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Abstract. The “fundamental theorem” for algebraic K-theory ex-
presses the K-groups of a Laurent polynomial ring L[t, t−1] as a
direct sum of two copies of the K-groups of L (with a degree shift in
one copy), and certain groups NK±q . It is shown here that a modified
version of this result generalises to strongly Z-graded rings; rather
than the algebraic K-groups of L, the splitting involves groups re-
lated to the shift actions on the category of L-modules coming from
the graded structure. (These actions are trivial in the classical case).
The analogues of the groups NK±q are identified with the reduced
K-theory of homotopy nilpotent twisted endomorphisms, and appro-
priate versions of Mayer-Vietoris and localisation sequences are
established.
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1 Introduction

1.1 The fundamental theorem for the algebraic K-theory of

rings

The “fundamental theorem”, also know as the Bass-Heller-Swan formula,
expresses the algebraic K-groups of a Laurent polynomial ring R0[t, t

−1] as
a direct sum

Kq

(

R0[t, t
−1]

)

∼= KqR0 ⊕Kq−1(R0)⊕NK+
q (R0)⊕NK−q (R0) . (1.1)
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It will be shown that this result largely depends on the structure of R0[t, t
−1]

as a Z-graded ring, and that a similar splitting can be established in much
greater generality.
By way of analogy we think of any Z-graded ring R =

⊕

k∈Z Rk as a substitute
for a Laurent polynomial ring, and consider the subrings R≤0 =

⊕

k≤0 R0

and R≥0 =
⊕

k≥0 Rk as substitutes for the polynomial rings R0[t
−1] and R0[t].

If the ring R is strongly graded in the sense that RkRℓ = Rk+ℓ for all integers k
and ℓ, the analogy is appropriate, and a surprising number of results known for
(Laurent) polynomial rings can be proved to hold for the more general setting,
e.g., the characterisation of finite domination via Novikov homology [HS17],
the splitting for the algebraic K-theory of the projective line [HM20], and the
connection between finite domination and non-commutative localisation [Hüt].
This is not idle play: the class of strongly Z-graded rings is much bigger than
the class of Laurent polynomial rings. One specific example of a strongly
Z-graded rings is K[A,B,C,D]/(AB + CD = 1) where K is a field, deg(A) =
deg(C) = 1 and deg(B) = deg(D) = −1. (The only units in this ring are
the non-zero elements of K in degree 0.) A natural infinite family of examples
is formed by the Leavitt path algebras associated with row-finite directed
graphs without sink satisfying a certain condition Y [NÖ20, Theorem 1.3];
this includes all Leavitt path algebras associated with finite directed graphs
without sink.

Back to the fundamental theorem, the graded structure of R =
⊕

k∈Z Rk in-
duces “shift functors” sk : M 7→ M ⊗R0 Rk on categories of R0-modules; in
case of a strongly graded ring, these functors preserve projectivity and satisfy
the relation sk ◦ sℓ ∼= sk+ℓ. The key point is to measure how non-trivial the
resulting Z-action on algebraic K-groups is, which is done by considering the
kernel Aq and cokernel Bq of the shift difference map

sd∗ = id− s−1 : KqR0 −→ KqR0 .

It turns out that the groups Aq−1 and Bq play the role of Kq−1R0 and KqR0

in the classical formulation (1.1) of the fundamental theorem. More precisely,
KqR will be shown to be an extension of Aq−1 by a direct sum of Bq with
two appropriately defined nil terms (Theorem 2.7); the nil terms are identified
as the reduced algebraic K-theory of categories of homotopy nilpotent twisted
endomorphisms (Theorem 12.1).

1.2 Relation with other work

The “classical” fundamental theorem for the higher algebraic K-theory of rings
has been proved by Quillen and Grayson [Gra76]. It has been extended
from the K-theory of rings to the K-theory of schemes by Thomason and
Trobaugh [TT90, Theorem 6.6], and to the algebraic K-theory of spaces
[HKV+01] by Klein, Vogell, Waldhausen, Williams and the author. A
version for skew Laurent polynomial rings has been discussed by Yao [Yao95].
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More recently, the result has been established by Lück and Steimle for skew
Laurent extensions of additive categories [LS16], and by Fontes and Ogle

[FO18] in the context of S-algebras. Most of the recent accounts follow the
pattern laid out in [HKV+01], which is in turn loosely based on [Gra76].
The present paper goes beyond previous generalisations inasmuch as it moves
the focus away from the very special case of (skew) Laurent polynomial rings
to the essential information contained in the graded structure of the ring ex-
tension R0 ⊂ R.

1.3 Structure of the paper

The paper is organised in a way that avoids forward references in proofs. §2
provides an overview of notation and main results. §3 discusses induced chain
complexes. §4 introduces finite domination, an important finiteness condition
for chain complexes. In §§5–6 the “projective line” and its K-theory are re-
viewed. §7 is devoted to an analysis of the “nil terms” RNK±q in the fundamental
theorem. §8 contains the proof that the “fundamental square” of the projective
line (roughly speaking relating the K-groups of R≤0, R and R≥0 with those of
the projective line) is homotopy cartesian, which leads to a proof of exactness of
the Mayer-Vietoris sequence in §9 and a proof of the fundamental theorem
in §10. In §11 we establish a “localisation sequence” for algebraic K-theory,
and finish the paper by identifying the nil terms as the reduced K-theory of
categories of homotopy nilpotent twisted endomorphisms in §12.

Acknowledgements

The basic ideas for this paper were developed during a research visit of the au-
thor to Beijing Institute of Technology. Their hospitality and financial support
are greatly appreciated.

2 Notation and main results

Notation and conventions

The word “ring” will always refer to an associative unital ring, homomorphisms
of rings respect the unit, and “modules” are understood to be unital and right,
unless otherwise specified. Let R =

⊕

k∈Z Rk be a Z-graded unital ring, so that
RkRℓ ⊆ Rk+ℓ for all k, ℓ ∈ Z. (Here RkRℓ is the set of finite sums of products
xy with x ∈ Rk and y ∈ Rℓ.) The component R0 is a subring of R with the
same unit element [Dad80, Proposition 1.4]. Two further subrings of note are

R≤0 =
⊕

k≤0

Rk and R≥0 =
⊕

k≥0

Rk .

There are ring inclusions

R≤0
i−

←− R0
i+

−→ R≥0 and R≤0
j−

−−→ R
j+

←−− R≥0 ,
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and ring homomorphisms given by projection

R≤0
p−

−−→ R0
p+

←−− R≥0 ;

they satisfy the relations

j− ◦ i− = j+ ◦ i+ , p− ◦ i− = idR0 and p+ ◦ i+ = idR0 .

These various maps are used to define induction functors for modules,

i−∗ : P 7→ P ⊗R0 R≤0

and its relatives i+∗ , j∓∗ and p∓∗ ; the resulting maps on algebraic K-groups are
denoted by the same symbols as the functors.

Strongly Z-graded rings

The Z-graded ring R is called strongly graded if RkRℓ = Rk+ℓ for all k, ℓ ∈ Z, or
equivalently, if R1R−1 = R0 = R−1R1. This ensures that the ring multiplica-
tion yields R0-bimodule isomorphisms Rk ⊗R0 R−k

∼= R0 and, more generally,
Rk ⊗R0 Rℓ

∼= Rk+ℓ; consequently, each Rk is an invertible R0-bimodule, and
hence a finitely generated projective (left and right) R0-module [HS17, Propo-
sition 1.6]. Similarly, one verifies [HS17, Lemma 1.9] that

R≤q =
⊕

k≤q

Rk and R≥−p =
⊕

k≥−p

Rk

are finitely generated projective (left and right) modules over R≤0 and R≥0,
respectively, for all p, q ∈ Z.

The groups RNK±q (R0)

Let R be a Z-graded ring.

Definition 2.1. We define the groups RNK∓q (R0) by

RNK−q (R0) = coker
(

i−∗ : Kq(R0) −→ Kq(R≤0)
)

and
RNK+

q (R0) = coker
(

i+∗ : Kq(R0) −→ Kq(R≥0)
)

.

Thus we have a split short exact sequence

0 Kq(R0) Kq(R≥0)
RNK+

q (R0) 0
i+∗

p+
∗

resulting in isomorphisms

Kq(R≥0) ∼= Kq(R0)⊕
RNK+

q (R0)

and RNK+
q
∼= ker

(

p+∗ : Kq(R≥0) −→ Kq(R0)
)

.
(2.2)

Of course these remarks hold for RNK−q (R0) and Kq(R≤0) mutatis mutandis.
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Shifts and shift differences

The Z-graded over-ring R of the ring R0 defines endofunctors of the category
of R0-modules, the shift functors, by

sj : P 7→ P ⊗R0 Rj (j ∈ Z) .

If R is strongly graded then Rj is an invertible R0-bimodule whence sj defines
an auto-equivalence of the category of finitely generated projective R0-modules,
with resulting isomorphisms on algebraic K-groups

sj : KqR0 −→ KqR0 .

Definition 2.3. Suppose that R is a strongly Z-graded ring. The qth shift
difference map of R0 relative to R is defined as

sd∗ = id− s−1 : KqR0 −→ KqR0 . (2.4)

The kernel of sd∗ : KqR0 −→ KqR0 is called the qth shift kernel of R0 relative

to R, and is denoted by the symbol R
kerKqR0. The cokernel of this map is

called the qth shift cokernel of R0 relative to R, and is denoted by the symbol
R

cokerKqR0.

It might be worth pointing out that we could just as well use the shift functor
s1 in place of s−1; in view of the R0-bimodule isomorphism R−1⊗R0 R1

∼= R0,
this would lead to the same description of the shift kernel, and to an isomorphic
description of the shift cokernel. In any case, the exact sequence

0 −→ R
kerKqR0 −→ KqR0

sd∗−−−→ KqR0 −→
R

cokerKqR0 −→ 0

determines the qth shift kernel and qth shift cokernel up to canonical isomor-
phism.

Remark 2.5. If there is an R0-bimodule isomorphism R−1 ∼= R0 then sd∗
is the zero map whence R

kerKqR0 = R
cokerKqR0 = KqR0. This happens, for

example, in case R is a Laurent polynomial ring R = R0[t, t
−1] with a central

indeterminate t.

The first negative K-group

Let R =
⊕

k∈Z Rk be a Z-graded ring.

Definition 2.6. We define the first negative K-group of R0 relative to R as

RK−1(R0) = coker(j−∗ + j+∗ ) ,

where the ring inclusions j− and j+ induce the map

j−∗ + j+∗ : K0(R≤0)⊕K0(R≥0) −→ K0(R) .

In the case of a Laurent polynomial ring R0 ⊆ R0[t, t
−1] this recovers the

group K−1(R0) =
R0[t,t

−1]K−1(R0) as defined by Bass.
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The fundamental theorem

The fundamental theorem expresses Kq

(

R0[t, t
−1]

)

as a direct sum of groups
Kq(R0), Kq−1(R0), NK

+
q (R0) and NK−q (R0). In the more general context of

R0 ⊆ R with R strongly Z-graded, the fundamental result reads as follows:

Theorem 2.7 (The fundamental theorem for the algebraic K-theory of strongly
Z-graded rings). Let R be a strongly Z-graded ring. There are short exact
sequences of abelian groups

0 −→ RNK−q (R0)⊕
R

cokerKq(R0)⊕
RNK+

q (R0)

−→ Kq(R) −→ R
kerKq−1(R0) −→ 0 (for q > 0)

(2.7a)

and

0 −→ RNK−0 (R0)⊕
R

cokerK0(R0)⊕
RNK+

0 (R0)

−→ K0(R) −→ RK−1(R0) −→ 0 .
(2.7b)

The Mayer-Vietoris sequence

Let R be a strongly Z-graded ring. By analogy with algebraic geometry, one can
consider a “projective line” which is obtained by “gluing specR≤0 and specR≥0
along their intersection specR”; more precisely, one can define the analogue of
the category of quasi-coherent sheaves on the projective line as the category of
certain diagrams of modules. The projective line P1 in this sense was introduced
and its K-theory computed by Montgomery and the author [HM20]; the
relevant parts of the theory will be surveyed in §5 below.

Theorem 2.8 (Mayer-Vietoris sequence). Let R be a strongly Z-graded ring.
There is a long exact sequence of algebraic K-groups

. . . . . .
γ
−→ Kq+1(R)

δ
−→ Kq(P

1)
β
−→ Kq(R≤0)⊕Kq(R≥0)

γ
−→ Kq(R)

δ
−→ Kq−1(P

1)
β
−→ Kq−1(R≤0)⊕Kq−1(R≥0)

γ
−→ Kq−1(R)

...
δ
−→ K0(P

1)
β
−→ K0(R≤0)⊕K0(R≥0)

γ
−→ K0(R)

−→ RK−1(R0) −→ 0 .

