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ABSTRACT. The notion of commutator width of a group, defined as
the smallest number of commutators needed to represent each element
of the derived group as their product, has been extensively studied
over the past decades. In particular, in 1992 Barge and Ghys discov-
ered the first example of a simple group of commutator width greater
than one among groups of diffeomorphisms of smooth manifolds.

We consider a parallel notion of bracket width of a Lie algebra and
present the first examples of simple Lie algebras of bracket width
greater than one. They are found among the algebras of algebraic
vector fields on smooth affine varieties.
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1 INTRODUCTION

The notion of width in various contexts appears in many algebraic structures.
It is particularly well studied in group theory where the commutator width got
special attention, being related to many important properties of the class of
groups under investigation. Recall that given a group G, the commutator width
is defined as supremum of the lengths ¢(g), g running over the derived subgroup
[G, G], where £(g) is the smallest number of commutators needed to represent g
as their product. Examples of groups of commutator width greater than one
were known to Miller more than 100 years ago, and such examples can easily be
discovered even among perfect groups (i.e., groups G coinciding with [G, G]).
However, it took quite a time to discover simple groups of commutator width
greater than one. As often happens, the insight came from outside: BARGE and
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Grys [BG92] have found their examples among groups of differential-geometric
nature, applying deep results from that area. The groups they considered were
infinite (in any finite simple group every element is a single commutator, as
predicted by Ore’s conjecture settled in 2010 [LOST10], after more than half-a-
century efforts). The interested reader can find more details on the commutator
width of various classes of groups in the surveys [HSVZ13], [GKP18] and the
references therein.
The group case served for us as a prototypical example for investigating the
similar notion of bracket width in the parallel universe of Lie algebras. It is
defined in full analogy with the commutator width of a group. Given a Lie
algebra L over a field k, we define its bracket width as supremum of the lengths
£(a), a running over the derived algebra [L, L], where ¢(a) is defined as the
smallest number m of Lie brackets [z;, ;] needed to represent a in the form
m
a=Y [xiyil
i=1

The bracket width applies in studying different aspects of Lie algebras, ranging
from problems motivated by logic (elementary equivalence), see [Rom16], to
those coming from differential geometry, see [LT13]. Our focus is on simple Lie
algebras. Here one can observe certain parallelism with the commutator width
of groups: there is little hope to find an example of a finite-dimensional simple
Lie algebra of bracket width greater than one, though in general the problem
is open (there are many cases where the width is known to be equal to one,
and it is known that it cannot exceed two [BN11]); see [GKP18, Section 6] for
more details.

Examples of simple Lie algebras of width greater than one should thus be sought
among infinite-dimensional algebras. There are several natural families of such
to be checked first. Four families of Lie algebras of Cartan type all consist of
the algebras of width one, in light of the results of RubAKov [Rud69]. The case
of (subquotients of ) Kac-Moody algebras is open, to the best of our knowledge.
In the present paper, we start the study of another classically known family,
algebras Vec(X) of algebraic vector fields on irreducible affine varieties X. It
is well-known that the Lie algebra Vec(X) is simple if and only if X is smooth
(see [Jor86], [Sie96, Proposition 1]). Thus our primary objects of interest are
smooth affine curves and surfaces.

It turns out that already among the Lie algebras of vector fields on smooth
affine curves there are algebras of width greater than one. Our first main
result is the following:

THEOREM A. (Theorem 1) Let C be an irreducible smooth affine non-rational
curve with a unique place at infinity and trivial tangent sheaf. Then the bracket
width of the Lie algebra Vec(C') is larger than or equal to two.

There is an abundance of affine curves with only one place at infinity, and they
were studied in various contexts, see, e.g., a recent paper of KOLLAR [Kol20]
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and the references therein. A simple class of examples is given by affine hy-
perelliptic plane curves C' C A? defined by equations of the form y? = h(x),
where h(z) is a separable monic polynomial of odd degree greater than one
(Example 2), whose algebras Vec(C) have been studied by BIiLLiG and Fu-
TORNY [BF18]. More examples can be found at the end of Section 3 below.

In the two-dimensional case, we consider smooth affine surfaces endowed with
an algebraic volume form. In complex-analytic set-up, such varieties have been
intensively studied in particular by KALIMAN and KUTZSCHEBAUCH in con-
nection to the algebraic volume density property, see [KK10], [KK16] and the
references therein. Note that algebraic volume forms naturally arise once the
2n-dimensional variety under consideration carries a symplectic form w be-
cause in this case the n'" exterior power of w is a volume form. Looking at a
symplectic surface (S,w), we consider certain natural Lie subalgebras of vec-
tor fields on S, related to Hamiltonian vector fields, with a goal to establish
the simplicity and compute the bracket width. Note that the Lie algebra of
Hamiltonian vector fields on S can be identified with the Lie algebra arising
from the natural Poisson bracket on O(S)/k, the algebra of regular functions
on S modulo scalars. This observation, allowing one to translate questions and
statements from Poissonian to Hamiltonian and vice versa, is essential for some
of our proofs.

In the present paper, we mainly focus on the particular class of so-called
Danielewski surfaces D, C A? given by the equation zy = p(z) where p is
a polynomial without multiple roots. These surfaces attracted a lot of atten-
tion over the last few decades. They were initially used in [Dan89] to present
a counterexample to a generalized version of the Zariski Cancellation Problem.
They carry a natural algebraic volume form unique up to scalar multiplication
and our main object of study is the width of the Lie subalgebra (LNV(D,)) of
their Hamiltonian vector fields generated by all locally nilpotent vector fields.
By virtue of [LR21, Theorem 1], these Lie algebras (LNV(D,,)) are simple.

It is known that if D, and D, are isomorphic then degp = degq (see, e.g.,
[Dai04, Lemma 2.10] for a more precise result) and that the Lie algebras
(LNV(D,)) and (LNV(D,)) are isomorphic if and only if D, and D, are iso-
morphic (see [LR21, Theorem 2]).

If deg p = 1, then D,, is isomorphic to the affine plane A2. It is well-known that
in this case (LNV(D,)) is isomorphic to the Lie algebra of vector fields with zero
divergence, and its bracket width is equal to one (see Proposition 3 below for a
more general statement). We next consider the cases degp = 2 and degp > 3
separately. In the latter case we assume in addition that a certain condition on
the algebra of regular functions on D, holds (this is Hypothesis (J) in Section 4
below, whose flavour is somewhat reminiscent of the Jacobian Conjecture).
Here is our next main result.

THEOREM B. (Proposition 8 and Theorem 2) Let D, C A® be given by the
equation xy = p(z) where p is a polynomial without multiple roots.

(i) If degp = 2, then the bracket width of (LNV(D,)) is at most two.
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(i) If degp > 3, assume in addition that Hypothesis (J) holds. Then the
bracket width of (LNV(D,)) is greater than one.

In the case degp = 2, besides the estimate of Theorem B(i), we prove that
the bracket width of (LNV(D,)) is equal to one if and only if every algebraic
2-form on D, satisfies a kind of ‘bi-exactness’ property, see Lemma 4 for the
precise statement.

Notation and conventions. In what follows k denotes an algebraically closed
field of characteristic zero. By a variety, we mean an irreducible and reduced
k-scheme of finite type. For a smooth variety X, we denote by Tx the tangent
sheaf of X, that is, the dual of the coherent locally free sheaf {2x/;, of Kahler
differentials on X. We denote by Vec(X) the Lie algebra H°(X, Tx) of global
vector algebraic fields X, endowed with its Lie bracket [-, -].

