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1 Introduction

Let K be a non-archimedean local field with finite residue field k. Let p > 0
be the characteristic of k, and q the number of elements in k. Let X be a
proper smooth scheme over K and w an integer. Let ℓ 6= p be a prime number.
Let K be an algebraic closure of K and Ksep the separable closure of K in K.
The absolute Galois group GK := Gal(Ksep/K) naturally acts on the ℓ-adic
cohomology Hw

ét(XK ,Qℓ), where we put XK := X ⊗K K.
By Grothendieck’s quasi-unipotence theorem, the action of an open subgroup
of the inertia group IK of K on Hw

ét(XK ,Qℓ) defines the monodromy filtration

{Mi,Qℓ
}i

on Hw
ét(XK ,Qℓ). It is an increasing filtration stable by the action of GK .

(See Section 3.1 for details.) The weight-monodromy conjecture due to Deligne
states that the i-th graded piece

GrMi,Qℓ
:= Mi,Qℓ

/Mi−1,Qℓ
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of the monodromy filtration on Hw
ét(XK ,Qℓ) is of weight w+ i, i.e. every eigen-

value of a lift of the geometric Frobenius element Frobk ∈ Gal(k/k) is an
algebraic integer such that the complex absolute values of its conjugates are
q(w+i)/2. When X has good reduction over the ring of integers OK of K,
it is nothing more than the Weil conjecture [12, 13]. In general, the weight-
monodromy conjecture is still open. In this paper, we shall propose a torsion
analogue of the weight-monodromy conjecture and prove it in some cases.
By the work of Rapoport-Zink [30] and de Jong’s alteration [10], we can take
an open subgroup J ⊂ IK such that the action of J on the étale cohomology
group with Fℓ-coefficients Hw

ét(XK ,Fℓ) is unipotent for every ℓ 6= p. By the
same construction as in the ℓ-adic case, we can define the monodromy filtration

{Mi,Fℓ
}i

on Hw
ét(XK ,Fℓ) for all but finitely many ℓ 6= p, which is stable by the action

of GK ; see Section 3.2 for details. We propose the following conjecture.

Conjecture 1.1 (A torsion analogue of the weight-monodromy conjecture,
Conjecture 3.5). Let X be a proper smooth scheme over K and w an integer.
Let Frob ∈ GK be a lift of the geometric Frobenius element. For every i,
there exists a non-zero monic polynomial Pi(T ) ∈ Z[T ] satisfying the following
conditions:

• The roots of Pi(T ) have complex absolute values q(w+i)/2.

• We have Pi(Frob) = 0 on the i-th graded piece

GrMi,Fℓ
:= Mi,Fℓ

/Mi−1,Fℓ

for all but finitely many ℓ 6= p.

Remark 1.2. The étale cohomology group with Zℓ-coefficients Hw
ét(XK ,Zℓ)

is torsion-free for all but finitely many ℓ 6= p; see [14] and [36, Theorem 1.4].
(See also Remark 2.5.) When X has good reduction over OK , Conjecture 1.1
follows from the Weil conjecture and this result.

The main theorem of this paper is as follows:

Theorem 1.3 (Theorem 3.7). Let X be a proper smooth scheme over K and
w an integer. Assume that one of the following conditions holds:

(1) K is of equal characteristic, i.e. the characteristic of K is p.

(2) X is an abelian variety.

(3) w ≤ 2 or w ≥ 2 dimX − 2.

(4) X is uniformized by a Drinfeld upper half space.

(5) K is of characteristic 0, and X is geometrically connected and is a set-
theoretic complete intersection in a projective smooth toric variety.
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Then the assertion of Conjecture 1.1 for (X,w) is true.

The weight-monodromy conjecture for Qℓ-coefficients is known to be true for
(X,w) if one of the above conditions (1)–(5) holds for (X,w). However, it
seems that the weight-monodromy conjecture for Qℓ-coefficients does not au-
tomatically imply Conjecture 1.1. The problem is that, in general, we do not
know the torsion-freeness of the cokernel of the monodromy operator acting on
Hw

ét(XK ,Zℓ) for all but finitely many ℓ 6= p. (See Section 3.3 for details.)

Remark 1.4. As is the case for the weight-monodromy conjecture for Qℓ-
coefficients, if X has a proper strictly semi-stable model over OK , then Con-
jecture 1.1 is equivalent to a conjecture on the weight spectral sequence with
Fℓ-coefficients constructed by Rapoport-Zink; see Section 4 for details. In fact,
the latter can be formulated for any Henselian discrete valuation field, and we
will need to deal with a Henselian discrete valuation field whose residue field is
the function field of some algebraic variety over Fp in the proof of Theorem 1.3
in the case (1).

Remark 1.5. There are other cases where the weight-monodromy conjecture
is known to be true; see Remark 3.3. In this paper, we will restrict ourselves
to the cases (1)–(5) for the sake of simplicity.

We shall give two applications of our results. The first one is an application to
the finiteness of the Brauer group of a proper smooth scheme over K for which
the ℓ-adic Chern class map for divisors is surjective; see Corollary 10.3. As
the second application, we will show the finiteness of the GK-fixed part of the
prime-to-p torsion part of the Chow group CH2(XK) of codimension two cycles
on XK if (X,w = 3) satisfies one of the conditions (1)–(5); see Corollary 10.9.
The strategy of the proof of Theorem 1.3 is as follows. If K is of equal charac-
teristic and X is defined over the function field of a smooth curve over a finite
field, then Theorem 1.3 is a consequence of an ultraproduct variant of Weil II
established by Cadoret [4]. The general case (1) can be deduced from this case
by the same arguments as in [22].
As in [33], by using the tilting equivalence of Scholze, we will deduce the case (5)
from the case (1) or from the results of Cadoret [4]. In his proof of the weight-
monodromy conjecture in the case (5), Scholze used a theorem of Huber [18,
Theorem 3.6] on étale cohomology of tubular neighborhoods of rigid analytic
varieties. In our case, we use a uniform variant [19, Corollary 4.11] of Huber’s
theorem proved by the author. See Section 6 for details.
For the case (2), we prove that, for abelian varieties, the cokernels of the
monodromy operators are torsion-free by using the theory of Néron models.
Then the case (2) is deduced from the weight-monodromy conjecture for abelian
varieties. For the proof in the remaining cases, we use the weight spectral
sequence with Zℓ-coefficients. Since the weight-monodromy conjecture is known
to be true under the assumptions, it suffices to prove that the cokernels of the
monodromy operators are torsion-free for all but finitely many ℓ 6= p. In our
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settings, it basically follows from the torsion-freeness for all but finitely many
ℓ 6= p of the cokernel of a homomorphism of one of the following types:

• The homomorphism TℓA→ HomZℓ
(TℓA,Zℓ(1)) induced by a polarization

of an abelian variety A over k. Here TℓA is the ℓ-adic Tate module of A.

• The base change M1 ⊗Z Zℓ → M2 ⊗Z Zℓ of a homomorphism M1 → M2

of finitely generated Z-modules.

The outline of this paper is as follows. In Section 2, we define a notion of
weight for a family {Hℓ}ℓ 6=p of GK-representations over Fℓ and prepare some
elementary lemmas used in this paper. In Section 3, we define the monodromy
filtration with Fℓ-coefficients for all but finitely many ℓ 6= p and propose a
torsion analogue of the weight-monodromy conjecture (Conjecture 1.1). We
also discuss a relation between the weight-monodromy conjecture and Conjec-
ture 1.1. In Section 4, we discuss some torsion-freeness properties of the weight
spectral sequence and their relation to Conjecture 1.1. We also include some
standard techniques used to study the weight-monodromy conjecture. In Sec-
tions 5–9, we prove Theorem 1.3. In Section 10, as applications of Theorem 1.3,
we discuss some finiteness properties of the Brauer group and the codimension
two Chow group of a proper smooth scheme over K.

Notation

Throughout this paper, we will use the following notation. For a field F , let F
be an algebraic closure of F and F sep the separable closure of F in F . Let
GF := Gal(F sep/F ) be the absolute Galois group of F . Let char(F ) denote
the characteristic of F . We call a finitely generated Zℓ-module endowed with
a continuous action of GF a GF -module over Zℓ for simplicity.

Along this paper K denotes a Henselian discrete valuation field. The ring of
integers of K is denoted by OK and the residue field of OK is denoted by k.
Let IK ⊂ GK be the inertia group of K. In Sections 2–3 and Sections 6–10,
we will assume that K is a non-archimedean local field. In that case, let p > 0
denote the characteristic of k and let q denote the number of elements in k. In
Sections 4–5 we will work not only with non-archimedean local fields, but also
with general Henselian discrete valuation fields. (See also Remark 1.4.)

2 Preliminaries

2.1 Weights

Let p be a prime number. In this subsection, we fix a finitely generated field F
over Fp.

Let ℓ 6= p be a prime number. For a finite dimensional representation of GF

over Qℓ, there is a notion of weight; see [22, Section 2.2] for example. In this
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paper, we will use the following notion of weight for a family {Hℓ}ℓ 6=p of GF -
modules over Zℓ. (See Notation in Section 1 for the definition of GF -modules
over Zℓ.)
Let L be an infinite set of prime numbers ℓ 6= p. Let w be an integer.

• Let q be a power of p. For a non-zero monic polynomial P (T ) ∈ Z[T ],
we say that P (T ) is a Weil q-polynomial if the complex absolute value of
every root of P (T ) is q1/2.

• Let U be an integral scheme of finite type over Fp with function field
F . We say that a family {Fℓ}ℓ∈L of locally constant constructible Zℓ-
sheaves on U is of weight w if, for every closed point x ∈ U , there is a
Weil (qx)

w-polynomial Px(T ) ∈ Z[T ] such that, for all but finitely many
ℓ ∈ L, we have Px(Frobx) = 0 on Fℓ,x. Here qx is the number of elements
in the residue field κ(x) of x, x is a geometric point of U above x, and
Frobx ∈ Gκ(x), a 7→ a1/qx is the geometric Frobenius element.

• We say that a family {Hℓ}ℓ∈L of GF -modules over Zℓ is of weight w if
there is an integral scheme U of finite type over Fp with function field
F such that the family {Hℓ}ℓ∈L comes from a family {Fℓ}ℓ∈L of locally
constant constructible Zℓ-sheaves on U of weight w.

When there is no possibility of confusion, we will omit L from the notation and
write {Hℓ}ℓ in place of {Hℓ}ℓ∈L.

Lemma 2.1. Let {H1,ℓ}ℓ∈L and {H2,ℓ}ℓ∈L be families of GF -modules over Zℓ

of weight w1 and w2, respectively. We assume w1 6= w2. Then, for all but
finitely many ℓ ∈ L, every map H1,ℓ → H2,ℓ of GF -modules over Zℓ is zero.

Proof. We may assume that {H1,ℓ}ℓ and {H2,ℓ}ℓ come from families {F1,ℓ}ℓ
and {F2,ℓ}ℓ of locally constant constructible Zℓ-sheaves on U of weight w1 and
w2, respectively. Here U is an integral scheme of finite type over Fp with func-
tion field F . Take a closed point x ∈ U . Let P1,x(T ) ∈ Z[T ] be a Weil (qx)

w1 -
polynomial such that, for all but finitely many ℓ ∈ L, we have P1,x(Frobx) = 0
on (F1,ℓ)x. Let P2,x(T ) ∈ Z[T ] be a Weil (qx)

w2 -polynomial which satisfies the
same condition for {F2,ℓ}ℓ. The polynomials P1,x(T ) and P2,x(T ) are relatively
prime. For ℓ ∈ L such that P1,x(Frobx) = 0 on (F1,ℓ)x and P2,x(Frobx) = 0
on (F2,ℓ)x, we have P1,x(Frobx) = P2,x(Frobx) = 0 on the stalk of the image
of any map F1,ℓ → F2,ℓ at x. Therefore, the assertion follows from Lemma 2.2
below.

Lemma 2.2. Let P1(T ), P2(T ) ∈ Q[T ] be two relatively prime polynomials.
For all but finitely many prime numbers ℓ, every Zℓ[T ]-module Hℓ such that
P1(T ) = P2(T ) = 0 on Hℓ is zero.

Proof. There exist polynomials Q1(T ), Q2(T ) ∈ Q[T ] satisfying

P1(T )Q1(T ) + P2(T )Q2(T ) = 1
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in Q[T ] since P1(T ) and P2(T ) are relatively prime. Thus, for all but finitely
many prime numbers ℓ, we have P1(T ), P2(T ) ∈ Zℓ[T ], and they generate the
unit ideal of Zℓ[T ]. The assertion follows from this fact.

We need the following theorem to define monodromy filtrations with Fℓ-
coefficients for all but finitely many ℓ and to prove main results in this paper.

Theorem 2.3 (Gabber [14], Suh [36, Theorem 1.4]). Let X be a proper smooth
scheme over a separably closed field of characteristic p ≥ 0. For all but finitely
many ℓ 6= p, the Zℓ-module Hw

ét(X,Zℓ) is torsion-free for every w. In particular,
for all but finitely many ℓ 6= p, the natural map Hw

ét(X,Zℓ)→ Hw
ét(X,Fℓ) gives

an isomorphism
Hw

ét(X,Zℓ)⊗Zℓ
Fℓ

∼
→ Hw

ét(X,Fℓ)

for every w.

Proof. If X is projective, this is a theorem of Gabber [14, Theorem]. By
using de Jong’s alteration [10, Theorem 4.1], the general case can be deduced
from the projective case; see the proof of [36, Theorem 1.4] for details. (See
also Lemma 4.11 in Section 4.2.)

Corollary 2.4. Let X be a proper smooth scheme over F . Then
{Hw

ét(XF ,Λℓ)}ℓ 6=p is a family of GF -modules of weight w, where Λℓ is either
Zℓ or Fℓ.