Homotopy nilpotent twisted endomorphisms and the localisation

sequence

Let R be a strongly Z-graded ring. We define R
Nil

+(R0) to be the category
of pairs (Z, ζ), with Z an R0-finitely dominated bounded chain complexes of
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projective R0-modules, and ζ : Z ⊗R0 R1 −→ Z ⊗R0 R0 a homotopy nilpotent
twisted endomorphism, cf. §7. Let RNil+q (R0) denote the qth reduced alge-

braic K-group of R
Nil

+(R0) (with respect to the quasi-isomorphisms as weak
equivalences and the levelwise split monomorphisms as cofibrations); that is,
RNil+q (R0) is the kernel of the homomorphism

Kq

(

R
Nil

+(R0)
)

−→ Kq(R0) , (Z, ζ) 7→ Z .

Theorem 2.9. Let R be a strongly Z-graded ring. There are isomorphisms
RNK−q+1(R0) ∼=

RNil+q (R0), and the groups Kq

(

R
Nil

+(R0)
)

fit into a long
exact sequence

. . . −→ Kq+1R −→ Kq

(

R
Nil

+(R0)
) φ
−→ KqR≥0 −→ KqR

−→ . . . −→ K0

(

R
Nil

+(R0)
) φ
−→ K0R≥0 −→ K0R

with φ induced by the functor sending (Z, ζ) to the R≥0-module complex Z with
R≥0 acting through ζ.

There is a symmetric version involving a category R
Nil
−(R0), using R−1 in

place of R1, and a corresponding group RNil−q (R0). The complete version of
the result is formulated and proved in Theorems 11.1 and 12.1 below.

Right regular rings

A ring is called right regular if every finitely generated right module has a finite
resolution by finitely generated projective right modules. A right regular ring
is automatically right noetherian [Bas68, p. 122]. A graded ring is called
right graded regular if every finitely generated graded right module has a finite
resolution by finitely generated projective graded right modules, with degree-
preserving differentials. A graded ring which is right regular as a ring is also
right graded regular.
If R is a strongly Z-graded ring, the category of R0-modules (resp., of finitely
generated R0-modules, resp., of finitely generated projective R0-modules) is
equivalent via the functor P 7→ P ⊗R0 R to the category of graded R-modules
(resp., finitely generated graded R-modules, resp., finitely generated projective
graded R-modules), see Dade [Dad80, Theorem 2.8]. Thus the strongly graded
ring R is right graded regular if and only if the ring R0 is right regular.

Theorem 2.10. Suppose that R is a strongly Z-graded ring. Suppose that R is
right graded regular (or equivalently, that R0 is right regular). Then the groups
RNK±q (R0) are trivial for all q ≥ 0, and there are short exact sequences

0 −→ R
cokerKq(R0) −→ Kq(R) −→ R

kerKq−1(R0) −→ 0 (q > 0)

and

0 −→ R
cokerK0(R0) −→ K0(R) −→ RK−1(R0) −→ 0 .
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Proof. The R≥0-module R0 has finite Tor-dimension since there is a resolution
by finitely generated projective R≥0-modules [HM20, Lemma I.2.2]

0 −→ R≥1
⊂
−→ R≥0 −→ R0 −→ 0 .

The R0-module R≥0 is projective, by strong grading, and hence has finite Tor-
dimension. A result of Quillen [Qui73, §6, Theorem 7] (for A = B = R≥0
and FpA =

⊕p
k=0 Rk) asserts that the ring inclusion R0 ⊂ R≥0 induces an

isomorphism on K-groups; it follows that RNK+
q (R0) is trivial for all q ≥ 0.

A symmetric argument settles the case of RNK−q (R0). The fundamental theo-
rem 2.7 thus yields the desired short exact sequences.

3 Induced modules and chain complexes

The Grothendieck group of a ring

Let L be a rings. The group K0(L) is, by definition, the Grothendieck group
of the category P(L) of finitely generated projective L-modules; we denote the
element corresponding to the module P by the symbol [P ]. The cokernel of
the map K0(Z) −→ K0(L) induced by the induction functor M 7→ M ⊗Z L is
the reduced Grothendieck group K0(Z ↓ L) of L, more usually denoted by
the symbol K̃0(L). We write the element corresponding to the module P by
α
(

[P ]
)

. The following equivalences are well known:

[P ] = [Q] in K0(L) ⇔ ∃k ≥ 0: P ⊕ Lk ∼= Q⊕ Lk (3.1a)

and

α
(

[P ]
)

= α
(

[Q]
)

in K0(Z ↓ L) ⇔ ∃k, ℓ ≥ 0: P ⊕ Lk ∼= Q⊕ Lℓ

(3.1b)

In particular, α
(

[P ]
)

= 0 if and only if P is stably free.

We will repeatedly make use of the fact that K0(L) can be described in other
ways, for example using the machinery of Waldhausen K-theory applied to
the category Ch♭ P(L) of bounded complexes of finitely generated projective
L-modules (with quasi-isomorphisms as weak equivalences, and levelwise split
monomorphisms as cofibrations). This description is such that a chain com-
plex C in Ch♭ P(L) gives rise to the element [C] = χ(C) =

∑

k(−1)
k[Ck]

of K0(L). If C is contractible then [C] = 0.

Induced and stably induced modules

Let f : L −→ S be a ring homomorphism, with induced map

f∗ : K0(L) −→ K0(S) , [P ] 7→ [P ⊗L S] .

We will use the notation f∗ also for the induction functor – ⊗L S so that
f∗
(

[P ]
)

=
[

f∗(P )
]

.
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Definition 3.2. Let Q be a finitely generated projective S-module.

(1) We say that Q is induced from L if there exists a finitely generated pro-
jective L-module P such that f∗(P ) ∼= Q.

(2) The module Q is called stably induced from L if there exist a number q ≥ 0
and a finitely generated projective L-module P such that f∗(P ) ∼= Q⊕Sq.

Algebraic K-theory provides an obstruction to modules being stably induced,
the obstruction group being K0(L ↓ S) = coker(f∗). It comes equipped with a
canonical map

α : K0(S) −→ K0(L ↓ S) . (3.3)

Proposition 3.4. Let Q be a finitely generated projective S-module. The fol-
lowing are equivalent:

(1) The module Q is stably induced from L.

(2) The element α
(

[Q]
)

of K0(L ↓ S) is trivial.

For example, if Q is a stably free S-module then Q is certainly stably induced
from L so that α

(

[Q]
)

= 0 in K0(L ↓ S)

Proof of Proposition 3.4. If Q ⊕ Ss = P ⊗L S then [Q] = f∗
(

[P ]
)

− f∗
(

[Ls]
)

lies in the image of f∗ whence α
(

[Q]
)

= 0 ∈ K0(L ↓ S).
Conversely, suppose that α

(

[Q]
)

= 0. Then there exists a ∈ K0(L) such that
[Q] = f∗(a) in K0(S). We can find a finitely generated projective L-module M
and a number r ≥ 0 such that a = [M ] − [Lr] in K0(L). By applying f∗ and
re-arranging we find the equality

[Q⊕ Sr] = [Q] + [Sr] = f∗(a) + f∗
(

[Lr]
)

= f∗
(

[M ]
)

∈ K0(S) .

This in turn implies that there exists k ≥ 0 with

Q ⊕ Sr ⊕ Sk ∼= f∗(M)⊕ Sk = f∗(M ⊕ Lk) .

This shows Q to be stably induced.

Stabilisation of chain complexes

As a matter of notation, we write D(k,M) for the chain complex concentrated
in degrees k and k − 1 with non-trivial entries M and differential the identity
map of M .

Definition 3.5. Let D be a chain complex of S-modules. We say that the
chain complex D′ is a stabilisation of D if D′ = D ⊕

⊕

k D(k, Fk) for finitely
many finitely generated free S-modules Fk.

If D′ is a stabilisation of D then there are mutually homotopy inverse chain
homotopy equivalences s : D −→ D′ (the inclusion) and r : D′ −→ D (the projec-
tion) such that rs = idD, and such that coker(s) = ker(r) =

⊕

k D(k, Fk) is
a contractible bounded complex with finitely generated free chain, boundary
and cycle modules.
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Induced and stably induced chain complexes. The chain complex

lifting problem

Let f : L −→ S be a ring homomorphism.

Definition 3.6. Let D be a bounded complex of finitely generated projective
S-modules.

(1) We say that D is induced from L if there exists a bounded complex of
finitely generated projective L-module C such that f∗(C) ∼= D.

(2) The complex D is called stably induced from L if there exist a bounded
complex C of finitely generated projective L-modules such that f∗(C) is
isomorphic to a stabilisation of D.

Again, let D be a bounded complex of finitely generated projective S-modules;
suppose that all chain modules Dk are induced from L. The chain complex
lifting problem is to decide whether D is homotopy equivalent to a complex
induced from L. We will address two variations of the theme below and show
that

• if D is acyclic, then there exists an acyclic bounded complex C of finitely
generated projective L-modules such that f∗(C) is isomorphic to a sta-
bilisation of D;

• if f satisfies a certain strong flatness condition, then D is stably induced
from L.

The chain complex lifting problem for acyclic complexes

Theorem 3.7. Every acyclic bounded complex of stably induced modules is sta-
bly induced from an acyclic bounded complex. — More precisely, let D be an
acyclic bounded chain complex of finitely generated projective S-modules con-
centrated in chain levels 0 to n such that each chain module Dk is stably induced
from L. Then there exist a stabilisation D′ of D and an acyclic bounded com-
plex C′ of finitely generated projective L-modules, both concentrated in chain
levels 0 to n, such that f∗(C

′) is isomorphic to D′.

Proof. As D is acyclic there are finitely generated projective S-modules Ek,
for 1 ≤ k ≤ n, such that

D ∼=

n
⊕

k=1

D(k,Ek) . (3.8)

By construction we have E1 = D0 and consequently α
(

[E1]
)

= 0, since D0

is stably induced from L by hypothesis. By iteration, assuming that
α
(

[Ek−1]
)

= 0 is known, we infer from Dk−1 = Ek−1 ⊕ Ek that α
(

[Ek]
)

= 0
as well.

Documenta Mathematica 26 (2021) 1557–1599



The “Fundamental Theorem” for Z-Graded Rings 1567

Thus for 1 ≤ k ≤ n we can choose numbers jk ≥ 0 and finitely generated
projective L-modules Pk such that

Ek ⊕ Sjk ∼= f∗(Pk) .

We define chain complexes

D′ =

n
⊕

k=1

D(k,Ek ⊕ Sjk) and C′ =

n
⊕

k=1

D(k, Pk) ;

thus C′ and D′ are acyclic complexes concentrated in chain levels 0 to n. The
computation

D′ =
n

⊕

k=1

D(k,Ek ⊕ Sjk) =
n

⊕

k=1

(

D(k,Ek)⊕D(k, Sjk)
)

∼=
(3.8)

D⊕
n

⊕

k=1

D(k, Sjk)

confirms D′ as a stabilisation of D. Finally, by construction we have isomor-
phisms of chain complexes

f∗(C
′) =

n
⊕

k=1

D
(

k, f∗(Pk)
)

∼=

n
⊕

k=1

D(k,Ek ⊕ Sjk) = D′

as required.

The chain complex lifting problem for well-behaved ring homo-

morphisms

As before, let f : L −→ S be a ring homomorphism. We consider S as an L-L-
bimodule, with L acting via f . To solve the chain complex lifting problem, we
will assume that the following condition is satisfied:

The L-L-bimodule S is a filtered colimit of L-L-sub-bimodules Sj which

are finitely generated projective right L-modules such that Sj ⊗L S = S .
(3.9)

In particular, S is a flat right L-module in this case.

Example 3.10. The ring inclusion f : L = R≤0
⊆
−→ R = S with R a strongly

Z-graded ring satisfies condition (3.9) since R =
⋃

k≥0 R≤k with R≤k a finitely
generated projective (left and right) R≤0-module [HM20, Lemma I.2.2] such
that R≤k ⊗R≤0

R = R [HM20, Lemma I.2.4].

