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Abstract. We prove that the special value conjecture for the Zeta
function ζ(X , s) of a proper, regular arithmetic scheme X that we for-
mulated in [8] is compatible with the functional equation of ζ(X , s)
provided that the rational factor C(X , n) we were not able to com-
pute previously has the simple explicit form given in the introduction
below.
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1 Introduction

This article is a continuation of our previous article [8] in which we formulated a
conjecture describing the leading Taylor coefficient of the Zeta function ζ(X , s)
of a proper regular arithmetic scheme X at integer arguments n ∈ Z. Our
conjecture involved a rather inexplicit correction factor C(X , n) ∈ Q×, defined
in terms of p-adic Hodge theory at all primes p, which we could only compute
for X = Spec(OF ) where F is a number field all of whose completions Fv are
absolutely abelian. Based on this example a general formula for C(X , n) in
terms of factorials was suggested in [9] and proven for n = 1 in [10]. More
precisely, for n ≥ 1 we conjecture

C(X , n)−1 ?
= C∞(X , n) (1)

where
C∞(X , n) :=

∏
i≤n−1; j

(n− 1− i)!(−1)i+jdimQH
j(XQ,Ω

i). (2)
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For n ≤ 0 one has C∞(X , n) = C(X , n) = 1 by definition.
In this article we prove that our special value conjecture is compatible with the
conjectured functional equation of the Zeta function if C(X , n)−1 is replaced
by C∞(X , n). We refer to Thm. 1.4 below in this introduction for a precise
statement. We regard this result as convincing evidence that C∞(X , n) is
indeed the right factor, even though we cannot yet prove that identity (1)
holds true for n ≥ 2 and arbitrary X . The definition of C(X , n) was made
in such a way that our conjecture is compatible with the Tamagawa number
conjecture of Bloch, Kato, Fontaine and Perrin-Riou [6], [11]. By replacing
C(X , n)−1 with C∞(X , n) we are in effect making a special value conjecture
which is independent of p-adic Hodge theory and which is compatible with the
functional equation of ζ(X , s). Note that compatibility with the functional
equation of motivic L-functions is not in general known for the Tamagawa
number conjecture. Even for Tate motives over a number field F it is only
known if all Fv are absolutely abelian.

1.1 Statement of the main result

We begin with a brief statement of our special value conjecture, Conjecture 1.1
below, even though it is not needed for the rest of this article. Neither do any
of the results in sections 2-4 of this article depend on unproven conjectures.
Our main result Thm. 1.4 follows from an unconditional theorem, Thm. 1.2,
both of which are stated below in this subsection.
Let X be a regular scheme of dimension d, proper over Spec(Z). Associated
to X and n ∈ Z is an invertible Z-module ("fundamental line")

∆(X/Z, n) := detZRΓW,c(X ,Z(n))⊗Z detZRΓ(XZar, LΩ<nX/Z)

where LΩ<nX/Z is the derived de Rham complex [14] modulo the n-th step in
the Hodge filtration and RΓW,c(X ,Z(n)) is a perfect complex of abelian groups
whose definition is dependent on assumptions (finite generation of étale motivic
cohomology, Artin-Verdier duality for torsion motivic cohomology) denoted by
L(X et, n), L(X et, d−n), AV(X et, n) in [8][Conj. 3.2, Conj. 3.1]. Also assuming
the Beilinson conjectures in the form of conjecture B(X , n) of [8][Conj. 2.5]
one can construct a natural trivialization

λ∞ : R ∼−→ ∆(X/Z, n)⊗Z R. (3)

For each prime number p a factor

Cp(X , n) ∈ pZ

was defined in [8][Def. 5.6] under yet another assumptionDp(X , n) [8][Conj. 5.5]
as well as assumption R(Fp,dim(XFp

)) (resolution of singularities) borrowed
from [12]. Conjecture Dp(X , n) can be regarded as a syntomic description
of RΓet(XZp ,Qp(n)) (p-adically completed, rational, étale motivic cohomology

Documenta Mathematica 26 (2021) 1633–1677



Special Value Conjectures & the Functional Equation 1635

of XZp) and is proven in the cases where it is known using techniques from
p-adic Hodge theory. We then define

C(X , n) :=
∏
p<∞

Cp(X , n).