For an affine variety X, we frequently identify elements of Vec(X) with k-
derivations of the algebra O(X) = H°(X, Ox) of regular functions on X via the
canonical k-linear isomorphism Vec(X) — Der(O(X), O(X)) which associates
to a global vector field £ on X the derivation £, obtained as the composition
of the canonical k-derivation d: O(X) — Qo (x)/x with the interior contraction
’L'gi QO(X)/k — O(X)

Throughout below by ‘width’ of a Lie algebra we mean ‘bracket width’, unless
specified otherwise.
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2 SOME BASIC EXAMPLES OF LIE ALGEBRAS OF WIDTH 1

It is well known! that every element y = J10z,, + -+ [rOy, of the simple Lie
algebra Vec(A™) = Derpk[x1, ... x| can be written as the single bracket

K= [aznglazil +ot gkamik]v
where g; is a polynomial such that ggi
generally, we have the following result.

= f; for every i = 1,...,k. More

ISee, e.g., the proof of Proposition 1 in [Rud69, Section 2]
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ProprosITION 1. Let X be a smooth affine variety. Then for every n > 1,
Vec(A™ x X) is a simple Lie algebra of width one.

Proof. By induction on n, it suffices to prove the assertion in the case n = 1.
Let Al = Spec(k[z]), let v € Vec(X), and let m > 0. Then 2™v € Vec(A! x X)
can be represented as a single bracket:

1
Or,
[ m—+1

1
™y = m—H(az(me)u + 2™ [0y, v]) = ™. (1)

The same conclusion holds for any ™ f0,, where f € O(X) and m > 0:

1 1
m—+1 — m—+1 m—+1 — m )
Since every pu € Vec(A! x X) can be represented as a sum of elements of the
form 2™y, v € Vec(X), m > 0, and elements of the form 2™ f9,, f € O(X),
m > 0, we conclude that u = [0, ] for a suitable § € Vec(A! x X). O

The same conclusion holds for the Witt algebra
W, = Vec(T") = Der k[z1, 27", ..., 2n, 2, ']

of vector fields on the n-dimensional torus T" = GJ.,: each element of W,, can
be represented as a single bracket. Actually, we have the following stronger
result:

ProproOSITION 2. Let X be a smooth affine variety. Then for every n > 1,
Vec(T™ x X) is a simple Lie algebra of width one.

Proof. Again, it suffices to establish the assertion in the case where n = 1. Set
T! = Spec(k[z,z71]). For every m € Z and f € O(X), we have

1

m _ !
PO = 0 o

a™ I f,], 3)
where m—2[+1 # 0, [ € N. Furthermore, observe that any ™v € Vec(T! x X),
where v € Vec(X) and m € Z, can also be represented as a single bracket:

2 0, (zm Yy 4 2m 20, V]

m—I+1 — — em 4
T V] e 2™y, (4)

1
!

e
where l e N, m € Z, and m — [+ 1 #£ 0.

Let 9 € Vec(T! x X). It can be represented as a finite sum of elements of the
form 2™y, where v € Vec(X), m € Z, and elements of the form ™ f9,, where
f € O(X) and m € Z. Define S C N as the set of all exponents m contained
in all summands of 0. Now, if | —1 ¢ S and 21 —1 ¢ S, then by (3) and (4) we
can represent O as a bracket [2!0,, 6] for a suitable § € Vec(T! x X). Since we
have infinitely many choices for I € N, we conclude that every d € Vec(T! x X)
can be represented as a single bracket. o
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COROLLARY 1. Let G be a nontrivial connected linear algebraic k-group. Sup-
pose that G is not semisimple. Then Vec(G) is a simple Lie algebra of width
one.

Proof. For any connected linear algebraic k-group G, let G" denote its unipo-
tent radical, then the quotient G**4 = G/G" is reductive. The derived subgroup
G = [G™4, G™] is semisimple, and the quotient G*°* = G™4 /G is a torus,
actually, the maximal toric quotient of G. The proof of the corollary is based
on the following lemma which is of some interest in its own right.

LEMMA 1. With the notation as above, we have an isomorphism of k-varieties
G = G"x G x G". (5)

Proof of the lemma. We use a variation of the argument of POPOV in the
proof of Theorem 1 of [Pop21]. Denote by G*" the kernel of the composed
homomorphism G — G4 — G**. The group G*", which is an extension of
G* by G", is generated by all unipotent subgroups of G and is equal to the
intersection of the kernels of all characters of G.

Let us view the quotient morphism

G — G/Gssu — Gtor (6)

as a G*"-torsor G — G'°" under G*" and show that it is isomorphic to the
trivial torsor (G/G*") x G=" — G'*. To this end, choose a maximal torus
T C G and restrict the morphism (6) to 7. We obtain a surjective morphism
T — G, which admits a splitting s: G*** — T, because the category of
k-tori, being dual to the category of finitely generated free abelian groups, is
semisimple. The morphism s induces a section of the morphism (6), which
splits the torsor G — G**. We thus obtain an isomorphism of k-varieties

G [ Gssu X Gtor. (7)

In a similar manner, consider the quotient morphism G*" — G*° and view it
as a G*-torsor under G". As the group G" is unipotent, this torsor splits, see,
e.g., a modern proof of Mostow’s theorem on the Levi decomposition given by
CONRAD in [Conl4, proof of Proposition 5.4.1]. We thus obtain an isomorphism

of k-varieties
G = G" x G*. (8)

Combining (7) and (8), we obtain (5), which proves the lemma. O
We can now prove Corollary 1. Since by assumption the group G is not semisim-
ple, at least one of the groups G" and G*°* is not trivial. By Lemma 1, the
k-variety G contains a direct factor of the form G} or Gj}, with n > 1. The
assertion of the corollary then follows from Propositions 1 and 2. O

We now consider a class of Lie algebras of vector fields on smooth affine
varieties X of dimension n endowed with an algebraic volume form, that
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is, a nowhere vanishing global section w of A"Qy/,,. Note that w is a
closed algebraic differential form and that H(X,A"Qx/;) = O(X)w. Re-
call that the w-divergence of an element p of Vec(X) is the unique element
Div, u € O(X) such that £,w = (Div, pr)w, where £,w is the Lie derivative
of w with respect to u, which, in this case, is equal to the composition of
the interior contraction i,: A"Qx/, — A”leX/k with the exterior derivative
d: A" 'Qx/p — A"Qx /. An element € Vec(X) such that Divy,(u) = 0 is
said to be of trivial w-divergence. The identity

Div, [, v] = d(Divy, v) Adyw — d(Divy, p) A dyw = p(Divy, v) — v(Divy, i) (9)

which holds for all u,v € Vec(X) (see, e.g., [Sha81l, Lemma 1]) implies in
particular that the k-vector subspace VP, (X) of Vec(X) generated by vector
fields of trivial w-divergence is a Lie subalgebra of Vec(X).

ExXAMPLE 1. For X = A", wan = dz1 A ...dz, and an element p = f10,, +
<+ 4 fnOy, of Vec(A™), we have the classical formula

Div,, ft = = 4 -+ 4+ —22,
o B O0x1 ot 0z,
By [Sha81, Lemma 3], the Lie algebra VP,,, (A™) is simple. Note that ac-
cording to [Sha81], this algebra coincides with the Lie algebra of the so-called
ind-group

SAW(A™) ={f = (f1,..., fn) € Aut(A") | (det Jac)(f) := det [

Let X and Y be smooth affine varieties with algebraic volumes wx and wy
respectively. Then pjwx Ap5wy is an algebraic volume form on X XY, which we
denote for brevity by wx A wy. We have the following analogue of Proposition
1 which implies in particular that for every n > 1 the width of the Lie algebra
VP,,. (A™) is equal to one.