Proposition 3.11. Let D be a chain complex consisting of finitely generated
projective S-modules concentrated in chain levels 0 to n. Suppose that each
chain module Dk is induced from L so that Dk

∼= f∗(C
′
k) for a finitely generated

projective L-module C′k. Suppose further that the ring homomorphism f satis-
fies condition (3.9). Then there exists a chain complex C of finitely generated
projective L-modules, concentrated in chain levels 0 to n, such that f∗(C) ∼= D.
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Proof. We denote the differentials of D by dk : Dk −→ Dk−1. Set Ck = {0} for
k < 0 and for k > n, and choose Cn = C′n.
Since Cn is finitely generated, the composite map

Cn −→ Cn ⊗L S ∼= Dn
dn−→ Dn−1 = f∗(C

′
n−1) =

(3.9)
colim

j
C′n−1 ⊗L Sj

factors through some stage jn of the colimit system, resulting in a map

∂n : Cn −→ C′n−1 ⊗L Sjn =: Cn−1

with target a finitely generated projective L-module, by our hypotheses on f ,
such that f∗(∂n) ∼= dn.
Since Cn−1 is finitely generated, the composite map

Cn−1 −→ Cn−1 ⊗L S ∼= Dn−1
dn−1
−−−→ Dn−2 = f∗(C

′
n−2) =

(3.9)
colim

j
C′n−2 ⊗L Sj

factors through some stage j of the colimit system, resulting in a map

∂̃n−1 : Cn−1 −→ C′n−2 ⊗L Sj .

By replacing j with a larger index jn−1 (where “larger” refers to the filtered
properties of the indexing category), we may assume that the composite with
∂n is the zero map. In other words, we have a map

∂̃n−1 : Cn−1 −→ C′n−2 ⊗L Sjn−1 =: Cn−2

with target a finitely generated projective L-module, by our hypotheses on f ,
such that f∗(∂n) ∼= dn and ∂n−1 ◦ ∂n = 0.
The process is repeated iteratively, until we have constructed C0 and ∂1.

Proposition 3.12. Let D be a chain complex consisting of finitely generated
projective S-modules concentrated in chain levels 0 ≤ k ≤ n, such that each
chain module Dk is stably induced from L. Suppose that the ring homomor-
phism f satisfied condition (3.9). Then there exist a stabilisation D′ of D and
a chain complex C′ of finitely generated projective L-modules, both concentrated
in chain levels 0 ≤ k ≤ n+ 1, such that f∗(C

′) ∼= D′.

Proof. For 0 ≤ k ≤ n choose a number sk ≥ 0 such that Dk ⊕ Ssk is induced
from L, and choose a finitely generated projective L-module Ck with f∗(Ck) ∼=
Dk⊕Ssk . Set D′ = D⊕

⊕

k D(k+1, Ssk). By construction, D′ is concentrated
in chain levels 0 to n + 1, and each chain module D′ is induced from L (as
it is the direct sum of a module induced from L with a finitely generated
free module). Hence Proposition 3.11 yields a bounded complex C′ of finitely
generated projective L-modules, concentrated in chain levels 0 to n + 1, such
that f∗(C

′) ∼= D′.
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4 Finite domination

Let C be a (possibly unbounded) chain complex of K-modules, for some unital
ring K. We say that C is K-finitely dominated, or of type (FP) over K, if C
is homotopy equivalent to a bounded complex of finitely generated projective
K-modules.
Finite domination satisfies the “2-of-3 property” with respect to short exact
sequences of chain complexes. We include a proof for completeness.

Lemma 4.1. Let C, D and E be bounded below complexes of projective
K-modules, and suppose that there is a short exact sequence

0 −→ C
f
−→ D

g
−→ E −→ 0 . (4.2)

If any two of the complexes are K-finitely dominated then so is the third.

Proof. The given sequence gives rise to a short exact sequence of bounded
complexes of projective K-modules

0 −→ D −→ cyl(g)
h
−→ cone(g) −→ 0 ,

together with homotopy equivalences E −→ cyl(g) and q : C[1] −→ cone(g). By
iteration, there is a short exact sequence

0 −→ cyl(g) −→ cyl(h) −→ cone(h) −→ 0 ,

together with homotopy equivalences C[1] −→ cyl(h) and D[1] −→ cone(h). As
finite domination is invariant under suspension and homotopy equivalences, it
suffices to prove that if C and D are K-finitely dominated so is E.
Since we are dealing with bounded below complexes of projective modules,
the canonical map cone(f) −→ E is a homotopy equivalence. As C and D
are K-finitely dominated there exist bounded complexes C′ and D′ of finitely
generated projective K-modules and chain homotopy equivalences α : C −→ C′

and β : D −→ D′. Choose a homotopy inverse α′ of α, and let h : idC ≃ α′α be
a homotopy. The chain map

(

α
βfh β

)

: cone(f) −→ cone(βfα′)

is a quasi-isomorphism (since α and β are) and hence a homotopy equivalence;
its target is a bounded complex of finitely generated projective K-modules.
Thus E ≃ cone(f) ≃ cone(βfα′) shows that E is K-finitely dominated.

5 The projective line associated with a strongly Z-graded ring

The projective line associated with a strongly Z-graded ring has been intro-
duced by Montgomery and the author [HM20]. We recall definitions and
K-theoretical results which will take a central place when establishing the fun-
damental theorem.
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From now on we will assume throughout that R =
⊕

k∈Z Rk is a

strongly Z-graded ring unless other hypotheses are specified.

Definition 5.1 (Sheaves and vector bundles on the projective line [HM20,
Definitions II.1.1 and II.2.1]). A quasi-coherent sheaf on P1, or just sheaf for
short, is a diagram

Y =
(

Y −
υ−

−−→ Y 0 υ+

←−− Y +
)

(5.2)

where Y −, Y 0 and Y + are modules over R≤0, R and R≥0, respectively, with
an R≤0-linear homomorphisms υ− and an R≥0-linear homomorphism υ+, such
that the diagram of the adjoint R-linear maps

Y − ⊗R≤0
R

υ−
♯

−−−→
∼=

Y 0
υ+
♯

←−−−
∼=

Y + ⊗R≥0
R (5.3)

consists of isomorphisms. This latter condition will be referred to as the sheaf
condition. A morphism f = (f−, f0, f+) : Y −→ Z between sheaves is a com-
mutative diagram of the form

Y Y − Y 0 Y +

Z Z− Z0 Z+

υ−

f− f0

υ+

f+

ζ− ζ+

with f−, f0 and f+ homomorphisms of modules over R≤0, R and R≥0, respec-
tively.
We call the sheaf Y a vector bundle if its constituent modules are finitely
generated projective modules over their respective ground rings. The category
of vector bundles (and all morphisms of sheaves between them) is denoted
by Vect(P1).

Specific examples of vector bundles are the twisting sheaves

O(k, ℓ) =
(

R≤k
⊆
−→ R

⊇
←− R≥−ℓ

)

where k and ℓ are integers. (Note that the diagramsO(k, ℓ) may not be sheaves
if the Z-graded ring R fails to be strongly graded.) — Taking tensor product
with twisting sheaves defines an interesting operation on the category of sheaves
on P1:

Definition 5.4 (Twisting [HM20, Definition II.2.4]). Let Y be a sheaf, and let
k, ℓ ∈ Z. We define the (k, ℓ)th twist of Y, denoted Y(k, ℓ), to be the sheaf

Y(k, ℓ) =
(

Y − ⊗R≤0
R≤k −→ Y 0 ⊗R R←− Y + ⊗R≥0

R≥−ℓ

)

,

with structure maps induced by those of Y and the inclusion maps.
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Definition 5.5. Let k, ℓ ∈ Z. The (k, ℓ)th canonical sheaf functor Ψk,ℓ is
defined by

Ψk,ℓ : P(R0) −→ Vect(P1) , P 7→ P ⊗O(k, ℓ)

where P(R0) is the category of finitely generated projective R0-modules, and
the symbol P ⊗O(k, ℓ) denotes the sheaf

P ⊗R0 R≤k −→ P ⊗R0 R←− P ⊗R0 R≥−ℓ .

Definition 5.6. The sheaf cohomology modules of the sheaf Y of (5.2) are
defined by the exact sequence

0 −→ H0Y −→ Y − ⊕ Y + υ−−υ+

−−−−−−→ Y 0 −→ H1Y −→ 0 ,

that is, H0Y = ker(υ−− υ+) and H1Y = coker(υ−− υ+). We will also use the
notation ΓY for H0Y and speak of global sections of Y.

The R0-modules H0Y and H1Y depend functorially on Y. Considering Y as a
diagram of R0-modules we have isomorphisms HqY = lim

←

qY for q = 0, 1.

One can explicitly compute the sheaf cohomology of twisting sheaves by direct
inspection [HM20, Proposition II.3.4]. Similarly, one can show:

Proposition 5.7. For P ∈ P(R0) and k, ℓ ∈ Z there is an isomorphism

ΓΨk,ℓP ∼=

k
⊕

j=−ℓ

sjP

where sjP = P ⊗R0 Rj. The isomorphism is natural in P so that there are
isomorphisms of functors

Γ ◦Ψk,ℓ
∼= 0 if k + ℓ < 0,

Γ ◦Ψ0,0
∼= id ,

Γ ◦Ψk,−k
∼= sk .

Moreover, if k + ℓ ≥ −1 then H1 ◦Ψk,ℓY = 0.

6 The algebraic K-theory of the projective line

It is technically more convenient to pass from the category Vect(P1) of vector
bundles to a certain subcategory on which the global sections functor Γ is exact:

Definition 6.1. The category Vect(P1)0 is the full subcategory of Vect(P1)
consisting of those objects Y satisfying

H1Y(k, ℓ) = 0 for all k, ℓ ∈ Z with k + ℓ ≥ 0.
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We let Ch♭ Vect(P1) denote the category of bounded chain complexes of vector
bundles; similarly, we denote by Ch♭ Vect(P1)0 the category of bounded chain
complexes in the category Vect(P1)0. A map f of vector bundles will be called
an h-equivalence, or a quasi-isomorphism, if f ? is a quasi-isomorphism of chain
complexes of modules for each decoration ? ∈ {−, 0,+}. As h-equivalences
are defined homologically, they satisfy the saturation and extension axioms.
All categories mentioned have a cylinder functor given by the usual mapping
cylinder construction which satisfies the cylinder axiom.

Definition 6.2 ([HM20, Definition III.1.1]). The K-theory space of the pro-
jective line is defined to be

K(P1) = Ω|hS•Ch
♭ Vect(P1)| ,

where “h” stands for the category of h-equivalences.

Lemma 6.3 ([HM20, Corollary III.1.4]). The inclusion Vect(P1)0 ⊆ Vect(P1)
induces a homotopy equivalence

hS•Ch
♭ Vect(P1)0

≃
−→ hS•Ch

♭Vect(P1) ,

and hence a homotopy equivalence Ω|hS•Ch
♭ Vect(P1)0|

≃
−→ K(P1).

For k + ℓ ≥ −1 the functor Ψk,ℓ : Ch
♭
P(R0) −→ Vect(P1)0 is an exact functor

between Waldhausen categories (with quasi-isomorphisms and h-equivalences
as weak equivalences, and cofibrations the monomorphisms with cokernel an
object of the category under consideration).

Theorem 6.4 ([HM20, Theorem III.5.1]). Suppose that R =
⊕

k∈Z Rk is a
strongly Z-graded ring. There is a homotopy equivalence of K-theory spaces

K(R0)×K(R0) −→ K(P1)

induced by the functor

Ψ−1,0 +Ψ0,0 : Ch
♭
P(R0)× Ch♭P(R0) −→ Ch♭ Vect(P1)0 ,

(C,D) 7→ Ψ−1,0(C) ⊕Ψ0,0(D) .

7 The nil terms

The category of twisted endomorphisms

Let M be an R0-module. A (positive) twisted endomorphism of M is an
R0-linear map

α : M ⊗R0 R1 −→M ⊗R0 R0 .

The collection of such pairs (M,α), for various modules M and their twisted
endomorphisms, forms a category Tw+End(R0); a morphism f : (M,α) −→
(N, β) is an R0-linear map f : M −→ N with β ◦ (f ⊗ idR1) = (f ⊗ idR0) ◦α. —
The category Tw−End(R0) of (negative) twisted endomorphisms of the form
M ⊗R0 R−1 −→M ⊗R0 R0 is defined analogously.
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In case of a strongly Z-graded ring R we have the equality Rn+1 = RnR1,
or (what is the same) the isomorphism Rn+1

∼= Rn ⊗R0 R1. Given an object
(M,α) of Tw+End(R0), we can thus recursively define the nth iteration of α
to be the map

α(n) : M ⊗R0 Rn −→M ⊗R0 R0 (n ≥ 0)

determined by
α(0) = id and α(1) = α ,

with α(n+1) being the composition

M ⊗R0 Rn+1
∼= M ⊗R0 Rn ⊗R0 R1

α(n)⊗idR1−−−−−−−→M ⊗R0 R0 ⊗R0 R1

∼= M ⊗R0 R1
α
−→M ⊗R0 R0 .

