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Abstract. Consider an irreducible Markov chain which satisfies a
ratio limit theorem, and let ρ be the spectral radius of the chain.
We investigate the relation of the the ρ -Martin boundary with the
boundary induced by the ρ -harmonic kernel which appears in the
ratio limit. Special emphasis is on random walks on non-amenable
groups, specifically, free groups and hyperbolic groups.
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1 Introduction

Let X be the denumerable state space of a time-homogeneous Markov chain
(Xn)n≥0 with transition matrix P . We assume that it is irreducible and aperi-
odic: for any pair of points x, y ∈ X , there is kx,y ∈ N such that p(n)(x, y) > 0
for all n ≥ kx,y , where p(n)(x, y) denotes the n-step transition probability
from x to y. We will often (but not always) also assume that P has finite
range, that is, for each x ∈ X , there are only finitely many y with p(x, y) > 0.
(This simplifies parts of the technicalities.) We choose and fix a root e ∈ X .
In case of a group, this will be the identity.

In a variety of cases, part of which will be displayed below, one knows that a
ratio limit theorem holds, that is, there is a function (kernel) h : X 2 → (0,∞)
such that

lim
n→∞

p(n)(x, y)

p(n)(e, e)
= h(x, y) for all x, y ∈ X . (1.1)
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1502 W. Woess

Now let ρ = ρ(P ) = lim sup p(n)(x, y)1/n be the so-called spectral radius of the
Markov chain. It is independent of x and y by irreducibility. If (1.1) holds
then in a large variety of cases (including finite range) one deduces that

Ph = hP = ρ · h (1.2)

in the sense of matrix products. In particular, for any fixed y, the function
x 7→ h(x, y) is a positive ρ -harmonic function: more generally, for real t ≥ ρ,
a function f : X → R is t-harmonic, if

∑

w

p(x,w)f(w) = t f(x) for all x ∈ X . (1.3)

When t = 1, one just speaks of a harmonic function. Let us write H+(P, t) for
the convex cone of positive t-harmonic functions.
For each x, we have h(x, y) ≤ Cx h(e, y) for all y, where 1/Cx = ρk p(k)(e, x)
with the smallest k such that this is non-zero. Therefore, we can consider the
normalised ratio limit kernel

H(x, y) = h(x, y)/h(e, y),

and the function y 7→ H(x, y) is bounded by Cx for each y.

Definition 1. The ratio limit compactification1 ∆ratio(X ) of X is the (up
to homomorphism) unique compact Hausdorff space which contains X as a
discrete, dense subset and has the following properties:

• each function H(x, ·) extends continuously to ∆ratio(X ) , and denoting
the extended kernel also by H ,

• if ξ, η ∈ R(X ) = ∆ratio(X ) \ X are distinct, then there is x ∈ X such
that H(x, ξ) 6= H(x, η).

For the general construction of such a compactification, within the present
context see e.g. [30, Thm. 7.13]. At least when P has finite range, each
function x 7→ H(x, ξ), ξ ∈ ∆ratio(X ) , is ρ -harmonic.

In relation with his current work on Cuntz algebras related to random walks,
Adam Dor-On, in an exchange that lead to the “companion” paper [11], has
asked how one can describe this compactification in terms of a given struc-
ture of the underlying state space, and how it relates with the ρ -Martin com-
pactification. His questions were motivated by operator algebraic issues, and
the answers provided here contribute to clarifying some of them. The Martin
boundary will be recalled in the next section.

The main interest is in the case when X = Γ is a finitely generated, infinite
group, and the Markov chain is a random walk induced by a finitely supported
probability measure µ on Γ, that is,

p(x, y) = µ(x−1y) .

1 [11] calls this the full ratio limit compactification.
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Irreducibility & aperiodicity then amount to the property that the support of µ
generates Γ as a semi-group and that it is not contained in a coset of a proper
normal subgroup of Γ. Given the first of those two properties, the second will
certainly hold if µ(e) > 0, where e is the group identity. (Assuming this is not
a crucial restriction.)
If in this case we have a ratio limit theorem, then clearly h(gx, gy) = h(x, y)
for all x, y, g ∈ Γ, so that the function f(x) = h(x, e) is ρ -harmonic, and
h(x, y) = f(y−1x). In this situation, the ratio limit boundary is a Γ-space, and
the elements of Γ act continuously on ∆ratio(Γ).

For random walks on groups, a famous ratio limit theorem is due to Avez:

Theorem 1. [2] If the group Γ is amenable and µ is symmetric, i.e., µ(x−1) =
µ(x), then

lim
n→∞

p(n)(x, y)

p(n)(e, e)
= 1 for all x, y ∈ Γ .

(Finite support is not needed here.) In this case, we see that ∆ratio(X ) is
the one-point compactification. We mention here that there are symmetric
random walks on amenable groups where the Martin boundary (and even the
minimal one; see §2) is infinite. For example, for random walks on lamplighter
groups over Zd (d ≥ 3), the Poisson boundary is non-trivial, see Kaimanovich

and Vershik [21], whence there are non-constant minimal harmonic functions.
This is even true for certain lamplighter random walks over Z, see [31].
For non-amenable groups, there is a variety of results which go beyond ratio
limit theorems, namely, local limit theorems which provide an asymptotic eval-
uation of the n-step transition probabilities. Typically (but not necessarily),
they are of the form

p(n)(x, y) ∼ C β(x, y) ρn n−α as n → ∞ , (1.4)

where ∼means that the quotient of the left and right hand sides tends to 1, and
C, β(x, y), α > 0. For results up to 2000, see [29, Ch. III] and the references
therein. The first of those results are due to Gerl [15] and Sawyer [27],
concerning random walks on free groups, resp. regular trees. The latest results
are by Gouëzel [17], [18] and Dussaule [12], for hyperbolic, resp. relatively
hyperbolic groups. In between, there is a rather large body of work.

Whenever one has (1.4), this yields the ratio limit theorem with h(x, y) =
β(x, y)/β(e, e), and the kernel for the ratio limit compactification is H(x, y) =
β(x, y)/β(e, y), where e is the group identity.

In the present paper, we exhibit classes of random walks on non-amenable
groups where the ratio limit compactifictation coincides with the ρ -Martin
compactification, and one has a geometric description of the latter. Recall that
ρ < 1 on those groups by Kesten [22].
After laying out some necessary preliminaries in §2, in §3 we consider free
groups and regular trees, and instead of stating and proving right away the
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most general result for general finite range random walks, we proceed step by
step. Subsequently, in §4, we consider hyperbolic groups. In §5, we discuss
how the ratio limit compactification interacts with taking direct or Cartesian
products. In §6, we discuss the reduced ratio limit boundary and show that in
the cases of §3, there is no reduction, while for hyperbolic groups, reduction
may come only from a (finite) torsion subgroup. The final §7 contains a brief
discussion and an outlook on work to be done in the future.
It is on purpose that three different methods are displayed for (1) isotropic
random walks on trees, (2) finite range random walks on free groups, and (3)
symmetric random walks on hyperolic groups (with finite range). In spite of the
fact that the most modern approach is based on the cited work ofGouëzel [17],
the older methods regarding (1), going back to Sawyer [27], resp. (2), going
back to Derriennic [10] plus Lalley [23], are still very valid in the author’s
view. Also, for the time being, (3) does not cover (1) and (2) completely.
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Also, the author is extremely grateful to Sébastien Gouëzel for helpful input
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2 Preliminaries; the Martin compactification

A. The t-Martin compactification

We let t ≥ ρ (focusing on the case when t = ρ). To describe the t-Martin
compactification, consider for real z > 0 the Green function

G(x, y|z) =
∞∑

n=0

p(n)(x, y) zn , x, y ∈ X .

The radius of convergence of this power series is r = 1/ρ. At that value, the
series may either converge or diverge for all x, y. The latter is the ρ -recurrent
case, the former the ρ -transient one. The quotient

F (x, y|z) = G(x, y|z)
G(y, y, |z) =

∞∑

n=0

f (n)(x, y) zn

is also a generating function: f (n)(x, y) is the probability that the Markov
chain starting at x first reaches y at time n ≥ 0. It is known [30, Lemma 3.66]
that F (x, y|1/ρ) is always finite. In the case of a random walk on a group, it
is known that one always has the ρ -transient case, except when that group is
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virtually Z or Z2, see e.g. Woess [29, Thm. 7.8]. For real t ≥ ρ, the t-Martin
kernel is

K(x, y|t) = F (x, y|1/t)
F (e, y|1/t) .

