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Abstract. We study quotients of the Toeplitz C∗-algebra of a ran-
dom walk, similar to those studied by the author and Markiewicz for
finite stochastic matrices. We introduce a new Cuntz-type quotient
C∗-algebra for random walks that have convergent ratios of transi-
tion probabilities. These C∗-algebras give rise to new notions of ratio
limit space and boundary for such random walks, which are computed
by appealing to a companion paper by Woess. Our combined results
are leveraged to identify a unique symmetry-equivariant quotient C∗-
algebra for any symmetric random walk on a hyperbolic group, shed-
ding light on a question of Viselter on C∗-algebras of subproduct
systems.
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1 Introduction

It is an age-old tradition, since the work of Murray and von Neumann [42, 43], to
use operator algebras as means of producing new invariants in various theories
in Mathematics. One instance where the theory of C*-algebras was useful in
this regard is in the classification of Cantor minimal Zd systems up to orbit
equivalence through the use of K-theoretical invariants, leading to new notions
of equivalence relations between the systems [27, 26].
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Another instance of this is in graph theory and symbolic dynamics, where in-
variants of C*-algebras studied by Cuntz and Krieger coincide with invariants
coming from subshifts of finite type [13, 12]. After contributions and improve-
ments by too many authors to list here, these works led to C*-algebraic inter-
pretations of equivalence relations occurring naturally in symbolic dynamics
[40, 6], and provided a rich class of examples for classification of operator al-
gebras [22, 17].
A concrete way of constructing and studying C*-algebras of directed graphs is
by realizing them as unique T-equivariant quotients of the Toeplitz C*-algebras
of the graph. These Toeplitz C*-algebras are simply those generated by con-
catenation operators on the space of square-summable sequences indexed by
all finite paths of the graph. Such concrete realizations, together with previous
works on C*-algebras of subproduct systems [52, 53], allowed us to reveal the
structure of Toeplitz C*-algebras and tensor operator algebras of subproduct
systems arising from stochastic matrices [19, 20].
In this paper, we introduce a new Cuntz-type C*-algebra O(G,µ) for a random
walk P on a group G induced by a finitely supported measure µ, which is a
quotient of the Toeplitz algebra T (G,µ) of the stochastic matrix P . The com-
putation of O(G,µ) in this paper gave rise to new notions of ratio-limit space
and boundary for random walks, prompting the study in the companion paper
by Woess [58]. When the random walk is finite, our Cuntz C*-algebras coincide
with the ones computed in [20, Theorem 2.1], but new subtleties emerge for
random walks on infinite groups.

For a stochastic matrix P on a group G, we denote by P
(n)
x,y := (Pn)x,y the

n-step transition probability from x to y, for x, y ∈ G.

Definition 1.1. Let P be an irreducible stochastic matrix over G. We say
that P has the strong ratio limit property (SRLP) if for all x, y, z ∈ Ω we have

that the limit lim
m→∞

P (m)
x,y

P
(m)
z,y

exists.

SRLP was first established for integer lattices in works of Chung and Erdös [11]
and of Kesten [36], and was later shown to hold for random walks over abelian
groups [51], random walks on nilpotent groups [39], and symmetric random
walks on amenable groups [1]. These days, establishing SRLP often relies
on local limit theorems. More precisely, typical local limit theorems for P

determine the asymptotic behavior of P
(n)
x,y in the sense that

P (n)
x,y ∼

n→∞
C · β(x, y) · ρn · n−α,

for C, β(x, y), α > 0, where the ratio between the LHS and RHS goes to 1 as
n → ∞ (see [47, 4] for other kinds of local limit theorems). If we have a local

limit theorem as above, we get SRLP where lim
m→∞

P (m)
x,y

P
(m)
z,y

= β(x,y)
β(z,y) .

Local limit theorems have been established for certain random walks on free
products [54, 8], random walks on free groups and trees [37], symmetric random
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walks on co-compact Fuchsian groups [29] and symmetric random walks on
non-elementary hyperbolic groups [28]. For more on the history of local limit
theorems we refer the reader to [56, Chapter III], as well as the companion paper
by Woess [58]. In general, it is unknown whether or not aperiodic random walks
automatically satisfy SRLP.
Assuming SRLP, a ratio-limit space and boundary arise from the computation
of O(G,µ), leading to the following definitions in the theory of random walks.
The ratio-limit kernel H : G×G → (0,∞) is given by

H(x, y) = lim
m→∞

P
(m)
x,y

P
(m)
e,y

,

which turns out to be bounded in y ∈ G for every fixed x ∈ G. We let Rµ be
the largest subgroup of G on which the functions y 7→ H(x, y) are constant for
all x ∈ G. Then, we define the ratio-limit space R(G,µ) to be the smallest com-
pactification of G/Rµ to which the functions y 7→ H(x, y) extend continuously
for all x ∈ G. The ratio limit boundary is given by

∂RG = R(G,µ) \ [G/Rµ].

Let T be the unit circle, and denote by K(ℓ2(G)) the compact operators on the
Hilbert space ℓ2(G). The following establishes the connection between O(G,µ)
and the ratio limit space R(G,µ) in this work.

Theorem 1.2. Let P be a random walk on a group G induced by a finitely
supported measure µ, and assume that P has SRLP. Then

O(G,µ) ∼= C(R(G,µ) × T)⊗ K(ℓ2(G)).

This result prompted the computation of the ratio-limit boundary for sev-
eral classes of examples in the companion paper by Woess [58]. This includes
isotropic random walks on trees [58, Theorem 3.3], random walks on free groups
[58, Theorem 3.12], and symmetric random walks on non-elementary hyperbolic
groups [58, Theorem 4.5].
As a consequence, we are able to shed light on a questions of Viselter on
C*-algebras associated with subproduct systems. Subproduct systems were
introduced by Shalit and Solel in [50] for the purpose of studying quantum
Markov semigroups (see also [41, 3]), and for unifying the study of certain
operator algebras of nc holomorphic functions (see for instance [15, 16, 48]). In
work of Viselter [53], Cuntz-Pimsner C*-algebras of a subproduct system were
defined in a way that generalized essentially all previous examples.
In [53, Section 6, Question 1] Viselter asked if his C*-algebras have a universal
property in the spirit of a gauge-invariant uniqueness theorem. Gauge-invariant
uniqueness theorems have a plethora of applications in the structure and repre-
sentation theory of operator algebras, and have been extended significantly to
various scenarios [44, 33, 45, 34, 7, 18, 21]. Hence, it is natural to ask for such
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uniqueness theorems in the context of subproduct systems. However, already
in [53, Example 2.3] it was shown that a unique T-gauge equivariant quotient
C*-algebra may fail to exist in general.
In a recent preprint of Arici and Kaad [2] it is shown that subproduct systems
arising from representations of SU(2) give rise to a natural SU(2)-action on
associated Toeplitz and Cuntz C*-algebras. These symmetries are leveraged to
provide analogues of Gysin sequences that are used to compute the K-theory
of these Toeplitz and Cuntz C*-algebras via Euler characteristic classes. Anal-
ogously to Viselter’s question, in [2, Section 8, Question 3] it is asked whether
Viselter’s Cuntz-Pimsner C*-algebra is the unique SU(2)-equivariant quotient
for subproduct systems arising in [2]. The key observation made by asking this
question is that Viselter’s Cuntz-Pimsner algebra in [53, Example 2.3] turns
out to be the unique SU(2)-equivariant quotient of its respective Toeplitz C*-
algebra.
Hence, Viselter’s question can be interpreted as asking whether his Cuntz-
Pimsner C*-algebras satisfy symmetry-uniqueness with respect to a natural
class of symmetries on the Toeplitz algebra, at least in cases where a unique
equivariant quotient of Toeplitz algebra exists with respect to this class.
We answer the above question in the negative, showing that Viselter’s Cuntz-
Pimsner C*-algebra has a proper quotient which is the unique G×T equivariant
quotient of T (G,µ). In fact, for symmetric aperiodic random walks on non-
elementary hyperbolic groups, whose ratio-limit boundary is computed in the
companion paper [58], we get a unique G× T-equivariant quotient of T (G,µ)
which is a proper quotient of both Viselter’s C*-algebra and O(G,µ).

Theorem 1.3. Let P be a symmetric aperiodic random walk on a non-
elementary hyperbolic group induced by a finitely supported measure µ, and
let ∂G be the Gromov boundary of G. Then, the C*-algebra C(∂G × T) ⊗
K(ℓ2(G)) is the unique G× T-equivariant quotient of T (G,µ).