We say that the twisted endomorphism α of M is nilpotent if α(n) = 0 for
n≫ 0.

Every R≥0-module M determines an object (M,µ) of Tw+End(R0), with M
considered as an R0-module by restriction of scalars, and µ defined by m⊗r 7→
mr ⊗ 1 for m ∈M and r ∈ R1. There results a functor

Φ = Φ+ : Mod-R≥0 −→ Tw+End(R0) ;

an analogous construction provides us with a functor

Φ− : Mod-R≤0 −→ Tw−End(R0) .

Lemma 7.1. The functors Φ = Φ+ and Φ− are isomorphisms of categories.

Proof. This is just the theory of modules over tensor rings, since (thanks to
the strong grading) R≥0 is the tensor ring of R1 over R0, and R≤0 is the tensor
ring of R−1 over R0.

As a matter of notation, for (M,α) ∈ Tw+End(R0) we will denote the
R≥0-module Φ−1(M,α) simply by the symbol M ; if we wish to stress the
twisted endomorphism, we shall write Mα. The module structure of Mα and
the maps α(n) are related by the square diagram (7.2) below;

M ⊗R0 Rn M ⊗R0 R0

Mα ⊗R≥0
R≥n Mα ⊗R≥0

R≥0

α(n)

∼= ∼= (7.2)

the vertical maps, induced by inclusions, are isomorphisms of R0-modules
([HM20, Proposition I.2.12]), and the bottom horizontal map is the obvious
one, mapping x ⊗ r ∈ Mα ⊗R≥0

R≥n to x ⊗ r ∈ Mα ⊗R≥0
R≥0. The diagram

commutes.
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The characteristic sequence of a twisted endomorphism

Let R be a strongly Z-graded ring. Multiplication defines an R0-R≥0-bimodule
isomorphism ϑ : R1 ⊗R0 R≥0 −→ R≥1, cf. [HM20, Lemma 1.2.4]. Thus for any
R≥0-module M there results a map of R≥0-modules

χM = χ : M ⊗R0 R≥1 −→M ⊗R0 R≥0 (7.3)

defined as the composition

M ⊗R0 R≥1
id⊗ϑ−1

−−−−−→
∼=

M ⊗R0 R1 ⊗R0 R≥0
a⊗id
−−−→M ⊗R0 R≥0

with a(m⊗ x) = mx the action of scalars on the module M .

Proposition 7.4 (Characteristic sequence of a twised endomorphism). Let
(M,α) be an object of Tw+End(R0). There is a short exact sequence of
R≥0-modules, natural in (M,α),

0 −→Mα ⊗R0 R≥1
χM
−−→Mα ⊗R0 R≥0

π
−→Mα −→ 0 , (7.5)

with π(m⊗ r) = mr. The sequence is split exact as a sequence of R0-modules.

This generalises the usual characteristic sequence of a module equipped with
an endomorphism [Bas68, Proposition XII.1.1].

Proof. The sequence (7.5) is nothing but the “canonical resolution” of [Hüt,
Lemma 6.2] for the R≥0-module Mα associated with (M,α).

Chain complexes of twisted endomorphisms

A bounded chain complex in the category Tw+End(R0), that is, an object of
the category Ch♭ Tw+End(R0), consists of a pair (C,α) where C is a bounded
chain complex of R0-modules, and

α : C ⊗R0 R1 −→ C ⊗R0 R0

is a map of R0-module complexes.

Definition 7.6. The mapping half-torus of (C,α) ∈ Ch♭ Tw+End(R0) is the
complex of R≥0-modules

H(C,α) = cone
(

χC : C ⊗R0 R≥1 −→ C ⊗R0 R≥0

)

,

with χC = χ defined in (7.3).

The mapping half-torus provides an exact additive functor defined on the cat-
egory Tw+End(R0) to the category of chain complexes of R≥0-modules. It
comes equipped with a natural R≥0-linear map H(C,α) −→ Cα induced from
the short exact sequence (7.5).
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Proposition 7.7 ([Hüt, Corollaries 6.5 and 6.8]). Suppose that (C,α) is a
bounded chain complex in Tw+End(R0).

(1) The map H(C,α) −→ Cα is a quasi-isomorphism.

(2) If C is a complex of projective R0-modules, the map H(C,α) −→ Cα is a
chain homotopy equivalence of R0-module complexes.

(3) If C is an R0-finitely dominated complex of projective R≥0-modules, then
H(C,α) is R≥0-finitely dominated.

Homotopy nilpotent twisted endomorphisms

Let (C,α) be a chain complex in the category Tw+End(R0). We say that α is
homotopy nilpotent if the chain map

α(n) : C ⊗R0 Rn −→ C ⊗R0 R0 (7.8)

is null homotopic for some (equivalently, all) sufficiently large n ≥ 0. Using
diagram (7.2), this amounts to saying that the map of R0-module complexes

Cα ⊗R≥0
R≥n −→ Cα ⊗R≥0

R≥0 = Cα

(induced by the inclusion map R≥n ⊆ R≥0) is null homotopic for n≫ 0. Since
R≥n is an invertible R≥0-bimodule with inverse R≥−n, this in turn is equivalent
to

Cα = Cα ⊗R≥0
R≥0 −→ Cα ⊗R≥0

R≥−n (7.9)

being null homotopic for n≫ 0. Under suitable finiteness assumptions, this is
equivalent to the stronger condition that the map (7.9) is null homotopic for
n≫ 0 as a map of R≥0-module complexes:

Lemma 7.10. Let C be an R≥0-finitely dominated complex of R≥0-modules.
The following statements are equivalent:

(1) The induced complex C ⊗R≥0
R is acyclic.

(2) For n≫ 0 the obvious map ν0,n : C⊗R≥0
R≥0 −→ C⊗R≥0

R≥−n, considered
as a map of R≥0-module chain complexes, is null homotopic.

(3) For n≫ 0 the obvious map ν0,n : C⊗R≥0
R≥0 −→ C⊗R≥0

R≥−n, considered
as a map of R0-module chain complexes, is null homotopic.

If these equivalent conditions hold, the complex C is R0-finitely dominated.

Proof. All three statements and the conclusion on finite domination are in-
variant under homotopy equivalence of complexes of R≥0-modules. As C is
R≥0-finitely dominated we may, and will, assume from the outset that C is a
bounded complex of finitely generated projective R≥0-modules.
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We use the notation

ν : C ⊗R≥0
R≥0 −→ C ⊗R≥0

R

and

νk,n : C ⊗R≥0
R≥−k −→ C ⊗R≥0

R≥−k−n

for the obvious R≥0-linear maps sending x⊗ r to x⊗ r.

(1) ⇒ (2): The map ν is certainly null homotopic as its target is contractible
by hypothesis, and a choice of null homotopy yields a map

H : cyl(idC) −→ C ⊗R≥0
R =

⋃

n≥0

C ⊗R≥0
R≥−n

restricting to ν and 0, respectively, on the “ends” of the cylinder. Since the
source is a bounded complex of finitely generated projective modules, the
map H factors through a finite stage of the increasing union, resulting in a
number N ≥ 0 and a map

H ′ : cyl(idC) −→ C ⊗R≥0
R≥−N . (7.11)

By construction, H ′ is a null homotopy of ν0,N , and hence ν0,n ≃ 0 for all
n ≥ N .

(2) ⇒ (3): This is a tautology.

(3) ⇒ (1): Let n be sufficiently large so that ν0,n ≃ 0 as a map of R0-module
complexes. As νk,n is isomorphic to ν0,n ⊗R0 R−k, as a map of R0-modules
([HM20, Proposition I.2.12]), we conclude that νk,n ≃ 0 for all k ≥ 0. In
particular, the maps νk,n induce the trivial map on homology. Since C⊗R≥0

R =
colimn≥0 C ⊗R≥0

R≥−n, and since homology commutes with filtered colimits,
we conclude by cofinality that

H∗(C ⊗R≥0
R) = colim

n≥0
H∗(C ⊗R≥0

R≥−n) = colim
k≥0

H∗(C ⊗R≥0
R≥−kn) ,

the last colimit taken with respect to the maps H∗(νkn,n) which are trivial. It
follows that the colimit is trivial, whence C ⊗R≥0

R is acyclic.

Suppose now that the equivalent conditions of the Lemma are satisfied. Going
back to (7.11) and the notation used there, we know that the chain map

ν0,N : C ∼= C ⊗R≥0
R≥0 −→ C ⊗R≥0

R≥−N

is null homotopic. Hence its mapping cone is homotopy equivalent to the
mapping cone M = C ⊕ Σ

(

C ⊗R≥0
R≥−N

)

of the zero map between the
same complexes, which contains C as a direct summand. On the other
hand, the map ν0,N is injective (since C is assumed to consist of projective
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R≥0-modules), hence its mapping cone is quasi-isomorphic to the cokernel K
of ν0,N . The ℓth chain module Kℓ of K is isomorphic, as an R≥0-module,
to Cℓ ⊗R≥0

(R≥−N/R≥0). Since Cℓ is a direct summand of Rnℓ

≥0, for suitable
nℓ ≥ 0, the module Kℓ is a direct summand of

Rnℓ

≥0 ⊗R≥0
(R≥−N/R≥0) ∼=

(

R≥0 ⊗R≥0
(R≥−N/R≥0)

)nℓ

∼=
(

R≥−N/R≥0
)nℓ ∼=

(

−1
⊕

q=−N

Rq

)nℓ

,

the last isomorphism being R0-linear. Since R is strongly graded each Rq is
a finitely generated projective R0-module so that Kℓ is a finitely generated
projective R0-module as well. Thus the (bounded) complex K is R0-finitely
dominated. Since C consists of projective R0-modules so does M , and as M
is quasi-isomorphic to K by the above arguments there is in fact an R0-linear
homotopy equivalence M ≃ K. It follows that M is R0-finitely dominated,
hence so is its direct summand C. — The finiteness result also follows from
Theorem 8.1 of [Hüt]; in the notation used there the ring R∗((t

−1)) contains R
so that C ⊗R≥0

R∗((t
−1)) ∼= C ⊗R≥0

R⊗R R∗((t
−1)) is acyclic as required.

From Lemma 7.10, and from the fact that the maps (7.8) and (7.9) are isomor-
phic as R0-linear maps, we conclude:

Corollary 7.12. Let (C,α) be an object of Ch♭ Tw+End(R0). Suppose that
the associated R≥0-module complex Cα is R≥0-finitely dominated. The twisted
endomorphism α is homotopy nilpotent if and only if Cα⊗R≥0

R is acyclic.

For later use we record the following useful fact:

Lemma 7.13. Let (Z, ζ) be an object of Ch♭ Tw+End(R0). Suppose that the
associated R≥0-module complex Zζ is an R≥0-finitely dominated complex of
projective R≥0-modules. Suppose further that Zζ ⊗R≥0

R is acyclic. Then Z is
an R0-finitely dominated bounded complex of projective R0-modules.

Proof. Since R is strongly Z-graded the complex Z consists of projective
R0-modules. By hypothesis, Zζ is homotopy equivalent to a bounded com-
plex C of finitely generated projective R≥0-modules. Since Zζ⊗R≥0

R is acyclic
so is C ⊗R≥0

R. This forces C, hence Zζ , to be R0-finitely dominated in view
of Lemma 7.10.

The nil category

We are now in a position to define the nil category, the category of homotopy
nilpotent endomorphisms of chain complexes satisfying a suitable finiteness
constraint. In fact there are two variants, corresponding to the two subrings
R≥0 and R≤0 of R.
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Definition 7.14. The positive nil category R
Nil

+(R0) of R0 relative to R is
the full subcategory of Ch♭ (Tw+End(R0)) consisting of those chain complexes
(C,α) such that

(1) the underlying R0-module complex C consists of projective R0-modules,
and is R0-finitely dominated;

(2) the chain map α : C ⊗R0 R1 −→ C ⊗R0 R0 is homotopy nilpotent in the
sense that α(n) ≃ 0 for n≫ 0.

The negative nil category R
Nil
−(R0) of R0 relative to R is defined analogously,

using the category Tw−End(R0) of negative twisted endomorphisms in place
of Tw+End(R0).

