ [Bcy(M)] S
J [Bcy(M)rep]

allows us, by another application of the isomorphism (7.2), to further reduce
to checking that the augmentation

SJ [Bcy(M)rep] −→ SJ [M ]

is an isomorphism on π0. We have used here that SJ [Bcy(M)] ∼= THH(SJ [M ])
and that the commutative symmetric ring spectrum SJ [M ] is connective.
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We study the analysis of the replete bar construction from [RSS15] and [RSS18].
Fix a factorization

M M ′ Mgp≃

in the positive J -model structure of the group completion ηM : M →Mgp. By
[RSS15, Proposition 3.15], there is a chain of J -equivalences over M ′ relating
Bcy(M)rep to the (homotopy) pullback of

M ′ −→Mgp ←− Bcy(Mgp);

this homotopy pullback is simply referred to as the replete bar construction
Brep(M) in [RSS15,RSS18]. By [RSS18, Proof of Proposition 3.1], there is a
J -equivalence

M ⊠ V (M)
≃
−→ Brep(M)

overM ′, where, following [RSS18], we define V (M) as the (homotopy) pullback
of the diagram

U(Mgp) −→Mgp ←− Bcy(Mgp).

Here U(Mgp) appears in a factorization UJ → U(Mgp) → Mgp of the initial
map to Mgp by an acyclic cofibration followed by a positive J -fibration.

By construction, the commutative J -space monoid M ′ is cofibrant, so that
[RSS15, Corollary 8.8] applies to infer that

SJ [M ⊠ V (M)]
≃
−→ SJ [Brep(M)]

is a stable equivalence of commutative symmetric ring spectra. We shall argue
that the augmentation

SJ [M ⊠ V (M)] −→ SJ [M ] ∧ SJ [U(Mgp)]
≃
←− SJ [M ]

induces an isomorphism on π0. By [RSS18, Proposition 2.4], there is a chain
of equivalences relating V (M) to FJ

(0,0)(B(Mgp
hJ )); the proof in loc. cit shows

that the weak equivalences involved respect the augmentations to U(Mgp). In
particular, it suffices to prove that the morphism

SJ [M ⊠ FJ
(0,0)(B(Mgp

hJ ))] −→ SJ [M ]

induces an isomorphism on π0. For this we use that S
J [M⊠FJ

(0,0)(B(Mgp
hJ ))] ∼=

SJ [M ]∧SJ [FJ
(0,0)(B(Mgp

hJ ))] together with the fact that the composite functor

SJ ◦FJ
(0,0) equals the unreduced suspension functor Σ∞

+ to infer that the domain

of the map in question is isomorphic to SJ [M ]∧Σ∞
+ (B(Mgp

hJ )). We again apply
the isomorphism

π0(S
J [M ] ∧ Σ∞

+ (B(Mgp
hJ )) ∼= π0S

J [M ]⊗Z π0Σ
∞
+ (B(Mgp

hJ ))

of (7.2). Since B(Mgp
hJ ) is path-connected, this is isomorphic to π0S

J [M ].
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Remark 7.11. It is easy to check that the commutative J -space monoid V (M)
appearing in the above proof is J -equivalent to W (Bcy(M)) as defined in
Definition 2.11. The former formulation is more convenient when we model
the replete bar construction by the homotopy pullback Brep(M) as opposed to
the relative fibrant replacement Bcy(M)rep. The advantage of the formulation
given in Definition 2.11 is that the resulting commutative J -space monoid has
a direct augmentation to the initial commutative J -space monoid UJ , which
we used on numerous occasions in Section 6.

Proposition 7.12. Let (R,P )
(f,f♭)
−−−−→ (A,M) be a cofibration of cofi-

brant and connective pre-logarithmic ring spectra. If the A-module spectrum
TAQ(R,P )(A,M) is contractible, then (f, f ♭) satisfies log étale descent. That
is, the natural map

A ∧R THH(R,P )
≃
−→ THH(A,M)

is a stable equivalence of commutative symmetric ring spectra.