Proof. This follows from the Weil conjecture [13, Corollaire (3.3.9)] and The-
orem 2.3.

Remark 2.5. An alternative proof of Theorem 2.3 using ultraproduct Weil
cohomology theory was obtained by Orgogozo; see [29, Théorème 6.2.2]. More-
over, Cadoret also gave a new proof of Theorem 2.3 without using the pgcd
theorem [13, Théorème (4.5.1)] (contrary to the proofs of Gabber and Or-
gogozo); see [4, Corollary 12.1.2]. In fact, Cadoret first proved Corollary 2.4
and then obtained Theorem 2.3 as a consequence. It is worth to mention that
the results of Cadoret in [4] (especially [4, Theorem 3.6.3]) are based on [29,
Théorème 3.1.1], which is the main theorem of [29].

Let K be a non-archimedean local field. We will use the following notion of
weight for representations of GK . Let {Hℓ}ℓ∈L be a family of GK-modules
over Zℓ. We assume that there is an open subgroup J ⊂ IK such that the
action of J on Hℓ is trivial for all but finitely many ℓ ∈ L.

Definition 2.6. We say that the family {Hℓ}ℓ∈L is of weight w if, for every
lift Frob ∈ GK of the geometric Frobenius element Frobk ∈ Gk, a 7→ a1/q,
there is a Weil qw-polynomial P (T ) ∈ Z[T ] such that, for all but finitely many
ℓ ∈ L, we have P (Frob) = 0 on Hℓ.
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Lemma 2.7.

(i) Assume that for one lift Frob ∈ GK of the geometric Frobenius element
there is a Weil qw-polynomial P (T ) ∈ Z[T ] such that, for all but finitely
many ℓ ∈ L, we have P (Frob) = 0 on Hℓ. Then the family {Hℓ}ℓ∈L is of
weight w.

(ii) Let L be a finite extension of K. Then {Hℓ}ℓ∈L is of weight w as a family
of GK-modules over Zℓ if and only if {Hℓ}ℓ∈L is of weight w as a family
of GL-modules over Zℓ.

Proof. (i) Let Frob′ ∈ GK be a lift of the geometric Frobenius element. We
want to show that there exists a Weil qw-polynomial Q(T ) ∈ Z[T ] such that,
for all but finitely many ℓ ∈ L, we have Q(Frob′) = 0 on Hℓ. Since the action
of J on Hℓ is trivial for all but finitely many ℓ ∈ L, there is a positive integer n
such that, for all but finitely many ℓ ∈ L, the action of Frobn on Hℓ coincides
with that of (Frob′)n on Hℓ. We write P (T ) in the form P (T ) =

∏
i(T − αi)

with αi ∈ Q and put

Q(T ) := P (n)(T ) :=
∏

i

(T n − αn
i ) ∈ Z[T ],

which is a Weil qw-polynomial. Then we have, for all but finitely many ℓ ∈ L,
Q(Frob′) = P (n)(Frob) = 0 on Hℓ.
(ii) Let f be the residue degree of the extension L/K. Let Frob ∈ GK and
Frob′ ∈ GL be lifts of the geometric Frobenius elements. As in the proof of
(i), there is a positive integer n such that, for all but finitely many ℓ ∈ L, the
action of Frobfn on Hℓ coincides with that of (Frob′)n on Hℓ.
We assume that {Hℓ}ℓ∈L is of weight w as a family of GL-modules and let
P (T ) ∈ Z[T ] be a Weil qfw-polynomial satisfying the condition in Definition 2.6
for Frob′. Then Q(T ) := P (n)(T f) ∈ Z[T ] is a Weil qw-polynomial and we have

Q(Frob) = P (n)(Frobf ) = P (n)(Frob′) = 0

on Hℓ for all but finitely many ℓ ∈ L. Therefore {Hℓ}ℓ∈L is of weight w as a
family of GK -modules by (i).
The converse can be proved in a similar way.

2.2 Some elementary lemmas on nilpotent operators

We collect some elementary lemmas on nilpotent operators, which will be used
in the sequel.

Lemma 2.8. Let ℓ be a prime number. Let M1
f
−→ M2

g
−→ M3 be a complex

of free Zℓ-modules of finite rank. The reduction modulo ℓ of f and g will be
denoted by f and g, respectively. Hence we have the following complex of Fℓ-
vector spaces:

M1 ⊗Zℓ
Fℓ

f
−→M2 ⊗Zℓ

Fℓ
g
−→M3 ⊗Zℓ

Fℓ.
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Then we have

rankZℓ
(Ker g/ Im f) ≤ dimFℓ

(Ker g/ Im f).

The equality holds if and only if the Zℓ-modules Coker f and Coker g are
torsion-free. If this is the case, then we have (Ker g/ Im f) ⊗Zℓ

Fℓ
∼
→

Ker g/ Im f .

Proof. By the theory of elementary divisors, we have

rankZℓ
(Ker g/ Im f) ≤ dimFℓ

(Ker g/ Im f)⊗Zℓ
Fℓ,

and the equality holds if and only if Ker g/ Im f is torsion-free. Since M3 is
torsion-free, we see that Ker g/ Im f is torsion-free if and only if Coker f is
torsion-free. Moreover, we have inclusions Im f ⊂ (Ker g) ⊗Zℓ

Fℓ ⊂ Ker g.
Hence we have

dimFℓ
(Ker g/ Im f)⊗Zℓ

Fℓ ≤ dimFℓ
(Ker g/ Im f),

and the equality holds if and only if (Ker g) ⊗Zℓ
Fℓ = Ker g. It is easy to see

that (Ker g) ⊗Zℓ
Fℓ = Ker g if and only if Coker g is torsion-free. This fact

completes the proof of the lemma.

Lemma 2.9. Let V be a vector space of dimension n over a field F of positive
characteristic ℓ. We assume that ℓ ≥ n. For a unipotent operator U on V , we
define

log(U) :=
∑

1≤i≤n−1

(−1)i+1

i
(U − 1)i.

For a nilpotent operator N on V , we define

exp(N) :=
∑

0≤i≤n−1

1

i!
N i.

Then the following assertions hold.

(i) log(−) defines a bijection from the set of unipotent operators on V to the
set of nilpotent operators on V with inverse map exp(−).

(ii) For two unipotent operators U,U ′ (resp. two nilpotent operators N,N ′)
such that they commute, we have log(UU ′) = log(U) + log(U ′) (resp.
exp(N +N ′) = exp(N) exp(N ′)).

Proof. Although this lemma is well known, we recall the proof for the reader’s
convenience.
(i) Let Z(ℓ) be the localization of Z at the prime ideal (ℓ). It suffices to prove
that the homomorphism Z(ℓ)[S]/(S − 1)n → Z(ℓ)[T ]/(T )

n, S 7→ exp(T ) and
the homomorphism Z(ℓ)[T ]/(T )

n → Z(ℓ)[S]/(S − 1)n, T 7→ log(S) are inverse
to each other, where exp(−) and log(−) are defined by the same formulas
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as above. Since both rings are torsion-free over Z(ℓ), it suffices to prove the
claim after tensoring with Q. Then it follows from the fact that the map
Q[[S − 1]] → Q[[T ]], S − 1 7→ exp(T ) − 1 and the map Q[[T ]] → Q[[S − 1]],
T 7→ log(S) are inverse to each other, where exp(−) and log(−) are defined in
the usual way.
(ii) By (i), we only need to prove that, for two nilpotent operators N,N ′

such that they commute, we have exp(N + N ′) = exp(N) exp(N ′). We have
N i(N ′)j = 0 on V for i, j ≥ 0 with i + j ≥ n. Thus, it suffices to prove
exp(T + T ′) = exp(T ) exp(T ′) in Z(ℓ)[T, T

′]/(T, T ′)n, where exp(−) is defined
by the same formula as above. As in (i), this can be deduced from an analogous
statement for Q[[T, T ′]].

Let R be a principal ideal domain and F its field of fractions. Let H be a
free R-module of finite rank. Let N : H → H be a nilpotent homomorphism.
By [13, Proposition (1.6.1)], the nilpotent homomorphism NF := N ⊗R F on
HF := H⊗RF determines a unique increasing, separated, exhaustive filtration
{Mi,F }i on HF characterized by the following properties:

• NF (Mi,F ) ⊂Mi−2,F for every i.

• For every integer i ≥ 0, the i-th iterate N i
F induces an isomorphism

GrMi,F
∼
→ GrM−i,F . Here we put GrMi,F := Mi,F /Mi−1,F .

We call {Mi,F}i the filtration on HF associated with NF . Let {Mi}i be the
filtration on the R-module H defined by Mi := H ∩Mi,F for every i. The

R-module GrMi := Mi/Mi−1 is torsion-free for every i.

Lemma 2.10. Let the notation be as above. The cokernel of the i-th iterate
N i : H → H of N is torsion-free for every i ≥ 0 if and only if N i induces an
isomorphism GrMi

∼
→ GrM−i for every i ≥ 0.

Proof. Assume that the cokernel of N i : H → H is torsion-free for every
i ≥ 0. Let d ≥ 0 be the smallest integer such that Nd+1 = 0. The cokernel of
the i-th iterate of the homomorphism

KerNd/ ImNd → KerNd/ ImNd

induced by N is torsion-free for every i ≥ 0. Thus, by the same argument
as in the proof of [13, Proposition (1.6.1)], we can construct inductively an
increasing, separated, exhaustive filtration {M ′

i}i on H satisfying the following
properties:

• GrM
′

i := M ′
i/M

′
i−1 is torsion-free for every i.

• N(M ′
i) ⊂M ′

i−2 for every i.

• For every integer i ≥ 0, the i-th iterate N i induces an isomorphism

GrM
′

i
∼
→ GrM

′

−i .
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By uniqueness, the filtration {Mi,F }i coincides with {M
′
i ⊗R F}i. Since both

GrMi and GrM
′

i are torsion-free for every i, the filtration {Mi}i coincides with
{M ′

i}i and we have an isomorphism N i : GrMi
∼
→ GrM−i for every i ≥ 0.

Conversely, we assume that N i induces an isomorphism GrMi
∼
→ GrM−i for every

i ≥ 0. We fix an integer i ≥ 0. For every j ≤ i, the i-th iterate N i : GrMj →

GrMj−2i is surjective. It follows that N i : Mj → Mj−2i is surjective for every
j ≤ i since it is surjective for sufficiently small j. For every j ≥ i, the i-th
iterate N i : GrMj → GrMj−2i is a split injection. It follows that the cokernel of

N i : Mj →Mj−2i is torsion-free for every j ≥ i since we have shown that it is
zero for j = i. Hence the cokernel of N i : H → H is torsion-free.

3 A torsion analogue of the weight-monodromy conjecture

In this section, let K be a non-archimedean local field. For a prime number
ℓ 6= p, the group of ℓn-th roots of unity in K is denoted by µℓn . Let

tℓ : IK → Zℓ(1) := lim
←−
n

µℓn

be the map defined by g 7→ {g(̟1/ℓn)/̟1/ℓn}n for a uniformizer̟ ∈ OK . This
map is independent of the choice of ̟ and gives the maximal pro-ℓ quotient
of IK . Let X be a proper smooth scheme over K and w an integer.

3.1 The weight-monodromy conjecture

We shall recall the definition of the monodromy filtration on Hw
ét(XK ,Qℓ) for

every ℓ 6= p, where XK := X ⊗K K. The absolute Galois group GK naturally

acts on Hw
ét(XK ,Qℓ) via the natural isomorphism Aut(K/K)

∼
→ GK .

By Grothendieck’s quasi-unipotence theorem, there is an open subgroup J of IK
such that the action of J on Hw

ét(XK ,Qℓ) is unipotent and factors through tℓ.
Take an element σ ∈ J such that tℓ(σ) ∈ Zℓ(1) is a non-zero element. We
define

Nσ := log(σ) :=
∑

1≤i

(−1)i+1

i
(σ − 1)i : Hw

ét(XK ,Qℓ)→ Hw
ét(XK ,Qℓ).

Let {Mi,Qℓ
}i be the filtration on Hw

ét(XK ,Qℓ) associated with Nσ; see [13,
Proposition (1.6.1)]. The filtration {Mi,Qℓ

}i is independent of J and σ ∈ J .
It is called the monodromy filtration. We have χcyc(g)Nσg = gNσ for every
g ∈ GK , where χcyc : GK → Z×

ℓ is the ℓ-adic cyclotomic character. It follows
from the uniqueness of the monodromy filtration that {Mi,Qℓ

}i is stable by the
action of GK . We note that the filtration associated with σ − 1 coincides with
{Mi,Qℓ

}i. We put

GrMi,Qℓ
:= Mi,Qℓ

/Mi−1,Qℓ
.

We recall the weight-monodromy conjecture due to Deligne.
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Conjecture 3.1 (Deligne [11]). Let X be a proper smooth scheme over K
and w an integer. Let ℓ 6= p be a prime number. Then the i-th graded piece
GrMi,Qℓ

of the monodromy filtration on Hw
ét(XK ,Qℓ) is of weight w+ i, i.e. every

eigenvalue of every lift Frob ∈ GK of the geometric Frobenius element is an
algebraic integer such that the complex absolute values of its conjugates are
q(w+i)/2.

When X has good reduction over OK , it is nothing more than the Weil con-
jecture. Conjecture 3.1 is known to be true in the following cases.

Theorem 3.2. Conjecture 3.1 for (X,w) is true in the following cases:

(1) K is of equal characteristic ([13, 40, 22]).

(2) X is an abelian variety ([44, Exposé IX]).

(3) w ≤ 2 or w ≥ 2 dimX − 2 ([30, 10, 32]).

(4) X is uniformized by a Drinfeld upper half space ([21, 9]).

(5) char(K) = 0, and X is geometrically connected and is a set-theoretic
complete intersection in a projective smooth toric variety ([33]).