PROPOSITION 3. Let X be a smooth affine variety with algebraic volume form
w. Assume that the k-linear map Div,: Vec(X) — O(X) is surjective. Then
for every n > 1 the Lie algebra VP, nw(A™ X X)) has width equal to one.

Proof. Set A = Spec(k[z]) so that wsy1 = dz. We first observe that for
every smooth affine variety Z with algebraic volume form wy such that
Div,,,: Vec(Z) — O(Z) is surjective, the k-linear map Divgzne,: Vec(Al x
7Z) — O(Z)]x] is surjective. Indeed, every element of O(Z)[z] is a linear com-
bination of elements 2™ f where m > 0 and f € O(Z), and the hypothesis
implies that 2™ f = Divgzaw, (2™v) where v is any element of Vec(Z) such
that Div,,(v) = f. By induction, using the previous observation, we are
thus reduced to prove the assertion for A! x X. Let p be any element of
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VP aznw (Al x X). By the proof of Proposition 1, there exists § € Vec(A! x X)
such that pu = [05,0]. By (9), we have

0 = Divizrw n= Oz (Divd;v/\w 6) - 6(Divdz/\w az)

Since dw = 0, it follows that Divgza, 9 = 0. This implies in turn that
0z(Divazaw d) = 0 and hence, that Divgzawd € O(Z) C O(Z)[z]. By as-
sumption there exists v € Vec(Z) such that Div,(v) = —Divgza, 6. Then
n = § + piv is an element of VPyun, (Al x X) such that y = [0,,n]. Thus,
VP iznw(A X Z) = [VPgzpw(A X Z), VP gunw (Al x Z)] and it has bracket width
equal to one. O

REMARK 1. For a smooth affine variety X of dimension n with algebraic volume
form w, the surjectivity of the map Div,,: Vec(X) — O(X) implies in partic-
ular that every algebraic n-form on X is exact, as follows from the definition
d(iew) = (Div, &)w.

3 VECTOR FIELDS ON SMOOTH AFFINE CURVES

In this section, we consider Lie algebras of algebraic vector fields on certain
smooth affine curves. We begin with the case of rational curves. Recall that
every such curve C' is isomorphic to a principal Zariski open subset of the affine
line A! = Spec(k[z]).

PROPOSITION 4. The width of the simple Lie algebra Vec(C') of a smooth affine
rational curve C is at most two.

Proof. If C = A', then the assertion follows from Proposition 1. We now
assume that C' = A\ {p1,...,p,} for some n > 1. The k-vector space O(C) =~

klz, ([T, (x — p;))~'] has a basis {2, (m_;l)jl yee (Z_;n)jn boi >0, jo > 1.

Note that [0, 20| = ix*~10, and that

1 7‘7’7"

[0, (x — pr)ir 2] = (z — pp)int1 "

Therefore, any element of the form PJ,, where P does not contain elements

proportional to one of the elements ﬁ, 1 = 1,...n, as a summand, can
;

be represented as a bracket of the element 0, and some suitable element from
Vec(C). Since on the other hand

1 2 Di
xaz; —az = - az - azv
| T —Pi ] T —Pi (z —pi)?

it follows that every u € Vec(C) can be written in the form p = [0, V] + [20,, d]
for some suitable v, § € Vec(C). O
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In contrast with the case of the 1-dimensional torus T! ~ A'\ {0}, for which the
vector field 2710, can be written as the single Lie bracket [2™d,, fﬁx’m&]
for any m # 0, we expect that for every n > 2, a vector field on A\ {p1, ..., pn}
with single pole at each of the points p1,...p, cannot be written as the Lie

bracket of two elements of Vec(A*\ {p1,...,p,}). This motivates the following:

CONJECTURE 1. The width of the Lie algebra Vec(A' \ {p1,...,pn}), n > 2,
equals two.

We now consider non-rational smooth affine curves. Recall that an irreducible
smooth affine curve C' is said to have a unique place at infinity if it is equal to
the complement of a single closed point in a smooth projective curve C.

THEOREM 1. Let C' be an irreducible smooth affine curve with a unique place
at infinity. Assume that C is not rational and that the tangent sheaf To of C
is trivial. Then the width of the simple Lie algebra Vec(C) is larger than or
equal to two.

More precisely, no nowhere vanishing vector field on C' can be equal to the Lie
bracket of two other vector fields on C'.

Proof. Let C be the smooth projective model of C, and let co, = C \ C.
By assumption, the genus g of C positive. Note that O(C)* = k*. Indeed,
otherwise, there would exist a dominant morphism f: C — A\ {0}. The
latter would extend to a surjective morphism f: C — P! with the property
that f=1([0: 1]) and f~!([1 : 0]) belong to C'\ C, which is impossible since C
has a unique place co, at infinity.

Since by hypothesis T¢ is the trivial sheaf O¢, we have Vec(C) = O(C) - 7
for a certain nowhere vanishing global vector field 7 € Vec(C), unique up
to multiplication by a nonzero constant. Since deg(7&) = 2 — 2¢g, we have
To = 05((2 = 29)ce0).-

Now suppose that 7 can be written in the form [¢,v] for some &,v € Vec(C).
Write € = f7 and v = g7 for some non-zero regular functions f and g on C.
Viewing f and g as rational functions on C, we can assume further without loss
of generality that ord. (f) # ord..(g). Indeed, let R = Op . be the local
ring of C' at ¢, and let ¢ be a uniformizing parameter in its maximal ideal. If
the equality holds, say ord._(f) = ord._(g) = ¢, then the classes of f and g
in R[t~!] = Frac(R) are equal to ast’ and a,t’ for some uniquely determined
elements ay and a4 in R\ tR. Let @5 and @, be the residue classes of ay and
ag in R/tR = k. Then ay,a,; € k*. Let A = G5/a, so that ay — Aay € tR.
Then ord.__(f — Ag) > ¢+ 1. On the other hand, since A € k*, we have
[(f = Ag)T g7] = [fr, 97] = T.

The vector field 7 has a pole of order 2g — 2 at co. Write ng = ord,_§ =
2—-2g+ord._(f) and n, = ord._v =2 —2g+ord._(g). By construction, we
have ng # n,. It follows that

2—-2g=ord._ (1) =ord._([§,V]) =ne+n, —1

—2(2— 29) + orde_ (/) + orde.. (g) 1. (10
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Since g > 1 and ord,_ (f) and ord.__ (f) are both non-positive, this is impossi-
ble. O

COROLLARY 2. Let C C A? be an irreducible non-rational smooth affine curve
with a unique place at infinity. Then the width of Vec(C) is larger than or
equal to two.

Proof. Indeed, since C is a smooth plane curve, we have To = A2T,2 lc®Cc/a2,
where Cc/p2 is the conormal sheaf of C' in A2, Since A? is factorial, the ideal
sheaf Zo C Oy2 of C is isomorphic to the trivial invertible sheaf O42, and so
Ccya> = o /TE is isomorphic to O¢. Since A2Ty2 ~ O,z is the trivial invertible
sheaf as well, we conclude that 7¢ is trivial. The assertion of the corollary now
follows from Theorem 1. O

A simple class of curves satisfying the hypotheses of Theorem 1 is the following
family of affine hyperelliptic curves, borrowed from the paper of BILLIG and
FuTORNY [BF18] where many properties of their Lie algebras of vector fields
algebras had been established.

