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1 Introduction

Let K be a finite extension of Qp with absolute Galois group ΓK = Gal(K/K)
and let Cp be the completion of an algebraic closure of K. We denote by

X = Pd
K \

⋃

H Kd+1
P(H)

(the complement of all K-rational hyperplanes in projective space Pd
K) Drin-

feld’s upper half space [D] of dimension d ≥ 1 over K. This is a rigid analytic
variety over K which is equipped with a natural action of G = GLd+1(K).
In [CDN] Colmez, Dospinescu and Niziol determined the pro-étale cohomol-
ogy of XCp

as a special case considering more generally Stein spaces X which
have an underlying structure of a semistable weak formal scheme over the ring
of integers OK . It turns out that these cohomology groups are strictly exact
extensions

0→ Ωs−1(X )/Ds−1(X )⊗̂KCp → Hs(XCp
,Qp(s))→ vGP(d−s+1,1,...,1)

(Qp)
′ → 0

(1)
of G×ΓK-modules. Here Ωs−1 is the sheaf of differential forms of degree s−1 on
Pd
K , Ds−1 = ker(ds−1) where ds−1 : Ωs−1 → Ωs is the differential morphism and

vGP(d−s+1,1,...,1)
(Qp)

′ is the (strong) topological dual of the smooth generalized
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Steinberg representation attached to the decomposition (d− s+ 1, 1, . . . , 1) of
d+ 1. From the above extensions one tells that these invariants are finer than
the de Rham cohomology of X determined by Schneider and Stuhler [SS]. The
latter objects are essentially (replace Qp by K) given by the representations
on the RHS of the above sequences. For the proof of their result, Colmez,
Dospinescu and Niziol use syntomic and Hyodo-Kato cohomology, comparison
isomorphisms (Fontaine-Messing period morphisms) and moreover as already
mentioned above a (p-adic) semi-stable weak formal model of X over OK . In
the meantime Colmez and Niziol [CN2] have generalized their results to a large
extent to arbitrary smooth rigid analytic (dagger) varieties.
Nevertheless, our goal in this paper is to give an alternative approach for the
determination of the (p-adic) pro-étale cohomology groups of XCp

. The strat-
egy is based on the machinery developed in [O] for describing global sections
of equivariant vector bundles on X . The advantage is that it reduces the com-
putation of the pro-étale cohomology to simpler geometric objects, as open or
punctured discs. For the latter aspect we follow the idea of Le Bras [LB] who
sketched a general strategy for Stein spaces and carried this out for open and
essentially for punctured discs.1 Moreover, we have to consider as a technical
ingredient local cohomology groups H∗

Pj
K
(ǫ)
(Pd

K ,Ω†,s−1/D†,s−1) with support

in certain tubes Pj
K(ǫ) of projective subspace Pj

K and with coefficients in the
dagger sheaf attached to Ωs−1/Ds−1.

Another feature of our approach is that we are able to make more precise the
structure of the G-representation in the spirit of [O, OS]. For any integer j ≥ 0,
let P(j+1,d−j) ⊂ G be the standard parabolic subgroup of G attached to the
decomposition (j + 1, d− j) of d+ 1 and L(j+1,d−j) its Levi factor. Our main
theorem is:

Theorem: i) For any integer s ≥ 0, there is an extension2

0→ H0(X ,Ω†,s−1/D†,s−1)⊗̂KCp → Hs(XCp
,Qp(s))→ vGP(d−s+1,1,...,1)

(Qp)
′→ 0

of G× ΓK-modules.
ii) For any integer s = 1, . . . , d, there is a descending filtration (Zj)j=0,...,d on
Z0 = H0(X ,Ω†,s−1/D†,s−1) by closed subspaces together with isomorphisms of
locally analytic G-representations

(Zj/Zj+1)′ ∼= FG
P(j+1,d−j)

(Hd−j

Pj
K

(Pd
K ,Ωs−1/Ds−1), Std−j), j = 0, . . . , d− 1

where Hd−j

Pj
K

(Pd
K ,Ωs−1/Ds−1) is the algebraic local Zariski cohomology and

Std−j is the Steinberg representation of GLd−j(K) considered as representa-
tion of L(j+1,d−j).

1This strategy has been also used recently by Guido Bosco [Bo] in the case of Drinfeld’s
upper half space.

2If the proof of Proposition 3.1 allows us to show that the extensions mentioned there are
strictly exact, then it follows that the extensions here are strictly exact, as well.

Documenta Mathematica 26 (2021) 1395–1421
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(Here we refer to [OS] for the definition of the functors FG
P(j+1,d−j)

).

The content of this paper is organized as follows. The second part deals with
the study of the pro-étale local cohomology H∗

Pj
Cp

(ǫ)
(Pd
Cp
,Qp) with support in

the rigid analytic tubes Pj
Cp
(ǫ). For doing so, we have to analyze in the first

part the analytic local cohomology groups H∗
Pj
K
(ǫ)
(Pd

K ,F) where F is one of

the sheaves D†,s−1,Ω†,s−1/D†,s−1 from above. As for the latter objects, we
cannot apply the same methods of [O] directly, e.g. the C̆ech complex, since
the sheaves are not coherent. We circumvent this problem by proving a van-
ishing result for the higher cohomology groups of F by using the machinery
of van der Put [vP] for overconvergent sheaves. The local pro-étale cohomol-
ogy groups H∗

Pj
Cp

(ǫ)
(Pd
Cp
,Qp) are needed in order to evaluate the spectral se-

quence attached to some acyclic complex on the closed complement of XCp
in

Pd
Cp

in the final section. This strategy was already used in [O] for equivari-
ant vector bundles. It works for the pro-étale cohomology, as well, since we
can pull back this acyclic complex to the pro-étale site of Pd

Cp
. Finally we

show that H0(X ,Ω†,s−1/D†,s−1) = Ω†,s−1(X )/D†,s−1(X ) for all s ≥ 1. This
result is needed for showing the compatibility of our result with formula (1)
as our approach gives rather rise to the space of global sections of the sheaves
Ω†,s−1/D†,s−1.

Notation

We denote by p a prime, by K ⊃ Qp a finite extension of the field of p-adic
integers Qp, by OK its ring of integers and by π a uniformizer of K. Let
| | : K → R be the normalized norm, i.e., |π| = #(OK/(π))−1. We denote by
Cp the completion of an algebraic closure K of K and extend the norm | | on
it. For a locally convex K-vector space V , we denote by V ′ its strong dual,
i.e., the K-vector space of continuous linear forms equipped with the strong
topology of bounded convergence.

We denote for a scheme X (or rigid analytic variety) over K by Xrig (resp.
Xad) the rigid analytic variety attached (resp. adic space) to X . If Y ⊂ Pd

K is
a closed algebraicK-subvariety and F is a sheaf on Pd

K we write H∗Y (P
d
K ,F) for

the corresponding local cohomology. If Y is a rigid analytic subvariety (resp.
pseudo-adic subspace) of (Pd

K)rig (resp. (Pd
K)ad) we also write H∗Y (P

d
K ,F)

instead of H∗Y ((P
d
K)rig,Frig) (resp. H∗Y ((P

d
K)ad,Fad)) to simplify matters.

For a scheme X (or an adic space etc.) over Cp, we denote by Hi(X,Qp) the
p-adic pro-étale cohomology of it, cf. [S, BS].

We use bold lettersG,P, . . . to denote algebraic group schemes overK, whereas
we use normal letters G,P, . . . for their K-valued points of p-adic groups. We
use Gothic letters g, p, . . . for their Lie algebras. The corresponding enveloping
algebras are denoted as usual by U(g), U(p), . . . . Finally, we set G := GLd+1.
Denote by B ⊂ G the Borel subgroup of lower triangular matrices. Let T ⊂ G

be the diagonal torus. Let ∆ be the set of simple roots with respect to T ⊂ B.
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For a decomposition (i1, . . . , ir) of d + 1, let P(i1,...,ir) be the corresponding
standard-parabolic subgroup of G and L(i1,...,ir) its Levi component. We con-

sider the algebraic action m : G× Pd
K → Pd

K of G on Pd
K given by

g · [q0 : · · · : qd] := m(g, [q0 : · · · : qd]) := [q0 : · · · : qd]g
−1.
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2 Some preparations

We start by recalling some further notations used in [O]. Let L be one of the
fields K or Cp. Let ǫ ∈

⋃

n∈N
n
√

|K×| = |K×| be a n-th root of some absolute

value in |K×|. For a closed L-subvariety Y ⊂ Pd
L, the open3 ǫ-neighborhood

of Y is defined by

Y (ǫ) =
{

z ∈ (Pd
L)

rig | for any unimodular representative z̃ of z, we have

|fj(z̃)| ≤ ǫ for all 1 ≤ j ≤ r
}

.

