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1 Introduction, motivation and description of the results

1.1 Category O

Let g be a semi-simple, finite dimensional Lie algebra over C with a fixed
triangular decomposition

g = n− ⊕ h⊕ n+.

Consider the Bernstein-Gelfand-Gelfand (BGG) category O associated to this
decomposition. Category O plays an important role in modern representation
theory and its applications. See e.g., [BGS, Hu, So1, St3] and references therein.
Indecomposable blocks of O are described by finite dimensional algebras and
possess a number of remarkable symmetries. For example, they have simple
preserving duality and exhibit both Ringel self-duality and Koszul self-duality.
See [So1, BGS, So2].
Category O has a number of interesting sub- and quotient- categories such as
the parabolic category O associated with the choice of a parabolic subalgebra
p of g (see [RC]) and the S-subcategories in O associated with p (see [FKM]).
The latter categories are also known as the subcategories of p-presentable mod-
ules, see [MS1], and can be alternatively defined as certain Serre quotients of
category O.
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1.2 Auslander regular algebras

A finite dimensional (associative) algebra A is called Auslander-Gorenstein, see
[Iy, CIM], provided that the (left) regular module AA admits a finite injective
coresolution

0 → A → Q0 → Q1 → · · · → Qk → 0,

such that proj.dim(Qi) ≤ i, for all i = 0, 1, . . . , k. An Auslander-Gorenstein
algebra of finite global dimension is called an Auslander regular algebra.
Auslander regular algebras have a number of remarkable homological proper-
ties, see, for example, [Iy, Theorem 1.1] and [AR, Theorem 2.1].
We identify properties of algebras with that of their module categories, so, in
an appropriate case, we can say that A-mod is Auslander regular, etc.

1.3 Motivation

This paper originates from a question which the second author received from
René Marczinzik in July 2020. The question was whether blocks of category O
are Auslander regular. It was motivated by the observations that the answer
is positive in small ranks based on computer calculations using the quiver and
relation presentations of blocks of category O from [St1].

1.4 The main result

The main result of the present paper is the following statement which, in par-
ticular, answers positively and vastly generalizes the question posed by René
Marczinzik (see Theorem 3, Corollary 5, Theorem 8, Corollary 9, Theorem 11
and Theorem 12):

Theorem A. All blocks of (parabolic) category O are Auslander regular. All
blocks of S-subcategories in O are Auslander-Gorenstein.

The first two papers [Ma3] and [Ma4] of the “Some homological properties
of category O” series were devoted to the study of projective dimension of
structural modules in category O, with the main emphasis on the projective
dimension of indecomposable tilting and injective modules. Our proof of The-
orem A is heavily based on these results.

1.5 General setup for similar regularity phenomena

We observe that the condition used to define Auslander-Gorenstein and Aus-
lander regular algebras makes perfect sense in the general setup of (generalized)
tilting modules in the sense of Miyashita [Mi]. Let A be a finite-dimensional
algebra and T an A-module. Recall, that T is called a (generalized) tilting
module provided that it has the following properties:

• T has finite projective dimension;
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• T is ext-self-orthogonal, that is, all extensions of positive degree from T
to T vanish;

• the module AA has a finite coresolution by modules in add(T ).

It is a standard fact that proj.dim(T ) equals the length of a minimal coresolu-
tion of A by modules from add(T ).
Now, givenA and a (generalized) tilting A-module T , we say that A is T -regular
provided that there is a coresolution

0 → A → Q0 → Q1 → · · · → Qk → 0,

such that Qi ∈ add(T ) and proj.dim(Qi) ≤ i, for all i = 0, 1, . . . , k.
The notion of an Auslander-Gorenstein algebra corresponds to the situation
when the injective cogenerator is a (generalized) tilting module.

1.6 Regularity phenomena for various generalized tilting mod-

ules in category O

The bounded derived category of the principal block O0 of category O admits
two different actions, by derived equivalences, of the braid group associated to
(W,S) where W is the Weyl group of g and S the set of simple reflections.
These actions are given by the so-called twisting functors, see [AS, KM], and
shuffling functors, see [MS1]. These actions can be used to define the following
four classes of (generalized) tilting modules in O0:

• twisted projective modules;

• twisted tilting modules;

• shuffled projective modules;

• shuffled tilting modules.

In Sections 8 and 9 we explore the regularity phenomena in O0 with respect
to these four families of (generalized) tilting modules. Each of these fami-
lies contains |W | (generalized) tilting modules with some overlap between the
families.

Problem B. For which of the above generalized tilting modules the category
O0 has the regularity property?

Here is a summary of our results, see Theorems 19 and 22, Propositions 24 and
26 and Examples in Subsections 8.5 and 9.4:

Theorem C.

(a) The category O0 has the regularity property with respect to both projective
and tilting modules twisted by the longest element in a parabolic subgroup
of the Weyl group.
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(b) The category O0 has the regularity property with respect to both projective
and tilting modules shuffled by a simple reflection.

(c) There exist both twisted and shuffled projective and tilting modules, with
respect to which the category O0 does not have the regularity property.

1.7 Projective dimension of twisted and shuffled projective and

tilting modules

Theorem C suggests that a complete answer to Problem B is non-trivial. One
important step here is the following problem.

Problem D. Determine the projective dimensions of twisted and shuffled pro-
jective and tilting modules in O0.

We explore Problem D in Section 10. Since twisted projective modules co-
incide with translated Verma modules, while twisted tilting modules coincide
with translated dual Verma modules, Problem D provides a nice connection to
the more recent papers [CM, KMM] in the “Some homological properties of
category O” series. One of the main results of [KMM] determines projective
dimension of translated simple modules in O. In Section 10 we propose con-
jectures for projective dimension of twisted and shuffled projective and tilting
modules in the spirit of the results of [KMM] and prove a number of partial
results. All these conjectures and results are formulated in terms of Kazhdan-
Lusztig combinatorics, namely, Lusztig’s a-function from [Lu1, Lu2] and its
various generalizations studied in [CM] and [KMM]. The case of shuffled mod-
ules seems at the moment to be significantly more difficult than the case of
twisted modules. The main reason for this is the fact that, in contrast to
twisting functors, shuffling functors do not commute with projective functors.
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2 Auslander-Ringel regular quasi-hereditary algebras

2.1 Quasi-hereditary algebras

Let k be an algebraically closed field and A a finite dimensional (associative) k-
algebra. Let L1, L2, . . . , Ln be a complete and irredundant list of isomorphism
classes of simple A-modules. Note that, by fixing this list, we have fixed a
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linear order on the isomorphism classes of simple A-modules, this will be an
essential part of the structure we are going to define now.

For i ∈ {1, 2, . . . , n}, we denote by Pi and Ii the indecomposable projective
cover and injective envelope of Li, respectively. Denote by ∆i the quotient of
Pi by the trace in Pi of all Pj with j > i. Denote by ∇i the submodule of Ii
defined as the intersection of the kernels of all homomorphisms from Ii to Ij
with j > i. The modules ∆i are called standard and the modules ∇i are called
costandard.

Recall from [CPS, DR], that A is said to be quasi-hereditary provided that

• the endomorphism algebra of each ∆i is k;

• the regular module AA has a filtration with standard subquotients.

According to [Ri], if A is quasi-hereditary, then, for each i, there is a unique
indecomposable module Ti, called a tilting module, which has both, a filtration
with standard subquotients and a filtration with costandard subquotients, and,
additionally, such that [Ti : Li] 6= 0 while [Ti : Lj] = 0 for j > i. The module

T =

n⊕

i=1

Ti is called the characteristic tilting module and (the opposite of) its

endomorphism algebra is called the Ringel dual of A.

For each M ∈ A-mod, there is a unique minimal finite complex T•(M) of tilting
modules which is isomorphic to M in the bounded derived category of A. We
will denote by r(M) the maximal non-negative i such that Ti(M) 6= 0 and by
l(M) the maximal non-negative i such that T−i(M) 6= 0. Note that l(M) = 0 if
and only if M has a filtration with standard subquotients and r(M) = 0 if and
only if M has a filtration with costandard subquotients. We refer to [MO2] for
further details.

2.2 Auslander-Ringel regular algebras

We say that a quasi-hereditary algebra A is Auslander-Ringel regular provided
that there is a coresolution

0 → A → Q0 → Q1 → · · · → Qk → 0,

such that each Qi ∈ add(T ) and proj.dim(Qi) ≤ i, for all i = 0, 1, . . . , k. Note
that, being quasi-hereditary, A has finite global dimension (see [CPS, DR]) and
that the characteristic tilting module is a (generalized) tilting module. Thus,
Auslander-Ringel regularity corresponds to T -regularity in the terminology of
Subsection 1.5.