Proof. By Proposition 7.10, we have that Theorem 7.8 is applicable to both
THH(R,P ) and THH(A,M). The isomorphism (7.2) then shows that it is also
applicable to the augmented commutative A-algebra A ∧R THH(R,P ). We
apply Theorem 7.8 to the morphism

A ∧R THH(R,P )→ THH(A,M)

of commutative augmented A-algebras to obtain a commutative diagram

A ∧R THH(R,P ) THH(A,M)

holim(PA,n(A ∧R THH(R,P ))) holim(PA,n(THH(A,M)))

≃ ≃

of commutative augmented A-algebras.

We claim that each of the morphisms

PA,n(A ∧R THH(R,P ))→ PA,n(THH(A,M))

is a stable equivalence, from which it follows that the map on homotopy limits
is also a stable equivalence.

We proceed by induction on n. For n = 0, we consider the commutative
diagram

A ∧R THH(R,P ) THH(A,M)

PA,0(A ∧R THH(R,P )) PA,0(THH(A,M))
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of augmented commutative A-algebras. The lower map is a stable equivalence
by property (1) of Theorem 7.8: the vertical maps in the diagram are stably
equivalent to the augmentations to A, and the upper horizontal map is one
over A.

For n > 0, there is a map of fiber sequences

[
∧n

A taqA(A ∧R THH(R,P ))]hΣn
[
∧n

A taqA(THH(A,M))]hΣn

PA,n(A ∧R THH(R,P )) PA,n(THH(A,M))

PA,n−1(A ∧R THH(R,P )) PA,n−1(THH(A,M))

in the category of A-modules. By induction hypothesis, the bottom map is a
stable equivalence. We prove that the morphism

taqA(A ∧R THH(R,P )) −→ taqA(THH(A,M)) (7.3)

is a stable equivalence, which will conclude the proof. Its homotopy cofiber is
taqA(−) of the homotopy cofiber of the map A ∧R THH(R,P ) −→ THH(A,M)
in the category of augmented commutative A-algebras. The latter homotopy
cofiber is

A ∧LA∧RTHH(R,P ) THH(A,M) ∼= (A ∧R R) ∧LA∧RTHH(R,P ) (A ∧A THH(A,M)).

By commuting homotopy pushouts, this is stably equivalent to the augmented
commutative A-algebra R∧LTHH(R,P )THH(A,M), which is stably equivalent to

THH(R,P )(A,M) by Proposition 5.4. By Lemma 7.4, the homotopy cofiber of

(7.3) is therefore stably equivalent to ΣTAQ(R,P )(A,M), which is contractible
by assumption. This concludes the proof.

Remark 7.13. One can also prove that (7.3) is a stable equivalence by means
of the homotopy cofiber sequence

A ∧R ΣTAQ(R,P ) −→ ΣTAQ(A,M) −→ ΣTAQ(R,P )(A,M)

of Proposition 6.19, since by Lemma 6.5 we have that Lemma 7.4 is applicable
to (7.3). The lack of naturality in Proposition 5.8 may be dealt with by forming
the relevant factorizations and lifts in a model category of arrows to make the
construction natural in the morphism (R,P )→ (A,M).

We have now provided a full proof of Theorem 1.7, which we summarize here:

Proof of Theorem 1.7. This follows from Propositions 7.2, 7.5 and 7.12.
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8 Logarithmic THH of discrete log rings

By definition, a discrete pre-log ring (R,P, β) consists of a commutative ring
R, a commutative monoid P and a map β : P → (R, ·) of commutative monoids
to the underlying multiplicative monoid of R. As explained in [RSS15, Section
5], this gives rise to a pre-log ring spectrum (HR,FP ). A special case of this
is Example 4.2(3), which will be the main example of interest in this section.
We shall simplify notation and write

THH(R,P )(A,M) := THH(HR,FP )((HA,FM)cof)

for a map (R,P ) → (A,M) of discrete pre-log rings. Here (HA,FM)cof

denotes a cofibrant replacement of (HA,FM) relative to (HR,FP ) in the
projective model structure. If M is a discrete commutative monoid, we shall
write Mgp for its usual group completion.

The aim of this section is to prove the following:

Theorem 8.1. Let R → A be a tamely ramified finite extension of complete
discrete valuation rings in mixed characteristic (0, p) with perfect residue fields.
Let K → L be the induced map of fraction fields. Then the natural map

A ∧R THH(R,R ∩GL1(K))→ THH(A,A ∩GL1(L))

is a stable equivalence, i.e., the map (R,R ∩ GL1(K)) → (A,A ∩ GL1(L)) of
discrete log rings satisfies log étale descent.