EXAMPLE 2. Let g > 1, and let C C A? = Spec(C[z,y]) be the smooth affine
curve defined by the equation y? = h(x) for some separable polynomial h(x) of
degree 2g + 1. The smooth projective model C of C is a hyperelliptic curve on
which pr,: C — Al extends to a double cover m: C' — PL. Since deg(h) = 2g+1
is odd, it follows from the Riemann-Hurwitz formula that C' has genus ¢ and
that oo = P!\ Al is a branch point of 7. So, C'\ C = 7~ !(c0) consists of a
unique point, which shows that C' has a unique place at infinity. By Corollary 2,
the width of the Lie algebra Vec(C) is larger than or equal to two.

We note that in [BF18, Section 5|, the considered filtrations on O(C') and
Vec(C) coincide with those induced by the pole order at the unique place at
infinity of C.

EXAMPLE 3. Smooth non-hyperelliptic affine plane curves satisfying the hy-
potheses of Corollary 2 are obtained from smooth projective quartics C' C P2
admitting a 4-tangent L, that is, a tangent line L to C intersecting C at a
single point cs. Recall that a smooth quartic curve C' C P? has genus 3 and
is not hyperelliptic. Given any 4-tangent line L to C, the affine plane curve
C =C\ L C P2\ L= A? has a unique place at infinity and is non-rational and
non-hyperelliptic. An explicit example is given by the smooth quartic C' C P2
with equation z* + 2(z® + 3> + 23) = 0 and the 4-tangent line L = {z = 0},
with associated affine plane curve C = {z* + 2% + 3> + 1 =0} C A%

REMARK 2. More generally, pairs (C,cs,) consisting of a smooth projective
non-hyperelliptic curve C' and a point co, on C such that C' := C\ {coo}
satisfies the hypotheses of Theorem 1 can be characterized as follows. Since C'
is not hyperelliptic, we have g = g(C) > 3, and the canonical morphism C' —
P91 = P(HO(C, Qe /1)) is a closed embedding. By definition, every hyperplane
section of C' is a canonical divisor on C. It follows that for every hyperplane
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H of P971 such that C'N H consists of a unique point ¢y, C = C'\ {cxo} is
a smooth affine curve with a unique place at infinity whose canonical sheaf
(hence also tangent sheaf) is trivial. For g = 3, we recover the smooth plane
quartics C' C P? with a 4-tangent line of Example 3.

For a vector field £ on a smooth affine variety X, let
ad(§): Vec(X) — Vec(X), n— [£,1n)].

LEMMA 2. Let C be a smooth affine curve and let & € Vec(C) be a nonzero
vector field. Then Kerad(§) = k€.

Proof. The inclusion k¢ C Kerad(§) is clear. Conversely, let 7 be a nonzero
element of Kerad(£). For every open subset U, the restriction 7|y belongs to
the kernel of the map ad(&|y): Vec(U) — Vec(U). Since £ is nonzero, there
exists a nonempty Zariski open subset U of C' such that Vec(U) = O(U) - &|u.
Then, since n|y € Kerad({|y) \ {0}, we have n|y = f&|u for some nonzero
f € O(U) such that &|y(f) = 0. Assume that f € O(U) \ k. Then k[f] # k,
and every element of O(U) is then algebraic over the subring k[f] of O(U).
This implies in turn that &|y(h) = 0 for every h € O(U) which is impossible
since &|y generates Vec(U) as an O(U)-module. Thus, 0|y = Ay for some
A € k* and hence, since U is Zariski dense in C, n = X¢. O

We call an element £ in the Lie algebra Vec(X) of vector fields on a smooth
affine variety X weakly semisimple if ad(§) has an eigenvector, and weakly
nilpotent if there is a nonzero vector field n € Imad(€) N Ker ad(§).

REMARK 3. Note that for a vector field £ on a smooth affine variety X, the
property of being weakly nilpotent does not imply that ad(¢) is a locally nilpo-
tent endomorphism of Vec(X). For instance, for every proper open subset U
of A} = Spec(k[z]), & = é%|U is a weakly nilpotent vector field for which the
endomorphism ad(§) of Vec(U) is not even locally finite.

The following corollary generalizes [BF18, Theorem 5.3] which corresponds to
the special curves considered in Example 2.

COROLLARY 3. Let C be an irreducible smooth affine curve with a unique place
at infinity. Assume that C is not rational and that the tangent sheaf To of C
is trivial. Then

1. Vec(C) has no non-trivial weakly semisimple elements;
2. £ ¢Imadg;
3. Vec(C) has no non-trivial weakly nilpotent elements.

Proof. (1) We claim that the relation [£,v] = Av with A € k, A # 0, cannot
hold for non-zero elements in Vec(C). Indeed, otherwise, from (10) we have
orde_ ([§,V]) = ne +ny — 1 which implies that

ne =orde =2 —2g+ord.(f) =1. (11)
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Since g > 1 and ord.__(f) < 0, equation (11) does not hold.

(2) If £ € Imad &, then € would be an eigenvector of ad(n) for some 1 € Vec(C),
which is impossible by (1).

(3) If ad ¢ is weakly nilpotent, then there exists a non-zero v € Imad¢ such
that [¢,v] = 0. By Lemma 2, v must then be a scalar multiple of £, which
contradicts (2). O

4 LIE ALGEBRAS OF SYMPLECTIC VECTOR FIELDS ON AFFINE SURFACES

In this section, we consider certain natural Lie subalgebras of algebraic vector
fields on smooth affine surfaces endowed with an algebraic volume form. In the
complex analytic setting, some particular instances of such surfaces have been
studied in particular by KALIMAN and KUTZSCHEBAUCH from the viewpoints
of the density property and the volume density property with respect to a
fixed holomorphic volume form. These notions were introduced by VAROLIN
[Var01] as a natural framework in which to extend to a larger class of Stein
manifolds the Andersén-Lempert approximation theory of local holomorphic
flows on Runge domains of C" by global holomorphic automorphisms. The
interplay between these analytic notions and the geometry of smooth complex
affine algebraic varieties has received a lot of attention during the last decade,
see e.g. [KK10, KK15, KK16] and the references therein.

We first collect basic notions and results about symplectic, Hamiltonian and
locally nilpotent algebraic vector fields on symplectic affine surfaces. We then
use this framework to proceed to the proof of Theorem B.

4.1 HAMILTONIAN ALGEBRAIC VECTOR FIELDS ON SYMPLECTIC AFFINE
SURFACES

DEFINITION 1. A symplectic affine surface is a pair (S,w) consisting of
a smooth affine surface S and a nowhere vanishing algebraic 2-form w €
HO(S, A2QS/I€) on S.

A symplectomorphism between symplectic affine surfaces (S,w) and (S, w’)
is a morphism ¢: S — S’ such that p*w’ = w. An action of an algebraic
group G on S is said to be symplectic if the image of the corresponding group
homomorphism G — Aut(S) consists of symplectomorphisms of (S, w).

For a symplectic affine surface (S,w), we have H°(S,A*Qg/,) = O(S) - w.
Furthermore, since w is in particular non-degenerate, the interior contraction
induces an isomorphism

W, Vec(S) = HO(S,Qg/i), & iew. (12)

4.1.1 RECOLLECTION ON SYMPLECTIC AND HAMILTONIAN VECTOR FIELDS

Let (S,w) be a symplectic affine surface. For a vector field £ € Vec(S), we
denote by L¢ the Lie derivative with respect to £. Recall that by Cartan’s
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formula, for every algebraic p-form « on S and every £ € Vec(S), we have
Lea = d(iea) + i¢(da) where d is the de Rham differential on algebraic forms.
Since w is a closed form, we have simply Lew = d(iew) = Div,(€§)w.

DEFINITION 2. A symplectic algebraic vector field on a symplectic affine surface
(S,w) is an element & of Vec(S) such that L.w = 0, equivalently such that
iew € HO(S,Qg/y) is a closed 1-form. A symplectic vector field £ on S is called
Hamiltonian if the 1-form i;w is exact.

