
Documenta Math. 1465

Decompositions of Derived Categories of Gerbes

and of Families of Brauer–Severi Varieties

Daniel Bergh and Olaf M. Schnürer
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Abstract. It is well known that the category of quasi-coherent
sheaves on a gerbe banded by a diagonalizable group decomposes ac-
cording to the characters of the group. We establish the correspond-
ing decomposition of the unbounded derived category of complexes
of sheaves with quasi-coherent cohomology. This generalizes earlier
work by Lieblich for gerbes over schemes whereas our gerbes may live
over arbitrary algebraic stacks.

By combining this decomposition with the semi-orthogonal decompo-
sition for a projectivized vector bundle, we deduce a semi-orthogonal
decomposition of the derived category of a family of Brauer–Severi va-
rieties whose components can be described in terms of twisted sheaves
on the base. This reproves and generalizes a result of Bernardara.
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1 Introduction

The concept of a twisted sheaf goes back to Giraud and his formal treatment of
the Brauer group in terms of gerbes [Gir71, Section V.4]. During the last two
decades, twisted sheaves and their derived categories have gained a renewed
interest, starting with the thesis of Căldăraru [Căl00], who studied moduli
problems for semi-stable sheaves on varieties, and the work by de Jong [dJ04]
and Lieblich [Lie04, Lie15] on the period–index problem for the Brauer group.
For a survey on later developments, we refer to Lieblich [Lie17, Section 4].
Although twisted sheaves have a rather elementary description in terms of 2-
cocycles (cf. Remark 4.6), they are most naturally viewed as sheaves on gerbes
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1466 D. Bergh, O. M. Schnürer

banded by diagonalizable groups (see Definition 4.4). Our first result is the
following theorem on the decomposition of the derived category associated to
such a gerbe, generalizing a result by Lieblich [Lie04, Section 2.2.4].

Theorem A (see Theorem 5.4). Let S be an algebraic stack and π : X → S a
gerbe banded by a diagonalizable group ∆ with character group A. Then taking
the coproduct defines an equivalence

∏

χ∈A

Dqc,χ(X)
∼
−→ Dqc(X), (Fχ)χ∈A 7→

⊕

χ∈A

Fχ, (1.1)

of triangulated categories, where Dqc,χ(X) denotes the full subcategory of
Dqc(X) of objects with χ-homogeneous quasi-coherent cohomology (see Defi-
nition 4.2).

In the underived setting, a splitting similar as in the theorem above (see The-
orem 4.7) is a consequence of the well-known fact that quasi-coherent repre-
sentations of ∆ split into subrepresentations corresponding to the characters
of the group ∆.
The result by Lieblich is the decomposition in Theorem A in the special case
when S is a quasi-compact, separated scheme. He proves and uses the fact that
in this setting the obvious functor

D(Qcoh(X)) → Dqc(X) (1.2)

is an equivalence of categories [Lie04, Proposition 2.2.4.6]. Note that, if the
base S is a scheme, the functor (1.2) only fails to be an equivalence in truly
pathological situations. However, as shown by Hall–Neeman–Rydh [HNR18,
Theorem 1.3], the functor (1.2) fails to be an equivalence for large classes
of algebraic stacks, including the basic case when X is the classifying stack
BGLn of the general linear group (see Remark 5.10). In particular, this kind
of argument cannot be used to obtain the splitting of the derived category of
one of the most fundamental examples of gerbes banded by Gm — namely
the gerbe of trivializations BGLn → BPGLn for the universal Brauer–Severi
scheme (see Remark 6.1).
In order to prove Theorem A, we study the more general problem whether
suitable torsion pairs in abelian categories induce semi-orthogonal decomposi-
tions on the level of derived categories. We achieve the following theorem of
independent interest.

Theorem B (see Theorem 2.7 and Theorem 2.22). Let B be a weak Serre
subcategory of an abelian category A. Let T and F be abelian subcategories
of B forming a torsion pair (T ,F) in B. Assume that

ExtnA(T, F ) = 0

for all objects T ∈ T , F ∈ F and all integers n. Then

Db
B(A) = 〈Db

F (A),Db
T (A)〉
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is a semi-orthogonal decomposition. Furthermore, if the inclusion DB(A) ⊂
D(A) satisfies some technical conditions on homotopy limits and colimits for-
mulated precisely in the statement of Theorem 2.22, then

DB(A) = 〈DF (A),DT (A)〉

is a semi-orthogonal decomposition.

The theory of gerbes, hinging on the theory of stacks, used to have a reputation
of being inaccessible, and Giraud’s book on non-abelian cohomology [Gir71] in-
troducing them is notorious for being a hard read, even among experts. How-
ever, in recent years the theory of algebraic stacks has become a main stream
part of algebraic geometry, much owing to the excellent text books by Laumon–
Moret-Bailly [LMB00] and Olsson [Ols16], and to the Stacks Project [SP19].
Moreover, as explained in the thesis by Lieblich [Lie04], only a small part of
Giraud’s theory is actually needed to develop a satisfactory theory of twisted
sheaves. We illustrate the effectiveness of the language of gerbes by giving a
short, simple and conceptually appealing proof of the following theorem, which
generalizes a result by Bernardara [Ber09, Theorem 4.1].

Theorem C (see Theorem 6.2 and Corollary 6.5). Let S be an algebraic stack
and π : P → S a Brauer–Severi scheme of relative dimension n over S. Let
β ∈ H2(Sfppf ,Gm) denote the Brauer class of π. Then, for any a ∈ Z, the
category Dqc(P ) admits a semi-orthogonal decomposition

Dqc(P ) = 〈Da, . . . ,Da+n〉 (1.3)

into right admissible subcategories Di, where the category Di is equivalent to
the category Dqc,βi(S) of βi-twisted complexes on S (see Definition 5.1 and
Remark 6.3).

Similarly, we have corresponding decompositions for the category of perfect com-
plexes, the category of locally bounded pseudo-coherent complexes and the sin-
gularity category. In particular, we also have such a decomposition for Dbcoh(P )
when S is Noetherian.

Bernardara’s result is the semi-orthogonal decomposition (1.3) in the case
when S is a Noetherian, separated scheme with the property that any pair of
points in S is contained in an open affine subscheme (cf. Remark 6.6). Apart
from our Theorem A, the main ingredient in our proof of Theorem C is a clas-
sical result by Orlov regarding a semi-orthogonal decomposition of the derived
category of a projectivized vector bundle [Orl92, Theorem 2.6], which we pre-
viously have generalized to algebraic stacks using the technique of conservative
descent [BS17, Theorem 6.7, Corollary 6.8].

While finishing the manuscript, we were informed by Brown and Moulinos of
a result [BM19, Theorem 3.1] which is similar to our Theorem C.
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Outline

In Section 2, we work mostly in the general setting of derived categories of
abelian categories. This section contains the proof of Theorem B. In Section 3
and Section 4, we recall and collect some basic facts on gerbes, bandings and
twisted sheaves which are scattered in the literature. We expect most of these
results to be well known to experts. In Section 5, we turn our attention to
derived categories of gerbes and twisted sheaves. We generalize some of the
fundamental results by Căldăraru and Lieblich [Căl00, Lie04] to the case when
we work over an algebraic stack. Most notably we prove Theorem A. Finally, in
the last section, we give a brief summary on Giraud’s treatment of the Brauer
group [Gir71, Section V.4], and use the theory to prove Theorem C.
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Notation and conventions

If A is an abelian category, we write D(A) for its unbounded derived category.
We write D≤n(A) and D≥n(A) for its full subcategories of objects whose coho-
mology is concentrated in the indicated degrees, where n ∈ Z. The (intelligent)
truncation functors on D(A) are denoted τ≤n and τ≥n. If E and F are objects
of D(A), we sometimes abbreviate ExtnA(E,F ) := HomD(A)(E,Σ

nF ).
By a diagonalizable group we mean a diagonalizable group scheme over SpecZ
that is isomorphic to the spectrum of the group ring of a finitely generated
abelian group.
We use the definitions of algebraic space and algebraic stack given in the stacks
project [SP19, Tag 025Y, Tag 026O]. In particular, we do not impose any
separatedness conditions. The algebraic stacks form a 2-category where each
2-morphism is invertible. We will follow the common practice to often suppress
2-categorical details. For instance, we will usually simply write morphism of
stacks instead of 1-morphism of stacks, subcategory of the category of stacks
instead of 2-subcategory etc.
For the theory of quasi-coherent modules and derived categories in the con-
text of algebraic stacks, we basically follow the approach of Laumon–Moret-
Bailly [LMB00, Sections 12 and 13], which we now briefly recapitulate. Let X
be an algebraic stack. We denote the topos of sheaves on the big fppf site overX
by Xfppf and the topos of sheaves on the lisse–étale site over X by Xlis-ét. For
τ ∈ {fppf, lis-ét}, we let Mod(Xτ ,OX) denote category of OX -modules in Xτ ,
and Qcoh(Xτ ,OX) the full subcategory of quasi-coherent modules (see [SP19,
Tag 03DL]).
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Remark 1.1. The categories Qcoh(Xτ ,OX) and Mod(Xτ ,OX) are Grothen-
dieck abelian categories [SP19, Tag 0781]. In particular, since the inclusion
functor Qcoh(Xτ ,OX) →֒ Mod(Xτ ,OX) is colimit preserving, it admits a right
adjoint. This right adjoint is called the quasi-coherator.

The construction (−)τ functorially associates an adjoint pair

f∗ : Yτ ⇄ Xτ : f∗ (1.4)

of functors to any morphism f : X → Y of algebraic stacks. Moreover, the
functor f∗ preserves finite products. In particular, the adjunction (1.4) induces
an adjunction

f∗ : Mod(Yτ ,OY ) ⇄ Mod(Xτ ,OX) : f∗. (1.5)

Moreover, the pull-back functor f∗ preserves quasi-coherence. The functor

f∗ : Qcoh(Xτ ,OX) → Qcoh(Yτ ,OY ) (1.6)

is defined as the right adjoint of the restriction of f∗ to quasi-coherent sheaves.
The existence of such a right adjoint is guaranteed by the quasi-coherator
(see Remark 1.1).

Remark 1.2. If τ = lis-ét, then the functor (1.6) is the restriction of the push-
forward for sheaves of modules provided that f is quasi-compact and quasi-
separated, but not in general. If τ = fppf, then (1.6) seldom is the restriction
of the push-forward for sheaves of modules. See [SP19, Tag 070A] for a basic
example.

The category Mod(Xτ ,OX) has a closed symmetric monoidal structure with
operations given by the usual tensor product and the sheaf hom functor. The
tensor operation preserves quasi-coherence and is preserved by pull-backs. In
particular, we get an induced symmetric monoidal structure on Qcoh(Xτ ,OX).

Remark 1.3. The symmetric monoidal structure on Qcoh(Xτ ,OX) induced
by the tensor product is also closed. This follows from the existence of the
quasi-coherator (see Remark 1.1). For τ = lis-ét, the internal hom functor
coincides with the sheaf hom functor provided that the first argument is of
finite presentation, but not in general.

