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Abstract. We provide a geometric model for the classifying space
of automorphism groups of Hermitian vector bundles over a ring
with involution R such that 1

2 ∈ R; this generalizes a result of
Schlichting-Tripathi [SST14]. We then prove a periodicity theorem
for Hermitian K-theory and use it to construct an E∞ motivic ring
spectrum KRalg representing homotopy Hermitian K-theory. From
these results, we show that KRalg is stable under base change, and
cdh descent for homotopy Hermitian K-theory of rings with involu-
tion is a formal consequence.
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1 Introduction

Algebraic K-theory is an algebraic invariant introduced in the 1950s by
Alexander Grothendieck where it served as the cornerstone of his reformu-
lation of the Riemann-Roch theorem [Gro57]. Twenty years previously, Ernst
Witt developed the notion of quadratic forms over arbitrary fields and intro-
duced the Witt ring as an object to encapsulate the nature of all the quadratic
forms over a given field [Wit37]. Combining the ideas of Grothendieck
and Witt, Hyman Bass introduced a category of quadratic forms Quad(R)
with isometries over a ring R and studied K1(Quad(R)) and K0(Quad(R)).
K0(Quad(R)) is what we know today as the Grothendieck-Witt ring, and Bass
was able to recover the Witt ring as a quotient of K0(Quad(R)) by the image
of the hyperbolic quadratic forms. He went on to show that K1(Quad(R)) was
related to the stable structure of the automorphisms of hyperbolic modules,
which complemented the relationship between K1(R) and the group GL(R).
The K-theory of quadratic forms soon found applications to surgery theory
where the periodic L-groups defined by Wall in 1966 [Wal66] served as ob-
structions to certain maps being cobordant to homotopy equivalences. When
the means to define the higher algebraic K-groups via the + construction
was discovered by Quillen in the 1970s, Karoubi applied it to the orthogo-
nal groups BO in order to define the higher Hermitian K-theory of rings with
involution as we know it today [Kar73].
Fast forward twenty years into the 1990s when Morel and Voevodsky devel-
oped the motivic homotopy category and proved that algebraic K-theory was
representable in the stable motivic homotopy category [MV99]. The develop-
ment of the stable motivic homotopy category not only gave a new domain
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to motivic cohomology, it also opened the door for applications of topologi-
cal tools like obstruction theory to more algebraic objects. Several subsequent
developments inspire our work here.

The first set of developments relates to Hermitian K-theory. In 2005 Horn-
bostel showed that Hermitian K-theory was representable in the stable mo-
tivic homotopy category on schemes [Hor05]. We note that Hornbostel de-
fined Hermitian K-theory on schemes by extending the definition on rings
using Jouanolou’s trick. In 2011 Hu-Kriz-Ormsby showed that Hermitian
K-theory on the category of C2-schemes over a field is representable in the
C2-equivariant stable motivic homotopy category [HKO11]. Here they used a
similar trick to Hornbostel in order to extend Hermitian K-theory from rings
with involution to schemes with involution. In the meantime, Schlichting,
building off of work of Thomason, Karoubi, and Balmer, defined the higher
Hermitian K-theory of a dg-category with weak equivalences and duality and
proved the analogues of the fundamental theorems of higher K-theory for
these groups [Sch17]. Although some of Schlichting’s theorems are stated
only for schemes (rather than schemes with C2 action), many of his proofs
require only trivial modification to extend to Grothendieck-Witt groups of
schemes with C2 action. See also [Xie20] for the proofs of the equivariant ver-
sion of some of the theorems together with a new transfer morphism. Another
approach is taken by Hesselholt-Madsen, who define real algebraic K-theory
of a category with weak equivalences and duality as a symmetric spectrum
object in the monoidal category of pointed C2-spaces. Schlichting’s higher
Grothendieck-Witt groups can be recovered from the Hesselholt-Madsen con-
struction by taking homotopy groups of C2-fixed points of deloopings of the
real algebraic K-theory spaces with respect to the sign representation spheres.
We note as well that the Ph.D. thesis of Alejo López-Ávila [Lv18] shows that
themotivic spectrum representingHermitian K-theory in the non-equivariant
setting has an E∞ structure.

Back in K-theory land, Cisinski proved that the six functor formalism in mo-
tivic homotopy theory developed by Ayoub [Ayo07] together with the fact
that the motivic K-theory spectrum KGL is a cocartesian section of SH(−)
yields a simple proof of cdh-descent (descent in the completely decomposed
h topology) for homotopy K-theory [Cis13]. This in turn yields a short proof
of Weibel’s vanishing conjecture for homotopy K-theory, and inspired work
of Kerz, Strunk, and Tamme who solved Weibel’s conjecture by proving pro-
cdh descent for ordinary K-theory [KST18]. Hoyois in [Hoy16] uses Cisinski’s
approach to show cdh descent for equivariant homotopy K-theory.
This paper, inspired by the above developments, shows cdh-descent for ho-
motopy Hermitian K-theory of schemes with C2 action. The techniques in
[Hoy16] provide our pathway to descent. In order to show that Hermitian
K-theory is a cocartesian section of SHC2 (−), we need to show that the Hermi-
tian K-theory space Ω

∞GW can be represented by a certain Grassmannian,
and we need a periodization theorem in order to pass from the Hermitian
K-theory space Ω

∞GW to the homotopy Hermitian K-theory motivic spec-
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trum LA1GW . Schlichting and Tripathi [SST14] show that Ω∞GW is repre-
sentable by a Grassmannian over schemes with trivial action over a regular
base scheme with 2 invertible. Their techniques extend to the equivariant
setting, and with slight modification provide a proof of representability over
non-regular bases. The periodization techniques in [Hoy16] extend to Hermi-
tian K-theory by investigating the Hermitian K-theory of T ρ , the Thom space
of the regular representation A

ρ .

1.1 Outline

Section 2 begins with a review of G-equivariant motivic homotopy theory
where G is a finite group scheme over a base S which is Noetherian of finite
Krull dimension, has an ample family of line bundles, and has 1

2 ∈ Γ(S,OS ).
First we review the definition of the equivariant étale and Nisnevich topolo-
gies, then we introduce the isovariant étale topology and give some examples
of covers. For the reader familiar with non-equivariant motivic homotopy
theory, the assumptions we make on G are strong enough so that structural
results are mostly the same:

• the equivariant Nisnevich topology is generated by a nice cd-structure,

• equivariant schemes are locally affine in the equivariant Nisnevich
topology, and

• to invert G-affine bundles Y → S it suffices to invert A1
S .

The content in this section is a selection of relevant content from [HKØ15].
We end this section with the definition of the unstable and stable equivariant
motivic∞-categories 2.4 a la Hoyois [Hoy17].
Section 3 reviews the definitions and results on Hermitian forms which will
be necessary to work with the Grothendieck-Witt spectrum. Section 3.1 con-
tains the basic definitions and examples, while section 3.3 contains the tools
necessary to show that Hermitian forms are locally determined by rank in the
isovariant or equivariant étale topologies. The final section 3.4 reviews the
main definitions of [Sch17] to allow us to talk about the Grothendieck-Witt
spectra of schemes with involution.
Section 4 is where the background material ends and the paper begins in
earnest. We combine the techniques of [SST14] and [Hoy16] in order to show
that classifying spaces of automorphism groups of Hermitian vectors bundles
are representable in the C2-equivariant motivic homotopy category.
This section culminates with the representability result, Theorem 4.14, which
we note holds over non-regular base schemes:

Theorem 1.1. Let S be a Noetherian scheme of finite Krull dimension with an
ample family of line bundles and 1

2 ∈ S. There is an equivalence of motivic spaces

on Sm
C2
S,qp

LmotZ×RGr•
∼−→ LmotZ× colim

n
BisoEtO(Hn).
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With a simple modification to remove the regularity hypothesis, one can fol-
low [SST14] to show that

LmotZ× colim
n

BisoEtO(Hn)
∼−→ LmotΩ

∞GW

but as this is unnecessary for proving cdh descent, we leave it out of this paper.

Section 5 provides a convenient way of passing from the presheaf of
Grothendieck-Witt spectra to an E∞-motivic spectrum in SHC2(S). The cru-
cial fact is that the localizing version of Hermitian K-theory of rings with
involution, denoted GW , is the periodization of GW with respect to a cer-
tain Bott map derived from projective bundle formulas for P

1 and P
σ (see

Corollary 5.8). Here P
σ is a copy of P1 with action [x : y] 7→ [y : x]. The

fact that the periodization functor is monoidal together with Schlichting’s
results on monoidality of GW immediately give that the motivic spectrum
LA1GW ∈ SHC2 (S) is an E∞ object 5.10.

Theorem 1.2. Let S be a Noetherian scheme of finite Krull dimension with an
ample family of line bundles and 1

2 ∈ S. Then LA1GW lifts to an E∞ motivic

spectrum, denoted KRalg, over Sm
C2
S,qp.

The final section 6 follows the recipe given by Cisinski and summarized in
[Hoy16] to prove cdh descent for equivariant homotopy Hermitian K-theory
on the category of quasi-projective S-schemes. After reviewing the K-theory
case, the section culminates in theorem 6.2.

Theorem 1.3. Let S be a Noetherian scheme of finite Krull dimension with an
ample family of line bundles and 1

2 ∈ S. Then the homotopy Hermitian K-theory
spectrum of rings with involution LA1GW satisfies descent for the equivariant cdh

topology on Sch
C2
S,qp .
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2 Equivariant Topologies and the Equivariant Motivic Homotopy

Category

This section reviews the foundations of equivariant motivic homotopy the-
ory. The key definitions are those of the equivariant étale and Nisnevich
topologies – two topologies that play a crucial role in defining the equivariant
motivic infinity category HG(S) over a Noetherian base scheme S with finite
Krull dimension, with an ample family of line bundles, and with 1

2 ∈ Γ(S,OS ).
Throughout we’ll work with two categories of schemes. Let Sch

C2
S,qp denote the

category of quasi-projective C2-schemes which are separated and finite type

over S, and let Sm
C2
S,qp be the full subcategory of schemes smooth over S.

Notation 2.1. Throughout this section, G will be either a finite group or the
group scheme over S associated to a finite group. Recall that to pass between
finite groups and group schemes over S, we form the scheme

∐
G S with mul-

tiplication (using that fiber products commute with coproducts in SchS,qp):

∐
G S ×S

∐
G S

∼
//
∐

(g1,g2)∈G×G S
µ

//
∐
G S

Whenever we write down a pullback square involving schemes, we’ll tacitly
be thinking of G as a group scheme, and X ×Y will really mean X ×S Y .

We introduce the background definitions from [HKØ15] which will allow us
to define the isovariant étale topology. This is a topology which is slightly
coarser than the equivariant étale topology, but whose points are still nice
enough so that Hermitian vector bundles are locally determined by rank.

Definition 2.2. For a G-scheme X, the isotropy group scheme is a group
scheme GX over X defined by the cartesian square

GX //

��

G ×X
(µX ,idX )

��

X
∆X

// X ×X

Definition 2.3. Let X be a G-scheme. The scheme-theoretic stabilizer of a
point x in X is the pullback

Gx //

��

GX

��

Speck(x) // X.
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By the pasting lemma, this is the same as the pullback

Gx //

��

G ×X

��

Speck(x) // X ×X

Definition 2.4. Let X be a G-scheme, and define the set-theoretic stabilizer
Sx of x ∈ X to be {g ∈ G | gx = x}.

Remark 2.5. With notation as above, the underlying set of the scheme-
theoretic stabilizer Gx can be described as

Gx = {g ∈ Sx | the induced morphism g : k(x)→ k(x) equals idk(x)}.

The example below shows that set-theoretic and scheme-theoretic stabilizers
need not agree.

Example 2.6. (Herrmann [Her13]) Let k be a field, and consider the k-scheme
given by a finite Galois extension k →֒ L. Let G = Gal(L/k) be the Galois group.
The set-theoretic stabilizer of the unique point in SpecL is G itself, while the
scheme-theoretic stabilzer is {e} ⊂ G.

Remark 2.7. Recall that if Z → X is a monomorphism of schemes, then the
forgetful functor from schemes to sets preserves any pullback Z×XY . The for-
getful functor SchGS,qp→ SchS,qp is a right adjoint, hence preserves pullbacks.

Since the inclusion of a point Speck(x) →֒ X×SX will be a monomorphism, the
difference between the set-theoretic and scheme-theoretic stabilizers is due to
the fact that the underlying space of X×SX is not necessarily the fiber product
of the underlying spaces. Indeed, in the example above, SpecL ×k SpecL �∐
g∈G Speck, whereas the pullback in spaces is just a single point.

2.1 The Equivariant and Isovariant Étale Topologies

Notation 2.8. Let S be a G-scheme. The equivariant étale topology on

SchGS,qp will denote the site whose covers are étale covers whose component

morphisms are equivariant.

Definition 2.9. (Thomason) An equivariant map f : Y → X is said to be
isovariant if it induces an isomorphism on isotropy groups GY � GX ×X Y . A
collection {fi : Xi → X}i∈I of equivariant maps called an isovariant étale cover
if it is an equivariant étale cover such that each fi is isovariant.

Remark 2.10. The isovariant topology is equivalent to the topology whose
covers are equivariant, stabilizer preserving, étale maps. We’ll use this notion
more often in computations.
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Remark 2.11. The points in the isovariant étale topology are schemes of the
formG×GxSpec(OshX,x) where x→ x→ X is a geometric point, and (−)sh denotes
strict henselization. See [HKØ15] for a proof.

The fact that the points in the isovariant étale topology are either strictly
henselian local or hyperbolic rings will be crucial when we want to describe
the isovariant étale sheafification of the category of Hermitian vector bundles.
Fortunately Hermitian vector bundles over such rings are well understood,
and we’ll in fact show that Hermitian vector bundles are up to isometry de-
termined by rank locally in the isovariant étale topology.

Remark 2.12. If G = C2, then Gx = {e} or Gx = C2 for all x ∈ X. If Gx = {e},
then G ×Gx Spec(OshX,x) � C2 × Spec(OshX,x) � Spec(OshX,x)

∐
Spec(OshX,x) with a free

action. If Gx = C2, then G ×Gx Spec(OshX,x) = Spec(OshX,x) where the induced
action on the residue field is trivial.

2.2 The Equivariant Nisnevich Topology

Similarly to the non-equivariant case, the equivariant Nisnevich topology is
defined by a particularly nice cd-structure. While there are a few different
definitions of this topology in the literature which can give nonQuillen equiv-
alent model structures, we use the definition from [HKØ15].

Definition 2.13. A distinguished equivariant Nisnevich square is a cartesian

square in SchGS,qp

B //

��

Y

p

��

A �
� i

// X

where i is an open immersion, p is étale, and p restricts to an isomorphism
(Y −B)red→ (X −A)red.

Definition 2.14. The equivariant Nisnevich cd-structure on SchGS,qp is the

collection of distinguished equivariant Nisnevich squares in SchGS,qp .