Here f1, . . . , fr ∈ OL[T0, . . . , Td] are finitely many homogeneous polynomials
generating the vanishing ideal of the Zariski closure of Y in Pd

OL
. We suppose

that each polynomial has at least one coefficient in O×L . It is a quasi-compact
open rigid analytic subspace of (Pd

L)
rig. On the other hand, the set

Y −(ǫ) =
{

z ∈ (Pd
L)

rig | for any unimodular representative z̃ of z, we have

|fj(z̃)| < ǫ for all 1 ≤ j ≤ r
}

is the closed ǫ-neighborhood of Y. Again, it is an admissible open subset of
(Pd

L)
rig, but which is in general not quasi-compact.

Recall that Drinfeld’s upper half space X = Pd
K \

⋃

H Kd+1 P(H) is a rigid
analytic Stein space over K and its algebra of analytic functions O(X ) is a K-
Fréchet space [SS]. From this one deduces that for very vector bundle F on Pd

K

3In [O] we used this notation since in the category of adic spaces this object is an open
neighborhood. Of course, many people call this neighborhood a closed one by analogy with
the classical case.
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the space of global sections X has the structure of a K-Fréchet space. Since our
p-adic groupG stabilizes X we even get for everyG-equivariant vector bundle F
on Pd

K the structure of a continuous G-representation on F(X ). Moreover its
(strong) dual has the structure of a locally analytic G-representation in the
sense of Schneider and Teitelbaum [ST2].
We consider the de Rham complex of sheaves

O
d0

→ Ω1 d1

→ Ω2 → . . .→ Ωd

on the scheme Pd
K or rigid analytic variety (Pd

K)rig. Moreover, we let

O†
d0

→ Ω†,1
d1

→ Ω†,2 → . . .→ Ω†,d

be the de Rham complex on the dagger space Pd,†
K in the sense of Große-Klönne

[GK]. In the following we use the notation Ω(†),s etc. to handle both kind of
sheaves simultaneously. For convenience, we do not distinguish between (Pd

K)rig

and Pd,†
K and also for other geometric objects since the underlying topological

spaces (Grothendieck topology) are the same. Both complexes are equivariant
for the action of G. Let D(†),s be the kernel of the sheaf homomorphism
ds : Ω(†),s → Ω(†),s+1. If X ⊂ Pd,†

K is as Stein space, then Ω†,s(X) = Ωs(X). In
particular we get D†,s(X) = Ds(X). We obtain G-equivariant sheaves D(†),s

and Ω(†),s/D(†),s on Pd
K , s = 0, . . . , d. If we denote by F (†) one of them then

there is an induced action of G on the K-vector space of rigid analytic sections
F (†)(X ). Since D(†),s(X ) is closed in Ω(†),s(X ) (by the continuity of ds) it
follows from above that4 F (†)(X ) is a K-Fréchet space and its dual F (†)(X )′

is a locally analytic G-representation, as well.

Remark 2.1. From Proposition 4.6 in the final section it will follow that the
identity Ω(†),s(X )/D(†),s(X ) = H0(X ,Ω†,s/D†,s) is satisfied.

Fix an integer 0 ≤ j ≤ d− 1. Let

Pj
K = V (Tj+1, . . . , Td) ⊂ Pd

K

be the closed P(j+1,d−j)-stable K-subvariety defined by the vanishing of the co-

ordinates Tj+1, . . . , Td. The local cohomology groups H∗Pj(P
d
K ,F) are then by

functorialty P(j+1,d−j)⋉U(g)-modules. Indeed, the case of vector bundles was
treated in [O], cf. also [Fa]. Since Ds is a G-equivariant sheaf, the same rea-
soning as in loc.cit. applies to get homomorphisms g→ End(Ds(U))) for every
open subset U ⊂ X. Thus we obtain also a homomorphism g → End(D†,s).
Alternatively, one could argue that the morphism ds : Ωs → Ωs+1 is g-linear.
For any positive integer n ∈ N, we consider the reduction map

pn : GLd+1(OK)→ GLd+1(OK/(πn)). (2)

4Note that F(X ) = F†(X )
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Put Pn
(j+1,d−j) := p−1n

(

P(j+1,d−j)(OK/(πn))
)

. This is a compact open subgroup

of G which stabilizes the ǫn-neighborhood Pj
K(ǫn) where ǫn := |π|n. Hence

H∗
Pj
K
(ǫn)

(Pd
K ,F (†)) is a Pn

(j+1,d−j) ⋉ U(g)-module. Again as in the algebraic

setting, we have a long exact sequence of Pn
(j+1,d−j) ⋉ U(g)-modules

· · · → Hi(Pd
K ,F (†))→ Hi(Pd

K \ P
j
K(ǫn),F

(†))→ Hi+1

Pj
K
(ǫn)

(Pd
K ,F (†))

→ Hi+1(Pd
K ,F (†))→ · · · .

In the following we study the analytic local cohomology groups H∗
Pj
K
(ǫ)

(Pd
K ,F†)

for
F† ∈ Θ := {D†,s | s = 1, . . . , d} ∪ {Ω†,s/D†,s | s = 1, . . . , d}.

For any real numbers 0 < δ < ǫ, we consider the rigid analytic varieties

B(ǫ) := {z ∈ (A1
K)rig | |z| ≤ ǫ} and C(δ, ǫ) := {z ∈ (A1

K)rig | δ ≤ |z| ≤ ǫ}

resp.

B−(ǫ) := {z ∈ (A1
K)rig | |z| < ǫ} and C−(δ, ǫ) := {z ∈ (A1

K)rig | δ < |z| < ǫ}.

Proposition 2.2. Let X =
∏d

i=1 Xi ⊂ (Pd
K)rig be some open subspace where

for i = 1, . . . , d, Xi ∈
⋃

δ>0,ǫ>0{B(ǫ), C(δ, ǫ)}, Then Hn(X,D†,s) = 0 and

Hn(X,Ω†,s/D†,s) = 0 for all n > 0.

Proof. SinceX is affinoid and Ω†,s is coherent it suffices (by considering the long
exact cohomology sequence attached to 0→ D†,s → Ω†,s → Ω†,s/D†,s → 0) to
prove the vanishing property for the sheaf D†,s, cf. [GK2, Prop.3.1].
We follow here the machinery of van der Put [vP]. The proof is by induction
on d. The case of the constant sheafD†,0 is treated in loc. cit. In particular this
contributes to the base of induction, i.e., for d = 1. The sheaf D†,1 coincides
in this case with the coherent sheaf Ω†,1 whose higher cohomology vanishes
anyway, cf. [GK2, Prop.3.1].

Let d > 1 and X ′ =
∏d−1

i=1 Xi. We consider the projection map φ :
X → X ′ forgetting the last entry and the induced Leray spectral sequence
Hj(X ′, Riφ∗D

†,s) ⇒ Hi+j(X,D†,s). By the very definition the sheaves D†,s

are overconvergent (resp. constructible in the language of van der Put). Hence
for any closed geometric point z of X ′ there is by Theorem 2.3 of loc.cit. an
isomorphism Hi(Ẑ, i−1D†,s) = (Riφ∗D

†,s)z where i : Ẑ →֒ X̂ is the inclu-
sion map of the fiber5 at z. We shall prove that (Riφ∗D

†,s)z = 0 and that
Hi(X,φ∗D

†,s) = 0 for all i > 0. We start with the latter aspect.

The complex φ∗Ω
†,•
X is the (dagger) tensor product of the de Rham complex

Ω†,•X′ onX ′ with the constant de Rham complex O†(Xd)→ O
†(Xd)dTd of global

5Here we adopt the notation of [vP] to denote by X̂ the space of closed geometric points
of X
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sections on Xd. Hence the complex has the form

...

φ∗Ω
†,s+1
X = Ω†,sX′ ⊗

† Ω†,1Xd
(Xd)

⊕

Ω†,s+1
X′ ⊗† O†(Xd)

↑ տ ↑

φ∗Ω
†,s
X = Ω†,s−1X′ ⊗† Ω†,1Xd

(Xd)
⊕

Ω†,sX′ ⊗
† O†(Xd)

↑ տ ↑

φ∗Ω
†,s−1
X = Ω†,s−2X′ ⊗† Ω†,1Xd

(Xd)
⊕

Ω†,s−1X′ ⊗† O†(Xd)

...

where the maps are the obviuos ones. Let D†,s−1X′ be the kernel of the mor-

phism ds−1 : Ω†,s−1X′ → Ω†,sX′ . One verifies that φ∗D
†,s is the sum of the sheaves

D†,s−1X′ ⊗† Ω†,1(Xd)dTd, D
†,s
X′ ⊗†K, and the image im(φ∗(d

s−1)). Here the first
two sheaves form obviuosly a direct sum. On the other hand, the image of the
map

ds−2 ⊗ id : Ω†,s−2X′ ⊗† Ω†,1(Xd)dTd → Ω†,s−1X′ ⊗† Ω†,1(Xd)dTd

is contained in D†,s−1X′ ⊗† Ω†,1(Xd)dTd. Hence we may replace the summand

im(φ∗(d
s−1)) by the smaller subsheaf (φ∗(d

s−1))(Ω†,s−1X′ ⊗† O†(Xd)) which is

isomorphic to the quotient Ω†,s−1X′ ⊗† O†(Xd)/D
†,s−1
X′ ⊗† K. The intersection

of (φ∗(d
s−1))(Ω†,s−1X′ ⊗† O†(Xd)) with D†,s−1X′ ⊗† Ω†,1(Xd)dTd

⊕

D†,sX′ ⊗† K is

just D†,s−1X′ ⊗† im(O†(Xd) → Ω†,1(Xd)dTd). The higher cohomology groups
of the first two summands vanish by induction and the flatness of O†(Xd)dTd

overK. Concerning the vanishing of Ω†,s−1X′ ⊗†O†(Xd)/D
†,s−1
X′ ⊗†K this follows

from the fact that X ′ is affinoid, Ωs−1
X′ is coherent and again by induction and

flatness. In the same way, one checks that this vanishing property holds for the
intersection of these sheaves. Hence the claim follows from a Mayer-Vietories
sequence with respect to these sheaves.