There is an obvious restriction functor Xfppf → Xlis-ét, which is compatible
with push-forward. This induces a monoidal equivalence

Qcoh(Xfppf ,OX)
∼
−→ Qcoh(Xlis-ét,OX), (1.7)

functorial in X (see [SP19, Tag 07B1]).
We denote the derived category D(Mod(Xlis-ét,OX)) simply by D(X). The
category Dqc(X) is defined as the full subcategory of D(X) consisting of com-
plexes with quasi-coherent cohomology sheaves. The derived tensor product
on D(X) preserves objects in Dqc(X), giving the latter category a symmetric
monoidal structure, which is closed.
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Remark 1.4. The internal hom functor on Dqc(X) is the restriction of the
derived sheaf hom functor provided that the first argument is perfect, but not
in general (see [HR17, Section 1.2]).

Given an arbitrary morphism f : X → Y of algebraic stacks, we have an adjoint
pair of functors

f∗ : Dqc(Y ) → Dqc(X), f∗ : Dqc(Y ) → Dqc(X), (1.8)

and the formation of such pairs is functorial.

Remark 1.5. The functor f∗ in (1.8) coincides with the derived pull-back be-
tween the ambient categories provided that f is smooth. For general f , the
construction of f∗ is somewhat technical owing to the fact that the adjunc-
tion (1.4), for τ = lis-ét, does not form a morphism of topoi, as was first noted
by Behrend [Beh03, Warning 5.3.12]. The construction is worked out by Ols-
son [Ols07] in the bounded case and by Laszlo–Olsson [LO08, Example 2.2.5]
in the unbounded case. We refer to [HR17, Section 1] for a concise summary
on this.

Remark 1.6. The push-forward f∗ in (1.8) coincides with the derived push-
forward provided that f is concentrated [HR17, Definition 2.4, Theorem 2.6(2)],
but not in general.

Remark 1.7. It is also possible to construct Dqc(X) using the topos Xfppf . This
approach is taken in the stacks project [SP19, Tag 07B6]. For τ = fppf the
adjunction (1.4) does give a morphism of topoi, making the construction of the
pull-back in (1.8) easier. On the other hand the inclusion Qcoh(Xfppf ,OX) ⊂
Mod(Xfppf ,OX) is not exact [SP19, Tag 06WU], making the actual construc-
tion of Dqc(X) quite technical. We will not use this point of view in the present
article.

Notation 1.8. We conclude this section by summarizing our notational con-
ventions regarding sheaves on stacks. In the discussion below, we let τ ∈
{fppf, lis-ét}.

(a) We simply write Qcoh(X) for any of the categories Qcoh(Xτ ,OX) when
no distinction is necessary. This is motivated by the functorial equiva-
lence (1.7).

(b) The monoidal operations on the categories

Qcoh(Xτ ,OX), Mod(Xτ ,OX), D(X), Dqc(X)

are always denoted −⊗− and Hom(−,−), respectively. In particular, we
omit any derived decorations. The precise category we are working on will
always be inferable from context. Note that in the cases Qcoh(Xτ ,OX)
and Dqc(X) the functor Hom does not always coincide with Hom on the
ambient category (cf. Remark 1.3 and Remark 1.4).
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(c) The pull-backs and push-forwards along a morphism f : X → Y are al-
ways denoted by f∗ and f∗, respectively. Which of the categories

(−)τ , Mod((−)τ ,O(−)), Qcoh((−)τ ,O(−)),

D(−), Dqc(−),

we are working with will always be inferable from context. In particular,
we do not use any derived decorations or any particular decorations for
push-forward of quasi-coherent sheaves (cf. Remark 1.2 and Remark 1.6).

2 Torsion pairs and decompositions of derived categories

We give criteria ensuring that a torsion pair in an abelian category gives rise to
a semi-orthogonal decomposition on the level of derived categories. Our main
assumption on the torsion pair is that its two components are abelian subcat-
egories of the ambient abelian category. For bounded derived categories this is
straightforward (see Theorem 2.7) as soon as some foundational results for such
torsion pairs are established (see Proposition 2.5). Our result for unbounded
derived categories (see Theorem 2.22) needs some technical assumptions on ef-
fectiveness of inverse and direct truncation systems introduced in Section 2.3.
Fortunately, these assumptions are satisfied for the derived category Dqc(X) of
an algebraic stack (see Example 2.19 and Proposition 2.20).

2.1 Torsion pairs

We remind the reader of the notion of a torsion pair. Sometimes the termi-
nology torsion theory is used in the literature. Standard references are [BR07,
I.1], [Bor94, 1.12], [Dic66].

Definition 2.1. A torsion pair in an abelian category B is a pair (T ,F) of
strictly full subcategories of B such that the following two conditions hold:

(TP1) Any object B ∈ B fits into a short exact sequence

0 → T → B → F → 0

with T ∈ T and F ∈ F .

(TP2) We have HomB(T, F ) = 0 for all objects T ∈ T and F ∈ F .

Remark 2.2. Let (T ,F) be a torsion pair in an abelian category B. The axioms
of a torsion pair immediately imply that the short exact sequence in (TP1) is
unique up to unique isomorphism and functorial in B ∈ B. In particular, there
are functors t : B → T and f : B → F together with natural transformations
t→ id and id → f giving rise to short exact sequences

0 → t(B) → B → f(B) → 0,
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for each object B ∈ B. The object B is in T (resp. F) if and only if f(B) = 0
(resp. t(B) = 0). The functor t is right adjoint to the inclusion functor T → B,
and the functor f is left adjoint to the inclusion functor F → B.

Recall that an abelian subcategory of an abelian category is a strictly full sub-
category which is abelian and whose inclusion functor is exact. A weak Serre
subcategory is an abelian subcategory which is closed under extensions in the
ambient category. If it is even closed under taking subobjects and quotients in
the ambient category, it is called a Serre subcategory.

Remark 2.3. In the following we are only interested in torsion pairs (T ,F)
where both T and F are abelian subcategories. These torsion pairs are tradi-
tionally called hereditary and cohereditary. We do not use this terminology.

Example 2.4. Let B be the category of representations of the A2-quiver 1 → 2
over some ring. If T (resp. F) denotes the subcategory of representations
supported at the vertex 2 (resp. 1) then (T ,F) is clearly a torsion pair in B.
Moreover, both T and F are abelian subcategories of B.

Proposition 2.5. Let (T ,F) be a torsion pair in an abelian category B. If
both T and F are abelian subcategories of B, then the following statements are
true.

(a) HomB(F, T ) = 0 for all objects F ∈ F and T ∈ T .

(b) Both the right adjoint to the inclusion functor T → B and the left ad-
joint to the inclusion functor F → B are exact, i.e., in the notation of
Remark 2.2, both functors t and f are exact.

(c) Both T and F are Serre subcategories of B.

(d) ExtnB(T, F ) = 0 for all objects T ∈ T , F ∈ F and all integers n ∈ Z.

Remark 2.6. The most interesting part of Proposition 2.5 is certainly the Ext-
vanishing result in part (d). After writing down its proof we learned that Brion
has recently obtained the same result [Bri18, Lemma 2.3]. For the convenience
of the reader we give a full proof of Proposition 2.5 even though parts (a), (b),
(c) are well-known or straightforward.

Proof. (a) Let ϕ : F → T be a morphism from F ∈ F to T ∈ T . By (TP1),
we may put Ker(ϕ) into a short exact sequence 0 → T ′ → Ker(ϕ) → F ′ → 0
with T ′ ∈ T and F ′ ∈ F . Since the composition of monomorphisms T ′ →
Ker(ϕ) → F is zero, by (TP2), we have T ′ = 0 and Ker(ϕ) ∈ F . Similarly one
shows Cok(ϕ) ∈ T . But then Im(ϕ) is the cokernel of Ker(ϕ) → F and the
kernel of T → Cok(ϕ) and hence is in F ∩ T since both F and T are abelian
subcategories, i.e., Im(ϕ) = 0 and ϕ = 0.
(b) We use the notation of Remark 2.2. Clearly, t and f are additive. Let
0 → B1 → B2 → B3 → 0 be a short exact sequence in B. Then we obtain a
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commutative diagram with exact rows

0 // t(B3) // B3
// f(B3) // 0

0 // t(B2) //

OO

B2
//

OO

f(B2) //

OO

0

0 // t(B1) //

OO

B1
//

OO

f(B1) //

OO

0.

We view the columns as complexes in B by adding zeroes. Then the diagram
is a short exact sequence of complexes and gives rise to a long exact sequence
on cohomology. Since the middle column is exact, the cohomology objects
of the left (resp. right) column are in T (resp. F), and there are no nonzero
morphisms from F to T , by (a), the other two columns are also exact. This
shows that t and f are exact.
(c) Let F → B → F ′ be an exact sequence in B where F and F ′ are objects
of F . To see that F is a Serre subcategory of B we need to see that B ∈ F .
The functor t : B → T is exact, by (b), and hence yields the exact sequence
t(F ) → t(B) → t(F ′) in T . Since t(F ) = 0 = t(F ′) we obtain t(B) = 0, i.e.,
B ∈ F .
The same argument proves that T is a Serre subcategory of B.
(d) The claim is trivially true for n < 0. For n = 0 it is true by axiom (TP2)
of a torsion pair.
For n = 1 we need to prove that Ext1B(T, F ) = 0 for T ∈ T and F ∈ F . Using
Yoneda extensions (and [SP19, Tag 06XU]) it is enough to show that any short
exact sequence 0 → F → B → T → 0 in B splits. Since t is exact, by (b), and
t(F ) = 0, we obtain a morphism of short exact sequences

0 // 0 //

��

t(B)
∼ //

��

t(T ) //

∼

��

0

0 // F // B // T // 0

in B; the vertical arrow on the right is an isomorphism since T ∈ T and hence
f(T ) = 0. This shows that our sequence splits. (Since HomB(T, F ) = 0, the
splitting is in fact unique.)
Now let n ≥ 2. Let f ∈ ExtnB(T, F ), i.e., f : T → ΣnF is a morphism in D(B).
The n-extension f can be written as the composition of a 1-extension and an
(n − 1)-extension: this is easy to prove directly or follows alternatively using
Yoneda extensions and [SP19, Tag 06XU]. Anyhow, there is an object B ∈ B
such that f is the composition

f : T
g
−→ Σn−1B

Σn−1h
−−−−→ ΣnF,
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where g and h : B → ΣF are morphisms in D(B). The long exact ExtB(−, F )-

sequence obtained from the short exact sequence 0 → t(B) → B
π
−→ f(B) → 0

yields an isomorphism

π∗ : Ext1B(f(B), F )
∼
−→ Ext1B(B,F )

since we already know that Ext1B(t(B), F ) and HomB(t(B), F ) vanish. Hence
h has the form h = h′ ◦ π for a (unique) morphism h′ : f(B) → ΣF in D(B).
Then

f = (Σn−1h) ◦ g = (Σn−1h′) ◦ (Σn−1π) ◦ g.