Proof. See the references given above.

We will prove a torsion analogue of Conjecture 3.1 in each of the above cases.

Remark 3.3. There are other cases in which Conjecture 3.1 is known to be
true. For example, in [20], it is proved for a certain projective threefold with
strictly semistable reduction, and in [24], it is proved for a variety which is
uniformized by a product of Drinfeld upper half spaces. We will not discuss a
torsion analogue of Conjecture 3.1 for these varieties in this paper for the sake
of simplicity.

Remark 3.4. Assume that char(K) = 0. Let X be a proper smooth geomet-
rically connected scheme over K. Of course, if X is a set-theoretic complete
intersection in the projective space Pn, then X satisfies the condition (5), and
the weight-monodromy conjecture holds for X by [33]. This was already a
new result (even for smooth hypersurfaces in Pn). However, the condition (5)
that X is a set-theoretic complete intersection in a projective smooth toric
variety (rather than in Pn) might be more interesting. To the best of our
knowledge, there are no known examples of X that do not seem to satisfy this
condition (5). (See also [34, p.12].) We remark that, if X is a set-theoretic
complete intersection in Pn and dimX ≥ 2, then XK is simply connected (see
[1, Theorem 1.5] for example), however this does not hold for a set-theoretic
complete intersection in a projective smooth toric variety in general; for exam-
ple, a hypersurface P1 × E in P1 × P2 over an algebraically closed field, where
E ⊂ P2 is an elliptic curve, is not simply connected.
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3.2 A torsion analogue of the weight-monodromy conjecture

Let {Hℓ}ℓ 6=p be a family of finite dimensional GK-representations over Fℓ. We
define the monodromy filtrations when the family {Hℓ}ℓ 6=p satisfies the follow-
ing two conditions:

• There is an open subgroup J of IK such that, for every ℓ 6= p, the action
of J on Hℓ is unipotent (i.e. σ is a unipotent operator on Hℓ for every
σ ∈ J).

• n := supℓ 6=p dimFℓ
Hℓ <∞.

The action of J factors through tℓ for every ℓ 6= p. Take an element σ ∈ J such
that, for all but finitely many ℓ 6= p, the image tℓ(σ) ∈ Zℓ(1) is a generator.
For a prime number ℓ 6= p with ℓ ≥ n, we define

Nσ := log(σ) :=
∑

1≤i≤n−1

(−1)i+1

i
(σ − 1)i : Hℓ → Hℓ.

(See also Lemma 2.9.) Let
{Mi,Fℓ

}i

be the filtration on Hℓ associated with Nσ. The filtration {Mi,Fℓ
}i is indepen-

dent of J and σ ∈ J up to excluding finitely many ℓ 6= p. Moreover, for all but
finite many ℓ 6= p, we have

χcyc(g)Nσg = gNσ

for every g ∈ GK , where χcyc(g) is the reduction modulo ℓ of χcyc(g), and
{Mi,Fℓ

}i is stable by the action of GK . We note that the filtration induced
by σ − 1 coincides with {Mi,Fℓ

}i up to excluding finitely many ℓ 6= p. We
call {Mi,Fℓ

}i the monodromy filtration with Fℓ-coefficients on Hℓ. For all but
finitely many ℓ 6= p, the action of J is trivial on Mi,Fℓ

/Mi−1,Fℓ
for every i, and

we can ask whether the family {Mi,Fℓ
/Mi−1,Fℓ

}ℓ of GK -representations over Fℓ

is of weight w for some integer w in the sense of Definition 2.6.
Now let us come back to our original setting. By the work of Rapoport-Zink
[30] and de Jong’s alteration [10, Theorem 6.5], there is an open subgroup J of
IK such that, for every ℓ 6= p, the action of J on Hw

ét(XK ,Λℓ) is unipotent and
factors through tℓ, where Λℓ is Qℓ, Zℓ, or Fℓ. (See also [2, Proposition 6.3.2].)
By Theorem 2.3, we have

sup
ℓ 6=p

dimFℓ
Hw

ét(XK ,Fℓ) <∞.

(Alternatively, this fact can be proved by using the argument in [29, Section
6.2.4].) Therefore, the family {Hw

ét(XK ,Fℓ)}ℓ 6=p satisfies the above two condi-
tions, and we have the monodromy filtration {Mi,Fℓ

}i with Fℓ-coefficients on
Hw

ét(XK ,Fℓ) for all but finitely many ℓ 6= p. We put

GrMi,Fℓ
:= Mi,Fℓ

/Mi−1,Fℓ
.
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Here we omit X and w from the notation. This will not cause any confusion
in the context.
A torsion analogue of Conjecture 3.1 can be formulated as follows:

Conjecture 3.5. Let X be a proper smooth scheme over K and w an integer.
The family {GrMi,Fℓ

}ℓ of finite dimensional GK -representations over Fℓ defined
above is of weight w + i for every i in the sense of Definition 2.6.

Remark 3.6. When X has good reduction over OK , Conjecture 3.5 is a con-
sequence of the Weil conjecture and Theorem 2.3; see Corollary 2.4.

The main theorem of this paper is as follows.

Theorem 3.7. Let X be a proper smooth scheme over K and w an integer.
We assume that (X,w) satisfies one of the conditions (1)–(5) in Theorem 3.2.
Then the assertion of Conjecture 3.5 for (X,w) is true.

We will prove Theorem 3.7 in Sections 5–9.

3.3 Torsion-freeness of monodromy operators

In this subsection, we discuss a relation between Conjecture 3.1 and Conjec-
ture 3.5.
Let J be an open subgroup of IK such that the action of J on Hw

ét(XK ,Λℓ) is
unipotent for every ℓ 6= p, where Λℓ is Qℓ, Zℓ, or Fℓ. Take an element σ ∈ J
such that tℓ(σ) ∈ Zℓ(1) is a generator for all but finitely many ℓ 6= p.

Lemma 3.8. By pulling back the monodromy filtration {Mi,Qℓ
}i on

Hw
ét(XK ,Qℓ), we define a filtration {Mi,Zℓ

}i on Hw
ét(XK ,Zℓ). Then the

following two statements for (X,w) are equivalent:

(i) For all but finitely many ℓ 6= p, the reduction modulo ℓ of {Mi,Zℓ
}i coin-

cides with the monodromy filtration {Mi,Fℓ
}i with Fℓ-coefficients via the

isomorphism Hw
ét(XK ,Zℓ)⊗Zℓ

Fℓ
∼
→ Hw

ét(XK ,Fℓ) (see Theorem 2.3).

(ii) The cokernel of

(σ − 1)i : Hw
ét(XK ,Zℓ)→ Hw

ét(XK ,Zℓ)

is torsion-free for all but finitely many ℓ 6= p and every i ≥ 0.

Proof. Use Theorem 2.3, Lemma 2.10 and Nakayama’s lemma.

Definition 3.9. If the two equivalent statements in Lemma 3.8 hold for (X,w),
then we say that (X,w) satisfies the property (t-f).

Let G be a group and let M be an abelian group equipped with an action
of G. Let MG denote the G-fixed part of M . Let MG denote be the group of
G-coinvariants of M .
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Proposition 3.10.

(i) If (X,w) satisfies the property (t-f), then for all but finitely many ℓ 6= p,
we have

Hw
ét(XK ,Zℓ)

IK ⊗Zℓ
Fℓ

∼
→ Hw

ét(XK ,Fℓ)
IK

and the Zℓ-module Hw
ét(XK ,Zℓ)IK is torsion-free.

(ii) If Conjecture 3.5 for (X,w) is true, then (X,w) satisfies the property
(t-f).

(iii) Assume that Conjecture 3.1 for (X,w) is true and (X,w) satisfies the
property (t-f). Then Conjecture 3.5 for (X,w) is true.

Proof. In the proof, we will use the weight filtration {Wi,Qℓ
}i onHw

ét(XK ,Qℓ),
which we will recall in Remark 4.16.
(i) In order to prove the assertion, we may assume that J is a normal open
subgroup of IK . We recall that for a finite group G of order m and a finitely
generated Zℓ-module M , if m is not divisible by ℓ, then the G-fixed part MG

is the image of the idempotent

e : M →M, x 7→
1

m

∑

g∈G

gx

and e induces an isomorphism MG
∼
→ MG. Using this fact, we see that

it suffices to prove the same statement for J-fixed parts and Hw
ét(XK ,Zℓ)J .

This follows from the torsion-freeness of the cokernel of σ− 1: Hw
ét(XK ,Zℓ)→

Hw
ét(XK ,Zℓ) and Lemma 2.8. (To be more precise, we only need the condi-

tion (ii) of Lemma 3.8 for i = 1 here.)
(ii) Let {Wi,Qℓ

}i be the weight filtration on Hw
ét(XK ,Qℓ). By pulling back

{Wi,Qℓ
}i to Hw

ét(XK ,Zℓ), we have a filtration {Wi,Zℓ
}i on Hw

ét(XK ,Zℓ). We

have (σ−1)(Wi,Zℓ
) ⊂Wi−2,Zℓ

and the i-th graded piece GrWi,Zℓ
:= Wi,Zℓ

/Wi−1,Zℓ

is torsion-free for every i. By Theorem 2.3, for all but finitely many ℓ 6= p, we
can define a filtration {Wi,Fℓ

}i onHw
ét(XK ,Fℓ) by taking the reduction modulo ℓ

of the filtration {Wi,Zℓ
}i. We define GrWi,Fℓ

:= Wi,Fℓ
/Wi−1,Fℓ

. Then the family

{GrWi,Fℓ
}ℓ is of weight w + i; see Proposition 4.15 (ii) in Section 4.

Now we assume that Conjecture 3.5 for (X,w) is true. Then {Wi,Fℓ
}i coincides

with the monodromy filtration {Mi,Fℓ
}i with Fℓ-coefficients for all but finitely

many ℓ 6= p by Lemma 2.2. Thus, the i-th iterate (σ − 1)i of σ − 1 induces an
isomorphism

(σ − 1)i : GrWi,Fℓ

∼
→ GrW−i,Fℓ

for every i ≥ 0 and all but finitely many ℓ 6= p. By Nakayama’s lemma, we
have

(σ − 1)i : GrWi,Zℓ

∼
→ GrW−i,Zℓ

for every i ≥ 0 and all but finitely many ℓ 6= p. It follows that the weight
filtration {Wi,Qℓ

}i coincides with the monodromy filtration {Mi,Qℓ
}i for all but

finitely many ℓ 6= p, and the condition (i) in Lemma 3.8 is satisfied.
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(iii) Assume that Conjecture 3.1 for (X,w) is true. Then the weight filtration
{Wi,Qℓ

}i coincides with the monodromy filtration {Mi,Qℓ
}i for every ℓ 6= p.

Assume further that (X,w) satisfies the property (t-f). Then it follows that
the monodromy filtration {Mi,Fℓ

}i coincides with {Wi,Fℓ
}i for all but finitely

many ℓ 6= p. Thus, Conjecture 3.5 for (X,w) is true.

For later use, we state the following result as a corollary.

Corollary 3.11. Assume that (X,w) satisfies one of conditions (1)–(5) in
Theorem 3.2. Then, for all but finitely many ℓ 6= p, we have Hw

ét(XK ,Zℓ)
IK⊗Zℓ

Fℓ
∼
→ Hw

ét(XK ,Fℓ)
IK and the Zℓ-module Hw

ét(XK ,Zℓ)IK is torsion-free.

Proof. Use Theorem 3.7 and Proposition 3.10.

Remark 3.12. Let Z be a proper smooth scheme over a finitely gener-
ated field F over Fp. Cadoret-Hui-Tamagawa proved that the natural map
Hw

ét(ZF ,Zℓ)→ Hw
ét(ZF ,Fℓ) gives an isomorphism

Hw
ét(ZF ,Zℓ)

Gal(F sep/F.Fp) ⊗Zℓ
Fℓ

∼
→ Hw

ét(ZF ,Fℓ)
Gal(F sep/F.Fp)

for all but finitely many ℓ 6= p; see [5, Theorem 4.5]. Corollary 3.11 is a local
analogue of this result.

4 The weight spectral sequence and preliminary reductions

In this section, we discuss some properties of the weight spectral sequence
which are related to Conjecture 3.1 and Conjecture 3.5. We also review some
standard reductions used in the proof of Theorem 3.7.

4.1 Torsion-freeness of the weight spectral sequence

Let K be a Henselian discrete valuation field. For a prime number ℓ 6= char(k),
let tℓ : IK → Zℓ(1) be the map defined in the same way as in Section 3. Let
̟ ∈ OK be a uniformizer.
Let X be a proper scheme over OK . We assume that X is strictly semi-stable
over OK purely of relative dimension d, i.e. it is, Zariski locally on X, étale over

SpecOK [T0, . . . , Td]/(T0 · · ·Tr −̟)

for an integer r with 0 ≤ r ≤ d.
Let X and Y be the generic fiber and the special fiber of X, respectively. Let
D1, . . . , Dm be the irreducible components of Y . We equip each Di with the
reduced induced subscheme structure. Following [32], we introduce some nota-
tion. Let v be a non-negative integer. For a non-empty subset I ⊂ {1, . . . ,m}
of cardinality v + 1, we define DI := ∩i∈IDi (scheme-theoretic intersection).
If DI is non-empty, then it is purely of codimension v in Y . Moreover, we put

Y (v) :=
∐

I⊂{1,...,m},Card I=v+1

DI .
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Theorem 4.1 (Rapoport-Zink [30, Satz 2.10], Saito [32, Corollary 2.8]). Let
the notation be as above. Let ℓ 6= char(k) be a prime number. Let Λℓ be Z/ℓnZ,
Zℓ, or Qℓ.