Remark 7.15. Let (C,α) be an object of R
Nil

+(R0). By Proposition 7.7, the
R≥0-linear map H(C,α) −→ Cα is a quasi-isomorphism with R≥0-finitely dom-
inated source. The same map is an R0-linear homotopy equivalence. Thus the
second condition in the definition of R

Nil
+(R0) is equivalent to the condition

H(C,α) ⊗R≥0
R ≃ 0, by Corollary 7.12.

A morphism in the category R
Nil

+(R0) is called a cofibration if it is injective
and its cokernel consists of projective R0-modules. We say the morphism is a
weak equivalence, or a q-equivalence, if it is a quasi-isomorphism of R0-module
complexes.

Lemma 7.16. These definitions equip R
Nil

+(R0) with the structure of a cate-
gory with cofibrations and weak equivalences.

Proof. This is mostly straightforward; the gluing lemma holds, for example,
since it holds in the category of bounded complexes of projective R0-modules.
What needs explicit verification is that the requisite pushouts exist within
the category R

Nil
+(R0). Using the functor Φ and its inverse (A,α) 7→ Aα

we identify R
Nil

+(R0) with a full subcategory of the category K of bounded
chain complexes of R≥0-modules. Let (A,α), (B, β) and (C, γ) be objects
in R

Nil
+(R0), let f : (A,α) −→ (B, β) be a cofibration, and let g : (A,α) −→

(C, γ) be an arbitrary morphism in R
Nil

+(R0). We can then form the pushout
diagram

Aα Bβ

Cγ P π

f

g

f ′

in the category K, and claim that (P, π) is on object of Ch♭ (Tw+End(R0)).
As f is a cofibration in R

Nil
+(R0) it is an injective map, and the same is

thus true for its pushout f ′. Let Kκ denote the cokernel of f , associated with
(K,κ) ∈ Ch♭ (Tw+End(R0)). From general properties of pushout squares we
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know that coker(f ′) ∼= Kκ. Hence we obtain a commutative ladder diagram of
short exact sequences of chain complexes:

0 Aα Bβ Kκ 0

0 Cγ P π Kκ 0

∼=

Again, since f is a cofibration its cokernel Kκ consists of projective R0-modules.
Thus both sequences are levelwise split short exact sequences of R0-module
complexes, and P consists of projective R0-modules. By Lemma 4.1, applied
to the top row, the complex Kκ is R0-finitely dominated, which implies, by
applying Lemma 4.1 to the bottom row, that so is P π.
Application of the exact half-torus functor yields another commutative ladder
diagram of short exact sequences,

0 H(A,α) H(B, β) H(K,κ) 0

0 H(C, γ) H(P, π) H(K,κ) 0

∼=

consisting of bounded complexes of finitely generated projective R≥0-modules;
in particular, both short exact sequences are levelwise split. By Remark 7.15
the chain complexes H(A,α), H(B, β) and H(C, γ) are R≥0-finitely dominated.
Hence H(K,κ) and H(P, π) are R≥0-finitely dominated as well, by two appli-
cations of Lemma 4.1.
The bottom row yields a short exact sequence

0 −→ H(C, γ)⊗R≥0
R −→ H(P, π) ⊗R≥0

R −→ H(K,κ)⊗R≥0
R −→ 0 .

The first and third entry are acyclic, by Corollary 7.12, hence so is the middle
entry. Applying the Corollary again leads us to conclude that (P, π) is an
object of R

Nil
+(R0).

For L a unital ring write FD(L) for the category of L-finitely dominated
bounded complexes of projective L-modules. It is well-known, and can be ver-
ified without difficulty using Waldhausen’s approximation theorem, that the

inclusion Ch♭ P(L)
⊆
−→ FD(L) induces a homotopy equivalence on K-theory

spaces
K(L) = Ω|qS•Ch

♭
P(L)|

≃
−→ Ω|qS•FD(L)| , (7.17)

where “q” stands for quasi-isomorphisms as usual, and the cofibrations are the
injective maps with levelwise projective cokernel. Hence the forgetful functors

o∓ : R
Nil
∓(R0) −→ FD(R0) , (Z, ζ) 7→ Z
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yield group homomorphisms

o−∗ : Kq

(

R
Nil
−(R0)

)

−→ Kq(R0) and o+∗ : Kq

(

R
Nil

+(R0)
)

−→ Kq(R0) .
(7.18)

With the lemma and notation in place, we can now define

RNil−q (R0) = ker
(

o−∗ : Kq

(

R
Nil
−(R0)

)

−→ Kq(R0)
)

(7.19a)

and

RNil+q (R0) = ker
(

o+∗ : Kq

(

R
Nil

+(R0)
)

−→ Kq(R0)
)

. (7.19b)

We will establish in Theorem 12.1 that there are isomorphisms

RNK−q+1(R0) ∼=
RNil+q (R0) and RNK+

q+1(R0) ∼=
RNil−q (R0) ,

identifying the groups RNK∓q+1(R0) with the qth reduced algebraic K-group of

the category R
Nil
±(R0).

8 The fundamental square

8.1 The fundamental square of the projective line

Let f = (f−, f0, f+) be a morphism Y −→ Z in the category Ch♭ Vect(P1) of
bounded chain complexes of vector bundles on the projective line associated
with a strongly Z-graded ring R. We say that f is an h?-equivalence, for
the decoration ? ∈ {−, 0, +}, if the component f ? is a quasi-isomorphism
of chain complexes. Together with the previous notion of cofibrations, viz.,
levelwise split injections in each component, this equips Ch♭ Vect(P1) with three
new structures of a category with cofibrations and weak equivalences. Note
that an h−-equivalence is automatically an h0-equivalence as well since in the
commutative square

Y − ⊗R≤0
R Y 0

Z− ⊗R≤0
R Z0

υ−
♯

f−⊗R f0

ζ−
♯

the horizontal maps are isomorphisms (sheaf condition), and the left vertical
map is a quasi-isomorphism because R is a flat left R≤0-module thanks to the
strong grading. — Similarly, every h+-equivalence is an h0-equivalence.
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Thus the identity functor yields a commutative square of K-theory spaces

hS•Ch
♭ Vect(P1) h+S•Ch

♭ Vect(P1)

h−S•Ch
♭ Vect(P1) h0S•Ch

♭Vect(P1)

(8.1)

which we call the fundamental square of the projective line. Associated with
it, by taking vertical homotopy fibres, is the map

α : hS•Ch
♭ Vect(P1)h− −→ h+S•Ch

♭ Vect(P1)h0 (8.2)

where the notation is as in Waldhausen’s fibration theorem [Wal85, Theo-
rem 1.6.4]. Explicitly, Ch♭ Vect(P1)h− is the full subcategory of Ch♭ Vect(P1)
consisting of those objects Y for which Y −→ 0 is an h−-equivalence, that is,
which satisfy Y − ≃ ∗ and Y 0 ≃ ∗, and Ch♭ Vect(P1)h0 is the full subcat-
egory of Ch♭ Vect(P1) consisting of those objects Y for which Y −→ 0 is an
h0-equivalence, that is, which satisfy Y 0 ≃ ∗.

The fibres of the fundamental square

The (homotopy) fibres of the maps in the fundamental square can be identified
explicitly: they are homotopy equivalent to K-theory spaces of categories of
homotopy nilpotent twisted endomorphisms. We will use this identification
presently to conclude that the fundamental square is homotopy cartesian.

Theorem 8.3 (Fibres of the fundamental square). The functor

F : Ch♭ Vect(P1)h0 −→ R
Nil

+(R0) ,

Y =
(

Y − −→ Y 0 ←− Y +
)

7→ Φ(Y +) ,

defined on the category of bounded chain complexes of vector bundles Y with
Y 0 ≃ ∗, induces a homotopy equivalence

h+S•Ch
♭ Vect(P1)h0

∼
−→ qS•

R
Nil

+(R0) , (8.3a)

and, by restriction, a homotopy equivalence

hS•Ch
♭ Vect(P1)h−

∼
−→ qS•

R
Nil

+(R0) (8.3b)

where the letter “q” stands for weak equivalences in the category R
Nil

+(R0).

By symmetry, there are analogous homotopy equivalences

h−S•Ch
♭ Vect(P1)h0

∼
−→ qS•

R
Nil
−(R0) , (8.4a)

and, by restriction,

hS•Ch
♭Vect(P1)h+

∼
−→ qS•

R
Nil
−(R0) . (8.4b)
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Proof. The functor F is well defined. Indeed, the component Y + of Y is a
bounded complex of finitely generated projective R≥0-modules, hence Y + con-
sists of projective R0-modules. The hypothesis Y + ⊗R≥0

R ∼= Y 0 ≃ ∗ implies
that Y + is R0-finitely dominated by Lemma 7.13. Moreover, the associated
twisted endomorphism

Y + ⊗R0 R1 −→ Y + ⊗R0 R0

is homotopy nilpotent by Corollary 7.12.

We will employ Waldhausen’s approximation theorem [Wal85, Theo-
rem 1.6.7], combined with the standard observation that the map required
by property (App 2) does not have to be a cofibration (since it can be replaced
by one in the presence of cylinder functors). — We can in fact treat cases (8.3a)
and (8.3b) at the same time as the proofs are almost identical.

To start with, a morphism a = (a−, a0, a+) in Ch♭ Vect(P1)h0 is an h+-equi-
valence, by definition, if and only if F (a) = a+ is a quasi-isomorphism. A
morphism b = (b−, b0, b+) in Ch♭ Vect(P1)h− is an h-equivalence if and only if
F (b) = b+ is a quasi-isomorphism since b− and b0 are maps between acyclic
complexes, hence are quasi-isomorphisms in any case. In other words, the
functor F satisfies property (App 1) in both cases under consideration.

Let (Z, ζ) ∈ R
Nil

+(R0) and Y + ∈ Ch♭ Vect(P1)h0 , and let f : Φ(Y +) −→ (Z, ζ)
be a morphism in R

Nil
+(R0). We can equivalently consider f as an R≥0-linear

map of chain complexes Y + −→ Zζ . By Remark 7.15, the chain complex Zζ is
quasi-isomorphic to the R≥0-finitely dominated complex H(Z, ζ) so that there
exists a bounded complex E of finitely generated projective R≥0-modules and a
quasi-isomorphism e : E −→ Zζ . We can lift f up to homotopy to an R≥0-linear
map g : Y + −→ E so that eg is homotopic to f . A choice of homotopy f ≃ eg
determines a map h′ : cyl(g) −→ Zζ such that the composite Y + −→

i0
cyl(g) −→

h′

Zζ coincides with f , and such that the composite E
≃
−→
i1

cyl(g) −→
h′

Zζ coincides

with e. In particular, h′ is a quasi-isomorphism of R≥0-module complexes.
(Here i0 and i1 are the front and back inclusion into the mapping cylinder.)
We can now form a complex X+ by attaching to cyl(g) a direct sum of con-
tractible complexes of the type D(ℓ,M), with M a finitely generated projective
R≥0-module, so that all chain modules of X+ except possibly one are finitely
generated free modules. We let a+ denote the composition of i0 with the in-
clusion cyl(g) −→ X+, and let h+ denote the composition of the projection
X+ −→ cyl(g) with h′. We have constructed a commutative diagram

Y + X+

Zζ

a+

f
≃ h+
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where X+ is a bounded complex of finitely generated projective R≥0-modules,
and h+ is a quasi-isomorphism.

We will now extend X+ to a vector bundle X = (X−, X0, X+) and a+ to a
map of vector bundles a = (a−, a0, a+) : Y −→ X . This may involve enlarging
X+ further, by taking the direct sum with contractible complexes of the form
D(k,Rk

≥0) and composing a+ and h+ with the obvious inclusion and projection
maps. We shall keep the notation X+ and h+ even for the modified data.

Let X0 = X+ ⊗R≥0
R. Recall that Zζ is quasi-isomorphic to X+, via the

map h+, and to the half-torus H(Z, ζ), by Remark 7.15. Both X+ and H(Z, ζ)
are bounded complexes of finitely generated projective R≥0-modules, so these
complexes are homotopy equivalent. It follows that X0 ≃ H(Z, ζ) ⊗R≥0

R is
contractible, by Remark 7.15 again; this implies that [X0] =

∑

k(−1)
k[X0

k ] =
0 ∈ K0(R). As all chain modules of X0 are free with the possible exception
of a single module, we conclude that X0 consists of stably free modules, and
hence consists of modules which are stably induced from R≤0. We now appeal
to Theorem 3.7: we can modify X+ by taking direct sum with finitely many
contractible complexes of the form D(k,Rj

≥0), thereby modifying X0 in an
analogous manner, so that X0 is isomorphic to X− ⊗R≤0

R for a bounded
acyclic complex X− of finitely generated projective R≤0-modules.