Now we prove that Hi(Ẑ, i−1D†,s) = 0 for all i > 0. We start with the observa-
tion that for any admissible open subset V ⊂ X̂d and for any open admissible
subset U ⊂ X̂ with {z}×V ⊂ U there is some open neighborhood W of z such
that W ×V ⊂ U 6. From this topological fact, we deduce by the very definition
of the functor i−1 that the pull-back i−1Ω•X is the (dagger) tensor product of

the de Rham complex O†Xd
→ Ω†,1Xd

on Xd and the complex Ω†,•X′,z given by the

6This is clear for classical points, i.e. for the rigid varieties X without .̂ It transfers by
the very definition of the topology to the enriched rigid varieties X̂.
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localization of Ω†,•X′ in z, i.e., it has the form

...

i−1Ωs+1
X = Ω†,sX′,z ⊗

† Ω†,1Xd

⊕

Ω†,s+1
X′,z ⊗

† O†Xd

↑ տ ↑

i−1Ωs
X = Ω†,s−1X′,z ⊗

† Ω†,1Xd

⊕

Ω†,sX′,z ⊗
† O†Xd

↑ տ ↑

i−1Ωs−1
X = Ω†,s−2X′,z ⊗

† Ω†,1Xd

⊕

Ω†,s−1X′,z ⊗
† O†Xd

...

where the maps are the obviuos ones. Since the functor i−1 is exact we deduce
as above that i−1D†,s is the sum of the sheaves (D†,sX′ )z⊗

†D†,0Xd
, (D†,s−1X′ )z⊗

†Ω†,1Xd

and some sheaf isomorphic to Ω†,s−1X′,z ⊗
†O†Xd

/(D†,s−1X′ )z ⊗
†D†,0Xd

. From here on
the argumentation is the same as above.

Corollary 2.3. Let X− =
∏d

i=1 X
−
i ⊂ (Pd

K)rig be some open subspace where
for i = 1, . . . , d, X−i ∈

⋃

δ>0,ǫ>0{B
−(ǫ), C−(δ, ǫ)}. Then Hn(X−, D†,s) = 0

and Hn(X−,Ω†,s/D†,s) = 0 for all n > 0.

Proof. As above (by considering the corresponding long exact cohomology se-
quence) it is enough to prove the statement for the sheaf D†,s. We start with
the observation that X− is a Stein space for which an admissible affinoid cov-
ering X− =

⋃

k∈N Uk with affinoid objects Uk as before exists. By the same
reasoning as in §2 of [SS] we have short exact sequences

0→ lim
←−

(1)

k
Hi−1(Uk, D

†,s)→ Hi(X−, D†,s)→ lim
←−
k

Hi(Uk, D
†,s)→ 0.

Thus we get the claim for i ≥ 2 by applying the previous proposition. For i = 1,
we need to show that lim

←−
(1)

k
H0(Uk, D

†,s) = 0. But lim
←−

(1)

k
H0(Uk, D

s) = 0 as

the projective system (H0(Uk, D
s))k consists of Banach spaces where the tran-

sition maps have dense image so that the topological Mittag-Leffler property
is satisfied. Thus it is enough to show that lim

←−k
H0(Uk, D

s/D†,s) = 0. But by

the definition of the sheaves D†,s the transition maps in the projective system
H0(Uk, D

s/D†,s) are all zero. Hence we see that lim
←−k

H0(Uk, D
s/D†,s) = 0.

Corollary 2.4. Let Y be one of the rigid analytic varieties X or X− consid-
ered above. Then Ω†,s(Y )/D†,s(Y ) = H0(Y,Ω†,s/D†,s).

Proof. This follows from the corresponding long exact cohomology sequence
and the vanishing of the first cohomology H1(Y,D†,s).

As a first application we may deduce:
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Lemma 2.5. Let s ≥ 1. Then Hi(Pd
K ,Ω†,s−1/D†,s−1) = 0 for i ≥ 0.

Proof. We consider the standard covering Pd
K =

⋃d
k=0 D+(Tk)1 by balls, i.e,

where D+(Tk)1 = {x ∈ Pd
k | |xk| ≥ |xj | ∀j 6= k}. By applying Proposi-

tion 2.2 to the open subvarieties D+(Tk)1, k = 0, . . . , d and their intersections
we see that the corresponding Čech complex with values in D†,s−1 computes
Hi(Pd

K , D†,s−1). Now the proof is by induction on s. For s = 1, we consider
the short exact sequence

0→ D†,0 → O† → O†/D†,0 → 0.

Using the fact that H0(X,D†,0) = K for any rigid analytic varietyX appearing
in the Čech complex induced by the above covering we see by looking at its
nerve that Hi(Pd

K , D†,0) = 0 for i > 0. As for O† we have Hi(Pd
K ,O†) =

Hi(Pd
K ,O) = 0 for any i > 0 [Ha, Thm 5.1], [GK2, Thm. 3.2]. For i = 0, the

map H0(Pd
K , D†,0)→ H0(Pd

K ,O†) = K is clearly an isomorphism and the base
of induction is shown.
Now let s > 1. For any X appearing as geometric object in the C̆ech complex,
there are (using Corollary 2.4 and since X is smooth) short exact sequences

0→ (Ω†,s−1/D†,s−1)(X)→ D†,s(X)→ Hs
dR(X)→ 0

and
0→ D†,s → Ω†,s → Ω†,s/D†,s → 0. (3)

By the induction hypothesis and by reconsidering the above covering we get
from the first exact sequence isomorphisms Hi(Pd

K , D†,s) = Hi(Hs
dR(·)), i ≥ 0

where Hs
dR(·) is the complex

⊕

0≤k≤d

Hs
dR(D+(Tk)1)→

⊕

0≤k1<k2≤d

Hs
dR(D+(Tk1)1 ∩D+(Tk2)1)→ · · ·

· · · → Hs
dR(D+(T0)1 ∩ · · · ∩D+(Td)1). (4)

Now again by [Ha, III, Exercise 7.3] Hi(Pd
K ,Ω†,s) = Hi(Pd

K ,Ωs) 6= 0 iff i = s
which is moreover then a one-dimensional K-vector space. This is exactly
induced by Hi(Hs

dR(·)) and all other groups Hi(Hs
dR(·)) vanish as the above

complexes form the E1-term of the attached covering spectral sequence com-
puting H∗dR(P

d
K). Thus we deduce that Hi(Pd

K ,Ω†,s/D†,s) = 0 for all i ≥ 0.

As a byproduct we see that D†,s has the same cohomology on Pd as Ωs, i.e.

Hn(Pd
K , D†,s) = Hn(Pd

K ,Ωs) (5)

for all n ≥ 0
As for the next application, we consider for any integer 0 ≤ j ≤ d − 1, the
complement Pd

K \P
j
K(ǫ) of the tube Pj

K(ǫ) in projective space. One checks that
there is a covering

Pd
K \ P

j
K(ǫ) =

d
⋃

k=j+1

V (k; ǫ)
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where

V (j + 1; ǫ) =
{

[x0 : . . . : xd] ∈ Pd
K | |xj+1| > |xl| · ǫ ∀ l < j + 1

}

and

V (k; ǫ) =
{

[x0 : . . . : xd] ∈ Pd
K | |xk| > |xl| · ǫ ∀ l < j + 1,

|xk| > |xl| ∀ j + 1 ≤ l < k
}

for k > j + 1. These are admissible open subsets of (Pd
K)rig which are even

Stein spaces. The same holds true for arbitrary intersections of them. More
concretely, there is the following description.

