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Abstract. We prove that Matui’s AH conjecture holds for graph
groupoids of infinite graphs. This is a conjecture which relates the
topological full group of an ample groupoid with the homology of the
groupoid. Our main result complements Matui’s result in the finite
case, which makes the AH conjecture true for all graph groupoids cov-
ered by the assumptions of said conjecture. Furthermore, we observe
that for arbitrary graphs, the homology of a graph groupoid coincides
with the K-theory of its groupoid C∗-algebra.
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1 Introduction

1.1 Background

Building on the discoveries in the series of papers [Mat06], [Mat12]
and [Mat15b] Hiroki Matui stated two conjectures concerning effective
minimal étale groupoids over Cantor spaces in [Mat16]. The HK conjecture
predicts that the K-theory of a reduced groupoid C∗-algebra is determined by
the groupoid’s homology as follows:

K0 (C
∗
r (G))

∼=

∞⊕

n=0

H2n(G) and K1 (C
∗
r (G))

∼=

∞⊕

n=0

H2n+1(G).
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The AH conjecture predicts that the abelianization of the topological full group
of a groupoid together with its first two homology groups fit together in an exact
sequence as follows:

H0(G)⊗ Z2 JGKab H1(G) 0.
j I

In several cases (including graph groupoids) the K-groups actually coincide
with the two first homology groups, which means that the AH conjecture in
these cases relates theK-theory of the groupoid C∗-algebra with the topological
full group.
Topological full groups associated to dynamical systems (and more generally to
étale groupoids) are perhaps best known for being complete invariants for con-
tinuous orbit equivalence (and groupoid isomorphism). And also for diagonal
preserving isomorphism of the associated C∗-algebrs. Roughly speaking, the
topological full group consists of all homeomorphisms which preserve the orbits
of the dynamical system in a continuous manner. Consult [GPS99], [Med11],
[Mat15a], [Mat15b], [NO19] and [dCGvW19] for some of these rigidity results.
Topological full groups also provide means of constructing new groups with
interesting properties, most notably by providing the first examples of finitely
generated simple groups that are amenable (and infinite) [JM13].
In the works of Matui mentioned above, both conjectures were verified for key
classes of groupoids, such as AF-groupoids, transformation groupoids of mini-
mal Z-actions and groupoids associated to shifts of finite type (SFT-groupoids).
Subsequently, other authors have expanded upon this. The HK conjecture
has been shown to hold for Katsura–Exel–Pardo groupoids [Ort18], Deaconu–
Renault groupoids of rank 1 and 2 [FKPS18] and groupoids of unstable equiv-
alence relations on one-dimensional solenoids [Yi20].
Alas, the HK conjecture is now known to be false in general. It fails to hold
for transformation groupoids associated to odometers on the infinite dihedral
group, as demonstrated in [Sca18]. Nevertheless, it is still interesting to in-
vestigate for which groupoids the conclusion of the HK conjecture holds. We
will say that a groupoid has the HK property when this is the case. In spite
of them providing counterexamples to the HK conjecture, the AH conjecture
was shown, also in [Sca18], to hold for transformation groupoids arising from
odometers. Hence the AH conjecture remains open. A notable difference be-
tween the two conjectures is that in the AH conjecture the maps involved are
specified, whereas in the HK conjecture it is only predicted that some isomor-
phisms exist.

1.2 Our results

The purpose of this paper is to investigate the AH conjecture for the class of
graph groupoids. As the SFT-groupoids prominently studied by Matui can be
realized as graph groupoids of finite graphs, the novelty lies in dealing with
infinite (directed) graphs. In particular with the presence of infinite emitters,
i.e. vertices that emit infinitely many edges.
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Our main motivating example has been the graph E∞ which has one vertex and
infinitely many loops. The graph groupoid GE∞

is the canonical groupoid model
for the (infinitely generated) Cuntz algebra O∞. This was a natural example
to explore as E∞ is the simplest possible graph having an infinite emitter. On
the other hand, its graph C∗-algebra O∞ has played—and continues to play—
an important role in the theory of C∗-algebras. Seeing as the topological full
groups of the canonical graph groupoid models of the other Cuntz algebras On

are isomorphic to the highly interesting Higman–Thompson groups Vn,1, we
believe it worthwhile to also investigate the topological full group JGE∞

K.
One of the assumptions in the AH conjecture is that the unit space of the
groupoid is compact, and this translates into the underlying graph having
finitely many vertices. We were indeed able to show that the AH conjecture
holds for these graph groupoids as well, so that our main result is the following.

Theorem A (see Corollary 9.5). Let E be a strongly connected graph with
finitely many vertices which is not a cycle graph. Then the AH conjecture
holds for the graph groupoid GE.

Let us remark that Corollary 9.5 applies to a slightly more general family of
graphs than in the preceding theorem, as well as to all restrictions of these
graph groupoids. The conclusion is that the AH conjecture holds for all graph
groupoids covered by the assumptions in said conjecture. Additionally, it holds
for any groupoid which is Kakutani equivalent to such a graph groupoid.
It should be mentioned that Matui in [Mat15b] not only proved that the
AH conjecture is true for restrictions of SFT-groupoids, but that these also
have the strong AH property. This means that the map j is injective, so that
one has a short exact sequence. This was done by constructing a suitable fi-
nite presentation of the topological full group. We investigate this subject in
Section 10, but we find that when the graph has an infinite emitter, then the
topological full group is not even finitely generated.
We also observe that all graph groupoids have the HK property. The following
theorem is but a small extension of already existing results (see the paragraph
following Theorem 4.6).

Theorem B (see Theorem 4.6). Let E be any graph. Then

H0(GE) ∼= K0(C
∗(E)),

H1(GE) ∼= K1(C
∗(E)),

Hn(GE) = 0, n ≥ 2.

Here C∗(E) denotes the graph C∗-algebra of E, which is canonically isomorphic
to the groupoid C∗-algebra C∗

r (GE). Since the K-groups of a graph C∗-algebra
are relatively easy to compute, Theorem B allows us to give a partial description
of the abelianization of the topological full group JGEKab via the AH conjecture.
Our proof of the AH conjecture for graph groupoids of infinite graphs will
in broad strokes follow a similar strategy as Matui’s proof for finite graphs

Documenta Mathematica 26 (2021) 1679–1727



1682 P. Nyland, E. Ortega

from [Mat15b]. However, we emphasize that there are several major differences
which make this a nontrivial generalization. There are steps and techniques in
Matui’s proof that no longer work—or even make sense—in the infinite setting.
A couple of significant differences are described below.

If E is a graph with infinite emitters (or sinks), then the unit space of its graph
groupoid is no longer full in the associated skew product (compare [FKPS18,
Lemma 6.1] and Remark 7.2). This means that we cannot deduce that the ker-
nel of the canonical graph cocycle is Kakutani equivalent to the skew product,
and in turn we cannot identify their homologies as is done in Matui’s proof.

A key component in Matui’s proof is the reduction to mixing shifts of finite
type. This is equivalent to the adjacency matrix of the associated finite graph
being primitive. In this case, the kernel of the cocycle is a minimal AF-
groupoid admitting a unique invariant probability measure arising from the
Perron eigenvalue of the adjacency matrix. This measure can then be used to
compare clopen subsets of the unit space and produce certain bisections con-
necting them. When passing to the infinite setting we lose all of this. We no
longer have a shift of finite type (nor any shift space for that matter) and no
Perron–Frobenius theory. Furthermore, the kernel of the cocycle is not minimal
anymore.

We also wish to remark that even though certain parts of the paper are quite
similar to parts of [Mat15b, Section 6], such as Section 8 and the second half
of the proof of Theorem 9.4, we have chosen to keep the exposition mostly self-
contained. We have done this in the best interest of the reader. For there are
still subtle differences, such as indexes being shifted or reversed, and some steps
being done in the opposite order. This is in part due to us having to consider
the inverse of a certain map from Matui’s proof, see Remarks 7.6 and 8.8. We
supply several remarks along the way which compare our approach to Matui’s
to signify where they differ.

The work laid down in this paper is not done with graph groupoids alone
in mind. It is our belief that these techniques can also be applied to other
groupoids which have an underlying “graph skeleton”, such as groupoids
arising from self-similar actions by groups on graphs, as studied by Nekra-
shevych [Nek09] and by Exel and Pardo [EP17]. The authors plan to explore
this avenue in future work. Groupoids associated to k-graphs and ultragraphs
are also obvious candidates.

1.3 Summary

We begin in Section 2 by giving the necessary background regarding étale
groupoids. This includes the topological full group, homology and skew prod-
ucts by cocycles. More background is given in Section 3, regarding graphs and
their associated groupoids. The graph groupoid GE associated to a graph E
has a canonical Z-valued cocycle denoted cE . Both the skew product groupoid
GE ×cE Z and the kernel subgroupoid HE := ker(cE) ⊆ GE play important
roles in the rest of the paper. We show that the graph groupoids of acyclic
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graphs are AF-groupoids. From this we deduce that both GE ×cE Z and HE

are AF-groupoids.
In Section 4 we describe the AH conjecture in more detail. One of the maps ap-
pearing in the AH conjecture is the index map I : JGK → H1(G). We extend its
definition to groupoids with non-compact unit space. We then the assumptions
in the AH conjecture for graph groupoids are translated into properties of the
underlying graphs. These turn out to be equivalent to the graph C∗-algebra
being a unital Kirchberg algebra. We also note that all graph groupoids have
the HK property by combining known results in the row-finite case with the
concept of desingularization. This yields Theorem B. The graph groupoids sat-
isfying the assumptions in the AH conjecture are shown to be purely infinite. It
then follows from a result of Matui (see Remark 4.12) that the AH conjecture
is equivalent to Property TR. Property TR means that the kernel of the index
map is generated by transpositions. Hence the rest of the paper, except for the
final section, is devoted to establishing Property TR for these graph groupoids.
Section 5 is devoted to showing that all AF-groupoids have cancellation, some-
thing which is needed several times in the proof of the main result. We point
out that this cancellation result may be of independent interest. Then in Sec-
tion 6 we present two long exact sequences in ample groupoid homology. One
of them relates the homology of a groupoid equipped with a cocycle with that
of the associated skew product. The other relates the homology of restrictions
to nested invariant subsets.
Both of these long exact sequences are applied to graph groupoids in Section 7.
This allows us to relate the homology of a graph groupoid GE with both the
skew product GE×cE Z and the kernel HE . As the latter two are AF-groupoids,
this truncates the long exact sequences to finite exact sequences. After some
work, we obtain the embeddings H1(GE) →֒ H0(HE) →֒ H0(GE ×cE Z). In
particular, we identify H1(GE) with ker(id−ϕ), where ϕ is an endomorphism
of H0(HE) given by “extending paths backwards”. We have to do some extra
work here because we cannot deduce that H0(HE) ∼= H0(GE×cE Z), as one can
for finite graphs. In Section 8 we associate each element α in the topological full

group JGEK with a finite clopen partition of the unit space G
(0)
E . This partition

is then used to give a description of the value I(α) of the index map under the
correspondence H1(GE) ∼= ker(id−ϕ) from the previous section.
The proof of our main result, Theorem A, is given in Section 9. We begin the
section by proving a technical lemma which plays a similar role as mixing of the
shift space does in Matui’s proof for SFT-groupoids. The way it is used in our
proof, however, is quite different from the way mixing is used. Next we show
that the assumptions in said lemma can always be arranged, by appealing to
the geometric moves on graphs from the classification program of unital graph
C∗-algebra [ERRS16]. After that we prove that strongly connected graphs with
infinite emitters have Property TR. The proof is quite long and draws upon all
of the preceding sections. By combining Matui’s result for strongly connected
finite graphs with our result for infinite graphs, together with another geometric
move on graphs, we deduce that the AH conjecture holds for all graph groupoids
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satisfying the assumptions in the AH conjecture.
We end the paper with Section 10 where we give a couple of examples and
obtain some consequences of the AH conjecture. In particular, we consider the
canonical graph groupoid model of O∞ and observe that either the topological
full group JGE∞

K is simple or GE∞
has the strong AH property, but not both.

In fact, these two properties are shown to be mutually exclusive whenever the
graph has an infinite emitter. This is in contrast to the case of finite graphs,
where one can have both. We also observe that when E has an infinite emitter,
then JGEK is not finitely generated. A partial description of the abelianization
JGEKab is also given in terms of the first two homology groups.

2 Étale groupoids

In this section we will collect the basic notions regarding étale groupoids that
we will need, as well as establish notation and conventions. Two standard ref-
erences for étale groupoids (and their C∗-algebras) are Renault’s thesis [Ren80]
and Paterson’s book [Pat99]. More recent accounts are found in e.g. [Exe08]
and [Sim17].
If two sets A and B are disjoint we will denote their union by A ⊔B when we
wish to emphasize that they are disjoint. When we write C = A ⊔B we mean
that C = A ∪B and that A and B are disjoint sets.

2.1 Topological groupoids

A groupoid is a set G equipped with a partially defined product G(2) → G
denoted (g, h) 7→ gh, where G(2) ⊆ G ×G is the set of composable pairs, and an
everywhere defined involutive inverse g 7→ g−1 satisfying the following axioms:

1. If (g1, g2), (g2, g3) ∈ G(2), then (g1g2, g3), (g1, g2g3) ∈ G(2) and (g1g2)g3 =
g1(g2g3).

2. For all g ∈ G, we have (g, g−1), (g−1, g) ∈ G(2).

3. If (g, h) ∈ G(2), then ghh−1 = g and g−1gh = h.

The set G(0) := {gg−1 | g ∈ G} is called the unit space, and the maps r, s : G →
G(0) given by r(g) = gg−1 and s(g) = g−1g are called the range and source
maps, respectively.
If G is given a topology in which the product and inverse map are continuous
we call G a topological groupoid. A topological groupoid is étale if it has a
locally compact topology in which the unit space is open and Hausdorff, and
the range and source maps are local homeomorphisms. For the most part we
will be dealing with étale groupoids which are (globally) Hausdorff, and then
G(0) is clopen in G. We say that an étale groupoid G is ample if G(0) is zero-
dimensional, i.e. admits a basis of compact open sets. Étale groupoids are
characterized by admitting a basis of bisections (defined below), and ample
groupoids by admitting a basis of compact bisections.
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For a subset A ⊆ G(0) we set GA := {g ∈ G | r(g) ∈ A} and GA := {g ∈
G | s(g) ∈ A}. For singleton sets A = {x} we drop the braces and write Gx

and Gx, respectively. The isotropy group of x ∈ G(0) is Gxx := Gx ∩ Gx, and
the isotropy of G is G′ :=

⊔
x∈G(0) Gxx . We say that G is principal if G′ = G(0),

and effective1 if the interior of G′ equals G(0). The G-orbit of a unit x is the
set OrbG(x) := s(Gx) = r(Gx). A subset A ⊆ G(0) is G-invariant if GA = GA.
We call G minimal when every G-orbit is dense in G(0). This is equivalent to
there being no nontrivial open (or closed) G-invariant subsets A ⊆ G(0). The
restriction of G to A is G|A := GA ∩ GA, and this is a subgroupoid of G with
unit space A. If A is open and G is étale, then G|A is an open étale subgroupoid
of G. We say that A is G-full if r(GA) = G(0), in other words if A intersects
every G-orbit. Two étale groupoids G and H are Kakutani equivalent if there
exists a G-full clopen subset A ⊆ G(0) and an H-full clopen subset B ⊆ H(0)

such that G|A ∼= H|B (as topological groupoids). This notion of groupoid
equivalence admits many different descriptions, see [FKPS18, Theorem 3.12].