By induction, the (n − 1)-extension (Σn−1π) ◦ g : T → Σn−1f(B) vanishes.
Hence f = 0.

2.2 Decompositions of bounded derived categories

If S is a weak Serre subcategory of an abelian category B, the full subcategory of
D(B) of objects with cohomology objects in S is denoted DS(B). Let D−

S (B),

D+
S (B), and Db

S(B) denote the full subcategories of DS(B) of objects whose
cohomology is bounded above, bounded below, and bounded, respectively. All
these categories are strictly full triangulated subcategories of D(B), see, e.g.,
[SP19, Tag 06UQ]. We refer the reader to [BS17, Subsection 5.1] for the notion
of a semi-orthogonal decomposition.

Theorem 2.7. Let B be a weak Serre subcategory of an abelian category A.
Let T and F be abelian subcategories of B forming a torsion pair (T ,F) in B.
Assume that

ExtnA(T, F ) = 0 (2.1)

for all objects T ∈ T , F ∈ F and all integers n. Then

Db
B(A) = 〈Db

F (A),Db
T (A)〉

is a semi-orthogonal decomposition.

Remark 2.8. Condition (2.1) is automatically satisfied in the special case when
B = A, by Proposition 2.5.(d). In general, the condition is automatically
satisfied for n ≤ 1 by the same proposition, since B is closed under extensions.

Proof. By Proposition 2.5.(c), F and T are Serre subcategories of B, hence
weak Serre subcategories of A, and Db

F(A) and Db
T (A) are strictly full trian-

gulated subcategories of Db
B(A).

Repeated use of truncation shows that Db
B(A) coincides with its smallest strictly

full triangulated subcategory containing B. Axiom (TP1) shows that it is also
its smallest such subcategory containing both F and T . In particular, Db

B(A) is
generated, as a triangulated category, by its subcategories Db

F (A) and Db
T (A).

By truncation and condition (2.1), there are no nonzero morphisms from Db
T (A)

to Db
F (A).

Documenta Mathematica 26 (2021) 1465–1500

http://stacks.math.columbia.edu/tag/06UQ


Decompositions for Gerbes & Brauer–Severi Varieties 1475

2.3 Some notes on homotopy limits of truncations

Our aim is to state and prove Theorem 2.22 in the following subsection 2.4
which is the analog of Theorem 2.7 for unbounded derived categories. In order
to to this, we need some terminology and some basic observations.
We refer the reader to [Nee01, Definition 1.6.4] for the notion of a homotopy
colimit. The definition of a homotopy limit is dual.
Let A be an abelian category. We propose the following terminology.

Definition 2.9.

(a) An inverse system

(Fn)n∈N = (. . .→ Fn+1 → Fn → . . .→ F2 → F1 → F0)

in D(A) is an inverse truncation system if for each n ∈ N the object Fn
is in D≥−n(A) and the map τ≥−nFn+1 → Fn induced by the transition
morphism is an isomorphism (cf. Remark 2.13 for a reformulation).

(b) If D(A) has countable products, an inverse truncation system (Fn)n∈N

in D(A) is effective if the induced maps Hp(holimn Fn) → limnH
p(Fn),

are isomorphisms for all p ∈ Z. Our assumption ensures the existence of
homotopy limits, and all limits limnH

p(Fn) exist by Remark 2.13 below.

Dually, we define a direct truncation system in the obvious way. If D(A) has
countable coproducts we can talk about effectiveness of direct truncation sys-
tems.

Example 2.10. Given any object F in D(A), we get an inverse truncation
system (τ≥−nF )n∈N whose transition morphisms are the natural maps between
the truncations. Similarly, we get a direct truncation system (τ≤nF )n∈N.

Definition 2.11. An inverse (resp. direct) truncation system is called stan-
dard if it is isomorphic to an inverse (resp. direct) truncation system as in
Example 2.10.

Remark 2.12. Informally, one may think of an arbitrary inverse truncation
system as obtained from a possibly non-existing object by truncation. Effec-
tiveness says that the natural candidate for such an object, the homotopy limit,
indeed does the job. We explain this in Remark 2.14 below.

Remark 2.13. An inverse system (Fn)n∈N in D(A) is an inverse truncation
system if and only if Hp(Fn) = 0 for all p < −n and the maps Hp(Fn+1) →
Hp(Fn) induced by the transition maps are isomorphisms for all p ≥ −n. This
just means that the induced inverse systems (Hp(Fn))n∈N look as follows.

. . .
∼ // H1(F2)

∼ // H1(F1)
∼ // H1(F0)

. . .
∼ // H0(F2)

∼ // H0(F1)
∼ // H0(F0)

. . .
∼ // H−1(F2)

∼ // H−1(F1) // 0

. . .
∼ // H−2(F2) // 0 // 0
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In particular, then all limits limnH
p(Fn) exist in A.

Remark 2.14. Assume that D(A) has countable products. Let G := holimn Fn
be a homotopy limit of an inverse truncation system (Fn)n∈N. It comes together
with morphisms G→ Fn, for all n ∈ Z. Since Fn ∈ D≥−n(A) they come from
unique morphisms τ≥−nG→ Fn. Then, as a consequence of Remark 2.13, the
following conditions are equivalent.

(a) The inverse truncation system (Fn)n∈N is effective.

(b) For all p ∈ Z there is an integer n ≥ −p such that Hp(G) → Hp(Fn) is
an isomorphism; this condition is then automatically true for all integers
n ≥ −p.

(c) The morphism (τ≥−nG)n∈N → (Fn)n∈N of inverse truncation systems is
an isomorphism.

In particular, any effective inverse truncation system is standard in the sense
of Definition 2.11; more precisely, up to canonical isomorphism it is obtained
by truncation from any fixed homotopy limit.

We address the natural question whether an object is the homotopy limit of
its truncations.

Lemma 2.15 (Objects as homotopy limits of their truncations). Let F be an
object of D(A) and assume that D(A) has countable products. If the inverse
truncation system (τ≥−nF )n∈N is effective there is a triangle

F →
∏

n∈N

τ≥−nF →
∏

n∈N

τ≥−nF → ΣF

in D(A) which exhibits F as a homotopy limit of its truncations and whose first
morphism is induced by the truncation maps F → τ≥−nF .

Proof. Let G be a homotopy limit of the given inverse system with defining
triangle

G→
∏

τ≥−nF →
∏

τ≥−nF → ΣG.

The obvious map from F to the second term of this triangle comes from a (pos-
sibly non-unique) morphism γ : F → G to its first term which makes the upper
left triangle in the following diagram commutative. Since the map G→ τ≥−nF
factors through the truncation map G → τ≥−nG, we obtain the commutative
diagram

F //

γ

��

τ≥−nF

G //

<<
①
①①

①
①①

①
①①

τ≥−nG.

OO

Its right vertical arrow is an isomorphism since the inverse truncation system
(τ≥−nF )n∈N is effective, by the equivalent statements in Remark 2.14. Hence
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the inverse of this arrow is the morphism τ≥−n(γ) which is therefore an iso-
morphism. Since n ∈ N was arbitrary, this implies that γ is an isomorphism.
The claim follows.

We now provide instances of inverse and direct truncation systems that are
effective. The following proposition is essentially Remark 2.3 in [BN93].

Proposition 2.16. Let A be an abelian category. If A has countable products
which are exact then any inverse truncation system in D(A) is effective. Simi-
larly, if A has exact countable coproducts then any direct truncation system in
D(A) is effective.

Proof. We prove the first statement. The proof of the second statement is
similar and left to the reader.
It is clear that D(A) has all countable products. Let (Fn)n∈N be an inverse
truncation system in D(A). Consider a homotopy limit holimn Fn together
with a defining triangle

holimn Fn →
∏

n

Fn
1−σ
−−−→

∏

n

Fn → Σholimn Fn,

where σ is the shift map. Since A has exact countable products, the functor
Hp(−) preserves countable products for all p. Hence, we get an exact sequence

. . .
δ
−→ Hp(holimn Fn) →

∏

n

Hp(Fn)
1−σ
−−−→

∏

n

Hp(Fn)
δ
−→ Hp+1(holimn Fn) → . . .

in A where σ is again the shift map. Note that the inverse system (Hp(Fn))n∈N

is zero for n < −p and constant for n ≥ −p (cf. Remark 2.13). Hence Re-
mark 2.17 below shows that all morphisms 1 − σ in our exact sequence are
epimorphisms, i.e., all connecting morphisms δ vanish. Hence the canonical
morphism

Hp(holimn Fn) → lim
n

Hp(Fn)

is an isomorphism, i.e., our inverse truncation system is effective.

Remark 2.17. If an inverse system (Gn)n∈N in an additive category with count-
able products is eventually constant in the sense that there is an N ∈ N such
that all transition morphisms Gn+1 → Gn for n ≥ N are isomorphisms, then
the morphism “identity minus shift”

1− σ :
∏

n∈N

Gn →
∏

n∈N

Gn

is a split epimorphism: there is a morphism f in the other direction such that
(1− σ) ◦ f = id. We leave the easy proof of this fact to the reader.

Example 2.18. If R is any ring, then all inverse and direct truncation systems
in the derived category D(Mod(R)) of R-modules are effective, by Proposi-
tion 2.16.
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Example 2.19. If (X,O) is a ringed topos, then the category of O-modules
is Grothendieck abelian. In particular, it has arbitrary small products and
coproducts and all coproducts are exact; in particular, any direct truncation
system in D(X) is effective, by Proposition 2.16. Products, however, need not
be exact. Nevertheless, certain inverse truncation systems may still be effective,
see Proposition 2.20 below.

The following proposition follows from the proof of [SP19, Tag 0D6M], which
basically is an abstract version of a result by Bökstedt–Neeman [BN93,
Lemma 5.3]. See also Hall–Neeman–Rydh [HNR18, Theorem B.1] for a re-
lated result.

Proposition 2.20. Let X be an algebraic stack. Then any inverse truncation
system in D(X) with terms in Dqc(X) is effective.

Proof. It is clear that D(X) has all products. Let (Fn)n∈N be an inverse trun-
cation system in D(X) whose terms Fn lie in Dqc(X).
By the definition of an inverse truncation system, the transition morphism
Fn+1 → Fn factors as Fn+1 → τ≥−nFn+1

∼
−→ Fn, and we obtain a triangle

Σn+1 H−n−1(Fn+1) → Fn+1 → Fn → Σn+2 H−n−1(Fn+1)

for each n ∈ N. Fix p ∈ Z. Since the cohomology sheaves are assumed to be
quasi-coherent, the functor Hp(U,−) vanishes on the first and fourth term of
this triangle for all n ≥ −p and all affine schemes U which are smooth over X .
Hence Hp(U, Fn+1) → Hp(U, Fn) is an isomorphism for all n ≥ −p, i.e., the
inverse system (Hp(U, Fn))n∈N of abelian groups is eventually constant. By
Remark 2.17, the morphism “identity minus shift”

1− σ :
∏

n

Hp(U, Fn) →
∏

n

Hp(U, Fn)

is a (split) epimorphism. Its kernel is limnH
p(U, Fn).