Lemma 2.6. Let I = {i1 < · · · < ir} ⊂ {j + 1, . . . , d}. Then the intersection
⋂

k∈I V (k; ǫ) is isomorphic to

B−(1/ǫ)j+1 ×B−(1)i1−1−j ×

r
∏

k=2

(

C−(0, 1)×B−(1)ik−ik−1−1
)

× Ad−ir
K

Proof. We consider the map
⋂

k∈I V (k; ǫ) → Ad defined by [x0 : · · · : xd] →
(y0, . . . , yd−1) where yi = xi/xi1 for i < i1, yi = xi/xi2 for i1 ≤ i < i2,
yi = xi/xi3 for i2 ≤ i < i3, . . . , yi = xi/xir for ir−1 ≤ i < ir and yi = xi/xir

for i > ir. The image is contained in the RHS of the stated isomorphisms. We
define an inverse morphism by (y0, . . . , yd−1) 7→ [x0 : · · · : xd] with xi = yi, i <
i1, xi1 = 1, xi = yiy

−1
i1

, i1 < i < i2, xi2 = y−1i1
, xi = yiy

−1
i1

y−1i2
, i2 < i < i3,

xi3 = y−1i1
y−1i2

, xi = yiy
−1
i1

y−1i2
y−1i3

, i3 < i < i4, xi3 = y−1i1
y−1i2

y−1i3
, . . . , xi =

yiy
−1
i1

y−1i2
· · · y−1ir

, i > ir.

By Lemma 2.6 and Corollary 2.3 we may compute the cohomology H∗(Pd
K \

Pj
K(ǫn),F

†) for F† ∈ Θ via the C̆ech complex

C•nF
† :

⊕

j+1≤k≤d

F†(V (k; ǫn))→
⊕

j+1≤k1<k2≤d

F†(V (k1; ǫn) ∩ V (k2; ǫn))→ · · ·

· · · → F†(V (j + 1; ǫn) ∩ · · · ∩ V (d; ǫn)). (6)

Remark 2.7. In [O] we proved via this approach that the cohomology groups
H∗(Pd

K \ Pj
K(ǫn),Ω

s) = H∗(Pd
K \ Pj

K(ǫn),Ω
†,s) and H∗

Pj
K
(ǫn)

(Pd
K ,Ωs) =

H∗
Pj
K
(ǫn)

(Pd
K ,Ω†,s) are K-Fréchet spaces with the structure of a continuous

Pn
(j+1,d−j) ⋉ U(g)-module in which the algebraic cohomology H∗(Pd

K \ P
j
K ,Ωs)

resp. H∗
Pj
K

(Pd
K ,Ωs) is a dense subspace. Since the differential maps ds :

Ωs(U) → Ωs+1(U) are continuous for any open subvariety U appearing in the
complex (6) and H∗(Pd

K \P
j
K(ǫn), D

†,s)∩H∗(Pd
K \P

j
K ,Ωs) = H∗(Pd

K \P
j
K , Ds)
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(cf. Prop. 2.9) one checks now easily that the same is satisfied for the mod-
ules H∗(Pd

K \P
j
K(ǫn),F

†) and H∗
Pj
K
(ǫn)

(Pd
K ,F†). This aspect can be specified as

follows. For j < k ≤ d and ǫ > ǫn, consider the open affinoid subvarietes

V̄ (j + 1; ǫ) =
{

[x0 : . . . : xd] ∈ Pd
K | |xj+1| ≥ |xl| · ǫ ∀ l < j + 1

}

and

V̄ (k; ǫ) =
{

[x0 : . . . : xd] ∈ Pd
K | |xk| ≥ |xl| · ǫ ∀ l < j + 1,

|xk| ≥ |xl| ∀ j + 1 ≤ l < k
}

and form the attached C̆ech complex

C•ǫF :
⊕

j+1≤k≤d

F(V̄ (k, ǫ))→
⊕

j+1≤k1<k2≤d

F(V̄ (k1, ǫ) ∩ V̄ (k2, ǫ))→ · · ·

· · · → F(V̄ (j + 1, ǫ) ∩ · · · ∩ V̄ (d, ǫ)). (7)

If we denote by Uǫ =
⋂

i V̄ (ki, ǫ) some open affinoid subvariety appearing in
this complex (and similarly Uǫ′ for ǫ

′ < ǫ), then the restriction maps Ωs(Uǫ)→
Ωs(Uǫ′) of Banach spaces are injective, continuous and have dense image. It
follows that the same holds true for the induced maps Ds(Uǫ) → Ds(Uǫ′) of
Banach spaces since the space of algebraic forms Ds(

⋂

iD(Tki
)) is dense in

both spaces7. As the the map ds is even strict, we deduce that the the functor
lim
←−ǫ→ǫn

is exact with respect to the complexes C•ǫF . Since we additionally

have lim
←−ǫ→ǫn

F(Uǫ) = lim
←−ǫ→ǫn

F†(Uǫ) = F†(Uǫn) we may identify Hi(Pd
K \

Pj
K(ǫ),F†) with the projective limit of K-Banach spaces lim

←−ǫ→ǫn
Hi(C•ǫF).

Next we observe that

Hn
Pj
K
(ǫ)
(Pd

K , D†,s) = Hn(Pd
K , D†,s) ∀n > d− j (8)

by the length of the C̆ech complex (6). The following result is known for
coherent sheaves (by the smoothness of Pj

K), cf. [O].

Lemma 2.8. Let 0 ≤ j ≤ d − 1. Then the cohomology groups
Hi
Pj
K
(ǫn)

(Pd
K ,Ω†,s/D†,s) and Hi

Pj
K
(ǫn)

(Pd
K , D†,s) vanish for i < d− j.

Proof. The case j = d − 1 is trivial by Lemma 2.5 and since K =
H0(Pd

K , D†,0) = H0(Pd
K \ P

j
K(ǫn), D

†,0) . So let j < d− 1.
The proof is similar to Lemma 2.5. By Lemma 2.5 we need to show that
Hi(Pd

K \ P
j
K(ǫn),Ω

†,s/D†,s) = 0 for i < d− j − 1. We consider the covering of

7Since the derivative of a power series vanishes if and only if the derivatives of its partial
sums vanish.
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Pd
K\P

j
K(ǫn) =

⋃

k>j V (k; ǫn). For s = 0, we have againHi(Pd
K\P

j
K(ǫn), D

†,0) =

0 for all i > 0 and H0(Pd
K \P

j
K(ǫn), D

†,0) = K. Since the stated vanishing asser-

tion is true for coherent sheaves we see that Hi(Pd
K \P

j
K(ǫn),O

†) = Hi(Pd
K ,O†)

for all such i and the result follows.
For s > 0 we reconsider the exact sequence (3). By induction hypothesis the
statement is true for the sheaf Ω†,s−1/D†,s−1. Hence Hi(Pd

K \ P
j
K(ǫn), D

†,s) =
Hi(Hs

dR(·)) for all i < d− j − 1 where Hs
dR(·) is defined similar as before with

respect to the above covering of Pd
K \ P

j
K(ǫn). The latter term coincides with

Hi(Pd
K ,Ω†,s) which is thus Hi(Pd

K \P
j
K(ǫn),Ω

†,s) since i < d− j− 1. As before
the result follows.

Proposition 2.9. There are for all s ≥ 1, strict exact sequences

0→ Hd−j

Pj
K
(ǫn)

(Pd
K , D†,s−1)→ Hd−j

Pj
K
(ǫn)

(Pd
K ,Ω†,s−1)

→ Hd−j

Pj
K
(ǫn)

(Pd
K ,Ω†,s−1/D†,s−1)→ 0.

Proof. By Lemma 2.8 the above sequence is exact on the left. As for the right
exactness we claim that the map Hd−j+1

Pj
K
(ǫn)

(Pd
K , D†,s−1) → Hd−j+1

Pj
K
(ǫn)

(Pd
K ,Ω†,s−1)

is an isomorphism. Indeed by (8) we have Hd−j+1

Pj
K
(ǫn)

(Pd
K , D†,s−1) =

Hd−j+1(Pd
K , D†,s−1). With the same reasoning as in (8) we also have

Hd−j+1(Pd
K ,Ω†,s−1) = Hd−j+1

Pj(ǫn)
(Pd

K ,Ω†,s−1). But Hd−j+1(Pd
K , D†,s−1) =

Hd−j+1(Pd
K ,Ω†,s−1) by identity (5). The claim follows.

As for the topological statement this follows easily from the fact that the differ-
ential map ds−1 is continuous and therefore D†,s−1(X) is closed in Ω†,s−1(X)
for every rigid analytic variety X appearing in the C̆ech complex.

Remark 2.10. The sequence

0→ Hd−j

Pj
K

(Pd
K , D†,s−1)→ Hd−j

Pj
K

(Pd
K ,Ω†,s−1)→ Hd−j

Pj
K

(Pd
K ,Ω†,s−1/D†,s−1)→ 0

consisting of analytic local cohomology groups is exact, as well. This follows
by taking the projective limit lim

←−n
and applying the topological Mittag-Leffler

criterion. By density this fact is also true for the corresponding sequence of
algebraic local cohomology groups of schemes

0→ Hd−j

Pj
K

(Pd
K , Ds−1)→ Hd−j

Pj
K

(Pd
K ,Ωs−1)→ Hd−j

Pj
K

(Pd
K ,Ωs−1/Ds−1)→ 0.