In Section 3, we will see that blocks of (parabolic) BGG category O are
Auslander-Ringel regular.
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3 Regularity phenomena in category O

3.1 Category O

We refer the reader to [Hu] for details and generalities about category O.
We denote by O0 the principal block of O, that is, the indecomposable direct
summand of O containing the trivial g-module. The simple modules in O0

are simple highest weight modules, and their isomorphism classes are naturally
indexed by elements of the Weyl group W . For w ∈ W , we denote by Lw the
simple highest weight module in O0 with highest weight w · 0, where 0 is the
zero element in h∗ and · is the dot action of W .
We denote by Pw and Iw the indecomposable projective cover and injective
envelope of Lw in O0, respectively. Let A be a basic, finite dimensional, asso-
ciative algebra such that O0 is equivalent to A-mod. It is well-known that A is
quasi-hereditary with respect to any linear order which extends the dominance
order on weights. The latter is given by λ ≤ µ if and only if µ− λ is a linear
combination of positive roots with non-negative integer coefficients.
By [So1], the algebra A admits a Koszul Z-grading. We denote by ZO0 the
category of Z-graded finite-dimensional A-modules. We denote by 〈1〉 the shift
of grading which maps degree 0 to degree −1. We fix standard graded lifts of
structural modules so that

• Lw is concentrated in degree zero;

• the top of Pw is concentrated in degree zero;

• the socle of Iw is concentrated in degree zero;

• the top of ∆w is concentrated in degree zero;

• the socle of ∇w is concentrated in degree zero;

• the canonical map ∆w →֒ Tw is homogeneous of degree zero.

For w ∈ W , we denote by θw the indecomposable projective endofunctor of O0,
see [BG], uniquely defined by the property θwPe

∼= Pw. By [St2], θw admits a
natural graded lift normalized by the same condition.
We denote by ≥L, ≥R and ≥J the Kazhdan-Luszitg left, right and two-sided
orders, respectively.

3.2 O0 is Auslander-Ringel regular

Theorem 1. The category O0 is Auslander-Ringel regular.

Proof. Consider the category LT (O0) of linear complexes of tilting modules in
O0, see [Ma1, MO1]. The algebra A is a balanced quasi-hereditary algebra in
the sense of [Ma2] and hence LT (O0) contains the tilting coresolution T•(Pe)
of the dominant standard module ∆e = Pe.
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Due to the Ringel-Koszul self-duality of O0, the category LT (O0) is equivalent
to ZO0. This implies that the multiplicity of Tw〈i〉 as a summand of Ti(Pe)
coincides with the composition multiplicity of Lw0w−1w0

〈−i〉 in ∆e. The latter
is given by Kazhdan-Lusztig combinatorics for (W,S). In particular, it is non-
zero only if

a(w) = a(w0w
−1w0) ≤ i ≤ ℓ(w0w

−1w0) = ℓ(w),

where ℓ(w) is the length of w and a is Lusztig’s a-function from [Lu1, Lu2].
Consequently, Tw can appear (up to shift of grading) only in homological po-
sitions i such that a(w) ≤ i ≤ ℓ(w). Taking into account that proj.dim.(Tw) =
a(w) by [Ma3, Ma4], it follows that Ti(Pe) has projective dimension at most i.
For x ∈ W , applying θx to T•(Pe) gives a tilting coresolution of Px (not neces-
sarily minimal or linear). Since θx is exact and sends projectives to projectives,
it cannot increase the projective dimension. This means that

proj.dim.(θxTi(Pe)) ≤ proj.dim.(Ti(Pe)) ≤ i.

The claim of the theorem follows.

Corollary 2.

(i) Let P•(T ) be a minimal projective resolution of T . Then r(P−i(T )) ≤ i,
for all i ≥ 0.

(ii) Let T•(I) be a minimal tilting resolution of the basic injective cogenerator
I. Then we have inj.dim.(T−i(I)) ≤ i, for all i ≥ 0.

(iii) Let I•(T ) be a minimal injective coresolution of T . Then l(Ii(T )) ≤ i,
for all i ≥ 0.

Recall that the functions r and l were defined in Subsection 2.1.

Proof. Claim (ii) is obtained from Theorem 1 using the simple preserving dual-
ity on O. Since O0 is Ringel self-dual, Claim (i) is the Ringel dual of Theorem 1
and, finally, Claim (iii) is the Ringel dual of Claim (ii).

3.3 O0 is Auslander regular

Theorem 3. The category O0 is Auslander regular.

We will need the following auxiliary statement.

Lemma 4. For w ∈ W , let I•(Tw0w) be a minimal injective coresolution of
Tw0w. Then we have:

(i) The maximal value of i such that Ii(Tw0w) 6= 0 equals a(w0w).

(ii) Each indecomposable direct summand of I•(Tw0w) is isomorphic, up to a
graded shift, to Ix, for some x ≥J w.
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(iii) If Ii(Tw0w) has a direct summand isomorphic, up to a graded shift, to Ix,
for some x ∈ W , then i ≥ a(w0x).

Proof. Using the simple preserving duality, Claim (i) is one of the main results
of [Ma3, Ma4].

Since Tw0w
∼= θwTw0

, to prove Claim (ii), it is enough to prove the same
statement for θwI•(Tw0

). But we have

θwIy = θwθyIe =
⊕

z∈W

θ
⊕mz

w,y
z Ie =

⊕

z∈W

I
⊕mz

w,y
z

and mz
w,y 6= 0 only if z ≥J w.

Let us prove Claim (iii). We start with the case w = e. Due to Koszulity of O0,
the minimal injective coresolution I•(Tw0

) of the antidominant tilting=simple
module Tw0

= Lw0
is linear and hence is an object in the category LI(O0)

of linear complexes of injective modules and is isomorphic to the dominant
standard=projective object in this category.

Due to the Koszul self-duality of O0, the category LI(O0) is equivalent to
ZO0.

This implies that the multiplicity of Ix〈i〉 as a summand of Ii(Tw0
) coincides

with the composition multiplicity of Lw0x−1〈−i〉 in ∆e. The latter is given by
Kazhdan-Lusztig combinatorics. In particular, it is non-zero only if a(w0x

−1) ≤
i ≤ ℓ(w0x

−1). Consequently, the module Ix can appear (up to shift of grading)
only in homological positions i such that a(w0x) = a(w0x

−1) ≤ i ≤ ℓ(w0x
−1).

This proves Claim (iii) in the case w = e. The general case is obtained from
this one applying θw.

Proof of Theorem 3. Take the minimal tilting coresolution T•(Pe) of Pe consid-
ered in the proof of Theorem 1. We can take a minimal injective coresolution
of each Tx, up to grading shift, appearing in T•(Pe) and glue these into an in-
jective coresolution I• of Pe. Applying θw to I•, gives an injective coresolution
of Pw without increasing the projective dimensions of homological positions.
By [Ma3, Ma4], the projective dimension of Ix is 2a(w0x). It is thus enough to
show that any graded shift of Ix appearing in I• appears only in homological
positions i such that i ≥ 2a(w0x).

By Lemma 4, Ix can only appear in homological position at least a(w0x) when
coresolving Ty. Furthermore, again by Lemma 4, Ix can only appear in cores-
olutions of Tw0y, where x ≥J y. By Theorem 1, such Tw0y appears in T•(Pe)
in homological positions at least proj. dimTw0y = a(w0y). Adding these two
estimates together, we obtain that Ix appears in I• in homological positions at
least a(w0y) + a(w0x) ≥ 2a(w0x). This completes the proof.

3.4 Singular blocks

Corollary 5. All blocks of O are Auslander-Ringel regular, Auslander regu-
lar, and have the properties described in Corollary 2.
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Proof. Due to Soergel’s combinatorial description of blocks of O from [So1],
each block of category O is equivalent to an integral block of O (possibly for
a different Lie algebra). Therefore we may restrict our attention to integral
blocks.

Each regular integral block is equivalent to O0. Each singular integral block is
obtained from a regular integral block using translation to the corresponding
wall. These translation functors are exact, send projectives to projectives,
injectives to injectives and tiltings to tiltings and do not increase projective
dimension, injective dimension, nor the values of l and r. Therefore the claim
follows from Theorems 1 and 3 and Corollary 2 applying these translation
functors.