Here we shall mainly work with t = ρ. For fixed y, the function x 7→ K(x, y|ρ)
satisfies (1.3) at every x ∈ X \ y. Furthermore, for fixed x, we have
K(x, · t) ≤ Cx with the same bound as above. Thus, we can construct the
compactification ∆Mart, t(X ) of X , analogous to the one of Definition 1, for the
t-Martin kernel K(x, y|t) in the place of H(x, y). This is the t-Martin com-
pactification, and Mt(X ) = ∆Mart, t(X ) \ X is the t-Martin boundary. Each
function x 7→ K(x, ξ|t), ξ ∈ Mt(X ), is t-harmonic. The significance of Mt(X )
lies in the fact that every positive t-harmonic function f on X has an integral
representation

f(x) =

∫

Mt(X )

K(x, · t) dνf ,

where ν is a Borel measure on Mt(X ). That measure is unique, if we re-
quire that νf

(
Mt(X ) \ Mt,min(X )

)
= 0, where Mt,min(X ) is the minimal

boundary: a positive t-harmonic function f is called minimal, if f(e) = 1
and it cannot be written as a convex combination of two distinct positive t-
harmonic functions with value 1 at e. The minimal boundary is {ξ ∈ Mt(X ) :
K(·, ξ|t) is minimal }; it consists of all minimal t-harmonic functions.

The finite range assumption simplifies a few things (for example, it yields that
all extended Martin kernels are t-harmonic in the first variable), but is not
needed for the construction and properties. Also, aperiodicity is not needed,
irreducibility is sufficient, that is, for every pair x, y ∈ X there is k = kx,y such
that p(k)(x, y) > 0. (It even suffices to have this only for x = e and every y.)

For all these facts, see e.g. [29, §24] or the references provided there. The largest
part of the literature is on the ordinary 1-Martin compactification. There is a
simple tool to pass from the t-Martin compactification to the latter. Namely,
take one positive t-harmonic function f and use the Doob transform: define
new transition probabilities by

pf (x, y) =
p(x, y)f(y)

t f(x)
(2.1)

Then the t-Martin compactification of the original Markov chain is the 1-Martin
compactification of the Doob transform, and KP f (x, · 1) = K(x, · t)/f(x).
B. Comparing compactifications

Let ∆(X ) and ∆′(X ) be two compactifications of the countable set X , that is,
compact Hausdorff spaces which contain X as open and dense subsets. Then
we say that the former is bigger than the latter, if the identity map on X
extends to a continuous surjection ∆(X ) → ∆′(X ). Clearly, if also ∆′(X ) is
bigger than ∆(X ) then that continuous mapping is a homeomorphism. In this
case, we say that the two compactifications coincide geometrically.
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In typical cases, one has a “natural” geometric compactification of X and then
wants to show that it coincides geometrically with the Martin compactification,
or that it is smaller than the Martin compactification. In particular, we want to
compare the ratio limit compactification with the ρ -Martin compactification.
In its geometric, resp. topological interpretation, this will mean that the latter
is bigger than the former, or that they coincide in the above sense.
However, this is not the full picture; it does not yet fully reflect its analytic
properties. One should also ask whether in that case the homoeomorphism
τ : ∆Mart, ρ(X ) → ∆ratio(X ), in case it exists, is such that

K(x, ξ|ρ) = H
(
x, τ(ξ)

)
for all x ∈ X , ξ ∈ Mρ(X ) . (2.2)

When we have two geometrically equal compactifications constructed via two
different kernels, let us say that they coincide analytically, when the extended
kernels coincide on the boundary. (“Coincide” is of course meant in terms of a
homeomorphism as above.)
No matter whether the ratio limit and ρ -Martin compactifications coincide geo-
metrically or not: whenever ν is a Borel measure on the ratio limit boundaryR,
the function

f(x) =

∫

R

H(x, ·) dν

is positive ρ -harmonic, and the above question basically amounts to asking
whether every positive ρ -harmonic function arises in this way.
In general, it is for example known that for any two finite range, irreducible
random walks on a free group, the Martin compactifications coincide geomet-
rically, but in general by no means analytically.

Proposition 2. [25, Prop. 1] Let P,Q be two irreducible transition operators
on X such that every positive harmonic function for P is also harmonic for Q.
Suppose that

• the 1-Martin compactifications of P and Q coincide geometrically, and

• the 1-Martin boundary of P is Dirichlet-regular, that is, every continu-
ous function on the boundary has a continuous extension to the entire
compactification which is 1-harmonic for P on X .

Then the two compactifications coincide analytically, so that the positive 1-
harmonic functions for P and Q coincide.

We shall apply this below.

3 Trees and free groups

Let T be the regular tree where each vertex has q + 1 neighbours, with q ≥ 2.
If there is an edge between the vertices x, y ∈ T then we write x ∼ y. For
any pair of vertices x, y, there is a unique finite geodesic π(x, y) = [x =
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x0 , x1 , . . . , xk = y] connecting the two, that is, xi−1 ∼ xi, and all xi are
distinct. The distance between x and y is then d(x, y) = k. An infinite ray
is a one-sided infinite geodesic path π = [x0 , x1 , x2 , . . . ], that is, xk ∼ xk−1

and all xk are distinct. Two rays π and π′ are called equivalent, if they differ
only by finitely many initial vertices. An end of T is an equivalence class of
rays. The geometric boundary ∂T is the set of all ends. For any x ∈ T and
ξ ∈ ∂T, there is a unique ray π(x, ξ) starting at x which represents ξ. We set
∆ends(T) = T ∪ ∂T .
We choose and fix a root vertex e. For x ∈ T, we let |x| = d(e, x). We define
the branch of ∆ends(T) at x as

∆ends(Tx) = {w ∈ ∆ends(T) : x ∈ π(e, w)}.

The topology on ∆ends(T) is discrete on T, while a neighbourhood basis of ξ ∈
∂T is given by the collection of all ∆ends(Tx), where x ∈ π(e, ξ). Each of those
sets is open and compact. This turns ∆ends(T) into a totally disconnected,
compact Hausdorff space in which T is open and dense. It can be metrisized
as follows. For distinct v, w ∈ ∆ends(T), their confluent v ∧w is the vertex on
π(e, v) ∩ π(e, w) furthest from the root e. Then

ϑ(v, w) =

{
q−|v∧w| , if v 6= w,

0 , if v = w

is an ultrametric which induces the above topology. Below, we shall also need
the Busemann function or horocycle index with respect to an end ξ ∈ ∂T. For
a vertex x ∈ T, this is

h(x, ξ) = d(x, x ∧ ξ)− |x ∧ ξ| = lim
T∋y→ξ

d(x, y)− |y|.

A. Isotropic random walks on T

A Markov chain with transition matrix P on T is called an isotropic random
walk, if p(x, y) depends only on d(x, y). For d ∈ N, let Pd be the stochastic
transition matrix with entries

pd(x, y) =





1

(q + 1)qd−1
, if d(x, y) = d ,

0 , otherwise.

Also, we set P0 = I. For each d, there is a polynomial P̂d(t) of degree d such

that Pd = P̂d(P1). If P is isotropic then it can be written as a (possibly infinite)
convex combination P =

∑∞
d=0 ad Pd . In order to guarantee irreducibility &

aperiodicity, we assume that ad > 0 for some odd and some even d. We now
refer to the results explained in [29, §19.C], due to [27]. The spherical transform
of P is

P̂ (t) =

∞∑

d=0

ad P̂d(t) .
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Thus, P = P̂ (P1). It is very well known that

ρ(P1) =
2
√
q

q + 1
and ρ = ρ(P ) = P̂

(
ρ(P1)

)
. (3.1)

Let

ϕ(n) =
(
1 +

q − 1

q + 1
n
)
q−n/2 , n ∈ N0 . (3.2)

Set Φ(x, y) = ϕ
(
d(x, y)

)
. Thus, Φ(x) = Φ(x, e) is the spherical function which

satisfies P1Φ(x) = ρ(P1)Φ(x). (“Spherical” means that it is an eigenfunction
of P1 with value 1 at e that depends only on |x|.) We see that also PΦ(x, y) =
ρΦ(x, y). The local limit theorem of [27] says that

p(n)(x, y) ∼ C Φ(x, y) ρn n−3/2 , as n → ∞ .