In fact, the conclusion of the Theorem 8.1 holds for any map which is log étale
in the following sense:

Definition 8.2. A map (R,P a)→ (A,Ma) of discrete log rings is log étale if
it arises as the logification of a map (R,P )→ (A,M) of pre-log rings such that

1. the map R⊗Z[P ] Z[M ]→ A of commutative rings is étale;

2. the map P gp →Mgp is an injection with finite cokernel of order invertible
in A.

This is an adaptation of Kato’s definition of log étale maps of log schemes
[Kat89, 3.3, 3.5.2], and in particular any log étale map in the sense of Defi-
nition 8.2 gives rise to a log étale map (Spec(A),Ma) → (Spec(R), P a) of log
schemes.

Example 8.3. Recall (from e.g. [Ser79, Chapter 2.5]) that any complete
discrete valuation ring R in mixed characteristic (0, p) with perfect residue
field k is of the form W (k)[x]/Φ(x), with W (k) the p-typical Witt vectors on
k and Φ(x) an Eisenstein polynomial of degree the absolute ramification index
eR of R.
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Following Hesselholt–Madsen [HM03, Section 2.2] and Rognes [Rog09, Example
4.32], let R→ A be a tamely ramified finite extension of such discrete valuation
rings. Let πR denote a uniformizer of R. As explained in [HM03, Proof of
Lemma 2.2.6], we may reduce to the case where the extension is of the form
R → R[x]/(xeA/eR − πR); indeed, any map R → A of this form factors as an
unramified extension followed by a totally tamely ramified extension. It is now
clear that the logification of the map

(R, 〈πR〉)→ (R[x]/(xeA/eR − πR), 〈x〉)

is log étale, since eA/eR is coprime to p by the assumption that the extension
is tamely ramified.

The following definition makes use of the functor γ from commutative J -space
monoids to Segal Γ-spaces introduced in [Sag16, Section 3]. It has the property
that M → N is a weak equivalence in the group completion model structure if
γ(M)→ γ(N) is a weak equivalence of Γ-spaces.

Definition 8.4. A map (R,P a)→ (A,Ma) of log ring spectra is log étale if it
arises as the logification of a cofibration (R,P ) → (A,M) of cofibrant pre-log
ring spectra such that

1. the induced map R ∧SJ [P ] S
J [M ]→ A is étale;

2. the A-module A ∧ (γ(M)/γ(P )) is contractible.

We only make use of the functor γ to make the analogy with Definition 8.2 as
transparent as possible. In practice, we shall use the following description of
the A-module A ∧ (γ(M)/γ(P )):

Lemma 8.5. Let (R,P ) → (A,M) be a cofibration of cofibrant pre-log ring
spectra. There is a natural weak equivalence

A ∧ (γ(M)/γ(P )) ≃ taqA(A ∧SJ [M ] S
J [(M ⊠P M)rep])

of A-modules.

Proof. By [Sag14, Proposition 5.19] and Theorem 6.13, both of the A-modules

in question corepresents the same functor as A∧SJ [M ]TAQ
(SJ [P ],P )(SJ [M ],M),

namely the space of monoid derivations X 7→ MapCSJ

P//M
(M, (M +X)J ).

A discrete commutative monoid P is integral if the canonical map P → P gp

is injective, and a discrete pre-log ring (R,P ) is integral if the underlying
commutative monoid P is.

Proposition 8.6. Let (R,P a)→ (A,Ma) be a log étale morphism of log rings
which arises as the logification of a map (f, f ♭) : (R,P ) → (A,M) of inte-
gral pre-log rings satisfying the conditions of Definition 8.2. Assume more-
over that Z[f ♭] : Z[P ] → Z[M ] is flat. Then the map (Hf, Ff ♭) : (HR,FP )→
(HA,FM), up to cofibrant replacements, logifies to a log étale map of log ring
spectra.
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Proof. We first check that the map HR∧L
S[P ] S[M ]→ HA of commutative ring

spectra is étale. On π0 this is the map R ⊗Z[P ] Z[M ] → A which is étale by
assumption. Since both squares in the diagram

S[P ] HZ[P ] HR

S[M ] HZ[M ] HR ∧LHZ[P ] HZ[M ]

are homotopy cocartesian, we obtain the desired isomorphism

A⊗R⊗Z[P ]Z[M ] π∗(HR ∧L
S[P ] S[M ])→ A

of graded rings from the flatness hypothesis.