This paper has five sections, including this introduction. In Section 2 we pro-
vide some of the necessary preliminaries on stochastic matrices and random
walks. In Section 3 we introduce the ratio-limit space and boundary of a
random walk with SRLP arising in this work, and provide some examples
by appealing to the companion paper by Woess [58]. In Section 4 we define
Toeplitz and Cuntz algebras for random walks, and compute the latter under
the assumption of SRLP. Finally, in Section 5 we find conditions on the ratio
limit boundary to ensure uniqueness of equivariant quotients, and explain how
our setting transfers to the context of subproduct systems where we discuss
consequences on Viselter’s question.
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2 Stochastic matrices and random walks.

In this subsection we discuss some of the needed theory on stochastic matrices
and random walks. For more on the relevant theory we recommend the survey
[55] and the books [56, 57].

Definition 2.1. Let X be a countable set. A stochastic matrix over X is a
map P : X × X → [0, 1] such that

∑
j Pij = 1. We let Gr(P ) be the directed

graph on X with directed edges E(P ) := { (i, j) | Pij > 0 }. We say that P is
irreducible if Gr(P ) = (X , E(P )) is a strongly connected directed graph.

When P is a stochastic matrix over X , we denote by Pn the n-th iterate of P ,

and by P
(n)
ij the ij-th entry of Pn. We denote P 0 := I the identity matrix. We

say that P is symmetric when it is equal to its transpose. We also say that P
is aperiodic if the greatest common divisor of lengths of all cycles in Gr(P ) is 1.
We will assume henceforth that X is countable.

Definition 2.2. Let P be an irreducible stochastic matrix over X . The spectral
radius of P is given by

ρ(P ) := lim sup
n→∞

n

√
P

(n)
ij

and is independent of i, j ∈ X .

We denote by ρ := ρ(P ) when the context is clear. We will say that a
non-negative function h : X → [0,∞) is ρ-harmonic at i ∈ X if (Ph)(i) :=∑

j∈X Pijh(j) = ρ · h(i). The Green kernel of P is given for i, j ∈ X by

G(i, j|z) =
∞∑

n=0

P
(n)
ij zn,

with radius of convergence ρ−1. We denote also F (i, j|z) := G(i,j|z)
G(j,j|z) , so that by

[57, Lemma 3.66] we get that limz→ρ−1 F (i, j|z) exists for every i, j ∈ X . Let
o ∈ X be some fixed element. We define the ρ-Martin kernel of P to be

K(i, j) := lim
z→ρ−1

G(i, j|z)

G(o, j|z)
= lim

z→ρ−1

F (i, j|z)

F (o, j|z)
,

which exists and is finite. For fixed j ∈ X , the function i 7→ K(i, j) is then
ρ-harmonic at all points, except when i = j, while for fixed i ∈ X the function
j 7→ K(i, j) is bounded above and away from 0.
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Now let φ : X → N be some bijection. The ρ-Martin compactification ∆ρX is
the completion of X with respect to the metric

d(j1, j2) =
∑

i∈X

|K(i, j1)−K(i, j2)|+ |δij1 − δij2 |

Ci · 2φ(i)
.

Then, ∆ρX becomes the smallest compactification of X to which the functions
i 7→ K(i, j) extend continuously for every fixed j ∈ X , and contains X as an
open subset (see for instance [56, Theorem 7.13] for an equivalent construction).
A sequence αn ∈ X converges to a α ∈ ∆ρX if either α ∈ X and αn is eventually
equal to α, or αn is eventually outside any finite set and limn K(i, αn) = K(i, α)
for every i ∈ X . The closed subspace ∂∆,ρX = ∆ρX \X is called the ρ-Martin
boundary of P .
Our focus in this work will be on irreducible stochastic matrices that are random
walks on groups, with finitely supported measures.

Definition 2.3. Let G be a countable discrete group, and µ : G → [0, 1]
a finitely supported probability measure such that supp(µ) generates G as a
semigroup. The stochastic matrix P on G given by Px,y = µ(x−1y) is called
the random walk on G induced by µ.

The iterates of P are then given by P
(n)
x,y = µ∗n(x−1y) where µ∗n is the n-th

convolution power of µ. Note also that P is symmetric if and only if µ(g) =
µ(g−1) for every g ∈ G, and that P is aperiodic if and only if there is some odd
n such that µ∗n(e) > 0.
The main reason for choosing a finitely supported measure µ in the above
definition, is to assure that the random walk P has finite range, or alternatively,
that the graph Gr(P ) is locally finite. More precisely, for any fixed z ∈ G, there
are finitely many y ∈ G such that Py,z > 0.
One of the defining features of random walks is that they have symmetries

coming from a group. That is, for every g ∈ G we have that P
(n)
gx,gy = P

(n)
x,y .

This gives rise to G-invariance of the Green kernel in the sense that for every
g ∈ G and x, y ∈ G and 0 < z < ρ−1 we have G(gx, gy|z) = G(x, y|z), and
for 0 < z ≤ ρ−1 we have F (gx, gy|z) = F (x, y|z). But then, since K(x, gy) =
K(g−1x, y)/K(g−1, y), we see that the left multiplication map αg : x 7→ gx is
continuous with respect to the metric d. Hence, αg extend to a homeomorphism
(still denoted) αg on ∆ρG. Furthermore, αg clearly maps G onto itself, and so
must map ∂∆,ρG onto itself as well. Thus, when P is a random walk, we see
that the compacta ∆ρG and ∂∆,ρG both carry G-actions by homeomorphisms
induced by left multiplication on G.

3 Ratio limit space and boundary.

Recall an essential assumption for random walks and their operator algebras,
that will be used throughout this paper.
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Definition 3.1. Let P be a random walk on G induced by a finitely supported
measure µ. We say that P has the strong ratio limit property (SRLP) if for all

x, y, z ∈ G we have that limm→∞
P (m)

x,y

P
(m)
z,y

exists.

Note that if these limits exist and are all non-zero, this implies that P is
aperiodic, so that for any x, y ∈ G we have n0 such that for all n ≥ n0 one

must have P
(n)
x,y > 0.

Suppose now that P is an aperiodic random walk on a group G induced by a
finitely supported measure µ. By [25, Satz 1] (see also [30, Proposition 7.1])

we know that limm→∞
µ∗(m+1)(x)
µ∗m(x) = ρ for every x ∈ G where ρ = ρ(P ) is the

spectral radius. Thus, the limiting behavior of the sequences
{

µ∗m(x−1y)
µ∗m(y)

}
is

comparable with some other better-behaved sequences. Indeed, when µ∗n(y) >
0 and µ∗n′

(x−1y) > 0 we get that

µ∗m(x−1y)

µ∗m(y)
∼

m→∞

ρ(P )nµ∗m(x−1y)

µ∗(m+n)(y)
∼

m→∞

µ∗(m+n′)(x−1y)

ρ(P )n′ · µ∗m(y)

The advantage of doing this, is that we can assure that eventually µ∗m(x−1y)
µ∗m(y)

is bounded above and away from 0 for every fixed x ∈ G. Indeed, for smallest
n, n′ ∈ N such that µ∗n(x), µ∗n′

(x−1) > 0 we get that

ρ(P )nµ∗m(x−1y)

µ∗(m+n)(y)
≤ Cx, and

µ∗(m+n′)(x−1y)

ρ(P )n′ · µ∗m(y)
≥ cx.

where

Cx =
ρ(P )n

µ∗n(x)
and cx =

µ∗n′

(x−1)

ρ(P )n′
.

Hence, for fixed x ∈ G and sufficiently large m we get cx ≤ µ∗m(x−1y)
µ∗m(y) ≤ Cx for

every y ∈ G.
Suppose now that P has SRLP. From the G-symmetry of the random walk,

this is equivalent to the existence of the limits limm
µ∗m(x)
µ∗m(e) for each x ∈ G. We

may define the ratio limit kernel H : G×G → (0,∞) given by

H(x, y) = lim
m

µ∗m(x−1y)

µ∗m(y)
.

Then, by the above x 7→ H(x, y) is ρ-harmonic for every fixed y ∈ G and
y 7→ H(x, y) is bounded and bounded away from 0 for every fixed x ∈ G. For
each x ∈ X , we denote by H(x, ·) the ratio-limit function y 7→ H(x, y).