The next remark has the important consequence that to prove a map is an
equivariant motivic equivalence, it suffices to check that it’s an equivalence
on affine G-schemes.

Remark 2.15. By Lemma 2.20 in [HKØ15], for finite groupsG, any separated
G-scheme of finite type over S is Nisnevich-locally affine.

2.3 The Equivariant cdh Topology

The completely decomposed h (cdh) topology is, roughly speaking, the coars-
est topology satisfying Nisnevich excision and which allows for a theory of
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cohomology with compact support. Like the Nisnevich topology (and unlike
the étale topology) it can be generated by a cd-structure, which gives a conve-
nient way to check whether or not a presheaf is a cdh sheaf.

Definition 2.16. An abstract blow-up square is a cartesian square in SchGS,qp

Z̃ //

��

X̃

p

��

Z �
� i

// X

where i is a closed immersion and p is a proper map which induces an isomor-
phism (X̃ − Z̃) � (X −Z).

Definition 2.17. The cdh topology is the topology generated by the cd-
structure whose distinguished squares are

• the equivariant Nisnevich distinguished squares;

• the abstract blowup squares.

One canonical example of a cdh cover is the map Xred → X for an equivariant
scheme X→ S. Another example is given by resolution of singularities: given
a proper birational map p : X → Y , it’s an isomorphism over some open set U
in Y , so letting Z = Y −U and Z̃ = X−p−1(U ) we get an abstract blowup square

Z̃ //

��

X

��

Z // Y

2.4 The Equivariant Motivic Homotopy Category

In this paper, we’ll work with a Noetherian scheme of finite Krull dimension
and a finite group scheme G over S. Equivariant motivic homotopy theory is
developed in somewhat more generality by Hoyois in [Hoy17], though there’s
a price to be paid for allowing more general group schemes in that the motivic
localization functor becomes more complicated.

Definition 2.18. A presheaf F on SchGS,qp is called homotopy invariant if the

projection A
1
S → S induces an equivalence F(X) ≃ F(X ×A1) for each X in

SchGS,qp . Denote by Phtp(SchGS,qp) ⊂ P (Sch
G
S,qp) the full subcategory spanned

by the homotopy invariant presheaves. Denote by Lhtp the corresponding lo-

calization endofunctor of P (SchGS,qp). When restricting to SmG
S,qp , we’ll abuse

notation and similarly let Lhtp denote the corresponding localization endo-
functor.
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Now we give the usual definition of excision, the condition that guarantees
that a presheaf is a Nisnevich sheaf.

Definition 2.19. A presheaf F on SchGS,qp (or SmG
S,qp) is called Nisnevich ex-

cisive if:

• F(∅) is contractible;

• for every equivariant Nisnevich square Q in SchGS,qp (or Sm
G
S,qp), F(Q) is

cartesian.

Denote by PNis(Sm
G
S,qp) ⊂ P (Sm

G
S,qp) the full subcategory of Nisnevich excisive

presheaves. Denote by LNis the corresponding localization endofunctor.

Finally we come to the definition of a motivic G-space, namely a presheaf that
is both Nisnevich excisive and homotopy invariant.

Definition 2.20. Let S be a G-scheme. Amotivic G-space over S is a presheaf
on SmG

S,qp that is homotopy invariant and Nisnevich excisive. Denote by

HG(S) ⊂ P (SmG
S,qp) the full subcategory of motivic G-spaces over S.

Let

Lmot = colim
n→∞

(Lhtp ◦LNis)
n(F)

denote the motivic localization functor, where the colimit is in the∞-category
of presheaves.

In order to form the stable equivariant motivic homotopy category, we also
need to discuss pointed motivic G-spaces.

Definition 2.21. Let S be a G-scheme. A pointed motivic G-space over S is a
motivic G-space X over S equipped with a global section S → X. Denote by
HG
• (S) the∞-category of pointed motivic G-spaces.

The definition of stabilization can in general be complicated. With our as-
sumptions however, we need only invert the Thom space of the regular repre-
sentation T ρ.

Definition 2.22. Let S be a G-scheme. The symmetric monoidal∞-category
of motivic G-spectra over S is defined by

SHG(S) = HG
• (S)[(T

ρ
S )
−1] = colim

(
HG
•
−⊗T ρ−−−−−→HG

•
−⊗T ρ−−−−−→ ·· ·

)

where T ρ is the Thom space of the regular representationA
ρ/Aρ−0 of G. The

colimit is taken in the∞-category of presentable∞-categories.

Documenta Mathematica 26 (2021) 1275–1327



Cdh Desc. Htpy Herm. K-Theory Rings Inv. 1285

2.5 Computations with Equivariant Spheres

Because we’ll be using equivariant spheres to index our spectra, we’ll record
some of their basic properties here. These computations will be important
when we investigate periodicity of GW in section 5. Though there are ex-
otic elements of the Picard group even in non-equivariant stable motivic ho-
motopy theory, we’ll be concerned with the four building blocks S1,Sσ =
colim(∗ ← (C2)+ → S0),Gm,G

σ
m. Here G

σ
m is the C2 scheme corresponding to

S[T ,T −1] with action T 7→ T −1.

Lemma 2.23. Let Pσ denote P1 with the action defined by [x : y] 7→ [y : x]. There
is an equivariant Nisnevich square

C2 ×Gσm //

π2

��

P
1 − {0}∐P

1 − {∞}

f

��

G
σ
m

i
// P

σ

Proof. Here, we identify G
σ
m with P

σ − {0,∞}. The map i is clearly an open
immersion. Its complement is {0,∞}, and f maps f −1({0,∞}) isomorphically
onto {0,∞}. Furthermore, f is a disjoint union of open immersions, and hence
is (in particular) étale.

Lemma 2.24. There is a homotopy pushout square, where f can be taken to map
C2 to {[1 : 1]}:

(C2)+ ∧ (Gσm)+ //

π2

��

(C2)+

f

��

(Gσm)+
i

// P
σ
+

Proof. The above square is equivalent to the square

(C2)+ ∧ (Gσm)+ //

π2

��

(C2)+ ∧A1
+

f

��

(Gσm)+
i

// P
σ
+

.

By the lemma above,

(C2 ×Gσm)+ //

π2

��

(C2 ×A1)+

f

��

(Gσm)+
i

// P
σ
+
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is a homotopy pushout square. But adding a disjoint basepoint is a monoidal
functor, so X+ ∧ Y+ � (X × Y )+ and this square is equivalent to the desired
square.

Lemma 2.25. P
σ ≈ Sσ ∧Gσm.

Proof. Let Q denote the homotopy cofiber of (C2 ×Gσm)+ → (Gσm)+, and Q̃ de-
note the homotopy cofiber of (C2×A1)+→ P

σ
+. Then the lemma above implies

that Q ≈ Q̃.
Q is the homotopy cofiber of (C2)+ ∧ (Gσm)+ → S0 ∧ (Gσm)+, which is just Sσ ∧
(Gσm)+. Recall that colim(∗ ← X → X ∧Y+) � X ∧Y since this is X ∧ colim(∗ ←
S0→ Y+). Thus the cofiber of S

σ →Q is Sσ ∧Gσm.
The diagram below in which the horizontal rows are cofiber sequences

(C2)+ //

id

��

S0

��

// Sσ

��

(C2)+ //

��

P
σ
+

//

��

Q̃

��

⋆ // P
σ // T

implies that the cofiber of Sσ → Q̃ is Pσ .
The result now follows from the commutativity of the following diagram and
homotopy invariance of homotopy cofiber:

Sσ
id

//

��

Sσ

��

Q
∼

//

��

Q̃

��

Sσ ∧Gσm // P
σ

3 Hermitian Forms on Schemes

This section reviews the definitions and properties of Hermitian forms over
schemes with involution from [Xie20]. After defining the proper notion of
the dual of a quasi-coherent module over a scheme with involution, the def-
inition of a Hermitian vector bundle finally appears in Definition 3.11 as a
locally free OX-module with a well-behaved map to the dual module. Once
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the definitions are in place, we discuss in section 3.3 the structure of Hermi-
tian forms over semilocal rings as this is the fundamental tool for showing that
Hermitian forms are locally trivial in the isovariant étale topology. We prove
this particular statement in Corollary 3.27. We end this section by recalling
Schlichting’s definition of a dg categoy with weak equivalence and duality and
the Grothendieck-Witt groups of such an object.

3.1 Definitions

Definition 3.1. Let R be a ring with involution − : R → Rop . A Hermitian
module over R is a finitely generated projective right R-module, M , together
with a map

b :M ⊗ZM→ R

such that, for all a ∈ R,

1. b(xa,y) = ab(x,y),

2. b(x,ya) = b(x,y)a,

3. b(x,y) = b(y,x).

Definition 3.2. Let R be a ring with involution −. Given a right R-module
M , define a left R-module, denotedM as follows: M has the same underlying
abelian group asM , and the action is given by r ·m =m ·r. If R is commutative,
we can promoteM to an R-bimodule by introducing the right actionm·r =mr.

Remark 3.3. Let R be a commutative ring so that R = Rop . Given an involu-
tion σ : R→ R and a right R-module M , we can identify M with σ∗M , where
σ∗M is the moduleM with R-action restricted through σ. Typically the push-
forward would just take the right R-module M to another right R-module.
Since we really view σ as landing in Rop , we use commutativity of R and the
canonical identification of right Rop modules with left R-modules to think of
σ∗M as a left module. Indeed, σ∗M is a left R-module via the rule r ·m =m·σ(r).

Remark 3.4. Another way to define a Hermitian form over a ring R with in-
volution σ is to give a finitely generated projective right R-moduleM together
with an R−R-bimodule map

b :M ⊗ZM→ R

where we view R as a bimodule over itself by r1 · r · r2 = r1rr2, M as a left R-
module via the involution, and such that b(x,y) = σ(b(y,x)). If we remove the
final condition, we obtain a sesquilinear form.

By the usual duality, we have a third definition:
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Definition 3.5. A Hermitian module over a ring R with involution is a
finitely generated projective right R-moduleM together with an R-linear map
b : M → Mˇ = M∗ such that b = b∗canM , where b∗ : M∗∗ → M∗ is given by

(b∗(f ))(m) = f (b(m)). Here canM :M →M∗∗, canM (m)(f ) = f (m) is the canoni-
cal double dual isomorphism.

Now, we generalize the above definitions to schemes.

Definition 3.6. Let X be a scheme, and M a quasi-coherent OX-module.
Define OXˇ=Hommod−OX (M,OX ).

Definition 3.7. Let X be a scheme with involution σ, and M a right OX -
module. Note that there’s an induced map σ# : OX → σ∗OX . Define the right
(note that we’re working with sheaves of commutative rings, so we can do this)
OX-module M to be σ∗M with OX action induced by the map σ#. That is, if
m ∈ σ∗M(U ), and c ∈ OX (U ), then m · c = m · σ#(c). Note that this last product
is defined, because m ∈ σ∗M(U ) =M(σ−1(U )), c ∈ σ∗OX (U ) = OX (σ−1(U )), and
M is a right OX-module.

Remark 3.8. We have two choices for the definition of the dual M∗. We can
either define

M∗ =Hommod−OX (σ∗M,OX ),
or we can defineM∗ = σ∗Hommod−OX (M,OX ). We claim that these two choices
of dual are naturally isomorphic.

Proof. Let f : σ∗M |U → OX |U be a map of right OX |U -modules. Post-

composing with the map OX |U → σ∗OX |U yields a map f : σ∗M |U → σ∗OX |U ,
a.k.a. a mapM |σ−1U →OX |σ−1U . Note that

σ∗Hommod−OX (M,OX )(U ) = Hommod−OX (M,OX )(σ−1U ), so that f ∈
σ∗Hommod−OX (M,OX )(U ).
On the other hand, given g ∈ σ∗Hommod−OX (M,OX )(U ), so that g : σ∗M |U →
σ∗OX |U , we can postcompose with σ∗(σ

#) to get a map g̃ : σ∗M |∗→ σ∗σ∗OX |U =
OX |U . Since σ2 = id, this is clearly the inverse to the map above.
It’s clear that these assignments are natural, since they’re just postcomposition
with a natural transformation.

Definition 3.9. Define the adjoint module M∗ to be Hommod−OX (σ∗M,OX ).
By the remark above, it doesn’t really matter which of the two possible defi-
nitions we choose here. From this point, we will also use Hommod−OX synony-
mously with HomOX .

Definition 3.10. Given a right OX-module M , we define the double dual
isomorphism canM :M →M∗∗ as follows: given an open U ⊆ X, we define a
map

M(U )→HomOU (σ∗HomOX (σ∗M,OX )|U ,OU )
= HomOU (HomOX (σ∗M |σ(U ),OX |σ(U )),OU )
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by u 7→ ηu , where for an open V ⊆U ,

(ηu)V (γ) = (σ#)−1V (γσ(V )(u|V )).

Here γ ∈ HomOσ(U)
(σ∗M |σ(U ),Oσ(U )) and σ

# is the morphism of sheaves σ# :

OX → σ∗OX . Note that γσ(V )(u|V ) makes sense because σ∗M(σ(V )) =M(V ).
More globally, there’s an evaluation map

evσ :M ⊗ σ∗HomOX (σ∗M,OX )→OX
defined by the composition

M ⊗ σ∗HomOX (σ∗M,OX ) �M ⊗HomOX (M,σ∗OX )
ev−−→ σ∗OX

(σ#)−1
−−−−−→OX

which under adjunction yields the above map.

Definition 3.11. Let X be a scheme with involution − : X → X. Let canX
be the double dual isomorphism of Definition 3.10. A Hermitian vector bundle
overX is a locally free rightOX-module V with anOX-module mapφ : V → V ∗

such that φ = φ∗ canV . A Hermitian vector bundle is non-degenerate if φ is an
isomorphism.

Remark 3.12. Recall that there’s an equivalence of categories between lo-
cally free coherent sheaves on X and geometric vector bundles given by
M 7→ Spec(Sym(M )̌) in one direction and the sheaf of sections in the other.
For locally free sheaves, we have Mˇ⊗ Nˇ � (M ⊗ N )̌ so that the functor is
monoidal. We will use this to think of a Hermitian form as a map of schemes
V ⊗V →A

1.

Below we give the key example of a Hermitian vector bundle.

Example 3.13. Define (diagonal) hyperbolic n-space over a scheme (S,−)
with involution to be A

2n
S with the Hermitian form (x1, . . . ,x2n,y1, . . . ,y2n) 7→∑n

i=1 x2i−1y2i−1 − x2iy2i . Denote this Hermitian form by hdiag.
As defined this way, the matrix of this Hermitian form is




1 0 · · ·
0 −1 0 · · ·
...

...
...

0 · · · · · · · · · −1




the diagonal matrix diag(1,−1,1, . . . ,−1). For this definition to give a Hermi-
tian space isometric to other standard definitions of the hyperbolic form, it’s
crucial that 2 be invertible.
The isometries of HR (where we give it the hyperbolic form above) have the
form [

a b
±b ±a

]
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with a = ±
√
1+ b2,b ∈ R (or a2 − b2 = 1). The usual identification with R

×
⋊C2

follows by considering the decomposition a2 − b2 = 1 ⇐⇒ (a+ b)(a− b) = 1.