3.5 sl3-example

For the Lie algebra sl3, we have W = {e, s, t, st, ts, w0 = sts = tst}. The
projective dimensions of the indecomposable tilting and injective modules in
O0 are given by:

w e s t st ts w0

proj.dim(Tw) 0 1 1 1 1 3
w e s t st ts w0

proj.dim(Iw) 6 2 2 2 2 0

The minimal (ungraded) tilting coresolutions of the indecomposable projectives
in O0 are:

0 → Pe → Te → Ts ⊕ Tt → Tst ⊕ Tts → Tw0
→ 0,

0 → Ps → Te → Tt → 0,

0 → Pt → Te → Ts → 0,

0 → Pst → Te → Tts → 0,

0 → Pts → Te → Tst → 0,

0 → Pw0
→ Te → 0,

The minimal (ungraded) injective coresolutions of the indecomposable projec-
tives in O0 are:

0 → Pe → Iw0
→ I⊕2

w0
→ It ⊕ Is ⊕ I⊕2

w0
→ Its ⊕ Ist ⊕ Iw0

→ Ist ⊕ Its → Is ⊕ It → Ie → 0,

0 → Ps → Iw0
→ Iw0

→ Is → 0,

0 → Pt → Iw0
→ Iw0

→ It → 0,

0 → Pst → Iw0
→ Iw0

→ Ist → 0,

0 → Pts → Iw0
→ Iw0

→ Its → 0,

0 → Pw0
→ Iw0

→ 0,
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4 Regularity phenomena in parabolic category Op

4.1 Parabolic category Op

Fix a parabolic subalgebra p of g containing h ⊕ n+. Denote by Op the full
subcategory of O consisting of all objects the action of U(p) on which is locally
finite, see [RC]. Then Op is the Serre subcategory of O generated by all simple
modules whose highest weights are (dot-)dominant (by which we mean it is the
largest weight in its orbit under the dot action) and integral with respect to
the Levi factor of p.
Similarly to Subsection 3.4, we can start with the integral regular situation.
Let Wp denote the Weyl group of the Levi factor of p which we view as a
parabolic subgroup of W . We denote by wp

0 the longest element in Wp. The
principal block Op

0 is the Serre subcategory of Op
0 generated by Lw, where w

belongs to the set short(Wp
\W ) of shortest coset representatives for cosets in

Wp
\W .

4.2 Op
0 is Auslander-Ringel regular

Theorem 6. The category Op
0 is Auslander-Ringel regular.

Proof. The proof is similar to the proof of Theorem 1, so we only emphasize
the differences. By [BGS], the Koszul dual of Op

0 is the singular integral block
Oλ of O where λ is chosen such that the dot-stabilizer of λ equals Wp′ where
p′ is the w0-conjugate of p. By [So2], the block Oλ is Ringel self-dual, and
by [Ma2], the Ringel duality and the Koszul duality commute. Therefore, the
category of linear complexes of tilting modules in Op

0 is equivalent to ZOλ.
By [Ma1], the tilting coresolution of the dominant projective (=standard)
module in Op

0 is ∆(λ), the dominant standard object in ZOλ. Denoting by
T λ
0 : ZO0 → ZOλ the graded translation functor to the λ-wall, we have

∆(λ) ∼= T λ
0 ∆e〈ℓ(w

p′

0 )〉. This means that the degree i component of ∆(λ) con-

sists of T λ
0 Lu where Lu belongs to the degree i+ ℓ(wp

0) = i+ ℓ(wp′

0 ) component
of ∆e and such that u ∈ long(W/Wp′

) = w0(long(Wp
\W ))−1w0. It follows

that the i-th component in the tilting coresolution contains only T p
x where

x ∈ short(Wp
\W ) is such that a(w0(w

p
0x)

−1w0) ≥ i+ ℓ(wp
0) = i+ a(wp

0).
It remains to check from [CM, Table 2] that

proj. dimT p
x = a(wp

0x)− a(wp
0 ) = a(w0(w

p
0x)

−1w0)− a(wp
0 )

and compare with the condition in the previous paragraph. This proves the
regularity property for the tilting coresolution of the dominant projective.
The regularity property for other projective modules in Op

0 is obtained by
applying projective functors exactly as in Theorem 1.

Let P p denote a projective generator, Ip an injective cogenerator, and T p the
characteristic tilting module in Op

0 . Similarly to Corollary 2 (using that Op
0 is

equivalent to its Ringel dual Op′

0 ), we have:
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Corollary 7.

(i) Let P•(T
p) be a minimal projective resolution of T p in Op

0 . Then
r(P−i(T

p)) ≤ i, for all i ≥ 0.

(ii) Let T•(I
p) be a minimal tilting resolution of the basic injective cogenerator

Ip in Op
0 . Then inj.dim.(T−i(I

p)) ≤ i, for all i ≥ 0.

(iii) Let I•(T
p) be a minimal injective coresolution of T p in Op

0 . Then
l(Ii(T

p)) ≤ i, for all i ≥ 0.

4.3 Op
0 is Auslander regular

Theorem 8. The category Op
0 is Auslander regular.

Proof. Mutatis mutandis the proof of Theorem 3. Again, one could emphasize
the 2a(wp

0) = 2ℓ(wp
0) shift for the projective dimension of injective modules in

Op
0 in [CM, Table 2].

4.4 Singular blocks

Corollary 9. All blocks of Op are both Auslander-Ringel regular and Aus-
lander regular and have the properties described in Corollary 7.

Proof. Mutatis mutandis the proof of Corollary 5.

4.5 sl3-example

For the Lie algebra sl3, we have W = {e, s, t, st, ts, w0 = sts = tst}. Assume
that Wp = {e, s}, then short(Wp

\W ) = {e, t, ts}. The projective dimensions of
the indecomposable tilting and projective modules in Op

0 are given by:

w : e t ts
proj.dim(T p

w) : 0 0 2
w : e t ts

proj.dim(Ipw) : 4 0 0

The minimal (ungraded) tilting coresolutions of the indecomposable projectives
in Op

0 are:
0 → P p

e → T p
e → T p

t → T p
ts → 0,

0 → P p
t → T p

e → 0,

0 → P p
ts → T p

t → 0,

The minimal (ungraded) injective coresolutions of the indecomposable projec-
tives in Op

0 are:

0 → P p
e → Ipt → Ips → Ips → Ipt → Ipe → 0,

0 → P p
t → Ipt → 0,

0 → P p
ts → Ipts → 0,
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5 Auslander-Ringel-Gorenstein strongly standardly stratified

algebras

5.1 Strongly standardly stratified algebras

In this section we return to the general setup of Subsection 2.1.

For i ∈ {1, 2, . . . , n}, we denote by ∆i the maximal quotient of ∆i satisfying
[∆i : Li] = 1. Denote by ∇i the maximal submodule of ∇i satisfying [∇i :
Li] = 1. The modules ∆i are called proper standard and the modules ∇i are
called proper costandard.

Recall that A is said to be standardly stratified provided that the regular module

AA has a filtration with standard subquotients and strongly strandardly strat-
ified (see [Fr]) if, further, each standard module has a filtration with proper
standard subquotients.

If A is a strongly standardly stratified algebra, then, by [AHLU], for each i,
there is a unique indecomposable module Ti, called a tilting module, which
has both a filtration with standard subquotients and a filtration with proper
costandard subquotients, and, additionally, such that [Ti : Li] 6= 0 while [Ti :

Lj ] = 0, for j > i. The module T =
n⊕

i=1

Ti is called the characteristic tilting

module and (the opposite of) its endomorphism algebra is called the Ringel dual
of A. For each M ∈ A-mod, there is a unique minimal bounded from the right
complex T•(M) of tilting modules which is isomorphic to M in the bounded
derived category of A. We will denote by r(M) the maximal non-negative i
such that Ti(M) 6= 0. Note that r(M) = 0 if and only if M has a filtration
with proper costandard subquotients.

5.2 Auslander-Ringel-Gorenstein algebras

Let A be strongly standardly stratified. Then an A-module having a filtration
with standard subquotients has a (finite) coresolution by modules in add(T ).
It is also well-known that T has finite projective dimension (see [Fr, AHLU]).
We will say that A is Auslander-Ringel-Gorenstein provided that there is a
coresolution

0 → A → Q0 → Q1 → · · · → Qk → 0,

such that each Qi ∈ add(T ) and proj.dim(Qi) ≤ i, for all i = 0, 1, . . . , k.

Since the characteristic tilting module is a (generalized) tilting module,
Auslander-Ringel-Gorenstein property agrees with T -regularity in the termi-
nology of Subsection 1.5.
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6 Regularity phenomena in S-subcategories in O

6.1 S-subcategories in O

We again fix a parabolic subalgebra p of g containing h ⊕ n+ and restrict our
attention to the integral part Oint of O.