Proposition 3.2. Let P be a random walk on a group G induced by a finitely
supported measure µ. Suppose that P has SRLP. Then the set

Rµ := { y ∈ G | H(x, y) = H(x, e) ∀x ∈ G }

is a subgroup of G.
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Proof. For y, z ∈ Rµ and x ∈ G we have

H(x, yz) = lim
m

µ∗m(x−1yz)

µ∗m(yz)
= lim

m

µ∗m((y−1x)−1z)

µ∗m(z)
·

µ∗m(z)

µ∗m((y−1)−1z)
=

= H(y−1x, z)H(y−1, z)−1 = H(y−1x, e)H(y−1, e)−1 =

lim
m

µ∗m(x−1y)

µ∗m(e)
·
µ∗m(e)

µ∗m(y)
= H(x, y) = H(x, e),

and we also have

H(x, y−1) = lim
m

µ∗m((yx)−1)

µ∗m(y−1)
= lim

m

µ∗m((yx)−1)

µ∗m(e)

µ∗m(e)

µ∗m(y−1)
=

H(yx, e)H(y, e)−1 = H(yx, y)H(y, y)−1 =

lim
m

µ∗m(x−1)

µ∗m(y)

µ∗m(y)

µ∗m(e)
= H(x, e).

We call Rµ the ratio-limit radical, as it is the largest subgroup of G on which
the ratio-limit functions {H(x, ·)}x∈G are constant. We let G/Rµ be the left
cosets of G by Rµ. Note that the ratio-limit functions are well-defined on, and
separate points in G/Rµ.

Remark 3.3. When P as above is also symmetric, there is a subgroup Aµ ≤ G
defined in [23] given by

Aµ =
{
y ∈ G

∣∣ lim
m

µ∗m(y)

µ∗m(e)
= 1

}
,

which is amenable by [23, Theorem 4.2]. Together with SRLP, from the def-
inition of Rµ we see that for any y ∈ Rµ we have H(y, y) = H(y, e). Hence,
by symmetry of P we dedudce that y ∈ Aµ, so that Rµ is a subgroup of Aµ.
Hence, when P is symmetric we get that Rµ is amenable.

Definition 3.4. Let P be a random walk on a group G induced by finitely
supported µ. Suppose that P satisfies SRLP. The (reduced) ratio-limit space
R(G,µ) is the smallest compactification of G/Rµ which makes the ratio limit
functions {H(x, ·)}x∈G extend continuously to R(G,µ). More precisely, if φ :
G → N is some bijection, then R(G,µ) is the completion of G/Rµ with respect
to the bounded metric

d(yRµ, zRµ) =
∑

x∈G

|H(x, y)−H(x, z)|

Cx · 2φ(x)
.

The subspace ∂RG = R(G,µ)\(G/Rµ) is called the (reduced) ratio-limit bound-
ary of the random walk.
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It follows from general topology (see [24, Theorem 3.5.8]) that G/Rµ is open
in R(G,µ), so that ∂RG is a closed subspace. The topology on R(G,µ) is
determined by specifying that a sequence yn ∈ G converges to a point y ∈
R(G,µ) if either y ∈ G and yn ∼ y for eventually every n, or that y ∈ ∂RG
and limn H(x, yn) = H(x, y) for every x ∈ G. Furthermore, since H(x, gy) =
H(g−1x, y)/H(g−1, y), again we get that left multiplication βg : xRµ 7→ gxRµ

onG/Rµ is continuous with respect to d, and extends to a homeomorphism (still
denoted) βg on R(G,µ). Hence, as before, we get that the compacta R(G,µ)
and ∂RG carry G-actions by homeomorphisms induced by left multiplication
on G (for the latter when it is non-empty).

When G is an amenable group, and P is a symmetric aperiodic random walk
on G induced by a finitely supported µ, by Avez’ theorem [1] (see also [23,

Corollary 3.3]) we get for any x ∈ G that lim µ∗m(x)
µ∗m(e) = 1. In this case Rµ = G,

so that R(G,µ) = G/Rµ is trivial, and the ratio limit boundary is empty.
Together with this, the next example shows that the ratio limit boundary /
space may fail to coincide with the ρ-Martin boundary in general.

Example 3.5 (Random walks on lamplighter groups). Let LL(Zd) = Zd ×[⊕
x∈Zd Z2

]
where

⊕
x∈Zd Z2 are finitely supported functions on Zd with d ≥ 3.

Then, LL(Zd) has group multiplication given by (x,w) · (y, u) = (x + y, w +
Tx(u)) where Tx(u) is given by Tx(u)(z) = u(z − x). Let P be an aperiodic
symmetric random walk on LL(Zd) induced by a finitely supported measure µ.
From [31, Example 6.1] we know that LL(Zd) is amenable, so that by Kesten’s
amenability criterion [35] we get that the spectral radius of P is ρ = 1. On the
other hand, by [31, Proposition 6.1] we also get that µ has a non-trivial Poisson
boundary. Since the Poisson boundary is contained in the 1-Martin boundary,
we see that P has non-trivial ρ-Martin boundary while having a trivial ratio
limit space and empty ratio limit boundary.

Example 3.6. Let Fs be the free group on s generators a1, ..., as, and let d
be the shortest path metric on the Cayley graph T of Fs with respect to the
symmetric generating set S = {a1, ..., as, a

−1
1 , ..., a−1

s }. Note that T = T2s is
just the 2s regular tree. We take a (finitely supported) probability measure µ
on Fs with µ(e) > 0, which is a function µ(w) = f(d(e, w)) of the distance of
w ∈ Fs to the identity element e ∈ Fs in T. Then µ induces what is known as
an isotropic random walk on Fs. By the local limit theorem of Sawyer [49] (see
also [56, Theorem 19.30]), we have that

P (n)
x,y ∼

n→∞
C · β(x, y) · ρn · n−3/2,

where β(x, y) = (1 + s−1
s d(x, y))(2s − 1)−d(x,y)/2. Hence, for x, y ∈ Fs we get

a formula for the ratio-limit kernel,

H(x, y) =
1 + s−1

s d(x, y)

1 + s−1
s d(e, y)

(2s− 1)
d(e,y)−d(x,y)

2 .
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In particular, we see that the ratio-limit functions separate points in Fs, so
that Rµ is trivial. Hence, Fs embeds into R(Fs, µ), and by [58, Theorem 3.3]
the ratio limit boundary ∂RFs coincides with the space of ends ∂T2s of the
2s-regular tree T2s. Hence, we get that R(Fs, µ) = Fs ∪ ∂T2s.

Example 3.7. Let P be an aperiodic isotropic random walk on Fs1 arising
from µ1 and Q be an apriodic symmetric random walk on Zs2 arising from µ2

where s1 ≥ 2 and s2 ≥ 1. Take the Cartesian product G = Fs1 × Zs2 , and
let π1 : G → Fs1 and π2 : G → Zs2 be the coordinate projections. By [56,
Theorem 13.12] we have that Q satisfies a local limit theorem of the form

Q(n)
v1,v2 ∼

n→∞
C · n−s2/2.

Next, define the Cartesian random walk by setting µ = 1
2 [µ1 ◦ π

−1
1 + µ2 ◦ π

−1
2 ]

where µ1, where µ1 ◦ π−1
1 and µ2 ◦ π−1

2 are pushforward measures. Then, by
[58, Proposition 5.3] (see also [9]), we get that the ratio limit kernel H for µ is
given by H((w1, v1), (w2, v2)) = H1(w1, w2)H2(v1, v2), where H1 and H2 = 1
are the ratio limit kernels of P and Q respectively. By Example 3.6 and the
formula for H1 there, so we get that Rµ = Rµ2 = Zs2 . Thus, G/Rµ coincides
with Fs1 , and the ratio limit space R(G,µ) is equal to Fs1 ∪ ∂T2s1 .

The companion paper [58] deals mostly with full versions of the ratio-limit
compacta, which are generally different from the respective ones considered
here1. The full ratio-limit space is defined without incorporating Rµ into the
picture, and is the smallest compactification ∆RG of G to which the ratio-limit
functions y 7→ H(x, y) extend continuously (see [58, Section 6] for a compari-
son). It is straightforward to show that the quotient map G → G/Rµ extends
to a continuous surjective G-equivariant map from ∆RG onto R(G,µ). How-
ever, a key observation is that the full ratio-limit boundary and the (reduced)
ratio-limit boundary considered in this paper coincide whenever G is infinite
and Rµ is finite. Hence, by [58, Corollary 6.6] the two ratio-limit boundaries
coincide for all classes of random walks considered in [58].