Let ζ(X , s) be the Zeta function of X and ζ∗(X , n) ∈ R× its leading Taylor
coefficient at s = n. Our special value conjecture [8][Conj. 5.12] is the assertion

λ∞(ζ∗(X , n)−1 · C(X , n) · Z) = ∆(X/Z, n).

As was explained earlier in this introduction, for the purposes of this article we
replace this conjecture by the following

Conjecture 1.1. Let X be a regular scheme, proper and flat over Spec(Z),
which satisfies assumptions L(X et, n), L(X et, d−n), AV(X et, n) and B(X , n)
in [8]. Then

λ∞(ζ∗(X , n)−1 · C∞(X , n)−1 · Z) = ∆(X/Z, n)

where C∞(X , n) is defined in (2).

This conjecture determines the real number ζ∗(X , n) ∈ R up to sign. It is
independent of ConjecturesDp(X , n) andR(Fp,dim(XFp)) and does not involve
p-adic Hodge theory at any point in its formulation. Our previous conjecture
[8][Conj. 5.12] and Conjecture 1.1 are equivalent if and only if identity (1)
holds true but at this point we feel unable to judge the difficulty of proving (1).
Under assumptions L(X et, n), L(X et, d − n) and AV(X et, n), we defined in
[8][Def. 3.26] an exact triangle of perfect complexes of abelian groups

RΓW,c(X ,Z(n))→ RΓW (X ,Z(n))→ RΓW (X∞,Z(n)). (4)

Here X is an Artin-Verdier compactification, X∞ is the quotient topological
space X (C)/GR and

RΓW (X∞,Z(n)) := RΓ(X∞, i∗∞Z(n))

where i∗∞Z(n) is a certain complex of sheaves on X∞, which is unconditionally
defined. In [8][5.7] we defined (unconditionally) the invertible Z-module

Ξ∞(X/Z, n) := detZRΓW (X∞,Z(n))⊗ det−1
Z RΓ(XZar, LΩ<nX/Z)

⊗det−1
Z RΓW (X∞,Z(d− n))⊗ detZRΓ(XZar, LΩ<d−nX/Z )

and a canonical trivialization

ξ∞ : R ∼−→ Ξ∞(X/Z, n)⊗ R

which will be recalled in the proof of Theorem 1.2 in section 5 below. We
denote by

x∞(X , n)2 ∈ R>0
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the strictly positive real number such that

ξ∞(x∞(X , n)−2 · Z) = Ξ∞(X/Z, n)

and prove the following unconditional

Theorem 1.2. Let X be a regular scheme of dimension d, proper and flat over
Spec(Z). We have

x∞(X , n)2 = ±A(X )n−d/2 · ζ∗(X∞, n)

ζ∗(X∞, d− n)
· C∞(X , d− n)

C∞(X , n)

where A(X ) is the Bloch conductor (see Definition 3.2) and ζ(X∞, s) is the
archimedean Euler factor of X (see Section 4).

We explain the significance of this result. Let ζ(X , s) := ζ(X , s) · ζ(X∞, s) be
the completed Zeta-function of X .

Conjecture 1.3. (Functional Equation) Let X be a regular scheme of di-
mension d, proper and flat over Spec(Z). Then ζ(X , s) has a meromorphic
continuation to all s ∈ C and

A(X )(d−s)/2 · ζ(X , d− s) = ±A(X )s/2 · ζ(X , s).

Assume that L(X et, n), L(X et, d − n), AV(X et, n), B(X , n) and B(X , d − n)
hold, so that Conjecture 1.1 for (X , n) and (X , d − n) makes sense. By
[8][Prop. 5.29], the exact triangle (4) and Weil-étale duality [8][Thm. 3.22]
induce a canonical isomorphism

∆(X/Z, n)⊗ Ξ∞(X/Z, n)
∼−→ ∆(X/Z, d− n)

compatible with ξ∞ and the trivializations (3) of ∆(X/Z, n) and ∆(X/Z, d−n).
As was shown in [8][Cor. 5.31] and will be recalled in the proof of Theorem 1.4 in
section 5 below, this leads to compatibility of Conjecture 1.1 with the functional
equation of ζ(X , s) in the following sense.

Theorem 1.4. Assume X is a regular scheme of dimension d, proper and flat
over Spec(Z) which satisfies Conjectures L(X et, n), L(X et, d−n), AV(X et, n),
B(X , n) and B(X , d− n) in [8]. Assume that ζ(X , s) satisfies Conjecture 1.3.
Then Conjecture 1.1 for (X , n) is equivalent to Conjecture 1.1 for (X , d− n).