We have thus constructed a vector bundle

X = (X− −→ X0 ←− X+)

together with a quasi-isomorphism h+ : X+ −→ Zζ and a map a+ : Y + −→ X+

such that h+ ◦a+ = f . The map a+ induces a compatible map a0 = ξ+♯ ◦ (a
+⊗

id) ◦
(

ξ+♯
)−1

, see the diagram in Fig. 1. For each chain level ℓ the composite

Y − Y 0 Y + ⊗R≥0
R

X− X0 X+ ⊗R≥0
R

υ−

a0
a+⊗id

∼=

ξ+
♯

ξ−

=

ξ+
♯

Figure 1: Diagram used in proof of Theorem 8.3

map

Y −ℓ
υ−

−−→ Y 0
ℓ

a0

−→ X0
ℓ
∼= X−ℓ ⊗R≤0

R =
⋃

q≥0

X−ℓ ⊗R≤0
R≤q

factors through some term X−ℓ ⊗R≤0
R≤q so that, by choosing q ≫ 0, the map

a0 ◦ υ− factorises as

Y −
a−

−−→ X− ⊗R≤0
R≤q −→ X0 ,
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the second map in this composition given by x⊗ r 7→ ξ−(x) · r. That is, there
exists q ≥ 0 and a− : Y − −→ X− ⊗R≤0

R≤q such that a = (a−, a0, a+) : Y −→
X (q, 0) is a map of vector bundles, and such that h+ ◦F (a) = f . Since X− and
X0 are contractible by construction, X (q, 0) is an object of Ch♭ Vect(P1)h− ⊆

Ch♭ Vect(P1)h0 .
This proves that F satisfies property (App 2) in addition to (App 1), and the
approximation theorem applies.

Corollary 8.5. The map α of (8.2) is a homotopy equivalence. Thus, the
fundamental square (8.1) is homotopy cartesian.

Proof. The previous Theorem asserts that in the chain of maps

hS•Ch
♭ Vect(P1)h−

α
−→ h+S•Ch

♭Vect(P1)h0
F
−→ qS•

R
Nil

+(R0)

both F and F ◦ α are homotopy equivalences. It follows that α is a homotopy
equivalence as well. Since the fundamental square consists of connected spaces
it is homotopy cartesian.

Auxiliary categories

We let C+ denote the category of bounded chain complexes of “vector bundles
on spec(R≥0)”, that is, diagrams of the form

Y 0 υ+

←−− Y +

with Y 0 and Y + being bounded complexes of finitely generated projective over
R and R≥0, respectively, subject to the condition that the adjoint map Y 0 ←−

Y + ⊗R≥0
R be an isomorphism. A morphism g = (g0, g+) from Y 0 υ+

←−− Y + to

Z0 ζ+

←−− Z+ consists of an R-linear map g0 : Y 0 −→ Z0 and an R≥0-linear map
g+ : Y + −→ Z+ such that ζ+ ◦ g+ = g0 ◦ υ+.

By D+ we denote the full subcategory of C+ consisting of objects Y 0 υ+

←−− Y +

such that all chain modules Y 0
k are stably induced from R≤0, that is, such that

[Y 0
k ] ∈ im

(

K0(R≤0) −→ K0(R)
)

,

or equivalently, such that α
(

[Y 0
k ]
)

= 0 in K0(R≤0 ↓ R) for all k.

Lemma 8.6. Every object of D+ stably extends to an object of Ch♭Vect(P1).

That is, given an object Y 0 υ+

←−− Y + of D+ there exist an object

Z−
ζ−

−−→ Z0 ζ+

←−− Z+
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of Ch♭ Vect(P1) and finitely many numbers jk ≥ 0 together with a commutative
diagram

Y 0 ⊕
⊕

k

D(k,Rjk) Y + ⊕
⊕

k

D(k,Rjk
≥0)

Z0 Z+ ,

=

υ+⊕inc

=

ζ+

where “inc” denotes the obvious inclusion map based on the ring inclusion R ⊇
R≥0.

Proof. We apply Proposition 3.12 to the ring inclusion f : R≤0 −→ R and the
chain complex D = Y 0. We obtain a stabilisation

D′ = Y 0 ⊕
⊕

k

D(k,Rjk)

of D = Y 0 and a bounded complex of finitely generated projective R≤0-modules
Z− = C′ such that there is an isomorphism i : Z− ⊗R≤0

R −→ D′. Write Z0 in
place of D′, let ζ− : Z− −→ Z0 be the R≤0-linear map adjoint to i, and define

Z+ = Y + ⊕
⊕

k

D(k,Rjk
≥0) ;

with ζ+ = υ+ ⊕ inc the data satisfies all the requirements of the Lemma.

A morphism g = (g0, g+) in C+ is called a cofibration if both g0 and g+

are levelwise injections such that coker(g) is an object of C+. We call g an
h+-equivalence if g+ is a quasi-isomorphism (and hence so is g0 ∼= g+⊗R≥0

R).

Lemma 8.7. With these definitions, both C+ and D+ are categories with cofi-
brations and weak equivalences.

Proof. This is clear for C+ since this category is equivalent to the category of
bounded chain complexes of finitely generated projective R≥0-modules, via the
functors

(

Y 0 ←− Y +
)

7→ Y + and M+ 7→
(

M+ ⊗R≥0
R←−M+

)

.

It remains to observe that the cokernel of a cofibration g in D+ is automatically
an object of D+ since, given g0k : Y

0
k −→ Z0

k, we have the equality

α
(

[coker g0k]
)

= α
(

[Z0
k ]
)

− α
(

[Y 0
k ]
)

= 0

in the group K0(R≤0 ↓ R).
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We make the analogous symmetric definitions for C− and D−. The category C0

is defined to be the category of bounded chain complexes of finitely generated
projective R-modules, with D0 the full subcategory of those objects Y 0 such
that all chain modules Y 0

k are stably induced from both R≤0 and R≥0, that is,
such that

[Y 0
k ] ∈ im

(

K0R≤0 −→ K0R
)

∩ im
(

K0R≥0 −→ K0R
)

for all k .

Lemmas 8.6 and 8.7 are valid mutatis mutandis for these categories.

Lemma 8.8. The forgetful functor
(

Y 0 ←− Y +
)

7→ Y +

induces isomorphisms on algebraic K-groups

KqD+

∼=
−→ KqR≥0 (q > 0)

and an injection K0D+
⊆
−→ K0R≥0. — These statements hold mutatis mutandis

for the analogous maps KqD− −→ KqR≤0 and KqD0 −→ KqR.

Proof. As remarked before, the functor Y 7→ Y + establishes an equivalence of
C+ with the category of bounded chain complexes of finitely generated projec-
tive R≥0-modules, and D+ corresponds to the subcategory of complexes Y +

such that Y + ⊗R≥0
R consists of modules which are stably induced from R≤0.

Let D′ and C′ denote the full subcategories of complexes concentrated in
chain level 0. Then the map of K-groups in question can be computed using
Quillen’s Q-construction, applied to the inclusion of exact categories D′ ⊆ C′.
The result is now an immediate consequence of Grayson cofinality [Gra79,
Theorem 1.1] since D′ is closed under extension in C′; indeed, an object Y ∈ C′

is in D′ if and only if α
(

[Y 0]
)

= 0 ∈ K0(R≤0 ↓ R), and K-theory is additive on
short exact sequences. To see that the former category is cofinal in the latter
it suffices to observe that every finitely generated projective module can be
complemented to a finitely generated free one, which is automatically stably
induced.

The corners of the fundamental square

We can now identify the corners of the fundamental square as the algebraic
K-theory spaces of the categories D−, D0 and D+.

Lemma 8.9. The forgetful functor Φ+ : Ch♭ Vect(P1) −→ D+, given by

Y =
(

Y − −→ Y 0 ←− Y +
)

7→ Φ+(Y) =
(

Y 0 ←− Y +
)

,

induces a homotopy equivalence on S•-constructions with respect to h+-
equivalences:

h+S•Ch
♭ Vect(P1)

≃
−→ h+S•D+

The statement holds mutatis mutandis for D0 and D− as well.
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Proof. By definition of h+-equivalences the forgetful functor respects and de-
tects weak equivalences. Let

X =
(

X−
ξ−

−−→ X0 ξ+

←−− X+
)

be an object of Ch♭ Vect(P1), and let

←−
Y =

(

Y 0 υ+

←−− Y +
)

be an object of D+. Given a morphism

g = (g0, g+) : Φ+(X ) −→
←−
Y

we construct the object Z ∈ Ch♭ Vect(P1) associated with
←−
Y as described in

Lemma 8.6; denote the composition of g with the inclusion
←−
Y −→ Φ+(Z) by

h = (h0, h+). The composite map

X−
ξ−

−−→ X0 h0

−→ Z0

factors as

X−
h−

−−→ Z− ⊗R≤0
R≤q

⊆
−→ Z− ⊗R≤0

R ∼= Z0

for sufficiently large q ≥ 0; this is because X− is a bounded complex of finitely
generated R≤0-modules, and because

Z0 ∼= Z− ⊗R≤0
R = Z− ⊗R≤0

⋃

k≥0

R≤k =
⋃

k≥0

Z− ⊗R≤0
Rk .

This results in a map

h = (h−, h0, h+) : X −→ Z(q, 0)

in Ch♭ Vect(P1) (we identify the canonically isomorphic complexes
Φ+(Z) = Z+ and Φ+

(

Z(q, 0)
)

= Z+ ⊗R≥0
R here). The projection map

p : Φ+
(

Z(q, 0)
)

−→
←−
Y is an h+-equivalence, and satisfies the condition

p ◦ Φ+(h) = g. By Waldhausen’s approximation theorem [Wal85, Theo-
rem 1.6.7], Φ+ induces a homotopy equivalence on S•-constructions.

9 Establishing the Mayer-Vietoris sequence

We will now establish the Mayer-Vietoris sequence of Theorem 2.8. As
before let R be a strongly Z-graded ring. The induction functors

j−∗ = ( – ⊗R≤0
R) and j+∗ = ( – ⊗R≥0

R)

give rise to maps γ = j−∗ − j+∗ : Kq(R≤0)⊕Kq(R≥0) −→ Kq(R), for q ≥ 0.
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In view of Lemma 8.9, the homotopy cartesian fundamental square of the pro-
jective line (8.1) yields a Mayer-Vietoris sequence of algebraic K-groups

. . .
γ
−→ Kq+1D0

δ
−→ KqP

1 β=(β−,β+)
−−−−−−−−→ KqD− ⊕KqD+

γ=γ−−γ+
−−−−−−−→ KqD0

δ
−→ . . . ,

for q ≥ 0, ending with a surjective homomorphism K0D− ⊕ K0D+ −→ K0D0.
By Lemma 8.8 this sequence coincides, for q > 0, with the one of Theorem 2.8,
so we only need to look at its tail end. Using Lemma 8.8 again we construct
the following commutative diagram:

K1(R) K0(P
1) K0(R≤0)⊕K0(R≥0) K0(R) RK−1(R0) 0

K1(D0) K0(P
1) K0(D−)⊕K0(D+) K0(D0) 0

γ̄

=

β

=

γ

⊆ ⊆

We know that the bottom row is exact, and argue that this remains true for
the top row. — Replacing the target of β by a larger group does not change
ker(β), so the top row is exact at K0(P

1). It is exact at K0(R) and RK−1(R0)
by definition of the latter group. Thus it remains to verify exactness at the
third entry.
So let (x, y) ∈ ker γ̄ be given. We can find finitely generated projective modules
P and Q over R≤0 and R≥0, respectively, and numbers p, q ≥ 0, such that

x = [P ]− [Rp
≤0] ∈ K0(R≤0) and y = [Q]− [Rq

≥0] ∈ K0(R≥0) .

The condition γ̄(x, y) = 0 translates into the equality

[P ⊗R≤0
R]− [Rp] = [Q⊗R≥0

R]− [Rq]

in K0(R). Consequently, there exists s ≥ 0 such that
(

P ⊗R≤0
R
)

⊕Rq ⊕Rs ∼=
(

Q⊗R≥0
R
)

⊕Rp ⊕Rs .