2.2 The topological full group

An open subset U ⊆ G of an étale groupoid G is called a bisection if both r and
s are injective on U . It follows then that r|U : U → r(U) is a homeomorphism,
and similarly for s. Thus we get a homeomorphism πU := r|U ◦ (s|U )

−1 from
s(U) to r(U) which maps s(g) to r(g) for each g ∈ U . We say that the bisec-
tion U is full if r(U) = s(U) = G(0), and in this case πU is a homeomorphism
of G(0). For a homeomorphism α : X → X of a topological space X we define
the support of α to be the set supp(α) := {x ∈ X | α(x) 6= x}.
The topological full group of an effective étale groupoid G is

JGK := {πU | U ⊆ G is a full bisection and supp(πU ) is compact},

which is a subgroup of the homeomorphism group of G(0). The commutator
subgroup of JGK is denoted by D(JGK). We remark that when G is effective and
Hausdorff, then supp(πU ) is also open for any full bisection U . And if V 6= U
are different bisections, then πU 6= πV . As a notational remark, if we are given
an element α ∈ JGK we let Uα denote the unique full bisection which gives rise
to α, i.e. the one with α = πUα

.
The following construction will be used several times. Suppose U ⊆ G is a
compact bisection with r(U) ∩ s(U) = ∅. Define

Û := U ⊔ U−1 ⊔
(
G(0) \ (r(U) ∪ s(U))

)
.

Then Û is a full bisection and its associated homeomorphism π
Û
satisfies

π
Û
(s(U)) = r(U), π

Û
(r(U)) = s(U),

1We remark that the literature is not entirely consistent regarding this notion. For example
in [Mat15b] the term essentially principal is used. The term topologically principal also
appears in the literature, but this usually refers to a slightly stronger notion.
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supp(π
Û
) = r(U) ∪ s(U),

(
π
Û

)2
= idG(0) .

It is clear that π
Û

∈ JGK. If τ ∈ JGK satisfies τ2 = 1 and the set {x ∈

G(0) | τ(x) = x} is clopen, then one can show that τ = π
Û

for some com-
pact bisection U as above. Following [Mat15b], [Mat16] we call these elements
transpositions. We let S(G) denote the (normal) subgroup of JGK generated by
all transpositions, as in [Nek19].

Remark 2.1. Some authors define the topological full group to consist of
the full bisections themselves, rather than their associated homeomorphisms,
but for effective groupoids this is merely a matter of taste. Topological full
groups are quite interesting objects in their own right and we refer to [Mat17]
and [NO19] and the references therein for more details on the subject.

2.3 Homology for ample groupoids

Let us for an ample Hausdorff groupoid G describe its homology with val-
ues in Z, as popularized by Matui in [Mat12] building on the general theory
of [CM00]. See also [FKPS18, Section 4] for an excellent account.
For a locally compact Hausdorff space X , let Cc(X,Z) denote the compactly
supported continuous Z-valued functions on X . A local homeomorphism
ψ : X → Y between such spaces induces a homomorphism ψ∗ : Cc(X,Z) →
Cc(Y,Z) which is given by ψ∗(f)(y) =

∑
x∈ψ−1(y) f(x) for f ∈ Cc(X,Z). Only

finitely many terms are nonzero in this sum.
For n ≥ 1, let G(n) denote the space of composable strings of n elements from G,
equipped with the relative topology induced by the product topology on n
copies of G. In particular, G(2) is the composable pairs, G(1) = G and for n = 0,
we have the unit space G(0). Define local homeomorphisms di : G(n) → G(n−1)

for n ≥ 2 and i = 0, . . . , n by

di(g1, g2, . . . , gn) =





(g2, g3, . . . , gn) if i = 0,

(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn) if 1 ≤ i ≤ n− 1,

(g1, g2, . . . , gn−1) if i = n.

From these we in turn define homomorphisms δn : Cc(G(n),Z) → Cc(G(n−1),Z)
by setting δn =

∑n
i=0(−1)i(di)∗, and for n = 1 set δ1 = s∗ − r∗. Then

0 Cc(G(0),Z) Cc(G(1),Z) Cc(G(2),Z) · · ·
δ1 δ2 δ3 (1)

becomes a chain complex and the homology Hn(G) is defined as the homology
of this complex, i.e. Hn(G) = ker δn/ im δn+1. We will use C•(G,Z) to denote
the chain complex (1).
Since the zeroth and first homology groups will appear frequently in this text,
by virtue of being ingredients in the AH conjecture, we describe the two ho-
momorphisms δ1 and δ2 that define them in more detail. The former is the
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difference of the maps from Cc(G,Z) to Cc(G(0),Z) induced by the source and
range maps, and these are in turn given by

s∗(f)(x) =
∑

g∈Gx

f(g) and r∗(f)(x) =
∑

g∈Gx

f(g)

for f ∈ Cc(G,Z) and x ∈ G(0). As for the latter we have that δ2 = (d0)∗ −
(d1)∗ + (d2)∗, where each of these summands are maps from Cc(G(2),Z) to
Cc(G,Z) given by

(d0)∗(ψ)(g) =
∑

h∈G, s(h)=r(g)

ψ(h, g)

(d1)∗(ψ)(g) =
∑

(h1,h2)∈G(2), h1h2=g

ψ(h1, h2)

(d2)∗(ψ)(g) =
∑

h∈G, r(h)=s(g)

ψ(g, h)

for ψ ∈ Cc(G
(2),Z) and g ∈ G.

Observe that H0 is spanned (over Z) by equivalence classes of indicator func-
tions of compact open subsets of the unit space. For any compact bisec-
tion U ⊆ G we have

[
1s(U)

]
=
[
1r(U)

]
in H0(G), since δ1(1U ) = 1s(U) − 1r(U).

If we view a compact open set A ⊆ G(0) as a subset of G, then 1A ∈ ker δ1 and
[1A] = 0 in H1(G) since δ2(1∆A) = 1A, where ∆A ⊆ G(2) denotes the diagonal
in A×A.
Any étale homomorphism2 ρ : G → H induces local homeomorphisms
ρ(n) : G(n) → H(n) for n ≥ 0 by applying ρ in each coordinate. The induced
maps (ρ(n))∗ from Cc(G(n),Z) to Cc(H(n),Z) form a chain map ρ• : C•(G,Z) →
C•(H,Z) which in turn induces homomorphisms Hn(ρ•) : Hn(G) → Hn(H).
This assignment is functorial. In particular, if G ⊆ H is an open subgroupoid,
then the inclusion map ι : G → H induces homomorphisms Hn(ι•) : Hn(G) →
Hn(H) given by [1W ] 7→ [1W ] for any compact open set W ⊆ G(n). And if
Y ⊆ G(0) is a G-full clopen, then the inclusion map ι induces isomorphisms

Hn(ι•) : Hn(G|Y )
∼=

−−→ Hn(G) for all n ≥ 0 [FKPS18, Lemma 4.3]. From this
it is clear that Kakutani equivalent groupoids have the same homology.
When n = 0 in the setting above the inverse map H0(ι•)

−1 : H0(G) → H0(G|Y )
can be described as follows. Let A ⊆ G(0) be a compact open set. By fullness
of Y , for each x ∈ A we can find a compact bisection Ux ⊆ G with x ∈ s(Ux) ⊆
A and r(Ux) ⊆ Y . By compactness and 0-dimensionality we can find finitely
many compact bisections U1, . . . , Um so that the s(Ui)’s form a clopen partition
of A and so that r(Ui) ⊆ Y . Now [1A] =

∑m
i=1[1s(Ui)] =

∑m
i=1[1r(Ui)] in H0(G),

and we thus have

H0(ι•)
−1([1A]) =

m∑

i=1

[1r(Ui)] ∈ H0(G|Y ). (2)

2That is, a local homeomorphism which respects the groupoid structures.
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2.4 AF-groupoids and their homology

LetRn denote the full equivalence relation on the finite set {1, 2, . . . , n}, viewed
as a discrete groupoid. When X is a locally compact Hausdorff space, Re-
nault [Ren80] calls the product groupoid X × Rn an elementary groupoid of
type n, where we view X as a trivial groupoid X = X(0). We will call an étale
groupoid G elementary if it is Hausdorff, principal and G \ G(0) is compact.
Lemma 3.4 in [GPS04] shows that an ample elementary groupoid is isomorphic
to a finite disjoint union of elementary groupoids of type ni. An AF-groupoid
is an ample groupoid which can be written as an increasing union of open
elementary subgroupoids.
It is a well known fact that when G is an AF-groupoid, its homology is given
by

Hn(G) ∼=

{
K0(C

∗
r (G)) n = 0,

0 n ≥ 1,

where C∗
r (G) denotes the reduced groupoid C∗-algebra of G, which in this

case is an AF-algebra. The H0-group (and the K0-group) coincides with the
dimension group of any defining Bratteli diagram (as an ordered abelian group
with distuingished order unit). Stated like this it first appeared in [Mat12] (for
compact unit spaces), but it can be traced back to the earlier works [Ren80]
and [Kri80]. The case of a non-compact unit space is treated in [FKPS18].

Theorem 2.2 ([FKPS18, Corollary 5.2]). Let G be an AF-groupoid. Then the
map [1A]H0 7→ [1A]K0 for A ⊆ G(0) compact open induces an isomorphism
H0(G) ∼= K0(C

∗
r (G)).

2.5 Cocycles and skew products

When G is an étale groupoid and Γ is a discrete group, we call c : G → Γ
a cocycle if it is a continuous groupoid homomorphism. We shall be dealing
exclusively with Z-valued cocycles, as these are the ones that appear naturally
for graph groupoids.

Definition 2.3. Let G be an étale groupoid with a cocycle c : G → Z. The
skew product groupoid of G by c is the groupoid G×cZ := G×Z with operations

(g,m)(h,m+ c(g)) := (gh,m) if (g, h) ∈ G(2)

and
(g,m)−1 := (g−1,m+ c(g)),

so that s(g,m) = (s(g), c(g) +m) and r(g,m) = (r(g),m).

The skew product groupoid becomes an étale groupoid in the product topology.
The unit space of G×cZ can be identified with G(0)×Z. And for each bisection
U ⊆ G and m ∈ Z, the set U × {m} is a bisection in G ×c Z. We record the
following elementary lemma about the kernel of the cocycle sitting inside the
skew product.
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Lemma 2.4. Let G be an étale groupoid with a cocycle c : G → Z. Then ker(c)
is a clopen subgroupoid of G, and we have (G ×c Z) |G(0)×{0}

∼= ker(c) via the
map (g, 0) 7→ g.

Remark 2.5. We emphasize that even though ker(c) is a clopen subgroupoid
of G, and embeds as a clopen subgroupoid of the skew product G ×c Z, we can
generally not embed G itself into G×cZ in any way (e.g. G×cZ can be principal
while G is not.)

There is a canonical action ĉ by Z on G×cZ defined by ĉk · (g,m) = (g,m+ k),
i.e. shifting the integer coordinate. If one then forms the semi-direct product
groupoid (G ×c Z)⋊ĉ Z, one gets that this semi-direct product is Kakutani
equivalent to the groupoid G that we started with, and hence they have the
same homology groups [Mat12]. This is what Matui uses when he computes
the homology groups of GE for a finite graph E by means of a spectral se-
quence [Mat15b]. We shall instead use a long exact sequence in homology
from [Ort18], to be described in Section 6.

3 Graphs and their groupoids

As this paper primarily concerns graph groupoids, we spend some time in this
section recalling their definition and properties, as well as establishing notation.
We refer to [BCW17] and [NO19] for additional details.

3.1 Graphs

A (directed) graph E = (E0, E1, r, s) consists of two countable sets E0 and E1,
whose elements are called vertices and edges, respectively, in addition to range
and source maps r, s : E1 → E0. We say that E is finite if both E0 and E1 are
finite sets.
A path is a sequence of edges µ = e1e2 . . . en such that r(ei) = s(ei+1)
for 1 ≤ i ≤ n− 1. The length of µ is |µ| := n. The set of paths of length
n is denoted En and the set of all finite paths is E∗ :=

⋃∞
n=0E

n. The range
and source maps extend to E∗ by setting r(µ) = r(en) and s(µ) = s(e1). For
v ∈ E0, we set s(v) = r(v) = v. If µ, ν ∈ E∗ satisfy r(µ) = s(ν), then µν ∈ E∗

denotes their concatenation. We say that µ is an initial segment of ν if ν = µλ
for some path λ with s(λ) = r(µ), and we write it as µ ≤ ν. Two paths are
called disjoint if neither is a initial segment of the other. A graph E is called
strongly connected if for each pair of vertices v, w ∈ E0 there is a path from v
to w. By a strongly connected component we mean a maximal subset of vertices
such that there is a path between any two vertices in this subset. The strongly
connected components form a partition of E0.
An edge e ∈ E1 with r(e) = s(e) is called a loop. More generally, a cycle is a
nontrivial path µ (i.e. |µ| ≥ 1) with r(µ) = s(µ), and we say that µ is based at
s(µ) or that s(µ) supports the cycle µ. By µk we mean µ concatenated k times.
A graph is called acyclic if it has no cycles. An exit for a path µ = e1 . . . en
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is an edge e ∈ E1 such that s(e) = s(ei) and e 6= ei for some 1 ≤ i ≤ n. The
graph E is said to satisfy Condition (L) if every cycle in E has an exit.
For a vertex v ∈ E0 and n ≥ 1 we define the sets vEn := {µ ∈ En | s(µ) = v}
and Env := {µ ∈ En | r(µ) = v}. We call v a sink if vE1 = ∅ and a source if
E1v = ∅. Furthermore, v is called an infinite emitter if vE1 is an infinite set.
Sinks and infinite emitters are collectively referred to as singular vertices and
the set of these is denoted E0

sing. Non-singular vertices are called regular. A
graph is row-finite if it has no infinite emitters, and essential if it has no sinks
nor sources.

3.2 The boundary path space

An infinite path in a graph E is a sequence of edges x = e1e2e3 . . . such that
r(ei) = s(ei+1) for all i ∈ N. We define s(x) := s(e1) and |x| := ∞. The set of
all infinite paths is denoted E∞. We call E cofinal if for every vertex v ∈ E0

and for every infinite path e1e2 . . . ∈ E∞, there is a path from v to s(en) for
some n ∈ N. The boundary path space of E is

∂E := E∞ ∪ {µ ∈ E∗ | r(µ) ∈ E0
sing}.

The cylinder set of a finite path µ ∈ E∗ is Z(µ) := {µx | x ∈ ∂E, s(x) = r(µ)}.
Given a finite subset F ⊆ r(µ)E1, we define the associated punctured cylinder
set to be Z(µ \ F ) := Z(µ) \

(⊔
e∈F Z(µe)

)
. Note that two finite paths are

disjoint if and only if their cylinder sets are disjoint sets.
The topology on the boundary path space ∂E is specified by the countable
basis

{
Z(µ \ F ) | µ ∈ E∗, F ⊆finite r(µ)E

1
}
. This turns ∂E into a locally com-

pact Hausdorff space in which each basic set Z(µ\F ) is compact open [Web14].
Note that the boundary path space ∂E itself is compact if and only if E0 is
finite. Existence of isolated points in ∂E is characterized in [CW18, Section 3].
Define ∂E≥n := {x ∈ ∂E | |x| ≥ n} for n ∈ N, which are open subsets of ∂E.
The shift map on E is the map σE : ∂E≥1 → ∂E given by σE(e1e2e3 . . .) =
e2e3e4 . . . for e1e2e3 . . . ∈ ∂E≥2 and σE(e) = r(e) for e ∈ ∂E ∩ E1. The image
σE
(
∂E≥1

)
is also open in ∂E and the shift map is surjective precisely when

E has no sources. We also set σ0
E = id∂E . Then for each n ≥ 0 the iterate

σnE : ∂E≥n → ∂E is a local homeomorphism.