1.2 Cyclic homology and C∞(X , n)

In this section we briefly discuss two suggestions for a more conceptual origin
of the numerical factor C∞(X , n) both of which were discovered by the second
author. First, it was already shown in [9][Remark 5.2] that there is a fairly
natural modification L̃Ω<nX/Z of the derived deRham complex such that

detZRΓ(XZar, L̃Ω<nX/Z) = C∞(X , n) · detZRΓ(XZar, LΩ<nX/Z)

Documenta Mathematica 26 (2021) 1633–1677



Special Value Conjectures & the Functional Equation 1637

inside detQRΓ(XZar, LΩ<nX/Z)Q ∼= detQRΓ(XQ,Ω
<n
XQ/Q). This leads to a state-

ment of Conjecture 1.1

λ∞(ζ∗(X , n)−1 · Z) = detZRΓW,c(X ,Z(n))⊗Z detZRΓ(XZar, L̃Ω<nX/Z)

without any correction factor. Another such modification of derived deRham
cohomology that is perhaps even more natural than the definition of L̃Ω<nX/Z was
very recently outlined by the second author in [20]. Recall from [1] that there is
a motivic filtration on cyclic homology Fil∗MotHC(X ) with graded pieces given
by derived deRham cohomology modulo the n-th step in the Hodge filtration

grnMotHC(X ) ∼= RΓ(XZar, LΩ<nX/Z)[2n− 2].

The corresponding spectral sequence already appears in [19]. Cyclic homol-
ogy arises as S1-homotopy-coinvariants on Hochschild homology HC(X ) ∼=
HH(X )S1 . One can consider the topological analogue and define

TC+(X ) := THH(X )S1

where THH denotes topological Hochschild homology (see for example [21]
for a review). Note that TC+(X ) is not what is usually called topological
cyclic homology. The main result of [20] is that there exists a motivic filtration
Fil∗Mot TC

+(X ) that maps to Fil∗MotHC(X ) inducing an isomorphism

Fil∗Mot TC
+(X )Q ∼= Fil∗MotHC(X )Q

and such that

detZRΓ(XZar, LΩ<nX/S) = C∞(X , n) · detZRΓ(XZar, LΩ<nX/Z)

where
RΓ(XZar, LΩ<nX/S) := grnMotTC

+(X )[−2n+ 2].

We therefore again obtain a version of Conjecture 1.1

λ∞(ζ∗(X , n)−1 · Z) = detZRΓW,c(X ,Z(n))⊗Z detZRΓ(XZar, LΩ<nX/S)

without correction factor. Here the determinant detZRΓ(XZar, LΩ<nX/S) makes
sense since it was also shown in [20][Cor. 1.6] that RΓ(XZar, LΩ<nX/S) is a HZ-
module spectrum.
For example, if X is smooth and proper over Fp, the motivic filtration
was already defined in [3] and one verifies that both RΓ(XZar, LΩ<nX/Z)

and RΓ(XZar, LΩ<nX/S) have finite multiplicative Euler characteristic given by
Milne’s correction factor [8][Def. 5.4], [20][Cor. 1.7] (even though the natural
map

RΓ(XZar, LΩ<nX/S)→ RΓ(XZar, LΩ<nX/Z)

is not a quasi-isomorphism). And indeed one has C∞(X , n) = 1 by formula (2).
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If F is a number field with ring of integers OF and X = Spec(OF ) the motivic
filtration on HC(OF ) and TC+(OF ) is given respectively by

FilnMotHC(OF ) = τ≥2n−3HC(OF )

and [20][Cor. 1.4]

FilnMot TC
+(OF ) := τ≥2n−3TC

+(OF ).

Denote by DF the different ideal of OF and by |DF | = NDF the absolute value
of the discriminant. As was shown in [8][1.6] there is an exact sequence

0→ HC2n−2(OF )→ OF → ΩOF /Z(n)→ HC2n−3(OF )→ 0

where ΩOF /Z(n) is a finite abelian group of cardinality |DF |n−1, i.e. we have

|HC2n−3(OF )| · [OF : HC2n−2(OF )] = |DF |n−1.