We now check that the HA-module HA ∧L (γ(FM)/γ(FP )) is contractible.
Recall that SJ ◦F = Σ∞

+ = S[−] is the usual spherical monoid ring construction,
so that Lemma 8.5 asserts that this is naturally weakly equivalent to the HA-
module

taqHA(HA ∧L
S[M ] S

J [(FM ⊠FP FM)rep]),

which is in turn equivalent to the HA-module

taqHA(HA ∧L
S[M ] S

J [F (M ⊕P M)rep]).

Here F (M ⊕P M)rep denotes the repletion of the augmentation map
F (M ⊕P M) → F (M). Arguing as in [RSS15, Lemma 5.1], we find that
SJ [F (M ⊕P M)rep] ≃ S[(M ⊕P M)rep].

We now apply [Ogu18, Proposition 4.2.19], which asserts that (M ⊕P M)rep ∼=
M ⊕Mgp/P gp (this uses the integrality hypothesis). This allows us to further
rewrite

HA ∧L
S[M ] S[(M ⊕P M)rep] ≃ HA ∧L

S[M ] S[M ⊕Mgp/P gp] ≃ HA[Mgp/P gp].

We can compute the taq of this group ring using Γ-homology. Notice that
Lemma 6.5 implies that taqHA(HA[Mgp/P gp]) is naturally weakly equivalent
to

taqHA[Mgp/P gp](HA[Mgp/P gp] ∧HA HA[Mgp/P gp]) ∧LHA[Mgp/P gp] HA,

which is typically denoted TAQHA(HA[Mgp/P gp];HA). By Basterra–
McCarthy [BM02] (see also Basterra–Richter [BR04, Section 2]), the
homotopy groups of this TAQ-term is equivalent to the Γ-homology
HΓHA

∗ (HA[Mgp/P gp];HA). By Richter–Robinson [RR04, Proposition 3.1],
this is (HA)∗(H(Mgp/P gp)); the HA-homology of H(Mgp/P gp). This is
trivial since the order of Mgp/P gp is invertible in A.
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Together with Proposition 8.6, the following connects Definition 8.2 to the
notions of formal log étaleness studied in Section 7:

Lemma 8.7. Let (f, f ♭) : (R,P ) → (A,M) be a log étale morphism of log ring
spectra. Then (f, f ♭) is formally log TAQ-étale.

Proof. By Proposition 6.21, we may without loss of generality assume that
(f, f ♭) is a map of pre-log ring spectra satisfying the hypotheses of Definition
8.4. By [Rog09, Lemma 11.25] or [Sag14, Lemma 6.2] there is a homotopy
cofiber sequence

A ∧ (γ(M)/γ(P ))→ TAQ(R,P )(A,M)→ TAQR∧
SJ [P ]

S
J [M ](A) (8.1)

of A-modules. The first term in this sequence is contractible by assumption,
while the right-hand TAQ-term is contractible as a consequence of R ∧SJ [P ]

SJ [M ]→ A being étale (see e.g. [Lur17, Corollary 7.5.4.5]).

Remark 8.8. At the time of writing, it is not clear to the author under which
hypotheses formally log TAQ-étale implies log étale in the sense of Definition
8.4. This is closely related to [Rog09, Remark 11.26].

Proof of Theorem 8.1. Example 8.3 shows that any such map of discrete val-
uation rings is log étale. Proposition 8.6 shows that this gives rise to a log
étale map of log ring spectra. By Lemma 8.7, any log étale map is formally log
TAQ-étale. Since Eilenberg–MacLane spectra and spherical monoid rings are
connective, Theorem 1.7 applies to conclude the proof.

9 Logarithmic TAQ as a cotangent complex

In this short final section, we explain how our description of log TAQ may be
interpreted in the cotangent complex formalism of Lurie [Lur17, Section 7].
We shall continue to work in the context of model categories, and we refer to
the work of Harpaz–Nuiten–Prasma [HNP19] for a construction of the tangent
bundle in this context.