As the right-hand module is induced from R≥0 this shows that P ⊗R≤0
R is

stably induced from R≥0 so that the diagram

P −→ P ⊗R≤0
R

defines an object of D−. Since Rp
≤0 −→ Rp is an object of D− as well we

conclude that x ∈ K0D−. By a symmetric argument we can show y ∈ K0D+.
As γ(x, y) = 0 (the fourth vertical map is injective), and as the bottom row is
exact, we know that (x, y) = β(z) for some z ∈ K0(P

1), which shows exactness
of the top row. This completes the proof of Theorem 2.8.
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10 Proof of the fundamental theorem

The K-theory of the projective line revisited

Recall from Theorem 6.4 that there are isomorphisms of K-groups

α̃ =
(

Ψ−1,0 Ψ0,0

)

: KqR0 ⊕KqR0 −→ KqP
1 ,

(

[P ], [Q]
)

7→
[

Ψ−1,0(P )
]

+
[

Ψ0,0(Q)
]

,

where Ψk,ℓ stands for the canonical sheaf functors (Definition 5.5). By pre-
composing α̃ with the invertible map

(

−1 0
1 1

)

, we obtain modified isomorphisms

α =
(

−Ψ−1,0 +Ψ0,0 Ψ0,0

)

: KqR0 ⊕KqR0 −→ KqP
1 ,

(

[P ], [Q]
)

7→ −
[

Ψ−1,0(P )
]

+
[

Ψ0,0(P )
]

+
[

Ψ0,0(Q)
]

.
(10.1)

(This map cannot be confused with the map α from (3.3).) As we have a cylin-
der functor at our disposal, the additivity theorem implies that we can model
the minus sign by taking suitable “homotopy cofibres” of maps of functors.
Concretely, the isomorphisms α are induced by the functor

A : Ch♭
P(R0)× Ch♭ P(R0) −→ Vect(P1)0 ,

(C,D) 7→ cone
(

Ψ−1,0(C) −→ Ψ0,0(C)
)

⊕Ψ0,0(D)
(10.2)

and the ensuing homotopy equivalence of K-theory spaces

cone(Ψ−1,0 −→ Ψ0,0) + Ψ0,0 : K(R0)×K(R0) −→ K(P1) ,

where “+” refers to the H-space structure given by direct sum. Alternatively,
we can use the functor

A′ : Ch♭ P(R0)× Ch♭ P(R0) −→ Vect(P1)0 ,

(C,D) 7→ ΣΨ−1,0(C) ⊕ Ψ0,0(C) ⊕ Ψ0,0(D) ;

the maps induced by A and A′ are homotopic, by the additivity theorem.

It will be convenient to have an explicit homotopy inverse for α. We record the
following fact:

Lemma 10.3. The functor

Ξ: Vect(P1)0 −→ Ch♭ P(R0)× Ch♭
P(R0) ,

Y 7→

(

ΣΓY(1, 0) ⊕ ΓY ⊕ ΓY(1,−1)
ΣΓY(1,−1) ⊕ ΓY(1, 0)

)

induces a homotopy inverse on the level of K-theory spaces; here Γ is the “global
sections” functor from Definition 5.6.
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Proof. The functor A is known to induce a homotopy equivalence. Hence in
view of the above remarks on A′ it is enough to show that the map induced by
Ξ ◦A′ is homotopic to the identity. Recalling the natural isomorphisms

ΓΨk,ℓP ∼=

k
⊕

j=−ℓ

sjP ⊗R0 Rj and
(

Ψk,ℓP
)

(a, b) ∼= Ψk+a,ℓ+bP ,

from Proposition 5.7, where sjP = P⊗R0Rj is the jth shift of P , one calculates
readily that the first component of Ξ ◦A′(C,D) is

Σ2Ψ0,0(C) ⊕ ΣΓΨ1,0(C) ⊕ ΣΓΨ1,0(D)

⊕ ΣΓΨ−1,0(C) ⊕ ΓΨ0,0(C) ⊕ ΓY0,0(D)

⊕ ΣΓΨ0,−1(C) ⊕ ΓΨ1,−1(C) ⊕ ΓΨ1,−1(D)

∼= Σ2C ⊕ ΣC ⊕ Σs1C ⊕ ΣD ⊕ Σs1D

⊕ C ⊕ D

⊕ s1C ⊕ s1D ,

while the second component is

Σ2Ψ0,−1(C) ⊕ ΣΓΨ1,−1(C) ⊕ ΣΓΨ1,−1(D)

⊕ ΣΓΨ0,0(C) ⊕ ΓΨ1,0(C) ⊕ ΓY1,0(D)
∼= Σs1C ⊕ Σs1D

⊕ ΣC ⊕ C ⊕ s1C ⊕ D ⊕ s1D .

Recalling that suspension represents the H-space structure inverse on K-theory
spaces, this shows that the composition Ξ◦A′ induces a map that is homotopic
to the identity as required.

The modified Mayer-Vietoris sequence

On a much more elementary level, we have automorphisms

η =

(

id −i−∗ p
+
∗

0 id

)

: Kq(R≤0)⊕Kq(R≥0) −→ Kq(R≤0)⊕Kq(R≥0) (q ≥ 0)

with inverse given by

η−1 =

(

id i−∗ p
+
∗

0 id

)

: Kq(R≤0)⊕Kq(R≥0) −→ Kq(R≤0)⊕Kq(R≥0) .

Both maps are induced by functors, with the minus sign modelled by suspension
(making implicit use of the additivity theorem and the presence of a cylinder
functor again). Explicitly, η is induced by the functor

Ch♭ P(R≤0)× Ch♭ P(R≥0) −→ Ch♭ P(R≤0)× Ch♭ P(R≥0) ,

(C,D) 7→
(

C ⊕ Σi−∗ p
+
∗ D, D

)

.
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We use the map η and its inverse to construct a modified Mayer-Vietoris

sequence

. . .
γη−1

−−−→ Kq+1R
α−1δ
−−−→ KqR0 ⊕KqR0

ηβα
−−→ KqR≤0 ⊕KqR≥0

γη−1

−−−→ KqR
α−1δ
−−−→ . . . ,

(10.4)

ending with the exact sequence

K0R0 ⊕K0R0
ηβα
−−→ K0R≤0 ⊕K0R≥0

γη−1

−−−→ K0R −→
RK−1R0 −→ 0 .

Note that any exact sequence of the form A
f
−→ B

g
−→ C gives rise to a short

exact sequence
0 −→ A/ ker(f) −→ B −→ im(g) −→ 0 ;

in this way, sequence (10.4) can be split into short exact sequences

0 −→
(

KqR≤0 ⊕KqR≥0)
/

ker(γη−1)
γη−1

−−−→ KqR

α−1δ
−−−→ im(α−1δ) −→ 0 (q > 0)

and

0 −→
(

K0R≤0 ⊕K0R≥0)
/

ker(γη−1)
γη−1

−−−→ K0R −→
RK−1R0 −→ 0 .

From exactness of the modified Mayer-Vietoris sequence (10.4) again we
have the equalities ker(γη−1) = im(ηβα) and im(α−1δ) = ker(ηβα), so we
obtain short exact sequences

0 −→ coker(ηβα) −→ KqR −→ ker(ηβα) −→ 0 (q > 0) (10.5)

and

0 −→ coker(ηβα) −→ K0R −→
RK−1R0 −→ 0 . (10.6)

The map ηβα

On the level of categories the effect of the map βα is to send (P,Q) ∈

Ch♭ P(R0)× Ch♭ P(R0) to (C,D) ∈ Ch♭P(R≤0)× Ch♭ P(R≥0) where

C = cone
(

P ⊗R0 R≤−1
⊆
−→ P ⊗R0 R≤0

)

⊕
(

Q⊗R0 R≤0
)

= i−∗ cone(s−1P −→ P )⊕ i−∗ Q

and

D = cone
(

P ⊗R0 R≥0
=
−→ P ⊗R0 R≥0

)

⊕
(

Q⊗R0 R≥0
)

≃ Q⊗R0 R≥0 = i+∗ Q ;
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here s−1 denotes the shift functor

s−1 : Q 7→ Q⊗R0 R−1

which maps the category of finitely generated projective R0-modules to itself.
— To determine the effect of the map η on (C,D), recall first that weakly
equivalent functors induce homotopic maps on K-theory spaces. So we can, for
example, replace D by i+∗ Q. The first component of ηβα(P,Q) then is, up to
homotopy,

i−∗ cone(s−1P −→ P ) ⊕ i−∗ Q ⊕ Σi−∗ p
+
∗ i

+
∗ Q .

Since p+∗ i
+
∗ Q = Q, and since suspension represents a homotopy inverse for

direct sum [Wal85, Proposition 1.6.2], we can thus model the effect of ηβα by
the functor

(P,Q) 7→
(

i−∗ cone(s−1P −→ P ), i+∗ Q
)

.

On the level of K-groups, this means that the effect of ηβα is described by the
diagonal matrix

ηβα =

(

i−∗ (id− s−1) 0
0 i+∗

)

: KqR0 ⊕KqR0 −→ KqR≤0 ⊕KqR≥0 . (10.7)

The kernel of ηβα

In view of (10.7), ker(ηβα) = ker
(

i−∗ (s−1 − id)
)

⊕ ker(i−∗ ). Now the maps i∓∗
are split injective (with left inverse p∓∗ ), thus

ker(ηβα) ∼= ker(sd∗)⊕ {0} =
R

kerKqR0 , (10.8)

where sd∗ denotes the shift difference map sd∗ = id − s−1 : KqR0 −→ KqR0

from (2.4) with kernel R
kerKqR0 (Definition 2.3).

The cokernel of ηβα

From the specific representation of ηβα in (10.7) we read off that

coker(ηβα) = coker(i−∗ ◦ sd∗)⊕ coker(i+∗ ) ,

the second summand being nothing but RNK+
q R0 by definition. To identify

the first summand we compose i−∗ ◦ sd∗ with the splitting isomorphism (2.2):

Kq(R0)
sd∗−−→ Kq(R0)

i−∗−→ Kq(R≤0)
S=(c,p−

∗ )
−−−−−−−→

∼=

RNK−q ⊕Kq(R0)

(Here c : Kq(R≤0) −→
RNK−q is the canonical projection onto the cokernel of i−∗ .)

Thus coker(i−∗ ◦ sd∗)
∼= coker(S ◦ i−∗ ◦ sd∗). Since c ◦ i−∗ = 0, and since p−∗ ◦ i

−
∗

is the identity, we conclude that this group is isomorphic to the cokernel of the
composition

KqR0
sd∗−−→ KqR0

⊆
−→ RNK−q R0 ⊕KqR0 ,
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which is RNK−q ⊕
R

cokerKqR−. In total, this results in an isomorphism

coker(ηβα) ∼= RNK−q R0 ⊕
R

cokerKqR0 ⊕
RNK+

q R0 . (10.9)

Putting the identifications (10.8) and (10.9) of the kernel and cokernel of ηβα
into the sequences (10.5) and (10.6) gives precisely the advertised Fundamental
Theorem 2.7.

11 The localisation sequence

In this section we will establish the long exact “localisation” sequence of Theo-
rem 2.9. There are in fact two “mirror-symmetric” versions, which we state in
full for completeness.

Theorem 11.1 (“Localisation sequence”). Let R be a strongly Z-graded ring.
There are long exact sequences of algebraic K-groups

. . . −→ Kq+1R −→ Kq

(

R
Nil

+(R0)
) φ
−→ KqR≥0 −→ KqR

−→ . . . −→ K0

(

R
Nil

+(R0)
) φ
−→ K0R≥0 −→ K0R

(11.1a)

and

. . . −→ Kq+1R −→ Kq

(

R
Nil
−(R0)

) φ
−→ KqR≤0 −→ KqR

−→ . . . −→ Kq

(

R
Nil
−(R0)

) φ
−→ K0R≤0 −→ K0R

(11.1b)

with φ induced by the forgetful functor (Z, ζ) 7→ Z on the category R
Nil
±(R0).

Proof. We will show that the sequence (11.1a) is exact; the argument for se-
quence (11.1b) is similar. — We apply Waldhausen’s fibration theorem to the
right-hand vertical map in the fundamental square (8.1). In view of Lemma 8.9
this results in exact sequences of K-groups

. . . −→ Kq+1D+ −→ Kq+1D0 −→ πqΩ|h+Vect(P
1)h0 |

k′

−→ KqD+ −→ KqD0

for q ≥ 0. In view of Lemma 8.8 and Theorem 8.3, this proves exactness of the
sequence (11.1a) in the q ≥ 1 range down to the term K1R≥0. Lemma 8.8
also states that in the commutative diagram in Fig. 2 the two vertical maps
labelled f and g are injective. As the bottom row is exact, the top row is
automatically exact as well except possibly at K0R≥0. Let x ∈ K0R≥0 be an
element with j+∗ (x) = 0. We can write x = [P ] − [Q], for finitely generated
projective R≥0-modules P and Q. The condition j+∗ [P ] − j+∗ [Q] = j+∗ (x) =
0 ∈ K0R, that is, [P ⊗R≥0

R] = [Q⊗R≥0
R] ∈ K0R, means that there exists a

number ℓ ≥ 0 together with an isomorphism

j+∗ (P )⊕Rℓ =
(

P ⊗R≥0
R
)

⊕ Rℓ ∼=
(

Q⊗R≥0
R
)

⊕ Rℓ = j+∗ (Q)⊕Rℓ .