By a theorem of Lindenstrauss and Madsen [18] one has

THHi(OF ) =


OF i = 0

D−1
F /j · OF i = 2j − 1

0 else.

An easy analysis of the spectral sequence

Hi(BS
1, THHj(OF ))⇒ TC+

i+j(OF )

then shows that TC+
2n−3(OF ) is finite and TC+

2n−2(OF ) ⊆ OF is a sublattice
so that

|TC+
2n−3(OF )| · [OF : TC+

2n−2(OF )] = (n− 1)![F :Q] · |DF |n−1.

And indeed one has C∞(Spec(OF ), n) = (n− 1)![F :Q] by formula (2).

1.3 Outline of this article

In section 2 we study Verdier duality on the locally compact space X∞ :=
X (C)/GR and how it applies to the complexes of sheaves i∗∞Z(n) introduced in
[8][Def. 3.23]. The key result in terms of relevance for the following sections is
Prop. 2.23 which provides the correct power of 2 appearing in the functional
equation.
In section 3 we review duality results for the exterior powers of the cotangent
complex LX/Z due to T. Saito [24] and deduce duality for derived de Rham
cohomology of X . It turns out that the Bloch conductor A(X ) of X introduced
in [4] measures the failure of a perfect duality for these theories, see Thm. 3.3
and Prop. 3.5. Corollary 3.9 then provides the correct power of A(X ) appearing
in the functional equation.
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In section 4 we recall the archimedean Euler factors for ζ(X , s) and make some
preliminary computations towards the main result.
Finally, in section 5 we prove Thm. 1.2 and Thm. 1.4, also employing the
results already established in [8][Cor. 5.31] towards compatibility with the
functional equation.
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2 Verdier duality on X∞ = X (C)/GR

2.1 Statement of the duality theorem

Let X be a regular, flat and proper scheme over Spec(Z). Assume that X
is connected of dimension d. We denote by X∞ := X (C)/GR the quotient
topological space, where X (C) is endowed with the complex topology. Let

p : X (C)→ X∞

be the quotient map and let

π : Sh(GR,X (C))→ Sh(X∞)

be the canonical morphism of topoi, where Sh(GR,X (C)) is the category of
GR-equivariant sheaves on X (C). We have the formula

π∗(F) ' (p∗F)GR .
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Let Z(n) := (2iπ)n · Z be the abelian sheaf on Sh(GR,X (C)) defined by the
obvious GR-action on (2iπ)n · Z. In [8][Def. 3.23], we defined the complex of
sheaves on X∞

i∗∞Z(n) := Fib(Rπ∗Z(n)→ τ>nRπ̂∗Z(n))

for any n ∈ Z. We define similarly

Ri!∞Z(n+ 1)[3] := Z′(n) := Fib(Rπ∗Z(n)→ τ≥nRπ̂∗Z(n))

and we set
e := d− 1.

If Z is a locally compact topological space, we denote by DZ := Rf !Z the
dualizing complex, where f : Z → {∗} is the map from Z to the point.

Theorem 2.1. There is an equivalence Z′(e) ∼→ DX∞ [−2e] and a perfect pairing

i∗∞Z(n)⊗L Z′(e− n) −→ Z′(e) ∼−→ DX∞ [−2e]

in the derived category of abelian sheaves over X∞, for any n ∈ Z.

Proof. We set Z(n) := i∗∞Z(n), we denote by ι : X (R) → X∞ the closed
immersion and by j the complementary open immersion. By Proposition 2.5
there is a product map

Z(n)⊗L Z′(e− n)→ DX∞ [−2e]

inducing
Z(n)→ RHom(Z′(e− n),DX∞ [−2e]). (5)

Then (5) induces an equivalence

j∗Z(n)
∼→ j∗RHom(Z′(e− n),DX∞ [−2e])

by Proposition 2.7. Similarly, (5) induces an equivalence

Rι!Z(n)
∼→ Rι!RHom(Z′(e− n),DX∞ [−2e])

by Proposition 2.17. It follows that (5) is an equivalence. Applying
RHom(−,DX∞ [−2e]), we get an equivalence

Z′(e− n)
∼→ RHom(Z(n),DX∞ [−2e]).

Since Z(0) is the constant sheaf Z, we have

Z′(e) ∼−→ DX∞ [−2e].