In fact this sequence is the same as the pull back of the above sequence to
Hd−j

Pj
K

(Pd
K ,Ωs−1).

Remark 2.11. Since the (strong) topological dual Hd−j

Pj
K
(ǫn)

(Pd
K ,Ωs−1)′ is a

locally analytic Pn
(j+1,d−j)-representation by [O, Cor. 1.3.9], the same is true

for Hd−j

Pj
K
(ǫn)

(Pd
K ,Ωs−1/Ds−1)′ as a closed Pn

(j+1,d−j)-stable subspace.
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3 Some local pro-étale cohomology groups

In the sequel we denote for a rigid analytic variety X over K by XCp
its base

change to Cp. We shall determine in this section the local pro-étale cohomology
groups H∗

Pj
Cp

(ǫn)
(Pd
Cp
,Qp).

As usual there is a long exact cohomology sequence

· · · → Hi−1(Pd
Cp
\ Pj

Cp
(ǫn),Qp)→ Hi

Pj
Cp

(ǫn)
(Pd
Cp
,Qp)→ Hi(Pd

Cp
,Qp) (9)

→ Hi(Pd
Cp
\ Pj

Cp
(ǫn),Qp)→ · · · .

As for the computation of Hi(Pd
Cp
\ Pj

Cp
(ǫn),Qp), we consider the spectral

sequence
Ep,q

1 ⇒ Ep+q = Hp+q(Pd
Cp
\ Pj

Cp
(ǫn),Qp)

with respect to the covering of Stein spaces

Pd
Cp
\ Pj

Cp
(ǫn) =

d
⋃

k=j+1

V (k; ǫn)Cp
.

The line E•,s is given by the complex

⊕

j+1≤k≤d

Hs((V (k; ǫn)Cp
,Qp)→

⊕

j+1≤k1<k2≤d

Hs(V (k1; ǫn)Cp
∩V (k2; ǫn)Cp

,Qp)→

· · · → Hs(V (j + 1; ǫn)Cp
∩ · · · ∩ V (d; ǫn)Cp

,Qp). (10)

Let U = V (k1; ǫn) ∩ V (k2; ǫn) ∩ . . . ∩ V (kr; ǫn) be some intersection of these
Stein spaces which appear in the above complex. Then this is a Stein space, as
well, and the geometric pro-étale cohomology has the following description.

Proposition 3.1. For s ≥ 0, there is an extension

0→ Ωs−1(U)/Ds−1(U)⊗̂KCp(−s)→ Hs(UCp
,Qp)→ Hs

dR(U,Qp)(−s)→ 0

where Hs
dR(U,Qp) = ∧

s(Qr−1
p ) is a Qp-vector space

8 with Hs
dR(U,Qp)⊗Qp

K =
Hs

dR(U/K).

Proof. The proof is essentially contained in [LB] (which was in the meantime
further revisited in [Bo]). We therefore give only a sketch of it. At first we
consider the short exact sequence of pro-étale sheaves

0→ Qp → B[1/t]ϕ → BdR/B
+
dR → 0 (11)

on UCp
and determine the cohomology of the period sheaves. As for latter

sheaf, we consider for any integer k ∈ N the spectral sequence

Ep,q
1 = Hp+q(UCp

, grp(B+
dR/t

k))⇒ Hp+q(B+
dR/t

k)

8which can be expressed via Hyodo-Kato cohomology.
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which is induced by the filtration (tpB+
dR/t

k)p=0,...k−1 on B+
dR/t

k. Here we as-
sume that k > d. In loc.cit. it is explained that there is an identification
Ep,q

1 = Ωp+q(UCp
)(−q), ∀p, q, since UCp

is a Stein space. Note that Ep,q
1 = 0

for p < 0 or p ≥ k. Hence we get

Ep,q
2 = Hp+q

dR (UCp
)(−q) = Hp+q

dR (UK)⊗̂KCp(−q)

for 0 < p < k − 1 and E0,q
2 = Dq(UCp

)(−q) resp. Ek−1,q
2 =

coker(dp+q(UCp
))(−q) for all q. By weight reasons we have E2 = E∞. Hence if

we set i = p+ q, then there is a filtration F 0 ⊃ F 1 ⊃ · · ·F k−1 ⊃ F k = (0) on
Hi(B+

dR/t
k) such that F k−1 = coker(di)(k−i−1), F p/F p+1 = Hi

dR(UCp
)(p−i),

p = 1, . . . , k − 2 and F 0/F 1 = ker(di)(−i).
Now we write ker(di)(−i) as a (split) extension

0→ Θi → ker(di)(−i)→ Hi
dR(UCp

,Cp)(−i)→ 0

where
Θi := Ωi−1(UCp

)/Di−1(UCp
)(−i).

Passing to the limit as k →∞ we get an extension

0→ Hi
dR(U)(−i)⊗K B+

dR → Hi(UCp
,B+

dR)→ Θi → 0.

As for the sheaf BdR we follow the reasoning in [LB, Prop. 2.3.19] to conclude
that

Hi(UCp
,BdR) = Hi

dR(U)(−i)⊗K BdR.

Hence we see via the long exact cohomology sequence attached to

0→ B+
dR → BdR → BdR/B

+
dR → 0 (12)

on UCp
that Hi

dR(UCp
,BdR/B

+
dR) is an extension

0→ Hi
dR(U)(−i)⊗K BdR/B

+
dR → Hi(UCp

,BdR/B
+
dR)→ Θi+1 → 0.

Concerning the sheaf B[1/t]ϕ we use the geometric description of U in
Lemma 2.6 in order to apply [LB, Cor. 2.3.31]9 together with the projective
limit argument below [LB, Cor. 2.3.31] to deduce that

Hi(UCp
,B[1/t]) = Hi

dR(UCp
,Qp)⊗Qp

B[1/t].

Finally we follow the argument below [LB, Cor, 2.3.31] concerning ϕ using the
freeness of the latter object over B[1/t] to see that

Hi(UCp
,B[1/t]ϕ) = Hi

dR(UCp
,Qp)⊗Qp

B[1/t]ϕ.

Write Hi
dR(U)(−i)⊗KBdR/B

+
dR = Hi

dR(U,Qp)(−i)⊗Qp
BdR/B

+
dR. Considering

the long exact cohomology sequence attached to the short exact sequence (11)
we get the claim.

9See also [Bo, Cor. 3.3.16].
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Remark 3.2. It seems that this result is also covered by [CN2, Theorem 1.1
and Theorem 1.3]. For open balls this was done before by Colmez and Niziol
[CN1, Theorem 3] resp. Le Bras [LB, Theorem 2.3.2].

Hence we may write E•,•1 as an extension

0→ F r,s
1 → Er,s

1 → Gr,s
1 → 0

of double complexes, as well.

The cohomology of the double complex Gr,s
1 gives rise to a Qp-form

H∗dR(P
d
K \ P

j
K(ǫn),Qp) of the de Rham cohomology H∗dR(P

d
K \ P

j
K(ǫn)) which

is
⊕d−j−1

i=0 Qp[−2i]. On the other hand, by Corollary 2.4 and by the lines be-
fore Remark 2.7 the F •,s1 -term just computes the cohomology group H∗(Pd

K \

Pj
K(ǫn),Ω

†,s−1/D†,s−1)⊗̂KCp(−s). More precisely,

F r,s
2 = Hr(Pd

K \ P
j
K(ǫn),Ω

†,s−1/D†,s−1)⊗̂KCp(−s)

for all r, s ≥ 0. The contributions Hr(Pd
K \ P

j
K(ǫ),Ω†,s−1/D†,s−1) vanish (by

considering the C̆ech complex) for r ≥ d − j. Further, we have the long exact
cohomology sequence

. . .→ Hi
Pj
K
(ǫn)

(Pd
K ,Ω†,s−1/D†,s−1)→ Hi(Pd

K ,Ω†,s−1/D†,s−1)

→ Hi(Pd
K \ P

j
K(ǫn),Ω

†,s−1/D†,s−1)→ Hi+1

Pj
K
(ǫn)

(Pd
K ,Ω†,s−1/D†,s−1)→ . . .

The expressions Hi(Pd
K ,Ω†,s−1/D†,s−1) vanish by Lemma 2.5 for all i ≥ 0.

Hence we get

Hi(Pd
K \ P

j
K(ǫn),Ω

†,s−1/D†,s−1) = Hi+1

Pj
K
(ǫn)

(Pd
K ,Ω†,s−1/D†,s−1)

for all i ≥ 0. Since Hi
Pj
K
(ǫ)

(Pd
K ,Ω†,s−1/D†,s−1) = 0 for i < d− j by Lemma 2.8

we deduce that F r,s
2 = 0 for r 6= d − j − 1. Hence the E2-term consists of two

lines.
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✻

✲

s

|
1

Qp

Qp

|
2

0

G2
...