Example 3.14. Similarly to above, we can define a hyperbolic form h by the
matrix [

0 I
I 0

]
.

This form is isometric to the above form, and we’ll use both forms below.

3.2 Properties

We record two unsurprising structural results which will be useful when we
define the Hermitian Grassmannian in section 4.

Lemma 3.15. Given a map of schemes with involution f : (Y,iY ) → (X,iX )
and a (non-degenerate) Hermitian vector bundle (V ,ω) on X, f ∗(V ) is a (non-
degenerate) Hermitian vector bundle on Y .

Proof. The pullback of a locally free OX-module is a locally free OY -module,
so we just need to check that it’s Hermitian. Given the map ω : V → V ∗, we get
an induced map f ∗V → f ∗(V ∗) which is an isomorphism if ω is. Thus we just
need to check that f ∗(V ∗) � (f ∗V )∗. But pullback commutes with sheaf dual
for locally free sheaves of finite rank, so we just need to check that changing
the module structure via the involution commutes with pullback; that is, we

need to check that f ∗(V ) = f ∗(V ). However, this is clear since the structure
map on f ∗(V ) is given by

OY × f ∗V � f ∗OX × f ∗V
f ∗(−)×id
−−−−−−−→ f ∗(OX)× f ∗(V )→ f ∗(V ).

Lemma 3.16. Let (V ,φ) be a non-degenerate Hermitian vector bundle over a
scheme with trivial involution X, and let (M,φ|M ) be a (possibly degenerate) sub-
bundle. Given a map of schemes g : Y → X, there is a canonical isomorphism
g∗(M⊥) � (g∗M)⊥.

Proof. Recall that, by definition,M⊥ = ker(V
φ
−→ V ∗→M∗). Equivalently, M⊥

is defined by the exact sequence

0→M⊥→ V →M∗→ 0.

It follows that the composite map g∗(M⊥)→ g∗V → g∗(M∗) is zero, and hence
by universal property of kernel there’s a canonical map

g∗(M⊥)→ ker(g∗V → g∗(M∗) � (g∗(M))∗) = (g∗(M))⊥

where we’ve used the canonical isomorphism g∗(M∗) � (g∗(M))∗ for locally free
sheaves.
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We claim that this map is an isomorphism. It suffices to check on stalks, where
the map can be identified with a map

M⊥g(y)⊗OY,y → ker(Vg(y) ⊗OY,y →M∗g(y)⊗OY,y).

But Vg(y) �M
⊥
g(y)⊕M

∗
g(y), so the sequence

0→M⊥g(y)⊗OY,y → Vg(y)⊗OY,y →M∗g(y) ⊗OY,y → 0

is split exact, and the canonical map is an isomorphism.

We record two incredibly useful results for working with Hermitian forms.
The first implies that Hermitian forms over fields can be written as an orthog-
onal sum of rank 1 Hermitian forms, while the second gives a useful charac-
terization of non-degenerate submodules of a Hermitian module.

Theorem 3.17. (Knus [Knu91] 6.2.4) Let (M,b) be a non-degenerate Hermitian
vector bundle over a division ring D. Then (M,b) has an orthogonal basis in the
following cases:

1. the involution of D is not trivial

2. the involution of D is trivial and char D , 2.

Lemma 3.18. (Knus) Let (M,b) be a Hermitian module, and (U,b|U ) be a non-
degenerate finitely generated projective Hermitian submodule. ThenM =U ⊕U⊥.

Proof. Since b|U :U →U ∗ is an isomorphism, given an m ∈M , there exists u ∈
U such that b(m,−)|U = b(u,−)|U . But then b(m−u,−)|U = 0, so thatm−u ∈ U⊥,
andm = u+m−u. ThusM =U+U⊥. Since φ|U is non-degenerate, U∩U⊥ = 0,
so we’re done.

3.3 Hermitian Forms on Semilocal Rings

From here on out, all rings are assumed to be commutative. Many of the
results of this section can be deduced from [FW17], though we include proofs
in an effort to make the document self contained.
The following lemma is a slight generalization of a result from [Bae78] which
will allow us to conclude that Hermitian forms diagonalize over semilocal
rings with involution.

Lemma 3.19. Let (R,σ) be a commutative ring with involution, and let E be a
Hermitian module over R. Let I ⊂ Jac(R) be an ideal fixed by the involution. For

every orthogonal decomposition E = F ⊥ G of E = E/IE over R/I , where F is a free
non-degenerate subspace of E, there exists an orthogonal decomposition E = F ⊥G
of E with F free and non-degenerate, and F/IF = F,G/IG = G. Here R/I has the
induced involution σ(x + I) = σ(x) +σ(I) = σ(x) + I .
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Proof. Write F = 〈x1〉 ⊕ · · · ⊕ 〈xn〉 with xi ∈ F and det(b(xi ,xj )) ∈ (R/I)×. Choose
representatives xi ∈ E of xi , and let F = Rx1+ · · ·+Rxn . We claim that the xi are
independent, so that F is free: indeed, if λ1x1 + · · · + λnxn = 0, then we get n
equations λ1b(x1,xi ) + · · ·+λnb(xn,xi ) = 0. We claim that det(b(xi ,xj )) = t ∈ R×.
To wit, since 1 − st ∈ I for some s by assumption (because the determinant is
a unit mod the ideal I), then st cannot be contained in any maximal ideal,
so st ∈ R× =⇒ t ∈ R×. It follows that the λi are zero (otherwise we would
have a non-zero vector in the kernel of an invertible matrix), so that the xi
are independent as desired. The determinant fact also shows that F is non-
degenerate, so by the lemma above, it has an orthogonal summand G. By

construction F/I = F, so that G = (F)⊥ = (F/I)⊥ = F⊥/I = G/I .

Lemma 3.20. Hermitian forms over R1 ×R2 (with trivial involution) are in bijec-
tion with Herm(R1)×Herm(R2).

Proof. First, recall that modules over R1 ×R2 correspond to a module over R1

and a module over R2. Indeed, consider the standard idempotents (1,0) =
e1, (0,1) = e2. Fix a module M over R1 × R2. Then M = e1M ⊕ e2M . Now
any m ∈ M can be written as e1m + e2m = (e1 + e2)m = m. Furthermore, if
e1m1 = e2m2, then e2e1m1 = e2e2m2 =⇒ 0 = e2m2.
A Hermitian formM ⊗M → R1 ×R2 is determined by two mapsM ⊗M → R1

and M ⊗ M → R2. Writing M = e1M ⊕ e2M , we note that, by linearity,
it must be the case that e1M ⊗ e2M → R1 × R2 is the zero map; to wit,
b(e1m1, e2m2) = e1e2b(m1,m2) = 0. Thus this Hermitian form is determined
completely by the maps e1M ⊗ e1M → R1 ×R2 and e2M ⊗ e2M → R1 ×R2. Fi-
nally, note that, again by linearity, we see that e1M ⊗ e1M → R2 is the zero
map: b(e1m1, e1m2) = b(e

2
1m1, e1m2) = e1b(e1m1, e1m2), and e1R2 = 0. Similarly

for the other map. Hence the Hermitian form is completely determined by
the maps e1M ⊗ e1M→ R1 and e2M ⊗ e2M→ R2.

Corollary 3.21. Hermitian modules of constant rank diagonalize over com-
mutative rings R with finitely many maximal ideals m1, . . . ,mn (semi-local
rings) and with 1

2 ∈ R.

Proof. By the Chinese Remainder Theorem, R/(m1 ∩ · · · ∩mn) � R/m1 × · · · ×
R/mn = F1 × · · · × Fn. We claim that Hermitian forms over finite products of
fields diagonalize, and then the result will follow from Lemma 3.19. By in-
duction and Lemma 3.20, a Hermitian module M is determined by Hermi-
tian modules Mi over Fi , i = 1, . . . ,n as M = M1 ⊕M2 ⊕ · · · ⊕Mn with action
(f1, . . . , fn) · (m1, · · · ,mn) = (f1m1, . . . , fnmn). By Theorem 3.17, each Mi can be
diagonalized intoMi = 〈a1,i〉 ⊥ · · · ⊥ 〈am,i〉 (it’s important to note here that the
rank of each Mi is the same by assumption). Thus a diagonalization of M is
given by 〈(a1,1, . . . ,a1,n)〉 ⊥ · · · ⊥ 〈(am,1, . . . ,am,n)〉.

Corollary 3.22. Let R be a local ring with trivial involution and with 1
2 ∈ R.

Then any Hermitian module (which is necessarily free) over R diagonalizes.
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Lemma 3.23. Let R be a ring, and consider the ring R×R with the involution that
switches factors. Then any moduleM can be written as e1M ⊕ e2M as in the proof
of Lemma 3.20. A non-degenerate Hermitian form on this module is determined
by a map e1M ⊗ e2M → R ×R. In other words, the matrix representing the map
e1M ⊕ e2M→ e1M

∗ ⊕ e2M∗ has the form
[
0 A

A
t

0

]
.

where A is invertible.

Proof. The first claim is just that b(e1x,e1y) = 0 = b(e2x,e2y) for any
x,y ∈ M . This follows because b(e1x,e1y) = b(e21x,e

2
1y) = e1e1b(e1x,e1y) =

e2e1b(e1x,e1y) = 0. Similarly for b(e2x,e2y). The statement about the matrix

follows by identifying the mapM ⊗M→ R×R with an isomorphismM →M
∗

and using the direct sum decomposition.

Corollary 3.24. Let R,M be as in lemma 3.23 and such that 1
2 ∈ R. Then

M �H(e1M), where H denotes the hyperbolic module functor.

Proof. The assumption that 2 is invertible implies thatM is an even Hermitian
space in the notation of Knus. Now by Lemma 3.23 b|e1M = 0, soM has direct
summands e1M,e2M such that e1M = e1M

⊥ andM = e1M⊕e2M . Now [Knu91,
Corollary 3.7.3] applies to finish the proof.

Corollary 3.25. Let R be a semi-local ring with involution and with 2 in-
vertible. Then any Hermitian module of constant rank over R diagonalizes.

Proof. Using Lemma 3.19 and reducing modulo the Jacobson radical (which
is always stable under the involution), it suffices to prove the corollary for R
a finite product of fields. Then R = F1 × · · · × Fn is semi-simple, and hence
we can index the fields in a particularly nice way (proof is by considering
idempotents), writing R = A1 × · · · ×Am ×B1 × . . .Bn−m such that Ai is fixed set-
wise by the involution, and σ(B2i ) = B2i+1, σ(B2i+1) = B2i . Now, any finitely

generated moduleM can be written as a direct sumM =
⊕m

i=1Mi

⊕ n−m
2

i=1 N2i ⊕
N2i−1. By Theorem 3.17 and Corollary 3.24, the form when restricted to each
Mi orN2i⊕N2i−1 is diagonalizable, so the form is diagonalizable (see the proof
of Corollary 3.21).

Lemma 3.26. Non-degenerate Hermitian vector bundles are determined by rank
over strictly henselian local rings (R,m) with 1

2 ∈ R such that the residue field R/m
has trivial involution.

Proof. By Corollary 3.25, any Hermitian vector bundle over R diagonalizes.
Thus it suffices to prove that any two non-degenerate Hermitian vector bun-
dles of rank 1 are isometric.
A non-degenerate rank 1 Hermitian vector bundle corresponds to a unit x ∈
R× such that x = x (a one dimensional Hermitian matrix). Because R is strictly
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henselian, there is a square root c of x−1. We claim that c = c. Assume not.
Then because the involution on R/m is trivial, c − c ∈ m. Since 2 is invertible,
we have c = c+c

2 + c−c
2 . It follows that c+c

2 is a unit. Otherwise it would be
contained in m which would imply that the unit c was contained in m.

However, we calculate (c + c)(c − c) = c2 − c2. But (c)2 = (c2) = x−1 = x−1, so that
(c + c)(c − c) = 0. Because c + c is a unit, it follows that c − c = 0.
This shows that given any one dimensional Hermitian matrix x, there’s a unit
c such that cxc = 1 so that all one dimensional Hermitian forms are isometric
to the form 〈1〉.

Corollary 3.27. Non-degenerate Hermitian vector bundles are locally de-
termined by rank in the isovariant étale topology.

Proof. The points in the isovariant étale topology are either strictly henselian
local rings whose residue field has trivial involution or a ring of the form
OshX,x × OshX,x with involution (x,y) 7→ (i(y), i(x)). Via the map (x,y) 7→ (x, i(y)),
such rings are isomorphic to hyperbolic rings.
If the ring is a stricty henselian local ring whose residue field has trivial in-
volution, Lemma 3.26 shows that non-degenerate Hermitian forms are de-
termined by rank. If the ring is hyperbolic, then by Corollary 3.24 all non-
degenerate Hermitian forms over the ring are hyperbolic forms of projective
modules over a local ring. Since projective modules over a local ring are
determined by rank, the corresponding hyperbolic forms are determined by
rank.

3.4 Higher Grothendieck-Witt Groups

In [Xie20], the author works with coherent Grothendieck-Witt groups on a
scheme. Because the negative K-theory of the category of bounded complexes
of quasi-coherent OX-modules with coherent cohomology vanishes (together
with the pullback square relating the homotopy fixed points of K-theory to
Grothendieck-Witt theory), there is no difference between the additive and
localizing versions of Grothendieck-Witt spectra in this setting.
Therefore, we work instead with Grothendieck-Witt spectra of sPerf(X) =

ChbVect(X), the dg category of strictly perfect complexes on X. We review
the relevant definitions from [Sch17] now.

Definition 3.28. A pointed dg category with duality is a triple (A,∨,can)
where A is a pointed dg category, ∨ : Aop → A is a dg functor called the
duality functor, and can : 1→∨◦∨op is a natural transformation of dg func-
tors called the double dual identification such that can∨A ◦canA∨ = 1A∨ for all
objects A in A.
Remark 3.29. A dg category with duality has an underlying exact category
with duality (Z0Aptr,∨,can), where Z0Aptr has the same objects as Aptr but
the morphism sets are the zero cycles in the morphism complexes of Aptr.
Here Aptr is the pretriangulated hull of A (see [Sch17] definition 1.7).
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Definition 3.30. A dg category with weak equivalences is a pair (A,w) whereA
is a pointed dg category andw ⊆ Z0Aptr is a set of morphisms which saturated
in A. A map f in w is called a weak equivalence.

Definition 3.31. Given a pointed dg category with duality (A,∨,can), a Her-
mitian object in A is a pair (X,φ) where φ : X → X∨ is a morphism in A
satisfying φ∨ canX = φ.