A key step in the computation of full ratio limit boundaries in [58] is to show
that they coincide with the respective ρ-Martin boundaries, whose computa-
tion was previously attained in many classes of examples. More precisely, for
the classes of examples considered in [58], it follows that the quotient map
G → G/Rµ induces a homeomorphism τ : ∂∆,ρG → ∂RG (which also satisfies
K(x, ξ) = H(x, τ(ξ)) for every x ∈ G and ξ ∈ ∂∆,ρG).

In such cases, a simple approximation argument together with continuity of left
multiplication by g shows that τ(gξ) = gτ(ξ) for every ξ ∈ ∂∆,ρG and g ∈ G.
Thus, we get that the identification τ is automatically G-equivariant. This,
together with the above examples, suggests the following question:

1In [58], the full ratio-limit space and boundary are referred to simply as ratio-limit
compactification and boundary respectively, and our ratio-limit space and boundary are also
refereed to as the reduced ratio-limit compactification and boundary respectively.
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Question 3.8. Suppose P is a random walk on G induced by a finitely sup-
ported measure µ with SRLP and spectral radius ρ. Does the ρ-Martin com-
pactification cover the ratio-limit space? More precisely, is there a surjective
G-equivariant continuous map τ : ∆ρG → R(G,µ) which restricts to the quo-
tient map G → G/Rµ on G?

4 Toeplitz quotient C*-algebras for random walks.

The ratio-limit space R(G,µ) arises from the computation of the Cuntz C*-
algebra O(G,µ) as part of its spectrum. In this section of the paper we will
show this. Toeplitz C*-algebras, tensor algebras and C*-envelopes arising from
stochastic matrices were studied previously in [19, 20] (see also [10]), but the
definition of Cuntz C*-algebra we give below is new.

Let P be the stochastic matrix over a set X . For each m ∈ N we denote F
(m)
P

the Hilbert space with orthonormal basis {e
(m)
jk }(j,k)∈E(Pm). The Fock Hilbert

space of P is then given by

FP :=
∞⊕

m=0

F
(m)
P

Next, for each n ∈ N and (i, j) ∈ E(Pn) we define an operator S
(n)
ij on FP by

setting for every (j′, k) ∈ E(Pm),

S
(n)
ij (e

(m)
j′k ) = δjj′

√√√√P
(n)
ij P

(m)
jk

P
(n+m)
ik

e
(n+m)
ik .

Since S
(n)
ij maps an orthonomal basis to a uniformly bounded (by 1) orthogonal

set, it defines a bounded operator on FP . For a fixed k ∈ X , we denote by

FP,k the closed linear span of { e
(m)
jk | (j, k) ∈ E(Pm), m ≥ 0 }. It follows that

FP,k is a reducing subspace for the operators S
(n)
ij . For a fixed m ∈ N we also

denote F
(m)
P,k the closed linear span of { e

(m)
jk | (j, k) ∈ E(Pm) }.

Definition 4.1. Let P be a stochastic matrix on a set X . The Toeplitz C*-
algebras of P is given by

T (P ) := C∗( S
(n)
ij | (i, j) ∈ E(Pn), n ∈ N ).

Note that c0(X ) ⊆ T (P ) via the identification (ci) 7→
∑

i∈X ciS
(0)
ii for (ci) ∈

c0(X ). We will henceforth identify c0(X ) with its copy in B(FP ) as above, and

denote by pi := S
(0)
ii the operator corresponding in c0(X ) to the characteristic

function of i ∈ X .

Remark 4.2. We warn the reader that the Toeplitz C*-algebra T (P ) defined
here and in [19, 20] for a stochastic matrix P are different when X is infinite.

Documenta Mathematica 26 (2021) 1529–1556



1540 A. Dor-On

For instance, the former is non-unital while the latter is unital. In Section 5
we will see how the Toeplitz C*-algebras given here arise from subproduct
systems with coefficients c0(X ), while the Toeplitz C*-algebra in [19, 20] arise
from subproduct systems with coefficients ℓ∞(X ).

Definition 4.3. Let P be a stochastic matrix over X . Denote by J (P ) :=
T (P ) ∩

∏
k∈X K(FP,k), which is a closed ideal in T (P ). We define the Cuntz

C*-algebra of P to be

O(P ) := T (P )/J (P ).

We let qP : T (P ) → O(P ) be the natural quotient map. Since for each i ∈ P

we have that pi = S
(0)
ii /∈

∏
k∈P K(FP,k), we see that {qP (pi)}i∈X are still

pairwise orthogonal projections, so that qP is injective on c0(X ). Hence, we
may also identify c0(X ) as a subalgebra of O(P ) via qP .
Henceforth, we will assume that P is a random walk on a group G induced by
a finitely supported measure µ. To emphasize this we denote

T (G,µ) := T (P ), J (G,µ) := J (P ), and O(G,µ) := O(P ).

For m ∈ N and x ∈ G, denote by Q(m) the orthogonal projection from FP onto

F
(m)
P , and Q

(m)
x := Q(m)px = pxQ

(m). Denote also Q[m,∞) :=
∑∞

ℓ=m Q(ℓ), and

Q
[m,∞)
x := Q[m,∞)px = pxQ

[m,∞) =
∑∞

ℓ=m Q
(ℓ)
x .

Proposition 4.4. Let P be a random walk on a group G induced by a finitely

supported measure µ. Then Q
(0)
x ∈ T (G,µ) for every x ∈ G. Moreover, we

have that the closed ideal IK := 〈Q
(0)
z 〉z∈G ⊳ T (G,µ) is equal to ⊕z∈GK(FP,z),

and that Q
(ℓ)
x ∈ IK for every ℓ ∈ N and x ∈ G.

Proof. Since Gr(P ) is locally finite, for every x ∈ G there are finitely many
y ∈ G such that (x, y) ∈ E(P ). Hence, for every x ∈ G we have that

R(0)
x := S(0)

x,x −
∑

(x,y)∈E(P )

S(1)
x,yS

(1)∗
x,y ∈ T (G,µ).

Then, on a standard basis vector e
(m+1)
x,z for m ∈ N we get

R(0)
x (e(m+1)

x,z ) = e(m+1)
x,z −

∑

y∈G

P
(n)
x,y P

(m)
y,z

P
(n+m)
x,z

e(m+1)
x,z = 0,

and since R
(0)
x (e

(0)
x,x) = e

(0)
x,x for each x ∈ G, and R

(0)
x (e

(m)
y,z ) = 0 if x 6= y, we get

that Q
(0)
x = R

(0)
x ∈ T (G,µ).

Since {Q
(0)
z }z∈G is a set of pairwise orthogonal rank-one projection, each onto

the subspace Ce
(0)
z,z ⊆ FP,z, and since T (G,µ)e

(0)
z,z = FP,z, we see that the closed

ideal 〈Q
(0)
z 〉z∈G is equal to ⊕z∈GK(FP,z).
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Finally, since Gr(P ℓ) is locally finite, for x ∈ G we see that Q
(ℓ)
x := pxQ

(ℓ) =

Q(ℓ)px is finite rank, and Q
(ℓ)
x =

∑
(x,z)∈E(P ℓ) Q

(ℓ)
x,z where Q

(ℓ)
x,z is the rank-one

projection onto the subspace Ce
(ℓ)
x,z. Since Q

(ℓ)
x,z ∈ K(FP,z) for each x, z ∈ G

and ℓ ∈ N, the proof is concluded.

Remark 4.5. In Proposition 5.5 we will see that IK coincides with Viselter’s
ideal of T (G,µ), which is realized as the Toeplitz C*-algebra of a subproduct
system arising from the random walk as in Section 5.

We will define an auxiliary C*-algebra T̂ (G,µ) and auxiliary operators {W
(n)
x,y }

and {T
(n)
x,y } which will help make our computation of O(G,µ) easier. Denote

by JK :=
∏

z∈G K(FP,z), and let

T̂ (G,µ) := T (G,µ) + JK.

Since J (G,µ) = T (G,µ)∩JK by definition, by [14, Corollary I.5.6] we get that

T̂ (G,µ)
/
[J (G,µ) + JK]

∼= O(G,µ).

Hence, even though some operators we define may not be in T (G,µ), they

will all be in T̂ (G,µ) so that their images in O(G,µ) will make sense. More
precisely, qP : T (G,µ) → O(G,µ) extends to a well-defined quotient map

(denoted still by) qP : T̂ (G,µ) → O(G,µ), and we denote for an operator

T ∈ T̂ (G,µ) its image in O(G,µ) by T := qP (T ).