Note that the functors Hq(U,−) = Hq(RΓ(U,−|U)) commute with products
since the functors restriction to U and RΓ(U,−) are right adjoints and products
are exact in the category of abelian groups. Hence applying Hp(U,−) to the
defining triangle of the homotopy limit holimn Fn yields an exact sequence

. . .→ Hp(U, holimn Fn) →
∏

n

Hp(U, Fn)
1−σ
−−−→

∏

n

Hp(U, Fn) → . . .

of abelian groups. Since all morphisms 1− σ are surjective, as observed above,
this sequence splits into short exact sequences, and we get isomorphisms

Hp(U, holimn Fn)
∼
−→ lim

n
Hp(U, Fn)

∼
−→ Hp(U, Fm)

for all m ≥ −p. For an arbitrary object G in D(X), the sheaf Hp(G) is the
sheaf associated to the presheaf U 7→ Hp(U,G). Hence the canonical map
Hp(holimn Fn) → Hp(Fm) is an isomorphism for all m ≥ −p. This means that
our system is effective, by Remark 2.14.
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2.4 Decompositions of unbounded derived categories

Now we can state and prove Theorem 2.22. The proof uses the corresponding
result for bounded derived categories stated as Theorem 2.7.

Remark 2.21. Let B be a weak Serre subcategory of an abelian category A and
let T and F be abelian subcategories of B forming a torsion pair (T ,F) in B.
Consider an arbitrary triangle

B′ → B → B′′ → ΣB′

in DB(A). Then we have B′ in DT (A) and B′′ in DF (A) if and only if the long
exact cohomology sequence splits up into short exact sequences

0 → Hp(B′) → Hp(B) → Hp(B′′) → 0

with first term Hp(B′) in T and third term Hp(B′′) in F , for each p ∈ Z. The
“if”-part is trivial, and the “only if”-part is a simple consequence of the fact
that HomB(F, T ) vanishes for each object F in F and T in T , by Proposi-
tion 2.5.(a).

Theorem 2.22. Let B be a weak Serre subcategory of an abelian category A.
Let (T ,F) be a torsion pair in B where both T and F are abelian subcategories
of B. Assume that

ExtnA(T, F ) = 0

for all objects T ∈ T , F ∈ F and all integers n ∈ Z. Assume that D(A) has
countable products and coproducts. If every inverse and every direct truncation
system in D(A) with terms in DB(A) is effective, in the sense of Definition 2.9,
then

DB(A) = 〈DF (A),DT (A)〉

is a semi-orthogonal decomposition.

Proof. Semi-orthogonality: We claim that

HomD(A)(L,R) = 0 (2.2)

for all objects L ∈ DT (A) and R ∈ DF(A).
Our proof is a straightforward dévissage argument. Assume first that L is
in D−

T (A) and that R is in D+
F (A). Then any morphism L → R factors as

L → τ≥nL → τ≤mR → R for sufficiently small n and sufficiently large m.
Hence the morphism vanishes by Theorem 2.7.
Keep the assumption on L and assume that R is an arbitrary object of
DF(A). Effectiveness of inverse truncation systems with terms in DB(A) and
Lemma 2.15 provide a triangle

R→
∏

n∈N

τ≥−nR →
∏

n∈N

τ≥−nR → ΣR
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in D(A). The functor HomD(A)(L,−) vanishes on the second and third term
and their shifts by the universal property of products, boundedness from below
of the truncations and the vanishing result already proven. Hence it vanishes
also on the first term as desired.
Similarly, effectiveness of direct truncation systems with terms in DB(A) and
the dual of Lemma 2.15 give (2.2) for arbitrary objects L in DT (A) and R in
DF(A).
Completeness: To finish the proof, we need to show that any object B in
DB(A) fits into a triangle

T → B → F → ΣT (2.3)

with T in DT (A) and F in DF (A).
Assume first that B is an object in D−

B (A) and consider its associated standard
inverse truncation system (Bn)n∈N where Bn = τ≥−nB (see Example 2.10).
Since the cohomology of each Bn is bounded, the semi-orthogonal decomposi-
tion in Theorem 2.7 provides commutative squares

Tn //

��

Tn+1

��
Bn // Bn+1,

Hp(Tn) //

��

Hp(Tn+1)

��
Hp(Bn) // Hp(Bn+1),

where each Tn is the projection of Bn to Db
T (A) along this semi-orthogonal

decomposition. By Remark 2.21, the vertical maps in the right diagram are
just the torsion subobjects with respect to the torsion pair (T ,F). The char-
acterization of inverse truncation systems in Remark 2.13 and the fact that
(Bn)n∈N is such a system make it clear that (Tn)n∈N is such a system as well.
By assumption, it is effective, and hence obtained from its homotopy limit T
in D(A) by truncation in a canonical way, see Remark 2.14. Without loss of
generality we may hence assume that Tn = τ≥−nT for all n ∈ N. It is clear
that T ∈ D−

T (A). Note that T and B are the homotopy limits of the effective
inverse truncation systems (Tn)n∈N and (Bn)n∈N, by Lemma 2.15. Hence the
morphism (Tn)n∈N → (Bn)n∈N of inverse systems induces a morphism T → B
which makes the following two squares commutative.

T //

��

Tn

��
B // Bn

Hp(T ) //

��

Hp(Tn)

��
Hp(B) // Hp(Bn)

Obviously, the horizontal arrows in the right square are isomorphisms for all
n ≥ −p. Hence Hp(T ) → Hp(B) is the torsion subobject with respect to the
torsion pair (T ,F), for each p ∈ Z. Complete the morphism T → B to a
triangle as in (2.3). Then the associated long exact sequence on cohomology
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splits up into short exact sequences with Hp(F ) in F . In particular, the object F
is in D−

F (A).
This establishes the semi-orthogonal decomposition D−

B (A) =
〈D−

F(A),D−
T (A)〉. By the dual version of the argument above, starting with an

object B in DB(A) and using the fact that all direct truncation systems with
terms in DB(A) are effective, we get the desired semi-orthogonal decomposition
of DB(A).

3 Gerbes

In this section, we collect some results from the theory on gerbes, bandings
by abelian groups and the relation to cohomology. Throughout the section, S
will be an arbitrary algebraic stack. By a stack we mean a, not necessarily
algebraic, stack in groupoids over the big fppf site of schemes over S. The
symbol ∆ will always denote an abelian group in Sfppf . Later on, we will
specialize to the situation when ∆ is a diagonalizable group. Accordingly, we
will use multiplicative notation for ∆ and its cohomology groups Hi(Sfppf ,∆).

Definition 3.1 ([LMB00, Definition 3.15], [SP19, Tag 06NZ]). A gerbe over S
is a stack (in groupoids) α : X → S satisfying the following conditions.

(a) The diagonal X → X ×S X is an epimorphism (see [LMB00, Defini-
tion 3.6]).

(b) The structure morphism α : X → S is an epimorphism.

A gerbe is called trivial if the structure morphism in (b) splits.

The prototypical example of a gerbe is the classifying stack BG for a group G
in Sfppf . In fact, any gerbe can be viewed as an fppf -form of a classifying stack.
For any stack α : X → S, we may consider its inertia stack IX/S → X ([SP19,
Tag 034I]), which is a group object in Xfppf . Its points over a morphism
x : U → X are simply the 2-automorphisms γ of x mapping to the identity
under the composition α◦x. Any object F in Xfppf is endowed with a canonical
right action by the inertia IX/S , called the inertial action. Explicitly, it is given
on sections over x by

F(x)× IX/S(x) → F(x), (s, γ) 7→ F(γ)(s). (3.1)

We recall the following fundamental fact about the inertial action.

Proposition 3.2. Let α : X → S be a gerbe. Then the functor α∗ : Sfppf →
Xfppf is fully faithful with essential image consisting of sheaves on which the
inertia IX/S acts trivially.

Proof. See for instance [Lie04, Lemma 2.1.1.17].

Definition 3.3. A gerbe α : X → S is called abelian if the inertia group
IX/S → X is abelian. We denote the full subcategory of stacks over S which
are abelian gerbes by AbGerbe(S).
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Via the canonical right inertial action, the inertia acts on itself by conjuga-
tion. In particular, Proposition 3.2 shows that the inertia group of an abelian
gerbe α : X → S descends to an abelian group object in Sfppf , namely α∗IX/S .
Furthermore, given any 1-morphism ρ : X → Y of stacks over S, we get an
induced group homomorphism IX/S → ρ∗IY/S in Xfppf , and if X and Y are
abelian gerbes, this descends to a group homomorphism in Sfppf . This associ-
ation gives a functor

Band: AbGerbe(S) → AbGroup(S) (3.2)

to the category of abelian group objects in Sfppf .

Definition 3.4. Let ∆ be an abelian group object in Sfppf . The essential fiber
of the functor (3.2) over ∆ is called the category of gerbes banded by ∆ or of
∆-gerbes. Explicitly, a ∆-gerbe is given by a pair (α, ι) where α : X → S is an
abelian gerbe and ι : ∆

∼
−→ α∗IX/S is a group isomorphism called a banding of

α by ∆. The group ∆ is called the band of (α, ι). A morphism of ∆-gerbes
is simply a morphism of stacks such that corresponding morphism on inertia
induces the identity on ∆ via the bandings. By abuse of notation, we usually
denote a ∆-gerbe (α, ι) by α or even X .

Remark 3.5. Giraud introduces a more general notion of banding applying to
non-abelian gerbes [Gir71, Chapter IV]. We will not need this more complicated
theory here.

Note that a 1-morphism of gerbes over S is always an epimorphism ([LMB00,
Lemma 3.17]), and that it is an isomorphism if and only if it induces an iso-
morphism on inertia. In particular, the category of ∆-gerbes is a 2-groupoid.

Example 3.6. Let S be an algebraic stack, and let ∆ and ∆′ be abelian groups
in Sfppf .

(a) The classifying stack B∆ is endowed with a canonical structure of ∆-
gerbe.

(b) Given a pair of abelian gerbes X and X ′ over S, banded by ∆ and ∆′,
respectively, the product X ×S X

′ has a naturally defined banding by
∆×∆′.

The following example illustrates that it is very natural to consider gerbes over
genuine algebraic stacks.

Example 3.7. Let S be an algebraic stack. Assume that we have a central
extension 1 → ∆ → G → H → 1 of groups in Sfppf . Then the induced
morphism of classifying stacks BG → BH has a canonical structure of a ∆-
gerbe. The following examples are two important special cases with S = SpecZ.