Qp

−1

−2

. . .

−d− j

|
d− j − 1

•

• F2

•

...

r

...

Lemma 3.3. Considered as U(g)-modules the representations F d−j−1,s
2 , s =

0, . . . d, do not include the trivial representation as a composition factor.

Proof. We consider the weights of F d−j−1,s
2 with respect to the Cartan algebra

t ⊂ g. By Prop. 2.9 the representation F d−j−1,s
2 = Hd−j

Pj
K
(ǫn)

(Pd
K ,Ω†,s−1/D†,s−1)

is a homomorphic image of Hd−j

Pj
K
(ǫn)

(Pd
K ,Ω†,s−1) = Hd−j

Pj
K
(ǫn)

(Pd
K ,Ωs−1) which in

turn is a quotient of a (Fréchet)-completion of some representation of the shape

⊕

k0,...,kj≥0

kj+1 ,...,kd≤0

k0+···+kd=0

K ·Xk0
0 Xk1

1 · · ·X
kd

d ⊗ Vd−j,zd−jλ (13)

cf. [O, Prop. 1.4.2, Cor. 1.4.9] for some irreducible algebraic representa-
tion V = Vd−j,zd−jλ of the Levi subgroup L(j+1,d−j) of P(j+1,d−j). Here λ
is the weight defining Ωs−1 in the sense of loc.cit. It is given by the tu-
ple (−s + 1, 1, . . . , 1, 0, . . . , 0) ∈ Zd+1 via the identification X∗(T ) = Zd+1.10

Therefore it suffices to check that the latter representation does not contain the
trivial representation as a composition factor. Going to the definition of V in
loc.cit., it turns out that that the weights of this representation are given by all
concatenations of all permutations of the individual arrays (0, . . . , 0,−s+d−j)
(of length j + 1) and (1, . . . , 1, 0 . . . , 0) (of length d− j) for d− j ≤ s− 1 resp.

10Moreover i0 = s− 1 in the notation of loc.cit. as Hk(Pd

K
,Ωk) = K for all k ≥ 0.
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(0, . . . , 0,−1, . . . ,−1) (of length j + 1) and (d − j + 1 − s, 0, . . . , 0) (of length
d− j) for d− j > s− 1. Since the weight of a polynomial f = Xk0

0 Xk1
1 · · ·X

kd

d

is given by (k0, . . . , kd) we see that the trivial weight (0, . . . , 0) is not realizable
in the representation (13).

In particular, we see that E2 = E∞ and that Hi(Pd
Cp
\ Pj

Cp
(ǫn),Qp) is an

extension
0→ A→ Hi(Pd

Cp
\ Pj

Cp
(ǫn),Qp)→ B → 0

where
A = Hd−j−1(Pd

K \ P
j
K(ǫn),Ω

†,s−1/D†,s−1)⊗̂KCp(−s)

with s = i− (d− j − 1) ≥ 1 and

B = Hi
dR(P

d
K \ P

j
K(ǫn),Qp)(−

i

2
).

The term A vanishes for i < d−j. Further the term B vanishes for i ≥ 2(d−j).
Thus we have proved by applying the long exact sequence (9) the following
statement.

Proposition 3.4. Let j ≥ 0.
a) If i < d− j, then Hi

Pj
Cp

(ǫn)
(Pd
Cp
,Qp) = 0.

b) If i ≥ d− j, then Hi
Pj
Cp

(ǫn)
(Pd
Cp
,Qp) is an extension

0→ C → Hi
Pj
Cp

(ǫn)
(Pd

K ,Qp)→ D → 0

where

C = Hd−j

Pj
K
(ǫn)

(Pd
K ,Ω†,i−(d−j)−1/D†,(i−(d−j)−1)⊗̂KCp(−(i− (d− j))

and

D = Hi
dR,Pj

K
(ǫn)

(Pd
K ,Qp)(−

i

2
)

denotes the ”local de Rham cohomology” of Pd
K with support in Pj

K(ǫn).

4 The proof of the main theorem

Let YCp
be the set-theoretical complement of XCp

in Pd
Cp
. Consider the topolog-

ical exact sequence of locally convex Qp-vector spaces with continuous G-action

. . .→ Hi
YCp

(Pd
Cp
,Qp) → Hi(Pd

Cp
,Qp)→ Hi(XCp

,Qp)

→ Hi+1
YCp

(Pd
Cp
,Qp) → . . . (14)

The pro-étale cohomology groups of Pd
Cp

look like as in the classical setting by

the quasi- compactness of projective space, i.e. H∗(Pd
Cp
,Qp) =

⊕d
i=0 Qp[−2i].
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Hence it suffices to understand the objects Hi
YCp

(Pd
Cp
,Qp) and the maps

Hi
YCp

(Pd
Cp
,Qp) → Hi(Pd

Cp
,Qp). For this we recall the construction [O] of an

acyclic resolution of the constant sheaf Z on YCp
considered as an object in the

category of pseudo-adic spaces [H].
Let L be again one of our fields K or Cp. Set

Yad
L := (Pd

L)
ad \ X ad

L .

This is a closed pseudo-adic subspace of (Pd
L)

ad. For any subset I ⊂ ∆ with
∆ \ I = {αi1 < . . . < αir}, set

j(I) := i1 and YI,L = Pj(I)
L .

Furthermore, let PI ⊂ G be the standard parabolic subgroup attached to I.
Hence the group PI stabilizes YI,L. We obtain

Yad
L =

⋃

I⊂∆

⋃

g∈G/PI

g · Y ad
I.L =

⋃

g∈G

g · Y ad
∆\{αd−1},L

. (15)

For any compact open subset W ⊂ G/PI , we set

ZW
I,L :=

⋃

g∈W

gY ad
I,L.

Thus

Yad
L =

⋃

I⊂∆
|∆\I|=1

Z
G/PI

I = Z
G/P∆\{αd−1}

∆\{αd−1},L
.

We consider the natural closed embeddings of pseudo-adic spaces

Φg,I : gY ad
I,L −→ Y

ad
L and ΨI,W : ZW

I,L −→ Y
ad
L .

Put
Zg,I := (Φg,I)∗(Φ

∗
g,I Z) and ZZW

I,L
:= (ΨI,W )∗(Ψ

∗
I,W Z).

Let CI be the category of compact open disjoint coverings of G/PI where the
morphisms are given by the refinement-order. For a covering c = (Wj)j ∈ CI ,
we denote by Zc the sheaf on Y

ad
L defined by the image of the natural morphism

of sheaves
⊕

Wj∈CI

Z
Z

Wj

I,L

→֒
∏

g∈G/PI

Zg,I .

We put

∏′

g∈G/PI

Zg,I = lim
−→
c∈CI

Zc (16)

and obtain the following complex C•L of sheaves on Yad
L ,
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0→ Z→
⊕

I⊂∆
|∆\I|=1

∏′

g∈G/PI

Zg,I →
⊕

I⊂∆
|∆\I|=2

∏′

g∈G/PI

Zg,I → · · · →
⊕

I⊂∆
|∆\I|=i

∏′

g∈G/PI

Zg,I → · · ·

(17)

· · · →
⊕

I⊂∆
|∆\I|=d−1

∏′

g∈G/PI

Zg,I →
∏′

g∈G/P∅

Zg,∅ → 0.

Concerning the next statement see [O, Thm 2.1.1].

Theorem 4.1. The complex C•L is acyclic.

We consider the morphism of topoi ν : ( ˜Pd
Cp
)adproét →

˜(Pd
Cp
)adét . By pulling back

the complex i∗(C
•
Cp
) to (Pd

Cp
)ad
proét

where i : Yad
Cp
→֒ (Pd

Cp
)ad is the inclusion,

we get a resolution of the pro-étale sheaf i∗(ZYad
Cp

) on (Pd
Cp
)ad since ν∗ is an

exact functor. We denote this complex for simplicity by the same symbols.
In fact, we could have defined this complex directly on the pro-étale site as
the sheaves Z are constant. In this section we evaluate the spectral sequence
which is induced by the complex (17) applied to Ext∗ ˜(Pd

Cp
)ad
proét

(i∗(−),Qp). In

the following we simply write Exti(·, ·) for the ith Ext group in the category
˜(Pd
Cp
)adproét.

As usual there is the identification

Ext∗(i∗(ZYad
Cp

),Qp) = H∗Yad
Cp

(Pd
Cp
,Qp).

Further, we have H∗
Yad

Cp

(Pd
Cp
,Qp) = H∗YCp

(Pd
Cp
,Qp) by the very definition of the

pro-étale cohomology.