Proposition 4.6. Let P be a random walk on a group G induced by a finitely
supported measure µ. Then, for any T ∈ T̂ (G,µ) we have that

‖T‖ = sup
z∈G

lim
m

‖TQ[m,∞)|FP,z
‖

Proof. For every ǫ > 0 there is some K ∈ JK such that

‖T‖ ≥ ‖T +K‖ − ǫ = sup
z∈G

‖[T +K]|FP,z
‖ − ǫ ≥

sup
z∈G

lim
m

‖[T +K]Q[m,∞)|FP,z
‖ − ǫ

But since for every m ∈ N and z ∈ G we have

‖[T +K]Q[m,∞)|FP,z
‖ ≥ ‖TQ[m,∞)|FP,z

‖ − ‖KQ[m,∞)|FP,z
‖,

by taking m → ∞, and as K|FP,z
∈ K(FP,z) for z ∈ G, we get that

‖T‖ ≥ sup
z∈G

lim
m

‖TQ[m,∞)|FP,z
‖ − ǫ.

Hence, we arrive at the lower bound ‖T‖ ≥ supz∈G limm ‖TQ[m,∞)|FP,z
‖.
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On the other hand, for every T ∈ T̂ (G,µ) and a sequence of natural numbers
(mz)z∈G, we get by local finiteness of Gr(P ) that the operator T |FP,z

· (I −

Q[mz,∞))|FP,z
on FP,z is finite rank, so that

T0 := ⊕
z∈G

[
T |FP,z

· (I −Q[mz,∞))|FP,z

]
∈ JK =

∏
K(FP,z).

Thus, we get for any sequence of natural numbers (mz)z∈G that

‖T‖ ≤ ‖T − T0‖ = sup
z∈G

‖TQ[mz,∞)|FP,z
‖.

Since (mz)z∈G is arbitrary, we get the upper bound

‖T‖ ≤ sup
z∈G

lim
m

‖TQ[m,∞)|FP,z
‖.

Combined with the the previously obtained lower, we get our result.

Suppose that P is a random walk with SRLP on a group G induced by a finitely
supported measure µ. Then, for any n ∈ N and (x, y) ∈ E(Pn) we define two

operators W
(n)
x,y and T

(n)
x,y on FP by setting for (y′, z) ∈ E(Pm),

W (n)
x,y (e

(m)
y′,z) = δy,y′ ·

√
H(x−1y, x−1z) · e(m+n)

x,z ,

and T
(n)
x,y :=

[
ρ(P )

P
(n)
x,y

]n
2

S
(n)
x,y ∈ T (P ), alternatively given by the formula

T (n)
x,y (e

(m)
y′,z) = δy,y′

√√√√ρ(P )nP
(m)
y,z

P
(n+m)
x,z

e(n+m)
x,z .

Boundedness of the operators W
(n)
x,y and T

(n)
x,y can be observed from the esti-

mates in Section 3 and the fact that the ratio-limit functions are bounded.
Then, their adjoints are given for x′, z ∈ G by W

(n)∗
x,y (e

(m)
x′,z) = T

(n)∗
x,y (e

(m)
x′,z) = 0

for m < n and otherwise for m ∈ N we have

W (n)∗
x,y (e

(n+m)
x′,z ) =

{
δx,x′ ·

√
H(x−1y, x−1z) · e

(m)
y,z if (y, z) ∈ E(Pm)

0 if otherwise.

and

T (n)∗
x,y (e

(n+m)
x′,z ) = δx,x′

√√√√ρ(P )nP
(m)
y,z

P
(n+m)
x,z

e(m)
y,z .

Proposition 4.7. Suppose P is a random walk on a group G induced by a
finitely supported measure µ, and assume P has SRLP. Then for every n ∈ N

and (x, y) ∈ E(Pn) we have that T
(n)
x,y −W

(n)
x,y ∈ JK. In particular, we get that

W
(n)
x,y ∈ T̂ (G,µ).
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Proof. Fix z ∈ G. It will suffice to show that the restriction of T
(n)
x,y −W

(n)
x,y to

FP,k is compact. Let m ∈ N. If (y, z) /∈ E(Pm), then T
(n)
x,y −W

(n)
x,y is zero on

F
(m)
P,z . If (y, z) ∈ E(Pm), then e

(m)
y,z is the only standard basis vector of F

(m)
P

which is not annihilated by T
(n)
x,y −W

(n)
x,y . In this case, we get that

‖[T (n)
x,y −W (n)

x,y ](e
(m)
y,z )‖ =

∣∣∣

√√√√ρ(P )nP
(m)
y,z

P
(n+m)
x,z

−
√
H(x−1y, x−1z)

∣∣∣.

However, since T
(n)
x,y −W

(n)
x,y is at most a rank-one operator when restricted to

an operator from F
(m)
P,z to F

(m+n)
P,z , it will suffice to show that as m → ∞, the

above goes to 0. But now, the estimates in Section 3 (up to applying a square
root) establish this convergence.

Remark 4.8. It is at this point where we see the importance of defin-
ing O(G,µ) as a quotient by JK ∩ T (G,µ) as opposed to a quotient by
IK = ⊕z∈GK(FP,z) ⊳ T (G,µ). It turns out that in most cases O(G,µ) is
a proper quotient of T (G,µ)/IK. This is because of the following reasoning.

When G is infinite, since µ is finitely supported, for each x, y ∈ G and m ∈ N

we may always choose z for which P
(m)
x,z = P

(m)
y,z = 0. Hence, we see that the

convergence

ρ(P )nP
(m)
y,z

P
(n+m)
x,z

−→
m→∞

H(x−1y, x−1z)

is never uniform in z, and we get that T
(n)
x,y −W

(n)
x,y /∈ IK. On the other hand

we have shown above that T
(n)
x,y −W

(n)
x,y ∈ JK. Thus, in order to show a proper

inclusion IK ( J (G,µ), it will suffice to show that W
(n)
x,y ∈ T (G,µ), so that

T
(n)
x,y −W

(n)
x,y is in J (G,µ) = T (G,µ) ∩ JK but not in IK.

This can be done for instance when Rµ = G, so that all ratio-limit functions

{H(x, ·)}x∈G are constant 1. Indeed, one can show that W
(n)
x,y is the partial

isometry in the polar decomposition T
(n)
x,y = W

(n)
x,yA where A ∈ T (G,µ) is

positive with σ(A) bounded away from 0. Continuous functional calculus can

then used to show W
(n)
x,y ∈ T (G,µ), with similar techniques as below.

Next, for (x, y) ∈ E(Pn) we denote Rx,y := R
(n)
x,y =

√
W

(n)∗
x,y W

(n)
x,y ∈ T̂ (G,µ).

By definition, we get for (y′, z) ∈ E(Pm) that,

Rx,y(e
(m)
y′,z) = δy,y′ ·H(x−1y, x−1z)

1
2 · e(m)

y,z .

But now, since (x, y) ∈ E(Pn) are fixed, by estimates in Section 3 there are
cx,y, Cx,y > 0 such that 0 < cx,y ≤ H(x−1y, x−1z) ≤ Cx,y < ∞ for all z ∈ G.

Hence, we get that σ(Rx,y) ⊆ [c
1/2
x,y , C

1/2
x,y ], and by applying the non-negative
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continuous function

t 7→





0 t ∈ (−∞, 0)

t · c−1
x,y t ∈ [0, c

1/2
x,y ]

t−1 t ∈ [c
1/2
x,y , C

1/2
x,y ]

C
−1/2
x,y t ∈ (C

1/2
x,y ,∞)

to the positive operator Rx,y, we get the positive operator R
′
x,y ∈ T̂ (G,µ) given

for (y′, z) ∈ E(Pm) by

R′
x,y(e

(m)
y′,z) = δy,y′ ·H(x−1y, x−1z)−

1
2 · e(m)

y,z .

But then, V
(n)
x,y = W

(n)
x,yR′

y ∈ T̂ (G,µ) is given by

V (n)
x,y (e

(m)
y′,z) = δy,y′e(m+n)

x,z .

Now fix x, y, z ∈ G. Since P has SRLP it must be aperiodic, so there exists n0

(depending on x, y and z) such that (x, x), (x, y), (y, y), (y, z), (z, z) ∈ E(Pn)
for all n ≥ n0. Thus, we may define the following operators:

1. Ex,y = V
(n)∗
x,x V

(n)
x,y

2. Ux = V
(n)∗
x,x V

(n+1)
x,x , and let U = ⊕x∈GUx.