Let X denote the Serre subcategory of Oint generated by all simple highest
weight modules whose highest weights λ are not anti-dominant with respect
to Wp, that is, w · λ < λ for some w ∈ Wp. Denote by Sp the Serre quotient
category Oint/X , see [FKM, MS1]. From [FKM], we know that blocks of Sp

correspond to strongly standardly stratified algebras.

Let Sp
0 be the principal block of Sp.

6.2 Sp
0 is Auslander-Ringel-Gorenstein

Theorem 10. The category Sp
0 is Auslander-Ringel-Gorenstein.

Proof. By [FKM], the indecomposable projectives in Sp
0 are exactly the images

of Pw, where w belongs to long(Wp
\W ) (the set of longest coset representatives

in Wp
\W ). Furthermore, the indecomposable tilting objects in Sp

0 are exactly
the images of Tw, where w ∈ short(Wp

\W ).

Note that the above objects in O are exactly those indecomposable projective
(resp. tilting) objects which are admissible in the sense of [MPW, Lemma 14].
From [MPW, Lemma 14 and Theorem 15] it follows that the minimal projective
resolution (in O) of any Tw as above contains only Px as above. The Ringel
dual of this property is that a minimal tilting coresolution (in O) of any Px

as above contains only Tw as above. Since the projection functor O0 ։ Sp
0 is

exact and preserves the projective dimension for the involved projective and
tilting modules, see [MPW, Theorem 15], the claim of our theorem follows from
Theorem 1.

6.3 Sp
0 is Auslander-Gorenstein

Theorem 11. The category Sp
0 is Auslander-Gorenstein.

Proof. The indecomposable injectives in Sp
0 are exactly the images of Iw for

w ∈ long(Wp
\W ) and these Iw ∈ O are admissible in the sense of [MPW]. Thus,

the claim follows from Theorem 3 similarly to the proof of Theorem 10.

6.4 Singular blocks

Theorem 12. All blocks of Sp are both Auslander-Ringel-Gorenstein and
Auslander-Gorenstein.

Proof. Mutatis mutandis the proof of Corollary 5
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6.5 sl3-example

For the Lie algebra sl3, we have W = {e, s, t, st, ts, w0 = sts = tst}. Assume
that Wp = {e, s}, then long(Wp

\W ) = {s, st, w0}. The projective dimensions of
the indecomposable tilting and injective modules in Sp

0 are given by:

w : e t ts
proj.dim(Tw) : 0 1 1

w : s st w0

proj.dim(Iw) : 2 2 0

The minimal (ungraded) tilting coresolutions of the indecomposable projectives
in Sp

0 are:
0 → Ps → Te → Tt → 0,

0 → Pst → Te → Tts → 0,

0 → Pw0
→ Te → 0,

The minimal (ungraded) injective coresolutions of the indecomposable projec-
tives in Sp

0 are:
0 → Ps → Iw0

→ Iw0
→ Is → 0,

0 → Pst → Iw0
→ Iw0

→ Ist → 0,

0 → Pw0
→ Iw0

→ 0,

7 Applications to the cohomology of twisting and Serre func-

tors

7.1 Twisting and Serre functors on O

For a simple reflection s, we denote by ⊤s the corresponding twisting functor
on O, see [AS]. For w ∈ W , with a fixed reduced expression w = s1s2 · · · sk, we
denote by ⊤w the composition ⊤s1⊤s2 · · · ⊤sk and note that it does not depend
on the choice of a reduced expression by [KM].
All functors ⊤w are right exact, functorially commute with projective functors,
acyclic on Verma modules and the corresponding derived functors are self-
equivalences of the derived category ofO. Furthermore, we have⊤w0

Px
∼= Tw0x

and ⊤w0
Tx

∼= Iw0x, for all x ∈ W . We refer to [AS, KM] for all details.
The functor L⊤2

w0
is a Serre functor on Db(O0), see [MS2].

7.2 Auslander regularity via Serre functors

Let A be a finite dimensional associative algebra of finite global dimension over
an algebraically closed field k. Then the left derived LN of the Nakayama
functor N = A∗ ⊗A − for A is a Serre functor on Db(A).
Recall that Li, where i = 1, 2, . . . , k, is a complete and irredundant list of
simple A-modules, Pi denotes the indecomposable projective cover of Li and Ii
denotes the indecomposable injective envelope of Li. Let P be a basic projective
generator of A-mod and I a basic injective cogenerator of A-mod.
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Lemma 13. For M ∈ A-mod, j ∈ {1, 2, . . . , k} and i ∈ Z≥0, we have

dimExtiA(M,Pj) = (LiN(M) : Lj).

Proof. Being a Serre functor, LN is a self-equivalence of Db(A). Therefore, we
have

ExtiA(M,Pj) = HomDb(A)(M,Pj [i])
= HomDb(A)(LN(M),LN(Pj [i]))
= HomDb(A)(LN(M), Ij [i]).

The claim of the lemma follows.

The above observation has the following consequence:

Proposition 14. The algebra A is Auslander regular if and only if, for any
simple A-module Lj, we have LiN(Lj) = 0, for all i < proj.dim(Ij).

Proof. By definition, A is Auslander regular if and only if, for any simple A-
module Lj, we have Ext

i(Lj, A) = 0 unless i ≥ proj.dim(Ij). Now the necessary
claim follows from Lemma 13.

7.3 Cohomology of twisting and Serre functors for category O0

Corollary 15. For w ∈ W , we have Li⊤
2
w0

Lw = 0 for all 0 ≤ i < 2a(w0w).

Proof. By Theorem 3, O0 is Auslander regular. By the main results of [Ma3,
Ma4], the projective dimension of Iw equals 2a(w0w). Therefore the claim
follows from Proposition 14.

Corollary 15 admits the following refinement.

Proposition 16. For w ∈ W , we have Li⊤w0
Lw = 0, for all 0 ≤ i < a(w0w).

Proof. The injective resolution I•(Lw0
) of Tw0

= Lw0
is linear and is a domi-

nant standard object in the category of linear complexes of injective modules in
O0, by the Koszul self-duality of O0, see [So1]. Therefore, for x ∈ W , the mod-
ule Ix can only appear as a summand of Ii(Lw0

), for a(w0x
−1) = a(w0x) ≤ i.

This means that

ExtiO(Lw, Tw0
) = 0, for all i < a(w0w).

Note that, for any projective functor θ, all simple subquotients Lx of the module
θLw satisfy a(w0x) ≥ a(w0w). Therefore, for the adjoint θ′ of θ, the previous
paragraph implies that

ExtiO(Lw, θTw0
) = ExtiO(θ

′Lw, Tw0
) = 0, for all i < a(w0w).

To sum up, for any tilting module T , we have

ExtiO(Lw, T ) = 0, for all i < a(w0w).

Applying the equivalence L⊤w0
and noting that it sends tilting modules to

injective, we obtain the claim of the proposition.
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Now we prove a result “in the opposite direction”. Let I be an injective cogen-
erator of O0.

Proposition 17. For w ∈ W , we have Li⊤w0
Lw = 0, for all i > ℓ(w0w).

Proof. We want to prove that HomDb(O)(L⊤w0
Lw, I[i]) = 0, for all i > ℓ(w0w).

Applying the adjoint of the equivalence L⊤w0
, we get an equivalent statement

that HomDb(O)(Lw, T [i]) = 0, for all i > ℓ(w0w), where T is the characteristic
tilting module in O0.
Consider the linear complex T•(Lw) of tilting modules which represents Lw.
By [Ma1], it is a tilting object in the category of linear complexes of tilting
modules. Combining the Ringel and Koszul self-dualities of O0, we obtain that
the absolute value of the minimal non-zero component of T•(Lw) equals the
maximal degree of a non-zero component of Tw0w−1w0

. The latter is equal to
ℓ(w0w). Now the necessary claim follows from [Ha, Chapter III(2), Lemma
2.1].

Proposition 18. For w ∈ W , we have [Li⊤w0
I : Lw] 6= 0 only if i ≤ a(w0w).

Proof. Applying projective functors, the statement reduces to the special case
when I is substituted by Ie = ∇e. Note that [Li⊤w0

∇e : Lw] equals the
dimension of HomDb(O)(L⊤w0

∇e, Iw[i]).
Now, we write ∇e = L⊤w0

Tw0
. Moving (L⊤w0

)2 from the first argument to
the second using adjunction, we arrive to the space HomDb(O)(Tw0

, Pw[i]). Now
the necessary claim follows from the observation that r(Pw) = a(w0w), which
is the Ringel dual of the main results of [Ma3, Ma4].