Documenta Mathematica 26 (2021) 1557–1599



1594 T. Hüttemann

K1R≥0 K1R π0Ω|h+Vect(P
1)h0 | K0R≥0 K0R

K1D+ K1D0 π0Ω|h+Vect(P
1)h0 | K0D+ K0D0

k j+∗

= =

k′

=

j′

⊆ f ⊆ g

Figure 2: Diagram used to establish the tail end of the localisation sequence

Let P ′ be a complement of P so that P ′ ⊕ P is a finitely generated free
R≥0-module. Then j+∗ (P

′ ⊕ P ) ⊕ Rℓ is a finitely generated free R-module,
and

j+∗ (P
′⊕P )⊕Rℓ = j+∗ (P

′)⊕j+∗ (P )⊕Rℓ ∼= j+∗ (P
′)⊕j+∗ (Q)⊕Rℓ = j+∗ (P

′⊕Q)⊕Rℓ

so that j+∗ (P
′ ⊕Q)⊕ Rℓ is a finitely generated free R module as well. Conse-

quently, both j+∗ (P
′ ⊕ P ) and j+∗ (P

′ ⊕Q) stably extend to R≤0; thus the two
diagrams

p =
(

j+∗ (P
′ ⊕ P )←− P ′ ⊕ P

)

and q =
(

j+∗ (P
′ ⊕Q)←− P ′ ⊕Q

)

are objects of D+. Let us consider the element z = [p] − [q] ∈ K0D+. We
calculate

f(z) = f
(

[p]− [q]
)

= [P ′ ⊕ P ]− [P ′ ⊕Q] = [P ]− [Q] = x

(see Lemma 8.8 for the effect of f). As x ∈ ker(j+∗ ), and as g is an injection,
this implies z ∈ ker(j′), and by exactness of the lower horizontal sequence we
infer that z = k′(y) for some y ∈ π0Ω|h+Vect(P

1)h0 |. Then k(y) = fk′(y) =
f(z) = x so that x ∈ im k. This proves the top row to be exact at K0R≥0, and
establishes together with Theorem 8.3 the tail end of the long exact sequence.

It remains to identify the map φ in the sequence (11.1a). To this end, let
FD(R≥0) denote the category of bounded complexes of R≥0-modules which
are quasi-isomorphic to a bounded complex of finitely generated projective
R≥0-modules, and consist of projective R0-modules. The inclusion functor

Ch♭
P(R≥0) −→ FD(R≥0)

is exact and yields isomorphisms on algebraic K-groups (with respect to weak
equivalences the quasi-isomorphisms, and cofibrations the monomorphisms
with levelwise R0-projective cokernel) as can be checked with the help of Wald-

hausen’s approximation theorem. This inclusion is the right hand vertical map
in the square diagram of Fig. 3. The top horizontal arrow maps the complex
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Ch♭ Vect(P1)h0 Ch♭ P(R≥0)

R
Nil

+(R0) FD(R≥0)

⊆

Figure 3: Diagram used in proof of localisation sequence

of vector bundles Z to its component Z+. The left-hand vertical map is the
one discussed in Theorem 8.3, identifying the group πqΩ|h+Vect(P

1)h0 | with
Kq

(

R
Nil

+(R0)
)

; it is given by the assignment

Z =
(

Z− −→ Z0 ζ+

←−− Z+
)

7→ (Z+, ζ)

with ζ the composition Z+ ⊗R0 R1
∼= Z+ ⊗R≥0

R≥1 −→ Z+ ⊗R≥0
R≥0 ∼=

Z+⊗R0 R0. Note that Z+ consists of projective R0-modules since R is strongly
Z-graded, that Z+ is R0-finitely dominated by Lemma 7.13, and that ζ is ho-
motopy nilpotent by Corollary 7.12. Using the functor (Z, ζ) 7→ Zζ in the lower
horizontal position renders the square diagram commutative; the complex Zζ

is indeed an object of FD(R≥0) by Remark 7.15. The induced map on alge-
braic K-groups is the map φ occurring in the sequence (11.1a). — The proof
is complete.

12 The K-theory of homotopy nilpotent twisted endomorphisms

The groups RNK∓0 R0 can be interpreted as obstruction groups for finitely gen-
erated projective modules over R≤0 or R≥0, respectively, to be stably induced
from R0 (Proposition 3.4). For q > 0 the groups RNK±q R0 are isomorphic to
the (reduced) algebraic K-groups of the category of homotopy nilpotent twisted
endomorphisms, as will be shown in this section. This will also complete the
proof of Theorem 2.9.

Theorem 12.1 (RNK∓q is K-theory of homotopy nilpotent twisted endomor-
phisms). For q > 0 there are natural isomorphisms of abelian groups

RNK+

q (R0)
∼=
−→

RNil−q−1(R0) = ker
(

o
−

∗
: Kq−1

(

R
Nil

−(R0)
)

−→ Kq−1(R0)
)

(12.1a)

and

RNK−

q (R0)
∼=
−→

RNil+q−1(R0) = ker
(

o
+
∗
: Kq−1

(

R
Nil

+(R0)
)

−→ Kq−1(R0)
)

(12.1b)

with the groups RNil∓q−1(R0) from (7.19a) and (7.19b), and maps o∓∗ as intro-
duced in (7.18) induced by the forgetful functors o∓ : (Z, ζ) 7→ Z.
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Proof. Upon taking the homotopy fibre of the top horizontal map in the fun-
damental square (8.1) we obtain a long exact sequence of K-groups containing
the snippet

KqP
1 −→ KqD+

∇
−→ Kq−1Vect(P

1)h+
ι
−→ Kq−1P

1 −→ Kq−1D+ ,

with ι induced by the inclusion functor Ch♭ Vect(P1)h+ −→ Ch♭ Vect(P1); the
symbol ∇ stands for a connecting homomorphism in the long exact sequence
of homotopy groups associated with the fibration. — Using the isomorphism
α : KqR0 ⊕KqR0 −→ KqP

1 from (10.1), and with Kk(R≥0) in place of KkD+

(Lemma 8.8), we obtain the exact sequence

KqR0 ⊕KqR0
ǫ
−→ KqR≤0

∇
−→ Kq−1Vect(P

1)h+

α−1ι
−−−→ Kq−1R0 ⊕Kq−1R0

ǫ
−→ Kq−1R≤0 .

The map ǫ is the difference of maps induced by the functors

(P,Q) 7→
(

P ⊗R0 R≥0
)

⊕
(

Q⊗R0 R≥0
)

and (P,Q) 7→ P ⊗R0 R≥0 ,

thus ǫ is the usual split injection induced from i+ : Q 7→ Q ⊗R0 R≥0 on the
second summand, and is the zero map on the first. Hence the image of the
map α−1ι, which equals the kernel of ǫ, is Kq−1R0 ⊕ {0}, and there results
another exact sequence

0 −→ {0} ⊕KqR0
i+∗−→ KqR≥0

∇
−→ Kq−1Vect(P

1)h+
pr1α

−1ι
−−−−−→ Kq−1R0 −→ 0 .

By Theorem 8.3 we have an isomorphism

ω : Kq−1Vect(P
1)h+

∼=
−→ Kq−1

R
Nil
−(R0) .

Claim: The composition pr1α
−1ιω−1 is induced

by the forgetful functor o− : (Y, υ) 7→ Y .
(12.2)

Assuming the claim for the moment, we obtain an exact sequence

KqR0
i+∗−→ KqR≥0

ω∇
−−→ Kq−1

R
Nil
−(R0)

o−

−−→ Kq−1R0 ,

giving the isomorphism

RNK+
q = coker i+∗ = KqR≥0/ ker(ω∇) ∼= im(ω∇) = ker(o−) = RNil−q−1R0 .

This establishes (12.1a). The isomorphism of (12.1b) is verified using a sym-
metric argument, employing the isomorphism

KqR0 ⊕KqR0 −→ KqP
1 ,

(

[P ], [Q]
)

7→
[

Ψ0,0(P )
]

−
[

Ψ0,−1(P )
]

+
[

Ψ0,0(Q)
]

,
(12.3)

in place of α.
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It remains to verify Claim (12.2). By Lemma 10.2 the isomorphism α−1 is
induced by the functor

Ξ: Vect(P1)0 −→ Ch♭ P(R0)× Ch♭
P(R0) ,

Y 7→

(

ΣΓY(1, 0) ⊕ ΓY ⊕ ΓY(1,−1)
ΣΓY(1,−1) ⊕ ΓY(1, 0) .

)

Now consider the diagram in Fig. 4. It is not a commutative diagram of func-
tors, but on the level of K-theory spaces it is homotopy commutative. Since all
vertical arrows marked as inclusion maps induce identity maps on K-groups,
and since ω induces an isomorphism on K-groups, this establishes Claim (12.2).
— The vertical arrows a and b result in homotopy equivalences on K-theory

Vect(P1)
h+

0 Vect(P1)0 Ch♭ P(R0)

Vect(P1)h+ Vect(P1)

R
Nil
−(R0) FD(R0)

ι

⊆a

pr1Ξ

⊆b

⊆i
ι

ω

o−

Figure 4: Diagram used to establish Claim (12.2)

spaces with respect to h-equivalences; this is analogous to Lemma 6.3, and
the arguments of Lemma III.1.3 and Corollary III.1.4 of [HM20] carry over
verbatim. For the arrow i see (7.17). As to the alleged homotopy commu-
tativity, recall that for Z ∈ Vect(P1)0 we have lim

←

1Z(k, ℓ) = H1Z(k, ℓ) = 0

when k+ ℓ ≥ 0, by definition of the category Vect(P1)0; consequently, the map
ΓZ(k, ℓ) −→ holimZ(k, ℓ) is a quasi-isomorphism when k+ ℓ ≥ 0, where “holim”
stands for the homotopy limit or homotopy pullback construction, which is the
dual of the double mapping cylinder. Furthermore, for Z ∈ Vect(P1)

h+

0 we
have Z(k, ℓ)+ = Z+ ⊗R≥0

R≥−ℓ ≃ ∗ and Z(k, ℓ)0 = Z0 ⊗R R ≃ ∗, which for
k + ℓ ≥ 0 implies

ΓZ(k, ℓ) ≃ holim
(

Z− ⊗R≤0
R≤k −→ Z0 ⊗R R←− Z+ ⊗R≥0

R≥−ℓ
)

≃ holim
(

Z− ⊗R≤0
R≤k −→ ∗ ←− ∗

)

≃ Z− ⊗R≤0
R≤k .

Thus the composition ipr1Ξ ι, that is, the functor that sends Y ∈ Vect(P1)
h+

0

to
ΣΓY(1, 0) ⊕ ΓY ⊕ ΓY(1,−1) ,
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is weakly equivalent to the functor that sends Y to
(

ΣY − ⊗R≤0
R≤1

)

⊕ Y − ⊕
(

Y − ⊗R≤0
R≤1

)

;

by the additivity theorem, the induced map on K-theory spaces is homotopic
to the map induced by Y 7→ Y − since suspension models an inverse for the
H-space structure. But the formula Y 7→ Y − describes the effect of o− ◦ ω as
well. This finishes the proof.

Remark 12.4. The groups Kq

(

R
Nil

+(R0)
)

can also be obtained as Quillen

K-groups of the exact category of finitely generated projective R0-modules P
equipped with nilpotent twisted endomorphisms P ⊗R0 R1 −→ P , as is implied
by the work of Lück and Steimle [LS16]. In their notation, A is the category
of finitely generated projective R0-modules, and Φ is the endofunctor – ⊗R0 R1

ofA; forAκ one substitutes the category of projective R0-modules. All relevant
formulas and arguments of loc. cit. §§8.2–3 and from the beginning of the proof
of their Theorem 8.2 carry over without further changes, establishing the claim.
(It should be noted that the category AΦ[t, t

−1] appearing in other parts of
[LS16] does not correspond to the category of all finitely generated projective
R-modules but to modules induced from R0 only.)
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