(a) The morphism G → H is the quotient map GLn → PGLn. In this case
we obtain a Gm-gerbe BGLn → BPGLn.
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(b) The morphism G → H is the morphism Gm → Gm given by x 7→ xn.
In this case the corresponding µn-gerbe BGm → BGm can be thought
of as the n-th root stack of the universal line bundle [A1/Gm] on BGm

(cf. [Cad07, Definition 2.2.6]).

Next we discuss functoriality of banded gerbes with respect to change of group.

Construction 3.8. Let ϕ : ∆ → ∆′ be a homomorphism of abelian group
objects in S, and let α : X → S be a gerbe banded by ∆. We construct a gerbe
ϕ∗α : ϕ∗X → S banded by ∆′ together with a morphism

ρ : X → ϕ∗X (3.3)

of gerbes over S inducing the homomorphism ϕ on the bands as follows.

Consider X × B∆′ with its natural banding by ∆ × ∆′. We define ϕ∗X as
the rigidification (see [AOV08, Appendix A]) of X × B∆′ in the kernel of the
epimorphism ∆ × ∆′ → ∆′ given by (a, b) 7→ ϕ(a)b. The morphism ρ is the
composition of the obvious map X → X × B∆′ followed by the rigidification
map.

The construction above shows that given a gerbe banded by ∆, any morphism
ϕ : ∆ → ∆′ lifts to a morphism of banded gerbes. The following proposition,
which we surprisingly could not find in the literature, shows that this lift is
essentially unique. In particular, Construction 3.8 is functorial in a weak sense.

Proposition 3.9. Let ∆ be an abelian group in Sfppf , and let α : X → S be a
gerbe banded by ∆. Then the obvious functor

BandX/ : AbGerbe(S)X/ → AbGroup(S)∆/ (3.4)

from the category of abelian gerbes over S under X to the category of abelian
groups in Sfppf under ∆ is an equivalence of categories.

Proof. Construction 3.8 shows that the functor BandX/ is essentially surjective
on objects. Let ρ : X → Y and ρ′ : X → Y ′ be objects of AbGerbe(S)X/,
and denote their images in AbGroup(S)∆/ by ϕ : ∆ → Γ and ϕ′ : ∆ → Γ′,
respectively. We need to show that

HomX/(ρ, ρ
′) → Hom∆/(ϕ, ϕ

′) (3.5)

is and equivalence of categories. To do so, we first note that (3.5) is functorial
in S, and that we in fact have a morphism of stacks

Φ: HomX/(ρ, ρ
′) → Hom∆/(ϕ, ϕ

′) (3.6)

over S. Explicitly, this morphism is constructed as the canonical map in the
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diagram

Hom∆/(ϕ, ϕ
′)

��

// S

ϕ′

��

HomX/(ρ, ρ
′)

��

//

Φ
hhPPPPPPPPPPPP

S

id

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

ρ′

��
Hom(Y, Y ′)

−◦ρ //

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

Hom(X,Y ′)

''PP
PP

PP
PP

PP
PP

Hom(Γ,Γ′)
−◦ϕ // Hom(∆,Γ′),

(3.7)
where the inner and the outer squares are cartesian.

To verify that Φ is an isomorphism, we may work locally on S. In particular,
we may assume that the stacks X,Y and Y ′ are the classifying stacks B∆,
BΓ and BΓ′, respectively. Furthermore, we may assume that the morphisms ρ
and ρ′ are given by extension of torsors along ϕ and ϕ′, respectively. In this
situation, we have Hom(X,Y ′) ∼= [Hom(∆,Γ′)/Γ′], where Γ′ acts trivially, and
the map to Hom(∆,Γ′) is induced by forgetting the group action (see e.g.
Abramovich et al. [AOV08, Lemma 3.9(1)] and its proof). Plugging this into
(3.7), together with the similar description for Hom(Y, Y ′) and the obvious
descriptions for ρ′ and − ◦ ρ, it becomes clear that Φ is an isomorphism.

Construction 3.10. Let ∆ be an abelian group in Sfppf , and let α, β : X → S
be ∆-gerbes. Denote the multiplication map on ∆ by m : ∆×∆ → ∆, and the
n-th power map, for n ∈ Z, by pn : ∆ → ∆. Using Construction 3.8, we define

αβ := m∗(α× β), αn := (pn)∗α. (3.8)

Morally, Construction 3.10 gives the 2-groupoid of ∆-gerbes the structure of
an abelian group, a statement which presumably could be made precise by use
of Proposition 3.9. At least, it is clear that the set of isomorphism classes of
∆-gerbes forms an abelian group.

It is easy to see that we also have functoriality with respect to change of stacks.
That is, let f : T → S be a morphism of algebraic stacks and let α : X → S be
a ∆-gerbe. Then the pull-back f∗α has a natural structure of f∗∆-gerbe.

Theorem 3.11 (Giraud). Let S be an algebraic stack and let ∆ be an abelian
group in Sfppf. Then the group H2(Sfppf ,∆) is canonically isomorphic to the
set of isomorphism classes of ∆-gerbes over Sfppf, with its group structure in-
duced by the operations in Construction 3.10. Given a ∆-gerbe α over Sfppf,
we denote its class in H2(Sfppf ,∆) by [α]. We have the following functorial
properties:
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(a) Given a morphism f : T → S of algebraic stacks, we have [f∗α] = f∗[α]
in H2(Tfppf , f

∗∆).

(b) Given a homomorphism of abelian groups ϕ : ∆ → ∆′, we have [ϕ∗α] =
ϕ∗[α] in H

2(Sfppf ,∆
′).

Proof. This is worked out in various places in [Gir71]. Functoriality with re-
spect to change of groups is described in Section IV.3.1. Comparison with
usual cohomology is in Section IV.3.4, and functoriality with respect to change
of topos in Section V.1.

4 Twisted sheaves

In this section, ∆ will denote a diagonalizable group scheme (over SpecZ) with
character group A := HomSpecZ(∆,Gm). Recall that A is a finitely generated
abelian group. We will usually use multiplicative notation for A, except when
we identify it with something like the additive group of Z.
Let S be an algebraic stack. By a ∆-gerbe on S we mean a ∆S-gerbe on S.
Fix a ∆-gerbe α : X → S. Note that X is isomorphic to B∆S locally on S.
In particular, X is an algebraic stack, and it is reasonable to talk about quasi-
coherent sheaves on X .

Remark 4.1. Let α : X → S be a ∆-gerbe. Note that the structure morphism α
is smooth and surjective. Indeed, this is true for any algebraic gerbe [Ber17,
Proposition A.2]. Moreover, assume that Y is a ∆′-gerbe over S and let ρ : X →
Y be a morphism over S with induced morphism ϕ : ∆S → ∆′

S on bands. Then
ρ factors as X → X × B∆′ → ϕ∗X ∼= Y by Construction 3.8 combined with
Proposition 3.9. Note that the first morphism in the factorization is a ∆′-torsor
and that the second morphism is a gerbe banded by ∆. In particular, the
morphism ρ is faithfully flat. See also Remark 5.3 for cohomological properties
of ρ.

Definition 4.2. Let F be an object in Mod(Xfppf ,OX), and let χ : ∆S → Gm,S

be a character. Note that ∆X acts on F from the right via the inertial action
(3.1) and the banding (see Definition 3.4) of X , and that Gm acts on F from
the left via the inclusion Gm,X ⊂ OX . We define the χ-homogeneous subsheaf
Fχ of F by

Fχ = {s ∈ F | s · γ = χ(γ)s for all γ ∈ ∆X}. (4.1)

An object F of Mod(Xfppf ,OX) is called χ-homogeneous or homogeneous of
degree χ provided that F = Fχ, and we denote the full subcategory of χ-
homogeneous objects in Qcoh(Xfppf ,OX) by Qcohχ(Xfppf ,OX).

Remark 4.3. Note that the expression (4.1) does not make sense in the lisse–
étale topos unless ∆X is smooth over X . When we talk about homoge-
neous sheaves in Qcoh(Xlis-ét,OX), we implicitly transport the subcategory
Qcohχ(Xfppf ,OX) ⊂ Qcoh(Xfppf ,OX) to a subcategory Qcohχ(Xlis-ét,OX) ⊂
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Qcoh(Xlis-ét,OX) under the equivalence obtained by restriction. We will usu-
ally simply write Qcohχ(X) for any of these subcategories.

Definition 4.4 (Twisted sheaves). Let α : X → S be a Gm-gerbe and let
id : Gm → Gm be the identity character. An α-twisted quasi-coherent sheaf on S
is simply an object of Qcohid(X). We will often use the notation Qcohα(S)
instead of Qcohid(X).

Remark 4.5. Since the category Qcohα(S), up to equivalence, obviously de-
pends only on the class of α in H2(Sfppf ,Gm), we will sometimes abuse notation
and write Qcohα(S) even if α is just a cohomology class in H2(Sfppf ,Gm).

Remark 4.6. Twisted sheaves may also be described using 2-cocycles. This
approach was taken by Căldăraru in [Căl00, Definition 1.2.1]. That his defi-
nition is essentially equivalent to the definition above was proved by Lieblich
in [Lie04, Proposition 2.1.3.11].

We now give a precise formulation of the well-known fact that any quasi-
coherent sheaf on a suitable gerbe decomposes into its homogeneous subsheaves
(cf. [Lie04, Proposition 2.2.1.6]).

Theorem 4.7. Let S be an algebraic stack and let α : X → S be a gerbe banded
by a diagonalizable group ∆. Then Qcohχ(X) is a Serre subcategory (see [SP19,
Tag 02MO]) of Qcoh(X) for any character χ of ∆S , and taking the coproduct
gives an equivalence

∏

χ∈A

Qcohχ(X)
∼
−→ Qcoh(X), (Fχ)χ 7→

⊕

χ∈A

Fχ, (4.2)

of abelian categories, where A denotes the character group of ∆.
Furthermore, assume that Fχ and Gψ are quasi-coherent OX-modules which are
homogeneous for ∆S-characters χ and ψ, respectively. Then the quasi-coherent
OX-modules

Fχ ⊗ Gψ, Hom(Gψ ,Fχ) (4.3)

are χψ- and χψ−1-homogeneous, respectively.

Proof. Throughout the proof, we work with sheaves in Xfppf , which we view as
the topos of sheaves on the site of affine schemes over X . Fix a quasi-coherent
sheaf F of OX -modules.
Let x be an object of X lying over an affine scheme SpecA. Then F(x) is an A-
module with an A-linear right action of the group ∆(A) := ∆(SpecA) coming
from the inertial action via the banding. Given a morphism f : y → x in X
lying over a morphism Specϕ : SpecB → SpecA, the corresponding morphism
F(f) : F(x) → F(y) is equivariant with respect to ∆(A) → ∆(B). Moreover,
since F is quasi-coherent, it induces an isomorphism B ⊗ϕ,A F(x)

∼
−→ F(y) of

B-modules.
By restricting F to SpecA along x : SpecA → X (see [SP19, Tag 06W9]), we
see that the A-module F(x) can be viewed as a right representation of the
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diagonalizable A-group scheme ∆SpecA in the sense of [Jan87, I.2.7]. Hence it
decomposes as F(x) =

⊕
χ∈A F(x)χ by [Jan87, I.2.11].