7.4 sl3-example

In the case of sl3, we have W = {e, s, t, st, ts, w0}. In Figure 7.4, we give an
explicit Z-graded description of composition factors of the tilting resolution

Tw0
→֒ Tst ⊕ Tts → Ts ⊕ Tt → Te

of ∇e and its image after applying L⊤w0
. The original resolution is in magenta

and black with ∇e being the magenta part. The simple subquotients added
during the application of L⊤w0

are blue. The resulting cohomology in negative

positions is boxed . The module Lw is denoted by w. The values of the a-
function are as follows: a(e) = 0, a(s) = a(t) = a(st) = a(ts) = 1, a(w0) = 3.

8 Regularity phenomena with respect to twisted projective and

tilting modules

8.1 Twisted projective modules

Let P be a projective generator of O0. For w ∈ W , the module ⊤wP is a
(generalized) tilting module in O0 because ⊤w is a derived self-equivalence
which is acyclic on modules with Verma flag. A question is, for which w is the
category O0 ⊤wP -regular. Below we show that the answer is non-trivial.

Documenta Mathematica 26 (2021) 1237–1269



Homological Properties of O. VI 1253

w0

st ts

w0 w0 w0 s t w0

st ts st ts st ts e st ts

→֒ w0 ⊕ w0 → t w0 s w0 ⊕ s w0 t w0 → w0 s t w0

st ts ts st st ts e st ts ts ts e st st st ts

w0 w0 s t w0 t s s w0 t t w0 s w0

st ts st ts e st ts e st ts

s t s t

e

Figure 1: L⊤w0
∇e and its cohomology for sl3

8.2 Regularity with respect to twisted projectives

Theorem 19. If w = wp
0 , for some parabolic subalgebra p in g, then O0 is

⊤wP -regular.

Proof. Let w = wp
0 as above. Since twisting functors functorially commute

with projective functors, we only need to show that ∆e has a coresolution by
modules in add(⊤wP ) satisfying the regularity condition.
By construction, twisting functors commute with parabolic induction. For the
category O associated to the Levi subalgebra l of p, the claim of our Theo-
rem coincides with the claim of Theorem 1. The parabolic induction from l

to g is exact and sends the indecomposable projective P l
x (for x ∈ Wp) to the

indecomposable projective Px. It also sends (indecomposable) tiltings to our
twisted projective modules. To see this, write the indecomposable tilting mod-
ule for l corresponding to x ∈ Wp as T l

x
∼= ⊤wP

l
wx and use that the parabolic

induction commutes with ⊤w to conclude that T l
x is sent to ⊤wPwx. Therefore

a tilting coresolution of the dominant projective for l is sent to a coresolution
of the dominant projective for g by our twisted projective modules. The claim
follows.

Corollary 20. If w = wp
0 , for some parabolic subalgebra p in g, then all blocks

of O are ⊤wP -regular.

Proof. Since twisting functors functorially commute with projective functors,
we can use translations to walls to extend Theorem 19 to singular blocks.

Remark 21. The module ∆w admits a (linear) coresolution by tilting mod-
ules, which starts with Tw. Applying the inverse of L⊤w to this coresolution,
we obtain a coresolution of ∆e by modules in add(⊤w−1w0

P ). We note that,
by [AS], the inverse of L⊤w is R(⋆◦⊤w−1 ◦⋆), where ⋆ is the simple preserving
duality, and the claim in the previous sentence follows by using the acyclicity
results in [AS]. Hence, a necessary condition for O0 to be ⊤xw0

P -regular is
that the module (L⊤w)

−1Tw, which starts this coresolution, is projective. In
case the multiplicity of ∆w0

in a standard filtration of Tw is greater than 1, the
module (L⊤w)

−1Tw will have ∆e appearing with multiplicity 1 (as ∆w appears
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in Tw with multiplicity 1) while some standard module will have higher multi-
plicity, by assumption. Therefore, in this case, (L⊤w)

−1Tw is not a projective
module. This shows that the condition [Tw : ∆w0

] = 1 is necessary for O0 to
be ⊤xw0

P -regular. This implies that examples of w ∈ W such that O0 is not
⊤wP -regular exist already in type A3. We will see in Subsection 8.5 below that
⊤wP -regularity can fail already in O0 of type A2.

8.3 Twisted tilting modules

Let T be a characteristic tilting module for O0. For w ∈ W , the module ⊤wT
is a (generalized) tilting module in O0 because ⊤w is a derived self-equivalence
which is acyclic on modules with Verma flag.

This raises an interesting problem, namely, to determine for which w the cate-
gory O0 is ⊤wT -regular. We show below that the answer is non-trivial.

8.4 Regularity with respect to twisted tiltings

Theorem 22. If w = wp
0 , for some parabolic subalgebra p in g, then O0 is

⊤wT -regular.

Proof. As usual, we use that the projective functors commutes with twisting
functors to reduce the claim to finding a desired coresolution for Pe = ∆e.

Let l be the Levi subalgebra of p and take a coresolution of ∆l
e = P l

e by injectives
for l with the regularity property, guaranteed by Theorem 3. Then just like in
the proof of Theorem 19, the parabolic induction produces a coresolution of ∆e

in add(⊤wT ) with the regularity condition. In fact, the wp
0-twists of tiltings

are obtained by the parabolic induction from injective modules over l, which
are the wp

0-twists of tiltings over l. The proof is complete.

Corollary 23. If w = wp
0 , for some parabolic subalgebra p in g, then all blocks

of O are ⊤wT -regular.

Proof. Since twisting functors functorially commute with projective functors,
we can use translations to walls to extend the statement in Theorem 22 to
singular blocks.

We will see in Subsection 8.5 below that ⊤wT -regularity can fail already in O0

of type A2.

8.5 sl3-example

For the Lie algebra sl3, we have W = {e, s, t, st, ts, w0 = sts = tst}.

The left of the two tables below describes the projective dimensions of the
twisted projective modules ⊤xPy . The right table below describes the projec-
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tive dimensions of the twisted tilting modules ⊤xTy.

x\y e s t st ts w0

e 0 0 0 0 0 0
s 1 0 1 0 1 0
t 1 1 0 1 0 0
st 2 1 1 1 1 0
ts 2 1 1 1 1 0
w0 3 1 1 1 1 0

x\y e s t st ts w0

e 0 1 1 1 1 3
s 0 2 1 2 1 4
t 0 1 2 1 2 4
st 0 2 2 2 2 5
ts 0 2 2 2 2 5
w0 0 2 2 2 2 6

Here are the graded characters of the modules ⊤sPx (with the characters of
the tilting cores displayed in magenta):

deg\x e s t st ts w0

−1 | | s | | st | | w0

0 | s | st e ts | st | s w0 t | w0 s | st ts

1 | st ts | s w0 t | s w0 | st ts e st ts | st e ts st | w0 s t w0

2 | w0 | st ts | st ts | w0 s w0 t | w0 t w0 s | st ts e st ts

3 | | w0 | w0 | ts st | st ts | w0 s t w0

4 | | | | w0 | w0 | st ts

5 | | | | | | w0

Here are the graded characters of the modules ⊤tsPx (with the characters of
the tilting cores displayed in magenta):

deg\x e s t st ts w0

−2 | | | | | | w0

−1 | | ts | | w0 t | w0 | st ts

0 | ts | t w0 | w0 | ts e st ts | st ts | w0 s t w0

1 | w0 | ts st | ts | w0 s w0 t | w0 t w0 | st ts e st ts

2 | | w0 | w0 | st ts | st ts | w0 s t w0

3 | | | | w0 | w0 | st ts

4 | | | | | | w0

Here are the graded characters of the modules ⊤sTx (with the characters of
the tilting cores displayed in magenta):

deg\x w0 st ts s t e

−4 | | | | | | w0

−3 | | | | w0 | w0 | st ts

−2 | | w0 | w0 | st ts | st ts | w0 s t w0

−1 | w0 | st ts | ts | w0 s w0 t | w0 t w0 | st ts e st ts

0 | ts | w0 t | w0 | st ts ts e | st ts | w0 s t w0

1 | | ts | | w0 t | w0 | st ts

2 | | | | | | w0
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Here are the graded characters of the modules ⊤tsTx (with the characters of
the tilting cores displayed in magenta):

deg\x w0 st ts s t e

−5 | | | | | | w0

−4 | | | | w0 | w0 | st ts

−3 | | w0 | w0 | st ts | st st | w0 s t w0

−2 | w0 | st ts | st ts | w0 s w0 t | w0 t w0 s | st ts e st ts

−1 | st ts | w0 t s | s w0 | st ts ts e st | st e ts st | w0 s t w0

0 | s | ts st e | st | w0 t s | w0 s | st ts

1 | | s | | st | | w0

The cases x = e and w0 are already discussed in the previous sections. To
prove regularity, we only need to consider the coresolution of Pe. Up to the
symmetry of the Dynkin diagram, it is enough to consider the four cases ⊤sP ,
⊤tsP , ⊤sT and ⊤tsT . The first two are given as follows:

0 → Pe → ⊤sPs → ⊤sPe → 0

0 → Pe → ⊤tsPst → ⊤tsPs ⊕⊤tsPt → ⊤tsPe → 0

Here we see that the first coresolution is regular, while in the second one, ⊤tsPst

is not projective and hence we do not have regularity with respect to ⊤tsP .
The case of ⊤sT is regular and given as follows:

0 → Pe → ⊤sTe → ⊤sTt ⊕⊤sTts ⊕⊤sTe → ⊤sTts ⊕⊤sTt ⊕⊤sTs → ⊤sTts ⊕⊤sTst → ⊤sTw0
→ 0

Finally, we claim that we do not have the regularity in the case of ⊤tsT . Indeed,
in order not to fail already in position zero, we must start with 0 → Pe →
⊤tsTe → Coker. Further, in order not to fail on the next step, we again must
embed Coker into ⊤tsTe ⊕⊤tsTe. The new cokernel will necessarily have both
Ls and Lt in the socle. However, Lt does not appear in the socle of ⊤tsT and
hence the coresolution cannot continue. This implies that one of the first two
steps requires correction by adding non-projective summands of ⊤tsT , which
implies the failure of the regularity.

9 Regularity phenomena with respect to shuffled projective and

tilting modules

9.1 Shuffled projective modules

For w ∈ W , we denote by Cw the corresponding shuffling functor on O0, see
[MS1, Section 5]. Let P be a projective generator of O0. For w ∈ W , the
module CwP is a (generalized) tilting module in O0 because Cw is a derived
self-equivalence.

Thus, a problem is to determine for which w the category O0 is CwP -regular.
This problem looks much harder than the one involving the twisting functors,
due to the fact that shuffling functors do not commute with projective functors.
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9.2 Regularity with respect to shuffled projectives

Proposition 24. If s is a simple reflection, then O0 is CsP -regular.

Proof. The functor Cs is defined as the cokernel of the adjunction morphism
adjs : θe → θs. If x ∈ W is such that xs < x, then CsPx

∼= Px. If x ∈ W is such
that xs > x, then CsPx has projective dimension 1 and a minimal projective
resolution of the following form:

0 → Px → θsPx → CsPx → 0, (1)

where any summand Py of θsPx satisfies ys < y and hence CsPy = Py.
The latter implies that (1) can be viewed as a coresolution of Px by modules
in add(CsP ) and it is manifestly regular. The claim follows.

Proposition 24 and Theorem 19 motivate the following:

Conjecture 25. If wp
0 is the longest element in some parabolic subgroup of

W , then O0 is Cw
p

0

P -regular.

Similarly to Subsection 8.5 one can show thatO0 is not CstP -regular for g = sl3.

9.3 Shuffled tilting modules

Let T be a characteristic tilting module for O0. For w ∈ W , the module
CwT is a (generalized) tilting module in O0 because Cw induces a derived self-
equivalence which is acyclic on tilting modules (the latter follows by combining
[MS1, Proposition 5.3] and [MS1, Theorem 5.16]).
It seems to be an interesting problem to determine, for which w, the categoryO0

is CwT -regular. Again, this problem looks much harder than the one involving
the twisting functors due to the fact that shuffling functors do not commute
with projective functors.

9.4 Regularity with respect to shuffled tiltings

Proposition 26. If s is a simple reflection, then O0 is CsT -regular.

Proof. This is very similar to the proof of Proposition 24. If x ∈ W is such
that xs > x, then CsTx

∼= Tx. If x ∈ W is such that xs < x, then CsTx has a
tilting resolution of the following form:

0 → Tx → θsTx → CsTx → 0, (2)

where any summand Ty of θsTx satisfies ys > y and hence CsTy = Ty. Also,
since θs is exact, the projective dimension of θsTx does not exceed that of Tx.
Consequently, the projective dimension of CsTx is bounded by the projective
dimension of Tx plus 1.
We can now take a minimal tilting coresolution of P , which we know has
the regularity property, and coresolve each summand Tx, for xs < x, in this
resolution using (2). The outcome is a regular coresolution of P by modules in
add(CsT ). This completes the proof.

Documenta Mathematica 26 (2021) 1237–1269



1258 H. Ko, V. Mazorchuk, R. Mrden

Proposition 26 motivates the following:

Conjecture 27. If wp
0 is the longest element in some parabolic subgroup of

W , then O0 is Cw
p

0

T -regular.

Similarly to Subsection 8.5 one can show thatO0 is not CstT -regular for g = sl3.

9.5 sl3-example

Let g = sl3. Denote W = {e, s, t, st, ts, w0 = sts = tst} as before.
The left of the two tables below describes the projective dimensions of the
twisted projective modules CxPy. The right table below describes the projec-
tive dimensions of the twisted tilting modules CxTy.

x\y e s t st ts w0

e 0 0 0 0 0 0
s 1 0 1 1 0 0
t 1 1 0 0 1 0
st 2 1 1 1 1 0
ts 2 1 1 1 1 0
w0 3 1 1 1 1 0

x\y e s t st ts w0

e 0 1 1 1 1 3
s 0 2 1 1 2 4
t 0 1 2 2 1 4
st 0 2 2 2 2 5
ts 0 2 2 2 2 5
w0 0 2 2 2 2 6

In the examples below, we note the following difference with the case of twisting
functors: we do not know whether the notion of a “tilting core” makes sense
for shuffled projective and tilting modules. Here are the graded characters of
the modules CsPx:

deg\x e s t st ts w0

−1 | | s | | | ts | w0

0 | s | st e ts | ts | w0 s | t w0 s | st ts

1 | st ts | s w0 t | s w0 | ts e st ts | ts st e ts st | w0 s t w0

2 | w0 | st ts | ts st | w0 s w0 t | w0 t w0 s | st ts e st ts

3 | | w0 | w0 | ts st | st ts | w0 s t w0

4 | | | | w0 | w0 | st ts

5 | | | | | | w0

Here are the graded characters of the modules CstPx:

deg\x e s t st ts w0

−2 | | | | | | w0

−1 | | st | | w0 | w0 t | st ts

0 | st | t w0 | w0 | st ts | st e ts st | w0 s t w0

1 | w0 | st ts | st | w0 t w0 | w0 s w0 t | st ts e st ts

2 | | w0 | w0 | st ts | st ts | w0 s t w0

3 | | | | w0 | w0 | st ts

4 | | | | | | w0

Here are the graded characters of the modules CsTx:
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deg\x w0 st ts s t e

−4 | | | | | | w0

−3 | | | | w0 | w0 | st ts

−2 | | w0 | w0 | st ts | st ts | w0 s t w0

−1 | w0 | st | ts st | w0 s w0 t | w0 t w0 | st ts e st st

0 | ts | w0 | w0 t | st ts st e | st ts | w0 s t w0

1 | | | st | w0 t | w0 | st ts

2 | | | | | | w0

Here are the graded characters of the modules CstTx:

deg\x w0 st ts s t e

−5 | | | | | | w0

−4 | | | | w0 | w0 | st ts

−3 | | w0 | w0 | st ts | st st | w0 s t w0

−2 | w0 | ts st | st ts | w0 s w0 t | w0 t w0 s | st ts e st ts

−1 | st ts | w0 s | s w0 t | st ts ts e st | ts e ts st | w0 s t w0

0 | s | st | st e ts | w0 t s | w0 s | st ts

1 | | | s | ts | | w0

The non-trivial (ungraded) coresolutions of projectives using CsP are:

0 → Pe → CsPs → CsPe → 0,

0 → Pt → CsPts → CsPt → 0,

0 → Pst → CsPs ⊕ CsPs → CsPst → 0.

These all are, clearly, regular.

Next we claim that Pe does not have a regular coresolution using CstP . Indeed,
to have a chance at the zero step, we must embed Pe into CstPw0

. Let Coker
be the cokernel. In order to embed Coker, in the next step we need a copy
of CstPst or CstPw0

and another copy of CstPts or CstPw0
. Either way, the

new cokernel will have a copy of Lt in the socle, while it is easy to see that no
module in add(CstP ) has Lt in the socle, a contradiction.