Definition 3.32. A dg category with weak equivalences and duality is a quadru-
ple A = (A,w,∨,can) where (A,w) is a dg category with weak equivalences
and (A,∨,can) is a dg category with duality such that the dg subcategory
Aw ⊂ A of w-acyclic objects is closed under the duality functor ∨ and canA :
A→ A∨∨ is a weak equivalence for all objects A of A.
Definition 3.33. Let A = (A,w,∨,can) be a dg category with weak equiva-
lences and dualiy. A symmetric space in A ptr is a Hermitian object A whose
dual map φ : A → A∨ is a weak equivalence in A ptr. The Grothendieck-
Witt group GW0(A ) of A is the abelian group generated by symmetric
spaces [X,φ] in the underlying category with weak equivalences and duality
(Z0Aptr ,w,∨,can), subject to the following relations:

1. [X,φ] + [Y,ψ] = [X ⊕Y,φ ⊕ψ]
2. if g : X→ Y is a weak equivalence, then [Y,ψ] = [X,g∨ψg], and

3. if (E•,φ•) is a symmetric space in the category of exact sequences in
Z0Aptr, that is, a map

E• :

∼ φ•
��

E∨• :

E−1 // i
//

∼ φ−1
��

E0
p

// //

∼ φ0

��

E1

∼ φ1

��

E∨1
//
p∨

// E∨0
i∨

// // E∨1

of exact sequences with (φ−1,φ0,φ1) = (φ∨1 can,φ
∨
0 can,φ

∨
−1 can) a weak

equivalence, then

[E0,φ0] =

[
E−1 ⊕E1,

(
0 φ1

φ−1 0

)]
.

Definition 3.34. Given a dg-category with weak equivalences and dual-
ity A = (A,w,∨,can), Schlichting defines [Sch17, Section 4.1] a functorial
monoidal symmetric spectrum GW (A ) using a modified version of the Wald-
hausen S• construction. For the sake of brevity, we don’t reproduce his con-
struction here.
Noting in general that GW doesn’t sit in a localization sequence, Schlichting
defines a localizing variant, GW in [Sch17, Section 8.1] as a bispectrum. The
reason Schlichting defines GW as an object in bispectra rather than spectra is
to get a monoidal structure on GW . We provide an alternative approach to
producing GW via periodization in section 5.
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Definition 3.35. Let X be a Noetherian scheme of finite Krull dimension
with an ample family of line bundles, and let σ : X→ X be an involution onX.
Let sPerf(X) denote the category of strictly perfect complexes on X with the
weak equivalences being the quasi-isomorphisms. Define a family of dualities
on sPerf(X) indexed by i ∈N by

∗i : E 7→HomsPerf(X)(σ∗E,OX [i]).

Note that because σ is an involution, σ∗E is a strictly perfect complex. De-
fine the canonical isomorphim can as in Definition 3.10 as the adjoint of the
evaluation map

ev : E ⊗ σ∗HomsPerf(X)(σ∗E,OX [i])→OX [i].

Combining all this data we get a collection of dg categories with weak equiv-
alences and duality

(sPerf(X),q. iso,∗i ,can).
The ith shifted Grothendieck-Witt spectrum of (X,σ) is defined as

GW [i](X,σ) = GW (sPerf(X),q. iso,∗i ,can).

If Z is an invariant closed subset of X, then the duality on sPerf(X) restricts
to a duality on the subcategory of complexes supported on Z , sPerfZ (X). We
define

GW [i](X on Z) = GW (sPerfZ (X),q. iso,∗i ,can).

4 Representability of Automorphism Groups of Hermitian Forms

Representability of K-theory in the stable motivic homotopy category allows
one to check that K-theory pulls back nicely. In particular, given f : X → S a
map of schemes over S, one can use ind-representability of KGL to show that
f ∗(KGLS ) = KGLX . Together with the formalism of six operations in motivic
homotopy theory, one obtains rather formally cdh descent for algebraic K-
theory, see [Cis13].

The goal of this section is to define a sheaf on Sm
C2
S,qp, denoted RGr, which

represents Hermitian K-theory in the motivic homotopy category H
C2
S . We

first check that over a regular base S with 2 invertible (e.g. Z[12 ]), Hermi-

tian K-theory is representable in the category of C2-schemes over S, Sm
C2
S,qp.

To extend this result to non-regular bases S, we utilize the Morel-Voevodsky
approach to classifying spaces and obtain representability of homotopy Her-

mitian K-theory in the motivic homotopy category H
C2
S .

By analogy with the K theory case, the equivariant scheme representing Her-

mitian K-theory on Sm
C2
S,qp will be a colimit of schemes which parametrize

non-degenerate Hermitian sub-bundles of a given Hermitian vector bundle V .
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The new results here are mostly the definitions, as the proofs in this section
are either minor modifications or identical to the proofs in [SST14]. The main
difference which might cause concern is that stalks in the isovariant étale
topology are now semi-local (rather than local) rings.

We combine the techniques of [SST14] with a Morel-Voevodsky style ar-
gument to compare RGr2d (H

∞) to the isovariant étale classifying space
BisoEtO(Hd ) of the group of automorphisms of hyperbolic d-space. The key to
the comparison is that locally in the isovariant étale topology, Hermitian vec-
tor bundles are determined by rank. This will utilize some of the analysis of
Hermitian forms over semi-local rings from section 3.3. Note that this is a key
difference from the K-theory case where one must pass only to local (rather
than strictly henselian local) rings in order for K-theory to be determined by
rank.

A straightforward generalization of the techniques in [SST14] allows one to
compare colimnBisoEtO(Hn)(∆R) to the Grothendieck-Witt space defined in
section 3.4 by viewing them both as group completions and comparing their
homology. This approach is inspired by the Karoubi-Villamayor definition of
higher algebraic K-theory. We don’t carry out this comparison here as it is
unnecessary for proving cdh descent.

4.1 The definition of the Hermitian Grassmannian RGr

The definition here describes the sections of the underlying scheme of RGr
over a scheme X→ S. We advise the hurried reader to skip to section 4.2.

Lemma 4.1. Let F be a presheaf on SmS,qp and let a : F =⇒ F be a natural

transformation such that a◦a = idF . Then there’s an associated presheaf on Sm
C2
S,qp

defined by the formula (X,σ : X → X) 7→ F (X)C2 where the action of C2 on F (X)
is defined by f 7→ aXF (σ)(f ).

Proof. Note that this is indeed a C2-action, since aXF (σ)(aXF (σ)(f )) =
F (σ)aX (aXF (σ)(f )) = F (σ)(F (σ)(f )) = f using naturality.

Fix a (possibly degenerate) Hermitian vector bundle (V ,φ) over a base scheme
S with 2 invertible and with trivial involution. The canonical example of such
a base scheme is S = SpecZ[12 ].

We’ll define a presheaf RGr : (Sm
C2
S,qp)

op → Set by first defining a presheaf on

SmS,qp, showing that it’s representable, equipping with an action, then taking

the corresponding representable functor on Sm
C2
S,qp. We can then extend to

an arbitrary equivariant base T with 2 invertible by pulling back along the
unique map T →Z[12 ].

• On objects, RGr(V )(f : X → S) for an S-scheme f : X → S is a split
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surjection (p,s)

f ∗V
p

// // W

s
yy ◆❴
♣

,

whereW is locally free.

Here by an isomorphism of split surjections we mean a diagram

f ∗V
p

// // W

s
yy ◆❴
♣

φ

��

f ∗V
p′

// // W ′
s′

yy ◆❴
♣

such that φ is an isomorphism satisfying φ ◦ p = p′ and s = s′ ◦φ.

• Given a morphism

Y

h
��
❄❄

❄❄
❄❄

❄❄

g
// X

f
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S

over S, define

RGrV (g)( f
∗V

p
// // W

syy ◆❴
♣

) = h∗V can
// g∗f ∗V

g∗p
// // g∗W

g∗s
xx ◗❴
♠

.

There’s a natural action of C2 on RGrV whose non-trivial natural transforma-
tion will be denoted η. Define η as follows:
Fix an object X ∈ SmS,qp . Define

ηX( f
∗V

p
// // W

s
yy ◆❴
♣

) = f ∗V
q
// // (kerp)⊥

t
ww ◗❴
♠

.

We’ll define the maps q and t now. Let t′ denote the canonical map kerp →
f ∗V , let q′ be the map

q′ : f ∗V
id−(s◦p)

// f ∗V im
// im(t′)

(t′)−1
// kerp

where we’ve used the identification im t′ = im(id− (s ◦ p)).
Recall that

W⊥ = ker(f ∗V
f ∗φ
−−−→ f ∗(V ∗)

can−−−→ (f ∗V )∗
s∗−→W ∗)
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and similarly for (kerp)⊥.
Leaving out the canmap for convenience, we get split exact sequences

0 // W⊥ // f ∗V
s∗

// W ∗

p∗

yy
// 0

and

0 // (kerp)⊥ // f ∗V
(t′)∗

// (kerp)∗

(q′)∗

ww
// 0 .

By the splitting lemma for abelian categories, f ∗V � W⊥ ⊕W ∗, and there’s
a (canonical) split surjection f ∗V ։ W⊥ with W⊥ locally free. Similarly we
obtain a canonical surjection q : f ∗V ։ (kerp)⊥ split by a map t.
Given an isomorphism

f ∗V
p

// // W

s
yy ◆❴
♣

ψ

��

f ∗V
p′

// // W ′
s′

yy ◆❴
♣

we get an isomorphism of (split) diagrams

f ∗V
f ∗φ

// (f ∗V )∗ s∗
// W ∗

(ψ−1)∗

��

f ∗V
f ∗φ

// (f ∗V )∗
(s′)∗

// (W ′)∗

and hence an isomorphism of split surjections

f ∗V
q

// // W⊥
t

xx P❴
♥

δ
��

f ∗V
q′

// // (W ′)⊥
t′

xx P❴
♥

,

so that ηX is a well-defined map of sets. Given a map of schemes g : Y → X,
such that f ◦ g = h and an element

f ∗V
p

// // W

s
yy ◆❴
♣
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in RGrV (X),

RGr(g) ◦ ηX ( f ∗V p
// // W

s
yy ◆❴
♣

) =RGr(g)( f ∗V
q
// // (kerp)⊥

t
ww ◗❴
♠

)

= h∗V can
// g∗f ∗V

g∗q
// // g∗((ker(p))⊥)

g∗t
uu ❚❩❴❞❥

while

ηY ◦RGr(g)( f ∗V
p

// // W

s
yy ◆❴
♣

)) = h∗V can
// g∗f ∗V

q′
// // (g∗(ker(p)))⊥
t′

uu ❚❩❴❞❥

.

By Lemma 3.16, there’s a canonical isomorphism g∗((ker(p)⊥)) →
(g∗(ker(p)))⊥, and under this isomorphism q′ and t′ correspond to g∗q,
and g∗t, respectively. This concludes the check of naturality.

Now by Lemma 4.1, there’s a presheaf RGr : Sm
C2
S,qp → Set. To determine

its values on a C2-scheme (X,σ), we note that a fixed point of the action of
Lemma 4.1 is determined by an isomorphism of split surjections

f ∗V
q
// // σ∗(ker(p)⊥)

t
ww ❙❴
❦

ψ

��

f ∗V
p

// // ker(p)

s
ww ❙❴
❦

Note that because σ is an involution, for anyOX-moduleM , there’s a canonical
isomorphism of OX-modules σ∗M � σ

∗M . Thus there’s a natural isomorphism

Hommod−OX (σ∗f
∗V ,−) �Hommod−OX (σ

∗f ∗V ,−) �Hommod−OX (f
∗V ,−).

It follows that any Hermitian form

φ : f ∗V →Hommod−OX (f
∗V ,OX )

can be promoted to a Hermitian form

φ̃ : f ∗V →Hommod−OX (σ∗f
∗V ,OX )

compatible with an involution σ on X.
Let (M,φ|M ) be a Hermitian sub-bundle of f ∗V over the scheme X with trivial
involution. We claim that σ∗(M⊥) is the orthogonal complement ofM viewed

as a Hermitian sub-bundle of f ∗V with the promoted form φ̃. Said differently,
we claim that

σ∗(ker(f ∗V
φ|M−−−→Hom(M,OX ))) � ker(f ∗V

φ̃|M−−−→Hom(σ∗M,OX )).
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But using the natural isomorphism between σ∗ and σ∗, together with the nat-
ural isomorphisms

σ∗Hom(M,Ox) �Hom(M,OX )

and σ∗f ∗V � f ∗V , this becomes a question of whether σ∗ is left exact. In
general it isn’t, but because σ is an involution, σ∗ is naturally isomorphic to σ∗
which is left exact. The claim follows.

4.2 Representability of RGr

Fix a Hermitian vector bundle (V ,φ) over S where dim(V ) = n and S is a
scheme with trivial involution. Then the underlying scheme of RGr(V ) is the
pullback

RGr(V ) //

��

HomOS (V ,V )×HomOS (V ,V )

◦,id
��

HomOS (V ,V )
∆

// HomOS (V ,V )×HomOS (V ,V )

where the right vertical map sends p 7→ (p ◦ p,p). In other words, the under-
lying scheme is the scheme of idempotent endomorphisms of V . The action
corresponds to the map p 7→ p†, where p† is the adjoint of p with respect to
the form φ.
Note that using this description, an equivariant map (X,σ)→ RGr(V ) corre-
sponds to an idempotent p : VX → VX such that φ−1(γ−1(σ∗p)γ)∗φ = p, where
we’re being cavalier and using ∗ to denote both dual (on the outside) and pull-

back (by σ). Here γ is the canonical isomorphism VX
γ
−→ σ∗VX ; if the structure

map of X is f : X→ S, then γ arises from the equality σ ◦ f = f .
Note that the form on V(X,σ) is by definition the composite

φ̃ : VX
φ
−→ V ∗X

(γ∗)−1
−−−−−→ σ∗V ∗X

(η∗)−1
−−−−−→ σ∗V

∗
X ,

and the adjoint of p is given by φ̃−1(σ∗p)
∗φ̃. Expanding, this is

φ−1(γ ∗)(η∗)(η∗)−1(σ∗p)∗(η∗)(η∗)−1(γ ∗)−1φ = φ−1(γ−1(σ∗p)γ)∗φ,

and so we recover the condition that p† = p, which corresponds to the fact
that VX = kerp ⊥ imp, and hence the restriction of the form on VX to imp
(and kerp) is non-degenerate.
To summarize, the underlying scheme ofRGr(V ) represents idempotents, and
equivariant maps pick out those idempotents which correspond to orthogonal
projections.

Definition 4.2. Now fix a dimension d and a non-degenerate Hermitian
vector bundle (V ,φ) over S. Define RGrd (V ) to be the closed subscheme
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of RGr(V ) cut out by rk(p) = d, where rk is the rank map. In other words,
RGrd (V ) is the pullback

RGrd(V ) //

��

RGr(V )

rk

��

{d} // Z

The requirement that V be non-degenerate is necessary so that the action on
RGr(V ) sends rank d subspaces to rank d subspaces and hence induces an
action on RGrd(V ).