If the object x varies, all these decompositions are compatible and combine into
the decomposition F =

⊕
χ∈A Fχ where Fχ is the χ-homogeneous subsheaf

of F . This shows that the functor (4.2) is essentially surjective. Similarly,
we get a decomposition of morphisms between pairs of quasi-coherent modules
(cf. [Jan87, I.2.11]), which shows that (4.2) is fully faithful. Moreover, any ∆S-
character χ clearly gives an exact functor F 7→ Fχ. In particular, Qcohχ(X)
is a Serre subcategory of Qcoh(X).
The statement that the tensor product of a χ-homogeneous quasi-coherent
module with a ψ-homogeneous quasi-coherent module is (χ+ψ)-homogeneous
is obvious, and the corresponding claim for the internal Hom-functor is then a
formal consequence.

Remark 4.8. Note that the canonical morphism
⊕

χ∈A Fχ →
∏
χ∈A Fχ is an

isomorphism even if the character group A is not finite. Here the product is
taken in Qcoh(X). This is a simple consequence of the equivalence (4.2) in
Theorem 4.7.

Proposition 4.9. Let S be an algebraic stack and α : X → S a gerbe banded
by a diagonalizable group ∆. Let f : T → S be a morphism of algebraic stacks,
and let g : Y → X denote the base change of f along α. Then the functors

g∗ : Qcoh(X) → Qcoh(Y ), g∗ : Qcoh(Y ) → Qcoh(X)

respect the decompositions of Qcoh(X) and Qcoh(Y ) into homogeneous objects
given in Theorem 4.7.

Proof. As a formal consequence of adjunction, it is enough to verify that one of
the functors g∗ and g∗ preserves the decomposition. The functor g∗ is obtained
by restriction of the functor g∗ : Mod(Sfppf ,OS) → Mod(Tfppf ,OT ), which in
turn is just given by restriction of the topos Sfppf . In this setting the statement
is obvious from the definition of a homogeneous sheaf (see Definition 4.2).

Proposition 4.10. Let X and X ′ be gerbes over S banded by diagonalizable
groups ∆ and ∆′, respectively, and let ρ : X → X ′ be a morphism over S with
induced morphism ϕ : ∆S → ∆′

S on the bands. Fix a character χ′ : ∆′
S → Gm,S,

and let χ = χ′ ◦ϕ. Then the pull-back functor ρ∗ takes χ′-homogeneous objects
to χ-homogeneous objects and induces an equivalence

ρ∗ : Qcohχ′(X ′)
∼
−→ Qcohχ(X) (4.4)

of categories. In particular, if X ′ = S then ρ∗ : Qcoh(S) → Qcoh(X) is fully
faithful with essential image consisting of those objects that are homogeneous
for the trivial character.

Proof. By a similar argument as in the proof of Proposition 4.9, we see that ρ∗

takes χ′-homogeneous objects to χ-homogeneous objects. First we note that
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the special case in the last sentence in the statement of the proposition follows
directly from Proposition 3.2.
In the general case, we consider the fiber product X×SX

′ and its projections p
and q to X and X ′. Note that X ×S X

′ is a ∆ ×∆′-gerbe over S and that p
and q induce the projections to ∆ respectively ∆′ on the bands.
The projection p is a gerbe banded by the kernel of the projection ∆×∆′ → ∆,
which is isomorphic to ∆′. In particular, p∗ is fully faithful with essential image
consisting of sheaves on which this kernel acts trivially. Similar statements
hold for q. Hence it follows from the decomposition in Theorem 4.7 that we
get equivalences

p∗ : Qcohχ(X) ⇄ Qcoh(χ,e′)(X ×S X
′/S) : p∗, (4.5)

q∗ : Qcohχ′(X ′) ⇄ Qcoh(e,χ′)(X ×S X
′/S) : q∗, (4.6)

where e and e′ denote the trivial characters of ∆ and ∆′, respectively.
Note that the gerbe p has a trivialization τ = (id, ρ). In particular, there exists
a line bundle L on X ×S X

′ such that

(a) L is χ′-homogeneous with respect to the decomposition induced by p;

(b) τ∗L ∼= OX .

Since L is a line bundle, it must also be homogeneous for some character (ψ, ψ′)
of (∆×∆′)S with respect to the gerbe X×SX

′ → S. By (a), we have ψ′ = χ′.
Furthermore, since τ induces the morphism (id, ϕ) on bands, we have τ∗L ∈
Qcohψχ(X). This forces ψ = χ−1 by (b), so L ∈ Qcoh(χ−1,χ′)(X ×S X

′/S). In
particular, it follows from the equivalences (4.5) and (4.6) and the statement
about the monoidal structure in Theorem 4.7 that we get an equivalence

p∗(L
∨ ⊗ q∗(−)) : Qcohχ′(X ′)

∼
−→ Qcohχ(X).

Furthermore, the restriction of the natural transformation

p∗(L
∨ ⊗ q∗(−)) ∼= τ∗p∗p∗(L

∨ ⊗ q∗(−)) →

τ∗(L∨ ⊗ q∗(−)) ∼= τ∗(L∨)⊗ τ∗q∗(−) ∼= ρ∗

to Qcohχ′(X ′) is an isomorphism, which concludes the proof.

Now the following corollaries are easy consequences of Theorem 4.7, Proposi-
tion 4.9 and Proposition 4.10.

Corollary 4.11. Let S be an algebraic stacks and let α : X → S be a gerbe
banded by ∆, and choose a character χ : ∆S → Gm,S. Then we have an equiv-
alence

Qcohχ∗α(S)
∼= Qcohχ(X) (4.7)

of categories, where χ∗α is defined as in Construction 3.8. In the particular
case when ∆ = Gm, this gives the equivalence

Qcohαd(S) ∼= Qcohd(X) (4.8)

for any d ∈ Z, where αd is defined as in Construction 3.10.
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Proof. The equivalence (4.7) is the special case of Proposition 4.10 where we
take ρ to be X → χ∗X as in Construction 3.8. The equivalence (4.8) is the
special case of (4.7), where we take χ = pn as in Construction 3.10.

Corollary 4.12. Let S be an algebraic stack and let α : X → S and β : Y →
S be Gm-gerbes. Then the tensor product and the internal Hom-functor on
Qcoh(X ×S Y ) induce functors

⊗ : Qcohα(S)×Qcohβ(S) → Qcohαβ(S),

Hom : Qcohα(S)
op ×Qcohβ(S) → Qcohα−1β(S).

Furthermore, if f : T → S is an arbitrary morphism of algebraic stacks, then
we get an induced pair of adjoint functors

f∗ : Qcohα(S) → Qcohf∗α(T ), f∗ : Qcohf∗α(T ) → Qcohα(S).

Recall our conventions regarding f∗ and Hom from Notation 1.8.

Proof. The product X×SY has the structure of a Gm×Gm-gerbe such that the
projections on the factors X and Y induce the projections on the factors on the
bands. By applying Proposition 4.10 to the two projections Gm × Gm → Gm,
we get equivalences

Qcohα(S)
∼= Qcoh(1,0)(X ×S Y ), Qcohβ(S)

∼= Qcoh(0,1)(X ×S Y ),

where we have identified the character group of Gm with Z. By applying Propo-
sition 4.10 to the multiplication and inversion maps given in Construction 3.10,
we obtain the equivalences

Qcohαβ(S)
∼= Qcoh(1,1)(X ×S Y ), Qcohα−1β(S)

∼= Qcoh(−1,1)(X ×S Y ),

respectively. Now the functors ⊗ and Hom are obtained from the monoidal
structure of Qcoh(X ×S Y ) described in Theorem 4.7. The statement about
the functors f∗ and f∗ is an obvious consequence of Proposition 4.9.

5 The derived category of a gerbe

In this section we generalize some of the results by Căldăraru [Căl00, Chapter 2]
and Lieblich [Lie04, Section 2.2.4] on the basic structure of derived categories
of gerbes and twisted sheaves. Throughout the section, we let α : X → S be a
gerbe banded by a diagonalizable group ∆ with character group A.

Definition 5.1. Given a character χ : ∆S → Gm,S , we say that an object F
in Dqc(X) is χ-homogeneous if it has χ-homogeneous cohomology. We denote
the full subcategory of χ-homogeneous objects in Dqc(X) by Dqc,χ(X).
Consider the special case ∆ = Gm and let id : Gm → Gm be the identity
character. An object in Dqc,id(X) is called an α-twisted complex on S. We
often use the notation Dqc,α(S) instead of Dqc,id(X) employing a similar abuse
of notation as in Remark 4.5 if α is just a cohomology class in H2(Sfppf ,Gm).
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We state the following lemma for convenient reference. See Remark 5.10 for
sharper results.

Lemma 5.2. Let S be an affine scheme and let α : X → S be a trivial ∆-gerbe,
where ∆ is a diagonalizable group. Then the obvious functor

D(Qcoh(X))
∼
−→ Dqc(X) (5.1)

is a monoidal equivalence and induces equivalences

D(Qcohχ(X))
∼
−→ Dqc,χ(X) (5.2)

for each character χ of ∆. Moreover, let T be an affine scheme and let β : X ′ →
T be a trivial ∆′-gerbe, where ∆′ is a diagonalizable group. Assume that we
have a morphism ρ : X → X ′ of algebraic stacks. Then the squares

D(Qcoh(X ′))
∼ //

Lρ∗

��

Dqc(X
′)

ρ∗

��
D(Qcoh(X))

∼ // Dqc(X),

D(Qcoh(X ′))
∼ // Dqc(X

′)

D(Qcoh(X))
∼ //

Rρ∗

OO

Dqc(X)

ρ∗

OO
(5.3)

commute up to natural isomorphism.

Proof. The equivalence (5.1) is a special case of [Lie04, Proposition 2.2.4.6],
and the equivalences (5.2) are then immediate from Theorem 4.7. The fact
that the equivalence (5.1) is monoidal follows from the fact that any complex
in Qcoh(X) admits a resolution by an h-flat complex in Qcoh(X) which is
also h-flat as a complex in Mod(Xlis-ét,OX). This can be seen by using a
homotopy limit argument as in [SP19, Tag 06XX]. Here we use that any object
in Qcoh(X) is a quotient of a locally free sheaf, which is true since Qcoh(X)
is equivalent to a category of graded modules, and the fact that coproducts in
Mod(Xlis-ét,OX) are exact and preserve Qcoh(X).
The functor α∗ : Qcoh(X) → Qcoh(S) is exact, since this operation corre-
sponds to taking invariants and ∆ is diagonalizable. This well-known fact also
easily follows from the last sentence of Proposition 4.10 together with the de-
composition in Theorem 4.7. Hence the equivalence (5.1) shows that X has
cohomological dimension zero.
Note that ρ induces a morphism S → T on the coarse spaces, so ρ factors as
X → X ′ ×T S → X ′ where the first morphism is a morphism of gerbes over S,
and the second morphism is affine. Furthermore, the first morphism factors as
an affine morphism followed by a ∆-gerbe by Remark 4.1. Hence also ρ has
cohomological dimension zero, as this property is stable under composition and
can be checked after a faithfully flat base change by [HR17, Lemma 2.2]). In
particular, ρ is concentrated, so it follows from [HNR18, Corollary 2.2] that the
right hand square (5.3) commutes. Hence also the left hand square commutes
by adjunction.