(i) We have a spectral sequence

Ev,w
1,Λℓ

=
⊕

i≥max(0,−v)

Hw−2i
ét (Y

(v+2i)

k
,Λℓ(−i))⇒ Hv+w

ét (XK ,Λℓ),

which is compatible with the action of GK . Here (−i) denotes the Tate
twist.

(ii) Let σ ∈ IK be an element such that tℓ(σ) ∈ Zℓ(1) is a generator. There
exists the following homomorphism of spectral sequences:

Ev,w
1,Λℓ

=
⊕

i≥max(0,−v) H
w−2i(Y v+2i)(−i)

1⊗tℓ(σ)

��

+3 Hv+w(X)

σ−1

��

Ev+2,w−2
1,Λℓ

=
⊕

i−1≥max(0,−v−2) H
w−2i(Y v+2i)(−i+ 1) +3 Hv+w(X).

Here we write

Hw(Y v)(i) := Hw
ét(Y

(v)

k
,Λℓ(i)) and Hw(X) := Hw

ét(XK ,Λℓ)

for short.

Proof. For (i), see [30, Satz 2.10] and [32, Corollary 2.8 (1)]. We remark
that the spectral sequence constructed in [30] coincides with that constructed
in [32] up to signs; see [32, p.613]. In this paper, we use the spectral sequence
constructed in [32]. The assertion (ii) follows from [32, Corollary 2.8 (2)].

The spectral sequence in Theorem 4.1 is called the weight spectral sequence
with Λℓ-coefficients.

Remark 4.2. The boundary map dv,w1 : Ev,w
1,Λℓ
→ Ev+1,w

1,Λℓ
of the weight spectral

sequence is of the form
∑

i≥max(0,−v) δv+2i,∗ + δ∗v+2i, where

δv+2i,∗ : H
w−2i
ét (Y

(v+2i)

k
,Λℓ(−i))→ Hw−2i+2

ét (Y
(v+2i−1)

k
,Λℓ(−i+ 1))

and

δ∗v+2i : H
w−2i
ét (Y

(v+2i)

k
,Λℓ(−i))→ Hw−2i

ét (Y
(v+2i+1)

k
,Λℓ(−i))

can be described as follows. For subsets J ⊂ I ⊂ {1, . . . ,m} with Card I =
CardJ + 1, let iJI : DI → DJ be the inclusion. Let

iJI,∗ : H
w−2i
ét ((DI)k,Λℓ(−i))→ Hw−2i+2

ét ((DJ)k,Λℓ(−i+ 1))
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denote the Gysin map. Then we have

δv+2i,∗ =
∑

J⊂I⊂{1,...,m},Card I=Card J+1=v+2i+1

ǫ(J, I)iJI,∗.

Here ǫ(J, I) ∈ {1,−1} is an integer which only depends on J ⊂ I (and is in
particular independent of ℓ 6= char(k)); see [32, p.610] for the precise definition.
Similarly, let

i∗JI : H
w−2i
ét ((DJ )k,Λℓ(−i))→ Hw−2i

ét ((DI)k,Λℓ(−i))

denote the restriction map. Then we have

δ∗v+2i =
∑

J⊂I⊂{1,...,m},Card I=Card J+1=v+2i+2

ǫ(J, I)i∗JI .

See [32, Proposition 2.10] for details.

We will discuss the degeneracy of the weight spectral sequence. For the weight
spectral sequence with Qℓ-coefficients, we have the following theorem:

Theorem 4.3. The weight spectral sequence with Qℓ-coefficients degenerates
at E2 for every ℓ 6= char(k).

Proof. See [27, Theorem 0.1] or [22, Theorem 1.1 (1)].

For the weight spectral sequence with Λℓ-coefficients, where Λℓ is either Fℓ

or Zℓ, we can prove the following theorem, which relies on the Weil conjecture
and Theorem 2.3.

Theorem 4.4.

(i) Let Λℓ be either Fℓ or Zℓ. For all but finitely many ℓ 6= char(k), the
weight spectral sequence with Λℓ-coefficients degenerates at E2.

(ii) For all but finitely many ℓ 6= char(k), the Zℓ-module Ev,w
r,Zℓ

is torsion-free

and we have Ev,w
r,Zℓ
⊗Zℓ

Fℓ
∼
→ Ev,w

r,Fℓ
for every r ≥ 1 and all v, w.

Proof. By Theorem 2.3, we see that Ev,w
1,Zℓ

is torsion-free and Ev,w
1,Zℓ
⊗Zℓ

Fℓ
∼
→

Ev,w
1,Fℓ

for all but finitely many ℓ 6= char(k).
If char(k) = 0, by Remark 4.2 and the comparison of étale and singular
cohomology for varieties over C, it follows that the cokernel of the map
dv,w1 : Ev,w

1,Zℓ
→ Ev+1,w

1,Zℓ
is torsion-free for all but finitely many ℓ 6= char(k) and

all v, w. Thus Theorem 4.4 is a consequence of Theorem 4.3 and Lemma 2.8.
We assume that p := char(k) > 0 for the rest of the proof. We claim that, for
all but finitely many ℓ 6= p, the weight spectral sequence with Fℓ-coefficients
degenerates at E2. First, we assume that k is finitely generated over Fp. The
family {Ev,w

1,Fℓ
}ℓ 6=p of Gk-modules over Fℓ is of weight w by Corollary 2.4. Since
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Ev,w
r,Fℓ

is a subquotient of Ev,w
1,Fℓ

for r ≥ 2, the family {Ev,w
r,Fℓ
}ℓ 6=p is also of weight

w. Since the map dv,wr : Ev,w
r,Λℓ
→ Ev+r,w−r+1

r,Λℓ
is Gk-equivariant, it is a zero map

for r ≥ 2 and all but finitely many ℓ 6= p by (the proof of) Lemma 2.1. The
general case can be deduced from the case where k is finitely generated over
Fp by using Néron’s blowing up as in [22, Proposition 5.1].
We shall prove that, for all but finitely many ℓ 6= char(k), the Zℓ-module
Ev,w

2,Zℓ
is torsion-free and we have Ev,w

2,Zℓ
⊗Zℓ

Fℓ
∼
→ Ev,w

2,Fℓ
for all v, w. We note

that, with Theorem 4.3, this will imply that the weight spectral sequence with
Zℓ-coefficients degenerates at E2 for all but finitely many ℓ 6= p and that the
assertion (ii) holds for r ≥ 3. By the degeneracy of the weight spectral sequence
with Fℓ-coefficients, we have

∑

v,w

dimFℓ
Ev,w

2,Fℓ
=

∑

i

dimFℓ
Hi

ét(XK ,Fℓ)

for all but finitely many ℓ 6= p. By Theorem 4.3, we have

∑

v,w

rankZℓ
Ev,w

2,Zℓ
=

∑

i

rankZℓ
Hi

ét(XK ,Zℓ).

By Theorem 2.3 and Lemma 2.8, for all but finitely many ℓ 6= p, we have

∑

i

rankZℓ
Hi

ét(XK ,Zℓ) =
∑

i

dimFℓ
Hi

ét(XK ,Fℓ)

and
rankZℓ

Ev,w
2,Zℓ
≤ dimFℓ

Ev,w
2,Fℓ

for all v, w. It follows that, for all but finitely many ℓ 6= p, we have

rankZℓ
Ev,w

2,Zℓ
= dimFℓ

Ev,w
2,Fℓ

for all v, w. Now the assertion follows from Lemma 2.8.
The proof of Theorem 4.4 is complete.

We shall discuss a relation between Conjecture 3.5 and the weight spectral
sequence. Let σ ∈ IK be an element such that, for every ℓ 6= char(k), the
image tℓ(σ) ∈ Zℓ(1) is a generator. Let i ≥ 0 be an integer. The i-th iterate of
(1⊗ tℓ(σ))

i induces a homomorphism

(1 ⊗ tℓ(σ))
i : E−i,w+i

2,Λℓ
→ Ei,w−i

2,Λℓ
,

see Theorem 4.1 (ii). Then we have the following conjecture.

Conjecture 4.5. Let X be a proper strictly semi-stable scheme over SpecOK

purely of relative dimension d. Let the notation be as above. We put Λℓ = Qℓ

(resp. Λℓ = Fℓ,Zℓ). Let w be an integer. Then for every ℓ 6= char(k) (resp. all
but finitely many ℓ 6= char(k)), the above morphism (1 ⊗ tℓ(σ))

i : E−i,w+i
2,Λℓ

→

Ei,w−i
2,Λℓ

is an isomorphism for every i ≥ 0.
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Remark 4.6. Assume that char(k) = 0. Then Conjecture 4.5 for (X,Λℓ = Qℓ)
is true; see [22, Theorem 1.1 (2)]. Therefore, by a similar argument as in the
proof of Theorem 4.4, we see that Conjecture 4.5 also holds for (X,Λℓ = Fℓ)
and (X,Λℓ = Zℓ).

Lemma 4.7. Conjecture 4.5 for (X, w,Λℓ = Fℓ) is equivalent to Conjecture 4.5
for (X, w,Λℓ = Zℓ).

Proof. By Theorem 4.4, it follows that, for all but finitely many ℓ 6= char(k),
the Zℓ-module Ev,w

2,Zℓ
is torsion-free and we have Ev,w

2,Zℓ
⊗Zℓ

Fℓ
∼
→ Ev,w

2,Fℓ
for all v, w.

Therefore the assertion follows from Nakayama’s lemma.

In the rest of this subsection, we assume that K is a non-archimedean local
field.

Remark 4.8. It is well known that Conjecture 3.1 for (X,w) is equivalent to
Conjecture 4.5 for (X, w,Λℓ = Qℓ); see [22, Proposition 2.5] for example.

Similarly to Remark 4.8, we have the following lemma.

Lemma 4.9. Let X be a proper strictly semi-stable scheme over SpecOK purely
of relative dimension d with generic fiber X and let w be an integer. Then
Conjecture 3.5 for (X,w) is equivalent to Conjecture 4.5 for (X, w,Λℓ = Fℓ).

Proof. By Theorem 4.4, the weight spectral sequence with Fℓ-coefficients de-
generates at E2 for all but finitely many ℓ 6= p. Hence the claim follows from
Lemma 2.2, Corollary 2.4, Theorem 4.1 (ii), and the definition of the mon-
odromy filtration.

4.2 Standard reductions

In this subsection, let K be a non-archimedean local field. We shall recall some
standard techniques used to study the weight-monodromy conjecture, which
are based on de Jong’s alterations and the hard Lefschetz theorem.
We begin with the following easy lemma.

Lemma 4.10. Let X be a proper smooth scheme over K and w an integer. For
a finite extension L of K, Conjecture 3.5 for (X,w) is equivalent to Conjec-
ture 3.5 for (XL, w).

Proof. This is a consequence of Lemma 2.7.

In the proof of Theorem 3.7, we will need to replace a proper smooth scheme X
over K by a projective smooth alteration or a strictly semi-stable alteration
of X in some cases. The following lemma will be useful in such a context.

Lemma 4.11. Let F be a field. Let X,Y be proper smooth connected schemes
over F of dimension d and f : X → Y an alteration, i.e. a proper surjective
generically finite morphism over F . Let Λℓ = Qℓ (resp. Λℓ = Fℓ,Zℓ). Let
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w ≥ 0 be an integer. Then the map f∗ : Hw
ét(YF ,Λℓ) → Hw

ét(XF ,Λℓ) maps
Hw

ét(YF ,Λℓ) isomorphically onto a direct summand of Hw
ét(XF ,Λℓ) as a GF -

module for every ℓ 6= char(F ) (resp. all but finitely many ℓ 6= char(F )). In
particular, if F = K and Conjecture 3.5 holds for (X,w), then Conjecture 3.5
also holds for (Y,w).

Proof. The proof of this lemma is standard; see the proofs of [21, Lemma 6.1],
[29, Théorème 6.2.2], and [36, Theorem 1.4]. We briefly recall the argument
for the convenience of the reader.
The second assertion follows from the first assertion. So we shall prove the
first assertion. Let f∗ : H

w
ét(XF ,Z/ℓ

nZ) → Hw
ét(YF ,Z/ℓ

nZ) be the push-

forward map, which can be defined as the dual of f∗ : H2d−w
ét (YF ,Z/ℓ

nZ(d))→

H2d−w
ét (XF ,Z/ℓ

nZ(d)) by using Poincaré duality. We claim that the composi-
tion

Hw
ét(YF ,Z/ℓ

nZ)
f∗

→ Hw
ét(XF ,Z/ℓ

nZ)
f∗
→ Hw

ét(YF ,Z/ℓ
nZ)

is the map x 7→ mx, where m is the degree of f . It follows that the same holds
for Zℓ-coefficients by taking inverse limits, and then holds for Qℓ-coefficients
by tensoring with Qℓ. The first assertion easily follows from these facts.
Let TrX denote the trace map H2d

ét (XF ,Z/ℓ
nZ(d)) → Z/ℓnZ, and similarly

for TrY . In order to prove the claim, it suffices to prove that TrX ◦f
∗ coincides

with mTrY as a map fromH2d
ét (YF ,Z/ℓ

nZ(d)) to Z/ℓnZ. Let V be a dense open
subset of Y such that f−1(V ) → V is a finite flat morphism. Since we have
H2d

ét,c(VF ,Z/ℓ
nZ(d))

∼
→ H2d

ét (YF ,Z/ℓ
nZ(d)) and H2d

ét,c(f
−1(V )F ,Z/ℓ

nZ(d))
∼
→

H2d
ét (XF ,Z/ℓ

nZ(d)), the claim follows from [42, Exposé XVIII, Théorème 2.9];
see especially (Var 3) and (Var 4)(I). (We remark that f−1(V )→ V need not
be étale here.)

Let us record the following two results for future reference, which are based on
de Jong’s alterations and the hard Lefschetz theorem.

Lemma 4.12. Let X be a proper smooth geometrically connected scheme over K
of dimension d.