Thus, we get

H(x, y) =
Φ(x, y)

Φ(e, y)
.

Theorem 3. For isotropic P as above, suppose that it has super-exponential

moments: lim supd→∞ a
1/d
d = 0. Then the ratio limit compactification coincides

with the ρ -Martin compactification analytically. Geometrically, this is the end
compactification, and for ξ ∈ ∂T,

K(x, ξ|ρ) = H(x, ξ) = q−h(x,ξ)/2.

Proof. It is known from [18, Thm. 1.3] that under the super-exponential mo-
ment condition the ρ -Martin compactification coincides geometrically with the
end compactification.
From (3.2), we compute for any end ξ ∈ ∂T

lim
y→ξ

H(x, y) = lim
y→ξ

1 + q−1
q+1d(x, y)

1 + q−1
q+1 |y|

q−d(x,y)/2+|y|/2 = q−h(x,ξ)/2.

This shows that the ratio limit compactification coincides geometrically with
the end compactification. Thus, what is left to show is that

K(x, y|ρ) = q−h(x,ξ)/2. (3.3)

For this purpose, we use Proposition 2. Since P = P̂ (P1), equation 3.1 implies
that H+

(
P1, ρ(P1)

)
⊂ H+(P, ρ). The Green function for P1 is very well known,

see e.g. [29, Lemma 1.12]. In particular,

GP1

(
x, y|1/ρ(P1)

)
=

2q

q − 1
q−d(x,y)/2,

so that (3.3) holds for P1 , whose Martin compactification is of course again
the end compactification of T.
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The spherical function Φ(x) = Φ(x, e) is in H+
(
P1, ρ(P1)

)
. We now consider

the Doob transforms Q1 = PΦ
1 and Q = PΦ , that is, their respective matrix

elements are

q1(x, y) =
p1(x, y)Φ(y)

ρ(P1)Φ(x)
and q(x, y) =

p(x, y)Φ(y)

ρΦ(x)

Then f ∈ H(P, ρ) if and only if f/Φ ∈ H(Q, 1), and analogously for P1 and Q1.
This implies that H

(
Q1, 1

)
⊂ H(Q, 1). In view of Proposition 2, we need to ver-

ify that the 1-Martin boundary ∂T is Dirichlet regular forQ1. ByCartwright

et al. [8], for this it is necessary and sufficient that the Green kernel of Q1

vanishes at infinity, that is,

lim
|x|→∞

GQ1
(x, e|1) = 0.

Now, GQ1
(x, y|1) = GP1

(
x, y|1/ρ(P1)

)
Φ(y)/Φ(x). Thus,

GQ1
(x, e|1) = 2q

q − 1

/(
1 +

q − 1

q + 1
|x|

)
→ 0 , as |x| → ∞ .

This concludes the proof.

Remark. It seems likely that the super-exponential moment condition may
be relaxed here. Cartwright and Sawyer [6] have shown that H+(P, 1) =
H+(P1 , 1) for arbitrary isotropic P , as long as it is irreducible. However,
the 1-Martin compactification is the end compactification (and thus coincides
analytically with the one of P1) only under additional hypotheses, such as first
moment, i.e.,

∑
d d ad < ∞ . Otherwise, the 1-Martin boundary can contain

further, non-minimal elements. [6] contains no analogous result at the critical
value ρ, where also the Martin boundary might behave more “critically”. On
the other hand, isotropic random walks on T are a rather special case, where
more general results may hold.

B. Nearest neighbour random walk on free groups

Let F = Fs be the free group on s free generators a1 , . . . , as , and write a−i =
a−1
i . Let I = {±1, . . . ,±s} and S = {ai : i ∈ I}. Recall that every element x

of F can be written as a reduced word over S,

x = ai1ai2 · · · aik , il ∈ I , il 6= −il−1 . (3.4)

The length |x| of x is k, and when k = 0, this is the empty word e, which is the
group identity. The Cayley graph of F with respect to S is the tree T = T2s−1 :
its vertex set is F, and x, y ∈ F are connected by an edge whenever x−1y ∈ S.
Thus, the natural geometric compactification F̂ of F is the end compactification
of T, with boundary ∂F = ∂T.
We now let µ be a probability measure on F whose support is supp(µ) = {e}∪S.
This nearest neighbour case serves as a warm-up for the next sub-section;
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it might be skipped but may be instructive. The local limit theorem and
the involved ρ -harmonic function have been studied in detail by Gerl and

Woess [16]. One has (1.4) with α = 3/2, and ρ < 1 by non-amenability
of F. We subsume those facts which are needed here. (The notation is
slightly modified.) By group invariance, G(x, y|z) = G(e, x−1y|z). The func-
tion G(z) = G(x, x|z) is solution of an implicit equation, which leads to a
formula for ρ. Set Fi(z) = F (e, ai|z) for i ∈ I. If x ∈ F has the reduced
representation (3.4) then

F (e, x|z) = Fi1(z) · · ·Fik(z).

The ends of the tree T which is the Cayley graph of F can be written as infinite
words

ξ = aj1aj2aj3 · · · , jl ∈ I , jl 6= −jl−1 , (3.5)

and the nth vertex on the geodesic π(e, ξ) is xn = aj1aj2 · · ·ajn . For any
t ≥ ρ, the t-Martin compactification is ∂T. This goes back to Dynkin and

Malyutov [13] and Cartier [4].
With ξ as above, if x ∈ F has reduced representation (3.4), then there is
a maximal index m = m(x, ξ) ≤ k such that j1 = i1 , . . . , jm = im. Then
xm = x ∧ ξ in the above description of confluents in the geometry of the tree.
Then the Martin kernel at ξ is

K(x, ξ|t) = F−ik(1/t)F−ik−1
(1/t) · · ·F−im+1

(1/t)

Fi1(1/t)Fi2(1/t) · · ·Fim(1/t)

It is always minimal. The analysis of [16] yields that in a neighbourhood of
the principal singularity r = 1/ρ, for z ∈ C \ [r , ∞), one has Puiseux series
expansions of the form

G(z) = α0 − β0

√
r − z + h.o.t. and Fi(z) = αi − βi

√
r − z + h.o.t. , (3.6)

where αi, βi > 0 for i ∈ I ∪ {0}, and h.o.t. stands for series of “higher order
terms” of the form C ·(r−z)q, where C is a constant and q is a rational number
with q > 1/2, and the appearing exponents form a discrete subset of Q. As a
matter of fact, in the present case, q is always an integer multiple of 1/2. From
this, one gets with x as in (3.4), ξ as in (3.5) and m = m(x, ξ) as above that

K(x, ξ|ρ) = α−ikα−ik−1
· · ·α−im+1

αi1αi2 · · ·αim

. (3.7)

On the other hand, again for x as in (3.4), we get for z near r as above the
Puiseux series expansion

G(e, x|z) = Fi1 (z) · · ·Fik(z)G(z) = α(x) − β(x)
√
r − z + h.o.t. with

α(x) = α0 αi1αi2 · · ·αik , β(x) = α(x) γ(x) , and γ(x) =
β0

α0
+

k∑

l=1

βil

αil

.

(3.8)
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Corollary 4. For an aperiodic nearest neighbour random walk on the free
group F, the ratio limit kernel is H(x, y) = β(x−1y)/β(y). The ratio limit com-
pactification coincides analytically with the ρ -Martin compactification, which
geometrically is the end compactification F̂ = ∆ends(T) .

Proof. The expansion (3.8) yields the following local limit theorem, see [16,
Thm. 2]:

p(n)(e, x) ∼ 1

2
√
ρ π

β(x) ρn n−3/2 .

This yields the stated form of the ratio limit kernel. We need to show that for
every x ∈ F and every end ξ,

lim
y→ξ

β(x−1y)

β(y)
= K(x, ξ|ρ).

Again, suppose that x is as in (3.4). Let m = m(x, ξ) ∈ {0, . . . , k}. We now
write the reduced representation of y as y = aj1aj2 · · · ajn . In principle, the
indices j1 , . . . , jn vary with y, but y → ξ means that m̄ = m(y, ξ) → ∞, so
that the initial piece aj1aj2 · · · ajm̄ coincides with the initial word of ξ of the
same length. Furthermore, we will have m̄ ≥ m(x, ξ) when y is close to ξ in
the geometric compactification ∆ends(T). For such y, recalling that xm is the
mth element on π(e, x),

x−1y = a−ika−ik−1
· · · a−im+1︸ ︷︷ ︸

x−1xm

ajm+1
ajm+2

· · · ajn︸ ︷︷ ︸
x−1
m y

.