The non-trivial (ungraded) coresolutions of projectives using CsT are:

0 → Pe → CsTe → CsTt ⊕ CsTe ⊕ CsTst → CsTs ⊕ CsTst ⊕ CsTt → CsTts ⊕ CsTst → CsTw0
→ 0,

0 → Ps → CsTe → CsTt → 0,

0 → Pt → CsTe → CsTe ⊕ CsTst → CsTs → 0,

0 → Pst → CsTe → CsTt → CsTts → 0

0 → Pts → CsTe → CsTst → 0.

These all are, clearly, regular.
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10 Projective dimension of indecomposable twisted and shuffled

projectives and tiltings

10.1 Projective dimension of twisted projectives

The results of Subsection 8.2 motivate the problem to determine the projective
dimension of twisted projective modules in O. Since twisting functors commute
with projective functors, twisted projective modules are exactly the modules
obtained by applying projective functors to Verma modules:

⊤xPy
∼= ⊤xθy∆e

∼= θy⊤x∆e
∼= θy∆x. (3)

This allows us to reformulate the problem as follows:

Problem 28. For x, y ∈ W , determine the projective dimension of the module
θx∆y.

Here are some basic observations about this problem:

• If y = e, the module θx∆e is projective and hence the answer is 0.

• If y = w0, the module θx∆w0
is a tilting module and hence the answer is

a(w0x), see [Ma3, Ma4].

• If x = e, the answer is ℓ(y), see [Ma3].

• If x = w0, we have θw0
∆y = Pw0

and the answer is 0.

• For a fixed y, the answer is weakly monotone in x, with respect to the
right Kazhdan-Lusztig order, in particular, the answer is constant on the
right Kazhdan-Lusztig cell of x.

• For a simple reflection s, we have θx∆y = θx∆ys provided that ℓ(sx) <
ℓ(x), in particular, it is enough to consider the situation where x is a
Duflo involution and y is a shortest (or longest) element in a coset from
W/W ′, where W ′ is the parabolic subgroup of W generated by all simple
reflections in the left descent set of x.

• If x = wp
0 , for some parabolic p, then the projective dimension of θwp

0

∆y

coincides with the projective dimension of the singular Verma module
obtained by translating ∆y to the wall corresponding to wp

0 . This can be
computed in therms of a certain function dλ, see [CM, Table 2] (see also
[CM, Formula (1.2)] and [KMM, Remark 6.9]).

The last observation suggest that Problem 28 might be not easy. Also, note
that, by Koszul duality, the problem to determine the projective dimension of
a singular Verma module is equivalent to the problem to determine the graded
length of a parabolic Verma module. The latter is certainly “combinatorial” in
the sense that the answer can be formulated purely in terms of Kazhdan-Lusztig
combinatorics.
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Let H denote the Hecke algebra of W (over A = Z[v, v−1] and in the normaliza-
tion of [So3]) with standard basis {Hw : w ∈ W} and Kazhdan-Lusztig basis
{Hw : w ∈ W}. Consider the structure constants hz

x,y ∈ A with respect to the
KL-basis, that is

HxHy =
∑

z∈W

hz
x,yHz .

In [KMM, Subsection 6.3], for x, y ∈ W , we defined the function b : W ×W →
Z≥0 ⊔ {−∞} as follows:

b(x, y) := max{deg(hy

z,x−1) : z ∈ W}.

(By our convention the degree of the zero polynomial is −∞.) The value b(x, y)
is, if not −∞, equal to the maximal degree of a non-zero graded component
of θxLy, and also to the maximal non-zero position in the minimal complex of
tilting modules representing θy−1w0

Lw0x−1 .
Here is an upper bound for the projective dimension of θx∆y expressed in terms
of the b-function.

Proposition 29. For all x, y ∈ W , we have:

i. proj.dim θx∆y ≤ max{b(w0a
−1w0, x

−1w0) : a ≤ y}.

ii. If the maximum in (i) coincides with b(w0y
−1w0, x

−1w0), then the latter
value is equal to proj.dim θx∆y.

Proof. For x, y, z ∈ W and k ∈ Z≥0, by adjunction, we have

ExtkO(θx∆y, Lz) ∼= ExtkO(∆y, θx−1Lz).

By [Ma4], the module θx−1Lz can be represented by a linear complex of tilting
module. Moreover, the multiplicity of Ta〈k〉[−k] in this complex coincides with
the composition multiplicity of Lw0a−1w0

〈k〉 in θz−1w0
Lw0x.

A costandard filtration of Ta〈k〉[−k] can contain ∇y only when a ≤ y, and
hence only such summand Ta〈k〉[−k] in the tilting complex can, potentially,
give rise to a non-zero element in ExtkO(∆y, θx−1Lz). Here we use the fact that
standard and costandard modules are homologically orthogonal and hence de-
rived homomorphisms can be constructed already on the level of the homotopy
category. This implies claim (i).
To prove claim (ii), assume

k := b(w0y
−1w0, x

−1w0) = max{b(w0a
−1w0, x

−1w0) : a ≤ y}.

The canonical map ∆y → Ty gives rise to a homomorphism of ∆y〈k〉 to the
k-th homological position of the linear complex of tilting modules representing
θx−1Lz. Because of the maximality assumption on k, there are no homomor-
phisms from ∆y to the k + 1-st homological position. This means that the
map from the previous sentence is a homomorphism of complexes. It is not
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homotopic to zero since since the complex representing θx−1Lz is linear and
Ty〈k〉[−k] is in a diagonal position in this complex. The corresponding level
at the position k − 1 does not contain any socles of any costandard modules
since all indecomposable tilting summands there are shifted by one in the pos-
itive direction of the grading. This means that the map we constructed gives
a non-zero extension. Hence claim (ii) now follows from claim (i).

Corollary 30. For any parabolic p, in case x ≤R wp
0w0, we have

proj.dim θx∆w
p

0

= ℓ(wp
0).

Proof. If x ≤R wp
0w0, then [KMM, Proposition 6.8] implies

b(w0w
p
0w0, x

−1w0) = ℓ(wp
0). For any a ≤ wp

0 , we also have

b(w0aw0, x
−1w0) ≤ ℓ(a) ≤ ℓ(wp

0) = b(w0w
p
0w0, x

−1w0),

also using [KMM, Proposition 6.8]. Hence the claim follows from Proposi-
tion 29(ii).

10.2 Projective dimension of twisted tiltings

The results of Subsection 8.4 motivate the problem to determine the projective
dimension of twisted tilting modules in O. By

⊤xTw0y
∼= ⊤xθyTw0

∼= ⊤xθy∇w0

∼= θy⊤x∇w0

∼= θy∇xw0
, (4)

we reformulate the problem as follows:

Problem 31. For x, y ∈ W , determine the projective dimension of the module
θx∇y.

Here are some basic observations about this problem:

• If y = w0, the module θx∇w0
is tilting and hence the answer is a(w0x),

see [Ma3, Ma4].

• If y = e, the module θx∇e is an indecomposable injective module and
hence the answer is 2a(w0x), see [Ma3, Ma4].

• If x = e, the answer is 2ℓ(w0)− ℓ(y), see [Ma3].

• If x = w0, we have θw0
∇y = Pw0

and the answer is 0.

• For a fixed y, the answer is weakly monotone in x, with respect to the
right Kazhdan-Lusztig order, in particular, the answer is constant on the
right Kazhdan-Lusztig cell of x.

• For a simple reflection s, we have θx∇y = θx∇ys provided that ℓ(sx) <
ℓ(x), in particular, it is enough to consider the situation where x is a
Duflo involution and y is a shortest (or longest) element in a coset from
W/W ′, where W ′ is the parabolic subgroup of W generated by all simple
reflections in the left descent set of x.
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• If x = wp
0 , for some parabolic p, then the projective dimension of θwp

0

∇y

coincides with the projective dimension of the singular dual Verma mod-
ule obtained by translating ∇y to the wall corresponding to wp

0 . This can
be computed in therms of a certain function dλ, see [CM, Table 2] (see
also [CM, Formula (1.2)] and [KMM, Remark 6.9]).

Let us now observe that ∇y
∼= ⊤w0

∆w0y and that θx∇y
∼= ⊤w0

θx∆w0y since
twisting and projective functors commute. We conjecture the following con-
nection between Problems 28 and 31.

Conjecture 32. For x, y ∈ W , we have proj.dim θx∇y = a(w0x) +
proj.dim θx∆w0y.

Below we present some evidence for Conjecture 32.

Proposition 33. For x, y ∈ W , we have proj.dim θx∇y ≤ a(w0x) +
proj.dim θx∆w0y.