Remark 4.3. Denote by g : RGrd (V ) → S the structure map of RGrd(V ).
Because RGrd(V ) is representable by a C2-scheme, there’s an idempotent
g∗(V ) → g∗(V ) corresponding to the identity map id : RGrd (V ) → RGrd(V ).
This idempotent is simply the idempotent which, over a point of RGrd(V )
represented by an idempotent p : V → V , restricts to p. There’s an action σ
on RGrd(V ) ×S V induced by the action on RGrd(V ), and using the fact that
σpσ = p† one can see that this idempotent is non-degenerate with respect
to the promoted Hermitian form on g∗(V ) compatible with the involution on
RGrd (V ).

Remark 4.4. Since we’ve shown that RGr(V ) represents non-degenerate Her-
mitian subbundles of V , at this point we’ll move away from explicitly refer-
ring to split surjections and just represent the sections of RGr(V ) by non-
degenerate subbundles.

Definition 4.5. Let HS denote the hyperbolic space 3.13 over the base
scheme S. Let H∞ = colimnH

n
S . Similarly given a non-degenerate Hermitian

vector bundle V , let V ⊥H
∞ = colimnV ⊥H

n. For V ⊂H
∞ a constant rank

non-degenerate subbundle, let |V | denote the rank of V . Order such subbun-
dles of H∞ by inclusion, and denote the resulting poset by P . Given an inclu-
sion V →֒ V ′ of non-degenerate subbundles, denote by V ′−V the complement

ofV inV ′. LetH : P→ Fun(Sm
C2 ,op
S,qp ,Set) be the functor which on objects sends

a subbundle V to RGr|V |(V ⊥H
∞) = colimnRGr|V |(V ⊥H

n). Given an inclu-
sion V →֒ V ′, the induced map RGr|V |(V ⊥H

∞)→ RGr|V ′ |(V
′ ⊥H

∞) is given
by E 7→ E ⊥ (V ′−V ). Note that because V is non-degenerate, V ⊥ (V ′−V ) = V ′.
Define

RGr• = colimH. (1)

4.3 The Étale Classifying Space

The content of this section is a straightforward generalization of the work
of [SST14] to the C2-equivariant setting. Fix a scheme S with 2 invertible, and
let (V ,φ) be a (possibly degenerate) Hermitian vector bundle over S. For a
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C2-scheme f : X→ S over S, let

S (V ,φ)(X)

be the category of non-degenerate Hermitian sub-bundles of f ∗V . A mor-
phism in this category from E0 to E1 is an isometry not necessarily compatible
with the embeddings E0,E1 ⊆ f ∗V . Using pullbacks of quasi-coherent mod-

ules, we turn S into a presheaf of categories on Sm
C2
S,qp . For integer d ≥ 0,

define
Sd(V ,φ) ⊂ S (V ,φ)

to be the presheaf which on a C2-scheme f : X → S assigns the full subcate-
gory of non-degenerate Hermitian sub-bundles of (f ∗V ,f ∗φ) which have con-
stant rank d. The associated presheaf of objects is RGrd(V ,φ).
Note that the object V = (V ,0) ∈ S|V |(V ⊥H

∞) has automorphism groupO(V ).
Thus we get an inclusionO(V ,φ)→S|V |(V ⊥H

∞), whereO(V ) is the isometry
group considered as a category on one object. After isovariant étale sheafifica-
tion, this inclusion becomes an equivalence; this follows from Corollary 3.27
that on the points in the isovariant étale topology, Hermitian vector bundles
are determined by rank.
Upon applying the nerve, we get maps of simplicial presheaves BO(V ) →
BS|V |(V ⊥ H

∞) which is a weak equivalence in the isovariant étale topology.
Abusing notation, let BisoEtO(V ) denote a fibrant replacement of BS|V |(V ⊥
H
∞) in the isovariant étale topology so that we get a sequence of maps

BO(V )→ BS|V |(V ⊥H
∞)→ BisoEtO(V ).

which are weak equivalences in the isovariant étale topology.

Lemma 4.6. Let (V ,φ) be a non-degenerate Hermitian vector bundle over a
scheme S with trivial involution and 1

2 ∈ Γ(S,OS ). Then for any affine C2-scheme
SpecR over S, the map

BS|V |(V ⊥H
∞)(R)→ BisoEtO(V )(R)

is a weak equivalence of simplicial sets. In particular, the map

BS|V |(V ⊥H
∞)→ BisoEtO(V )

is a weak equivalence in the equivariant Nisnevich topology, and hence an equiva-
lence after C2 motivic localization.

Proof. Each Hermitian vector bundle W ∈ S|V |(V ⊥ H
∞)(R) gives rise to an

O(V )-torsor via W 7→ Isom(V ,W ). Note that this is an O(V )-torsor because
locally in the isovariant étale topology, W � V , so that locally Isom(V ,W ) �
Isom(V ,V ) � O(V ). Because Hermitian vector bundles are isovariant étale lo-
cally determined by rank, the same proof as the ordinary vector bundle case
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shows that the category of O(V ) torsors is equivalent to the category of Her-
mitian vector bundles. Because over an affine scheme, every Hermitian vector
bundle is a summand of a hyperbolic module, it follows that S|V |(V ⊥H

∞)(R)
is equivalent to the category of isovariant étale O(V ) torsors.

Let F : Sm
C2
S,qp→ Gpd be the sheaf which assigns to f : X→ S the groupoid of

O(f ∗V )-torsors. The constructionW 7→ Isom(f ∗V ,W ) described above defines
a functor S|V |(V ⊥H

∞)→F which is an equivalence when evaluated at affine
C2-schemes. It follows that there’s a sequence

BS|V |(V ⊥H
∞)→ BF → BisoEtO(V )

where the first map is a weak equivalence of simplicial sets when evaluated
at affine C2-schemes, and by [Jar01] Theorem 6, the second map is a weak
equivalence of simplicial sets when evaluated at any C2-scheme.

Definition 4.7. Following [SST14], let

S• = colim
V⊂H∞S

S|V |(V ⊥H
∞)

where similarly to the definition of RGr, for V ⊂ V ′ the functor

S|V |(V ⊥H
∞)→S|V ′ |(V ′ ⊥H

∞)

is defined on objects by E 7→ E ⊥ V ′ −V and on morphisms by f 7→ f ⊥ 1V ′−V .

Definition 4.8. Define the infinite orthogonal group

O(H∞S ) = colim
W⊆H∞S

O(W )

where the colimit is over non-degenerate subbundles of H∞. If V is a Hermi-
tian vector bundle, define

O(V ⊥H
∞
S ) = colim

W⊆V⊥H∞S
O(W )

whereW is a non-degenerate subbundle of V ⊥H
∞.

Definition 4.9. Let R be a commutative ring. Define ∆R to be the simpli-
cial ring with involution [n] 7→ R[x0, . . . ,xn]/(

∑
xi − 1), where the involution is

inherited from the involution on R.

Lemma 4.10. ( [SST14]) Let V be a non-degenerate Hermitian vector bundle over
a commutative ring with involution (R,σ) such that 1

2 ∈ R. Then the inclusion
H
∞ ⊂ V ⊥H

∞ induces a homotopy equivalence of simplicial groups

O(H∞)(∆R)→O(V ⊥H
∞)(∆R) A 7→ 1V ⊥ A.
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Proof. First, assume that V = H. Consider the map j : O(Hn) → O(H2n+2)
sending A to 1H ⊥ A ⊥ 1Hn+1 . We claim that this is naı̈vely A

1 homotopic
to the inclusion i : O(Hn) → O(H2n+2), i(A) = A ⊥ 1Hn+2 which defines the

colimit O(H∞). Let g =




0 I2n 0
I2 0 0
0 0 I2n+2


 where In denotes an n × n identity

matrix. Then i = gjg−1 = gjg t. Because g corresponds to an even permuta-
tion matrix, it can be written as a product of elementary matrices, each of
which is naı̈vely A

1 homotopic to the identity. It follow that g is naı̈vely A
1

homotopic to the identity, and hence the induced maps i, j : O(Hn)(∆R) →
O(H2n+2)(∆R) are simplicially homotopic via a base-point preserving homo-
topy. It follows that i, j induce the same map on homotopy groups, so that
j∗ = i∗ : πkO(H∞)(∆R) = colimnπkO(Hn)(∆R)→ πkO(H∞)(∆R) is the colimit
of a map corresponding to a cofinal inclusion of diagrams, and hence is an
isomorphism on all simplicial homotopy groups. Because simplicial groups
are Kan complexes, it follows that j is a homotopy equivalence, and the claim
is proved when V =H.
Now a trivial induction shows that the lemma holds when V =H

n. In general,
choose an embedding V ⊆H

n, and consider the sequence of maps

O(H∞)(∆R)→O(V ⊥H
∞)(∆R)→O(Hn ⊥H

∞)(∆R)

→O(Hn ⊥ V ⊥H
∞)(∆R).

The composites O(H∞)(∆R)→ O(Hn ⊥H
∞) and O(V ⊥H

∞)(∆R)→O(Hn ⊥
V ⊥H

∞)(∆R) are weak equivalences, so by 2 out of 6 the first map is a weak
equivalence. Because it is a map of simplicial groups it is a homotopy equiva-
lence.

For non-degenerate Hermitian vector bundles (V ,φV ), (W,φW ) and a commu-
tative R-algebra with involution (A,σ), let

St(V ,W )(A)

be the set of A-linear isometric embeddings f : VA→WA. Given a map A→ B
of commutative R-algebras with involution, tensoring over R with B makes
St(V ,W )(−) a presheaf on commutative R-algebras with involution. There’s
a transitive left action of O(V ⊥ H

∞) on St(V ,V ⊥ H
∞) given by (f ,g) 7→

f ◦ g . Let iV denote the isometric embedding V →֒ V ⊥H
∞ : v 7→ (v,0). The

stabilizer of iV is the subgroup O(H∞) ⊂O(V ⊥H
∞) where the inclusion map

is A 7→ 1V ⊥ A.
It follows that there’s an isomorphism of presheaves of sets

O(H∞)\O(V ⊥H
∞) � St(V ,V ⊥H

∞) f 7→ f ◦ iV .

Now Lemma 4.10 shows that the map O(H∞)(∆R)→ O(V ⊥ H
∞)(∆R) is an

equivariant map which is a non-equivariant homotopy equivalence. The sim-
plicial group O(H∞)(∆R) acts freely on both the domain and codomain, so
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that the quotients O(H∞)(∆R)\O(V ⊥H
∞)(∆R) and O(H∞)(∆R)\O(H∞)(∆R)

are homotopy equivalent.
Together with the isomorphism of simplicial sets

O(H∞)(∆R)\O(V ⊥H
∞)(∆R) � St(V ,V ⊥H

∞)(∆R)

it follows that St(V ,V ⊥H
∞)(∆R) is contractible for a commutative ring (R,σ)

with involution and 1
2 ∈ R. Morever, this simplicial set is fibrant because G/H

is fibrant for a simplicial group G and subgroup H . We have thus proved:

Lemma 4.11. Let R be a commutative ring with 1
2 ∈ R. Then

St(V ,V ⊥H
∞)(∆R)

is a contractible Kan set.

Now we move to identifying RGrV as a quotient of a contractible space by a
free group action. Let V be a non-degenerate Hermitian vector bundle over a
ring R with involution. Then the group O(V ) acts on the right on St(V ,U ) by
precomposition. The map St(V ,U ) → RGrV (U ) : f 7→ im(f ) factors through
the quotient St(V ,U )/O(V ). The map is clearly surjective, and hence furnishes
an isomorphism of sets

St(V ,U )/O(V ) � RGrV (U ) f 7→ im(f ).

In particular, there’s an isomorphism of presheaves of sets

St(V ,V ⊥H
∞)/O(V ) � RGrV (V ⊥H

∞) (2)

Now, let V be a non-degenerate Hermitian vector bundle over a ring with
involution R and letU be a possibly degenerate Hermitian form overR. Define
EV (U ) to be the category whose objects are R-linear maps V →U of Hermitian
forms (aka isometric embeddings), and whose morphisms from two objects
a : V →U and b : V →U are maps c : im(a)→ im(b) making the diagram

V
a

//

b
!!❈

❈❈
❈❈

❈❈
❈❈

im(a)

c

��

im(b)

commute.
There’s a natural right action of O(V ) on EV (U ) which on objects sends

EV (U )×O(V )→EV (U ) : (a,g) 7→ ag

and which on morphisms is the trivial action. Then clearly there’s an isomor-
phism

EV (U )/O(V ) � SV (U ) a 7→ im(a).
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Lemma 4.12. The category EV (V ⊥H
∞) is contractible.

Proof. The category is nonempty and every object is initial.

The map of simplicial sets

St(V ,V ⊥H
∞)(∆R)→EV (V ⊥H

∞)(∆R)

is O(V )(∆R) equivariant and a weak equivalence after forgetting the action.
Furthermore, O(V )(∆R) acts freely on both sides, so that the induced map on
quotients

RGrV (V ⊥H
∞)(∆R)→SV (V ⊥H

∞)(∆R) (3)

is also a weak equivalence. As an aside, the inclusion BO(V ) ⊂ BSV (V ⊥H
∞)

is a weak equivalence since SV (V ⊥H
∞) is a connected groupoid.

We now show that there’s a motivic equivalence RGr• → colimnBisoEtO(Hn)
over possibly non-regular Noetherian base rings.
Let X → S be an affine C2-scheme over S, and let W be a non-degenerate
Hermitian vector bundle over X. Given an isovariant étale O(W ) torsor π :
T → X, and an isovariant étale torsor U , let Uπ denote the twisted sheaf (U ×
T )/O(W ).
Our goal is to appy Lemma 2.1 from [Hoy16], which we restate below:

Lemma 4.13. (Hoyois) Let Γ be an isovariant étale sheaf of groups on Sm
C2
S,qp

acting on an isovariant étale sheaf U . Suppose that, for every X ∈ Sm
C2
S,qp and

every isovariant étale torsor π : T → X under Γ, Uπ → X is a motivic equivalence

on Sm
C2
S,qp. Then the map

LisoEt (U/Γ)→ BisoEtΓ

induced by U → ∗ is a motivic equivalence on Sm
C2
S,qp .

Given an O(W )-torsor π : T → X, we want to check that St(W,H∞)π =

(St(W,H∞) × T )/O(W ) → X is a motivic equivalence on Sm
C2
S,qp . Leting V =

Wπ , this is equivalent to checking that St(V ,H∞X ) is motivically contractible

over Sm
C2
X . To wit, because X is affine there’s an embedding V →֒ H

m,
and we have V ⊥ H

∞
X � H

∞
X since H

∞
X = colimW⊂H∞X W . It follows that

St(V ,H∞X ) � St(V ,V ⊥H
∞
X ), and Lemma 4.11 (which didn’t assume regularity

of the base) shows that St(V ,V ⊥H
∞
X ) is motivically contractible over Sm

C2
X .