Note that by (3.7) we then have α(x−1y)/α(y) = K(x, ξ|ρ). Therefore, when
m̄ ≥ m,

H(x, y) = K(x, ξ|ρ) γ(x
−1y)

γ(y)
.

We then get γ(x−1y)− γ(y) = γ(x−1xm)− γ(xm) , while γ(y) → ∞ . Thus,

γ(x−1y)

γ(y)
→ 1 , as y → ξ.

This concludes the proof.

C. Bounded range random walk on free groups

The result of this sub-section generalises the previous one.

Theorem 5. Suppose that the probability measure µ on F has finite support S
which generates F as a semi-group and contains the group identity. Then the
ratio limit compactification coincides with ρ -Martin compactification analyti-
cally. Geometrically, it is the end compactification.
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This needs some preparation. From Lalley [23], it is known that the random
walk satisfies again a local limit theorem (1.4) with α = 3/2, and ρ < 1 by
non-amenability of F. We shall use a mix of the methods of Derrienic [10]
and its extensions by Picardello and Woess [24], and of [23], compare with
[29, §19.B and §26.A].
For n ∈ N, let Bn = {x : |x| ≤ n} be the ball of radius n around the identity
(root) with respect to the metric of the tree T which is the Cayley graph of
the group. For any y ∈ F, the set yBn is the ball of radius n centred at y. Let
R = max{|x| : x ∈ S}, and let B = BR . For any set A ⊂ F, we consider the
stopping time plus associated probability generating function

sA = inf{n ≥ 0 : Xn ∈ yA} and

FA(u, v|z) =
∞∑

n=0

Pr[sA = n , Xn = v | X0 = u] zn ,

where u, v ∈ F. For the simple proof of the following, see the above references.

Lemma 6. If x0 , x1 ∈ F are distinct and y ∈ π(x0 , x1) then the random walk
starting at x0 must pass through yB in order to reach x1 . Thus,

F (x0 , x1|z) =
∑

v∈yB

F yB(x0 , v|z)F (v, x1|z).

Next, for any A ⊂ F , let

FA(u, u
′|z) =

∞∑

n=0

Pr[sF\A > n , s{u
′} = n | X0 = u] zn ,

where u, u′ ∈ A. There is N ≥ R such that

FBN
(u, u′|z) > 0 for all u, u′ ∈ B = BR and all z ∈ (0 , r] ,

where, as above, r = 1/ρ. (This is a simple observation: there must be a
sequence u = u0 , u1 . . . , uk = v such that p(ui−1 , ui) > 0 for all i. We take
N large enough such that for any choice of u, v ∈ B there is such a sequence
which is entirely contained in BN .)
For x, y ∈ F, we define the square matrix, resp. (column) vectors

F(x, y|z) =
(
F yB(xu, yv|z)

)
u,v∈B

,

f(x, y|z) =
(
F yB(x, yu|z)

)
u∈B

and g(x, y|z) =
(
G(xu, y|z)

)
v∈B

.
(3.9)

We now let D = N + 2R + 1 and consider the set WD = {w ∈ F : |w| = D}
of all elements (words) in F with length D. We observe that when d(x, y) = D
then w = x−1y ∈ WD and F(x, y|z) = F(e, w|z) =: F(w|z). Then the following
is a consequence of Lemma 6, see [10], [24].

Documenta Mathematica 26 (2021) 1501–1528



Ratio Limits and Martin Boundary 1513

Lemma 7. Let x, y in F and u0 , u1 , . . . , un ∈ π(x, y) such that d(u0 , x) > R,
d(un, y) > R and d(uk , x) = d(u0 , x) + kD , so that wk = u−1

k−1uk ∈ WD for
k = 1, . . . , n. Then for z ∈ (0 , r] with r = 1/ρ,

G(x, y|z) =
〈
f(x, u0|z) , F(u0 , u1|z) · · ·F(un−1 , un|z)︸ ︷︷ ︸

F(w1|z) · · ·F(wn|z)

g(un, y|z)
〉
.

Here, F(w1|z) · · ·F(wn|z)g(un, y|z) is the product of n square matrices applied
to the column vector g(un, y|z), and 〈·, ·〉 is the ordinary inner product of
column vectors indexed by B. Now set

λz = min{FBN
(u, u′|z) : u, u′ ∈ B}

Then, for all u, u′, v ∈ B, w ∈ WD and z ∈ (0 , r],

FwB(u,wv|z) ≥ FBN
(u, u′|z)FwB(u′, wv|z) ≥ λzF

wB(u′, wv|z)

In words, the first of the two inequalities comes from the fact that the random
walk starting at u ∈ B can reach u′ ∈ B with positive probability before
entering wB at wv. In potential theoretic terms, this can be interpreted as
“balayage” or as a Harnack inequality. What is important for us is that it tells
us that all the matrices F(w|z), w ∈ WD, z ∈ (0 , r], have their zeros disposed
in columns, and that in each non-zero column, the ratio of any two entries is
bounded below by λz when z ∈ (0 , r].
For any vector v ∈ (0 , ∞)B, let

Projv =
1

〈v,1〉 v

be its projection onto the standard simplex over B (all non-negative vectors
whose coordinates sum up to 1). Then the above yields the following, see [10],
[24] or [29, §26.A].

Proposition 8. Let z ∈ (0 , r] and w = (wn)n∈N be a sequence in WD . Then
there is a vector w∞ = w∞(w, z) ∈ (0 , ∞)B with 〈w∞ ,1〉 = 1 such that
uniformly for any sequence of non-zero vectors an ∈ [0 , ∞)B ,

lim
n→∞

ProjF(w1|z) · · ·F(wn|z)an = w∞.

The reason is that for each w ∈ WD , the mapping a 7→ ProjF(w|z)a is a
contraction of the standard simplex over B with Lipschitz constant ℓ(λz) < 1
that maps the simplex into its interior.
It is known from the cited references that the λ-Martin compactification for
λ ≥ ρ is always the end compactification of the tree, and that each end is a
minimal boundary element. For our purpose, we need the above material in
order to identify the Martin kernels for λ = ρ, i.e., z = r, as follows. Let
ξ ∈ ∂T, and let π(e, ξ) = [e = x0 , x1 , x2 , . . . ]. Let un = xnD and, with the
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group operation of F, wn = u−1
n−1un . We obtain a sequence w = w(ξ) in WD.

Following Proposition 8, we let for k ∈ N

wk,∞ = wk,∞(ξ) = lim
n→∞

ProjF(wk+1|r) · · ·F(wn|r)an ,

which is independent of the specific choice of the positive vectors an . Using
Lemma 7 and Proposition 8, we now obtain the following.

Corollary 9. With the foregoing notation, in particular π(e, ξ) = [e =
x0 , x1 , . . . ] for ξ ∈ ∂T, let x ∈ F ≡ T, and let k be such that uk = xkD ∈
π(x ∧ ξ, ξ) and d(uk, x) > R. Then

lim
T∋y→ξ

K(x, y|ρ) =
〈
f(x, uk|r),wk,∞

〉
〈
f(e, uk|r),wk,∞

〉 = K(x, ξ|ρ).

Proof of Thm. 5. We need to describe the kernel H(x, y) arising from the
local limit theorem of [23] at least when d(x, y) is large, and we need to show
that H(x, y) → K(x, ξ|ρ) when y → ξ ∈ ∂T.
The main point is that by [23], for z near r, there is once more a Puiseux
expansion

G(x, y|z) = G(x, y|r) − β(x, y)
√
r − z + h.o.t.,

where β(x, y) = β(e, x−1y) > 0. Then H(x, y) = β(x, y)/β(e, y) . It follows
from [23] (see also the exposition in [29, §26.A]) that also the non-vanishing
entries of all the matrices F(w|z), as well as the entries of the vectors f(x,w|z),
where d(x,w) > R, have Puiseux expansions of the same form. That is, in
multidimensional notation we can expand

F(w|z) = F(w|r) −
√
r − z B(w) + h.o.t., w ∈ WD ,

f(x, y|z) = f(x, y|r) −
√
r − z b(x, y) + h.o.t., x, y ∈ F , d(x, y) > R ,

g(x, y|z) = g(x, y|r) −
√
r − z b̃(x, y) + h.o.t, x, y ∈ F .