(i) (See [10, Theorem 6.5].) There exist a finite extension L of K and a
proper strictly semi-stable connected scheme Z over SpecOL purely of
relative dimension d such that the generic fiber Z of Z is an alteration of
XL.

(ii) If Conjecture 4.5 for (Z, w,Λℓ = Fℓ) holds, then Conjecture 3.5 for (X,w)
holds.

Proof. (i) This is due to de Jong [10, Theorem 6.5].
(ii) Use Lemma 4.9, Lemma 4.10, and Lemma 4.11.

Lemma 4.13. Let w ≥ 0 be an integer. We assume that char(K) = 0. We as-
sume further that, for every finite extension L of K, Conjecture 3.5 for (Z,w)
holds for every proper smooth scheme Z over L with dimZ ≤ w. Then Con-
jecture 3.5 for (X,w) holds for every proper smooth scheme X over K.
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Proof. Let X be a proper smooth scheme over K. We shall prove Conjec-
ture 3.5 for (X,w) under the assumptions. We may assume thatX is connected.
By [10, Theorem 4.1], there exists a projective smooth connected scheme Z
over K with an alteration Z → X . In order to prove Conjecture 3.5 for (X,w),
it is enough to prove Conjecture 3.5 for (Z,w) by Lemma 4.11. Thus we may
assume that X is projective.
Since the hard Lefschetz theorem with Q-coefficients holds for singular coho-
mology of projective smooth varieties over C, the hard Lefschetz theorem with
Fℓ-coefficients holds for étale cohomology of projective smooth varieties over K
for all but finitely many ℓ by Theorem 2.3. (See also Remark 4.14.) There-
fore, by taking general hyperplane sections if necessary, we may assume that
dimX ≤ w. Then Conjecture 3.5 holds for (X,w) by assumption.

Remark 4.14. In [14, Complément 6], Gabber announced the hard Lefschetz
theorem with Zℓ-coefficients (for all but finitely many ℓ) for étale cohomology
of projective smooth varieties in positive characteristic. Using this fact, we can
remove the assumption that char(K) = 0 in Lemma 4.13. (We will not use this
fact in this paper.)

We close this section with the following well known results.

Proposition 4.15. Let X be a proper smooth scheme over SpecK and w an
integer. Let Frob ∈ GK be a lift of the geometric Frobenius element.

(i) There is a non-zero monic polynomial P (T ) ∈ Z[T ] such that, for all but
finitely many ℓ 6= p, we have P (Frob) = 0 on Hw

ét(XK ,Zℓ).

(ii) For every ℓ 6= p, there exists a unique increasing, separated, exhaustive
filtration

{Wi,Qℓ
}i

on Hw
ét(XK ,Qℓ) which is stable by the action of GK and satisfies the

following property. For every i, there exists a Weil qw+i-polynomial
Pi(T ) ∈ Z[T ] such that Pi(Frob) = 0 on the i-th graded piece GrWi,Qℓ

:=
Wi,Qℓ

/Wi−1,Qℓ
. Moreover, we can take the polynomial Pi(T ) ∈ Z[T ] in-

dependent of ℓ 6= p.

(iii) Assume that Conjecture 3.1 for (X,w) is true. Then, for every i, there
exists a Weil qw+i-polynomial Pi(T ) ∈ Z[T ] such that, for every ℓ 6= p,
we have Pi(Frob) = 0 on the i-th graded piece GrMi,Qℓ

of the monodromy
filtration on Hw

ét(XK ,Qℓ).

Proof. We may assume that X is geometrically connected. By [10, The-
orem 6.5], there is a proper strictly semi-stable connected scheme Z over
SpecOL as in Lemma 4.12 (i). We may further assume that K = L. By
Lemma 4.11, we see that Hw

ét(XK ,Qℓ) is a direct summand of Hw
ét(ZK ,Qℓ) as

a GK -representation for every ℓ 6= p.
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Let {F i
Qℓ
}i be the decreasing filtration on Hw

ét(ZK ,Qℓ) arising from the weight

spectral sequence. The filtration {F i
Qℓ
}i defines a decreasing filtration on

Hw
ét(XK ,Qℓ), which is also denoted by {F i

Qℓ
}i. Let {Wi,Qℓ

}i be the increasing
filtration on Hw

ét(XK ,Qℓ) defined by

Wi,Qℓ
:= F−i

Qℓ
.

Since the i-th graded piece GrWi,Qℓ
:= Wi,Qℓ

/Wi−1,Qℓ
is a subquotient ofE−i,w+i

1,Qℓ
,

by the Weil conjecture, there exists a Weil qw+i-polynomial Pi(T ) ∈ Z[T ] such
that, for every ℓ 6= p, we have Pi(Frob) = 0 on GrWi,Qℓ

. Thus the assertion (ii)
follows.
The assertion (i) follows from (ii) and Theorem 2.3. If Conjecture 3.1 for
(X,w) is true, the filtration {Wi,Qℓ

}i coincides with the monodromy filtration
{Mi,Qℓ

}i. Therefore the assertion (iii) follows from (ii).

Remark 4.16. We call the filtration {Wi,Qℓ
}i in Proposition 4.15 the weight

filtration on Hw
ét(XK ,Qℓ). (The numbering used here differs from the one of

[13, Proposition-définition (1.7.5)].)

Remark 4.17. Let Frob ∈ GK be a lift of the geometric Frobenius element.
Let X be a proper smooth scheme over K. It is conjectured that the char-
acteristic polynomial PFrob,ℓ(T ) of Frob acting on Hw

ét(XK ,Qℓ) is in Z[T ] and
independent of ℓ 6= p. If X is a surface or K is of equal characteristic, this
conjecture is true; see [28, Corollary 2.5] and [23, Theorem 1.4]. (See also [40,
Theorem 3.3].) If this conjecture and Conjecture 3.1 for (X,w) are true, then
we can take Pi(T ) in Proposition 4.15 (iii) as the characteristic polynomial of
Frob acting on GrMi,Qℓ

.

5 Equal characteristic cases

In this section, we will prove Theorem 3.7 in the case (1). We will use the
language of ultraproducts following [4]. We first recall some properties of ul-
traproducts which we need. For details, see [6, Appendix] for example. The
notation used here is similar to that of [4].

5.1 Ultraproducts

Let L be an infinite set of prime numbers. We define

F :=
∏

ℓ∈L

Fℓ,

where Fℓ is an algebraic closure of Fℓ. For a subset S ⊂ L, let eS be the
characteristic function of L\S, which we consider as an element of F . Attaching
to an ultrafilter u on L a prime ideal

mu := 〈eS | S ∈ u〉 ⊂ F
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defines a bijection from the set of ultrafilters on L to SpecF . Note that every
prime ideal of F is a maximal ideal. We say that an ultrafilter u on L is
principal if it corresponds to a principal ideal. For a non-principal ultrafilter u,
we define

Q
u
:= F/mu.

It is a field of characteristic 0 and is isomorphic to the field of complex num-
bers C. The field Q

u
is called the ultraproduct of {Fℓ}ℓ∈L (with respect to the

non-principal ultrafilter u). The ring homomorphism F → Q
u
is flat; see [6,

Lemma in Section 4.1.4].

Remark 5.1. Let L′ ⊂ L be a subset such that L\L′ is finite. The projection
F →

∏
ℓ∈L′ Fℓ defines a bijection from the set of non-principal ultrafilters on

L′ to the set of non-principal ultrafilters on L.

Let {Mℓ}ℓ∈L be a family of Fℓ-vector spaces. We define

M :=
∏

ℓ∈L

Mℓ.

For the F -module M , the following assertions are equivalent.

• M is a finitely generated F -module.

• M is a finitely presented F -module.

• supℓ∈L dimFℓ
Mℓ <∞.

We put Mu := M ⊗F Q
u
for a non-principal ultrafilter u. We will use a similar

notation for a family {fℓ}ℓ∈L of maps of Fℓ-vector spaces.

Lemma 5.2. Let {Mℓ}ℓ∈L and {Nℓ}ℓ∈L be families of Fℓ-vector spaces. Assume
that M and N are finitely generated F -modules. Let {fℓ}ℓ∈L be a family of maps
fℓ : Mℓ → Nℓ of Fℓ-vector spaces. Then the following assertions are equivalent.

(i) fu : Mu → Nu is an isomorphism for every non-principal ultrafilter u.

(ii) fℓ : Mℓ → Nℓ is an isomorphism for all but finitely many ℓ ∈ L.

Proof. For a subset S ⊂ L which is contained in every non-principal ultrafil-
ter, the complement L\S is finite. Hence the lemma follows from [6, Lemma
4.3.3].

Let K be a Henselian discrete valuation field. Assume that p := char(k) > 0.
Let L be the set of prime numbers ℓ 6= p. Let X be a proper strictly semi-
stable scheme over OK purely of relative dimension d. We retain the notation
of Section 4.
Let u be a non-principal ultrafilter on L. Since the map F → Q

u
is flat, we

have the following weight spectral sequence with Q
u
-coefficients:

Ev,w

1,Q
u

=
⊕

i≥max(0,−v)

Hw−2i
ét (Y

(v+2i)

k
,Q

u
(−i))⇒ Hv+w

ét (XK ,Q
u
).
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Here we define

Hw
ét(XK ,Q

u
) := (

∏

ℓ 6=p

Hw
ét(XK ,Fℓ))⊗F Q

u
,

and similarly for Hw−2i
ét (Y

(v+2i)

k
,Q

u
(−i)). For an element σ ∈ IK such that,

for every ℓ 6= p, the image tℓ(σ) ∈ Zℓ(1) is a generator, we have a monodromy
operator

(1⊗ tu(σ))
i : E−i,w+i

2,Q
u

→ Ei,w−i

2,Q
u

for all w, i ≥ 0 in a similar way as in Section 4.

Lemma 5.3. Conjecture 4.5 for (X, w,Λℓ = Fℓ) is equivalent to the assertion
that the morphism

(1⊗ tu(σ))
i : E−i,w+i

2,Q
u

→ Ei,w−i

2,Q
u

is an isomorphism for every non-principal ultrafilter u on L and every i ≥ 0.

Proof. The F -module
∏

ℓ 6=p(E
v,w
2,Fℓ
⊗Fℓ

Fℓ) is finitely generated for all v, w by
Theorem 2.3. Hence the assertion follows from Lemma 5.2.

Finally, we define an ultraproduct variant of the notion of weight. Let F be
a finitely generated field over Fp and let u be a non-principal ultrafilter on L.
Let {Hℓ}ℓ∈L be a family of finite dimensional GF -representations over Fℓ such
that the F -module H is finitely generated. Then Hu is a finite dimensional
representation of GF over Q

u
. (We do not impose any continuity conditions

here.) Let w be an integer. Let ι : Q
u

∼= C be an isomorphism. We say that
Hu is ι-pure of weight w if the following conditions are satisfied:

• There is an integral scheme U of finite type over Fp with function field
F such that the family {Hℓ}ℓ∈L comes from a family {Fℓ}ℓ∈L of locally
constant constructible Fℓ-sheaves on U .

• Moreover, for every closed point x ∈ U and for every eigenvalue α of
Frobx acting on Hu, we have |ι(α)| = (qx)

w/2.

(See also Section 2.1.) We say that Hu is pure of weight w if it is ι-pure of
weight w for every ι : Q

u

∼= C.

5.2 Proof of Theorem 3.7 in the case (1)

We shall prove Theorem 3.7 in the case (1). By Lemma 4.12, it suffices to prove
the following theorem.

Theorem 5.4. Let K be a Henselian discrete valuation field of equal charac-
teristic p > 0. Then Conjecture 4.5 for Λℓ = Fℓ is true.

For this, we use the same strategy as in [22]. The only problem is that we
cannot use Weil II [13] directly since it works with étale cohomology with Qℓ-
coefficients. By using the ultraproduct variant of Weil II established by Cadoret
[4], the same arguments as in [22] can be carried out.
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Proof. The proof is divided into three steps. First, we reduce to the case
where OK is the Henselization of the local ring of the generic point of a smooth
divisor in a smooth variety over Fp. Second, we reduce to the case where K is
the function field of a smooth curve over Fp. Finally, we apply the ultraproduct
variant of Weil II [4]. We recall the arguments in more detail for the reader’s
convenience.
Let L be the set of prime numbers ℓ 6= p. Let X be a proper strictly semi-
stable scheme over OK purely of relative dimension d with generic fiber X .
We retain the notation of Section 5.1. By Lemma 5.3, it suffices to prove that
the morphism (1 ⊗ tu(σ))

i : E−i,w+i

2,Q
u

→ Ei,w−i

2,Q
u

is an isomorphism for every

non-principal ultrafilter u on L and for all w, i ≥ 0.
By using Néron’s blowing up as in [22, Section 4] and by using an argument
in the proof of [22, Lemma 3.2], we may assume that there exist a connected
smooth scheme SpecA over Fp and an element ̟ ∈ A satisfying the following
properties:

• D := SpecA/(̟) is an irreducible divisor on A which is smooth over Fp

and OK is the Henselization of the local ring of SpecA at the prime ideal
(̟) ⊂ A.

• There is a proper scheme X̃ over SpecA which is smooth over SpecA[1/̟]

such that X̃⊗A OK
∼= X.