Proposition 4.2. For all subsets I ⊂ ∆, there is an isomorphism

Ext∗(i∗(
∏′

g∈G/PI

Zg,I),Qp) = lim
←−
n∈N

⊕

g∈G0/Pn
I

H∗gYI,Cp (ǫn)
(Pd
Cp
,Qp).

Proof. Consider the family

{

gPn
I | g ∈ G0, n ∈ N

}

of compact open subsets in G/PI which yields cofinal coverings in CI .We obtain
by (16) the identity

∏′

g∈G/PI

Zg,I = lim
−→
c∈CI

Zc = lim
−→
n∈N

⊕

g∈G0/Pn
I

Z
Z

gPn
I

I,Cp

.
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Choose an injective resolution I• of the sheaf Qp. We get

Exti(i∗(
∏′

g∈G/PI

Zg,I),Qp) = Hi(Hom(i∗(
∏′

g∈G/PI

Zg,I), I
•))

= Hi(Hom(lim
−→
n∈N

⊕

g∈G0/Pn
I

i∗(Z
Z

gPn
I

I,Cp

), I•))

= Hi(lim
←−
n∈N

⊕

g∈G0/Pn
I

Hom(i∗(Z
Z

gPn
I

I,Cp

), I•))

= Hi(lim
←−
n∈N

⊕

g∈G0/Pn
I

H0

Z
gPn

I
I,Cp

(Pd
Cp
, I•)).

We make use of the following lemma. Here lim
←−

(r)

n∈N
is the r-th right derived

functor of lim
←−n∈N

.

Lemma 4.3. Let I be an injective sheaf on the pro-étale site of (Pd
Cp
)ad. Then

lim
←−

(r)

n∈N

⊕

g∈G0/Pn
I

H0

Z
gPn

I
I,Cp

(Pd
Cp
, I) = 0 for r ≥ 1.

Proof. The proof works in the same way as in [O, Lemma 2.2.2].

Thus we get by applying a spectral sequence argument (note that lim
←−

(r) = 0
for r ≥ 2 [Je]) short exact sequences, i ∈ N,

0→ lim
←−
n

(1)
⊕

g∈G0/Pn
I

Hi−1

Z
gPn

I
I,Cp

(Pd
Cp
,Qp)→ Exti(i∗(

∏′

g∈G/PI

Zg,I),Qp)

→ lim
←−
n

⊕

g∈G0/Pn
I

Hi

Z
gPn

I
I,Cp

(Pd
Cp
,Qp)→ 0.

Lemma 4.4. The projective system
(

⊕

g∈G0/Pn
I
Hi−1

Z
gPn

I
I,Cp

(Pd
Cp
,Qp)

)

n∈N
consists

of Qp-Fréchet spaces and satisfies the (topological) Mittag-Leffler property for
all i ≥ 1.

Proof. The proof works in the same way as in [O, Lemma 2.2.3]. Additionally
one replaces the Zariski local cohomology groups in loc.cit by the extensions
in Proposition 3.4 and considers the corresponding LHSs and RHSs separately.
Whereas the situation of the RHSs is trivial the LHSs are treated in the same
as in loc.cit.

We deduce from [EGAIII] 13.2.4 that

lim
←−

(1)

n∈N

(

⊕

g∈G0/Pn
I

Hi−1

Z
gPn

I
I,Cp

(Pd
Cp
,Qp)

)

n∈N
= 0.
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We obtain the identity

Exti(i∗(
∏′

g∈G/PI

Zg,I),Qp) ∼= lim
←−
n∈N

⊕

g∈G0/Pn
I

Hi

Z
gPn

I
I,Cp

(Pd
Cp
,Qp).

On the other hand, we have

⋂

n∈N

Z
Pn

I

I,Cp
=

⋂

n∈N

YI,Cp
(ǫn)

ad = Y ad
I,Cp

.

Again, by applying [O, Proposition 1.3.3]11, we deduce the identity

lim
←−
n

H∗
Z

Pn
I

I,Cp

(Pd
Cp
,Qp) = lim

←−
n

H∗YI,Cp (ǫn)
(Pd
Cp
,Qp).

We get

lim
←−
n

⊕

g∈G0/Pn
I

H∗
Z

gPn
I

I,Cp

(Pd
Cp
,Qp) = lim

←−
n

⊕

g∈G0/Pn
I

H∗gYI,Cp (ǫn)
(Pd
Cp
,Qp).

Thus the statement of our proposition is proved.
We analyze now the spectral sequence

E−p,q1 = Extq(
⊕

I⊂∆
|∆\I|=p+1

i∗(
∏′

g∈G/PI

Zg,I),Qp)

⇒ Ext−p+q(i∗(ZYad
Cp

),Qp) = H−p+q

Yad
Cp

(Pd
Cp
,Qp) (18)

induced by the acyclic complex (17) in Theorem 4.1. By applying Propo-
sition 3.4 the term Hq

gYI,Cp (ǫn)
(Pd
Cp
,Qp) which appears in E−p,q1 as a direct

summand is for q ≥ 2(d− j(I)) an extension

0→ F → Hq
gYI,Cp (ǫn)

(Pd
Cp
,Qp)→ G→ 0

where

F = H
d−j(I)

gPj(I)
K

(ǫn)
(Pd

K ,Ω†,q−(d−j(I))−1/D†,(q−(d−j(I))−1)⊗̂KCp(q − (d− j(I)))

and
G = Hq

dR(P
d
K ,Qp)(−

q

2
).

It is equal to

H
d−j(I)

gPj(I)
K

(ǫn)
(Pd

K ,Ω†,q−(d−j(I))−1/D†,(q−(d−j(I))−1)⊗̂KCp(q − (d− j(I)))

11The assumption that the sheaf is coherent is not needed here.
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for 2(d − j(I)) > q ≥ d − j(I). Hence we may write E•,•1 as an extension of
double complexes

0→ F •,•1 → E•,•1 → G•,•1 → 0.

The F1-term splits as a direct sum F1 =
⊕d

s=1 F1,s where F1,s is the sub-double
complex with fixed Tate twist s = q − (d− j(I)), i.e.,

F p,q
1,s = lim

←−
n

⊕

I⊂∆
|∆\I|=p+1

⊕

g∈G0/Pn
I

Hq−s

gPd−(q−s)
K

(ǫn)
(Pd

K ,Ω†,s−1/D†,s−1)⊗̂KCp(s).

Up to the tensor factor ⊗̂KCp(s) the object F1,s is the E1-term of a spectral
sequence considered in [O] with respect to the equivariant sheaf Ω†,s−1/D†,s−1.
The computation in [O, p. 633] shows that the only non-vanishing entries
F p,q
2,s are given by the tuples (p, q) = (−j + 1, d − s + j), j = 1, . . . , d and

that H1
Y(P

d
K ,Ω†,s−1/D†,s−1)⊗̂KCp(s) is a successive extension of these non-

vanishing objects.

Concerning the double complex G•,•1 there are the following (non-trivial) rows

G•,2d1 : ( lim
←−
n

⊕

g∈G0/Pn
∅

Qp ←
⊕

I⊂∆
#I=1

lim
←−
n

⊕

g∈G0/Pn
I

Qp ←
⊕

I⊂∆
#I=2

lim
←−
n

⊕

g∈G0/Pn
I

Qp

← . . .←
⊕

I⊂∆
#I=d−1

lim
←−
n

⊕

g∈G0/Pn
I

Qp)(−d)

G
•,2(d−1)
1 : ( lim

←−
n

⊕

g∈G0/Pn
(2,1,...,1)

Qp ←
⊕

I⊂∆
#I=2
α0∈I

lim
←−
n

⊕

g∈G0/Pn
I

Qp ←
⊕

I⊂∆
#I=3
α0∈I

lim
←−
n

⊕

g∈G0/Pn
I

Qp

← . . .←
⊕

I⊂∆
#I=d−1

α0∈I

lim
←−
n

⊕

g∈G0/Pn
I

Qp)(−(d− 1))

...

G•,2j1 : ( lim
←−
n

⊕

g∈G0/Pn
(d+1−j,1,...,1)

Qp ←
⊕

I⊂∆
#I=d−j+1

α0,...,αd−j−1∈I

lim
←−
n

⊕

g∈G0/Pn
I

Qp ←

⊕

I⊂∆
#I=d−j+2

α0,...,αd−j−1∈I

lim
←−
n

⊕

g∈G0/Pn
I

Qp ← . . .←
⊕

I⊂∆
#I=d−1

α0,...,αd−j−1∈I

lim
←−
n

⊕

g∈G0/Pn
I

Qp)(−j)
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...

G0,2
1 : lim

←−
n

⊕

g∈G0/Pn
(d,1)

Qp(−1).