Here, B(w) is a non-negative matrix indexed by B × B, and B(w) is strictly
positive in the same entries as F(w|r) . Furthermore, the non-negative B-
indexed vectors f(x, y|r) and b(x, y) are strictly positive in the same entries,

while g(x, y|r) and b̃(x, y) are positive in all entries.

We now use the same notation as in Corollary 9. If y → ξ then n = ny → ∞,
where ny is the largest integer such that un = xnD ∈ π(e, y) and d(un , y) > R.
In particular, we shall have n > k. Using Lemma 7, we obtain

β(x, y) =
〈
f(x, uk|r) , F(wk+1|r) · · ·F(wn|r) b̃(un, y)

〉

+
〈
b(x, uk) , F(wk+1|r) · · ·F(wn|r)g(un, y|r)

〉

+

n∑

i=k+1

〈
f(x, uk|r) , F(wk+1|r) · · ·B(wi) · · ·F(wn|r)g(un, y|r)

〉
,

(3.10)
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where more precisely, F(wk+1|r) · · ·B(wi) · · ·F(wn|r) is obtained from the
matrix product F(wk+1|r) · · ·F(wn|r) by replacing the i th factor F(wi|r) by
B(wi). There is the analogous formula for β(e, y), where one just needs to
replace x by e. By a slight abuse of notation, we write Projβ(x, y) for the
expression where in all the inner products of (3.10), the vectors appearing in
the second variable are replaced by their projection onto the standard simplex.
We choose m(n) ≥ k such that m(n) → ∞ and m(n)/n → 0 (for example,
m(n) = max{⌊logn⌋, k}). Then for all i > m(n)

ProjF(wk+1|r) · · ·F(wm(n)|r) · · ·B(wi) · · ·F(wn|r)g(un, y|r) → wk+1,∞ .

Recall that this convergence is uniform in whatever non-negative vector appears
on the right of F(wm(n)|r). Therefore, as y → ξ, i.e., n → ∞,

1

n

n∑

i=m(n)+1

〈
f(x, uk|r) , ProjF(wk+1|r) · · ·B(wi) · · ·F(wn|r)g(un, y|r)

〉

∼ n−m(n)

n

〈
f(x, uk|r) , wk+1,∞

〉
→

〈
f(x, uk|r) , wk+1,∞

〉

On the other hand, since m(n)/n → 0,

1

n

m(n)∑

i=k+1

〈
f(x, uk|r) , ProjF(wk+1|r) · · ·B(wi) · · ·F(wn|r)g(un, y|r)

〉
→ 0.

The separate first two terms of Projβ(x, y) divided by n also tend to 0. All
this is also valid for e in the place of x. We see that

1
n Projβ(x, y) →

〈
f(x, uk|r) , wk+1,∞

〉
and

1
n Projβ(e, y) →

〈
f(e, uk|r) , wk+1,∞

〉
.

Taking quotients and comparing with Corollary 9, we see that H(x, y) →
K(x, ξ|r) as y → ξ.

We remark here that the hypothesis that supp(µ) contains the identity can be
replaced without substantial change by aperiodicity. Recall that this means
that p(n)(e, e) > 0 for all but finitely many n, or in group theoretic terms, that
supp(µ) is not contained in a coset of a proper normal subroup of Γ (in our
case, F). Also, Theorem 5 holds without substantial change of the proof for
virtually free groups.

4 Hyperbolic groups

We briefly recall the basic definition of hyperbolicity in the sense of Gromov
[20]. Let (X , d) be a geodesic metric space, i.e., for any pair of points x, y ∈
X , there is a (not necessarily unique) geodesic π(x, y), that is, an isometric
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embedding [0 , d(x, y)] →֒ X which maps 0 to x and d(x, y) to y. In our
situation, X will carry the structure of a locally finite, connected graph and d
will be the graph metric. In this case, we replace the real interval [0 , d(x, y)]
by its integer counterpart [0 , d(x, y)]Z = {0, 1, . . . , d(x, y)}.
The metric space is called hyperbolic, if it is δ-hyperbolic for some δ ≥ 0
(possibly large): if a, b, c ∈ X and π(a, b), π(b, c), π(c, a) are geodesics between
the respective points (the sides of a triangle with vertices a, b, c) then for every
x ∈ π(a, b) there is y ∈ π(b, c) ∪ π(c, a) such that d(x, y) ≤ δ. The most basic
examples are provided by trees, where δ = 0. For all our purposes, it will
be convenient to assume without loss of generality that δ ∈ N0 (non-negative
integer).
We remark here that this implies, among many other facts, that any two
geodesics connecting the same two points x and y are at Hausdorff distance at
most δ, and we let Π(x, y) denote the union of all those geodesics, a kind of
“slim sausage”.
A finitely generated group Γ is called hyperbolic, if its Cayley graph with
respect to some finite, symmetric set of generators is hyperbolic. This does
not depend on the specific generating set, up to a change of δ. Basic examples
are free groups and co-compact Fuchsian groups. The entire theory will not
be repeated here. For the present purpose, the exposition in [29, §22] plus
the references given there will suffice. Besides very basic cases (virtually cyclic
groups), all infinite hyperbolic groups are non-amenable.
A locally finite hyperbolic graph X , resp. finitely generated hyperbolic group
Γ has its hyperbolic compactification ∆hyp(X ), resp. ∆hyp(Γ). It was shown
by Ancona [1] that under natural assumptions on P on a hyperbolic graph X
(bounded range, uniform irrecducibility; see [29, §27]), ∆hyp(X ) is a geometric
realisation of the t-Martin compactification for positive t > ρ. In the group case
this has been progressively strengthened in papers by Gouëzel and Lalley:

Theorem 10. [19], [17] Let Γ be a non-amenable, finitely generated hyperbolic
group, and µ a probability measure which induces an irreducible random walk.
If µ is symmetric and is finitely supported, then the t-Martin compactification
coincides with the ∆hyp(Γ) for every t ≥ ρ.

If in addition, µ is aperiodic, then the random walk satisfies a local limit theorem

p(n)(x, y) ∼ C β(x, y) ρn n−3/2 as n → ∞ .

Regarding the Martin compactification, the noteworthy part is that it is also
valid at the critical value t = ρ. The crucial tool for this is the following,
whose part (a) was again first proved in [1] for z < r = 1/ρ without requiring
group-invariance, and then extended to z = r in the group case in [19], [17],
and finally [18], including the strong inequality (b).

Proposition 11. [Ancona inequalities] Suppose that Γ and µ are as in Theo-
rem 10, and consider a Cayley graph of Γ with respect to a finite, symmetric
set of generators. Then there are constants CAnc ≥ 1 and 0 ≤ α < 1 such that
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the following holds for all z ∈ [1 , r].

(a) For any geodesic path π(x, y) in the graph and any w ∈ π(x, y), one has

C−1
AncG(x,w|z)G(w, y|z) ≤ G(x, y|z) ≤ CAnc G(x,w|z)G(w, y|z) .

(b) For any quadruple of points x, x′, y, y′ such that d
(
Π(x, x′),Π(y, y′)

)
= n >

2δ, one has ∣∣∣∣
G(x, y|z)G(x′, y′|z)
G(x, y′|z)G(x′, y|z) − 1

∣∣∣∣ ≤ CAnc α
n.

In order to get a feeling for the last inequality, observe that for a nearest
neighbour random walk on a tree, the left hand side vanishes. As a matter of
fact, it is proved in [18] that Proposition 11 and Theorem 10 are also valid when
instead of finite support, one assumes that µ has super-exponential moments,
that is,

∑
x a

|x| µ(x) < ∞ for all a > 1.
Irreducibilty plus group-invariance of the random walk yield a local Harnack
inequality: there is a constant CHar > 1 such that

G(x′, y|z) ≤ C
d(x,x′)
Har G(x, y|z) for all x, x′, y ∈ Γ and z ∈ [1 , r] . (4.1)

Even without symmetry, the same also holds for G(y, x|z) and G(y, x′|z). This
leads to the following generalisation of the first Ancona inequality. For x, y, w ∈
Γ with ℓ = d

(
w,Π(x, y)

)
and z ∈ [1 , r],

C−1
ℓ G(x,w|z)G(w, y|z) ≤ G(x, y|z) ≤ Cℓ G(x,w|z)G(w, y|z) ,

where Cℓ = CAncC
2ℓ
Har .