Let f : X̃→ SpecA be the structure morphism. The function field of D is the
residue field k of K, which is finitely generated over Fp.
Let w ≥ 0 be an integer. By the same construction as in Section 3.2, after
removing finitely many ℓ 6= p from L, we can construct the monodromy fil-
tration {Mi,Fℓ

}i with Fℓ-coefficients on Hw
ét(XK ,Fℓ) for every ℓ ∈ L. We have

supℓ∈L dimFℓ
GrMi,Fℓ

< ∞, where GrMi,Fℓ
:= Mi,Fℓ

/Mi−1,Fℓ
is the i-th graded

piece. Let u be a non-principal ultrafilter on L. By an analogue of Lemma 4.9,
it suffices to prove that the Gk-representation over Q

u

(
∏

ℓ∈L

GrMi,Fℓ
⊗Fℓ

Fℓ)⊗F Q
u

is pure of weight w + i for every i.
By applying a construction given in [13, Variante (1.7.8)] to the higher direct
image sheaf Rwf∗Fℓ and by using a similar construction as in Section 3.2,
we get a locally constant constructible Fℓ-sheaf Fℓ[D] on D with a filtration
{Mi,ℓ}i (after removing finitely many ℓ 6= p from L). For every i, the stalk of
the quotient

GrMi,ℓ :=Mi,ℓ/Mi−1,ℓ

at the geometric generic point of D is isomorphic to GrMi,Fℓ
⊗Fℓ

Fℓ as a Gk-
representation for every ℓ ∈ L.
Let x ∈ D be a closed point. We can find a connected smooth curve C ⊂
SpecA over Fp such that C ∩ D = {x} and the image of ̟ ∈ A in OC,x is a
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uniformizer. Let L be the field of fractions of the completion ÔC,x of OC,x.

We write Z := X̃ ⊗A L. By the construction, for all but finitely many ℓ ∈ L,
the stalk (GrMi,ℓ )x is isomorphic to the base change of the i-th graded piece
of the monodromy filtration with Fℓ-coefficients on Hw

ét(ZL,Fℓ) as a Gκ(x)-

representation. Thus we see that (
∏

ℓ∈L(GrMi,ℓ )x)⊗F Q
u
is pure of weight w+ i

by [4, Corollary 5.3.2.4] together with Corollary 2.4 and [4, Lemma in 11.3].
This fact completes the proof of Theorem 5.4.

6 The case of set-theoretic complete intersections in projective
smooth toric varieties

In this section, we will prove Theorem 3.7 in the case (5). Let K be a non-
archimedean local field. We assume that char(K) = 0.

6.1 A uniform variant of a theorem of Huber

We will recall a result from [19] which will be used in the proof of Theorem 3.7
in the case (5). In this section, we will freely use the theory of adic spaces
developed by Huber. The theory of étale cohomology for adic spaces was
developed in [17].
Let Cp be the completion of K, which is a complete non-archimedean field (in
the sense of [17, Definition 1.1.3]). Let L ⊂ Cp be a subfield such that it is
also a complete non-archimedean field with the induced topology. Let OL be
the ring of integers of L. For a scheme X of finite type over L, the adic space
associated with X is denoted by

Xad := X ×SpecL Spa(L,OL);

see [16, Proposition 3.8]. For an adic space Y locally of finite type over
Spa(L,OL), we denote by

YCp
:= Y ×Spa(L,OL) Spa(Cp,OCp

)

the base change of Y to Spa(Cp,OCp
).

Let us recall the following theorem due to Huber:

• Let Y be a proper scheme over L and X →֒ Y a closed immersion. We
have a closed immersion Xad →֒ Y ad of adic spaces over Spa(L,OL).
We fix a prime number ℓ 6= p. Then, there is an open subset V of Y ad

containing Xad such that the pull-back map

Hw
ét(VCp

,Fℓ)→ Hw
ét(X

ad
Cp
,Fℓ)

of étale cohomology groups is an isomorphism for every w.

(See [18, Theorem 3.6] for a more general result.) Scholze used this theorem in
his proof of the weight-monodromy conjecture in the case (5).
In our case, we need the following uniform variant of Huber’s theorem:
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Theorem 6.1 ([19, Corollary 4.11]). Let Y be a proper scheme over L and
X →֒ Y a closed immersion. We have a closed immersion Xad →֒ Y ad of adic
spaces over Spa(L,OL). Then, there is an open subset V of Y ad containing
Xad such that, for every prime number ℓ 6= p, the pull-back map

Hw
ét(VCp

,Fℓ)→ Hw
ét(X

ad
Cp
,Fℓ)

is an isomorphism for every w.

Proof. See [19, Corollary 4.11].

6.2 Proof of Theorem 3.7 in the case (5)

The proof is the same as that of [33, Theorem 9.6], except that we use Theo-
rem 6.1 instead of Huber’s theorem. We shall give a sketch here. We will use
the terminology in [33].
Let X be a geometrically connected projective smooth scheme over K which is
a set-theoretic complete intersection in a projective smooth toric variety YΣ,K

over K associated with a fan Σ. After replacing K by a finite extension, we
may assume that the action of IK on Hw

ét(XK ,Fℓ) is unipotent and factors
through tℓ for every w and for every ℓ 6= p.
Let ̟ be a uniformizer of K. We fix a system {̟1/pn

}n≥0 ⊂ K of pn-th roots
of ̟. Let L be the completion of

⋃
n≥0 K(̟1/pn

), which is a perfectoid field.

Let GL = Aut(L/L) be the absolute Galois group of L, where L is the algebraic
closure of L in Cp. Then we have a surjection GL → Gk. Thus there exists
a lift Frob ∈ GL of the geometric Frobenius element. Let IL be the kernel
of the map GL → Gk. We have IL ⊂ IK . Since

⋃
n≥0 K(̟1/pn

) is a pro-p
extension of K, there exists an element σ ∈ IL such that, for every ℓ 6= p, the
image tℓ(σ) ∈ Zℓ(1) is a generator. In other words, there exists an element
σ ∈ IL such that it defines the monodromy filtration with Fℓ-coefficients on
Hw

ét(XK ,Fℓ) for all but finitely many ℓ 6= p. Therefore, it suffices to prove
a natural analogue of Theorem 3.7 for the family {Hw

ét(XK ,Fℓ)}ℓ 6=p of GL-
representations. Moreover, in order to prove this, we can replace L by a finite
extension if necessary.
Let L♭ be the tilt of L. We have an identification GL = GL♭ . The choice of the
system {̟1/pn

}n≥0 ⊂ K gives an identification between L♭ and the completion
of the perfection of the field of formal Laurent series k((t)) over k.
Let YΣ,L be the toric variety over L associated with the fan Σ and let Y ad

Σ,L

be the adic space associated with YΣ,L. We define Y ad
Σ,L♭ similarly. By [33,

Theorem 8.5 (iii)], we have a projection

π : Y ad
Σ,L♭ → Y ad

Σ,L

of topological spaces. By Theorem 6.1, there exists an open subset V of Y ad
Σ,L

containing Xad
L such that, for every prime number ℓ 6= p, the pull-back map

Hw
ét(VCp

,Fℓ)→ Hw
ét(X

ad
Cp
,Fℓ)
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is an isomorphism for every w. By [33, Corollary 8.8], there exists a closed
subscheme Z of YΣ,L♭ , which is defined over a global field (i.e. the function field

of a smooth connected curve over k), such that Zad is contained in π−1(V ) and
dimZ = dimX . We may assume that Z is irreducible. By [10, Theorem 4.1],
there exists an alteration Z ′ → Z, which is defined over a global field, such
that Z ′ is projective and smooth over L♭. (We note that L♭ is a perfect field.)
We may assume further that Z ′ and Z are geometrically irreducible.
We have the following composition for every ℓ 6= p and every w:

Hw
ét(X

ad
Cp
,Fℓ)

∼
→ Hw

ét(VCp
,Fℓ)→ Hw

ét(π
−1(V )C♭

p
,Fℓ)

→ Hw
ét(Z

ad
C♭

p
,Fℓ)→ Hw

ét((Z
′
C♭

p
)ad,Fℓ),

where the first map is the inverse map of the pull-back map, the second map
is induced by [33, Theorem 8.5 (v)], and the last two maps are the pull-back
maps. By using a comparison theorem of Huber [17, Theorem 3.8.1], we obtain
a map

Hw
ét(XCp

,Fℓ)→ Hw
ét(Z

′
C♭

p
,Fℓ)

for every ℓ 6= p and every w. This map is compatible with the actions of
G := GL = GL♭ on both sides and compatible with the cup products.
For w = 2dimX , by the same argument as in the proof of [33, Lemma 9.9], we
conclude that the above map is an isomorphism for all but finitely many ℓ 6= p
from the fact that the image of the (dimX)-th power of the Chern class of an
ample line bundle on YΣ,C♭

p
under the map

H2 dimX
ét (YΣ,C♭

p
,Fℓ)→ H2 dimX

ét (Z ′
C♭

p
,Fℓ)

is not zero for all but finitely many ℓ 6= p. By Poincaré duality, it follows that
Hw

ét(XCp
,Fℓ) is a direct summand of Hw

ét(Z
′
C♭

p
,Fℓ) as a G-representation for ev-

ery w and for all but finitely many ℓ 6= p. Since Z ′ is defined over a global field,
a natural analogue of Theorem 3.7 holds for the family {Hw

ét(Z
′
C♭

p
,Fℓ)}ℓ 6=p of G-

representations by the case (1). This fact completes the proof of Theorem 3.7
in the case (5).

7 The case of abelian varieties

We shall prove Theorem 3.7 in the case (2). We use the same notation as in
Section 3. Let A be an abelian variety over K. Let A be the Néron model
of A. After replacing K by a finite extension, we may assume that A has semi-
abelian reduction, i.e. the identity component A 0

s of the special fiber As of A

is a semi-abelian variety over k. In this case, the action of IK on the ℓ-adic
Tate module TℓAK of A is unipotent and factors through tℓ : IK → Zℓ(1) for
every ℓ 6= p. Let σ ∈ IK be an element such that, for every ℓ 6= p, the image
tℓ(σ) ∈ Zℓ(1) is a generator.
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Since the quotient As/A
0
s is a finite étale group scheme over k, for all but

finitely many ℓ 6= p, we have

A[ℓn](K)IK = A
0
s [ℓ

n](k)

for every n ≥ 1 by the Néron mapping property and [3, Section 7.3, Proposi-
tion 3]. It follows that

(TℓAK)IK ⊗Zℓ
Fℓ = (TℓAK ⊗Zℓ

Fℓ)
IK

for all but finitely many ℓ 6= p. For such ℓ 6= p, the cokernel of σ − 1 acting on
TℓAK is torsion-free by Lemma 2.8. Note that we have (σ − 1)2 = 0 on TℓAK ;
see the proof of [44, Exposé I, Théorème 6.1] for instance. Therefore we see that
Conjecture 3.5 for H1

ét(AK ,Fℓ) is true by Theorem 3.2 and Proposition 3.10.
Let w be an integer. We can define the monodromy filtration on⊗wH1

ét(AK ,Fℓ)
for all but finitely many ℓ 6= p; see Section 3.2. The assertion of Con-
jecture 3.5 also holds for ⊗wH1

ét(AK ,Fℓ) by the formula in [13, Proposition
(1.6.9)(i)]. (Although the base field is of characteristic 0 in loc. cit., the same
formula holds with Fℓ-coefficients for all but finitely many ℓ 6= p.) Since
Hw

ét(AK ,Fℓ) = ∧wH1
ét(AK ,Fℓ) is a direct summand of ⊗wH1

ét(AK ,Fℓ) as a
GK-representation for all but finitely many ℓ 6= p, it follows that Conjecture 3.5
holds for Hw

ét(AK ,Fℓ).
The proof of Theorem 3.7 in the case (2) is complete.

8 The cases of surfaces

We shall prove Theorem 3.7 in the case (3). We retain the notation of Section 3.
By Poincaré duality, it is enough to prove the case where w ≤ 2. By the theory
of Picard varieties, the case where w = 1 (and the case where dimX = 1)
follows from the case (2). We may assume that w = 2. Since we have already
proved Theorem 3.7 in the case (1), we may assume that char(K) = 0. By
Lemma 4.7, Lemma 4.12, and Lemma 4.13, it suffices to prove that, for a
proper strictly semi-stable scheme X over OK purely of relative dimension 2,
Conjecture 4.5 for (X, w = 2,Λℓ = Zℓ) is true.
We use the same notation as in Section 4.1. We fix an element σ ∈ IK such
that, for every ℓ 6= p, the image tℓ(σ) ∈ Zℓ(1) is a generator. Using the
generator tℓ(σ), we identify Zℓ(i) with Zℓ. We shall prove that the map (1 ⊗
tℓ(σ))

2 : E−2,4
2,Zℓ

→ E2,0
2,Zℓ

is an isomorphism for all but finitely many ℓ 6= p. This
map is identified with the map

Ker(d−2,4
1 : H0(Y (2),Zℓ)→ H2(Y (1),Zℓ))

→ Coker(d1,01 : H0(Y (1),Zℓ)→ H0(Y (2),Zℓ))

induced by the identity map on H0(Y (2),Zℓ). Here we put Hi(Y (j),Zℓ) :=

Hi
ét(Y

(j)

k
,Zℓ) for simplicity. The map d−2,4

1 is a linear combination of Gysin
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maps and the map d1,01 is a linear combination of restriction maps; see Re-
mark 4.2. Since dim Y (1) = 1 and dimY (2) = 0 (if they are not empty), each
cohomology group is the base change of a finitely generated Z-module and
the above morphism is defined over Z. These Z-structures are independent of
ℓ 6= p. Hence E−2,4

2,Zℓ
, E2,0

2,Zℓ
, and the cokernel of the map E−2,4

2,Zℓ
→ E2,0

2,Zℓ
are

torsion-free for all but finitely many ℓ 6= p. Therefore the assertion follows from
the fact that the map E−2,4

2,Qℓ
→ E2,0

2,Qℓ
is an isomorphism for every ℓ 6= p; see

Theorem 3.2 and Remark 4.8.