3.3 Graph groupoids

The graph groupoid of a graph E is

GE := {(x,m− n, y) | m,n ≥ 0, x ∈ ∂E≥m, y ∈ ∂E≥n, σmE (x) = σnE(y)},

equipped with the product (x, k, y) · (y, l, z) := (x, k + l, z) (and undefined
otherwise), and inverse (x, k, y)−1 := (y,−k, x). In other words, a triplet
(x, k, y) ∈ ∂E×Z×∂E belongs to the graph groupoid GE if and only if x = µz
and y = νz for some finite paths µ, ν ∈ E∗ and a boundary path z ∈ ∂E
satisfying |µ| = |ν|+ k.
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Given two finite paths µ, ν ∈ E∗ with r(µ) = r(ν) and a finite subset
F ⊆ r(µ)E1 we define the associated punctured double cylinder set to be the
following subset of GE :

Z(µ, F, ν) := {(x, |µ| − |ν|, y) | x ∈ Z(µ \ F ), y ∈ Z(ν \ F ), σ
|µ|
E (x) = σ

|ν|
E (y)}.

Equipping the graph groupoid GE with the topology generated by the countable
basis {

Z(µ, F, ν) | µ, ν ∈ E∗, r(µ) = r(ν), F ⊆finite r(µ)E
1
}

turns it into an ample Hausdorff groupoid, as each Z(µ, F, ν) becomes a com-
pact open bisection. That this indeed is the standard topology on GE , as in
e.g. [BCW17], was shown in [NO19, Lemma 9.2].

The unit space of GE is G
(0)
E = {(x, 0, x) | x ∈ ∂E}, which we will freely identify

with the boundary path space ∂E via the homeomorphism (x, 0, x) ↔ x. In
terms of the bases we identify Z(µ, F, µ) with Z(µ \ F ). The range and source
maps of GE then become r(x, k, y) = x and s(x, k, y) = y. For a basic compact
open bisection as above we have r(Z(µ, F, ν)) = Z(µ \ F ) and s(Z(µ, F, ν)) =
Z(ν \ F ).
A graph groupoid GE is effective precisely when E satisfies Condi-
tion (L) [BCW17, Proposition 2.3], and GE is minimal if and only if E is
both cofinal and there exists a path from every vertex to every singular
vertex [NO19, Proposition 8.3]. On any graph groupoid there is a canonical
cocycle cE : GE → Z given by (x, k, y) 7→ k. We define

HE := ker(cE) = {(x, 0, y) ∈ GE},

which is a clopen subgroupoid of GE . The subgroupoid HE and the skew prod-
uct groupoid GE ×cE Z will play important roles in the proof of the AH con-
jecture for GE .
The full and the reduced groupoid C∗-algebra of a graph groupoid coincide.
There is a canonical isomorphism C∗

r (GE)
∼= C∗(E) which is given by mapping

the indicator function 1Z(v,v) ∈ Cc(GE ,C) to the projection pv ∈ C∗(E) for each
v ∈ E0 and mapping 1Z(e,r(e)) ∈ Cc(GE ,C) to the partial isometry se ∈ C∗(E)
for each e ∈ E1 [BCW17, Proposition 2.2]. For an introduction to graph
C∗-algebras, see [Rae05].

3.4 The skew graph

Let E be a graph. The skew graph of E, denoted E × Z, is the graph with
vertices (E × Z)0 = E0 × Z and edges (E × Z)1 = E1 × Z, such that s(e, i) =
(s(e), i) and r(e, i) = (r(e), i − 1). See Figure 1 for an example.
The skew graph E×Z played a part in the computation of K-theory for graph
C∗-algebras [RS04]. A useful fact is that the skew graph is always acyclic, and
therefore its graph C∗-algebra, C∗(E × Z), is an AF-algebra [DT05, Corol-
lary 2.13]. Thus its K1 group vanishes, which in turn allows the K-theory of
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E

v

w

E × Z · · ·

(v,−1)

(w,−1)

(v, 0)

(w, 0)

(v, 1)

(w, 1)

· · ·

Figure 1: An example of a graph and its skew graph. A double arrow indicates
that there are infinitely many edges.

C∗(E) to be computed from a suitable six-term exact sequence which relates
the K-theory of the skew graph C∗-algebra with that of the original graph
C∗-algebra. As Matui and others have noticed, one can do something similar
for graph groupoids to compute their homology, see [Mat12], [Ort18], [FKPS18].
We will turn to this in Section 7. For now, let us note that the skew graph
corresponds to taking the skew product of the graph groupoid by the canonical
graph cocycle.

Observe that for each m ∈ Z there is a continuous open injection x 7→ x(m)

from ∂E to ∂(E×Z) that takes v to (v,m) for v ∈ ∂E∩E0, takes e1e2 . . . en to
(e1,m)(e2,m+ 1) . . . (en,m+ n− 1) for e1 . . . en ∈ ∂E \ (E0 ∪E∞), and takes
e1e2 . . . to (e1,m)(e2,m+ 1) . . . for e1e2 . . . in E

∞.

Lemma 3.1. For any graph E we have that GE×cE Z ∼= GE×Z as étale groupoids
via the map ((x, k, y),m) 7→ (x(m), k, y(m+k)).

Throughout this paper it will be crucial that the skew product of any graph
groupoid is an AF-groupoid. This was observed for finite graphs in [Mat12]
and for row-finite graphs it follows from [FKPS18, Lemma 6.1]. Since we are
allowing infinite emitters in our graphs, we include an argument covering the
general case.

Proposition 3.2. Let E be an acyclic graph. Then GE is an AF-groupoid.

Proof. Recall that all graphs are assumed to be countable. Therefore we can
find an increasing sequence of finite subgraphs F1 ⊆ F2 ⊆ F3 ⊆ . . . of E such
that

⋃∞
n=1 Fn = E. From these we define the following finite sets of pairs of

paths

En := {(µ, ν) ∈ (Fn)
∗ × (Fn)

∗ | r(µ) = r(ν)}.

We claim that the following subsets of GE form an exhaustive sequence of open
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elementary subgroupoids:

KE,n := G
(0)
E

⋃ ⋃

(µ,ν)∈En

Z(µ, ν).

A priori, it is not entirely clear that the KE,n’s are closed under multiplication
(in GE). This relies on the acyclicity of E, and we provide an argument below.
Suppose g, h ∈ KE,n and that the product g ·h is defined (i.e. the source of h is
the range of g). This means that g = (µx, k, νx) ∈ Z(µ, ν) and h = (ρy, l, τy) ∈
Z(ρ, τ), where µ, ν, ρ, τ are finite paths in Fn and νx = ρy. The latter equality
implies that either ν ≤ ρ or ν ≥ ρ. Assuming that ν ≤ ρ (the other case
proceeds similarly), there is a finite path γ, necessarily also in Fn, such that
ρ = νγ. And then x = γy, which means that g · h = (µγy, k + l, τy). Since E
is acyclic, GE is principal and therefore we must have k + l = |µγ| − |τ |. This
shows that g · h ∈ Z(µγ, τ) ⊆ KE,n, as desired.
It is clear that KE,n is closed under taking inverses, and hence KE,n is a clopen

subgroupoid of GE . It follows from the finiteness of En that KE,n \ G
(0)
E is

compact. Finally, KE,n is principal because GE is. This shows that GE is an
AF-groupoid.

Combining Lemma 3.1 and Proposition 3.2 together with the fact that HE

embeds as a clopen subgroupoid of GE ×cE Z (Lemma 2.4) we obtain the
following corollary.

Corollary 3.3. For any graph E, both GE ×cE Z and HE are AF-groupoids.

We end this section by describing a consequence of Theorem 2.2 that we shall
need in the proof of Lemma 7.7. For an arbitrary graph E the K0-group of its
graph C∗-algebra is isomorphic to the abelian group generated by elements gv
for v ∈ E0, subject to the relations

gv =
∑

e∈vE1

gr(e)

whenever v is a regular vertex [DT02]. And this isomorphism is implemented
by mapping [pv]0 to gv, where pv denotes the projection in C∗(E) associated
to v. Using the identification between K0 and H0 for AF-groupoids from The-
orem 2.2, together with the fact that the skew product GE ×cE Z is an AF-
groupoid, we deduce the following.

Lemma 3.4. Let E be a graph. For each w ∈ E0
sing and i ∈ Z, the element[

1Z(w)×{i}

]
generates a free summand of H0(GE ×cE Z).

4 The AH conjecture

It is time to define the AH conjecture properly, as well as discuss its current
status and some aspects of how one can prove it. We will also define and discuss
the HK property.
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Matui’s AH Conjecture ([Mat16]). Let G be an effective minimal second
countable Hausdorff étale groupoid whose unit space G(0) is a Cantor space.
Then with the maps j and Iab defined as in Subsection 4.1 below, the following
sequence is exact:

H0(G)⊗ Z2 JGKab H1(G) 0.
j Iab (3)

4.1 The maps in the AH conjecture

Let us recall the two maps that appear in (3). The index map I : JGK → H1(G)
is the homomorphism given by πU 7→ [1U ], where U is a full bisection in G. We
denote the induced map on the abelianization JGKab by Iab. The index map
was introduced in the setting of Cantor minimal systems in [GPS99] and later
generalized to étale groupoids over Cantor spaces in [Mat12].

Many of the results leading up to the main result do not require the unit space of
the groupoid to be compact. And in some of these the index map appears. But
the definition of the index map above does not make sense in the non-compact
case. For if G is an ample Hausdorff groupoid with G(0) non-compact, then
any full bisection U ⊆ G is non-compact as well, and so 1U is not compactly
supported. However, there is a straightforward way to remedy this. As shown
in [NO19], where we extended the definition of the topological full group to the
non-compact setting, each full bisection U ⊆ G can be written as

U = U⊥
⊔(

G(0) \ supp(πU )
)
,

where U⊥ is a compact bisection with s(U⊥) = r(U⊥) = supp(πU ). We extend
the definition of the index map by setting

I(πU ) := [1U⊥ ] .

This agrees with the definition in the compact case because [1U ] = [1U ′ ] if U
is a compact bisection which decomposes as U ′ ⊔ A, where A ⊆ G(0) [Mat12,
Lemma 7.3]. The first homology group only “sees” the part of the groupoid
that lies outside the unit space.

While the index map now is defined for all ample effective Hausdorff groupoids,
the map j : H0(G)⊗Z2 → JGKab is a priori only defined when every G-orbit has
at least 3 elements and G(0) is a Cantor space, in particular for the groupoids in
the setting of the AH-conjecture, G minimal and G(0) a Cantor space, every G-
orbit is infinite. In this case, the group H0(G)⊗Z2 is generated by elements of
the form [1s(U)]⊗1, where U ⊆ G is a compact bisection with s(U) ∩ r(U) = ∅.
And the map j is given by j([1s(U)]⊗ 1) = [π

Û
] ∈ JGKab, where πÛ ∈ JGK is the

transposition defined in Subsection 2.2. Well-definedness of this map is proved
in [Nek19, Section 7] (see also the proof of [Mat16, Theorem 3.6]).

Documenta Mathematica 26 (2021) 1679–1727



Matui’s AH Conjecture for Graph Groupoids 1695

4.2 The AH conjecture for graph groupoids

Let us determine what the assumptions in the AH conjecture mean for graph
groupoids. It follows from the results in e.g. [NO19, Section 8] that the following
conditions exactly capture these assumptions.

Definition 4.1. We say that a graph E satisfies the AH criteria if E0 is finite,
E has no sinks, is cofinal, satisfies Condition (L) and each vertex can reach all
infinite emitters.

Proposition 4.2. Let E be a graph. Then GE satisfies the assumptions in the
AH conjecture if and only if E satisfies the AH criteria.

Concretely, the AH criteria mean that E has exactly one nontrivial strongly
connected component, in the sense that this is the only component which con-
tains a cycle. In fact, there are at least two disjoint cycles based at each vertex
in this component. This component also contains all infinite emitters (if there
are any). Any vertex outside this component does not support a cycle, and any
path from such a vertex eventually ends up in the nontrivial connected compo-
nent. So if E is not strongly connected, then some of the vertices outside the
nontrivial connected component must be sources. Also note that E is either
finite or has an infinite emitter. In particular, a strongly connected graph with
finitely many vertices satisfies the AH criteria as long as it is not one of the
cycle graphs Cn (i.e. a single cycle with n vertices).
As mentioned in the introduction, the AH conjecture was proved for (restric-
tions of) graph groupoids arising from strongly connected finite graphs (which
are not cycle graphs) in [Mat15b]. And the main difficulty of extending this to
all graphs satisfying the AH criteria lies in dealing with the presence of infinite
emitters. Dealing with any sources in the graph, on the other hand, turns out
to be quite easy. Many of the results leading up to the main result applies to
more general graphs than those satisfying the AH criteria. Therefore we will
not restrict to this until the very end.

Remark 4.3. We mention in passing that, coincidentally, a graph E satisfies
the AH criteria if and only if its graph C∗-algebra, C∗(E), is a unital Kirchberg
algebra (in the UCT class).

4.3 Status of the AH conjecture

The AH conjecture has so far been verified in a number of cases. In [Mat16]
it was shown (generalizing prior results) that the AH conjecture holds for
groupoids which are almost finite and principal, and for products of SFT-
groupoids. The former class includes AF-groupoids, transformation groupoids
of (free) d-dimensional Cantor minimal systems and groupoids associated to
aperiodic quasicrystals (as described in [Nek19, Subsection 6.3]). The AH con-
jecture also holds for transformation groupoids associated to odometers [Sca18].
In some cases the map j can even be shown to be injective, making (3) a
short exact sequence. When this is the case the groupoid is said to have the
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strong AH property [Mat16]. If, moreover, j is split-injective, so that the se-
quence splits, then we say that G has the split AH property. AF-groupoids,
groupoids of Cantor minimal systems (d = 1) and SFT-groupoids all have the
split AH property [Mat17, Example 4.8]. The odometers in [Sca18] have the
strong AH property, but it is unknown whether they all split. To the best
of the authors’ knowledge there are yet no examples which have the strong
AH property, but not the split AH property. There are, however, examples of
groupoids for which the AH conjecture holds, yet they do not have the strong
AH property. For example groupoids arising from self-similar groups [Nek19,
Example 7.6] and products of SFT-groupoids [Mat16, Subsection 5.5].

Remark 4.4. Note that if the AH conjecture holds for a groupoid G and
the homology groups H0(G) and H1(G) are finitely generated, then so is the
abelianization JGKab. And in this case, the split AH property is equivalent
to the strong AH property together with having any isomorphism JGKab ∼=
H1(G) ⊕ (H0(G) ⊗ Z2) .
We also remark that if H1(G) is free abelian (i.e. projective in the category of
abelian groups), then the split AH property is equivalent to the strong AH prop-
erty.

4.4 The HK property

As mentioned in the introduction, the other conjecture from [Mat16], namely
the HK conjecture, has recently been refuted. In order to reflect this, we make
the following definition for groupoids satisfying its conclusion.

Definition 4.5. We say that an ample Hausdorff groupoid G has the HK prop-
erty if there are isomorphisms

K0 (C
∗
r (G))

∼=

∞⊕

n=0

H2n(G) and K1 (C
∗
r (G))

∼=

∞⊕

n=0

H2n+1(G).

We remark that the assumptions in the HK conjecture was exactly the same
as in the AH conjecture. As mentioned in the introdutction, the HK property
has been established for several key classes of groupoids. Furthermore, the
HK property is preserved under Kakutani equivalence. It is also preserved un-
der products, as long as the factors are amenable, due to the Künneth formula
from [Mat16]. Most pertinent to the present paper, however, is the fact that
all graph groupoids have the HK property (even if they are not minimal or
effective). More precisely, we have the following.

Theorem 4.6. Let E be any graph. Then H0(GE) ∼= K0(C
∗(E)), H1(GE) ∼=

K1(C
∗(E)) and Hn(GE) = 0 for n ≥ 2. In particular, GE has the HK property.