(4.2)

Theorem 12. Let Γ be a non-amenable, finitely generated hyperbolic group,
and µ a finitely supported symmetric probability measure which induces an ir-
reducible & aperiodic random walk. Then the ratio limit compactification coin-
cides with ρ -Martin compactification analytically.

Proof. Let G′(x, y|z) be the derivative of the Green function with respect to z,
where |z| < r. It is proved in [19] and [17] that for all x, y ∈ Γ, there is
β(x, y) > 0 such that

G′(x, y|z) ∼ β(x, y)
/√

r − z as z → r , 0 < z < r .

By working through the “Tauberian” last part of [19], one learns that symmetry
and aperiodicity yield the asymptotics of Theorem 10 above, with constant
C =

√
r/π. Therefore the ratio limit kernel is the left-sided limit

H(x, y) = lim
z→r−

G′(x, y|z)
G′(e, y|z) .

It is a well-known consequence of the resolvent equation that for z ∈ (0 , r) one
has

G′(x, y|z) = G(2)(x, y|z)/z2 , where G(2)(x, y|z) =
∑

v∈X

G(x, v|z)G(v, y|z) .
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We now set

Φ(x, y|z) = G(2)(x, y|z)
G(x, y|z) , so that

H(x, y)

K(x, y|ρ) = lim
z→r−

Φ(x, y|z)
Φ(e, y|z) =:

Φ(x, y|r−)

Φ(e, y|r−)
.

Here, we always assume that z is real, z ∈ [1 , r). The proof will be complete
once we have shown the following.

Claim. lim
|y|→∞

Φ(x, y|r−)

Φ(e, y|r−)
= 1 .

Proof of the Claim2. Let π(e, y) = [e = y0 , y1 , . . . , yn = y] be a geodesic from
e to y in our Cayley graph, so that n = |y|. For v ∈ Γ, We set

k(v) = ky(v) = max
{
k : d

(
yk,Π(e, v)

)
≤ δ

}
.

If k(v) < |y| then we must have d
(
yk(v)+1 , π(v, y)

)
≤ δ. Thus (even when

k(v) = |y|) we have

d(yk(v) , v̄) ≤ δ + 1 for some v̄ ∈ π(v, y). (4.3)

Let w ∈ Π(e, v) be such that d(yk(v), w) = d
(
yk(v),Π(e, v)

)
, and let u ∈ Π(y, w).

Then, for any yk ∈ π(e, y), using the triangle inequality 3 times,

2d(e, u) ≥ d(e, y)− d(y, u) + d(e, v) − d(v, u)

= d(e, y) + d(e, v)− d(y, v)

≥ d(e, y) + d(e, v)−
(
d(y, yk) + d(yk , w) + d(w, v)

)

= d(e, yk) + d(e, w)− d(yk , w)

≥ 2d(e, yk)− 2d(yk , w) = 2k − 2d(yk , w) .

The first equality holds because u lies on a geodesic π(y, v), and the second
because yk ∈ π(e, y) and w lies on a geodesic π(e, v). In particular, for k = k(v)
we get for every x ∈ Γ

d
(
Π(e, x),Π(y, v)

)
≥ d

(
Π(y, v), e

)
− |x| ≥ k(v)− δ − |x| .

Thus, when k(v) > |x|+3δ, the strong Ancona inequality of Proposition 11(b)
yields ∣∣∣∣

G(x, v|z)G(e, y|z)
G(e, v|z)G(x, y|z) − 1

∣∣∣∣ ≤ CAnc α
k(v)−|x|−δ. (4.4)

On the other hand, when k(v) ≤ |x|+ 3δ then (4.1) yields

∣∣∣∣
G(x, v|z)G(e, y|z)
G(e, v|z)G(x, y|z) − 1

∣∣∣∣ α
−k(v) ≤ (C

2|x|
Har + 1)α−|x|−3δ (4.5)

2 This was facilitated significantly by input from Sébastien Gouëzel, and simplified by a
suggestion of the referee.
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Combining (4.4) with (4.5), we get for the given y and geodesic π(e, y) that
∣∣∣∣
G(x, v|z)G(e, y|z)
G(e, v|z)G(x, y|z) − 1

∣∣∣∣ ≤ C(x)αk(v) for all x, v ∈ Γ and z ∈ [1 , r] ,

(4.6)
where C(x) depends only on x.
We now write for z ∈ [1, r)

Φ(x, y|z)− Φ(e, y|z) =
∑

v∈Γ

G(e, v|z)G(v, y|z)
G(e, y|z)

(
G(x, v|z)G(e, y|z)
G(e, v|z)G(x, y|z) − 1

)
.

Then (4.6) yields

∣∣Φ(x, y|z)− Φ(e, y|z)
∣∣ ≤ C(x)

|y|∑

k=0

αk
∑

v:k(v)=k

G(e, v|z)G(v, y|z)
G(e, y|z)

By Proposition 11(a),

G(e, y|z) ≥ C−1
AncG(e, yk(v)|z)G(yk(v) , y|z).

By (4.2) and, for the second inequality, (4.3)

G(e, v|z) ≤ Cδ G(e, yk(v)|z)G(yk(v), v|z) and

G(v, y|z) ≤ Cδ+1 G(v, yk(v)|z)G(yk(v), y|z).

We get for any k ≤ |y| that with C = CAnc Cδ Cδ+1 ,

∑

v:k(v)=k

G(e, v|z)G(v, y|z)
G(e, y|z) ≤ C

∑

v:k(v)=k

G(yk , v|z)G(v, yk|z)

≤ C G(2)(yk , yk|z) = C G(2)(e, e|z). 3

With C(x) = C(x)C/(1− α), we obtain
∣∣∣∣
Φ(x, y|z)
Φ(e, y|z) − 1

∣∣∣∣ ≤ C(x)
G(2)(e, e|z)
Φ(e, y|z) .

Now the crucial point is that following [17, Lemma 3.20 and equation (3.15)],

Φ(e, y|z) ≍ |y|G(2)(e, e|z) uniformly for z ∈ [1 , r) as |y| → ∞ ,

i.e., the ratio is bounded above and below by uniform positive constants A and
1/A, respectively, when |y| is large enough. Thus, for large |y|,

∣∣∣∣
Φ(x, y|r−)

Φ(e, y|r−)
− 1

∣∣∣∣ ≤ C(x)
A

|y| ,

which tends to 0 as |y| → ∞ . This concludes the proof of the Claim and the
Theorem.

3 We remark that [17] uses the notation G(2)(e, e|z) = η(r), with z ↔ r, while our r = 1/ρ
is denoted R.

Documenta Mathematica 26 (2021) 1501–1528



1520 W. Woess

We note here that the last theorem does not fully cover the results on free
groups and trees of §3. Theorem 3 does not need finite range, and Theorem 5
does not need symmetry, while symmetry of µ is a crucial tool for the local
limit theorem on hyperbolic groups stated in Theorem 10. In any case, it may
be interesting to watch out how certain features of the respective proofs show
up in different “disguise” in each of them.

5 Direct and Cartesian products

The ratio limit compactification adapts quite well to direct products. In gen-
eral, let ∆(X1) and ∆(X2) be compactifications of the two discrete state spaces
X1 and X2 , with respective boundaries ∂X1 and ∂X2 . Then ∆(X1) ×∆(X2)
is the natural associated compactification of X = X1 × X2 . In this case, the
boundary is

∂X =
(
∂X1 × ∂X2

)
∪
(
∂X1 ×X2) ∪

(
X1 × ∂X2). (5.1)

We write elements of the product space as w1w2 , where wi ∈ ∆(Xi). In the
resulting topology, let

(
y1(n)y2(n)

)
n∈N

be a sequence in X . Then, as n → ∞ ,

y1(n)y2(n) → ξ1ξ2 ∈ ∂X1 × ∂X2 ⇐⇒ yi(n) → ξi in ∆(Xi) for i = 1, 2 ,

y1(n)y2(n) → ξ1w2 ∈ ∂X1 ×X2 ⇐⇒ y1(n) → ξ1 in ∆(X1) , and

y2(n) = w2 for all but finitely many n,

y1(n)y2(n) → w1ξ2 ∈ X1 × ∂X2 ⇐⇒ y2(n) → ξ2 in ∆(X2) , and

y1(n) = w1 for all but finitely many n.