3. H
(z)
x,y = Ez,yR

(n)
x,yEy,z , and let Hx,y := ⊕z∈GH

(z)
x,y.

It is readily verified that the definitions of Ex,y, Ux and H
(z)
x,y are independent

of n ≥ n0 modulo JK, by showing that the the restrictions to FP,z of differences
(with different values of n ≥ n0) are in K(FP,z) for each z ∈ G.

For an operator T ∈
∏

z∈GB(FP,z) we denote by T its image in the Calkin
quotient

∏
z∈G B(FP,z)/

∏
z∈GK(FP,z) ∼=

∏
z∈G Q(FP,z), so that when T ∈

T̂ (G,µ) we have that T ∈ O(G,µ).

Proposition 4.9. Let P be a random walk on a group induced by a finitely
supported µ, and assume P has SRLP. Then,

1. the family of operators {Ex,y} is a G×G system of matrix units.

2. the family {Ex,y} commutes with {Hx,y} and U .

3. for each x, y ∈ G we have Hx,yU = UHx,y.

4. U is a unitary element, and each Ux has spectrum σ(Ux) = T ∪ {0}.

5. O(G,µ) is generated by {Ex,y}x,y∈G, {H
(e)

x,y}x,y∈G and Ue.
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Proof. We first show (1). Let x, y, y′, z ∈ G. Then, by aperiodicity of P , for
fixed w ∈ G there is m0 large enough so that (y, w), (x,w), (x, x), (y′ , y′) ∈
E(Pm) for m ≥ m0. Hence, whenever (z

′, w) ∈ E(Pm) and m ≥ m0 we have,

Ex,yEy′,z(e
(m)
z′,w) = δz,z′Ex,y(e

(m)
y′,w) = δy,y′δz,z′e(m)

x,w = δy,y′Ex,z(e
(m)
z′,w).

Hence, we get that Ex,yEy′,z − Ex,z ∈ JK. A similar computation shows that
E∗

x,y − Ey,x ∈ JK as well. Hence, {Ex,y} is a G×G system of matrix units.
Next, we show (2). Indeed, by item (1) we have for x, x′, y, y′ ∈ G that

Ex,yHx′,y′ = Ex,y′Rx′,y′Ey′,y = Hx′,y′Ex,y.

To show that {Ex,y} commutes with U it will suffice to show that Ex,yUy −
UxEx,y ∈ JK. So, for fixed z ∈ G, by aperiodicity of P there is m0 large enough
so that (x, z), (y, z) ∈ E(Pm) for allm ≥ m0. Hence, whenever (y

′, z) ∈ E(Pm)
for m ≥ m0 we have

Ex,yUy(e
(m)
y′,z) = δy,y′e(m+1)

x,z = UxEx,y(e
(m)
y′,z).

Now, we show item (3). By aperiodicity of P , for fixed z ∈ G there is m0 large
enough so that (y′, z) ∈ E(Pm) for all m ≥ m0, so that

Hx,yU(e
(m)
y′,z) =

√
H(x−1y, x−1z) · e

(m+1)
y′,z = UHx,y(e

(m)
y′,z).

Thus, we get that Hx,yU − UHx,y ∈ JK.
To show item (4), fix z ∈ G, so that by aperiodicity there is m0 large enough
so that (y, z) ∈ E(Pm) for all m ≥ m0. Hence, for any m ≥ m0 + 1 and
(y, z) ∈ E(Pm) we have

U∗U(e(m)
y,z ) = e(m)

y,z = UU∗(e(m)
y,z ).

Thus, we get that U∗U − I, UU∗− I ∈ JK. Since Uy acts as the unilateral shift

on the orthonormal set {e
(m)
y,x }m≥m0 , it follows that D ⊆ σ(Uy). Since Uy is the

compression of an essential unitary to one of its reducing subspaces, it must be
a normal partial isometry, and we get that σ(U y) = T ∪ {0}.
Finally, we show item (5). First note that by construction the operators

{Ex,y}x,y∈G, {H
(e)

x,y}x,y∈G and Ue are indeed in O(G,µ). To show that these
operators generate O(G,µ) as a C*-algebra, first note that by Proposition 4.7
we have that {W x,y} are generators for O(G,µ). Then, it will suffice to estab-
lish for x, y ∈ G and n ∈ N that

W
(n)

x,y = V
(n)

x,yRx,y = U
n

xEx,eH
(e)

x,yEe,y.

So, for a fixed z ∈ G, by aperiodicity of P there is m0 large enough so that
(e, z), (y, z), (x, z) ∈ E(Pm) for all m ≥ m0. Hence, for (y′, z) ∈ E(Pm) and
m ≥ m0 we have

Documenta Mathematica 26 (2021) 1529–1556



1546 A. Dor-On

W (n)
x,y (e

(m)
y′,z) = δy,y′ ·

√
H(x−1y, x−1z) · e(m+n)

x,z =

Un
x

(
δy,y′ ·

√
H(x−1y, x−1z) · e(m)

x,z

)
= Un

xEx,eH
(e)
x,yEe,y(e

(m)
y′,z).

Thus, we see thatW
(n)
x,y −Un

xEx,eH
(e)
x,yEe,y ∈ JK, and the proof is concluded.

Recall that Q(m) denotes the orthgonal projection from FP onto F
(m)
P , and

that Q[m,∞) :=
∑∞

ℓ=mQ(ℓ) is the projection from FP onto ⊕∞
ℓ=mF

(ℓ)
P .

Theorem 4.10. Let P be a random walk on a group G induced by a finitely
supported measure µ, and assume P has SRLP. Then,

O(G,µ) ∼= C(R(G,µ) × T)⊗ K(ℓ2(G)).

Proof. By item (5) of Proposition 4.9 we know that O(G,µ) is generated by

{Ex,y}x,y∈G, {H
(e)

x,y}x,y∈G and Ue.

By items (1) and (2) of Proposition 4.9 the operators {Ex,y}x,y∈G form a system
of matrix units which commute with the self-adjoint operators {Hx,y} and U .
Hence, we get that O(G,µ) ∼= A⊗K(ℓ2(G)) where A is the corner C*-algebra

generated by {H
(e)

x,y}x,y∈G together with Ue.

By items (3) and (4) of Proposition 4.9 we get that Ue is a unitary element

of A which commutes with the self-adjoint elements H
(e)

x,y for every x, y ∈ G,

and that σ(U e) = T (as an element in A). Hence, we get that A = C(X) is
commutative, with spectrum X = T×Y so that Y is the spectrum of the unital

commutative C*-algebra C(Y ) generated by H
(e)

x,y for x, y ∈ G.

Denote by dx,y the function given by dx,y(z) =
√
H(x−1y, x−1z). Then, the

rule ϕ(H
(e)

x,y) = dx,y extends to a ∗-isomorphism ϕ : C(Y ) → C(R(G,µ)).

Indeed, if T :=
∑n

i=1 ciM i ∈ C(Y ) is a finite linear combination of monomials

in (self-adjoint) generators {H
(e)

x,y}, where Mi =
∏ℓi

j=1 H
(e)
xi,j,yi,j , then its norm

as an element in O(G,µ) is given by Proposition 4.6 as

‖T‖ = sup
z∈G

lim
m

‖TQ[m,∞)|FP,z
‖ =

sup
z∈G

lim
m

∥∥∥
[ n∑

i=1

ciMi

]
(e(m)

e,z )
∥∥∥ = sup

z∈G

∣∣
n∑

i=1

ci ·
ℓi∏

j=1

dxi,j ,yi,j
(z)

∣∣,

where the second and third equalities hold because TQ[m,∞)|FP,z
is a diagonal

operator with eigenvectors e
(m)
e,z for (e, z) ∈ E(Pm) whose eigenvalues are inde-

pendent of m. Thus, by Stone–Weierstrass theorem together with the fact that
dx,y separate points in R(G,µ), we get that ϕ extends to a ∗-isomorphism.
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Remark 4.11. Since O(G,µ) can be defined without assuming SRLP, one may
ask whether some compact G-space appears in its computation without the
assumption of SRLP, as R(G,µ) does in the presence of SRLP. This seems to
be the case under certain mild assumptions on the random walk, and provides
a generalized notion of the ratio-limit space without assuming SRLP. We thank
Guy Salomon for raising this question.