Proof. Assume that proj.dim θx∆w0y = k and let P• be a minimal projective
resolution of θx∆w0y. Applying ⊤w0

to P•, we get a minimal tilting resolution
of θx∇y (of length k). To obtain a projective resolution of θx∇y, we need to
projectively resolve each indecomposable tilting module Tu appearing in ⊤w0

P•

and glue all these resolutions together. In particular, proj.dim θx∇y is bounded
by k plus the maximal value of proj.dimTu, for Tu appearing in ⊤w0

P•.
Note that any indecomposable projective Pv appearing in P• satisfies v ≥L x,
because it is a summand of θxPw, for some w. Therefore u = w0v satisfies
u ≤L w0x. In particular, we have a(u) ≤ a(w0x). By [Ma3, Ma4], the projective
dimension of Tu equals a(u). The claim of the proposition follows.

Corollary 34. For x, y ∈ W , let proj.dim θx∆w0y = k. Assume that

there exists v ∈ W such that v ∼L x and ExtkO(θx∆w0y, Lv) 6= 0. Then
proj.dim θx∇y = a(w0x) + proj.dim θx∆w0y.

Proof. Let us look closely at the proof of Proposition 33. From [KMM, Sec-
tion 6], it follows that there exists w ∈ W such that Tw0v appears in position
a(w0x) of a minimal tilting complex T• representing Lw and, moreover, this
position a(w0x) is a maximal non-zero position in T•.
The module Tw0v appears as a summand in ⊤w0

P−k and in T
a(w0x). Similarly

to the proof of [MO2, Theorem 1], the identity map on Tw0v induces a non-
zero map from ⊤w0

P• to T•[a(w0x) + k] in the homotopy category and hence
gives rise to a non-zero extension fro θx∇y to Lw of degree a(w0x) + k, by
construction. Therefore proj.dim θx∇y ≥ a(w0x) + proj.dim θx∆w0y and the
claim of the corollary follows from Proposition 33.

We note that the condition “there exists v ∈ W such that v ∼L x and
ExtkO(θx∆w0y, Lv) 6= 0” in Corollary 34 is very similar to [KMM, Conjec-
ture 1.3] proved in [KMM, Theorem A]. We suspect that this condition is
always satisfied.
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10.3 Projective dimension of shuffled projectives

The results of Subsection 9.2 motivate the problem to determine the projective
dimension of shuffled projective modules in O.

Problem 35. For x, y ∈ W , determine the projective dimension of the module
CxPy.

This problems looks much harder than the one for the twisted projective mod-
ules, mostly because twisting functors do not commute with projective functors,
in general.
Here are some basic observations about this problem:

• If x = e, the module CePy is projective and hence the answer is 0.

• If x = w0, the module Cw0
Py is the tilting module Tyw0

(this follows from
[MS2, Proposition 2.2, Proposition 4.4] by a character argument). Hence
the answer is a(yw0) by [Ma3, Ma4].

• If y = e, we have CxPe
∼= Cx∆e

∼= ∆x and the answer is ℓ(x), see
[MS1, Ma3].

• If y = w0, we have CxPw0
= Pw0

and the answer is 0.

• The projective dimension of CxPy is at most ℓ(x), since each Cs, where
s is a simple reflection, has derived length 1.

• For x = s, a simple reflection, we have CsPy
∼= Py if ys < y, in which

case the answer is 0. In case ys > y, the module CsPy is not projective
and the answer is 1, see the proof of Proposition 24.

In the spirit of Subsection 7.3, we can reformulate Problem 35 in terms of
the cohomology of certain functors. For w ∈ W , we denote by Kw the right
adjoint of Cw, called the coshuffling functor, see [MS1, Section 5]. Note that,
for a reduced expression w = rs . . . t, we have Cw = Ct . . .CsCr and Kw =
KrKs . . .Kt. Also, we have Kw = ⋆ ◦ Cw ◦ ⋆. We denote by L the direct sum
of all simple modules in O0.

Proposition 36. For x, y ∈ W , the projective dimension of CxPy coincides
with the maximal k ≥ 0 such that [LkCx L : Ly] 6= 0.

Proof. The projective dimension of a module coincides with the maximal de-
gree of a non-vanishing extension to a simple module. Since LCx is a derived
equivalence with inverse RKx by [MS1, Theorem 5.7], for i ≥ 0, we have

dimExtiO(CxPy , L) = dimHomDb(O)(CxPy , L[i])
= dimHomDb(O)(LCxPy, L[i])
= dimHomDb(O)(Py ,RKxL[i])
= [RiKx L : Ly]
= [LiCx L

⋆ : L⋆
y]

= [LiCx L : Ly]

and the claim follows.

Documenta Mathematica 26 (2021) 1237–1269



Homological Properties of O. VI 1265

10.4 Projective dimension of shuffled tiltings

The results of Subsection 9.4 motivate the problem to determine the projective
dimension of shuffled projective modules in O.

Problem 37. For x, y ∈ W , determine the projective dimension of the module
CxTy.

This problems looks much harder than the one for the twisted tilting modules,
mostly because twisting functors do not commute with projective functors, in
general.

Here are some basic observations about this problem:

• If x = e, the module CeTy is tilting and hence the answer is a(y), see
[Ma3, Ma4].

• If x = w0, the module Cw0
Ty is the injective module Iyw0

. In fact, we
have

Cw0
Ty

∼= Cw0
⊤w0

Pw0y
∼= ⊤w0

Cw0
Pw0y

∼= ⊤w0
Tw0yw0

∼= Iyw0
.

Hence the answer is 2a(w0yw0) by [Ma3, Ma4].

• If y = e, we have CxTe
∼= Cx⊤w0

Pw0

∼= ⊤w0
CxPw0

∼= ⊤w0
Pw0

∼= Pw0
and

the answer is 0.

• If y = w0, we have CxTw0

∼= Cx∇w0

∼= ∇w0x and the answer is ℓ(w0) +
ℓ(x), see [Ma3].

• The projective dimension of CxTy is at most ℓ(x) + a(y), since the pro-
jective dimension of Ty is a(y) by [Ma3, Ma4] and each Cs, where s is a
simple reflection, has derived length 1.

• For x = s, a simple reflection, we have CsTy
∼= Ty if ys > y, in which

case the answer is a(y) by [Ma3, Ma4]. In case ys < y, the module CsPy

is no longer tilting and the answer is a(y)+1 because the minimal tilting
resolution of CsPy has Ty in position −1.

In the spirit of Subsection 10.2, we make the following conjecture:

Conjecture 38. For x, y ∈ W , we have proj.dimCxTy = a(y) +
proj.dimCxPw0y.

Below we present some evidence for Conjecture 38.

Proposition 39. For x, y ∈ W , we have proj.dimCxTy ≤ a(y) +
proj.dimCxPw0y.
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Proof. Assume that proj.dimCxPw0y = k and let P• be a minimal projective
resolution of CxPw0y. Applying ⊤w0

to P•, and using that twisting and shuf-
fling functors commute (e.g. because twisting functors commute with projective
functors and natural transformations between them and shuffling functors are
defined in terms of (co)kernels of such natural transformations), we get a min-
imal tilting resolution of CxTy (of length k). To obtain a projective resolution
of CxTy, we need to projectively resolve each indecomposable tilting module
Tu appearing in ⊤w0

P• and glue all these resolutions together. In particular,
proj.dimCxTy is bounded by k plus the maximal value of proj.dimTu, for Tu

appearing in ⊤w0
P•.

Note that a projective resolution of CsPw, for any w ∈ W and s ∈ S, has the
following form: 0 → Pw → θxPw → 0 and a projective resolution of CxPw0y is
obtained by gluing such resolutions inductively along a reduced decomposition
of x. Thus, an indecomposable projective Pv appearing in P• is a summand
of θPw0y for some projective functor θ and satisfies v ≥R w0y. Therefore,
u = w0v satisfies u ≤R y. In particular, we have a(u) ≤ a(y). By [Ma3,
Ma4], the projective dimension of Tu equals a(u). The claim of the proposition
follows.

Corollary 40. For x, y ∈ W , let proj.dimCxPw0y = k. Assume that

there exists v ∈ W such that v ∼R w0y and ExtkO(CxPw0y, Lv) 6= 0. Then
proj.dimCxTy = a(y) + proj.dimCxPw0y.

Proof. Follows from Proposition 39 by a line of arguments analogous to the
ones in the proof of Corollary 34.

Again, we suspect that the above assumption “there exists v ∈ W such that
v ∼R w0y and ExtkO(CxPw0y, Lv) 6= 0” in Corollary 40 is always satisfied.
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