For every &, v € Vec(S), we have the identities
E[f,y]w = ﬁgﬁ,ﬁufﬁyﬁgw and i[&u]w = [,gi,,&)*i,/[,gw = ’L'EEUCU7EV’L'£M. (13)

These imply that the k-vector subspace VP, (S) C Vec(S) of symplectic vector
fields is a Lie subalgebra and that the k-vector subspace H,(S) C VP, (S)
of Hamiltonian vector fields is a Lie subalgebra. The second identity implies
in addition that H,(S) contains [VP,(S), VP, (S5)], hence is a Lie ideal of
VP, (5). In fact, H,,(S) is equal to the kernel of the k-linear map

VP (S) = Hin(S), & few,
where H}p, (S) denotes the cohomology of the naive algebraic de Rham complex

0 — O(S) 4 HO(S, Qg/i) > HO(S,A2Qg) — 0

of the smooth affine surface S, see [Gro66].

For every f € O(S), denote by 05 € H,(S) C Vec(S) the unique vector field
such that W,,(07) = ip,w = df (see (12)). For every two elements f,g € O(S),
it follows from (13) that i, g, jw = Ly ig,w = d(w(fy,0f)). Since ¥ is an
isomorphism, we have [0f,0,] = Ou(6,.,0,), and we define the Poisson bracket
of f and g as the element {f, g}, = w(fy,0y) of O(S). Equivalently, {f, g}. is
the unique element of O(S) such that

df Ndg = (ig,w) A (ig,w) = ({f, g}w)w. (14)

For every f € O(S), the k-linear homomorphism {f, -}, : O(S) — O(S) is
a k-derivation equal to the Lie derivative L, = ip, 0 d. The bracket {-,-},
defines a structure of Lie algebra on O(S) for which the surjective k-linear
homomorphism

Ou: O(S) = Hu(S), f s 0; (15)

is a homomorphism of Lie algebras with kernel £ C O(S), inducing an isomor-
phism
(O(S)/k, {+s-}o) = (Ho(5), [ D) (16)

Let (S, w) be a symplectic affine surface. Denote by E,,(S) C O(S) the image of
the k-linear map Div,,: Vec(S) — O(S). Since every algebraic 1-form « on S
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is equal to igw for some uniquely determined element & = W () of Vec(S),
the identity Lew = d(i¢w) = Div,,(§)w implies that E,,(S) consists precisely of
the elements h € O(S) such that the 2-form hw € HY(S,A*Qg;) is exact. It
follows in turn from (14) that E,(S) is a Lie ideal of (O(S), {-, -}») containing
{O(8),0(S)}. and that the quotient O(S)/E,, is isomorphic to H3 (S). The
image of E,(S) under the surjective homomorphism (15) is then a Lie ideal
Eu(S) of Hy,(S) of finite codimension. This ideal contains [H,,(S), He (S)].

4.1.2 LOCALLY NILPOTENT VECTOR FIELDS AND ADDITIVE GROUP ACTIONS

Recall that a k-derivation O of the coordinate ring of an affine algebraic va-
riety X is called locally nilpotent if for every f € O(X) there exists s € N
such that 0°f = 0. There is a well-known one-to-one correspondence between
algebraic actions of the additive group G, = (Spec(k[t]),+) on X and lo-
cally nilpotent k-derivations of O(X). It is given by associating to an action
o: G, x X — X the k-derivation

d
Op = —li=0 00" € Der (O(X), O(X)),

which, under the identification Dery(O(X), O(X)) = Vec(X), coincides with
the tangent vector field to the orbits of o.

LEMMA 3. Every algebraic Gg-action on a symplectic affine surface (S,w) is
symplectic.

Proof. Let 0: G, x S — S be a non-trivial G,-action. For every t € k, there
exists a unique element f; € O(S)* such o(t,-)*w = fiw. Since there is no
non-constant morphism from G, to A\ {0}, there exists a unique element
F € O(S)* such that the morphism

a: Gy x S — A\ {0}, (t,z) — fi(x)

factors as F o py. Since a(t +t',z) = a(t’,o(t,z)) - a(t,z), we have F(z) =
F(o(t,z))F(z) for all t € k and = € S. The fact that a G,-orbit consists
either of a fixed point or of a curve isomorphic to A! implies in turn that
F(z) = F(x)? for all z € S. Thus, F is the constant function 1 on X, and
hence, fy =1 for all t € k. O

It follows from Lemma 3 that every locally nilpotent vector field d on a symplec-
tic affine surface (S,w) is symplectic. A Gg-action on S is called Hamiltonian
if its associated locally nilpotent vector field 9 is Hamiltonian. We denote by
(LNV(S)) € VP, (S) and (H,LNV(S)) C #H,(S) the Lie subalgebras gener-
ated respectively by locally nilpotent and Hamiltonian locally nilpotent vector
fields on (S,w). Summing up, for a symplectic affine surface (.S, w) we have the
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following diagram of Lie subalgebras of VP, (S):

(LNV(S)) —— VP, (9)

| [

(HGLNV(S)) — Hy(S) «—— [VP,(S), VP, ()] (17)

[ [

Eu(S) ¢ [Hu(5), Hu(S)]

Symplectic affine surfaces thus provide a large class of surfaces for which the
question of the simplicity and if so, of their bracket width, of the natural Lie
algebras (H,LNV(S)), £,(5) and [H,, (S), Hw(S)], as well as their intersections,
can be further studied.

EXAMPLE 4. Let S = A? = Spec(k[z,y] and w = wp2 = dw Ady. Then we have
2 2 2 2 2 2
VPo,2 (A7) = Ho 5 (A7) = &0, (A7) = [Ha,, (A7), Ho,» (A7)] = (LNV(AT))

(see, e.g., [Sha81, Lemma 2]). Furthermore, this Lie algebra is simple and it
has width equal to one by Proposition 3.

ExXAMPLE 5. Let C be a smooth non-rational affine curve with a nowhere
vanishing algebraic 1-form we. The surface S = C' x Al is endowed with the
nowhere vanishing 2-form w = wg A dx. Since C is not rational, we have
Hires) = Higiey # 0. So Hu(S) is a proper Lie ideal of VPy(S). Since
H2:(S) = 0, it follows that E,(S) = O(S) and hence, that £,(S) = H(S).
Since C' is not rational, every Gg-action on S is given by a locally nilpotent
k-derivation of O(S) = O(C)[z] of the form §; = fZ, where f € O(O).
The Lie algebra (LNV(S)) is thus abelian. Furthermore, since the G4-action
determined by 6 is Hamiltonian if and only if the 1-form fwc on C' is exact,
(H,LNV(S)) is a proper subalgebra of (LNV(S)).

PROPOSITION 5. For the symplectic torus T? = Spec k[z*!, y*'] endowed with
the 2-form w2 = df A dy—y, the following hold:

1. (H, ,LNV(T?)) = (LNV(T?)) = 0.
2. Hu, (T?) is a proper Lie ideal of codimension 2 of VP, ,(T?).

8. iy (T?) = ey (T?), Hoo o, (T?)] = Moo, (T?) is a simple Lie algebra of
width one.

Proof. Assertion (1) is an immediate consequence of the fact that T2 does not
admit any non-trivial G,-action. Assertion (2) follows from the observation
that HéR('JTQ) is isomorphic to k%2, generated by the classes of the 1-forms

zldr=—i sw and yldy=i s w.
Yy Loz
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On the other hand, the class of wyz generates H3p (T?) = k. It follows that
the subspace E,, , C k[z**,y*!] consists of all elements with trivial constant
term. Since ., , (T?) = O(T?)/k, it follows that H,, , (T?) = £, , (T?).