Theorem 4.6 was established for finite essential graphs in [Mat12]. For
row-finite graphs with no sinks it follows both from the results in [Ort18]
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and [FKPS18]. In [HL18] the description of H0(GE) was extended to arbi-
trary graphs. We add the finishing touch by noting that any graph groupoid is
Kakutani equivalent to the groupoid of a row-finite graph with no sinks (namely
its desingularization [DT05]). Since Kakutani equivalent groupoids have the
same homology and their reduced groupoid C∗-algebras are Morita equivalent,
the theorem follows from the aforementioned results.
The K-groups of graph C∗-algebras are relatively easy to compute. They are,
roughly speaking, determined by the Smith normal form of the part of the
adjacency matrix of E which only includes edges emitted by regular vertices.
The group K0(C

∗(E)) is a quotient of Z|E0| and we have rank(K0(C
∗(E))) ≥

|E0
sing|. On the other hand, K1(C

∗(E)) is free abelian and rank(K1(C
∗(E))) =

rank(K0(C
∗(E)))−|E0

sing|. Consult e.g. [Tom07, Chapter 2.3.1] for more details
and examples.
Once we have established the AH conjecture for graph groupoids, the fact that
we can compute the homology groups allows us to say something useful about
the abelianization JGEKab, also when E has infinite emitters. See Section 10
for a discussion of examples and consequences of the AH conjecture. For now
we note the following.

Corollary 4.7. Let E be a graph. Then GE has the strong AH property if
and only if GE has the split AH property.

Proof. As K1(C
∗(E)) is always free [DT02], the assertion follows from Theo-

rem 4.6 and Remark 4.4.

4.5 Aspects of proving the AH conjecture

When it comes to verifying the AH conjecture for a groupoid G, the hardest part
is arguably to establish that ker(Iab) ⊆ im(j). Indeed, the reverse inclusion
Iab ◦ j = 0 is always true, since all transpositions belong to ker(I). That is,
S(G) ≤ ker(I). For if U ⊆ G is a compact bisection with disjoint source and
range, then

I
(
π
Û

)
= [1

Û
] =

[
1U⊔U−1⊔(G(0)\supp(π

Û
))

]
= [1U + 1U−1 ] = 0 ∈ H1(G),

using [Mat12, Lemma 7.3]. Surjectivity of the index map has already been
established for two general classes of groupoids, namely for almost finite
groupoids [Mat12, Theorem 7.5] and for purely infinite groupoids [Mat15b,
Theorem 5.2]. Just as with SFT-groupoids, we will see that the more general
graph groupoids studied here also belong to the latter class.

Definition 4.8 ([Mat15b, Definition 4.9]). An effective ample groupoid G
with compact unit space is said to be purely infinite if for every clopen subset
A ⊆ G(0) there exist compact bisections U, V ⊆ G satisfying s(U) = s(V ) = A
and r(U) ⊔ r(V ) ⊆ A.

Proposition 4.9. Let E be a graph satisfying the AH criteria. Then the
groupoid GE |Y is purely infinite for each clopen Y ⊆ ∂E.
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Proof. Although the proof of [Mat15b, Lemma 6.1] remains valid with minor
modifications in the presence of infinite emitters, we give a brief argument in
our notation for the convenience of the reader. Since pure infiniteness passes
to restrictions it suffices to consider Y = ∂E.
Let A ⊆ ∂E be given. By compactness we can express A =

⊔m
i=1 Z(µi \ Fi) as

a finite union of punctured cylinder sets. By the description following Defini-
tion 4.1, any vertex lying outside the nontrivial strongly connected component
of E is regular. And any path from such a vertex eventually ends up in the
nontrivial connected component. This means that by partitioning the cylinder
sets Z(µi \Fi) into superpaths, we may without loss of generality assume that
r(µi) lie in the nontrivial connected component for each i. Thus we can, for
each i, find two disjoint cycles νi, ν

′
i based at r(µi). Using these we define

bisections U =
⊔m
i=1 Z(µiνi, Fi, µi) and V =

⊔m
i=1 Z(µiν

′
i, Fi, µi) which we see

satisfy the conditions in Definition 4.8.

Remark 4.10. Recently, more general notions of pure infiniteness for étale
groupoids have appeared in the works of Suzuki [Suz17] and Ma [Ma20]. How-
ever, for ample minimal groupoids with compact unit space, as in the set-
ting of this paper, both notions agree with Matui’s. Furthermore, they imply
Anantharaman-Delaroche’s notion of locally contracting [AD97]. On a some-
what related note, there is also the recent preprint [ADS19] in which the (not
necessarily simple) pure infiniteness of graph C∗-algebras (of row-finite graphs
without sinks) is characterized solely in terms of the graph groupoid, by means
of the paradoxicality notion from [BL20].

The inclusion ker(Iab) ⊆ im(j) is intimately related to the kernel of the in-
dex map being generated by transpositions, as encapsulated by the following
definition.

Definition 4.11 ([Mat16, Definition 2.11]). An effective ample Hausdorff
groupoid G is said to have Property TR if S(G) = ker(I).

By Proposition 4.9 and [Mat16, Theorem 4.4] it suffices to establish Prop-
erty TR in order to verify the AH conjecture for graph groupoids. Therefore,
the rest of the paper is mostly devoted to demonstrating that graph groupoids
do have Property TR.

Remark 4.12. In general, Property TR implies the inclusion ker(Iab) ⊆ im(j),
i.e. exactness at JGKab in (3). The converse holds if the commutator subgroup
D(JGK) is simple. For then D(JGK) = A(G), where A(G) denotes the “alter-
nating” subgroup of S(G) defined in [Nek19]. The group D(JGK) is known to
be simple for minimal groupoids which are either almost finite or purely infi-
nite [Mat15b]. So for these two classes of groupoids we see that Property TR
is in fact equivalent to the AH conjecture.

We close this section by observing, as was done in [Mat15b], that to establish
Property TR it suffices to consider elements in the topological full group whose

Documenta Mathematica 26 (2021) 1679–1727



Matui’s AH Conjecture for Graph Groupoids 1699

support is a proper subset of the unit space. Although an easy observation,
this is needed for the proof of the main result to work.

Lemma 4.13. Let G be an ample effective Hausdorff groupoid. If all elements
α ∈ JGK which satisfy I(α) = 0 ∈ H1(G) and supp(α) 6= G(0) are products of
transpositions, then G has Property TR.

Proof. Let α ∈ JGK \ {id} be given and suppose I(α) = 0 ∈ H1(G). As α is
not the identity, supp(α) is non-empty. And then there is some compact open
set Z ⊆ G(0) such that α(Z) ∩ Z = ∅ . We define a transposition τ ∈ S(G) by
setting τ = α on Z, τ = α−1 on α(Z) and τ = id elsewhere. Then supp(τ) =
α(Z)⊔Z and supp(τα) ⊆ G(0) \ (α(Z) ⊔ Z) ( G(0). Since both α and τ (being
a transposition) are in the kernel of the index map, so is their product, and by
assumption τα is then a product of transpositions. But then α is clearly also
a product of transpositions.

5 Cancellation for AF-groupoids

Cancellation for ample Hausdorff groupoids was introduced by Matui
in [Mat16], and it bears resemblance to the cancellation property (in K-
theory) for C∗-algebras (see [RLL00]).

Definition 5.1. An ample Hausdorff groupoid G is said to have cancellation
if whenever one has [1A] = [1B] in H0(G) for ∅ 6= A,B ⊆ G(0) compact open,
there exists a bisection U ⊆ G with s(U) = A and r(U) = B.

In order to prove our main result we are going to need the fact that AF-
groupoids have cancellation. Theorem 6.12 in [Mat12] covers minimal AF-
groupoids with compact unit space, but we need cancellation for the skew
product GE×cE Z, which is generally neither minimal nor does it have compact
unit space. So we provide a proof here, which we divide into three lemmas in
terms of permanence properties of cancellation.

Lemma 5.2. Let G be an ample Hausdorff groupoid. If G1 ⊆ G2 ⊆ G3 ⊆ . . . are
open subgroupoids of G with

⋃∞
n=1 Gn = G, and each Gn has cancellation, then

G has cancellation.

Proof. Let A,B ⊆ G(0) be compact open and suppose [1A] = [1B] in H0(G).
This means that 1A − 1B = δ1(f) for some f ∈ Cc(G,Z). As the support of f
is compact we must have supp(f) ⊆ Gn for some n ∈ N. By possibly increasing

n we may suppose that A,B ⊆ G
(0)
n as well. We have f |Gn

∈ Cc(Gn,Z) and
δ1(f |Gn

) = δ1(f) = 1A − 1B. Cancellation in Gn now provides a bisection
U ⊆ Gn ⊆ G with s(U) = A and r(U) = B.

Lemma 5.3. If G1 and G2 are ample Hausdorff groupoids with cancellation,
then the disjoint union groupoid G1 ⊔ G2 has cancellation.
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Proof. Let A,B ⊆ (G1 ⊔ G2)
(0) be compact open and suppose that we have

[1A] = [1B] in H0(G) ∼= H0(G1)⊕H0(G2). Let f ∈ Cc(G1 ⊔ G2,Z) be such that

δ1(f) = 1A − 1B. We can write (G1 ⊔ G2)
(0) = G

(0)
1 ⊔ G

(0)
2 , A = A1 ⊔ A2,

B = B1 ⊔ B2 and f = f1 + f2 respecting this decomposition. It is now clear
that δ1(f1) = 1A1 − 1B1 and δ1(f2) = 1A2 − 1B2 , so by cancellation in G1 and
G2 we obtain bisections U1 ⊆ G1 and U2 ⊆ G2 with s(U1) = A1, r(U1) = B1,
s(U2) = A2 and r(U2) = B2. Setting U = U1 ⊔ U2 does the trick.

Lemma 5.4. Let X be a zero-dimensional compact Hausdorff space and let
n ∈ N. Then the elementary groupoid of type n, X ×Rn, has cancellation.

Proof. Denote K := X ×Rn, and write K(0) =
⊔n
i=1Xi, where Xi = X × {i}.

Then X1 is a full clopen in K and K|X1
∼= X , so we have

H0(K) ∼= H0(K|X1 )
∼= H0(X) = C(X,Z).

Suppose that A,B ⊆ K(0) are clopen subsets with [1A] = [1B] in H0(K). We
partition A by writing A =

⊔n
i=1 Ai×{i} for Ai ⊆ X clopen. Let Bi be similar

for B. The bisections Ai×{(1, i)} ⊆ K have source Ai×{i} and range Ai×{1}.
By (2) this means that under the isomorphism H0(K) ∼= C(X,Z) above, the
element [1A] ∈ H0(K) maps to the function fA :=

∑n
i=1 1Ai

∈ C(X,Z), and
similarly [1B] 7→ fB.
Let us define C to be the collection of (necessarily mutually disjoint) minimal
elements of the boolean algebra generated by the Ai and Bi and then for
C ∈ C define mA

C := {i : C ⊆ Ai} and mB
C = {i : C ⊆ Bi}. Since fA =∑

C∈C |m
A
C |1C = fB =

∑
C∈C |m

B
C |1C , we can choose bijections φC : mA

C → mB
C

and then define UC =
⊔
i∈mA

C
C × {(i, φC(i))}, and then U =

⊔
C∈C UC is our

desired bisection.

Theorem 5.5. Any AF-groupoid has cancellation.

Proof. Let G be an AF-groupoid. Then we can write G =
⋃∞
n=1 Gn as

an increasing union of open elementary ample subgroupoids. By [GPS04,
Lemma 3.4] each subgroupoid decomposes as

Gn ∼=

(
In⊔

i=1

Xi,n ×Rmi,n

)
⊔ Yn,

where each Xi,n is a zero-dimensional compact Hausdorff space, and where Yn
is empty if G(0) is compact and zero-dimensional, locally compact non-compact
and Hausdorff if G(0) is non-compact. Since the trivial groupoid Yn clearly has
cancellation, the result follows by combining the three lemmas above.

We end this section by observing that in an AF-groupoid, a non-empty subset
of the unit space always gives rise to a nonzero element in homology. This is
not so for all groupoids with cancellation (e.g. the SFT-groupoid of the full
2-shift, G[2]).
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Corollary 5.6. Let G be an AF-groupoid. If A ⊆ G(0) is compact open, then
[1A] = 0 in H0(G) if and only if A = ∅.

Proof. Follows from the proofs above by considering B = ∅, i.e. 1B = 0.

6 Two long exact sequences in homology

Let us first describe a long exact sequence in homology coming from a cocy-
cle. Let G be an ample Hausdorff groupoid with a cocycle c : G → Z. Let π
denote the canonical projection from G ×c Z onto G, i.e. π(g,m) = g. Also,
let ρ := ĉ1 : G ×c Z → G ×c Z, i.e. ρ(g,m) = (g,m + 1). Since these are étale
homomorphisms, they induce chain maps π• : C•(G ×c Z,Z) → C•(G,Z) and
ρ• : C•(G ×c Z,Z) → C•(G ×c Z,Z) on the chain complexes that define the
homology groups. In fact, id−ρ• and π• form a short exact sequence of com-
plexes, which in turn induces a long exact sequence in homology.

Proposition 6.1 ([Ort18, Lemma 1.4]). Let G be an ample Hausdorff groupoid
and let c : G → Z be a cocycle. Then there is a long exact sequence

· · · H1(G) H0(G ×c Z) H0(G ×c Z) H0(G) 0,
H1(π•) ∂1 id−H0(ρ•) H0(π•)

where ∂n denotes the connecting homomorphism.

The maps on the zeroth level are given by

H0(ρ•)
([
1A×{i}

])
=
[
1A×{i+1}

]
and H0(π•)

([
1A×{i}

])
= [1A]

for A ⊆ G(0) compact open and i ∈ Z. In the case of graph groupoids, we will
see later that the first connecting homomorphism ∂1 : H1(G) → H0(G×cZ) can
be described explicitly, and that this will allow us to describe the image of the
index map. In order to do that, we are going to need a particular part of the
proof of [Ort18, Lemma 1.4] pertaining lifts by id−ρ0. We record this lifting
in Lemma 6.2 below, whose proof itself is an easy calculation.

Lemma 6.2. Let c : G → Z be a cocycle on an ample Hausdorff groupoid G.
Then for any A ⊆ G(0) compact open and k ∈ Z we have

1A×{k} − 1A×{0} =





(id−ρ0)
(
−
∑k−1
i=0 1A×{i}

)
k > 0,

0 k = 0,

(id−ρ0)
(∑−1

i=k 1A×{i}

)
k < 0.

The next long exact sequence in homology arises from open invariant subsets
of the unit space. This is akin to the six-term exact sequences arising from
nested ideals in filtered K-theory of C∗-algebras, as in e.g. [Res06]. Let G be
an ample Hausdorff groupoid and let Z ⊆ Y ⊆ G(0) be open sets. The inclusion
ι : G|Z →֒ G|Y induces the chain map

ιn : Cc((G|Z)
(n),Z) → Cc((G|Y )

(n),Z)
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which is given by extending functions to be 0 outside G|Z . Let

κn : Cc((G|Y )
(n),Z) → Cc((G|(Y \Z))

(n),Z)

denote the canonical restriction maps. Taking such restrictions commutes with
the differentials δn, so κ• is also a chain map.

We claim that when the sets Z and Y are G-invariant, then ι• and κ• form a
short exact sequence of complexes as follows:

0 C• (G|Z ,Z) C• (G|Y ,Z) C•

(
G|(Y \Z),Z

)
0.

ι• κ•

It is clear that κn ◦ ιn = 0. It is also clear that ιn is injective and that κn is

surjective. Suppose that we have κn(f) = 0 for some f ∈ Cc

(
(G|Y )

(n)
,Z
)
.

This means that f is identically zero on
(
G|(Y \Z)

)(n)
. The invariance of Z

implies that there are no groupoid elements g ∈ G for which s(g) ∈ Z while
r(g) ∈ Y \ Z, or vice versa. This forces f to be supported solely on (G|Z)(n),
which means that f ∈ im (ιn). The claim follows. We therefore obtain the
following long exact sequence in homology..