To prove that the map 1⊗ tℓ(σ) : E
−1,3
2,Zℓ

→ E1,1
2,Zℓ

is an isomorphism for all but
finitely many ℓ 6= p, it suffices to prove that the restriction of the canonical
pairing on H1(Y (1),Zℓ) to the image of the boundary map

d0,11 : E0,1
1,Zℓ

= H1(Y (0),Zℓ)→ E1,1
1,Zℓ

= H1(Y (1),Zℓ)

is perfect for all but finitely many ℓ 6= p. For every i, let Pic0Di
be the Picard

variety of Di, i.e. the underlying reduced subscheme of the identity component
of the Picard scheme associated with Di. Similarly, let Pic0Di∩Dj

be the Picard
variety of Di ∩ Dj for every i < j. Since Di and Di ∩ Dj are proper smooth
schemes, the group schemes Pic0Di

and Pic0Di∩Dj
are abelian varieties. The

Kummer sequence gives isomorphisms H1(Di,Zℓ) ∼= Tℓ(Pic
0
Di

)k and H1(Di ∩

Dj ,Zℓ) ∼= Tℓ(Pic
0
Di∩Dj

)k. (Recall that we have fixed the isomorphism Zℓ(1) ∼=

Zℓ.) By Remark 4.2, under these isomorphisms, the map d0,11 can be identified
with the homomorphism of Tate modules induced by a linear combination of
pull-back maps

ρ : ×i Pic
0
Di
→ ×i<j Pic

0
Di∩Dj

.

We write A := ×i<j Pic
0
Di∩Dj

. Let B ⊂ A be the image of ρ. By the Poincaré

complete reducibility theorem, the image of d0,11 coincides with TℓBk for all
but finitely many ℓ 6= p. The canonical pairing on H1(Y (1),Zℓ) is equal to the
pairing on TℓAk induced by a principal polarization on Ak. The restriction
of the pairing on TℓAk to TℓBk is induced by a polarization on Bk, which is
perfect for all but finitely many ℓ 6= p. This fact proves our assertion.

The proof of Theorem 3.7 in the case (3) is complete.

Remark 8.1. The proof given above (or the proof of Conjecture 3.1 for sur-
faces given in [30]) cannot be generalized directly to higher dimensional cases.
For example, if X is a proper strictly semi-stable scheme over OK purely of
relative dimension 3, then in order to prove Conjecture 4.5 for (X, w = 3), we
have to investigate the linear combination δ∗0 : H

2(Y (0),Zℓ)→ H2(Y (1),Zℓ) of
restriction maps defined in Remark 4.2. However, not much is known about
this map in general.
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9 The cases of varieties uniformized by Drinfeld upper half
spaces

9.1 The ℓ-independence of the weight-monodromy conjecture in
certain cases

In this subsection, we make some preparations for the proof of Theorem 3.7 in
the case (4). Let k be a finite field of characteristic p. Let Y be a projective
smooth scheme over k. Let ℓ 6= p be a prime number. The cycle map for
codimension w cycles is denoted by

clwℓ : Zw(Y )→ H2w
ét (Yk,Zℓ(w)),

where Zw(Y ) is the group of algebraic cycles of codimension w on Y . We denote
by Nw(Y ) := Zw(Y )/ ∼num the group of algebraic cycles of codimension w
on Y modulo numerical equivalence. It is known that Nw(Y ) is a finitely
generated Z-module [43, Exposé XIII, Proposition 5.2].

Assumption 9.1 (Assumption (∗)). We say that Y satisfies the assumption
(∗) if, for every ℓ 6= p, we have Hw

ét(Yk,Qℓ) = 0 for every odd integer w and
the Qℓ-vector space H2w

ét (Yk,Qℓ(w)) is spanned by the image of clwℓ for every
w ≥ 0.

Lemma 9.2. Let Y be a projective smooth scheme over k. Assume that Y
satisfies the assumption (∗).

(i) The cycle map clwℓ induces an isomorphism

Nw(Y )⊗Z Qℓ
∼
→ H2w

ét (Yk,Qℓ(w))

for every ℓ 6= p and w ≥ 0.

(ii) For all but finitely many ℓ 6= p, we have Hw
ét(Yk,Zℓ) = 0 for every odd

integer w and the cycle map clwℓ induces an isomorphism

Nw(Y )⊗Z Zℓ
∼
→ H2w

ét (Yk,Zℓ(w))

for every w ≥ 0.

Proof. See [21, Lemma 2.1] for the assertion (i). The first part of (ii) follows
from (i) and Theorem 2.3. The second part of (ii) can be proved by using the
same argument as in [21, Lemma 2.1] together with Theorem 2.3.

Let K be a non-archimedean local field with residue field k. Let X be a projec-
tive strictly semi-stable scheme over OK purely of relative dimension d. We use
the same notation as in Section 4. So D1, . . . , Dm are the irreducible compo-
nents of the special fiber Y of X and for every non-empty subset I ⊂ {1, . . . ,m},
we define DI := ∩i∈IDi. We will consider the weight spectral sequences aris-
ing from X. We fix an element σ ∈ IK such that, for every ℓ 6= p, the image
tℓ(σ) ∈ Zℓ(1) is a generator.
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Proposition 9.3. Let the notation be as above. Assume that for every non-
empty subset I ⊂ {1, . . . ,m}, the intersection DI satisfies the assumption (∗).
We assume further that, for some prime number ℓ′ 6= p, the map

(1⊗ tℓ′(σ))
i : E−i,w+i

2,Qℓ′
→ Ei,w−i

2,Qℓ′

is an isomorphism for all w, i ≥ 0. Then Conjecture 4.5 for X is true.

Proof. Using the generator tℓ(σ), we identify Zℓ(i) with Zℓ. Let Λℓ be Qℓ

(resp. Zℓ). The map dv,w1 : Ev,w
1,Λℓ
→ Ev+1,w

1,Λℓ
is a linear combination of Gysin

maps and restriction maps, whose coefficients are in Z and independent of ℓ 6= p;
see Remark 4.2. By Lemma 9.2, for every ℓ 6= p (resp. all but finitely many
ℓ 6= p), this map is the base change of a homomorphism of finitely generated
Z-modules which is independent of ℓ 6= p. Moreover, the same holds for the
map (1 ⊗ tℓ(σ))

i : E−i,w+i
2,Λℓ

→ Ei,w−i
2,Λℓ

. Conjecture 4.5 for X follows from this
fact.

9.2 Proof of Theorem 3.7 in the case (4)

We shall explain the precise statement. Let K be a non-archimedean local
field of characteristic 0. Let Ωd

K be the Drinfeld upper half space over K of
dimension d. It is a rigid analytic variety over K. Let Γ ⊂ PGLd+1(K) be a
discrete cocompact torsion-free subgroup. It is known that the quotient Γ\Ωd

K

is the rigid analytic variety associated with a projective smooth scheme X over
K. In this case, we say that X is uniformized by a Drinfeld upper half space.
We shall prove Conjecture 3.5 for X .
Let Ω̂d

K be the formal model of Ωd
K considered in [26], which is a flat formal

scheme locally of finite type over Spf OK . We can take the quotient Γ\Ω̂d
K .

There is a flat projective scheme X over SpecOK whose ̟-adic completion is
isomorphic to Γ\Ω̂d

K . Here ̟ is a uniformizer of K. The generic fiber of X
is isomorphic to X . Let D1, D2, . . . , Dm be the irreducible components of the
special fiber of X. As in the proof of [21, Theorem 1.1], after replacing Γ by a
finite index subgroup, we may assume that X is a projective strictly semi-stable
scheme over OK purely of relative dimension d and, for every non-empty subset
I ⊂ {1, 2, . . . ,m}, the intersection DI := ∩i∈IDi satisfies the assumption (∗).
Since the weight-monodromy conjecture for X is true, we see that Conjecture
3.5 for X is true by Lemma 4.9 and Proposition 9.3.

10 Applications to Brauer groups and Chow groups of codimen-
sion two cycles

In this section, let K be a non-archimedean local field.

10.1 Brauer groups

First, we recall well known results on the Chern class maps for divisors. Let Z
be a proper smooth scheme over a field F . Let NS(ZF ) be the Néron-Severi
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group of ZF , which is a finitely generated Z-module. The absolute Galois

group GF of F acts on NS(ZF ) via the isomorphism Aut(F/F )
∼
→ GF =

Gal(F sep/F ). Let Λℓ be either Qℓ or Zℓ. We put NS(ZF )Λℓ
:= NS(ZF )⊗Z Λℓ.

The Chern class map with Λℓ-coefficients gives an injection

NS(ZF )Λℓ
→֒ H2

ét(ZF ,Λℓ(1))

for every ℓ 6= char(F ).

Lemma 10.1. Let the notation be as above. Let Λℓ = Qℓ (resp. Λℓ = Zℓ).
Then the injection NS(ZF )Λℓ

→֒ H2
ét(ZF ,Λℓ(1)) maps NS(ZF )Λℓ

onto a direct
summand of H2

ét(ZF ,Λℓ(1)) as a GF -module for every ℓ 6= char(F ) (resp. all
but finitely many ℓ 6= char(F )).

Proof. We may assume that Z is connected. We first assume that Z is pro-
jective. Let d := dimZ. If d = 1, then NS(ZF )Λℓ

→ H2
ét(ZF ,Λℓ(1)) is an

isomorphism for every ℓ 6= char(F ) and the assertion is trivial. So we assume
that d ≥ 2. Let D be an ample divisor on Z. The cohomology class of D in
H2

ét(ZF ,Λℓ(1)) is also denoted by D. Let Dd−2 ∈ H2d−4
ét (ZF ,Λℓ(d− 2)) be the

(d − 2)-times self-intersection of D with respect to the cup product. We have
the following GF -equivariant map:

fD : H2
ét(ZF ,Λℓ(1))→ HomΛℓ

(NS(ZF )Λℓ
,Λℓ)

x 7→ (y 7→ tr(Dd−2 ∪ x ∪ y)),

where Dd−2 ∪ x ∪ y ∈ H2d
ét (ZF ,Λℓ(d)) is the cup product of the triple

(Dd−2, x, y), and tr : H2d
ét (ZF ,Λℓ(d)) → Λℓ is the trace map. By [43, Ex-

posé XIII, Théorème 4.6], we see that for every ℓ 6= char(F ) (resp. all but
finitely many ℓ 6= char(F )), the restriction of the map fD to NS(ZF )Λℓ

is an
isomorphism, and hence fD gives a GF -equivariant splitting of NS(ZF )Λℓ

→֒
H2

ét(ZF ,Λℓ(1)). This fact proves our claim.
The general case can be reduced to the case where Z is projective as follows. We
may assume that F is perfect after replacing F by the perfect closure of it. By
[10, Theorem 4.1], there exists an alteration Z ′ → Z such that Z ′ is a projective
smooth connected scheme over F . Since we have already proved the assertion
for Z ′, it suffices to prove the claim that the pull-back map NS(ZF )Λℓ

→
NS(Z ′

F
)Λℓ

gives a decomposition NS(Z ′
F
)Λℓ
∼= NS(ZF )Λℓ

⊕Nℓ as a GF -module
for every ℓ 6= char(F ) (resp. all but finitely many ℓ 6= char(F )). The pull-back
map NS(ZF )Q → NS(Z ′

F
)Q is a GF -equivariant injection. Since both NS(ZF )

and NS(Z ′
F
) are finitely generated Z-modules and the action of GF on NS(Z ′

F
)

factors through a finite quotient of GF , the claim follows.

For a scheme Z, let Br(Z) := H2
ét(Z,Gm) be the cohomological Brauer group.

Recall that Br(Z) is a torsion abelian group if Z is a Noetherian regular scheme;
see [15, Corollaire 1.8]. For an integer n, let Br(Z)[n] be the set of elements
killed by n. Let Br(Z)[p′] be the prime-to-p torsion part, i.e. the set of elements
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x ∈ Br(Z) such that we have nx = 0 for some non-zero integer n which is not
divisible by p.
Let X be a proper smooth scheme over the non-archimedean local field K. Let
ℓ 6= char(K) be a prime number. Let

chQℓ
: Pic(X)Qℓ

:= Pic(X)⊗Z Qℓ → H2
ét(XK ,Qℓ(1))

be the ℓ-adic Chern class map and let

chFℓ
: Pic(X)→ H2

ét(XK ,Fℓ(1))

be the ℓ-torsion Chern class map. They induce homomorphisms

c̃hQℓ
: Pic(X)Qℓ

→ H2
ét(XK ,Qℓ(1))

GK

and
c̃hFℓ

: Pic(X)→ H2
ét(XK ,Fℓ(1))

GK .

We will also call c̃hQℓ
(resp. c̃hFℓ

) the ℓ-adic (resp. ℓ-torsion) Chern class map.
We shall study the relation between the Chern class maps and the GK-fixed
part of the cohomological Brauer group Br(XK) of XK . (Here GK acts on

Br(XK) via Aut(K/K)
∼
→ GK .)

Theorem 10.2. Let X be a proper smooth scheme over K. Assume that the
ℓ-adic Chern class map c̃hQℓ

is surjective for all but finitely many ℓ 6= p. Then
the following assertions hold:

(i) The ℓ-torsion Chern class map c̃hFℓ
is surjective for all but finitely many

ℓ 6= p.

(ii) The GK -fixed part Br(XK)[ℓ]GK is zero for all but finitely many ℓ 6= p.