To complete the proof of assertion (3), it remains to show that &, ,(T?) is a
simple Lie algebra of width one. The Poisson bracket on O(T?) associated to
wr2 is given by {x,y} = xy and extension by linearity and the Jacobi identity.
Thus, for (k,¢) and (m,n) in Z? \ (0,0), we have

{:Ekye, xmy"} = (kn — Em)karmy””. (18)

Since every element f of O(T?) with trivial constant term is a linear combina-
tion of finitely many monomials of the form z®y% with (s, 3;) € Z% \ (0,0),
we can find (k,1) € Z%\ (0,0) such that k(8; — £) — £(cv; — k) # 0 for every i.
Then, setting m; = a; — k and n; = 8; — £, we have

1
Bi =) — Lo — k)

i, B [kl M M
aiy” = {a"y", i ayy,
which implies that f = {z*y*, g} for some g € O(T?). Thus, every element of
E,(T?) can be written as the Poisson bracket of two elements of E,,(T?). This
implies in turn that

ng2 (TQ) = [ (T2)’ &de (T2)]

T2
has width equal to one.

It remains to show that &, , (T?) is a simple Lie algebra, equivalently, that
(Ew.s,{--}) is a simple Lie algebra. Assume that I C E,,(T?) is a nonzero
ideal. Using (18) we can show that if I contains a nontrivial monomial z™y",
then it contains all possible nontrivial monomials, hence is equal to E, , (T?).
Indeed, up to exchanging x and y, we can assume that m # 0. Then bracketing
with y~%!, we get that

{y= "t 2™y} = m(—n+ L)y "y 2" Yy, 2} = —m(—n+ 1)z™y

—m+1

belongs to I, hence that ™y € I. Bracketing with x , we obtain that

{a7m 2™y} = (—m+ Da™ "2 {z,y} = (—m + ay

belongs to I, hence that xy € I. Taking brackets of xy with y~! and z~!
respectively, we obtain the elements x and y. Since all monomials are obtained
from these two taking suitable brackets, we conclude that I = E,, , (T?).

Now we have to show that any nonzero ideal I of E,, , (T?) contains a monomial.
Let M denote the minimal number of summands of the elements of I. If M =1,
we are done. So assume that M > 2 and let f = Y a;;2'y’ be an element
of I with M summands. Applying similar combinations of brackets as above,
we see that I contains an element ¢ with M summands having = as one of
its summands. If ¢ € k[z*!,y*1] \ k[z*!] then {z,q} is a nonzero element
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of I which has M — 1 summands, which is impossible. So ¢ € k[z*!]. Then
r = {q(x),y} is an element of I with M summands whose summands are all
linear in 3. Let z*y be one of the summands of . Then s = {z7% r} is an
element of I with M summands that has y as one of its summands and at least
one summand of the form 2y with & # 0. Then {y, s} is a non-zero element
of I with at most M — 1 summands, a contradiction. O

4.2 VECTOR FIELDS ON DANIELEWSKI SURFACES

By a Danielewski surface, we mean an affine surface D,, in A® defined by an
equation of the form zy — p(z) = 0 for some polynomial p(z) € k[z] of degree
r > 1 with simple roots in k.

4.2.1 BASIC PROPERTIES OF DANIELEWSKI SURFACES

By the Jacobian criterion, D), is smooth, and it follows from adjunction formula
that

dx N\dz dx A dy dy N dz
w= Ip, = b, = ———

x  p(2) B y o,

is a well-defined nowhere vanishing algebraic 2-form on D,,. On the other hand,
it immediately follows from the defining equation of D, that Qp . is a locally
free sheaf or rank 2 globally generated by the 1-forms dx, dy and dz with the
unique relation xdy 4+ ydx = p’(z)dz. The following proposition summarizes
additional basic properties of the surfaces D,,.

PROPOSITION 6. For a Danielewski surface D, with r = degp > 1, the follow-
ing hold:

1. O(Dy)* = k*.

2. Qp,x is a free Op,-module of rank 2.

3. Hiz(D,) = 0 and H3R(D,) ~ k& —1),

4. If r > 2, then the class of w in Hig(D,) is nonzero.

Proof. The projection pry: D, — A! is the algebraic quotient morphism of
the fixed point free G,-action associated to the locally nilpotent k-derivation
p'(2)0y, + 20, of O(X). The fiber pr;!(0) is the union of r disjoint G,-orbits,
one for each of the roots of p, whereas all other fibers consist of a single G,-
orbit. The geometric quotient of D, is isomorphic to the affine line with r
origins 6: A1 — A! obtained from A® by replacing the origin {0} by 7 distinct
points, one for each of the G,-orbits in pr;1(0), and the induced morphism
p: Dy — Al is a G,-torsor. Assertion (1) then follows from the fact that the

pullback homomorphism p*: k* = HO(Avl, 02‘1) — O(D,)* is an isomorphism.
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Since p is a G,-torsor, we have Q%)p/&l = p*Op = Op,,, and since §: Al 5 Al
is an étale morphism, we have QAl/k = 6*Qp1 /. = Oy, The relative cotangent

sequence of p thus reads
0— p*Qf-vkl/k = ODP — QDp/k — QDP/ZV = ODP — 0.

Since D,, is affine, the latter splits, and the choice of such a splitting yields an
isomorphism Qp /p = O%j which proves (2).

To prove assertion (3), we proceed by induction on the degree r of p. If r =1,
then D, 2 A% and the assertion is clear. Now assume that r > 2. Without loss
of generality, we can further assume that p(z) = zq(z) for some polynomial ¢
of degree r — 1 with simple roots and such that ¢(0) # 0. Then pr; '(0) is the
disjoint union of the curves Ly = {x = z = 0} and L, = {z = ¢(z) = 0}.
Set Uy =Dy, \ L, and U; = D, \ Ly. The Mayer—Vietoris long exact sequence
of algebraic de Rham cohomology for the covering of D, by the affine open
subsets Uy and U, yields the exact sequence

0 = Hig(Dy) — Hig (Uo) ® Hyg (Uy) — Hig(Uo N Uy) — -
— H3g(Dp) — Hig(Uo) ® Hig (Uy) — Hig(Uo NU,) — 0.

Since Uy N U, = D, \ prx1(0) = Spec k[zt!, 2] = (Al \ {0}) x Al, we have
H2; (Uy NU,) = 0. Furthermore, the group Hiy (Uy N U,) is isomorphic to ,
generated by the class of the 1-form dm—l. Since on the other hand we have

isomorphisms
A* S U, (v,u) > (z,q(z,u),zu) and Dy 5 Uy, (2,y,2) = (z,y2,2),

assertion (3) follows by induction.

To prove assertion (4), we can assume without loss of generality that p(z) =
z(z — 1)s(z) for some polynomial s or degree r — 2 with simple roots and such
that s(0)s(1) # 0. Denote by Us the affine open complement in D, of the
curve {x = s(z) = 0} C D,. It suffices to show that w|y, has non-zero class in
H2; (Us). Since the morphism

f: Dz(z—l) — Dpa (ZL',y,Z) = (SC,y,Z) = (ZL',q(Z)y,Z)

is an open immersion with image Uy, it is equivalent to show that the class of the
volume form f*w in HﬁR(DZ(Z_l)) & k is non-zero. The surface S = D,._)
is covered by the two affine open subsets

So =S\ {z=2—1=0} = Speck[z, ug]

and
S1 =S\ {z =2z =0} = Speck[z,u1],

where ug = z/x = y/(z — 1) and u1 = (2 — 1)/ = y/z. Under the above
isomorphisms, f*w|s, and f*w|s, are equal to the volume forms dz A dug and
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dx A duy, respectively. Since Sy and S; are both isomorphic to A?, the con-
necting homomorphism

§: Hig(So N Sy) — H3R(S)

is an isomorphism. Noting that u; = u0+%, we see that the class of f*w is equal

to the image under J of the class of the 1-form dm—”” on Sp NSy = Spec k[zT!, 2].