As a consequence of our computation ofO(G,µ), we obtain the following simple
corollary. Recall the definition of the ratio-limit radical Rµ ≤ G of Proposi-
tion 3.2, in the presence of SRLP.

Corollary 4.12. Let P be a random walk on a group G induced by a finitely
supported measure µ, and assume P has SRLP. Then the primitive ideal spec-
trum of O(G,µ) is homeomorphic to T if and only if Rµ = G.

Proof. First note that the primitive ideal space of O(G,µ) is homeomorphic to
R(G,µ) × T by Theorem 4.10.
If G = Rµ, then we get that H(x, y) are constant in y by definition, so that the
ratio limit space R(G,µ) is trivial. Hence, we get that O(G,µ) has primitive
ideal spectrum homeomorphic to T.
Conversely, if φ : T → R(G,µ)× T is a homeomorphism, let id× π : R(G,µ)×
T → R(G,µ) be the projection onto the first coordinate. Then, since T is
connected, so too would be R(G,µ) as its image under (id × π) ◦ φ. However,
R(G,µ) contains the discrete subspace G/Rµ, so that R(G,µ) is connected if
and only if G/Rµ is a single point, in which case Rµ = G.

5 Symmetry-uniqueness and subproduct systems.

In this section we show that when the G action on the ratio limit boundary
is minimal, there is a unique quotient of T (G,µ) that respects natural G × T

symmetries coming from the random walk. After this is done, we explain how
our C*-algebras arise from subproduct systems, and how this sheds light on
Viselter’s question in that context.
Let P be a random walk on G induced by a finitely supported measure µ. The
standard gauge action by the unit circle is the point-norm continuous action
γ : T → Aut(T (G,µ)) given by γζ(T ) = UζTU

−1
ζ where Uζ : FP → FP is the

unitary defined by Uζ(e
(m)
y,z ) = ζme

(m)
y,z for every (y, z) ∈ E(Pm).

When R(G,µ) is trivial, it readily follows that O(G,µ) ∼= C(T) ⊗ K(ℓ2(G)) is
the unique T-equivariant quotient of T (G,µ). On the other hand, when R(G,µ)
is non-trivial, the action of T on O(G,µ) ∼= C(R(G,µ)× T)⊗K(ℓ2(G)) has at
least two maximal T invariant proper ideals, so there is no unique T-equivariant
quotient.
Thus, in order to get unique symmetry-equivariant quotients, we add additional
symmetries to T (G,µ) coming from G. For each g ∈ G we define a unitary

operator Vg : FP → FP given by Vg(e
(m)
x,y ) = e

(m)
gx,gy. A computation then shows
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that for any (x, y) ∈ E(Pn) we have VgS
(n)
x,y = S

(n)
gx,gyVg, so we then get an

induced action δ : G → Aut(T (G,µ)) given by δg(T ) = VgTV
−1
g .

It is clear that UζVg = VgUζ for every ζ ∈ T and g ∈ G, and we denote this
unitary operator by Wg,ζ . Hence, the actions γ and δ commute and induce a
point-norm continuous action λ : G× T → Aut(T (G,µ)) given by

λ(g,ζ)(T ) = Wg,ζTW
−1
g,ζ .

Our goal in this section is to show that when the action of G on ∂RG is minimal,
there is a unique largest λ-invariant proper ideal Jλ in T (G,µ).
It is then clear that the quotient map qλ of T (G,µ) by this ideal is automatically
injective on c0(G) ⊆ T (G,µ), and hence this will establish a G× T-invariance
uniqueness theorem for T (G,µ)/Jλ.

Recall that JK :=
∏

z∈GK(FP,z) is an ideal of T̂ (G,µ) := T (G,µ) +JK giving

rise to the quotient O(G,µ). It is easily shown that VgJKV
−1
g = UζJKU

−1
ζ =

JK for g ∈ G and ζ ∈ T, so that λ extends to a point-norm continuous action
(denoted still by) λ : G×T → Aut(T̂ (G,µ)), making JK into a λ-invariant ideal

of T̂ (G,µ). Hence, we obtain an induced action λ : G× T → Aut(O(G,µ)) on
the quotient.

Since for x, y ∈ G we have λg,ζ(W
(n)
x,y ) = ζn ·W

(n)
gx,gy and λg,ζ(V

(n)
x,y ) = ζn ·V

(n)
gx,gy ,

it follows that λ acts on generators of O(G,µ) by,

λg,ζ(Ex,y) = Egx,gy , λg,ζ(H
(h)

x,y) = H
(gh)

gx,gy, and λg,ζ(Ux) = ζ · Ugx,

for g ∈ G and ζ ∈ T. Let {eg} be a standard orthonormal basis for ℓ2(G), and
let Sg ∈ B(ℓ2(G)) be the unitary shift operator given by Sg(eh) = egh.
Recall now from Section 3 that the compacta R(G,µ) and ∂RG carry a G

action induced from left multiplication on G, which gives rise to an action β̂
of G on C(R(G,µ)) and C(∂RG) given by β̂g(f)(α) = f(g−1α). Under the

identification of H
(e)
x,y with dx,y and of Ex,y as matrix units acting on ℓ2(G) in

Theorem 4.10, it is readily verified that

λg,ζ(f ⊗K)(α, ξ) = f(g−1α, ζξ) ⊗ SgKS−1
g .

Finally, recall the notation for the natural quotient map qP : T (G,µ) →
O(G,µ) by the ideal J (G,µ) := JK ∩ T (G,µ). By the above, we see that
qP is naturally a G × T-equivariant map with the appropriate G × T actions.
Hence, the ideal

Jλ := q−1
P

[
(C([G/Rµ]× T)⊗K(ℓ2(G))

]
,

is clearly λ-invariant in T (G,µ), and is proper if and only if ∂RG 6= ∅.

Theorem 5.1. Suppose P is a random walk on an infinite group G induced
by a finitely supported measure µ, and assume that P has SRLP. Suppose that
∂RG 6= ∅ and that the action of G on ∂RG is minimal. Then Jλ is the largest
λ-invariant proper ideal of T (G,µ).
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Proof. Let J be a λ-invariant proper ideal. We denote by J the image of J
under the quotient map qP . Then, there are two cases.
Suppose first that J (G,µ) ⊆ J . Then, we get that J is a proper ideal in
C(R(G,µ) × T) ⊗ K(ℓ2(G)). Hence, there exists an open λ-invariant set Y ⊆
R(G,µ) × T such that J = C(Y ) ⊗ K(ℓ2(G)). Then, we must have that
Y ⊆ [G/Rµ] × T. Indeed, if not, then there exists (ξ, ζ) ∈ Y ∩ [∂RG × T].
Now, since G acting on ∂RG is minimal, we get that the G × T action on
∂RG×T is also minimal. Hence, we get that Y ⊇ ∂RG× T. But now, since Y
is open, it must contain some element (hRµ, ζ) ∈ [G/Rµ] × T, and as λg,1

acts as left multiplication on G/Rµ together with λ-invariance of Y we get
that Y = R(G,µ). Hence, we obtain that J = C(R(G,µ) × T) ⊗ K(ℓ2(G))
in contradiction to J being a proper ideal. Thus, we have shown that Y ⊆
[G/Rµ]× T, and we obtain that J ⊆ Jλ.
Now suppose that J is a general λ-invariant proper ideal. Then, since J is
proper in O(G,µ), we get that J + J (G,µ) is also proper in T (G,µ). Hence,
by the previous argument we see that J ⊆ J + J (G,µ) ⊆ Jλ.

Recall that a discrete group G is said to be hyperbolic if all geodesic triangles in
its Cayley graph are δ-thin for some δ > 0. This turns out to be independent of
the finite set of generators for G. The Gromov boundary ∂G of G is a compact
metrizable G-space comprised of equivalence classes of geodesic rays under the
equivalence relation of uniform bounded time-distance. A combination of [5,
Proposition 1.13 & Proposition 3.3] (see also [32, Remark 5.6]) shows that the
action of G on ∂G is minimal. For more on the theory of hyperbolic graphs and
their boundaries in the context of random walks, we refer to [56, Section 22 &
Section 27].
In work of Gouëzel and Lalley [29] and Gouëzel [28], it is shown, via a local-limit
theorem, that every symmetric aperiodic random walk P on a non-elementary
hyperbolic group G satisfies SRLP. From [58, Corollary 6.6(b)] we get that Rµ

is finite, so combined with [58, Theorem 4.5] we get that the quotient map
G → G/Rµ induces a homeomorphism τ : ∂G → ∂RG which is automatically
G-equivariant. Thus, we obtain the following corollary, showing the existence of
a unique G×T-equivariant quotient for Toeplitz algebras of symmetric random
walks on hyperbolic groups.