We immediately obtain
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Corollary 2.2. There is a trace map RΓ(X∞,Z′(e))→ Z[−2e] and a perfect
pairing

RΓ(X∞, i∗∞Z(n))⊗L RΓ(X∞,Z′(e− n))→ RΓ(X∞,Z′(e))→ Z[−2e]

of perfect complexes of abelian groups, for any n ∈ Z.

The following corollaries also follow easily from Theorem 2.1. We state them
in order to justify the notation Ri!∞Z(n).

Corollary 2.3. There is a trace map

RΓ(X∞, Ri!∞Z(d))→ Z[−2d− 1]

and a perfect pairing

RΓ(X∞, i∗∞Z(n))⊗LRΓ(X∞, Ri!∞Z(d−n))→ RΓ(X∞, Ri!∞Z(d))→ Z[−2d−1]

of perfect complexes of abelian groups, for any n ∈ Z.

Corollary 2.4. Assume that X satisfies the assumptions L(X et, n),
L(X et, d− n) and AV(X et, n) of [8][3.2]. We define

RΓW (X ,Z(n)) := RHom(RΓW,c(X ,Z(d− n)),Z[−2d− 1]).

Then we have an exact triangle

RΓ(X∞, Ri!∞Z(n))→ RΓW (X ,Z(n))→ RΓW (X ,Z(n)).

2.2 Proof of the duality theorem

The proof of Theorem 2.1 relies on the results proven below.

2.2.1 Notations

We denote by ι : X (R)→ X∞ the closed immersion and by j : X ◦∞ → X∞ the
complementary open immersion, where X ◦∞ := X∞ − X (R). We set X (C)◦ :=
X (C)−X (R). We denote by

p◦ : X (C)◦ → X ◦∞

the quotient map, and by

π◦ : Sh(GR,X (C)◦)
∼→ Sh(X ◦∞)

the morphism of topoi induced by π, which is an equivalence since GR has
no fixed point on X (C)◦. If x ∈ X (R) then we denote ιx : x → X (R) (or
ιx : x→ X∞) the inclusion. The complex of sheaves over X∞ denoted by Z(n)
always refers to i∗∞Z(n).
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We denote by C∗(GR,Z(n)) := RΓ(GR,Z(n)) the cohomology of GR with co-
efficients in (2iπ)nZ, by Ĉ∗(GR,Z(n)) := RΓ̂(GR,Z(n)) Tate cohomology, and
by C∗(GR,Z(n)) the homology of GR with coefficients in (2iπ)nZ. We have a
fiber sequence

C∗(GR,Z(n))→ C∗(GR,Z(n))→ Ĉ∗(GR,Z(n)).

Recall that, if Z is a locally compact topological space, we denote by DZ :=
Rf !Z the dualizing complex, where f : Z → {∗} is the map from Z to the
point.

2.2.2 The duality map

Proposition 2.5. For any n ∈ Z, there is a canonical map

i∗∞Z(n)⊗L Z′(e− n)→ DX∞ [−2e]

in the derived category of abelian sheaves over X∞.

Proof. Let f be the map from X∞ to the point. We start with the morphism

i∗∞Z(n)⊗L Z′(e− n)→ Rπ∗((2iπ)nZ)⊗L Rπ∗((2iπ)e−nZ)→ Rπ∗((2iπ)eZ).

Then the map
Rπ∗((2iπ)eZ)→ DX∞ [−2e] := f !Z[−2e]

is given by

Rf!Rπ∗((2iπ)eZ) ' RΓ(GR,X (C), (2iπ)eZ)→ Z[−2e]

where the last map is

RΓ(GR,X (C), (2iπ)eZ)→RΓ(X (C), (2iπ)eZ)

→τ≥2eRΓ(X (C), (2iπ)eZ)→ Z[−2e].

Note that Rf! = Rf∗ since X∞ is compact.

Definition 2.6. For any n ∈ Z, we consider the morphism

Z(n)→ RHom(Z′(e− n),DX∞ [−2e]) (6)

induced by the product map above.

2.2.3 The map j∗Z(n)→ j∗RHom(Z′(e− n),DX∞ [−2e])

Proposition 2.7. The canonical map

j∗Z(n)→ j∗RHom(Z′(e− n),DX∞ [−2e])

is an equivalence.
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Proof. We replace n by e− n. We have

j∗RHom(Z′(n),DX∞ [−2e]) ' RHomSh(X◦∞)(j
∗Z′(n),DX◦∞ [−2e])

' RHomSh(X◦∞)(π
◦
∗(2iπ)nZ,DX◦∞)[−2e].