Since the latter is a generator of Hig (So N S1) = k, assertion (4) follows. O

4.2.2 LOCALLY NILPOTENT VECTOR FIELDS ON DANIELEWSKI SURFACES

It follows from Proposition 6(3) that for the symplectic affine surface (Dp,w),
we have VP, (D,) = H,(D,), and hence that (LNV(D,)) = (H,LNV(D,)). In
the natural decomposition of O(D,) into a direct sum of k-vector spaces

O(Dp) = zklz, 2] © ykly, 2] © k[2], (19)

the associated Poisson bracket on O(D,) is uniquely determined by the three
values

{z,2} =z, {z,y} =p'(2), and {y, 2} = —y (20)

and extension by linearity and the Leibniz rule.
The tangent sheaf Tp, of a Danielewski surface D, is a free Op,-module of
rank 2 globally generated as an Op -module by the vector fields

0 0 0 0 0 0
— —_ P — = — / _— = P — = —r— —_—
9z—p(2)ay+zaz,9y. p(Z)ax Yz b xax+y6y’ (21)

(see (15) for the notation) with the unique relation x8, + y6, = p’(2)6,. Note
that the vector fields 6, and 6, are locally nilpotent and belong to &, (D5).

The following result is an extension of [KL13, Theorem 3.26] and [LR21, The-
orem 1].

PROPOSITION 7. For a Danielewski surface Dy, the following hold:
1. E,(Dp) = zklz, 2] © ykly, z] @ {(r(2)p(2))" | r € k[2]}.
2. £,(Dp) = [Hw(Dyp), Hu(Dyp)] = (LNV(D,,)). Furthermore, this Lie alge-

bra is simple.

Proof. By (19), every element e € O(D,) admits a unique expression in the
form

e =zey(x,2) + yey(y, 2) + e (2).
For every f,g,h € O(D,), we have

Diva (10 + 90+ h02) = /() (=88 + 82) + (~ 5 + 8 — (B2 1 &)
= xu(:z:, z) + yv(y’ Z) + ((91(0’ Z) - fy(oﬂ Z))p(z))l

DOCUMENTA MATHEMATICA 26 (2021) 1601-1627



1620 A. DuBoULOZ, B. KUNYAVSKII, A. REGETA

Every element of O(D,) of the form zu(z,z) (resp. yv(y,z)) is equal to
Div,,(f8) (resp. Divy(g8,)) for some element f of the form zr(z, z) (resp. g
of the form yr(y,z)). Since H%(D,, Tp,) is generated as an O(D,)-module by
0z, 0, and 0, we conclude that E,, (D,) C O(D,) consists of all elements whose
component in k[z] is of the form (r(z)p(z))" for some polynomial r(z) € k[z].
Using the decomposition (19), the definition (20) and the identity

{zf(2),w9(2)} = 2g(2){f(2), 4} +yf(2){z, 9(2)} + f(2)g(2){z, 4}
= xg(2)f (){z y}+yf() (){w 2} + f(2)g9(2){z,y}
= 2y(f(2)9(2)) + f(2)9(z)p'(2)
= (f(z)9(z)p(= ))’,

it is then straightforward to check that {O(D,), O(D,)} = E.,(D,), and hence,
by definition, that &,(D,) = [Hw(Dp), Hew(Dy)]-

The equality &,(D,) = (LNV(D,)) follows from the proof of Theorem 3.26 in
[KL13], given there over k = C, but which remains valid over any algebraically
closed field of characteristic zero. Finally, the simplicity of the Lie algebra
(LNV(D,)) is established over k = C in [LR21], but again the proof carries on
verbatim to the case of an arbitrary algebraically closed field of characteristic
Z€ro. o

Let Dy, be a Danielewski surface. If degp = 1, then the projection pr, ,: D) —
A? is a symplectomorphism between (D,,w) and (A% dx Ady). By Example 4,
the bracket width of (LNV(D,)) = Hdmdy(A ) equals one.

COROLLARY 4. Let D, be a Danielewski surface with degp > 2. Then
(LNV(D,)) is a Lie ideal of codimension degp — 2 of H.(Dp), with quotient
isomorphic to H3g (Dy) /().

Proof. By Proposition 6(3) and Proposition 7, E,(D,) is a proper ideal of codi-
mension (degp— 1) of the Lie algebra (O(D,), {-,-}). Since by Proposition 6(4)
the class @ of the 2-form w in H3 (D,) is nonzero, Proposition 7 implies that
(LNV(D,)) = £€,(Dp) = E,(Dp)/k is a Lie ideal of H.,(Dp) = O(D,)/k with
quotient isomorphic to H, (D,,)/(@). O

The case where degp = 2 is special since we have

Hu(Dp) = (LNV(Dy)) = E,(Dy)
PROPOSITION 8. Let D, be a Danielewski surface with degp = 2. Then the
width of the simple Lie algebra (LNV(D,)) is at most two.

Proof. The assertion is equivalent to the property that every element of E,,(D,,)
can be written as the sum of at most two Poisson brackets of elements of
E,(D,). Since deg p = 2, it follows from Proposition 7(1) that E,(D,) contains
a polynomial z + a for some a € k. First note that since {z,z + a} = z and
{y,z + a} = —y, every element

f= Zal $+Zb )y € E,(D,)

>0 7>0
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can be written as f = {g, 2z + a}, where

1 . 1 .
= —ai(z)z" — ~bi(2)y? € E,(D,).
Q;Z() ;JJ()Q (Dyp)
On the other hand, since {z, y} = p/(z), every element of the form (r(z)p(z)) €
E,(D,) is equal to the bracket {z,yr(z)}. Thus, every element of E,,(D,) can
be written as the sum {g,z 4+ a} + {x,yr(2)} of two brackets of elements of
E,(Dp). O

We did not succeed to decide whether the width of (LNV(D,,)) for degp = 2 is
equal to one or to two. We note the following equivalent formulations:

LEMMA 4. For a Danielewski surface D, with degp = 2, the following are
equivalent:

1. The width of the Lie algebra (LNV(D,)) equals one.

2. Every element of E,,(Dy) equals the Poisson bracket {f,g} of two ele-
ments of O(Dy).

3. Every algebraic 1-form oo € HO(D,, Q%)p/k) can be written as o = fdg+dh
for some f,g,h € O(D,).

Proof. The equivalence between (1) and (2) follows from the isomorphism
(ODp)/k,{:,-}) = (Hw(Dyp), [-,-]) and the equality £,(Dp) = (LNV(D,)) =
H.(Dp) which holds by Proposition 7. Since elements e of E,(D,) are pre-
cisely those of O(D,) such that the algebraic 2-form ew is exact, say ew = do,
it follows from the definition of the Poisson bracket that e = {f, g} if and only if
ew = df Ndg = d(fdg) = da. The equivalence between (2) and (3) follows. O

QUESTION 1. Is the width of the Lie algebra (LNV(D,)) of a Danielewski sur-
face Dy, with degp = 2 equal to two?