Proof. (i) By Lemma 10.1, there is a decomposition

H2
ét(XK ,Zℓ(1)) = NS(XK)Zℓ

⊕Mℓ

as a GK-module for all but finitely many ℓ 6= p. By the assumption, we have
Mℓ[1/ℓ]

GK = 0 for all but finitely many ℓ 6= p. It follows that, for all but
finitely many ℓ 6= p, every eigenvalue of a lift Frob ∈ GK of the geometric
Frobenius element acting on Mℓ[1/ℓ]

IK is different from 1.
By Proposition 4.15 (i), there exists a non-zero monic polynomial P (T ) ∈
Z[1/p][T ] such that, for all but finitely many ℓ 6= p, we have P (Frob) = 0
on H2

ét(XK ,Zℓ(1)). We write P (T ) in the form (T − 1)mQ(T ) for some non-
negative integer m and Q(T ) ∈ Z[1/p][T ] with Q(1) 6= 0. Then Q(Frob) = 0 on
Mℓ[1/ℓ]

IK , and hence Q(Frob) = 0 on M IK
ℓ for all but finitely many ℓ 6= p. By

Corollary 3.11, we have Q(Frob) = 0 on (Mℓ ⊗Zℓ
Fℓ)

IK = 0 for all but finitely
many ℓ 6= p. Since Q(T ) and T − 1 are relatively prime in Q[T ], we have
(Mℓ ⊗Zℓ

Fℓ)
GK = 0 for all but finitely many ℓ 6= p by Lemma 2.2. Now, the
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assertion follows from the fact that the natural map Pic(X) → (NS(XK) ⊗Z

Fℓ)
GK is surjective for all but finitely many ℓ 6= p.

(ii) The Kummer sequence gives a short exact sequence

0→ NS(XK)⊗Z Fℓ → H2
ét(XK ,Fℓ(1))→ Br(XK)[ℓ]→ 0

for every ℓ 6= char(K). Thus, by Lemma 10.1, there is a decomposition

H2
ét(XK ,Fℓ(1)) ∼= (NS(XK)⊗Z Fℓ)⊕ Br(XK)[ℓ]

as a GK -module for all but finitely many ℓ 6= p. Thus the assertion follows
from (i).

Corollary 10.3. Assume that char(K) = 0 (resp. char(K) = p). Let X be a

proper smooth scheme over K. Assume that the ℓ-adic Chern class map c̃hQℓ

is surjective for every ℓ 6= char(K). Then Br(XK)GK (resp. Br(XK)[p′]GK ) is
finite.

Proof. This follows from Theorem 10.2 and the fact that the union
∪n Br(XK)[ℓn]GK is finite for every ℓ 6= char(K) under the assumptions; see the
proof of [6, Corollary 1.5]. We shall give a proof of this fact for the convenience
of the reader.
We put

Tℓ Br(XK) := lim
←−
n

Br(XK)[ℓn]

and Vℓ Br(XK) := TℓBr(XK) ⊗Zℓ
Qℓ. As in the proof of Theorem 10.2, the

Kummer sequence and Lemma 10.1 give a decomposition

H2
ét(XK ,Qℓ(1)) ∼= NS(XK)Qℓ

⊕ Vℓ Br(XK)

as a GK-module for every ℓ 6= char(K). By the assumption, we
have (Vℓ Br(XK))GK = 0. Since TℓBr(XK) is torsion-free, we have
(Tℓ Br(XK))GK = 0 for every ℓ 6= char(K). It follows that ∪n Br(XK)[ℓn]GK is
finite for every ℓ 6= char(K).

Here we give an example of a projective smooth scheme over K for which c̃hQℓ

is surjective for every ℓ 6= char(K).

Corollary 10.4. Let X be a projective smooth scheme over K which is uni-
formized by a Drinfeld upper half space.

(i) The ℓ-adic Chern class map c̃hQℓ
is surjective for every ℓ 6= char(K).

(ii) The GK-fixed part Br(XK)GK (resp. Br(XK)[p′]GK ) is finite if char(K) =
0 (resp. char(K) = p).

Proof. (i) If d := dimX 6= 2, then H2
ét(XK ,Qℓ(1)) is one-dimensional for

every ℓ 6= char(K). If d = 2, then the GK-fixed part H2
ét(XK ,Qℓ(1))

GK is
one-dimensional for every ℓ 6= char(K) by [21, Lemma 7.1]. Therefore, for any

d ≥ 1, the ℓ-adic Chern class map c̃hQℓ
is surjective for every ℓ 6= char(K).

(ii) The assertion follows from (i) and Corollary 10.3.
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Remark 10.5. Let F be a field which is finitely generated over its prime sub-
field.

(i) Assume that char(F ) = p > 0. Let Z be a projective smooth variety over
F . Cadoret-Hui-Tamagawa proved that the Tate conjecture for divisors
on Z implies the finiteness of Br(ZF )[p

′]GF ; see [6, Corollary 1.5]. (If F
is finite, this result was proved by Tate; see also the references given in
[38, Section 4].)

(ii) Assume that char(F ) = 0. Let Z be an abelian variety or a K3 surface
over F . By using the Tate conjecture for divisors on Z and its torsion
analogue, Skorobogatov-Zarhin proved that Br(ZF )

GF is finite; see [35]
for details.

Remark 10.6. Let X be a proper smooth scheme over K. Assume that
char(K) = p or dimX = 2. If the ℓ′-adic Chern class map c̃hQℓ′

is surjec-
tive for some ℓ′ 6= p, then the same holds for every prime number ℓ 6= char(K).
For ℓ 6= p, this fact can be proved by using Lemma 10.1 and the ℓ-independence
conjecture stated in Remark 4.17 (it is a theorem under the assumptions). If
char(K) = 0, dimX = 2, and ℓ = p, we use a p-adic analogue of the ℓ-
independence conjecture for the Weil-Deligne representation associated with
H2

ét(XK ,Qp); see [28, Theorem 3.1].

10.2 Chow groups of codimension two cycles

In this subsection, following the strategy of Colliot-Thélène and Raskind [7], we
show some finiteness properties of the Chow group of codimension two cycles
on a proper smooth scheme over K.
First, we briefly recall a p-adic analogue of the weight-monodromy conjecture.
Assume that char(K) = 0. Let WK be the Weil group of K. Let X be a proper
smooth scheme over K. Let

WD(Hw
ét(XK ,Qp))

be the Weil-Deligne representation of WK over Qp associated with

Hw
ét(XK ,Qp); see [39, p.469]. We say that the p-adic analogue of the

weight-monodromy conjecture holds for (X,w) if WD(Hw
ét(XK ,Qp)) is pure of

weight w in the sense of [39, p.471].
Assume that there exists a proper strictly semi-stable scheme X overOK purely
of relative dimension d whose generic fiber is isomorphic to X . Let Y be the
special fiber of X. Then, by the semi-stable comparison isomorphism [41, The-
orem 0.2], the p-adic analogue of the weight-monodromy conjecture holds for
(X,w) if and only if the assertion of [25, Conjecture 3.27] holds for the logarith-
mic crystalline cohomology group Hw

log cris(Y/W (k))[1/p], where we endow Y
with the canonical log structure arising from the strictly semi-stable scheme X.
(Here W (k) is the ring of Witt vectors of k.)
The following results are analogues of [7, Theorem 1.5 and Theorem 1.5.1].
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Proposition 10.7. Let X be a proper smooth scheme over K and w an integer.
Let i be an integer with w < 2i.

(i) Assume that Conjecture 3.1 holds for (X,w). Then Hw
ét(XK ,Qℓ/Zℓ(i))

GK

is finite for every ℓ 6= p. Assume further that Conjecture 3.5 for (X,w)
is true. Then we have Hw

ét(XK ,Qℓ/Zℓ(i))
GK = 0 for all but finitely many

ℓ 6= p.

(ii) If char (K) = 0 and the p-adic analogue of the weight-monodromy con-
jecture is true for (X,w), then Hw

ét(XK ,Qp/Zp(i))
GK is finite.

Proof. For every ℓ 6= char(K), we have the following exact sequence of GK-
modules:

Hw
ét(XK ,Zℓ(i))→ Hw

ét(XK ,Qℓ(i))
fℓ
→ Hw

ét(XK ,Qℓ/Zℓ(i))

→ Hw+1
ét (XK ,Zℓ(i))tor → 0.

Here Hw+1
ét (XK ,Zℓ(i))tor is the torsion part of Hw+1

ét (XK ,Zℓ(i)). Let Hℓ de-
note the free part of Hw

ét(XK ,Zℓ(i)). We will use the continuous cohomology
group Hj(GK , Hℓ) defined in [37, Section 2]. It is a finitely generated Zℓ-
module for every ℓ 6= char(K).
(i) We assume that Conjecture 3.1 holds for (X,w). Since w < 2i, it follows that
Hw

ét(XK ,Qℓ(i))
GK = 0 for every ℓ 6= p. To show that Hw

ét(XK ,Qℓ/Zℓ(i))
GK

is finite for every ℓ 6= p, it suffices to show that (Im fℓ)
GK is finite for every

ℓ 6= p. For every ℓ 6= p, since Hw
ét(XK ,Qℓ(i))

GK = 0, we see that (Im fℓ)
GK is

isomorphic to the torsion part of H1(GK , Hℓ) by [37, Proposition (2.3)]. Hence
(Im fℓ)

GK is finite.
Assume further that Conjecture 3.5 for (X,w) is true. Since
Hw+1

ét (XK ,Zℓ(i))tor = 0 for all but finitely many ℓ 6= p by Theorem 2.3,
we have Im fℓ = Hw

ét(XK ,Qℓ/Zℓ(i)) for all but finitely many ℓ 6= p. Thus, to
show that Hw

ét(XK ,Qℓ/Zℓ(i))
GK = 0 for all but finitely many ℓ 6= p, it suffices

to prove that the Zℓ-module H1(GK , Hℓ) is torsion-free for all but finitely
many ℓ 6= p. We have the following exact sequence:

0→ H1(Gk, H
IK
ℓ )→ H1(GK , Hℓ)→ H1(IK , Hℓ).

Let Frob ∈ GK be a lift of the geometric Frobenius element. We have

H1(Gk, H
IK
ℓ ) = Coker(Frob−1: HIK

ℓ → HIK
ℓ )

and
H1(IK , Hℓ) = (Hℓ)IK ⊗Zℓ

Zℓ(−1).

We have HIK
ℓ ⊗Zℓ

Qℓ ⊂ M0,Qℓ
⊗Qℓ

Qℓ(i), where M0,Qℓ
is the 0-th part of the

monodromy filtration on Hw
ét(XK ,Qℓ). By Proposition 4.15 (iii), there exists

a non-zero monic polynomial P (T ) ∈ Z[1/p][T ] such that every root of P (T )
has complex absolute values q(w+j)/2 with j ≤ −2i and, for every ℓ 6= p, we
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have P (Frob) = 0 on HIK
ℓ ⊗Zℓ

Qℓ. Thus we also have P (Frob) = 0 on HIK
ℓ

for every ℓ 6= p. Since w < 2i, the polynomials P (T ) and T − 1 are relatively
prime in Q[T ]. Thus, we have H1(Gk, H

IK
ℓ ) = 0 for all but finitely many ℓ 6= p

by Lemma 2.2. Now, it remains to prove that the Zℓ-module H1(IK , Hℓ) is
torsion-free for all but finitely many ℓ 6= p. This follows from Proposition 3.10.
(ii) If char (K) = 0 and the p-adic analogue of the weight-monodromy conjec-
ture holds for (X,w), then we have Hw

ét(XK ,Qp(i))
GK = 0 if w < 2i. Then the

same argument as above shows that Hw
ét(XK ,Qp/Zp(i))

GK is finite.
The proof of Proposition 10.7 is complete.

Let X be a proper smooth scheme over K. The Chow group of codimension
two cycles on XK is denoted by CH2(XK). By combining Proposition 10.7
and [7, Proposition 3.1], we have the following results on the torsion part of
CH2(XK), which are local analogues of [7, Theorem 3.3 and Theorem 3.4].

Corollary 10.8. Let X be a proper smooth scheme over K.

(i) Assume that Conjecture 3.1 and Conjecture 3.5 hold for (X,w = 3). The
prime-to-p torsion part of CH2(XK)GK is finite.

(ii) Assume that char (K) = 0 and the p-adic analogue of the weight-
monodromy conjecture holds for (X,w = 3). Then ∪n CH2(XK)[pn]GK

is finite.

Proof. By [7, Proposition 3.1], there is a GK-equivariant injection

∪n CH
2(XK)[ℓn] →֒ H3

ét(XK ,Qℓ/Zℓ(2))

for every ℓ 6= char(K). Thus the assertions follow from Proposition 10.7.

Corollary 10.9.

(i) If (X,w = 3) satisfies one of the conditions (1)–(5) in Theorem 3.2, then
the prime-to-p torsion part of CH2(XK)GK is finite.

(ii) Assume that char (K) = 0 and (X,w = 3) satisfies one of the conditions
(2)–(4) in Theorem 3.2. Then the torsion part of CH2(XK)GK is finite.

Proof. (i) Use Theorem 3.2, Theorem 3.7, and Corollary 10.8 (i).
(ii) Under the assumptions, the p-adic analogue of the weight-monodromy con-
jecture holds for (X,w = 3). Indeed, if X is an abelian variety over K, then
this is well known; since we have Hw

ét(XK ,Qp) = ∧
wH1

ét(XK ,Qp), it suffices to
prove the p-adic analogue of the weight-monodromy conjecture for (Z,w = 1)
for every proper smooth scheme Z over K, and this follows from the hard Lef-
schetz theorem and [25, Théorème 5.3]. If X is a proper smooth surface overK,
by, this follows from what we have just seen. If X is uniformized by a Drinfeld
upper half space, this follows from [21, Theorem 6.3]. (See also [25, 3.33].)
Therefore, the assertion follows from (i) and Corollary 10.8 (ii).
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Remark 10.10.

(i) If X has good reduction over OK , the finiteness of the prime-to-p torsion
part of CH2(XK)GK was known; see the proof of [7, Theorem 3.4].

(ii) We assume that char(K) = 0. If dimX = 2 or H3
ét(XK ,Qℓ) = 0 for some

(and hence every) ℓ, then the finiteness of the torsion part of CH2(XK)GK

is known; see [8, Section 4] and the proof of [31, Theorem 4.1]. When
dimX = 2, it is a consequence of Roitman’s theorem; see [7, Remark 3.5]
for details.
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