Let us call this the product compactification of the given compactifications of
X1 and X2 , with the product boundary (5.1). Now let (X1 , P1) and (X2 , P2)
be the state spaces plus irreducible and aperiodic transition matrices of two
respective Markov chains. Suppose that for i = 1, 2

lim
n→∞

p
(n)
i (xi , yi)

p
(n)
i (ei , ei)

= hi(xi , yi) for all xi, yi ∈ X .

The direct product is the Markov chain on X1 × X2 with transition matrix
P = P1 ⊗ P2, where

p(x1x2 , y1y2) = p1(x1 , y1)p2(x2 , y2) .

It is clear that it has a ratio limit (1.1) with

h(x1x2 , y1y2) = h1(x1 , y1)h2(x2 , y2),

so that also the kernel H(x1x2 , y1y2) splits in the same way. The associated
ratio limit compactification of X1 × X2 is not always the product compactifi-
cation of the two ratio limit compactifications, but it is a factor thereof. The
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following is quite obvious; see e.g. the “preamble” on compactifications in [30,
§7.B], and recall that the ratio limit compactification of X1×X2 is the minimal
one which provides continuous extensions of the functions H(x1x2 , ·), where
x1x2 ∈ X1 ×X2 .

Lemma 13. Consider the extensions of Hi(xi , ·) to the ratio limit boundary Ri

of Xi , i = 1, 2. For η = η1η2 and ζ = ζ1ζ2 ∈
(
R1×R2

)
∪
(
X1×R2)∪

(
R1×X2),

let

η ≈ ζ ⇐⇒ H1(x1 , η1)H2(x2, η2) = H1(x1 , ζ1)H2(x2, ζ2) ∀ x1x2 ∈ X1 ×X2 .

Then the ratio limit boundary R of P = P1 ⊗ P2 is the image of the product
boundary of the two ratio limit compactifications with respect to the factor map
of the equivalence relation ≈. In particular, the extension of H(x1x2 , ·) to R
is given by H(x1x2, ξ) = H1(x1 , η1)H2(x2, η2), where η1η2 is a representative
of the ≈-equivalence class ξ.

In a certain sense more natural than direct products are Cartesian products.
Given Pi in Xi for i = 1, 2, write Ii for the identity operator (or matrix) over Xi

and choose a parameter s ∈ (0 , 1). On X = X1 ×X2 , let

P = Ps = s · P1 ⊗ I2 + (1− s) · I2 ⊗ P2 .

That is, the new Markov chain is such that first a coin is tossed where “heads”
comes up with probability s, and in that case, a step is performed according
to P1 in the first coordinate, while the second coordinate remains unchanged.
And with probability 1 − s, a step is performed according to P2 in the second
coordinate, while the first one remains unchanged.
For example, simple random walk on Zd1+d2 arises as a Cartesian (and not
direct) product of the simple random walks on Zd1 and Zd2 with s = d1/(d1 +
d2).
In general, it does not appear to be completely straightforward that a ratio
limit for each Pi also implies one for the Cartesian products Ps . However, the
following was proved by Cartwright and Soardi [7].

Proposition 14. Suppose that each Xi satisfies a local limit theorem of the
form

p
(n)
i (xi, yi) ∼ βi(xi, yi) ρ

n
i n

−αi as n → ∞ ,

where ρi = ρ(Pi) for i = 1, 2. Then one has for P = Ps that ρ = ρ(P ) =
s ρ1 + (1− s) ρ2 ,

p(n)(x1x2 , y1y2) ∼ C β1(x1, y1)β2(x2, y2) ρ
n n−α1−α2 ,

where C = θα1(1− θ)α2 , with θ = sρ1/ρ.
In particular, in this case the ratio limit kernel for the Cartesian product is
also H(x1x2 , y1y2) = H1(x1 , y1)H2(x2 , y2), and the ratio limit boundary is
the same as for the direct product.
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At this point, there is a natural question. Suppose that the ρi -Martin boundary
of Pi coincides with the respective ratio limit boundary for i = 1, 2. Is this then
also true for the ρ-Martin boundary for the direct, resp. Cartesian products? So
far, there is no general answer; the general problem lies in the possible presence
of ρ-Martin kernels of the product which are not minimal ρ-harmonic functions.
Some examples are known. We present three of them, which illustrate different
situations regarding the equivalence relation ≈ that appears in Lemma 13. All
three examples are valid for direct as well as Cartesian products, and the answer
to the above question is “yes”.

Example 1. Suppose that Xi = Zdi and that the respective irreducible,
aperiodic random walk is induced by a finitely supported probability mea-
sure µi . Let hi(x) = exp〈ci , x〉 be the unique ρi -harmonic exponential
on Zdi . That is, the vector ci minimises c 7→ ∑

x µi(x) exp〈c , x〉, where
c ∈ Rdi , and the value of that minimum is the corresponding spectral ra-
dius ρi . Every positive ρi -harmonic function on Zdi is a constant multiple
of hi, and in the ratio limit theorem, one has by a slight abuse of notation
hi(x, y) = hi(x − y). Thus, Hi(x, y) = hi(x) for x ∈ Zdi , and the ratio limit
kernel H(x1x2 , y1y2) = h1(x1)h2(x2) of the direct product also does not de-
pend on y1y2 . That is, the equivalence relation ≈ of Lemma 13 has a single
equivalence class.
In this case, one also knows that all the involved compactifications coincide
analytically with the Martin compactifications at the respective spectral radii.

Example 2. Let X1 = T, the regular tree with degree q + 1 ≥ 3, and X2 = Z.
On each of the two, we consider “lazy” simple random walk, that is,

p1(x1 , x1) =
1
2 and p1(x1 , y1) =

1
2q+2 when x1 ∼ y1 ,

p2(x2 , x2) =
1
2 and p2(x2 , y2) =

1
4 when x2 ∼ y2 ,

while all other transition probabilities are 0. Then H1(x1 , y1) = Φ(x1 , y1), see
§3.A, andH2(x2 , y2) = 1. The ratio limit compactification of Z is the one-point
compactification Z ∪ {∞}, and the ratio limit boundary of the product space
T×Z is ∆endsT . Convergence to the boundary of a sequence

(
y1(n)y2(n)

)
n∈N

is as follows, where K1(·, · ρ1) is the Martin kernel on T given by (3.3)

y1(n) → ξ1 ∈ ∂T , y2(n) arbitrary ⇒ H
(
x1x2 , y1(n)y2(n)

)
→ K1(x1 , ξ1|ρ1) ,

y1(n) = y1 ∈ T for all n ≥ n0 , |y2(n)| → ∞
⇒ H

(
x1x2 , y1(n)y2(n)

)
→ Φ(x1 , y1)

Φ(o1 , y1)
.

In particular, by Crotti [9], the ratio limit compactification coincides ana-
lytically with the ρ-Martin compactification; see [29, Thm. 28.8]. In that
reference, the result is stated for Cartesian products; the proof carries over to
direct products with some obvious modifications.
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Example 3. Let Xi = Ti be two regular trees with respective degrees qi+1 ≥ 3.
On each of the two, we consider “lazy” simple random walk as above, that is,

pi(xi , xi) =
1
2 and pi(xi , yi) =

1
2qi+2 when xi ∼ yi ,

while all other transition probabilities are 0. Then Hi(xi , yi) = Φi(xi yi), the
spherical function on the respective tree as in §3.A. The ratio limit compacti-
fication of the direct or any Cartesian product of the two random walks is the
product compactification of the ratio limit compactifications of the two trees.
Convergence to the boundary of a sequence

(
y1(n)y2(n)

)
n∈N

is as follows, where

Ki(·, · ρi) is the Martin kernel on Ti given by (3.3)

y1(n) → ξ1 ∈ ∂T1 , y2(n) → ξ2 ∈ ∂T2

⇒ H
(
x1x2 , y1(n)y2(n)

)
→ K1(x1 , ξ1|ρ1)K2(x2 , ξ2|ρ2) ,

y1(n) = y1 ∈ T1 for all n ≥ n0 , y2(n) → ξ2 ∈ ∂T2

⇒ H
(
x1x2 , y1(n)y2(n)

)
→ Φ1(x1 , y1)

Φ1(o1 , y1)
K2(x2, ξ2|ρ2) ,

y1(n) → ξ1 ∈ ∂T1 , y2(n) = y2 ∈ T2 for all n ≥ n0

⇒ H
(
x1x2 , y1(n)y2(n)

)
→ K1(x1, ξ1|ρ1)

Φ2(x2 , y2)

Φ2(o2 , y2)
.