Corollary 5.2. Let P be a symmetric aperiodic random walk on a non-
elementary hyperbolic group G induced by a finitely supported µ. Then
C(∂G × T) ⊗ K(ℓ2(G)) is the unique smallest G × T equivariant quotient of
T (G,µ).

Hence, in many examples O(G,µ) ∼= C(R(G,µ)×T)⊗K(ℓ2(G)) fails to be the
unique G× T equivariant quotient, even when one such exists.
Our final goal is to show that the Toeplitz algebra T (G,µ) arises as a Toeplitz
algebra of a subproduct system associated to the random walk. We define
subproduct systems in the restricted context where the coefficient C*-algebra
is c0(X ) for a countable set X (see [52, Definition 1.4] for the general definition).
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We will say that a space X is a correspondence (over c0(X )) if it is a c0(X )-
bimodule together with a right-compatible c0(X )-valued inner product so that
the left action of c0(X ) is a ∗-homomorphism into bounded operators respecting
the right-module structure on X . For more on subproduct systems over C*-
algebras we recommend [52, 53], and for the theory of C*-correspondences we
recommend [38].

Definition 5.3. Let X be a countable set. A subproduct system is a family
X = {Xn} of correspondences (over c0(X )) such that

1. X0 = c0(X )

2. For all n,m ∈ N there are coisometric bimodule maps

Un,m : Xn ⊗Xm → Xn+m

such that U0,n and Un,0 are the left and right actions of the bimodule
Xn, and for all n,m, ℓ ∈ N we have the associativity condition

Un+m,ℓ(Un,m ⊗ IXℓ
) = Un,m+ℓ(IXn

⊗ Um,ℓ).

Given a subproduct system X = {Xn} as above, we may form its Fock space
FX := ⊕∞

m=0Xm C*-correspondence, as well as the bounded bimodule opera-

tors S
(n)
ξ aon FX for ξ ∈ Xn, so that S

(n)
ξ : Xm → Xn+m is given by setting

S
(n)
ξ (η) = Un,m(ξ ⊗ η). Denote by L(FX) all bounded right module maps on

FX . The Toeplitz algebra of X is then the C*-subalgebra of L(FX) given by

T (X) := C∗( S
(n)
ξ | ξ ∈ Xn, n ∈ N ).

Now let P be a random walk on a group G induced by a finitely supported
measure µ. We define the correspondences

Arv0(P
n) = { [ax,y] ∈ c0(G×G) | ax,y = 0 if (x, y) /∈ E(Pn) }.

together with the c0(G)-valued inner product 〈A,B〉 = Diag(A∗B), and left
and right bimodule actions of c0(G) given by left and right diagonal matrix
multiplication. Note also that each Arv0(P

n) is the closed linear span of matrix
units ex,y for (x, y) ∈ E(Pn).
The operation Un,m : Arv0(P

n)⊗Arv0(P
m) → Arv0(P

n+m) is given on matrix
units ex,y ∈ Arv0(P

n) and ey′,z ∈ Arv0(P
m) by the rule

Un,m(ex,y ⊗ ey′,z) = δy,y′

√√√√P
(n)
x,y P

(m)
y,z

P
(n+m)
x,z

ex,z.

It follows from local finiteness of Gr(P ) together with [19, Theorem 3.4] that
ArvP0 := {Arv0(Pn)} together with {Un,m} is a subproduct system. More

Documenta Mathematica 26 (2021) 1529–1556



Toeplitz Quotients and Ratio Limits 1551

precisely, Arv0(P
n) are correspondences with the above inner product and

bimodule actions, and the above rule for Un,m yields a well-defined coisometric
bimodule map satisfying the conditions in Definition 5.3.
Now, since c0(G) is represented as diagonal matrix multiplication on ℓ2(G),
by [46, Corollary 2.74] we get a faithful ∗-representation on Hilbert space
ρ : L(FArvP

0
) → B(FArvP

0
⊗ ℓ2(G)) given by ρ(T )(ξ ⊗ h) = Tξ ⊗ h. We

may then identify the the space FArvP
0
⊗ ℓ2(G) with FP via the unitary iden-

tification ex,z ⊗ ez 7→ e
(m)
x,z for ex,z ∈ Arv0(P

m). Under this identification,

Arv0(P
m) is identified with F

(m)
P , and FArvP

0
⊗ Cez is identified with FP,z.

Hence, we get that FArvP
0
⊗ ℓ2(G) ∼= FP , so that the representation ρ maps

S
(n)
ex,y (which initially acts on FArvP

0
) to S

(n)
x,y acting on FP . thus, ρ restricts to

a ∗-isomorphism from T (ArvP0 ) onto T (G,µ) (see also [19, Notation 3.2] and
the preceding discussion). The following then coincides with of Viselter’s ideal
in [53, Theorem 2.5] by virtue of [53, Corollary 2.7].

Definition 5.4. Let X = {Xn} be a subproduct system. Viselter’s ideal
I ⊳ T (X) is given

IX := { T ∈ T (X) | lim
m

‖TQ[m,∞)‖ = 0},

Where Q[m,∞) =
∑∞

ℓ=m Qm, and Qm is the natural orthogonal projection from
FX onto Arv0(P

m). Viselter’s Cuntz-Pimsner algebra is defined as

O(X) = T (X)/IX .

Proposition 5.5. Let P be a random walk on a group G induced by a finitely
supported measure µ. Then IArvP

0

∼= ⊕z∈GK(FP,k).

Proof. Let ρ : T (ArvP0 ) → T (G,µ) be the isomorphism in the discussion pre-
ceding Definition 5.4. Then we get that

ρ(IX) = { T ∈ T (G,µ) | lim
m

‖TQ[m,∞)‖ = 0 },

where now Q[m,∞) is the projection from FP onto ⊕∞
ℓ=mF

(ℓ)
P appearing after

Definition 4.3. Clearly ⊕z∈GK(FP,k) ⊆ ρ(IX), and from Proposition 4.4 we

get that Q
(ℓ)
z ∈ ⊕z∈GK(FP,k) for every ℓ ∈ N and z ∈ G.

For the converse inclusion, let T ∈ ρ(IX). For a finite set F ⊆ G we let
pF =

∑
x∈F px, and note that {pF} is an approximate identity for T (G,µ).

Hence, it suffices to show that TpF ∈ ⊕z∈GK(FP,k) for every finite subset
F ⊂ G. But then,

‖TpF − TpF · [
m−1∑

ℓ=0

Q(ℓ)]‖ = ‖TpFQ
[m,∞)‖ → 0,

and since TpF · [
∑m−1

ℓ=0 Q(ℓ)] = TpF ·
∑m−1

ℓ=0

∑
x∈F Q

(ℓ)
x ∈ ⊕z∈GK(FP,k), we get

that TpF ∈ ⊕z∈GK(FP,k).
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In [53, Section 6, Question 1] Viselter asked whether there is some kind of
universality of O(X) in the spirit of a gauge-invariant uniqueness theorem.
By Corollary 5.2 we get that for symmetric random walks on non-elementary
hyperbolic groups the quotient T (G,µ)/Jλ

∼= C(∂RG×T)⊗K(ℓ2(G)) satisfies
a G× T-uniqueness theorem even though it is a proper quotient of O(G,µ) ∼=
C(R(G,µ)×T)⊗K(ℓ2(G)), and hence of O(ArvP0 ). Thus, even with additional
natural symmetries that enable the existence of a unique symmetry-equivariant
quotient, the quotient by Jλ fails to coincide with Viselter’s Cuntz-Pimsner
algebra of the subproduct system.
When R(G,µ) = G/Rµ, then ∂RG = ∅ and the action of G on R(G,µ) is
minimal. In this case, we can deduce similarly that O(G,µ) is the unique G×T-
equivariant quotient of T (G,µ). Theorem 5.1 then motivates the following
question in the complementary case

Question 5.6. Let P be a random walk on G induced by a measure µ. Suppose
P has SRLP and that ∂RG 6= ∅. Is there a unique G× T-equivariant quotient
of T (G,µ)? Better yet, is the action of G on ∂RG always minimal?
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