It’s a direct consequence of the above lemma that

LisoEt (St(W,W ⊥H
∞)/O(W ))→ BisoEtO(W )

is a motivic equivalence. However, we’ve already shown (2) that

St(W,W ⊥H
∞)/O(W ) � RGrW (W ⊥H

∞),
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so that

LisoEtSt(W,W ⊥H
∞)/O(W ) � LisoEtRGrW (W ⊥H

∞) � RGr|W |(W ⊥H
∞)

which after taking colimits gives the desired result.

Theorem 4.14. Let S be a Noetherian scheme of finite Krull dimension with
1
2 ∈ S. There are equivalences of motivic spaces on Sm

C2
S,qp

Z×RGr•
∼−→Z× colim

n
BisoEtO(Hn)

5 Periodicity in the Hermitian K-Theory of Rings with Involu-

tion

5.1 A Projective Bundle Formula for P
σ

Let Pσ denote P
1 with involution σ defined by [x : y] 7→ [y : x]. When nec-

essary we’ll point it at the point [1 : 1]. Throughout this section, we’ll fix the
notation O =OP1 .
Consider the square of O-modules

O(−1)
T+S
2

//

T−S
2

��

O
T−S
2

��

Hom(σ∗O,O)
T+S
2
// Hom(σ∗O(−1),O)

(4)

where the map T−S
2 : O(−1)→O is induced via the tensor-hom adjunction by

the composition

O(−1)⊗
{
T − S
2

}
⊗ σ∗O

id⊗i⊗id−−−−−−−→O(−1)⊗O(1)⊗ σ∗O

id⊗id⊗(σ#)−1
−−−−−−−−−−−−→O(−1)⊗O(1)⊗O

µ⊗id
−−−−→O ⊗O

µ
−→O

(5)

and the map T−S
2 : O → σ∗O(−1) is induced via the tensor-hom adjunction by

the composition

O ⊗
{
T − S
2

}
⊗ σ∗O(−1)

σ#⊗σ#◦i⊗id−−−−−−−−−−−→ σ∗O ⊗ σ∗O(1)⊗ σ∗O(−1)

id⊗σ∗(µ)−−−−−−−→ σ∗O ⊗ σ∗O
σ∗µ−−−→ σ∗O

(σ#)−1
−−−−−→O

(6)

where µ denotes multiplication. We’re abusing notation in the map (6) and
using σ# to denote both the maps O → σ∗O and O(1) → σ∗O(1) induced by
the graded automorphism of k[S,T ] given by f (S,T ) 7→ f (T ,S). The image
of 1 ∈ O under the adjoint of the map (6) yields the element S−T

2 as a global
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section of σ∗O(1). The map T+S
2 :Hom(σ∗O,O)→Hom(σ∗O(−1),O) is induced

by precomposition with σ∗(
T+S
2 ), which is just multiplication by the global

section T+S
2 . Equation (5) can be understood similarly.

We claim that diagram 4 commutes. Fix an open U ⊆ P
σ which need not be

invariant, and open V ⊆U . Going down then right yields the composite map

u 7→ (v 7→ T − S
2
· u · (σ#)−1

(
T + S

2
· v

)
).

Going right first then down yields the composite

u 7→ (v 7→ (σ#)−1(σ#(
T + S

2
· u) · S −T

2
· v))

These are equal since T+S
2 is an invariant global section. Note that the dia-

gram 4 is a map in
Fun([1],Vect(Pσ )) from

O(−1)
T+S
2−−−−→O

to its dual,

Hom(σ∗O,O)
T+S
2−−−−→Hom(σ∗O(−1),O).

Thus this diagram defines a (not necessarily non-degenerate) form, which we
denote by φ.
In order to show that this φ is symplectic, we have to check that φ∗ ◦ (−can) =
φ. To spell this out in detail, the dual and double dual are functors. Applying
these two functors, we get the two objects

O∗
T+S
2
∗
// O(−1)∗

and

O(−1)∗∗
T+S
2
∗∗

// O∗∗

in Fun([1],ChbVect(Pσ )).
Because can is a natural transformation id → ∗∗, there’s a commutative dia-
gram

O(−1)

can

��

T+S
2

// O

can

��

O(−1)∗∗
T+S
2
∗∗

//

T−S
2
∗

��

O∗∗

T−S
2
∗

��

O∗
T+S
2
∗
// O(−1)∗
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The goal is to show that the vertical maps in the large rectangle are the nega-
tive of the vertical maps in diagram 4. Tracing through the definitions, we see
that can is the map which sends u ∈ O(−1)(U ) to the natural transformation

γ 7→ (σ#)−1(γ(u|V )),

and φ∗ ◦ can(u) is the natural transformation

v 7→ (σ#)−1
(
T − S
2
· v · (σ#)−1(u)

)

which is the same thing as

v 7→
(
−T − S

2
· (σ#)−1(v) · u

)
.

On the other hand, T−S2 : O(−1)→O∗ is the map

u 7→ (v 7→ T − S
2
· u · (σ#)−1(v))

which is by what we calculated above equal to −(φ∗ ◦ can) = φ∗ ◦ (−can).
Now just as in [Sch17], taking the mapping cone of φ via the functor

Cone : Fun([1],ChbVect(Pσ ))[0]→
(
ChbVect(Pσ )

)[1]

yields a symplectic form βσ = Cone(φ).
We claim that there’s an exact sequence

O(−1)



T+S
2

T−S
2




−−−−−−→O⊕O∗
(
T+S
2 −T−S2

)

−−−−−−−−−−−−−−→O(−1)∗

where the maps are the maps in diagram 4. The fact that the composite is
zero follows from commutativity of that 4. To show that the kernel equals
the image, note that any permutation of (T+S2 , S−T2 ) is a regular sequence on

k[S,T ]. Thus if T+S
2 x + S−T

2 y = 0, reducing mod T+S
2 we see that y ∈ (T+S2 )

and reducing mod S−T
2 we see that x ∈ (S−T2 ). It follows that the square defin-

ing φ is a pushout, and hence the induced map on mapping cones is a quasi
isomorphism. Hence βσ is a well-defined, non-degenerate symplectic form in
(
ChbVect(Pσ )

)[1]
.

Theorem 5.1. Let X be a scheme with trivial involution with an ample family
of line bundles and 1

2 ∈ X, and denote by p : Pσ → X the structure map of the
equivariant projective line over X, with action [x : y] 7→ [y : x]. Then for all n ∈Z,
the following are natural stable equivalences of (bi-) spectra

GW [n](X)⊕GW [n−1](X,−can) ∼−→ GW [n](PσX )

GW [n](X)⊕GW [n−1](X,−can) ∼−→ GW [n](PσX )

(x,y) 7→ p∗(x) + βσ ∪ p∗(y).
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Proof. The proof of Theorem 9.10 in [Sch17] can be easily adapted. Note that
our Bott element βσ is a linear change of coordinates from the standard Bott
element on P

1. Keeping in mind that the involution only affects the duality
and not the underlying derived category with weak equivalences, it’s still true
that βσ⊗ : T sPerf(X) → T sPerf(P1

X )/p
∗T sPerf(X) is an equivalence of trian-

gulated categories. As in loc. cit., if we denote by w the set of morphisms
in sPerf(P1

X ) which are isomorphisms in T sPerf(P1
X )/p

∗T sPerf(X), we get a
sequence

(sPerf(X),quis)
p∗

// (sPerf(P1
X ),quis)

// (sPerf(P1
X ),w)

which is a Morita exact sequence of categories with duality. That is, the maps
are maps of categories with duality, and the underlying sequence of categories
is Morita exact. It follows that this sequence induces a homotopy fibration of
GW [n] and GW [n] spectra. As remarked above, these fibration sequences split
via the exact dg form functors

(sPerf(X),quis)
βσ⊗

// (sPerf(P1
X ),quis)

// (sPerf(P1
X ),w)

so that the composite induces an equivalence of triangulated categories. Fi-
nally, using that GW and GW are invariant under derived equivalences
[Sch17, Theorem 6.5] [Sch17, Theorem 8.9], we conclude the theorem.

Considering GW as a presheaf of spectra on Sch
C2
S,qp it follows from Theo-

rem 5.1 that GW [n](Pσ , [1 : 1]) � GW [n−1](X,−can) � GW [n+1](X), recovering
one of the results of [Xie20]. Hence

Hom(Σ∞(Pσ , [1 : 1]),GW [n]) � GW [n+1]

as presheaves of spectra on Sch
C2
S,qp. In particular, by the projective bundle

formula from [Sch17] and the usual cofiber sequence

([1 : 1]×Pσ )∨ (P1 × [1 : 1])→ P
σ ×P1→ P

σ ∧P1

we obtain the periodicity isomorphism

Hom((P1, [1 : 1])∧ (Pσ , [1 : 1]),GW [n]) � GW [n]

induced by the map

GW [n](X)→ GW [n+1](P1
X )→ GW [n](Pσ

P
1
X
)

x 7→ β ∪ p∗(x) 7→ βσ ∪ q∗(OX [−1]⊗ β ∪ p∗(x))

where p is the projection P
1
X → X, and q is the projection P

σ
P
1
X
→ P

1
X . The

analogous statements hold for the presheaf of spectra GW .
As notation for later, let β1+σ denote the induced map

β1+σ : (P1, [1 : 1])∧ (Pσ , [1 : 1])→ GW. (7)
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Lemma 5.2. The Bott element βσ restricts to zero in C2×Aσ = P
σ − [1 : 0]

∐
P
σ −

[0 : 1].

Proof. As in [Sch17], because the Bott element is natural it suffices to prove
that the bott element βσ in P

σ
Z[ 12 ]

restricts to zero. From the definition of the

Bott element, it’s clear that it’s supported on [1 : −1]. There’s a commutative
diagram

GW [n](C2 ×Aσ on [1 : −1]∐[1 : −1]) k
// GW [n](C2 ×Aσ )

f
��

g

ss❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❣❣❣❣

GW [n](C2 ×Aσ − [1 : −1]) h
// GW [n](C2 × Spec(Z[12 ]))

where f and h are induced by inclusion of the point [1 : 1]. Because Z[12 ]

is regular and C2 ×Aσ is equivariantly isomorphic to C2 ×A1, [Xie20, The-
orem 7.5] shows that f is an isomorphism, hence g is an injection. By lo-
calization [Sch17, Theorem 6.6], the maps k and g compose to form an exact
sequence, and it follows that k is the zero map.

5.2 The Periodization of GW

The idea behind the Bass construction in algebraic K-theory is that as a con-
sequence of satisfying localization, there is a Bass exact sequence ending in

· · · → Kn(Gm)
∂−→ Kn−1(X)→ 0

for all n. This comes from applying K-theory to the pushout square man-
ifesting the usual cover of P1 together with the projective bundle formula.
The map ∂ is split by x 7→ [T ] ∪ p∗(x) where p is the projection to the base
scheme p : Gm → X. It follows that if K exhibits an exact Bass sequence in
all degrees n, then Kn−1(X) can be identified with the image of ∂([T ]) ∪ −
(i.e. this map is an automorphism of Kn−1(X). In fact, ∂([T ]) ∪ − is the
idempotent endomorphism (0,1) of K0(P

1) � K0(X) ⊕ K0(X)). The Bass con-
struction can be thought of as defining KBn (X) so that there’s an exact se-
quence KBn (A

1)⊕KBn (A1)→ KBn (Gm)→ KBn−1(X), then identifying KBn−1(X) with

(0,1) ·KBn−1(P1). In other words, it can be constructed as the colimit

KB = colim(K →Hom(A1
∐

Gm

A
1,K)→ . . . )

where the pushouts are taken in presheaves and the maps are induced by
applying Hom(−,K) in the category of K-modules to the composite

A
1
∐

Gm

A
1→ ΣGm

T−→ K.
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Here, loosely speaking, the first map in the composite represents the bound-
ary in the long Bass exact sequence ∂ while the second represents [T ], so that
in the category of K modules this map represents cup product with ∂([T ]).
We’ll spell out an example a bit more explicitly to give a flavor for the con-
structions to come. Let W = A

1∐
Gm

A
1, where we emphasize again that

the pushout is in the category of presheaves. Because this is a (homotopy)
pushout in the category of presheaves, applying Hom(−,K) gives us a ho-
motopy pullback square, and hence a Mayer-Vietoris long exact sequence.
In particular, it gives us a map of presheaves of spectra (which can be pro-
moted to a map of K-modules) ΩK(Gm) → K(W ), where we abuse notation
and write K(W ) for the internal hom of W into K . Because KB satisfies Nis-
nevich descent, and Ki(−) = KBi (−) for i ≥ 0, it follows by the 5-lemma that

K0(W ) � K0(P
1) � K0(X) ⊕K0(X), and that the element ∂([T ])∪− represents

projection onto the second factor as an endomorphism of K0(W ).
Now, we want to explain why ∂([T ])∪K−1(W ) � KB−1(X). We’ll use the fact that

KB(W ) � KB(P1) and that KB−1(X) = ∂([T ])∪KB−1(P1) = ∂(KB0 (Gm)).
To begin, because ∂([T ]) is zero in K0(A

1), the image of ∂([T ]) ∪ K−1(W ) in
K−1(A

1) ⊕ K−1(A1) is zero. By exactness, it follows that ∂([T ]) ∪ K−1(W ) ⊆
∂K0(Gm).
There’s a map φ : K−1(W )→ KB−1(W ) � KB−1(P

1) and a commutative diagram

K0(A
1)⊕K0(A

1) //

��

K0(Gm)
∂

//

��

K−1(W )

φ
��

K0(A
1)⊕K0(A

1) // K0(Gm)
∂

// KB−1(W )

which shows that φ restricts to an isomorphism ∂(K0(Gm)) � ∂(K
B
0 (Gm)), and

in particular that φ(∂(K0(Gm))) = ∂(K
B
0 (Gm)). Now

φ(∂([T ])∪∂(K0(Gm)) = ∂([T ])∪φ(∂K0(Gm)) = ∂([T ])∪∂KB0 (Gm) = ∂KB0 (Gm)

where we’ve crucially used that for Bass K-theory, ∂([T ])∪∂KB0 (Gm) = ∂([T ])∪
∂KB0 (P

1) = ∂KB0 (Gm).
But as remarked above, the fact that ∂([T ]) is trivial in K0(A

1) implies that
∂([T ]) ∪ ∂(K0(Gm)) ⊆ ∂(K0(Gm)), and we know that φ|∂K0(Gm) is an isomor-
phism. Since φ|∂([T ])∪∂(K0(Gm)) is surjective by the chain of equalities above,
it follows that ∂K0(Gm) = ∂([T ])∪K−1(W ). We’ve shown that

∂([T ])∪K−1(W ) = ∂K0(Gm) � ∂K
B
0 (Gm) � K

B
−1(X).