Proposition 6.3. Let G be an ample Hausdorff groupoid and assume that
Z ⊆ Y ⊆ G(0) are open and G-invariant. Then there is a long exact sequence

· · · H1
(

G|(Y \Z)

)

H0 (G|Z) H0 (G|Y ) H0
(

G|(Y \Z)

)

0.
H1(κ•) H0(ι•) H0(κ•)

7 The homology groups of a graph groupoid

We have already seen that the homology groups of a graph groupoid coincide
with the K-groups of its groupoid C∗-algebra. We will make use of this in the
final section. However, in order to prove Property TR for the graph groupoid
GE we are going to relate the first homology group H1(GE) to the homology
groups H0(GE ×cE Z) and H0(HE). In this section we will use the long exact
sequences from the previous section to deduce the following embeddings:

H1(GE) →֒ H0(HE) →֒ H0(GE ×cE Z).

This will be done in three steps: first we show that H1(GE) →֒ H0(GE ×cE Z),
then that H0(HE) →֒ H0(GE ×cE Z) and finally that H1(GE) →֒ H0(HE). The
reason we need three steps (and not two) is that the third embedding relies on
the first two.

7.1 The first embedding

Let us begin by describing the zeroth homology group of the skew product
GE ×cE Z. Recall that (GE ×c Z)(0) is identified with ∂E ×Z. Observe that we
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have3

H0(GE ×c Z) = span{[1A] | A ⊆ ∂E × Z compact open}

= span{
[
1Z(µ\F )×{i}

]
| µ ∈ E∗, F ⊆finite r(µ)E

1, i ∈ Z}

= span{
[
1Z(µ)×{i}

]
| µ ∈ E∗, i ∈ Z},

since 1Z(µ\F )×{i} = 1Z(µ)×{i} −
∑

e∈F 1Z(µe)×{i}. These spanning elements
satisfy the following relations in H0(GE ×cE Z):

[
1Z(µ)×{i}

]
=
[
1Z(σE(µ))×{i+1}

]
if |µ| ≥ 1, (4)

[
1Z(µ)×{i}

]
=
[
1Z(eµ)×{i−1}

]
for any e ∈ E1s(µ), (5)

[
1Z(µ)×{i}

]
=

∑

e∈r(µ)E1

[
1Z(µe)×{i}

]
if r(µ) is a regular vertex, (6)

[
1Z(µ)×{i}

]
=
[
1Z(ν)×{i}

]
if |µ| = |ν| and r(µ) = r(ν). (7)

For all of the sets appearing in the indicator functions above it is easy to find
a bisection in GE ×c Z whose source is the left hand side and whose range is
the right hand side. From repeated use of the relation (4) we see that we can
even write

H0(GE ×cE Z) = span{
[
1Z(v)×{i}

]
| v ∈ E0, i ∈ Z},

since
[
1Z(µ)×{i}

]
=
[
1Z(r(µ))×{i+|µ|}

]
.

Let us now consider the long exact sequence in homology that we get from
the canonical cocycle cE on a graph groupoid GE . Since GE ×cE Z is an AF-
groupoid (Corollary 3.3), its H1 group vanishes, and therefore the first part of
the long exact sequence from Proposition 6.1 becomes

0 H1(GE) H0(GE ×cE Z) H0(GE ×cE Z) H0(GE) 0.
∂1 id−H0(ρ•) H0(π•)

(8)

The map H0(ρ•) : H0(GE ×cE Z)→ H0(GE ×cE Z) is given by

H0(ρ•)
([
1Z(v)×{i}

])
=
[
1Z(v)×{i+1}

]

for v ∈ E0 and i ∈ Z. The connecting homomorphism ∂1 will be described explicitly
in the proof of Lemma 8.6. From the exactness of (8) we deduce the following.

Proposition 7.1. Let E be a graph and let H0(ρ•) : H0(GE×cE Z)→ H0(GE×cE Z)
be as above. Then

H0(GE) ∼= coker(id−H0(ρ•)) and H1(GE) ∼= ker(id−H0(ρ•)).

Remark 7.2. In the proof of [Mat12, Theorem 4.14], Matui obtained formulas
similar to those in Proposition 7.1 using a spectral sequence. This relied on the fact
that H0(HE) and H0(GE ×cE Z) can be identified when E is finite (or more generally
row-finite) with no sinks. For then ∂E × {0} is (GE ×cE Z)-full, so HE is Kakutani

3By span we mean linear combinations over Z.
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equivalent to GE ×cE Z. This allowed Matui to immediately realize H1(GE) as a
subgroup of H0(HE).
At this point we encounter a significant difference from the finite graph case. For
when E has singular vertices one can show that ∂E × {0} never is (GE ×cE Z)-full.
So in our setting we cannot necessarily identify H0(HE) with H0(GE×cE Z). We will,
however, be able to identify the former with a subgroup of the latter.

7.2 The second embedding

Recall that HE = ker(cE) ⊆ GE and from Lemma 2.4 we have that HE
∼=

(GE ×cE Z) |∂E×{0} via the identification (x, 0, y) ↔ ((x, 0, y), 0). In H0(HE) we
have the relation [

1Z(µ)

]
=
[
1Z(ν)

]

whenever µ, ν ∈ E∗ satisfy |µ| = |ν| and r(µ) = r(ν). The element
[
1Z(µ)

]
∈ H0(HE)

corresponds to
[
1Z(µ)×{0}

]
∈ H0((GE ×cE Z) |∂E×{0}) under the identification above.

On the other hand, the indicator function 1Z(µ)×{0} gives rise to an element[
1Z(µ)×{0}

]
in H0(GE×cE Z) as well. A priori, these are different, but we will see that

mapping
[
1Z(µ)

]
∈ H0(HE) to

[
1Z(µ)×{0}

]
∈ H0(GE ×cE Z) actually gives an embed-

ding of groups. So that in the end, there is no ambiguity. The map from H0(HE) to
H0(GE ×cE Z) proposed above extends to arbitrary elements by

H0(HE) ∋ [f ] 7−→ [f × δ0] ∈ H0(GE ×cE Z)

for f ∈ Cc(∂E,Z), where f × δ0 ∈ Cc(∂E × Z,Z) is given by

(f × δ0)(x,m) =

{
f(x) if m = 0,

0 otherwise.

By noting that (GE ×cE Z) |∂E×{0} = HE×{0} ⊆ GE×Z = GE×cE Z as sets, it is not
hard to see that this is a well-defined homomorphism. Its injectivity will be deduced
using the second long exact sequence from Section 6.

Lemma 7.3. Let E be a graph. The homomorphism φ : H0(HE) → H0(GE ×cE Z)
given by φ([f ]) = [f × δ0] for f ∈ Cc(∂E,Z) is injective.

Proof. In the setting of Proposition 6.3, set G = GE ×cE Z, Y = G(0) = ∂E × Z
and X = ∂E × {0}. The clopen set X is neither G-full nor invariant, so we instead
consider its saturation, namely Z := r(s−1(X)). In words Z is the smallest G-invariant
subset containing X. By étaleness, Z is open in ∂E × Z. By its very definition, X is
clopen in Z and G|Z-full, hence HE

∼= G|X = (G|Z) |X is Kakutani equivalent to G|Z .
The induced isomorphism H0(HE) ∼= H0(G|Z) maps [1Z(µ)] to [1Z(µ)×{0}], where we
now consider 1Z(µ)×{0} ∈ Cc(Z,Z). Since G is an AF-groupoid and the set Y \ Z

is closed in G(0), the restriction G|(Y \Z) becomes an AF-groupoid (in the relative
topology) as well. Its H1 group then vanishes and the first part of the long exact
sequence in Proposition 6.3 becomes

0 H0 ((GE ×cE Z) |Z) H0(GE ×cE Z) H0
(

(GE ×cE Z) |(∂E×Z)\Z

)

0.
H0(ι•) H0(κ•)

The map H0(ι•) is given by inclusion (i.e. by extending to 0). So if we compose H0(ι•) with
the isomorphism H0(HE) ∼= H0(G|Z) = H0 ((GE ×cE Z) |Z) from above we get φ back. Its
injectivity then follows from the injectivity of H0(ι•).
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Remark 7.4. We can actually describe the set Z from the proof of Lemma 7.3
explicitly, assuming that E is strongly connected, as follows:

Z = {(x, k) | x ∈ E∞, k ∈ Z} ⊔ {(µ, l) | µ ∈ ∂E ∩ E∗, l ≥ −|µ|} ⊆ ∂E × Z = Y.

The complement is therefore

Y \ Z = (∂E × Z) \ Z = {(µ, l) | µ ∈ ∂E ∩ E∗, l < −|µ|}.

If E has a singular vertex, then Z is an open and dense proper subset of ∂E × Z,
as well as GE ×cE Z-invariant. And the complement is non-empty, closed, has empty
interior and is also invariant.

7.3 The third embedding

From now on we will freely identify H0(HE) with the subgroup generated by the
elements

[
1Z(µ)×{0}

]
for µ ∈ E∗ inside H0(GE ×cE Z). The first thing we shall note

is that this copy of H0(HE) inside H0(GE ×cE Z) is invariant under H0(ρ•), provided
that E has no sources. Indeed, for µ ∈ E∗

H0(ρ•)
([
1Z(µ)×{0}

])
=
[
1Z(µ)×{1}

]
=
[
1Z(eµ)×{0}

]
,

where e is any edge whose range is s(µ) (and the equivalence class does not depend
on which edge e is chosen). The restriction of H0(ρ•) to H0(HE) will be important
in the sequel, so we give it a name of its own.

Definition 7.5. Let E be an essential graph. By viewing H0(HE) as a subgroup
of H0(GE ×cE Z) we define an endomorphism ϕ : H0(HE)→ H0(HE) by

ϕ
([
1Z(µ)×{0}

])
= H0(ρ•)

([
1Z(µ)×{0}

])
=
[
1Z(eµ)×{0}

]
,

where e ∈ E1s(µ) is arbitrary.

In the next section we will see that the image of an element of the topological full
group under the index map can be described in terms of the map ϕ.

Remark 7.6. On page 56 of [Mat15b] Matui implicitly defines, for any finite strongly
connected graph E, an automorphism denoted δ of H0(HE). Explicitly, δ is given by

δ
([
1Z(µ)×{0}

])
=
[
1Z(σE (µ))×{0}

]
=
[
1Z(µ)×{−1}

]

for
[
1Z(µ)×{0}

]
∈ H0(HE) = span

{[
1Z(µ)×{0}

]
| µ ∈ E≥1

}
.

Hence the homomorphism ϕ from Definition 7.5 equals δ−1. But if the graph E has
singular vertices, then δ is no longer globally defined on H0(HE). To see this, note
that ϕ is generally not surjective. For example, the elements

[
1Z(w)×{0}

]
, where w is

an infinite emitter, will generally not be in the image of ϕ.

We are now ready to prove the the third and final embedding of the homology groups.

Lemma 7.7. Let E be an essential graph. Then ker(id−H0(ρ•)) = ker(id−ϕ) as
subsets of H0(GE ×cE Z).
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Proof. With φ as in Lemma 7.3 we have the commutative diagram

H0(GE ×cE Z) H0(GE ×cE Z)

H0(HE) H0(HE)

id−H0(ρ•)

id−ϕ

φ φ

under which we identify H0(HE) with φ(H0(HE)) ⊆ H0(GE ×cE Z). From this it is
clear that ker(id−ϕ) ⊆ ker(id−H0(ρ•)).

To prove the reverse inclusion we first show that any element of H0(GE ×cE Z) can
be put in a certain “standard form”. Each element ω ∈ H0(GE×cE Z) can be written
as

ω =

n∑

i=−n

ki∑

j=1

λi,j

[
1Z(vi,j )×{i}

]
,

where λi,j are integers and vi,j ∈ E0. When i ≥ 0 we have

[
1Z(v)×{i}

]
=
[
1Z(µ)×{0}

]
, (9)

where µ is any path of length i in E which ends in v. When v is a regular vertex we
have [

1Z(v)×{i}

]
=
∑

e∈vE1

[
1Z(r(e))×{i+1}

]
. (10)

So when i < 0 we can, by repeated use of (10), write

[
1Z(v)×{i}

]
=

−1∑

j=i

Kj∑

k=1

[
1Z(wj,k)×{j}

]
+

K0∑

k=1

[
1Z(vk)×{0}

]
, (11)

where each wj,k is an infinite emitter. Combining (9) and (11) we see that we can
write the arbitrary element ω as

ω =

−1∑

i=−n

Ji∑

j=1

λi,j

[
1Z(wi,j )×{i}

]
+

J0∑

j=1

λ0,j

[
1Z(µj )×{0}

]
,

where n ∈ N, λi,j ∈ Z, each wi,j is an infinite emitter and µj ∈ E∗. We may assume
that all the wi,j ’s are distinct for each fixed i.

Suppose now that ω ∈ ker(id−H0(ρ•)). We need to show that ω ∈ H0(HE) (viewed
as a subgroup of H0(GE ×cE Z)). We compute

H0(ρ•)(ω) =
−1∑

i=−n

Ji∑

j=1

λi,j

[
1Z(wi,j )×{i+1}

]
+

J0∑

j=1

λ0,j

[
1Z(µj )×{1}

]

=

0∑

i=−n+1

Ji−1∑

j=1

λi−1,j

[
1Z(wi−1,j )×{i}

]
+

J0∑

j=1

λ0,j

[
1Z(ejµj)×{0}

]
,
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where ej is any edge ending in s(µj). From this we get

0 = ω −H0(ρ•)(ω) =

J−n∑

j=1

λ−n,j

[
1Z(w−n,j)×{−n}

]

+

−1∑

i=−n+1




Ji∑

j=1

λi,j

[
1Z(wi,j )×{i}

]
−

Ji−1∑

j=1

λi−1,j

[
1Z(wi−1,j )×{i}

]



+

J0∑

j=1

(
λ0,j

[
1Z(µj )×{0}

]
− λ0,j

[
1Z(ejµj)×{0}

])
−

J−1∑

j=1

λ−1,j

[
1Z(w−1,j )×{0}

]
. (12)

As w−n,j is singular, each
[
1Z(w−n,j)×{−n}

]
generates a free summand of

H0(GE ×cE Z) by Lemma 3.4. Since all the other terms have a strictly smaller
second coordinate, in order for the right hand side of (12) to be 0 we must have
λ−n,j = 0 for all 1 ≤ j ≤ J−n. Thus we may replace −n with −n+1 in the expression
for ω. Arguing inductively we get that λi,j = 0 for all −1 ≤ i ≤ −n and 1 ≤ j ≤ Ji.
Hence the expression for ω reduces to

ω =

J0∑

j=1

λ0,j

[
1Z(µj )×{0}

]
,

from which we see that ω ∈ H0(HE).

8 The image of the index map

Recall the index map I : JGEK → H1(GE) described in Section 4. Our main goal
is to establish that the kernel of the index map is generated by transpositions (i.e.
property TR) for minimal graph groupoids. To that end, the goal of this section is
to describe the image I(α) ∈ H1(GE) of an element α ∈ JGEK under the identification
H1(GE) ∼= ker(id−ϕ) from Proposition 7.1 and Lemma 7.7.

8.1 Graded partitions

The identification described above will be done in terms of the following “graded
partitions” as defined in [Mat15b, page 60].

Definition 8.1. Let E be a graph. For α = πU ∈ JGEK and k ∈ Z we define the set

Sα(k) := s
(
U ∩ c−1

E (k)
)
= {x ∈ ∂E | (α(x), k, x) ∈ U}.

Note that each Sα(k) is clopen and that ∂E \ supp(α) ⊆ Sα(0), i.e. Sα(0) contains
the largest (cl)open set fixed by α. As supp(α) is compact, Sα(k) is also compact
when k 6= 0. This implies that only finitely many Sα(k)’s will be non-empty. Hence
these form a finite partition of the boundary path space ∂E. We make a few more
observations about these graded partitions that we are going to need in the proof of
the main result.

Lemma 8.2. Let E be a graph and let α ∈ JGEK. We have α(Sα(k)) = Sα−1(−k) for
each k ∈ Z.
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Proof. Recall that Uα denotes the unique bisection which satisfies α = πUα . Suppose
that x ∈ Sα(k), i.e. (α(x), k, x) ∈ Uα. Then (x,−k, α(x)) ∈ (Uα)

−1 = Uα−1 . This
shows that α(x) ∈ Sα−1(−k), hence we have the containment α(Sα(k)) ⊆ Sα−1(−k)
for all integers k. Since these sets form partitions of the unit space we must necessarily
have equality.