Documenta Mathematica 26 (2021) 1465–1500

http://stacks.math.columbia.edu/tag/06XX


Decompositions for Gerbes & Brauer–Severi Varieties 1491

Remark 5.3. Let ρ : X → Y be a morphism of gerbes banded by diagonalizable
groups over an algebraic stack S as in Remark 4.1. Then the last part of the
proof shows that ρ is concentrated of cohomological dimension zero, as these
properties can be checked locally on S (see [HR17, Lemma 2.2 and Lemma 2.5]).

The next theorem is the main structure theorem for the derived category of a
∆-gerbe and the derived analog of Theorem 4.7. It is a generalization of the
observation in [Lie04, Section 2.2.4] that the derived category splits according
to characters in certain situations.

Theorem 5.4. Let S be an algebraic stack and α : X → S a gerbe banded by a
diagonalizable group ∆. Then Dqc,χ(X) is a triangulated subcategory of Dqc(X)
for each ∆S-character χ, and taking the coproduct gives an equivalence

∏

χ∈A

Dqc,χ(X)
∼
−→ Dqc(X), (Fχ)χ∈A 7→

⊕

χ∈A

Fχ, (5.4)

of triangulated categories, where A denotes the character group of ∆.
Furthermore, assume that Fχ and Gψ are objects in Dqc(X) which are homo-
geneous for ∆S-characters χ and ψ, respectively. Then the objects

Fχ ⊗ Gψ, Hom(Gψ ,Fχ) (5.5)

are χψ- and χψ−1-homogeneous, respectively.

Proof. By Theorem 4.7, the category Qcohχ(X) is a Serre subcategory of
Qcoh(X). It follows that Dqc,χ(X) is a strictly full triangulated subcategory
of Dqc(X) by [SP19, Tag 07B4, Tag 06UQ].
Recall that we work with sheaves on the lisse–étale sites over X and S. Note
that we get a morphism Xlis-ét → Slis-ét of topoi, by [SP19, Tag 07AT], since α
is smooth (see Remark 4.1). In particular, there is no need to work with
hypercoverings to define pull-backs as in [Ols07].
Let E be a subset of the set A of characters of ∆, and let QcohE(X) denote the
full subcategory of Qcoh(X) of objects which are direct sums of χ-homogeneous
objects for χ ∈ E. Let F be the complement of E in A. It follows from
Theorem 4.7 that (QcohE(X),QcohF (X)) is a torsion pair in Qcoh(X) and
that both QcohE(X) and QcohF (X) are abelian subcategories of Qcoh(X).
Let E and F be objects of QcohE(X) and QcohF (X), respectively. We will
show that

ExtnOX
(E ,F) ∼= Hn(RΓRHomOX

(E ,F)) (5.6)

vanishes for each n. Since RΓRHomOX
(E ,F) ∼= RΓRα∗RHomOX

(E ,F), this
follows if we prove that Rα∗RHomOX

(E ,F) vanishes. The n-th cohomology
sheaf of Rα∗RHomOX

(E ,F) is easily seen to be the sheaf of OS-modules asso-
ciated to the presheaf

(U → S) 7→ ExtnOXU

(E|XU
,F|XU

),
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where U is a scheme and U → S is smooth. It is therefore enough to verify the
vanishing of (5.6) when S is affine and the gerbe α : X → S is trivial. But in
this situation the functor (5.1) is an equivalence by Lemma 5.2, so we get the
desired vanishing from Lemma 2.5.(d) or, more easily, from Theorem 4.7.
All direct and inverse truncation systems in Dqc(X) are effective by Proposi-
tions 2.16 and 2.20. Hence the hypotheses of Theorem 2.22 are satisfied, so we
get a semi-orthogonal decomposition

Dqc(X) = 〈Dqc,F (X),Dqc,E(X)〉, (5.7)

where Dqc,E denotes the full subcategory of Dqc(X) of objects with cohomology
in QcohE(X) and similarly for Dqc,F (X).
We are now ready to prove that the functor (5.4) is an equivalence. First
note that it is well defined since Dqc(X) has arbitrary coproducts. Let χ ∈ A
and set E = {χ}, F = A − {χ}. Then HomDqc(X)(Fχ,G) vanishes whenever
Fχ ∈ Dqc,χ(X) and G ∈ Dqc,F by the semi-orthogonal decomposition (5.7).
Since Dqc,χ(X) is a full subcategory of Dqc(X), it follows that the functor (5.4)
is fully faithful.
Now let F be any object of Dqc(X). Then the semi-orthogonal decomposi-
tion (5.7) gives a triangle

Fχ → F → FF → ΣFχ

with Fχ ∈ Dqc,χ(X) and FF ∈ Dqc,F (X), respectively. By Remark 2.21 and
Theorem 4.7, the morphism Fχ → F induces an isomorphism Hn(Fχ) →
Hn(F)χ for each n. It follows that the canonical map

⊕
χ∈A Fχ → F induces

an isomorphism on cohomology and therefore is an isomorphism in Dqc(X).
Hence the functor (5.4) is essentially surjective and therefore an equivalence.
Finally, we prove the statements about the monoidal structure. It is enough
to prove the statement about the tensor product, since the statement about
the internal hom follows formally from the adjointness property. The question
whether Fχ ⊗L

OX
Gψ is χψ-homogeneous can be verified locally on S. Indeed,

this follows from Proposition 4.9, since cohomology of a complex commutes
with pull-back along a flat map (see [HR17, Equation 1.9]), and the pull-back
functor along a faithfully flat map is conservative. Hence we may assume that S
is affine and that the gerbe α : X → S is trivial. Now the statement follows from
the underived case described in Theorem 4.7 by the monoidal decomposition
preserving equivalence (5.1) in Lemma 5.2.

Remark 5.5. Similarly as in Remark 4.8, the canonical morphism
⊕

χ∈A Fχ →∏
χ∈A Fχ is an isomorphism even if the character group A is not finite.

The following two propositions are the derived analogs of Proposition 4.9
and 4.10.

Proposition 5.6. Let S be an algebraic stack and α : X → S a gerbe banded
by a diagonalizable group ∆. Let f : T → S be a morphism of algebraic stacks,
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and let g : Y → X denote the canonical morphism from the pull-back Y of X
along f . Then the functors

g∗ : Dqc(X) → Dqc(Y ), g∗ : Dqc(Y ) → Dqc(X)

respect the decompositions of Dqc(X) and Dqc(Y ) into homogeneous compo-
nents given in Theorem 5.4.

Proof. As a formal consequence of adjunction, it is enough to verify that the
pull-back g∗ respects the decomposition. By a similar reduction argument as in
the last paragraph of the proof of Theorem 5.4, we reduce to the case when S
and T are affine and the gerbes are trivial. Now the result follows from the
underived setting in Proposition 4.9 and the commutative diagram (5.3) in
Lemma 5.2.

Proposition 5.7. Let X and X ′ be gerbes over S banded by diagonalizable
groups ∆ and ∆′, respectively, and let ρ : X → X ′ be a morphism over S with
induced morphism ϕ : ∆S → ∆′

S on the bands. Fix a character χ′ : ∆′
S → Gm,S,

and let χ = χ′ ◦ϕ. Then the pull-back functor ρ∗ takes χ′-homogeneous objects
to χ-homogeneous objects and induces an equivalence

ρ∗ : Dqc,χ′(X ′)
∼
−→ Dqc,χ(X) (5.8)

of triangulated categories. In particular, if X ′ = S then ρ∗ : Dqc(S) → Dqc(X)
is fully faithful with essential image consisting of those objects that are homo-
geneous for the trivial character.

Proof. Since ρ is flat (see Remark 4.1), the pull-back ρ∗ commutes with taking
cohomology (see [HR17, Equation (1.9)]). In particular, the first statement
follows from the underived case, which is given by Proposition 4.10.
Let us first consider the special case X ′ = S. By Remark 5.3, the morphism ρ
is concentrated, so the push-forward ρ∗ respects flat base change by [HR17,
Theorem 2.6(4)]. Hence the statement can be verified locally. In particular,
we may assume that the gerbes are trivial and that S is affine. Hence we may
use the equivalences in Lemma 5.2. Since ρ∗ and ρ∗ are exact, the statement
follows from the underived case, which is Proposition 4.10.
For the general case, we proceed exactly as in the proof of Proposition 4.10 on
the level of derived categories.

Similarly as in the underived case, we get the following corollaries.

Corollary 5.8. Let S be an algebraic stacks and let α : X → S be a gerbe
banded by ∆, and choose a character χ : ∆S → Gm,S. Then we have an equiv-
alence

Dqc,χ∗α(S)
∼= Dqc,χ(X)

of categories, where χ∗α is defined as in Construction 3.8. In the particular
case when ∆ = Gm, this gives the equivalence

Dqc,αd(S) ∼= Dqc,d(X)
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for any d ∈ Z, where αd is defined as in Construction 3.10.

Proof. This is proven similarly as Corollary 4.11 by using Proposition 5.7 in-
stead of Proposition 4.10.

Corollary 5.9 (cf. [Căl00, Theorem 2.2.4]). Let S be an algebraic stack and
let α : X → S and β : Y → S be Gm-gerbes. Then the tensor product and the
internal Hom-functor on Dqc(X ×S Y ) induce triangulated functors

⊗ : Dqc,α(S)×Dqc,β(S) → Dqc,αβ(S),

Hom : Dqc,α(S)
op ×Dqc,β(S) → Dqc,α−1β(S).

Furthermore, if f : T → S is an arbitrary morphism of algebraic stacks, then
we get an induced pair of adjoint functors

f∗ : Dqc,α(S) → Dqc,f∗α(T ), f∗ : Dqc,f∗α(T ) → Dqc,α(S).

Proof. This is proven similarly as Corollary 4.12 by using Theorem 5.4, Proposi-
tion 5.6 and Proposition 5.7 instead of Theorem 4.7, Proposition 4.9 and Propo-
sition 4.10.

We conclude the section with two remarks regarding alternative approaches for
proving Theorem 5.4.