If we take pointed versions of the above sequences by pointing all the schemes
in question at [1 : 1] everything goes through as above with the extra ben-
efit that ∂([T ]) ∪ KB−1(W,1) = KB−1(W,1), and the map KB(X) → KB(W,1),
x 7→ p∗(x)∪ ∂([T ]) is an isomorphism by the projective bundle formula. Now
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the map p : (W,1) → 1 is split by inclusion of the base point, and thus
p∗ : K(W,1) → K((W,1) ⊗ (W,1)) is injective. Furthermore, p∗(x ∪ ∂([T ])) =
∂([T ])∪ p∗(x), so that the image of K−1(W,1) in K−1((W,1)⊗ (W,1)) under the
map x 7→ ∂([T ])∪ p∗(x) is, by what we showed above, isomorphic to KB−1(X).
This shows that

π−1K
B = π−1 colim(K →Hom(A1

∐

Gm

A
1,K)→ ·· · ).

This argument is mostly formal given a few pieces of structural information:

• A map K → KB which respects cup products,

• Nisnevich descent for KB, and

• A Bass exact sequence split by cup product with an element in K1(G
m).

The remainder of this section will show that these three pieces of structure
are present for Grothendieck-Witt groups, which will allow us to repeat es-
sentially the same argument to give a construction of the localizing GW as
a periodization of GW . When the base scheme is a perfect field, a similar
construction of GW as a periodic spectrum was given in [HKO11].
First, equivariant Nisnevich descent for GW is a consequence of results from
[Sch17].

Lemma 5.3. GW is Nisnevich excisive on the category of schemes with an ample
family of line bundles over S.

Proof. Recall that the distinguished squares defining the equivariant Nis-

nevich cd-structure are cartesian squares in SchGS,qp

B //

��

Y

p

��

A
j

// X

where j is an open immersion, p is étale, and (Y − B)red → (X − A)red is an
isomorphism.
As in [Sch17, Theorem 9.6], a result of Thomason [TT07, Theorem 2.6.3] tells
us that the map p induces a quasi-equivalence of dg categories

p∗ : sPerfZ (X)→ sPerfZ (Y ).

Because GW is invariant under derived equivalences [Sch17, Theorem 8.9], it
follows that p∗ induces an isomorphism on Grothendieck-Witt groups. Not-
ing that U and the closed subset Z = X − A are G-invariant, the localiza-
tion sequence [Sch17, Theorem 9.5] generalizes to our setting and identifies
GW (sPerfZ (X)) and GW (sPerfZ (Y )) as the horizontal homotopy fibers. This
allows us to conclude the result.
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Next, we identify the analogues of the Bass sequence and the splittings
therein. From [Sch17, Theorem 9.13], we know that there’s a Bass sequence

0 // GW
[n]
i (X) // GW

[n]
i (A1

X )⊕GW
[n]
i (A1

X )

// GW
[n]
i (X[T ,T −1]) // GW

[n−1]
i−1 (X) // 0

where the last non-trivial map is split by cup product with (the pullback

of) [T ] in GW
[1]
1 (Z[12 ][T ,T

−1]). This gives us a candidate map A
1∐

Gm
A

1 →

ΣGm
[T ]−−−→GW [1].

Now, we want to find a candidate map Σ
σ
G
σ
m → GW [−1] so that we can even-

tually invert

Σ
σ
G
σ
m ⊗ΣGm→ GW [−1] ⊗GW [1]→GW [0].

DefineWσ by the pushout square in the category of presheaves

(C2 ×Gσm)+ //

��

(C2 ×Aσ )+

��

(Gσm)+ // Wσ

There’s an associated homotopy pushout square

(C2 ×Gσm)+/(C2)+ //

��

(C2 ×Aσ )+/(C2)+

��

(Gσm)+/S
0 // Wσ /S

0

and taking the homotopy cofiber of the left vertical map yields Sσ ∧G
σ
m. It

follows that the homotopy cofiber of the right vertical map is equivalent to
Sσ ∧Gσm, and that there’s a long exact sequence

· · · // GW
[n]
i (Sσ ∧Gσm) // GW

[n]
i (Wσ /S

0)

// GW
[n]
i ((C2 ×Aσ )+/(C2)+) // · · ·

(8)

Here ifAσ
S � S, then (C2×Aσ )+/(C2)+ � (C2)+∧Aσ is contractible andW/S0 �

Sσ ∧Gσm. Working over the regular ring Z[12 ], GW (Wσ /S
0) � GW (Pσ /S0), and

GW
[n]
i (Wσ /S

0) � GW
[n]
i (Pσ /S0) � GW

[n+1]
i (S)
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by the projective bundle formula 5.1.

The maps in the sequence (8) are maps of GW
[0]
∗ -modules, and the sequence

is natural in the base scheme. The induced map

GW
[−1]
0 (Sσ ∧Gσm)→ GW

[0]
0 (Z[

1

2
])

is an isomorphism ofGW
[0]
0 (Z[12 ])-modules, and hence the inverse is uniquely

determined by a lift of the element 〈1〉 ∈ GW [0]
0 (Z[12 ]) to GW

[−1]
0 (Sσ ∧ G

σ
m).

We stress that this element 〈1〉 maps to βσ ∪O
Z[ 12 ]

[−1]∪ 〈1〉 in GW (Pσ ), and

in particular it isn’t the unit of multiplication in GW (Pσ ). We’ll denote this
element by [T σ ] in analogy with the non-equivariant case.
Over an arbitrary base scheme X, we denote by [T σ ] the pullback of [T σ ] to

GW
[−1]
0 (Sσ ∧ G

σ
m ×Z[ 12 ]

X) using functoriality of GW . We summarize in the

definition below.

Definition 5.4. Let [T ] denote the class of the element T in

GW
[1]
1 (Z[12 ][T ,T

−1]). Let ∂([T ]) denote the image of [T ] under the connecting
map in the Bass sequence

∂ : GW
[1]
1 (Z[

1

2
][T ,T −1])→GW

[1]
0 (P1

Z[ 12 ]
).

Let [T σ ] denote the lift of the element 〈1〉 ∈ GW [0]
0 (Z[12 ]) to GW

[−1]
0 (Sσ ∧Gσm).

Let ∂([T σ ]) denote the image of [T σ ] under the connecting map in the long
exact sequence 8

∂ : GW
[−1]
1 (Sσ ∧Gσm) // GW

[−1]
0 (Wσ /S

0) .

Over an arbitrary scheme S with 1
2 ∈ S, let [T ] and [T σ ] denote the pullbacks

f ∗([T ]), f ∗([T σ ]) under the unique map f : S → Z[12 ], and similarly for ∂([T ])
and ∂([T σ ]).

LetW = (A1∐
Gm

A
1)+. Now (by taking the pointed version of everything) we

have a candidate map

γ :Wσ /S
0 ⊗W/S0→ Sσ ∧Gσm ⊗ S1 ∧Gm

[Tσ ]⊗[T ]
−−−−−−−−→GW [−1] ⊗GW [1]→ GW (9)

to invert.
Given a presentably symmetric monoidal ∞-category and a morphism α :
x→ 1 to the monoidal unit, define

QαE = colim(E
α−→Hom(x,E)

α−→Hom(x⊗2,E)
α−→ . . . ).

In generalQαE is not the periodization of E with respect to α, one obstruction
being that the cyclic permutation of α3 can fail to be homotopic to the identity.
This matters because checking periodicity requires permuting α⊗ id to id⊗α,
and these can fail to be homotopic.
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Lemma 5.5. The canonical map GW →QγGW is an equivalence of (pre)sheaves

of spectra on Sch
C2
S,qp .

Proof. We know by the projective bundle formulas that

GW (Pσ ×P1 =P
σ
P1 ) �GW (P1)⊕GW [1](P1)

�GW (X)⊕GW [−1](X)⊕GW [1](X)⊕GW (X).

We claim that under this isomorphism, cup product with ∂[T σ ] is projection
onto GW [1](P1) and cup product with ∂[T ] on GW [1](P1) is projection onto
GW (X). The latter statement is already known from [Sch17, Theorem 9.10],
so we show the former. It suffices to show that cup product with ∂[T σX ]∪− :

GW [n](X)⊕GW [n+1](X)→ GW (X)⊕GW [n+1](X) is projection onto the second
factor. But this is precisely how [T σ ] is defined: it’s a lift under ∂ of a generator
ofGW [1](X), so cup product with it is cup product with 〈1〉 onGW [n+1](X) and
it’s necessarily zero on the other factor because it gives a well-defined element
on the pointed GW [−1](Pσ , [1 : 1]).
Because GW satisfies equivariant Nisnevich descent, GW (W/S0) �
GW (P1, [1 : 1]), and GW (Wσ /S

0) � GW (Pσ , [1 : 1]). Now we’re es-
sentially done. The maps in the colimit defining QγGW first identify

GW
[n]
i (X) with ∂([T ]) ∪ GW

[n]
i (P1

X , [1 : 1]), then identify GW
[n]
i (P1

X ) with

∂([T σ ]) ∪ GW
[n]
i (Pσ

P
1
X
, [1 : 1]). As we noted above, the projective bundle

formulas imply that the image of GW
[n]
i (X) under these identifications is

isomorphic to GW
[n]
i (X), and hence QγGW

[n]
i (X) ≃GW

[n]
i (X) as desired.

Lemma 5.6. The canonical map QγGW
[m] → QγGW

[m]
� GW [m] induces iso-

morphisms πnQγGW
[m]
� πnGW

[m] for n ≥ 0 and for all m.

Proof. This follows from two out of three and the proof of lemma 5.5 since
πnGW

[m]
� πnGW

[m] for n ≥ 0 and for all m.

Lemma 5.7. The canonical map QγGW
[m] → QγGW

[m]
� GW induces an iso-

morphism πnQγGW
[m]
� πnGW

[m] for n <= 0 and for all m.

Proof. Because homotopy groups commute with filtered (homotopy) colimits
of spectra

πnQγGW
[m] = colim(πnGW

α−→ πnHom(W/S0 ⊗Wσ /S
0,GW )

α⊗2−−−→ ·· · ).

Fix [m] for now and denote by F in the image of the map of groups

γ ∗ : GW [m]
n ((W/S0 ⊗Wσ /S

0)⊗i )→ GW
[m]
n ((W/S0 ⊗Wσ /S

0)⊗i+1)
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and note that F0n � GW
[m]
n . Denote by FBin the same construction as above

with GW replaced by GW .
For i ≥ −n, we claim that there are exact sequences

F in(A
1/1⊗Wσ /S

0)⊕ F in(A1/1⊗Wσ /S
0)→ F in(Gm/1⊗Wσ /S

0)

∂−→ F in−1(W/S0 ⊗Wσ /S
0)

such that ∂(F in(Gm/1 ⊗Wσ /S
0)) = ∂([T ])∪ ∂([T σ ])∪ F in−1(W/S0 ⊗Wσ /S

0). We

prove this in conjunction with the statement that, for each n, F in � GW
[m]
n

for i ≥ −n. The proof is induction in i, and we must show that ∂(F in(Gm/1 ⊗
Wσ /S

0)) = ∂([T ])∪F in−1(W/S0⊗Wσ /S
0). For n ≥ 0, the same argument that we

gave for K-theory together with lemma 5.6 works. In more detail, there’s an
exact sequence

GW
[m]
n (A1/1⊗Wσ /S

0)⊕GW [m]
n (A1/1⊗Wσ /S

0)→ GW
[m]
n (Gm/1⊗Wσ /S

0)

∂−→ GW
[m]
n−1(W/S0 ⊗Wσ /S

0)

and because n ≥ 0, the same argument we gave for K-theory above identifies

∂(GW
[m]
n (Gm/1 ⊗Wσ /S

0)) with ∂([T ])∪ ∂([T σ ])∪GW [m]
n−1(W/S0 ⊗Wσ /S

0) and

in turn with GW [m](X). Then we just use the fact that p∗ is injective and a

module map to conclude that ∂([T ])∪ ∂([T σ ])∪ p∗(GW [m]
n−1(W/S0 ⊗Wσ /S

0)) is

isomorphic to GW [m](X).
Now fix an i, and assume by induction that our claim holds for all −n ≤ i.
Then there’s an exact sequence

GW
[m]
n (A1/1⊗Wσ /S

0)⊕GW [m]
n (A1/1⊗Wσ /S

0)→GW
[m]
n (Gm/1⊗Wσ /S

0)

∂−→ F in−1(W/S0 ⊗Wσ /S
0)

which identifies ∂(GW
[m]
n (Gm/1⊗Wσ /S

0)) with ∂([T ])∪∂([T σ ])∪F in−1(W/S0⊗
Wσ /S

0), but we know that ∂(GW
[m]
n (Gm/1⊗Wσ /S

0)) is equal toGW
[m]
n−1(W/S0⊗

Wσ /S
0) �GW

[m]
n−1(X). Thus, letting p denote the projectionW/S0⊗Wσ /S

0→ X
to the basepoint,

GW
[m]
n−1(X) � p

∗(∂([T ])∪∂([T σ ])∪F in−1(W/S0 ⊗Wσ /S
0))

= ∂([T ])∪∂([T σ ])∪ p∗(F in−1(W/S0 ⊗Wσ /S
0))

= F i+1n−1

since p∗ is split injective.
The meatier part of the argument is producing the exact sequence for F i+1n−1,
though the proof is essentially the same as the proof of the base case.
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First note that for all i and n, there’s a chain complex

F in(A
1/1⊗Wσ /S

0)⊕ F in(A1/1⊗Wσ /S
0)→ F in(Gm/1⊗Wσ /S

0)

∂−→ F in−1(W/S0 ⊗Wσ /S
0)

which is just the image of the usual long exact sequence for GW under the
map γ ∗. Depending on n, this sequence may or may not be exact, as the image
of an exact sequence is in general not exact.
Consider the commutative diagram

F i+1n−1(A
1/1⊗Wσ /S

0)⊕ F i+1n−1(A
1/1⊗Wσ /S

0) //

��

GW (A1/1⊗Wσ /S
0 ⊗ (W/S0 ⊗Wσ /S

0)⊗i+2)⊕2

��

F i+1n−1(Gm/1⊗Wσ /S
0) //

∂
��

GW (Gm/1⊗Wσ /S
0 ⊗ (W/S0 ⊗Wσ /S

0)⊗i+2)

∂B

��

F i+1n−2((W/S0 ⊗Wσ /S
0)⊗i+2)

φ
// GW

[m]
n−2((W/S0 ⊗Wσ /S

0)⊗i+3)

where the upper two horizontal maps are isomorphisms by what we’ve al-
ready shown. We claim that the left column is exact. The composite is zero
since it’s a chain complex, and if x ∈ ker(∂), then using the fact that the middle
and top maps are isomorphisms we produce a lift of x.
Now it remains only to check that the image of ∂ coincides with ∂([T ]) ∪
∂([T σ ])∪F i+1n−2. This is the part of the proof we adapt from the K-theory case.