The next observation is that when two elements of the topological full group have the
same graded partitions, their difference belongs to the AF-kernel of the cocycle.

Lemma 8.3. Let E be a graph and let Y ⊆ G
(0)
E = ∂E be clopen. Suppose α, β ∈

JGE|Y K satisfy Sα(k) = Sβ(k) for all k ∈ Z. Then βα−1 ∈ JHE |Y K, that is, Uβα−1 ⊆
c−1
E (0).

Proof. We claim that because the graded partitions of α and β are the same, we must
have

Sβα−1(k) =

{
Y k = 0,

∅ k 6= 0.

And once we have this we immediately see that each element g = (x, k, y) ∈ Uβα−1

must have k = 0, i.e. that Uβα−1 ⊆ c−1
E (0).

To prove the claim, take an arbitrary point y ∈ Y . Then y ∈ Sα−1(k) for some k. By
Lemma 8.2 we have α−1(y) ∈ Sα(−k) = Sβ(−k). And then g = (α−1(y), k, y) ∈ Uα−1

and h = (βα−1(y),−k, α−1(y)) ∈ Uβ . From this we get h · g = (βα−1(y), 0, y) ∈
Uβα−1 , hence y ∈ Sβα−1(0), which proves the claim.

The third lemma describes what happens to the graded partition of an element of the
topological full group when we perturb it with a particular transposition.

Lemma 8.4. Let E be a graph and let Y ⊆ G(0)E = ∂E be clopen. Let V ⊆ GE|Y be
a compact bisection with disjoint source and range, and such that V ⊆ c−1

E (K) for
some integer K. Let τ = πV̂ ∈ JGE |Y K be the associated transposition. If α ∈ JGE|Y K
satisfies supp(α) = s(V ), then supp(τατ ) = r(V ) and Sτατ (k) = τ (Sα(k)) for each
k ∈ Z.

Proof. We first take care of the support of τατ . If x /∈ r(V ), then τ (x) /∈ s(V ) =
supp(α). From this we see that τατ fixes x because

τατ (x) = τα(τ (x)) = ττ (x) = x.

This shows that supp(τατ ) ⊆ r(V ). By definition, the set {x ∈ ∂E | α(x) 6= x} is
dense in supp(α) = s(V ). And then Z := {τ (x) | x ∈ ∂E & α(x) 6= x} is dense in
r(V ). Let y ∈ Z and set x = τ (y), so that y = τ (x) and α(x) 6= x. Then we have

τ (α(τ (y))) = τ (α(τ 2(x))) = τ (α(x)) 6= τ (x) = y.

Hence Z ⊆ supp(τατ ) ⊆ r(V ), and so by the density of Z we get supp(τατ ) = r(V )
as desired.
We now turn to the second statement. Let x ∈ Sα(k). Then (α(x), k, x) ∈ Uα.
Consider first the case x ∈ supp(α) = s(V ). It is clear from the assumptions on V that
we have Sτ (K) = s(V ), Sτ (−K) = r(V ) and that the rest is concentrated in Sτ (0).
Thus both x and α(x) lie in Sτ (K). This means that (τ (x),K, x) ∈ Uτ and that
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(τα(x),K, α(x)) ∈ Uτ . Since τ = τ−1 we also have (τ (x),K, x)−1 = (x,−K, τ (x)) ∈
Uτ . Multiplying these together we obtain

(τα(x),K, α(x)) · (α(x), k, x) · (x,−K, τ (x)) = (τα(x), k, τ (x)) ∈ Uτατ ,

which shows precisely that τ (x) ∈ Sτατ (k).

Lastly consider the case when x /∈ supp(α). Then we must have k = 0, and
since α(x) = x, we have (x, 0, x) ∈ Uα. If x is not in the support of τ either
(i.e. x /∈ r(V )), then τ (x) = x ∈ Sτατ (0) as desired. The final possibility is that
x ∈ r(V ) = Sτ (−K), and then (τ (x),−K,x) ∈ Uτ and (x,K, τ (x)) ∈ Uτ . Multiply-
ing these gives

(τ (x),−K,x) · (x, 0, x) · (x,K, τ (x)) = (τ (x),0, τ (x)) ∈ Uτατ ,

hence τ (x) ∈ Sτατ (0).

We have shown that τ (Sα(k)) ⊆ Sτατ (k) for all k, but since both the Sα(k)’s and
the Sτατ (k)’s are partitions, we must actually have equality. This finishes the proof.

8.2 Identifying I(α)

Let us now turn to describing the image of the index map. Recall the homomorphism
ϕ : H0(HE)→ H0(HE) from Definition 7.5, where we view H0(HE) as a subgroup of
H0(GE ×cE Z). For n ∈ N its iterates are given by

ϕn
([
1Z(µ)×{0}

])
=
[
1Z(µ)×{n}

]
=
[
1Z(νµ)×{0}

]
,

where ν is any path of length n in E terminating in s(µ). For any path µ in E of
length at least n the iterated inverses are also defined, and they are given by

ϕ−n
([
1Z(µ)×{0}

])
=
[
1Z(µ)×{−n}

]
=
[
1Z(σn

E
(µ))×{0}

]
.

In the setting of Definition 8.1 we can write Uα ∩ c−1
E (k) =

⊔Jk
j=1 Z(µj , Fj , νj), where

for each j, |µj | − |νj | = k. When k < 0 this entails that |νj | ≥ |k|. Since we have
that Sα(k) = s

(
Uα ∩ c−1

E (k)
)
=
⊔Jk

j=1 Z(νj \ Fj), the negative powers ϕi are then de-
fined on the associated characteristic functions for −|k| ≤ i ≤ −1 and we have

ϕi
([
1Sα(k)×{0}

])
=
[
1Sα(k)×{i}

]
. (13)

For k ≥ 0 and i ≥ 0 Equation (13) clearly holds as well. For i = k we furthermore
have

ϕk
([
1Sα(k)×{0}

])
=
[
1α(Sα(k))×{0}

]
. (14)

Definition 8.5. For k ∈ Z we define the following expression

ϕ(k) :=






−(id+ϕ+ · · ·+ ϕk−1) k > 0,

0 k = 0,

ϕ−1 + ϕ−2 + · · ·+ ϕk k < 0.
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The definition above is slightly imprecise in the sense that for k < 0 it is only de-
fined on certain elements. However, we will only apply the negative powers as in
Equation (13) where they are indeed defined. Observe that formally we have

(id−ϕ) ◦ ϕ(k) = ϕk − id . (15)

Let us now show how an element α ∈ JGEK gives rise to an element of ker(id−ϕ)
as on page 61 of [Mat15b]. Assume for simplicity that E0 is finite, so that Sα(0) is
compact. Since both the Sα(k)’s and α(Sα(k))’s form partitions of ∂E we obtain the
following using (14)

[1∂E ] =
∑

k∈Z

[
1Sα(k)×{0}

]
=
∑

k∈Z

[
1α(Sα(k))×{0}

]
=
∑

k∈Z

ϕk
([
1Sα(k)×{0}

])
.

Subtracting these using (15) we get

∑

k∈Z

(ϕk − id)
([
1Sα(k)×{0}

])
= (id−ϕ)

(
∑

k∈Z

ϕ(k) ([1Sα(k)×{0}

])
)

= 0,

which shows that
∑

k∈Z
ϕ(k)

([
1Sα(k)×{0}

])
∈ ker(id−ϕ). Analogously to Lemma 6.8

in [Mat15b] we will see that this is precisely the element to which I(α) corresponds.

Lemma 8.6. Let E be an essential graph and let α = πU ∈ JGEK. Under the identi-
fication H1(GE) ∼= ker(id−ϕ), the element I(α) ∈ H1(GE) corresponds to

∑

k∈Z

ϕ(k) ([1Sα(k)×{0}

])
∈ ker(id−ϕ) ≤ H0(HE).

Proof. The identification H1(GE) ∼= ker(id−H0(ρ•)) from Proposition 7.1 is imple-
mented by the (injective) connecting homomorphism ∂1 : H1(GE) → H0(GE ×cE Z)
from the exact sequence (8). Since ker(id−ϕ) = ker(id−H0(ρ•)) = im(∂1) as subsets
of H0(GE ×cE Z), it suffices to compute ∂1(I(α)) ∈ H0(GE ×cE Z). We will do this
by stepwise going through the definition of ∂1 in terms of the Snake Lemma applied
to the diagram in Figure 2. To save space we have shortened Cc(G,Z) to Cc(G) and

GE ×cE Z to GE × Z. The maps δ̃1 in Figure 2 are given by δ̃1(f + im(δ2)) = δ1(f).

The top and bottom rows are the kernels and cokernels of the δ̃1’s, respectively.
We first treat the case when E0 is finite, for then U and Sα(0) are both compact. We
start with α = πU ∈ JGEK and look at I(α) = [1U ] ∈ H1(GE). Now view 1U + im(δ2)
as an element of Cc(GE)/ im(δ2) (recall that δ1(1U ) = 0). A lift of this element by
π1/ im(δ2) is given by the element h := 1U×{0} ∈ Cc(GE ×cE Z), since π1(h) = 1U .

At this point we have h + im(δ2) ∈ Cc(GE ×cE Z)/ im(δ2). Before applying δ̃1, we
partition the full bisection U defining α in terms of its values under the cocycle cE :

U =
N⊔

k=−N

Uk, where Uk = U ∩ c−1
E (k),

so that s (Uk) = Sα(k). Note that

1∂E×{0} =
N∑

k=−N

1s(Uk)×{0} =
N∑

k=−N

1r(Uk)×{0}. (16)
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0 0 H1(GE)

Cc(GE×Z)
im(δ2)

Cc(GE×Z)
im(δ2)

Cc(GE )
im(δ2)

0

0 Cc(∂E × Z) Cc(∂E × Z) Cc(∂E)

H0(GE × Z) H0(GE × Z) H0(GE)

id−ρ1 π1

δ̃1 δ̃1 δ̃1

id−ρ0 π0

∂1

Figure 2: The connecting homomorphism ∂1 from the exact sequence (8).

Using this we compute

δ̃1(h+ im(δ2)) = δ1(h) = δ1(1U×{0}) =

N∑

k=−N

δ1(1Uk×{0})

=
N∑

k=−N

(
s∗(1Uk×{0})− r∗(1Uk×{0})

)

=
N∑

k=−N

(
1s(Uk×{0}) − 1r(Uk×{0})

)

=

N∑

k=−N

(
1s(Uk)×{k} − 1r(Uk)×{0}

)
=

N∑

k=−N

(
1s(Uk)×{k} − 1s(Uk)×{0}

)

=

−1∑

k=−N

(
1Sα(k)×{k} − 1Sα(k)×{0}

)
+

N∑

k=1

(
1Sα(k)×{k} − 1Sα(k)×{0}

)
.

The next step is to find the unique lift of δ1(h) by id−ρ0. Applying Lemma 6.2 to
each term in the sum above we see that this lift is

g :=

−1∑

k=−N

−1∑

i=k

1Sα(k)×{i} −
N∑

k=1

k−1∑

i=0

1Sα(k)×{i} ∈ Cc(∂E × Z,Z).

The final step is to map the element g “downwards” into the cokernel of δ̃1, which is
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precisely H0(GE ×cE Z). Using Equation (13) we find

∂1(I(α)) = ∂1([1U ]) = g + im(δ̃1) = [g]

=

−1∑

k=−N

−1∑

i=k

[
1Sα(k)×{i}

]
−

N∑

k=1

k−1∑

i=0

[
1Sα(k)×{i}

]

=

−1∑

k=−N

−1∑

i=k

ϕi
([
1Sα(k)×{0}

])
−

N∑

k=1

k−1∑

i=0

ϕi
([
1Sα(k)×{0}

])

=
∑

k∈Z

ϕ(k) ([1Sα(k)×{0}

])

In the case that E0 is infinite, the proof above remains valid if we simply replace U
with U⊥ from Subsection 4.1, (as this makes all indicator functions above remain
compactly supported) and replace ∂E with supp(πU ) in Equation (16).

We emphasize that the sum in the lemma above really is a finite sum. Since we are
aiming to establish Property TR for restrictions of graph groupoids, we need to verify
that the description of the index map as above also works in this case.

Corollary 8.7. Let E be an essential graph and let Y ⊆ ∂E be clopen and GE-full.
Then the element I(α) ∈ H1 (GE|Y ) for α ∈ JGE|Y K corresponds to

∑

k∈Z

ϕ(k)
([
1Sα(k)×{0}

])
∈ ker(id−ϕ) ≤ H0(HE)

under the identification H1 (GE|Y ) ∼= H1(GE) ∼= ker(id−ϕ), and the Sα(k)’s form a
finite clopen partition of Y .

Proof. The inclusion GE|Y →֒ GE induces an isomorphism in homology due to the
fullness of Y . We also have a canonical inclusion JGE|Y K →֒ JGEK given by πU 7→ πŨ ,

where Ũ = U ⊔ ∂E \ Y for U ⊆ GE|Y a full bisection. In words, πŨ simply extends
πU trivially to the identity on ∂E \ Y . Together with the respective index maps, we
claim that from this we get a commutative diagram as follows:

JGE|Y K H1 (GE|Y )

JGEK H1(GE)

I

∼=

I

To see that the diagram commutes, let U ⊆ GE|Y be a full bisection and let
α = πU ∈ JGE|Y K. The two paths in the diagram result in α 7→ [1(Ũ)⊥ ] ∈ H1(GE)

and α 7→ [1U⊥ ] ∈ H1(GE), respectively. But these elements are the same since the

sets (Ũ)⊥ and U⊥ are actually equal.
Let α̃ = πŨ denote the trivial extension of α. Then Sα(k) = Sα̃(k) for all k 6= 0.

Recall that ϕ(0) = 0. Appealing to Lemma 8.6 we obtain

I(α)←→ I(α̃)←→
∑

k∈Z

ϕ(k) ([1Sα̃(k)×{0}

])
=
∑

k∈Z

ϕ(k) ([1Sα(k)×{0}

])
,

under the correspondence H1 (GE |Y ) ∼= H1(GE) ∼= ker(id−ϕ) ≤ H0(HE).
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Remark 8.8. For finite graphs one might expect all formulas in the present paper
to recover those in [Mat15b, Section 6] after substituting ϕ = δ−1, since one has
that ker(id−δ) = ker(id−δ−1) as sets. However, a small difference already appears
in Corollary 8.7 when compared to [Mat15b, Lemma 6.8], which will propagate in
the sequel. After substituting ϕ = δ−1, the k’th term (for k 6= 0) in Corollary 8.7
becomes

ϕ(k) =

{
−(id+δ−1 + · · ·+ δ1−k) k > 0,

δ + δ2 + · · ·+ δ|k| k < 0,

whereas the k’th term in [Mat15b, Lemma 6.8] is

δ(−k) =

{
−(δ−1 + δ−2 · · ·+ δ−k) k > 0,

id+δ + · · ·+ δ|k|−1 k < 0.

The reason these are different is because identifying H1(GE) with ker(id−δ) instead
of ker(id−δ−1) gives different lifts of the element δ1(h) in the proof of Lemma 8.6.