We now consider the case of Danielewski surfaces D, with degp > 3. The
projection m = pr, ,: D, — A? restricts to an isomorphism D, \ {z = 0} =
A%\ {z = 0}. Every pair of elements f,g € O(D,) determines a rational map

hfag = (f)g) oﬂ.il :AQ ——3 A2-

Denote by Jac(hys,) € k[zT!, 2] the unique element such that b} jwaz =
Jac(hy g)wysz. Viewing f and g as elements of O(D,), = k[z*!, 2] via the injec-
tive localization homomorphism O(D,) < O(D,), with image k[xz, z, 7 1p(2)],
we have

Of (x,27'p(2), 2) Og(w, 2~ "p(2), 2)

Jac(hyg) = P o -

Of (x, 2 'p(2), 2) Og(x, x'p(2), 2)
Or 0z '

We introduce the following condition reminiscent of the Jacobian conjecture
for A2,
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HypotHesis (J). If Jac(hyy) € k* then hyg is a biregular automorphism
of A2,

THEOREM 2. Let D, be a Danielewski surface with degp > 3. Assume that Hy-
pothesis (J) holds for D,. Then the width of the simple Lie algebra (LNV(D,))
s greater than one.

Proof. We will show that the locally nilpotent vector field 6§, cannot be repre-
sented as a single bracket of elements of (LNV(D,)). By Proposition 7, this is
equivalent to showing that the element = € E,(D,) cannot be written as the
Poisson bracket of two elements of E,, (D).

Assume to the contrary that there exist f,g € E,(D,) such that z = {f, g}.
Then by combining the definition of the Poisson bracket with the equality
(f,9) = hyg 0w, we obtain:

aw=df Ndg = (f,9)"'wp2 = 7"h} wae
7 (Jac(hy g)wp2)
(m* Jac(hy,g))dx A dz = (7% Jac(hy,g))zw

Since 7: D, — A? is dominant, it follows that Jac(hs,) = 1 and hence, by
hypothesis (J), that hy, is a biregular automorphism of A?. The composi-
tion h¢ 4 o m then induces an isomorphism between O(D,) and the sub-algebra
k[f,g,f'p(g)] of k[f*!,g]. This implies in turn that the map ¢: D, — D,,
(z,y,2) — (f, f'p(g), 9), is an automorphism of D,, which makes the following
diagram commutative

D, —— A?

‘| y (22)

D, —— AZ

By construction, we have ¢*g = z, where, by hypothesis, ¢ is an element of
E,(D,). Recall that by the definition of E,,(D,), this means that g = Div,¢
for some & € Vec(D,), equivalently that d(icw) = gw. By Proposition 6(1),
there exists A € k* such that p*w = Aw. Let dy: Tp, — ©*7Tp, be the tangent
homomorphism to ¢, and let ¢ = (dp) ™ (¢*€) € Vec(D,) be the pullback of
¢*¢ € H(Dy, ¢*Tp,). We then have

(Divew = d(igw) = d(*(ic((p™") w))) = d(p*(ic(A\'w)))
= d(p* (A tie )) e* (A Md(iew))
= sﬁ*(Ylgw) (p*g)w

Thus, z € E,(Dp). Since degp > 3, this is impossible because, by Propo-
sition 7, every element of E,(D,) N k2] is of the form (r(z)p(z))’ for some
O

r(z) € k[z].
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5 CONCLUDING REMARKS

As the reader may have noticed, the results presented above reflect only first
steps in understanding the width of simple Lie algebras. In this short section,
we summarize our vision of eventual forthcoming steps to be considered. For
brevity, below we shorten ‘algebras of width greater than one’ to ‘wide algebras’.
The first immediate question to ask is

QUESTION 2. What is the actual width of the algebras appearing in Theorems A
and B? Can it be made as large as possible?

For better understanding of the width behaviour, it is highly desirable to en-
large the bank of examples of wide simple Lie algebras. A natural way (sug-
gested by YUuLy BILLIG) for generalizing the examples of Theorem A is towards
the Krichever—Novikov algebras related to vector fields on punctured curves
[Sch14]. This class of infinite dimensional algebras is extremely rich. These
algebras arise from meromorphic objects (functions, vector fields, forms of cer-
tain weights, matrix valued functions, etc.) which are holomorphic outside
a fixed set of points. This construction includes Lie algebras and associative
algebras (and also superalgebras, Clifford algebras, etc.). In some natural sit-
uations algebras belonging to this family are known to be simple (see [Schl4,
Proposition 6.99]) and look as a source for eventual wide algebras.

Note that the Lie algebra L = Vec(X) captures the geometry of X in the sense
that the isomorphism of Lie algebras Vec(X) = Vec(Y') implies that X and YV
are isomorphic (here X and Y are arbitrary normal varieties), see [Gra78],
[Sie96]. This gives rise to the following vague question.

QUESTION 3. What geometric properties of X imply that L = Vec(X) is (or is
not) wide?

Perhaps one can start with focusing on flexible varieties X, see, e.g., [AZK12],
[AFKKZ13]. It is known that the flexibility is closely related to several other
properties relevant to our context, such as volume density property. Note that
the Danielewski surfaces D,, are flexible [AZK12].

In a direction complementary to that studied for Lie sub-algebras generated by
locally nilpotent derivations on symplectic affine surfaces, one can also consider
in the complex case some other natural Lie sub-algebras, such as those gen-
erated by holomorphically completely integrable Hamiltonian algebraic vector
fields. In particular, on can ask the following

QUESTION 4. Is the Lie algebra L of holomorphically completely integrable
algebraic vector fields on the smooth affine complex surface

S={z+y+ayz=1}
in C3 simple? If yes, determine its bracket width.
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This surface has no non-zero locally nilpotent vector field. On the other hand,
all holomorphically completely integrable algebraic vector fields on it are Hamil-
tonian and the subgroup of the group of holomorphic automorphisms of S gen-
erated by the corresponding holomorphic (C, +)-actions acts infinitely transi-
tively on S, see [KK11, § 8].

Pursuing the geometric flavour of the notion of width, one can ask

QUESTION 5. Does there exist a Lie-algebraic counterpart of the Barge—Ghys
example from [BG92] mentioned in the introduction?

This requires going over to the category of smooth vector fields on smooth
manifolds. Note that even simpler looking problems discussed in [LT13] are
not yet settled being related to subtle differential-geometric considerations.

One can also look for additional sources of wide simple Lie algebras. A possible
candidate (also suggested by YULYy BILLIG) is the following one:

QUESTION 6. Let Ko denote the Lie algebra obtained from the matriz (; ;)

in the same way as Kac—Moody Lie algebras are obtained from generalized Car-
tan matrices, see [Kac68, §6]. Is Ko wide?

Here is a challenging general question.
QUESTION 7. Do there exist simple Lie algebras of infinite width?

Note that in sharp contrast with the group case, where there are examples
of finitely generated simple groups of infinite width, the width of any finitely
generated Lie algebra is finite, see [Rom16].

Finally, one can ask a ‘metamathematical’ question.

QUESTION 8. Let L be a ‘generic’ (‘random’, ‘typical’) simple Lie algebra. Is L
wide?

Of course, any eventual answer will heavily depend on what is meant by the
euphemisms used in the statement. However, the absence of semisimple and
nilpotent elements in the Lie algebra Vec(C) appearing in Theorem A (see
Corollary 3) is a witness of the absence of any analogue of the triangular de-
composition. This gives some evidence for the following (‘metamathematical’)
working hypothesis: ‘amorphous’ (less structured) simple Lie algebras tend to
be wide. In a sense, this is supported by the cases of the algebras of Cartan
type and VP, (A™) whose automorphisms groups were computed in [Rud69]
and [Bav17], see also [KR17], respectively.
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