In [SSV16, Section 3], a replete model structure on the category PreLog of
pre-logarithmic ring spectra is described. The fact that loc. cit. works with
simplicial pre-log rings does not give rise to technical difficulties, and their
arguments applymutatis mutandis in the present context. This model structure
arises by forming a left Bousfield localization of the projective model structure
on PreLog with respect to the set (SJ [Q], Q), where Q is the set of morphisms
in CSJ at which one localizes to obtain the group completion model structure.
Consequently, for a morphism (B,N)→ (A,M), the map (B,N) −→ (B ∧SJ [N ]

SJ [N rep], N rep) is an acyclic cofibration in this model structure. However,
there is no reason to believe that its codomain is fibrant over (A,M). Here we
explain how to alleviate this issue by only forming the left Bousfield localization
after passing to the appropriate slice category:
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Proposition 9.1. Let (A,M) be a cofibrant pre-logarithmic ring spec-
trum. The category PreLog(A,M)//(A,M) admits a replete model structure

PreLogrep(A,M)//(A,M) in which the fibrant objects are the fibrant (B,N) →

(A,M) with N replete over M . Up to a fibrant replacement in the projective
model structure, the functor

((B,N)→ (A,M)) 7→ ((B ∧SJ [N ] S
J [N rep], N rep)→ (A,M))

is a fibrant replacement functor in this model structure.

Proof. Let Q(M) be a set of generating acyclic cofibrations in the slice category
(CSJgp)M//M . Define the replete model structure on PreLog(A,M)//(A,M) to be
the left Bousfield localization of the projective one with respect to the set

S = (A ∧SJ [M ] S
J [Q(M)], Q(M)).

Since MapPreLog(A,M)//(A,M)
((A ∧SJ [M ] S

J [Q(M)], Q(M)), (B,N)) is naturally

weakly equivalent to MapCSJ

M//M
(Q(M), N) by adjunction, we find that (B,N)

is S-local if and only if N is Q(M)-local. This means that N is fibrant in
(CSJgp)M//M , i.e., replete over M .

The proposed fibrant replacement functor arises from considering the pushout
of the diagram

(B,N)←− (A ∧SJ [M ] S
J [N ], N) −→ (A ∧SJ [M ] S

J [N rep], N rep)

of pre-logarithmic ring spectra.

In [Rog09, Remark 8.8], a version of the stabilization Sp(PreLogrep(A,M)//(A,M))

is suggested as a category of log modules Mod(A,M). We point out two desirable
properties of this category here:

1. We can realize log THH as the cyclic bar construction in PreLog, pro-
vided that we pass to the replete model structure after forming it. Since
Bcy

(R,P )(A,M) = (Bcy
R (A), Bcy

P (M)), we have that

Bcy
(R,P )(A,M)rep = (Bcy

R (A) ∧SJ [Bcy
P (M)] S

J [Bcy
P (M)rep], Bcy

P (M)rep)

is a fibrant replacement of the cyclic bar construction over (A,M). This

is (THH(R,P )(A,M), Bcy
P (M)rep) by definition.

2. The chain of Quillen equivalences (7.1) exhibit ModA as the tangent
category of CSpΣ at A and TAQR(A) as its cotangent complex. By
definition, the stabilized category Sp(PreLog(A,M)//(A,M)) is the tangent
category of the category of pre-logarithmic ring spectra at (A,M). This
comes with a cotangent complex L(A,M)|(R,P ) = Σ∞(A ∧R A,M ⊠P M).
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If we pass to the replete model structure before stabilizing, we find that
the cotangent complex L(A,M)|(R,P ) is level equivalent to

Σ∞((A ∧R A) ∧SJ [M⊠PM ] S
J [(M ⊠P M)rep], (M ⊠P M)rep).

We denote this replete cotangent complex by L
rep
(A,M)|(R,P ). This comes

with an underlying spectrum object of augmented A-algebras, which by
the Quillen equivalences (7.1) corresponds to TAQ(R,P )(A,M) as we de-
fined it in Definition 6.12. This was our initial motivation for pursuing
this description of log TAQ.
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