9 Establishing Property TR

We are by now almost ready to prove that restrictions of graph groupoids have Prop-
erty TR. Given what we have established so far, our proof will in broad strokes follow
the proof of [Mat15b, Lemma 6.10] using the endomorphism ϕ instead of the auto-
morphism δ mentioned in Remark 7.6. However, there is another major difference,
which we discuss below.
What is actually proved in [Mat15b, Lemma 6.10] is that if the adjacency matrix AE

of a finite graph E is primitive4, then any restriction of GE has Property TR5. One
reason why primitivity of the adjacency matrix is so useful is that this matrix then has
a (strictly dominant) Perron eigenvalue λ > 1. Another is that the AF-groupoid HE

becomes minimal. This is if and only if, in fact, and also equivalent to the shift of
finite type determined by AE being topologically mixing. In this case the infinite
path space E∞ admits exactly one HE-invariant probability measure. This measure,
let’s denote it by ω, satisfies ω(s(U)) = λ ω(rU)) for any compact bisection U ⊆ GE
with U ⊆ c−1

E (1). This then allows one to compare clopen subsets and the image of the
class of their characteristic functions under the automorphism δ and from this obtain
bisections connecting them using [Mat12, Lemma 6.7]. The approach in [Mat15b]
was subsequently generalized to an abstract setting in [Mat16, Proposition 4.5 (2)].
In the setting of the present paper, however, where we allow infinite emitters in the
graphs, we are no longer dealing with a shift of finite type (or any shift space for
that matter), nor do we have a Perron eigenvalue. Neither is the AF-groupoid HE

ever minimal (see Remark 7.2). So the aforementioned [Mat16, Proposition 4.5 (2)]
does not apply. We replace the notion of primitivity (or mixing) by the technical
Lemma 9.1 below. It prescribes necessary conditions on a graph E to guarantee the
existence of certain disjoint paths in E from which we can explicitly define sets with
similar properties as the sets Cn,i and Dn,j which are constructed using the invariant

4Meaning that for some n ∈ N all entries in (AE)n are strictly positive.
5At the beginning of the proof of [Mat15b, Theorem 6.11] it is noted that the graph

groupoid of a strongly connected finite graph is always Kakutani equivalent to graph groupoid
whose adjacency matrix is primitive, from which it follows that restrictions of the former also
have Property TR.
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measure ω in [Mat15b, Lemma 6.10]. A key point is that these necessary conditions
can always be arranged, without changing the isomorphism class of the groupoid, as
demonstrated in Lemma 9.2.

9.1 Technical lemmas

The following “combinatorial bookkeeping” lemma will allow us to explicitly describe
the terms in the sum in Corollary 8.7 and relate them to each other. As men-
tioned above, it will play a similar role as primitivity (or mixing) does in [Mat15b,
Lemma 6.10].

Lemma 9.1. Let E be a strongly connected graph. Assume there is an infinite emitter
in E which supports infinitely many loops and from which there is at least one edge
to every other vertex in E. Let ∅ 6= Y ⊆ ∂E be clopen. Suppose we are given a clopen
proper subset ∅ 6= A ( Y , finite subsets P ⊂ N and Q ⊂ −N, natural numbers mk ∈ N

and vertices vk,i ∈ E0 indexed over k ∈ Q ∪ {0} ∪ P and 1 ≤ i ≤ mk. Then there
exists a natural number N ≥ maxq∈Q |q| and

1. mutually disjoint paths γ
(0)
k,i ∈ ENvk,i such that Z

(
γ
(0)
k,i

)
⊆ Y \ A for all k in

Q ∪ {0} ∪ P and 1 ≤ i ≤ mk,

2. mutually disjoint paths γ
(j)
p,i ∈ EN+jvp,i such that Z

(
γ
(j)
p,i

)
⊆ A for all p ∈ P ,

1 ≤ i ≤ mp and j = 1, 2, . . . , p,

3. mutually disjoint paths γ
(l)
q,i ∈ EN−lvq,i such that Z

(
γ
(l)
q,i

)
⊆ A for all q ∈ Q,

1 ≤ i ≤ mq and l = 1, 2, . . . , |q|.

Proof. Pick an infinite emitter w ∈ E0
sing which satisfy the assumptions in the lemma.

We enumerate the infinitely many loops based at w as ek,i (these are all distinct)
where k and i both range over N. Choose paths µ, µ′ ∈ E∗ such that Z(µ) ⊆ Y \ A
and Z(µ′) ⊆ A. By extending these paths we may assume that they both end in w,
and by concatenating sufficiently many loops at w to the shortest one of these, we
may furthermore assume that |µ| = |µ′|. For each k ∈ Q ∪ {0} ∪ P and 1 ≤ i ≤ mk

we pick an edge fk,i which goes from w to vk,i.
The paths we will define will all start with either µ or µ′, which will ensure that their
cylinder sets are contained in either A or Y \ A as needed. Then they will have a
certain number of the loops at w and it is these that will ensure the paths are mutually
disjoint. And they will all end with an edge fk,i taking care of the range of the paths.
We set K := maxq∈Q |q| and M := |µ| = |µ′|, and then define N := M +K + 2. Here
M is present because all the paths start with µ or µ′, K is a “buffer” we can subtract
from for the γ

(l)
q,i’s (as these should have length N − l) and the term 2 comes from

having at least one loop ek,i and then ending with fk,i. We now define the desired
paths as follows:

(1) γ
(0)
k,i

:= µ eK+1
k,i fk,i for k ∈ Q ∪ {0} ∪ P and 1 ≤ i ≤ mk,

(2) γ
(j)
p,i := µ′ eK+1+j

p,i fp,i for p ∈ P, 1 ≤ i ≤ mp and j = 1, 2, . . . , p,

(3) γ
(l)
q,i := µ′ eK+1−l

q,i fq,i for q ∈ Q, 1 ≤ i ≤ mq and l = 1, 2, . . . , |q|.

It is clear that these satisfy the conditions in the lemma.
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The next lemma shows that for a graph E with finitely many vertices, the conditions
in Lemma 9.1 can always be arranged, by changing the graph, but without changing
the (isomorphism class of the) groupoid. This is actually the only place where we
need to assume that the graph has finitely many vertices (see also Remark 9.6).

In order to prove it, we will appeal to one of Sørensen’s geometric moves on graphs
from [Sør13]. On page 1207 therein, a move on graphs called move (T) is described.
In order to apply this move one needs a graph E with an infinite emitter w ∈ E0

sing. If
there is a path e1e2 · · · en in E from w to another vertex v such that w emits infinitely
many edges to r(e1), then move (T) is the operation of adding a countably infinite
number of new edges from w to v.

It is proved in [Sør13, Theorem 5.4] that move (T) can be expressed using the first
four “standard moves” in Section 3 of [Sør13]. This means that move (T) produces
move equivalent graphs, which in turn implies that the associated graph groupoids are
Kakutani equivalent [CRS17]. But by virtue of [BCW17, Lemma 6.5] we can deduce
something even stronger, namely that move (T) actually produce orbit equivalent
graphs. And in our setting this in fact implies isomorphism of the graph groupoids.

Lemma 9.2. Let E be a strongly connected graph with finitely many vertices and
suppose that E has an infinite emitter w ∈ E0

sing. Let F denote the graph which is
obtained from E by, for each v ∈ E0, adding a countably infinite number of new edges
from w to v. Then GE ∼= GF as étale groupoids.

Proof. The strong connectedness of E guarantees that for each vertex v ∈ E0, there
exists a path from w to v that starts with an edge to a vertex to which w emits
infinitely already. Thus we see that the graph F is obtained from E by applying
move (T) finitely many times. As mentioned in the paragraph above, this implies
that the graphs E and F are orbit equivalent. The assumptions on E also ensure
that E satisfies Condition (L), and therefore so does F . It now follows from the main
result of [BCW17] that GE ∼= GF .

The final lemma describes in some sense a “graded cancellation” for the map ϕ
on H0(HE). It is a straightforward extension of [Mat15b, Lemma 6.9], after having
established cancellation for general AF-groupoids in Section 5, but we have neverthe-
less included the short argument for completeness.

Lemma 9.3. Let E be an essential graph and let A,B ⊆ ∂E be compact open subsets.
If ϕn ([1A]) = [1B ] in H0(HE) for some n ∈ N, then there exists a bisection U ⊆ GE
satisfying U ⊆ c−1

E (n), s(U) = A and r(U) = B.

Proof. We first write A as a disjoint union of punctured sylinder sets A =
⊔J

j=1 Z(µj \

Fj). Now pick paths γj ∈ En with r(γj) = s(µj) and set C :=
⊔J

j=1 Z(γjµj \ Fj).
Then we have

[1B ] = ϕn ([1A]) = [1C ] in H0(HE)

by definition of ϕ. Invoking cancellation in the AF-groupoid HE (Theorem 5.5)
produces a bisection W ⊆ HE ⊆ GE with s(W ) = C and r(W ) = B. Next define
the bisection V :=

⊔J
j=1 Z(γjµj , Fj , µj), which satisfies s(V ) = A and r(V ) = C.

Finally, setting U := WV gives us the desired bisection since s(U) = s(V ) = A,
r(U) = r(W ) = B and U ⊆ c−1

E (n), because W ⊆ c−1
E (0) and V ⊆ c−1

E (n).

Documenta Mathematica 26 (2021) 1679–1727



1716 P. Nyland, E. Ortega

9.2 The main result

We are now ready to give the proof of our main result.

Theorem 9.4. Let E be a strongly connected graph with finitely many vertices and
at least one infinite emitter. Let further ∅ 6= Y ⊆ G

(0)
E = ∂E be clopen. Then the

restricted graph groupoid GE|Y has Property TR.

Proof. Let α = πU ∈ JGE|Y K \ {id} be given and suppose that I(α) = 0 in H1(GE|Y ).
We are going to show that α is a product of transpositions. In the previous section we
saw that I(α) corresponds to an element in ker(id−ϕ) ≤ H0(HE) which is described
in terms of the finite clopen partition {Sα(k)}k∈Z of Y . Define

P := {k > 0 | Sα(k) 6= ∅} and Q := {k < 0 | Sα(k) 6= ∅}.

These are finite subsets of N. Set A := supp(α). By Lemma 4.13 we may assume
that A 6= Y . And A is non-empty since α 6= id. We can write

A = supp(α) = (Sα(0) ∩ A) ⊔
⊔

k∈Q∪P

Sα(k).

Now decompose these in terms of punctured cylinder sets as

Sα(0) ∩A =

m0⊔

i=1

Z(µ0,i \ F0,i) and Sα(k) =

mk⊔

i=1

Z(µk,i \ Fk,i),

where µk,i ∈ E∗ and Fk,i ⊆finite r(µk,i). It is possible for one of P , Q or Sα(0) ∩ A
to be empty (but not all of them). For now we assume that all three are non-empty,
and we shall comment on what happens otherwise near the end of the proof.

At this point we want to invoke Lemma 9.1. By Lemma 9.2 we may assume that E
satisfies the hypotheses of Lemma 9.1. Setting vk,i = s(µk,i) in Lemma 9.1 gives us
a natural number N (larger in absolute value than all numbers in Q) and

1. mutually disjoint paths γ
(0)
k,i ∈ ENs(µk,i) such that Z

(
γ
(0)
k,i

)
⊆ Y \ A for all

k ∈ Q ∪ {0} ∪ P and 1 ≤ i ≤ mk,

2. mutually disjoint paths γ
(j)
p,i ∈ EN+js(µp,i) such that Z

(
γ
(j)
p,i

)
⊆ A for all

p ∈ P , 1 ≤ i ≤ mp and j = 1, 2, . . . , p,

3. mutually disjoint paths γ
(l)
q,i ∈ EN−ls(µq,i) such that Z

(
γ
(l)
q,i

)
⊆ A for all q ∈ Q,

1 ≤ i ≤ mq and l = 1, 2, . . . , |q|.

From these we define the compact open set

B :=
⊔

k∈Q∪{0}∪P

mk⊔

i=1

Z(γ
(0)
k,iµk,i \ Fk,i) ⊆ Y \ A.

Next we define the bisection

V :=
⊔

k∈Q∪{0}∪P

mk⊔

i=1

Z(γ
(0)
k,iµk,i, Fk,i, µk,i).
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As s(V ) = A is disjoint from r(V ) = B we get a transposition τV := πV̂ ∈ JGE|Y K.
This transposition satisfies τV (A) = B, τV (B) = A, supp(τV ) = A ⊔B and

SτV (N) = A, SτV (−N) = B, SτV (0) = Y \A ⊔B.

We now define another element in JGE|Y K, namely β := τV ατV . If we can prove that β
is a product of transpositions, then the theorem follows. To do just that, we are going
construct another element τ ∈ JGE|Y K, which is itself a product of transpositions, but
which also satisfies Sτ (k) = Sβ(k) for all k. The construction of τ is a bit involved,
so before we get to that, let us explain why having τ suffices. Given an element τ
as above, we deduce from Lemma 8.3 that βτ−1 ∈ JHE |Y K. Making use of the fact
that I(α) = 0 we find that I(βτ−1) = 0 as well. Indeed,

I(βτ−1) = I(τV ατV τ−1) = I(τV ) + I(α) + I(τV )− I(τ ),

which are all 0 as transpositions are in the kernel of the index map. The
groupoid HE |Y is an AF-groupoid, and since all AF-groupoids have Prop-
erty TR [Mat16, Theorem 3.3.(4)] we deduce that βτ−1 is a product of transpositions
(in JHE|Y K) ⊆ JGE|Y K). But then β is a product of transpositions as well.
All that remains now is the construction of τ as above. The element τ will be of
the form τ = τ− ◦ τ+, where τ+ will be constructed from the Sβ(p)’s for p ∈ P and
similarly τ− comes from the Sβ(q)’s for q ∈ Q. We begin by noting that supp(β) = B
and that

Sβ(k) = τV (Sα(k)) =

{⊔mk
i=1 Z(γ

(0)
k,iµk,i \ Fk,i) for k 6= 0⊔m0

i=1 Z(γ
(0)
0,i µ0,i \ F0,i) ⊔ Y \B for k = 0

(17)

by Lemma 8.4. Let us define the compact open sets

Dp,j :=

mp⊔

i=1

Z(γ
(j)
p,iµp,i \ Fp,i)

for p ∈ P and 1 ≤ j ≤ p and set

D :=
⊔

p∈P

(
p−1⊔

j=1

Dp,j ⊔ Sβ(p)

)
.

Observe that6

ϕj
([

1Sβ(p)

])
=
[
1Dp,j

]
∈ H0(HE) (18)

for p, j as above. Furthermore, for p ∈ P define the bisections

Wp,j :=

mp⊔

i=1

Z(γ
(j)
p,iµp,i, Fp,i, γ

(j−1)
p,i µp,i) ⊆ GE for 1 ≤ j ≤ p.

Using Equation (17) and the definition of the Dp,j ’s we observe that

Wp,j ⊆ c−1
E (−1), r(Wp,j) = Dp,j for j ≥ 1,

s(Wp,1) = Sβ(p), s(Wp,j) = Dp,j−1 for j ≥ 2.

6Henceforth we suppress the “×{0}” from Sβ(0) × {0} to increase readability.
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As the sources and ranges of these bisections are disjoint (mutually disjoint even) we
obtain transpositions τp,j = π

Ŵp,j
which swap them. Now we are ready to define the

“first half” of τ , namely τ+, as follows

τ+ :=
∏

p∈P

τp,p ◦ τp,p−1 ◦ · · · ◦ τp,1.

As a homeomorphism, τ+ is the “disjoint union of the cycles”

Sβ(p) 7→ Dp,p 7→ Dp,p−1 7→ · · · 7→ Dp,1 7→ Sβ(p)

for p ∈ P . Observe that we have

τ+(Sβ(p)) = Dp,p, Sτ+(p) = Sβ(p), Sτ+(−1) =
⊔

p∈P

p⊔

j=1

Dp,j ,

supp(τ+) =
⊔

p∈P

Sτ+(p) ⊔ Sτ+(−1) = D
⊔

p∈P

Dp,p.