Remark 5.10. Note that Theorem 5.4 is trivial whenever the functor (5.1) is
a monoidal equivalence. By Lieblich [Lie04, Proposition 2.2.4.6], the func-
tor (5.1) is an equivalence whenever S is a quasi-compact, separated scheme.
More generally, it follows from the work by Hall, Neeman and Rydh [HNR18,
Theorem 1.2] that (5.1) is an equivalence whenever S is an algebraic space
which is either noetherian or quasi-compact with affine diagonal. The afore-
mentioned theorem applies since in this case, the category Dqc(X) is com-
pactly generated by |A| objects by [HR17, Theorem 6.9] applied to the presheaf
(T → S) 7→ Dqc(XT ) of triangulated categories. Since we are not going to use
this result, we leave the details of verifying the hypotheses of the cited the-
orem to the reader (cf. [HR17, Example 9.2]). We do not know whether the
equivalence (5.1) is monoidal in this generality.
Finally, it should be emphasized that there certainly are interesting cases when
(5.1) is not an equivalence. For instance, consider the Gm-gerbe in Exam-
ple 3.7.(a). The functor (5.1) is not an equivalence for X = BGLn if n ≥ 2
by [HNR18, Theorem 1.3], so Theorem 5.4 seems to be non-trivial even in this
basic case.

Remark 5.11. Theorem 5.4 would be trivial if the category Mod(Xlis-ét,OX)
admitted a decomposition similar to the one for Qcoh(X) described in Theo-
rem 4.7. We do not know whether this is the case, but we suspect it is not.
In [SGA3i, Exposé 1, Proposition 4.7.2], it is stated that the category of (not
necessarily quasi-coherent) sheaves of G−OS-modules on the small Zariski site
is equivalent to the category of sheaves of A-comodules for any affine group
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scheme G = SpecS A over a scheme S. If this were true, then it should be
possible to adapt the proof to our situation and to get a decomposition of
Mod(Xlis-ét,OX). However, we suspect that the previously cited proposition
might be wrong, since it uses [SGA3i, Exposé 1, Proposition 4.6.4] which in
turn uses the fact that the canonical morphism

F ⊗S A → α∗α
∗F (5.9)

is an isomorphism whenever F is quasi-coherent and α : X = SpecS A → S is
affine. But this is certainly not true in general if we drop the condition that F
be quasi-coherent.

Let for example S be a scheme with an open subscheme U such that the
inclusion j : U → S is affine and quasi-compact and F = j!OU is not quasi-
coherent. Then the canonical morphism j!OU

∼= F ⊗ j∗OU → j∗j
∗F ∼= j∗OU

is not an isomorphism because j∗OU is quasi-coherent. Let G := S ⊔U be the
disjoint union. Then α : G → S is in the obvious way an affine étale group
scheme over S. In this case A = α∗OG = OS ⊕ j∗OU and the morphism (5.9)
is not an isomorphism for F = j!OU .

6 Semi-orthogonal decompositions for Brauer–Severi schemes

In this section, we demonstrate how to use the theory of gerbes developed by
Giraud to obtain a simple and conceptually appealing proof for the existence of
the semi-orthogonal decomposition of the derived category of a Brauer–Severi
scheme given by Bernardara [Ber09, Theorem 4.1]. We start by recalling some
basic facts on Brauer–Severi schemes and their trivializing gerbes from [Gir71,
Example V.4.8].

Let S be an arbitrary algebraic stack. An algebraic stack P over S is called
a Brauer–Severi scheme over S if it is fppf -locally (on S) isomorphic to a
projectivized vector bundle. Of course P need not be a scheme in general;
the terminology is motivated by the fact that the structure morphism to S is
representable by schemes.

Given a Brauer–Severi scheme π : P → S, we consider its gerbe of trivializations
and denote it by β : B → S. Let t : T → S be a morphism. The t-points of
B are pairs (V , v), where V is a finite locally free sheaf of OT -modules and
v : PT

∼
−→ P(V∨) is an isomorphism over T . The gerbe B is endowed with

a tautological finite locally free sheaf E of OB-modules. This is obtained on
t-points (V , v) as above by simply forgetting the isomorphism v. The gerbe B
also has an obvious banding by Gm given on t-points as above by the usual
action by O×

T (T ) on V . In particular, the tautological sheaf E is a β-twisted
sheaf over S in the sense of Definition 4.4.

Note that by construction, the gerbe of trivializations fits into a 2-cartesian
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diagram

P(E∨)
γ //

ρ

��

P

π

��
B

β
// S,

(6.1)

which we call the tautological trivialization diagram.
The class [β] of β : B → S (see Theorem 3.11) in H2(Sfppf ,Gm) is called the
Brauer class of the Brauer–Severi scheme π : P → S. This class vanishes if and
only if P is a projectivized vector bundle over S.

Remark 6.1. Consider the Brauer–Severi scheme π : [Pn−1/PGLn] → BPGLn.
Its gerbe of trivializations can be identified with the Gm-gerbe α : BGLn →
BPGLn in Example 3.7.(a). Note that the stack BPGLn classifies Brauer–
Severi schemes. Given a Brauer–Severi scheme P over an arbitrary algebraic
stack S, its gerbe of trivializations can be identified with the pull-back of α
along the morphism S → BPGLn corresponding to P .

Theorem 6.2. Let S be an algebraic stack and π : P → S a Brauer–Severi
scheme of relative dimension n ≥ 0 over S. Using the notation from above, we
consider the tautological trivialization diagram (6.1). Then the functors

Φi : Dqc,i(B) → Dqc(P ), F 7→ γ∗(O(i)⊗ ρ∗F), (6.2)

are fully faithful for each i. Moreover, for each a ∈ Z, we have a semi-
orthogonal decomposition

Dqc(P ) = 〈ImΦa, . . . , ImΦa+n〉 (6.3)

into right admissible categories.

Remark 6.3. In particular (see Corollary 5.8), the essential image ImΦi is
equivalent to the category Dqc,βi(S) of βi-twisted complexes on S in the sense

of Definition 5.1. Recall that, as explained above, [β] ∈ H2(Sfppf ,Gm) is the
Brauer class of P .

Proof. Since ρ is the projectivization of a vector bundle of rank n+1, it follows
from [BS17, Theorem 6.7] that the functors

Ψi : Dqc(B) → Dqc(P(E
∨)), F 7→ O(i)⊗ ρ∗F ,

are fully faithful and that

Dqc(P(E
∨)) = 〈ImΨa, . . . , ImΨa+n〉

is a semi-orthogonal decomposition for any a ∈ Z. Since both β and γ are
Gm-gerbes, Theorem 5.4 provides equivalences

∏

d∈Z

Dqc,d(B)
∼
−→ Dqc(B),

∏

d∈Z

Dqc,d(P(E
∨))

∼
−→ Dqc(P(E

∨)).
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By Proposition 5.6, the pull-back ρ∗ preserves d-homogeneous objects for each
d ∈ Z. Since E∨ is homogeneous of degree -1 we see from the canonical surjec-
tion ρ∗(E∨) → O(1) and Theorem 5.4 that O(1) is homogeneous of degree -1.
This shows that Ψi shifts the degree by −i. Hence we get a semi-orthogonal
decomposition

Dqc,0(P(E
∨)) = 〈ImΨ′

a, . . . , ImΨ′
a+n〉,

where Ψ′
i denotes the restriction of Ψi to Dqc,i(B). Since γ is a gerbe, the pull-

back γ∗ is fully faithful with essential image Dqc,0(P(E
∨)) by Proposition 5.7.

Therefore the theorem follows from the identities Φi = γ∗ ◦Ψ
′
i.

Remark 6.4. Note that Theorem 6.2 differs from the corresponding decompo-
sition in [Ber09, Theorem 4.1] with respect to the sign of the Brauer class β.
This is simply due to different sign conventions. We follow the convention used
by Giraud in [Gir71, Example V.4.8].

Similarly, as in the corresponding theorem for projectivized vector bundles
(see [BS17, Theorem 6.7, Corollary 6.8]), we also get semi-orthogonal decom-
positions for the categories of perfect complexes, of locally bounded pseudo-
coherent complexes, and for the singularity categories, respectively. Following
the notation from [BS17, Section 2.3], we denote these categories by Dpf(P ),

Dlb
pc(P ) and Dsg

pc(P ), respectively.

Corollary 6.5. Keep the assumptions from Theorem 6.2. The functors Φi
induce functors

Φpf
i : Dpf,i(B) → Dpf(P ), Φpc

i : Dlb
pc,i(B) → Dlb

pc(P ),

Φsg
i : Dsg,i(B) → Dsg(P ),

where the source categories are the full subcategories of i-homogeneous objects
in the categories Dpf(B), Dlb

pc(B) and Dsg(B) introduced above, respectively.
Furthermore, for each a ∈ Z, this yields a semi-orthogonal decomposition

Dpf(P ) = 〈ImΦpf
a , . . . ,Φ

pf
a+n〉, (6.4)

into admissible subcategories and semi-orthogonal decompositions

Dlb
pc(P ) = 〈ImΦpc

a , . . . ,Φ
pc
a+n〉, (6.5)

Dsg(P ) = 〈ImΦsg
a , . . . ,Φ

sg
a+n〉 (6.6)

into right admissible subcategories. In particular, if S is Noetherian, we get the
corresponding decomposition of Db

coh(P ) = Dlb
pc(P ).

Proof. The functors Φi and their right adjoints restrict to the subcategories
of perfect complexes and the subcategories of locally bounded pseudo-coherent
complexes, respectively. Indeed, this follows from the corresponding properties
for Ψi (cf. [BS17, Corollary 6.8]) using the notation in the proof of Theorem 6.2.
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Hence the decompositions in the corollary into right admissible categories fol-
low formally from Theorem 6.2 (see [BS17, Corollary 5.19]). Moreover, the
restriction of each Ψi to the category of perfect complexes has a left adjoint
(cf. [BS17, Corollary 6.8]).

Remark 6.6. Let us explain why Bernardara’s Theorem 4.1 from [Ber09] is a
special case of the semi-orthogonal decomposition (6.4). In Bernardara’s set-
ting, the base S is a Noetherian, separated scheme with the additional property
that any two points is contained in an open affine. In fact, he only states that S
should be locally noetherian with the extra condition on points, but the other
properties are used implicitly since he uses results from Căldăraru’s thesis,
where the stronger assumptions are in effect [Căl00, Section 2.1]. Bernardara’s
category D(S, α) is the derived category of perfect complexes of α-twisted co-
herent sheaves. By the comparison by Lieblich mentioned in Remark 4.6,
this is equivalent to Dpf(Cohα(S)), which is easily seen to be equivalent to
Dpf(Qcohα(S)) by using that every quasi-coherent sheaf on the gerbe cor-
responding to α is a direct limit of its coherent subsheaves [LMB00, Theo-
rem 15.4]. Now this category is equivalent to Dpf,α(S) since the functor (5.1)
is an equivalence under the assumptions on S (see Remark 5.10).
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Documents Mathématiques (Paris), 7. Société Mathématique de
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Institut für Mathematik
Universität Paderborn
Warburger Str. 100
33098 Paderborn
Germany
olaf.schnuerer@math.uni-
paderborn.de

Documenta Mathematica 26 (2021) 1465–1500

http://stacks.math.columbia.edu