Here, the very left term in each row G•,2j1 sits in degree −j+1. We can rewrite
these complexes in terms of induced representations. Here we abbreviate

(d+ 1− j, 1j) := (d+ 1− j, 1, . . . , 1)

for any decomposition (d + 1 − j, 1, . . . , 1) of d + 1. Let Ind∞,G
P denote the

(unnormalized) smooth induction functor for a parabolic subgroup P ⊂ G.
The dual of the row G•,2j1 coincides with the complex

Ind∞,G
P(d+1−j,1j )

Qp →
⊕

I⊂∆
#I=d−j+1

α0,...,αd−j−1∈I

Ind∞,G
PI

Qp → . . .→
⊕

I⊂∆
#(∆\I)=1

α0,...,αd−j−1∈I

Ind∞,G
PI

Qp.

Each of the complexes G•,2j1 , j = 1, . . . , d, is acyclic apart from the very left
and right position [DOR, Thm. 7.1.9]. Indeed, let

vGP(d+1−j,1j )
(Qp) := Ind∞,G

P(d+1−j,1j)
Qp/

∑

Q)P(d+1−j,1j)

Ind∞,G
Q Qp

be the smooth generalized Steinberg representation with respect to the
parabolic subgroup P(d+1−j,1j). This is an irreducible smooth G-representation,
cf. [BW, ch. X]. We deduce that the only non-vanishing entries in Gp,q

2 are
given by the indices (p, q) = (−j+1, j), j = 1, . . . , d, and (p, q) = (0, 2j), j ≥ 2.
Here we get for j ≥ 2,

G−j,j+1
2 = vGP(d+1−j,1j )

(Qp)(−j)
′ and G0,2j

2 = Qp(−j)

and
G0,2

2 = (Ind∞,G
P(d,1)

Qp)
′(−1).

Considered as U(t)-modules the objects in G2 consist of copies of the trivial
representation. Again as in Lemma 3.3 the contributions of F2 do not con-
tain the trivial representation. Hence there are no non-trivial homomorphisms
between G and F and we get in particular E2 = E∞.
For any integer s ≥ 1, let V •s = V −d+1

s ⊃ V −d+2
s ⊃ · · · ⊃ V −1s ⊃ V 0

s ⊃ V 1
s = (0)

be the canonical filtration on V −d+1
s = H1

Y(P
d
K ,Ω†,s−1/D†,s−1) defined by the

spectral sequence

E−p,q1,s = Extq(
⊕

I⊂∆
|∆\I|=p+1

i∗(
∏′

g∈G/PI

Zg,I),Ω
†,s−1/D†,s−1)

⇒ H−p+q
Yad (Pd

Cp
,Ω†,s−1/D†,s−1)
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induced by the acyclic complex (17) in Theorem 4.1. In [O, Lemma 2.7] we
proved that in the case of vector bundles that these subspaces are closed. On
the other hand, we proved [O2] that the filtration behaves functorial with re-
spect to morphisms of vector bundles12. Applying this fact to the (continuous)
morphism ds : Ωs → Ωs+1 we deduce that the subspaces V j

s are closed in the
K-Fréchet space H1

Y(P
d
K ,Ω†,s−1/D†,s−1).

Consider finally for F† = Ω†,s−1/D†,s−1 the topological exact G-equivariant
sequence of K-Fréchet spaces

. . .→ H0(Pd
K ,F†)→ H0(X ,F†)

p
→ H1

Y(P
d
K ,F†)→ H1(Pd

K ,F†)→ . . . .

By Proposition 2.5 the terms Hi(Pd,F†) = 0 vanish for i ≥ 0. Hence p is an
isomorphism. For i = 0, . . . , d, we set

Zi
s := p−1(V −d+i+1

s ).

Thus we get a G-equivariant filtration by closed K-Fréchet spaces

Z0
s ⊃ Z1

s ⊃ · · · ⊃ Zd−1
s ⊃ Zd

s

on Zd
0 = H0(X ,F†).

Summarizing the evaluation of the spectral sequence we obtain the following
theorems mentioned in the introduction.

Theorem 4.5. For j = 1, . . . , d, the p-adic pro-étale cohomology groups of XCp

are extensions of continuous G× ΓK-representations

0→ (Ω†,s−1/D†,s−1)(X )⊗̂KCp(−s)→ Hs(XCp
,Qp)

→ vGP(d−s+1,1,...,1)
(Qp)

′(−s)→ 0.

Proof. In order to complete the proof, we mention that the contributions G0,2k
2 ,

k ≥ 2, are mapped isomorphically to the cohomology groups H2k(Pd
Cp
,Qp) in

the long exact cohomology sequence (14). For k = 1, we have a surjection
G0,1

2 → Qp whose kernel is isomorphic to vGP(d,1)
(Qp)(−1)

′.

Proposition 4.6. Let s ≥ 0. Then Hn(X , D†,s) = 0 for all n > 0.

Proof. We may compute the local cohomology groups Hi
Y(P

d
K , D†,s) by the

spectral sequence

E−p,q1 = Extq(
⊕

I⊂∆
|∆\I|=p+1

i∗(
∏′

g∈G/PI

Zg,I), D
†,s)⇒ H−p+q

Yad (Pd
K , D†,s)

induced by the acyclic complex (17) in Theorem 4.1. As we learned in section 1
the computation proceeds in the same way as for equivariant vector bundles.

12In loc.cit. we stated the lemma for morphisms of vector bundles. But as one tells without
any difficulties from the proof this fact is true for arbitrary sheaf morphisms.
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Here we saw that in loc.cit. (p. 633) that Hi
Y(P

d
K , D†,s) = Hi(Pd

K , D†,s)
for all i ≥ 2. Moreover, for i = 1 we have an epimorphism Hi

Y(P
d
K , D†,s) →

H1(Pd
K , D†,s). By considering the corresponding long exact cohomology se-

quence we deduce the claim.

Remark 4.7. It follows that H0(X ,Ω†,s/D†,s) = Ω†,s(X )/D†,s(X ) for any
integer s ≥ 0. Hence our result for the pro-étale cohomology of X coincides
with the formula in [CDN]. Moreover, the strong dual H0(X ,Ω†,s/D†,s)′ is as
a closed subspace of H0(X ,Ωs)′ a locally analytic G-representation, as well.
The same holds henceforth for the quotient H0(X , D†,s)′. In particular, both
representations are strongly admissible as an extension of strongly admissible
representations and in particular admissible [ST1].

Concerning the structure of the term on the left hand side we can specify it
by [O, OS]. Here we refer to [OS] for the definition of the bi-functors FG

P .
Here we use Remark 2.10 in order to see that algebraic local cohomology
Hd−j

Pj
K

(Pd
K ,Ωs−1/D†,s−1) is an object of the category Op

alg.

Theorem 4.8. For any fixed integer s = 1, . . . , d, there is a descending filtra-
tion (Zi

s)i=0,...,d on Z0
s = H0(X ,Ω†,s−1/D†,s−1) by closed subspaces together

with isomorphisms of locally analytic G-representations

(Zi
s/Z

i+1
s )′ ∼= FG

P(i+1,d−i)
(Hd−i
Pi
K

(Pd
K ,Ωs−1/Ds−1), Std−i), i = 0, . . . , d− 1.

where Std−j is the Steinberg representation of GLd−j(K) considered as a rep-
resentation of L(j+1,d−j).

Remark 4.9. In the case of equivariant vector bundles we used in the
above formula rather the reduced local cohomology H̃d−j

Pj
K

(Pd
K ,F) :=

ker
(

Hd−j

Pj
K

(Pd
K ,F) → Hd−j(Pd

K ,F)
)

. Concerning the compatibility we note

that for F = Ωs−1/Ds−1 we have H̃d−j

Pj
K

(Pd
K ,F) = Hd−j

Pj
K

(Pd
K ,F) by Lemma 2.5.

Remark 4.10. The above approach for the determination of the p-adic pro-
étale cohomology works also for the ℓ-adic pro-étale cohomology with ℓ 6=
p. In this case one gets as cited in [CDN, Thm. 1.2] Hs(XCp

,Qℓ) =
vGP(d−s+1,1,...,1)

(Qℓ)
′(−s) for all s ≥ 0.
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Math. 64, 123–165 (1981).

[GK] E. Große-Klönne, De Rham cohomology of rigid spaces, Math. Z.
247, 223–240 (2004).

[GK2] E. Große-Klönne, Rigid analytic spaces with overconvergent struc-
ture sheaf, J. Reine Angew. Math. 519, 73–95 (2000).

[Ha] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathemat-
ics, 52, Springer-Verlag, New York-Heidelberg (1977).

[H] R. Huber, Étale Cohomology of Rigid Analytic Varieties and Adic
Spaces, Aspects of Math., E 30, Vieweg (1996).

[Je] C.U. Jensen, Les foncteurs dérivés de lim
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20.6.17.pdf

[O] S. Orlik, Equivariant vector bundles on Drinfeld’ upper half space,
Invent. Math. 172, 585–656 (2008).

[O2] S. Orlik, The de Rham cohomology of Drinfeld’s upper halfspace,
Münster J. Math. 8, 169–179 (2015).

[OS] S. Orlik, M. Strauch, On Jordan-Hölder series of some locally
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