Our next objective is to construct the other half of τ , namely τ−. Combining Corol-
lary 8.7 (Y is full because GE is minimal) with Equation (18) we obtain

0 = I(α) = I(β) =
∑

k∈Z

ϕ(k)
([

1Sβ (k)

])
=

∑

k∈Z\{0}

ϕ(k)
([

1Sβ(k)

])

=⇒
∑

q∈Q

ϕ(q)
([

1Sβ(q)

])
= −

∑

p∈P

ϕ(p)
([

1Sβ(p)

])

=⇒
∑

q∈Q

(
ϕ−1

([
1Sβ(q)

])
+ ϕ−2

([
1Sβ(q)

])
+ · · ·+ ϕq

([
1Sβ (q)

]))

=
∑

p∈P

([
1Sβ (p)

]
+ ϕ

([
1Sβ(p)

])
+ · · ·+ ϕp−1

([
1Sβ(p)

]))

=
∑

p∈P

([
1Sβ (p)

]
+
[
1Dp,1

]
+ · · ·+

[
1Dp,p−1

])
= [1D] . (19)

Similarly to the Dp,j ’s, we define the compact open sets

Xq,l :=

mq⊔

i=1

Z(γ
(l)
q,iµq,i \ Fq,i)

for q ∈ Q and 1 ≤ j ≤ |q|, and set

X :=
⊔

q∈Q

|q|⊔

l=1

Xq,l.

These sets then satisfy

ϕ−l
([

1Sβ(q)

])
=
[
1Xq,l

]
∈ H0(HE) (20)

for q, l as above. Equation (19) now says that [1X ] = [1D] in H0(HE). Invoking
cancellation in HE (Theorem 5.5) we can find a bisection R ⊆ HE with s(R) = X
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and r(R) = D. Now define Rq,l := s−1 (Xq,l) and Cq,l := r (Rq,l). Then the Rq,l’s
are mutually disjoint bisections which witness that

[
1Cq,l

]
=
[
1Xq,l

]
. We also define

C :=
⊔

q∈Q

|q|⊔

l=1

Cq,l.

Observe that we actually have C = D, as they both equal r(R). Equation (20) implies
that

ϕ
([
1Cq,1

])
=
[
1Sβ(q)

]
and ϕ

([
1Cq,l

])
=
[
1Cq,l−1

]
for l ≥ 2

in H0(HE). Hence Lemma 9.3 yields bisections Tq,l ⊆ GE satisfying

Tq,l ⊆ c−1
E (1), s(Tq,l) = Cq,l for l ≥ 1,

r(Tq,1) = Sβ(q), r(Tq,l) = Cq,l−1 for l ≥ 2.

Let τq,l := π
T̂q,l

denote the associated transpositions. From these we in turn define τ−

in a similar fashion as τ+ by setting

τ− :=
∏

q∈Q

τq,|q| ◦ τq,|q|−1 ◦ · · · ◦ τq,1.

Just like τ+, the homeomorphism τ− is a “disjoint union of cycles”

Sβ(q) 7→ Cq,|q| 7→ Cq,|q|−1 7→ · · · 7→ Cq,1 7→ Sβ(q)

for q ∈ Q. And we have

τ−(Sβ(q)) = Cq,|q|, Sτ−(q) = Sβ(q), Sτ−(1) =
⊔

q∈Q

|q|⊔

l=1

Cq,l = C,

supp(τ−) =
⊔

q∈Q

Sτ−(q) ⊔ Sτ− (1) = C
⊔

q∈Q

Sβ(q).

Finally, we define τ := τ− ◦ τ+. In order to finish the proof, we need to show
that Sτ (k) = Sβ(k) for all k ∈ Z. We start by noting that

supp(τ ) ⊆ supp(τ+) ∪ supp(τ−) =

(
⊔

q∈Q

Sβ(q)

)
⊔

(
⊔

p∈P

Sβ(p)

)
⊔

(
⊔

p∈P

p⊔

j=1

Dp,j

)
.

We are going to analyze this support piece by piece. We begin by fixing some q ∈ Q
and consider Sβ(q). Since Sβ(q) ⊆ Y \ supp(τ+) we have

Sβ(q)
τ+
7−−−→
lag 0

Sβ(q)
τ−
7−−−→
lag q

Cq,|q|.

This means that Sβ(q) ⊆ Sτ (q). We similarly have Sβ(p) ⊆ Sτ (p) for each p ∈ P
since Dp,p ⊆ Y \ supp(τ−). For the last part, we consider the sets Dp,j for p ∈ P
and 1 ≤ j ≤ p. For j = 1 we find that

Dp,1
τ+
7−−−−→
lag −1

Sβ(p)
τ−
7−−−→
lag 1

τ−(Sβ(p))
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because Sβ(p) ⊆ D = C, which maps with lag 1 by τ−. As the total lag is 1− 1 = 0,
we get that Dp,1 ⊆ Sτ (0). When j ≥ 2 we similarly have

Dp,j

τ+
7−−−−→
lag −1

Dp,j−1
τ−
7−−−→
lag 1

τ−(Dp,j−1)

since Dp,j−1 ⊆ C. Hence Dp,j ⊆ Sτ (0) as well. If we now set

Z :=

(
⊔

q∈Q

Sβ(q)

)
⊔

(
⊔

p∈P

Sβ(p)

)
⊔

(
⊔

p∈P

p⊔

j=1

Dp,j

)
⊆ Y \ supp(τ )

and decompose Y as

Y =

(
⊔

q∈Q

Sβ(q)

)
⊔

(
⊔

p∈P

Sβ(p)

)
⊔

(
⊔

p∈P

p⊔

j=1

Dp,j

)
⊔ (Y \ Z)

then we have seen that

Sβ(q) ⊆ Sτ (q), Sβ(p) ⊆ Sτ (p), Dp,j ⊆ Sτ (0), Y \ Z ⊆ Sτ (0).

Since both of these form partitions of Y we must actually have equality here. This
means that Sβ(k) = Sτ (k) for all k 6= 0. And then Sβ(0) = Sτ (0) as well.
Let us now comment on what happens if one of P , Q or Sα(0) ∩ A are empty. All
three cannot be empty since supp(α) 6= ∅. And we claim that P = ∅ if and only if
Q = ∅. Arguing by contradicition, if P 6= ∅ and Q = ∅, then Equation (19) says
that [1D] = 0 in H0(HE), so by Corollary 5.6 D = ∅. But this forces P = ∅. Having
P = ∅ and Q 6= ∅ is ruled out similarly. In the case of P = ∅ = Q we have that
A = supp(α) ⊆ Sα(0), which means that α ∈ JHE|Y K (since Uα ⊆ c−1

E (0)). And
then we are done since this groupoid is AF and hence has Property TR. The last
possibility is that Sα(0)∩A = ∅ and P,Q are both non-empty. In this case the proof
above goes through by removing everything indexed by k = 0. This finishes the proof
at large.

Having established Property TR for strongly connected graphs with infinite emitters,
we deduce the AH conjecture for these from [Mat16, Theorem 4.4]. But as we saw in
Proposition 4.2 the assumptions in the AH conjecture for graph groupoids are slightly
weaker than strong connectedness. For completeness we want to show that all graph
groupoids covered by the assumptions satisfy the conjecture. Using another one of
Sørensen’s moves on graphs, namely source removal, we can actually reduce this to
the strongly connected situation.

Corollary 9.5. Let E be a graph satisfying the AH criteria and let Y ⊆ G(0)E = ∂E
be clopen. Then the AH conjecture is true for GE|Y .

Proof. As discussed in Subsection 4.2, the graph E has a single nontrivial strongly
connected component which contains all infinite emitters. The vertices which lie
outside this component and the edges they emit form an acyclic subgraph with
sources which connect to the nontrivial connected component. By repeatedly apply-
ing Sørensen’s move (S) from [Sør13, Section 3] we can remove all the vertices lying
outside the strongly connected component of E. This results in a graph F which is
strongly connected and which is move equivalent to E. By the results in [CRS17] GF

Documenta Mathematica 26 (2021) 1679–1727



Matui’s AH Conjecture for Graph Groupoids 1721

is Kakutani equivalent to GE. Hence there are full clopen subsets X ⊆ G(0)E and

Z ⊆ G(0)F such that GE|X ∼= GF |Z . Appealing to [Mat15b, Proposition 4.11] we can
find a compact bisection U ⊆ GE satisfying s(U) = Y and r(U) ⊆ X. And then

GE |Y ∼= GE|r(U) = (GE |X) |r(U)
∼= (GF |Z) |Z′ = GF |Z′

for some clopen set Z′ ⊆ Z ⊆ G
(0)
F .

If E has infinite emitters, then the result follows from applying Theorem 9.4 to GF |Z′ .
And if E is finite it similarly follows from the results in [Mat15b, Subsection 6.4].

Remark 9.6. The finiteness assumption on the set of vertices is actually only needed
to guarantee that we can apply Lemma 9.1, by first applying Lemma 9.2. Hence
Theorem 9.4 also applies to strongly connected graphs with infinitely many vertices,
provided that the graph satisfies the hypotheses of Lemma 9.1. Namely that there
exists an infinite emitter which supports infinitely many loops and from which there
is at least one edge to every other vertex.

10 Examples and applications

10.1 Groupoid models for Cuntz algebras

Let En denote the graph with one vertex and n loops for 2 ≤ n ≤ ∞. The graph
C∗-algebras of these graphs are the Cuntz algebras, that is C∗(En) ∼= On, whose
K-theory is given by Zn and 0 respectively (where Z∞ means Z).
Let us now consider our main motivating example, namely the graph

E∞

(∞)

and its graph groupoid GE∞
. By Theorem 4.6 H0(GE∞

) ∼= Z and H1(GE∞
) ∼= 0. So

the exact sequence in the AH conjecture for GE∞
collapses to

Z2 JGE∞
Kab 0.

j

This leaves two possibilities for the abelianization JGE∞
Kab: either

1. JGE∞
Kab is trivial (in which case JGE∞

K is simple); or

2. or JGE∞
Kab is isomorphic to Z2 (in which case GE∞

has the strong AH property).

For 2 ≤ n < ∞ the topological full group JGEnK is isomorphic to the Higman–
Thompson group Vn,1 [Mat15b], and we have

JGEnKab ∼= (Vn,1)ab ∼=

{
Z2 n odd,

0 n even.

Although we have not been able to decide which is the case for JGE∞
Kab, we can still

deduce some structural properties of the topological full group JGE∞
K.

Theorem 4.16 in [Mat15b] shows not only that the commutator subgroup D(JGE∞
K)

is simple, it is also contained in any nontrivial normal subgroup of JGE∞
K. This
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means that JGE∞
K either is simple itself, or contains precisely one nontrivial normal

subgroup, namely D(JGE∞
K) (of index 2). The group JGE∞

K is nonamenable [Mat15b],
but does have the Haagerup property [NO19]. One can also deduce that JGE∞

K is
C∗-simple by the results in [BS19]. Finally, it is shown below that JGE∞

K is not
finitely generated.

10.2 Simplicity and non-finite generation of topological full

groups

We would have liked to decide whether all graph groupoids of graphs satisfying the
AH criteria have the strong AH property, as we know SFT-groupoids do. Matui’s
proof of this for SFT-groupoids in [Mat15b] relies on the construction of a finite
presentation for their topological full groups. However, if a graph has infinite emitters,
then the topological full group of its graph groupoid is not finitely generated.

Proposition 10.1. Let E be a graph with at least one infinite emitter and suppose
E satisfies Condition (L). Then JGEK is not finitely generated.

Proof. Let w ∈ E0
sing be an infinite emitter and enumerate the edges emitted by w

as wE1 = {e1, e2, e3, . . .}. Suppose we are given finitely many elements α1, α2, . . . , αN

from JGEK. According to [NO19, Proposition 9.4] we can decompose each full bisection
defining these elements as

Uαj =




kj⊔

i=1

Z(µi,j , Fi,j , νi,j)


 ⊔ (∂E \ supp(αj)).

Among the paths µi,j and νi,j and in the sets of forbidden edges Fi,j , only finitely
many of the edges in wE1 can occur. Pick an M ∈ N such that eM , eM+1, . . . do not
occur in any of these. Any product of the αj ’s and their inverses will again result in
an element of JGEK whose defining bisection decomposes similarly as above. And the
crucial point is that none of the edges eM , eM+1, . . . will occur in its decomposition
either. This means that elements such as πV̂ for V = Z(eM , eM+1) does not belong
to the subgroup generated by the elements α1, α2, . . . , αN , and consequently JGEK
cannot be finitely generated.

A consequence of SFT-groupoids having the strong AH property is that their
topological full groups are simple if and only if the zeroth homology group is 2-
divisible [Mat15b, Corollary 6.24.(3)]. This is the case for e.g. the graphs En above
when n is even. For graphs with infinite emitters, however, the sitatuation is quite
different. What we observed for GE∞

above, namely that the strong AH property
rules out the simplicity of the topological full group and vice versa, is actually a gen-
eral phenomenon. This is due to H0(GE) never being 2-divisible when E has singular
vertices.

Proposition 10.2. Let E be a graph satisfying the AH criteria and having at least
one infinite emitter. If GE has the strong AH property, then JGEK is not simple.

Proof. By Theorem 4.6 H0(GE) is a finitely generated abelian group whose rank is
greater than or equal to the number of singular vertices in E. So if E has an infinite
emitter, then H0(GE) ⊗ Z2 is nonzero. And if GE has the strong AH property, then
this forces JGEKab 6= 0 too. Thus JGEK cannot be simple (being non-abelian).
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E

(3)

(3)

(∞)

(4)

(3)

Figure 3: An infinite graph for which H0(GE) and H1(GE) are both nontrivial.
The numbers in paranthesis indicate the number of edges.

Whether or not graph groupoids of graphs with infinite emitters all have the strong
AH property can therefore be decided in the negative by finding such a groupoid
whose topological full group is simple.

10.3 Describing the abelianization of the topological full group

We first note that by Remark 4.4, the abelianization JGE∞
Kab is a finitely generated

abelian group for any graph E satisfying the AH criteria. Let us next consider an
example where both H0(GE) and H1(GE) are nontrivial.

Example 10.3. Consider the graph E in Figure 3. From Theorem 4.6 we find that
H0(GE) ∼= Z2 ⊕ Z3 and H1(GE) ∼= Z. Hence the AH exact sequence becomes

Z2 ⊕ Z2 JGEKab Z 0.
j Iab

This implies that JGEKab ∼= Z⊕ im(j). Thus JGEKab is isomorphic to either Z, Z⊕Z2

or Z⊕ Z2 ⊕ Z2.

The previous example generalizes to the following partial description of the abelian-
ization JGEKab.

Proposition 10.4. Let E be a graph satisfying the AH criteria and let ∅ 6= Y ⊆ ∂E
be clopen. Then

JGE|Y Kab ∼= H1(GE)⊕ im(j),

where H1(GE) ∼= ZM and im(j) ∼= (Z2)
N for nonnegative integers M,N .

Remark 10.5. The integer N in the preceding proposition is necessarily bounded
above by the number of “even summands” in H0(GE), which in turn is at least
M + |E0

sing| and at most |E0|. In general, we may only say that 0 ≤ N ≤ |E0|.
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10.4 The cycle graphs

The statement in Theorem A would look cleaner if we did not have to
specify that E cannot be a cycle graph. However, this is necessary. Let
Cn denote the graph consisting of a single cycle with n vertices. Observe
that GCn

∼= Rn × Z (where Z is viewed as a group), which is a discrete transi-
tive7 groupoid with unit space consisting of n points. This is consistent with
the C∗-algebraic side of things, as we have that C∗

r (GCn) ∼= C∗(Cn) ∼= Mn(C(T))
and C∗

r (Rn × Z) ∼= Mn(C)⊗ C(T) ∼= Mn(C(T)). Since GCn is Kakutani equivalent
to Z and K∗(Mn(C(T))) ∼= K∗(C(T)) ∼= (Z,Z), Theorem 4.6 gives8

H0(Z) ∼= H0(GCn) ∼= Z and H1(Z) ∼= H1(GCn) ∼= Z.

But the unit space of GCn is finite, hence so is JGCnK (it is isomorphic to the symmetric
group Sn), and then clearly the index map I : JGCnK → H1(GCn) must be the zero
map. In that case, ker(I) ∼= Sn, and so, since H0(GCn) ⊗ Z2

∼= Z2, im(j) is a strict
subgroup of ker(I) as well; so exactness fails about as badly as it possibly could.
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