First, it’s clear that ∂([T ]) ∪ ∂([T σ ]) ∪ F i+1n−2 ⊆ im(∂), since ∂([T ]) restricts to
zero in A

1. For the other containment, by exactness and the fact that the
left two vertical arrows are isomorphisms, we know that im(∂) � im(∂B).
Now since ∂([T ]) ∪ ∂([T σ ]) ∪ p∗(F i+1n−2) ⊆ im(∂), it is isomorphic to its image

in GW
[m]
n−2((W/S0 ⊗Wσ /S

0)⊗i+2). But φ is a map of modules, so that

φ(∂([T ])∪∂([T σ ])∪F i+1n−2((W/S0 ⊗Wσ /S
0)⊗i+2)) � ∂([T ])∪∂([T σ ])∪ im(φ)

But φ is necessarily surjective, and cup product with ∂([T ]) ∪ ∂([T σ ]) is an
automorphism of GW . It follows that

∂([T ])∪∂([T σ ])∪F i+1n−2((W/S0 ⊗Wσ /S
0)⊗i+2) � im(φ) = im(∂B) � im(∂)

so that ∂([T ])∪∂([T σ ])∪F i+1n−2((W/S0 ⊗Wσ /S
0)⊗i+2) = im(∂).

We’ve shown that if the inductive statement holds for i,n, then it holds for
i+1,n−1. The fact that it holds for i+1,m for anym < n+1 is clear by appealing
to results for GW . Now, the lemma follows from the explicit description for
filtered colimits of groups.

Corollary 5.8. Let γ be the map (9). Then there are weak equivalences of
presheaves of spectra

QγGW
∼−→QγGW ≃GW.
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Proof. Combining Lemma 5.6 and Lemma 5.7 we see that QγGW → QγGW
induces an isomorphism on stable homotopy groups. Lemma 5.5 shows that
QγGW ≃GW .

Recall the definition of β1+σ from equation (7).

Definition 5.9. A GW -module E is called Bott periodic if the map

Hom(β1+σ ,E) : E→Hom((P1, [1 : 1])∧ (Pσ , [1 : 1]),E)

is an equivalence.

Let A− and G
−
m denote A

1 and Gm with the sign action x 7→ −x. There are
zigzags

A
1/Gm →֒ P

1/(P1 − [−1 : 1])և P
1/[1 : 1]

and
A
−/G−m →֒ P

σ /(Pσ − [−1 : 1])ևP
σ /[1 : 1].

The maps β : P1/[1 : 1]→ GW [1] and βσ : Pσ /[1 : 1]→ GW [−1] lift to P
1/(P1 −

[−1 : 1]) andP
σ /(Pσ −[−1 : 1]) respectively by results analogous to Lemma 5.2,

and hence there are induced maps

β′ :A1/Gm→GW [1]

(βσ )′ :A−/G−m→GW [−1].

Taking smash products and using that A1 ⊕A− �A
ρ , we get a map

β′ ⊗ (βσ )′ :Aρ/(Aρ − 0)→ GW [1] ⊗GW [−1]→GW. (10)

When working over a scheme other than the base scheme S, we’ll let β′X and

(βσ )′X denote the analogous constructions with A
1 and Gm replaced by A

1
X

and (Gm)X . For a vector bundle E, let V0(E) denote E/(E − 0), the quotient by
the complement of the zero section.

Theorem 5.10. Let S be a Noetherian scheme of finite Krull dimension with an
ample family of line bundles and 1

2 ∈ S. Then LA1GW lifts to an E∞ motivic

spectrum, denoted KR
alg
S , over Sm

C2
S,qp.

Proof. GW is an E∞ object in presheaves of spectra (it’s a commutativemonoid

in the category of presheaves of symmetric spectra) on Sch
C2
S,qp via the cup

product defined in [Sch17, Remark 5.1]. By [Hoy16] Lemma 3.3, together
with corollary 5.8 above, GW is the periodization of GW with respect to γ .
Let T ρ denote the Thom space of the regular representation A

ρ. Now GW
is Nisnevich excisive, so that GW (W/S0 ⊗Wσ /S

0) � GW (P1 ∧P
σ ), and GW

is γ periodic if and only if it is Bott periodic. Because LA1 preserves Nis-
nevich sheaves of spectra and E∞-objects, LA1GW is an E∞ object in the cat-
egory of homotopy invariant Nisnevich sheaves of spectra. In the notation of
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Hoyois, let LA1GWX denote the restriction of LA1GW to X ∈ Sch
C2
S,qp. Then

LA1GWX ∈ Sp(HC2 (X)), where Sp(HC2 (X)) is the ∞-category of homotopy in-

variant Nisnevich sheaves of spectra on Sm
C2
X,qp . Let (LA1GWX )mod denote the

category of modules over LA1GWX in Sp(HC2(X)). By [Hoy16], proposition

3.2, LA1GW lifts to an E∞ object KR
alg
X in (LA1GWX )mod [(T

ρ)−1] and by for-

getting the module structure an E∞-algebra in SHC2(X).

Lemma 5.11. The A
1-localization of the Bott element LA1(β′X ⊗ (βσ )′X ) :

LA1V0(A
ρ)→ LA1GWX , viewed as an element of Sp(PA1 (Sch

C2
S,qp))/LA1GWX

is 3-

symmetric.

Proof. The proof is identical to Lemma 4.8 in [Hoy16]. The main idea is
that the identity and the cyclic permutation σ3 are both induced by matri-
ces in SL3·2(Z) acting on A

3ρ, and any two such matrices are (naı̈vely) A1-
homotopic so that there’s a map h :A1×A3ρ→A

3ρ witnessing the homotopy.
We can extend this to a map

φ :A1 ×A3ρ π1×h−−−−→A
1 ×A3ρ .

Letting p : A1 × S → S denote the projection, φ is an automorphism of the
vector bundle p∗(A3ρ).
Now we claim that the automorphisms φ0,φ1 of V0(A

3ρ) induced by the re-
strictions of φ to 1 and 0 are A

1-homotopic over LA1GW . Let β′
A3ρ denote

(β′X ⊗ (βσ )′X )⊗3. Let β′A3ρ denote (β
′
A1×X ⊗ (β

σ )′
A1×X )

⊗3.
To prove the claim, any automorphism φ as above induces a commutative
triangle

V0(p
∗(A3ρ))

φ
//

β′
p∗(A3ρ ) ''❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

V0(p
∗(A3ρ))

β′
p∗(A3ρ )ww♦♦

♦♦
♦♦
♦♦
♦♦
♦♦

LA1GWA1×X

or presheaves of spectra on Sch
C2

A1×X . As in [Hoy16], the diagram ultimately
comes from our construction of the Bott elements via the projective bundle
formula and the functoriality of the Proj(Sym - ) construction with respect to
automorpshims of the underlying vector bundle (in particular the fact that
there are induced isomorphisms on each twisting sheaf O(d)). By adjunction,
this is equivalent to a triangle

A
1
+ ⊗V0(A

3ρ) //

β′
A
3ρ ''❖

❖❖
❖❖

❖❖
❖❖

❖❖
V0(A

3ρ)

β′
A
3ρyyrr

rr
rr
rr
rr

LA1GWX

which is an A
1-homotopy between φ0 and φ1 over LA1GW as desired.
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We’ve shown that GW is Bott periodic and Nisnevich excisive. Since it’s the γ
periodization of GW and γ periodicity is equivalent to Bott periodicity for
Nisnevich excisive sheaves, GW is in fact the reflection of GW in the subcate-
gory of Nisnevich excisive and Bott periodicGW -modules. Thus by definition,
LA1GW is the reflection ofGW in the subcategory of homotopy invariant, Nis-
nevich excisive, and Bott periodic GW -modules.

Corollary 5.12. The canonicalmapGW →QβLmotGW is the universal map
to a homotopy invariant, Nisnevich excisive, and Bott periodic GW -module.
In particular

LA1GW =QβLmotGW

Proof. Given Lemma 5.11, the proof is identical to Proposition 4.9 in [Hoy16].

Replacing GW with its connective cover GW≥0, the same reasoning yields:

Porism 5.13. The canonical map GW≥0→QβLmotGW≥0 is the universal map
to a homotopy invariant, Nisnevich excisive, and Bott periodic GW≥0-module.
In particular

LA1GW =QβLmotGW≥0

Proof. In short, the reason the result extends to the connective cover GW≥0 is
that we have at no point used the negative homotopy groups of GW in our
arguments. We’ll spell this out more explicitly now.
The connective cover construction is monoidal, and the canonical map

GW
[m]
≥0 → GW [m] is a ring map. The Bott elements β and βσ live in the zeroth

homotopy groups of GW [1](P1) and GW [1](Pσ ,−can). It follows that these
Bott elements restrict to well defined elements in the zeroth homotopy groups

of GW
[1]
≥0 (P

1) and GW
[1]
≥0 (P

σ ,−can). The definition of the map γ in (9) extends
without modification to GW≥0, as all the elements involved in the discussion
prior to (9) were in the non-negative homotopy groups of GW .

In particular, there’s a canonical map GW
[m]
≥0 → GW [m] which exhibits GW as

a GW≥0 module and is an isomorphism on non-negative homotopy groups,
and Lemma 5.6 remains true replacing GW with GW≥0. Lemma 5.7, which
is just an analogue of the Bass construction, is an inductive argument which
at no point uses any facts about the negative homotopy groups of GW . The
exact sequence involvingGW in the proof of Lemma 5.7 is just a formal conse-
quence of the definition of W and Wσ (more precisely, that they’re pushouts
of presheaves of spectra), and remains exact replacing GW with GW≥0. Fi-
nally, the proof of Lemma 5.11 holds without modification when we replace
each instance of GW by GW≥0.

6 cdh Descent for Homotopy Hermitian K-theory

Recall from Definition 2.16 that the cdh topology is the topology generated
by the Nisnevich and abstract blow-up squares. Fix a Noetherian scheme of
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finite Krull dimension S, and a scheme X over S.

Let HC2 (S) denote the motivic ∞-category on Sm
C2
S,qp . Just as in [Hoy16] sec-

tion 5, we let H and SH denote the “big” versions of HC2 and SHC2 : they can
be identified with the∞-categories of sections of Sp(HC2 (−)) and SHC2(−) over
Sch

C2
S,qp that are cocartesian over smooth morphisms. By the results of the pre-

vious section, homotopy Hermitian K-theory, LA1GW , is a Bott-periodic E∞-
algebra in Sp(H), and thus by [Hoy16, Proposition 3.2], there is a unique Bott
periodic E∞-algebra KRalg in SH such that Ω∞KRalg ≃ LA1GW . More explic-
itly, by Porism 5.13, we can write KRalg as the image under the localization
functor

QLmot : Stab
lax
T ρ Sp(P (Sch

C2
S,qp))→ StabT ρSp(H) ≃ SH

of the “constant” T ρ-spectrum cβ′⊗(βσ )′GW≥0, where the maps T ρ ∧GW≥0 →
GW≥0 are induced by adjunction after applyingHomGW≥0−mod(−,GW≥0) to the
map

β′ ⊗ (βσ )′ : T ρ→GW≥0

with β′ ⊗ (βσ )′ the map (10) restricted to the connective cover.

Definition 6.1. For X ∈ SchC2
S,qp , let KR

alg
X denote the restriction of KRalg to

Sm
C2
X,qp . Note that this agrees with the notation of Theorem 5.10.

We want to show that LA1GW is a cdh sheaf on Sch
C2
S,qp . By first checking that

the formalism of six operations holds in equivariant motivic homotopy theory
and following the same recipe as the K-theory case, [Hoy17, Corollary 6.25]

proves that it suffices to show that for each f :D→ X ∈ SchC2
S,qp, the restriction

map

f ∗(KR
alg
X )→KR

alg
D

in SHC2 (D) is an equivalence. We show this now.
By [Sch17, Appendix A], there’s a map

Herm(X)+→Ω
∞GW (X)

where Herm(X) is the E∞ space of non-degenerate Hermitian vector bundles
over X and (−)+ denotes group completion. If X is an affine C2-scheme, the
category of vector bundles is a split exact category with duality, and the above
map is an equivalence. It follows that

Herm+→Ω
∞GW |SmC2

X,qp

is a motivic equivalence in P (SmC2
X,qp).

Just as in [Hoy16] we note that
∐

n≥0
BisoEtO(〈1〉⊥n)→Herm
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exhibits Herm as the equivariant Zariski sheafification of the subgroupoid of
non-degenerate Hermitian vector bundles of constant rank (in other words,
it “corrects” the sections over non-connected or hyperbolic rings). Since LZar
preserves finite products, by [Hoy16, Lemma 5.5], the map remains a Zariski
equivalence after group completion yielding a motivic equivalence



∐

n≥0
BisoEtO(〈1〉⊥n)




+

→Ω
∞GW |SmC2

X,qp .

Fix a map f : D → X in Sch
C2
S,qp . Again by [Hoy16, Lemma 5.5], since the

pullback f ∗ : P (SchC2
X,qp)→P (Sch

C2
X,qp) preserves finite products, it commutes

with group completion of E∞-monoids. The same is true for Lmot. It follows
that there are motivic equivalences

f ∗(Ω∞GW |SmC2
X )→ f ∗



∐

n≥0
BisoEtO(〈1〉⊥n)




+

→


∐

n≥0
f ∗BisoEtO(〈1〉⊥n)




+

Because BisoEtO(〈1〉⊥n) is representable by the results of Section 4, [Hoy16,
Proposition 2.9] yields a motivic equivalence



∐

n≥0
f ∗BisoEtO(〈1〉⊥n)




+

→


∐

n≥0
BisoEt f

∗O(〈1〉⊥n)



+

.

But f ∗O(〈1〉⊥n)|SmC2
X,qp = O(〈1〉⊥n)|SmC2

D,qp since f ∗〈1〉X = 〈1〉D . It follows that

there’s a motivic equivalence


∐

n≥0
BisoEt f

∗O(〈1〉⊥n)



+

→Ω
∞GW |SmC2

D,qp ,

and combining everything we get that the restriction map

f ∗(Ω∞GW |SmC2
X,qp)→Ω

∞GW |SmC2
D,qp

is a motivic equivalence in the ∞-category of grouplike E∞-monoids in

P (SmC2
D,qp). Moving to the category of connective spectra, It follows that pull-

back agrees with restriction for GW≥0. Because the localization functor QLmot

is also compatible with the base change f ∗, it follows that each arrow

f ∗(QLmotcβ′⊗(βσ )′GW≥0|Sm
C2
X,qp)→QLmot(f

∗cβ′⊗(βσ )′GW≥0|Sm
C2
X,qp)

→QLmot(cβ′⊗(βσ )′GW≥0|Sm
C2
D,qp)

is a motivic equivalence. Finally, Porism 5.13 tells us that

cβ′⊗(βσ )′GW≥0|Sm
C2
X,qp ≃KR

alg
X , so we’ve proved
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Theorem 6.2. Let S be a Noetherian scheme of finite Krull dimension with an
ample family of line bundles and 1

2 ∈ S. Then the homotopy Hermitian K-theory
spectrum of rings with involution LA1GW satisfies descent for the equivariant cdh

topology on Sch
C2
S,qp .
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