By [26], the ratio limit compactification coincides once more analytically with
the ρ-Martin compactification. Again, this holds for direct products in the
same way as for Cartesian products.

6 Reduced ratio limit compactification

The companion paper [11] makes crucial use of the following variant of the
ratio limit compactification. Let ∼ be the equivalence relation on X such that

y ∼ y′ ⇐⇒ H(x, y) = H(x, y′) for all x ∈ X . (6.1)

We denote by X̃ the set of equivalence classes, and by ỹ the equivalence class
of y ∈ X . Then the ratio limit kernel decends to a kernel on X × X̃ by

Hred(x, ỹ) = H(x, y).

Definition 2. The reduced ratio limit compactification4 ∆ratio(X̃ ) associated
with X and P satisfying (1.1) is the (up to homomorphism) unique compact

Hausdorff space which contains X̃ as a discrete, dense subset and has the
following properties:

• for each x ∈ X , the functionHred(x, ·) extends continuously to∆ratio(X̃ ) ,
and denoting the extended kernel also by Hred,

4 [11] calls this the (ordinary) ratio limit compactification.
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• if ξ, η ∈ R(X̃ ) = ∆ratio(X̃ ) \ X̃ are distinct, then there is x ∈ X such
that Hred(x, ξ) 6= Hred(x, η).

If X̃ is finite then it is already compact, and there is no ratio limit boundary
added to that space. The proofs of the following facts are easy exercises.

Lemma 15. (i) If the equivalence relation (6.1) is extended to all of ∆ratio(X )
via the extended ratio limit kernel on X ×∆ratio(X ), then the resulting factor

space is ∆ratio(X̃ ).

(ii) The factor map X → X̃ extends to a continuous surjection ∆ratio(X ) →
∆ratio(X̃ ) which is one-to-one from R(X ) into the reduced ration limit com-
pactification.

(iii) If an equivalence class ỹ is infinite, then it has a unique accumulation point
ξ ∈ R(X ), and H(x, y) = H(x, ξ) for all y ∈ ỹ.

If X = Γ is a countable group and P is a random walk induced by a probability
measure µ, then

Rµ = {y ∈ Γ : H(x, y) = H(x, e) for every x ∈ Γ} (6.2)

is a subgroup of Γ, see [11]. Since the ratio limit kernel h(x, y) in (1.1) satisfies
h(x, y) = f(x−1y), where f(x) = h(x, e), one gets that

X̃
(
= Γred

)
= Γ/Rµ .

Elder and Rogers [14] have extended Avez’ Theorem 1: they show that for
a symmetric, aperiodic random walk on an arbitrary finitely generated group,
the set Aµ of all y ∈ Γ for which p(n)(e, y)/p(n)(e, e) → 1 is an amenable
subgroup of Γ. This implies at least in the symmetric case that Rµ ⊂ Aµ is
amenable.

Proposition 16. Consider a probability measure µ on the finitely generated
group Γ which induces an irreducible & aperiodic random walk satisfying (1.1)
and (1.2). Suppose that Rµ is infinite, and that the associated element ξ ∈
R(X ) according to Lemma 15(iii) is such that x 7→ H(x, ξ) is a minimal ρ-
harmonic function.

Then Γ fixes the boundary point ξ.

Proof. Like on the t-Martin compactification, the group acts continuously on
the ratio limit compactifictation, and the extended ratio limit kernel satisfies
the cocycle identity

H(gx, ξ) = H(x, g−1ξ)H(g, ξ) for all x, g ∈ Γ

(and of course for every boundary element, not only the ξ of the statement).
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By our assumptions, H(x, y) = H(x, e) = h(x, e) = f(x) for all y ∈ Rµ, and
as |y| → ∞, we have y → ξ in the topology of the ratio limit compactification.
Thus, f(x) = H(x, ξ) for all x ∈ Γ. By (1.2), the function

f̌(x) = f(x−1) = h(e, x)

satisfies fP = ρ ·f , where P is the transition matrix of the random walk. Using
the cocycle identity, this can be rewritten as

H(x, ξ) = f̌(x) =
1

ρ

∑

g∈Γ

µ(g)H(gx, ξ) =
∑

g∈Γ

µ(g)H(g, ξ)

ρ︸ ︷︷ ︸
=: cg

H(x, g−1ξ)

for every x ∈ Γ. Since
∑

g cg = 1, the minimality assumption on H(·, ξ) yields
that H(x, g−1ξ) = H(x, ξ) for every x ∈ Γ and every g in the support of µ.
Therefore gξ = ξ for every g ∈ supp(µ), and consequently for every g ∈ Γ.

Corollary 17. (a) For random walks on trees and free groups as considered
in theorems 3 and 5, the subgroup Rµ is trivial.

(b) For random walks on non-amenable hyperbolic groups as considered in The-
orem 12, the subgroup Rµ is finite. It is trivial when the group is torsion-free.

Statement (a) can of course also be seen directly from the respective form of
the extended ratio limit kernel, in particlar for the isotropic case. However, in
the non-isotropic case, the present method is more convenient. Note that in all
cases of the corollary, the ρ-Martin boundary coincides with the minimal one.
Furthermore, in all those cases, the entire group cannot fix a single boundary
element: this has several different proofs, among which the author is best
acquainted with [28, Prop. 4].
In examples 2 and 3, think T (even degree) as the free group. The repective
random walks are of course induced be probabiliy measure on the respective
product groups. In Example 2, we have Rµ = {e1} × Z, and the reduced ratio
limit compactification is ∆ends(T). In Example 3, there is no reduction; Rµ is
trivial.

7 Final remarks

The above material should be seen as a collection of first answers to the question
stated in the Introduction. The next step in the same direction would concern
relatively hyperbolic groups, see the local limit theorem of [12]. Under the
assumptions of that work, there is again a local limit theorem of the same form
as for hyperbolic groups (see Theorem 10 above). It is not so easy to lay hands
on the ratio limit kernel H(x, y) in those cases, but one would expect that one
also has that the ratio limit compactification coincides analytically with the
ρ-Martin compactification.
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Questions. (a) Under which general conditions is it true that the ratio limit
kernel is the left-sided limit H(x, y) = G(2)(x, y|r−)/G(2)(e, y|r−) ?

(b) Under which general conditions does the corresponding compactification
coincide analytically (or only geometrically) with the ρ-Martin compactifica-
tion ?

For relatively hyperbolic groups, in particular for free products of groups,
there also are local limit theorems of the form (1.4), but with α > 2, see
Cartwright [5] and Candellero and Gilch [3]. This may be more chal-
lenging.

In the last decades there has not been much work on ratio limit theorems for
random walks on groups; [14] is one of the interesting exceptions. On non-
amenable groups, local limit theorems have prevailed. In a certain sense, the
cases considered here might also be referred to as the “local limit boundary”.
Indeed, apart from very few exceptions (e.g. isotropic random walks on trees),
the author does not know of methods which provide a ratio limit theorem in the
non-amenable environment without first proving a local limit theorem. This
may indicate possibilities for future research.

More generally, let t ≥ ρ = ρ(P ), and suppose that we have a positive t-
harmonic kernel h(x, y), that is, Ph(·, y) = t · h(·, y). In our situation, har-
monicity is two-sided, i.e., we also have h(x, ·)P = t · h(x, ·). For example, if P
is the transition matrix of a random walk on a group Γ induced by the proba-
bility measure µ, then we may look for a solution of the convolution equation
µ ∗ σ = t · σ (or the two-sided version) and set h(x, y) = σ(x−1y). Then we
can normalise by setting H(x, y) = h(x, y)/h(e, y) and try to understand the
corresponding compactification. If K(·, · t) is the t-Martin kernel of P , then for
each y ∈ X there is a probability measure νy on Mt(X ) such that

H(x, y) =

∫
K(x, ξ|t) dνy(ξ) .

In the case when Mt(X ) has only minimal boundary elements, the compacti-
fication induced by H will coincide analytically with the t-Martin compactifi-
cation when for every ξ ∈ Mt(X ) , one has that νy → δξ weakly as y → ξ in
∆Mart, t(X ).
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