Similarly, we have j∗Z(e − n) = π◦∗(2iπ)e−nZ. So we need to check that the
map

π◦∗(2iπ)e−nZ→ RHomSh(X◦∞)(π
◦
∗(2iπ)nZ,DX◦∞)[−2e]

is an equivalence. The map p◦ : X (C)◦ → X ◦∞ is a finite étale Galois cover,
hence p◦,∗ is conservative. Hence it is enough to check that

p◦,∗π◦∗(2iπ)e−nZ→ RHomSh(X (C)◦)(p
◦,∗π◦∗(2iπ)nZ,DX (C)◦)[−2e]

is an equivalence. But we have

p◦,∗π◦∗(2iπ)nZ ' (2iπ)nZ,

hence one is reduced to observe that

(2iπ)e−nZ→ RHomSh(X (C)◦)((2iπ)nZ,DX (C)◦)[−2e]

is an equivalence by Verdier duality on the complex (hence orientable) manifold
X (C)◦.

2.2.4 The complex ι∗xRι
!Z(n)

Lemma 2.8. For any n ∈ Z and any x ∈ X (R), we have a fiber sequence

RΓ(GR,Z(n))→ ι∗xRj∗j
∗Z(n)→ RΓ(GR,Z(n− e))[−(e− 1)]

and ι∗xRj∗j∗Z(n) is cohomologically concentrated in degrees ∈ [0, e− 1].

Proof. For e = 0, the map j is both a closed and an open immersion hence
ι∗xRj∗j

∗Z(n) = 0. So the result is obvious in that case, hence we may assume
e ≥ 1.
Note first that j∗Z(n) ' Rπ◦∗((2iπ)nZ). Let x ∈ X (R) ⊂ X (C). For a point
z ∈ X (C) in the neighbourhood of x, we have

z = (a1, b1, · · · , ae, be) ∈ Ce = (R⊕ i · R)e

where σ acts as follows

(a1, · · · , ae, b1, · · · , be) 7→ (a1, · · · , ae,−b1, · · · ,−be) ∈ Re ⊕ i · Re.

So a basic open neighborhood of x ∈ X (R) in X (C) is of the form Be × Be
where Be denotes an open ball in Re, and σ acts trivially on the first ball and
by multiplication by −1 on the second ball. We have

X (R) ∩ (Be ×Be) = Be × 0
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and a GR-equivariant homotopy equivalence

X (C)◦ ∩ (Be ×Be) = Be × (Be − 0) ' Be × Se−1 ' Se−1

where GR acts by its antipodal action on the (e− 1)-sphere Se−1. We obtain

ι∗xRj∗j
∗Z(n) ' colimx∈U⊂X∞RΓ(U −X (R),Z(n))

' colimx∈U⊂X∞RΓ(GR, p
−1(U −X (R)),Z(n))

' RΓ(GR,S
e−1,Z(n))

where GR acts both on Se−1 and Z(n) := (2iπ)nZ. But we have a fiber sequence
in the derived category of Z[GR]-modules

Z(n)→ RΓ(Se−1,Z(n))→ Z(n− e)[−(e− 1)]

where the boundary map Z(n− e))[−(e− 1)]→ Z(n)[1] is the non-trivial class
in

HomZ[GR](Z(n− e))[−(e− 1)],Z(n)[1])

' HomZ[GR](Z,Z(e)[e]) ' He(GR,Z(e)) ' Z/2Z.

Indeed, it must be the non-trivial class because

RΓ(GR,S
e−1,Z(n)) ' RΓ(Se−1/{±1},Z(n))

is cohomologically concentrated in degrees ∈ [0, e − 1] since Se−1/{±1} is a
(e− 1)-manifold.

Lemma 2.9. For any n ∈ Z, we have

ι∗xRι
!Z(n) ' Fib

(
RΓ(GR,Z(n− e))[−e]→ τ>nRΓ̂(GR,Z(n))

)
.

Proof. First we assume n ≥ 0, so that ι∗xZ(n) ' τ≤nRΓ(GR,Z(n)). Then we
have the following diagram with exact rows and columns:

τ>nRΓ(GR,Z(n))[−1]

��

// τ≤nRΓ(GR,Z(n))

��

// RΓ(GR,Z(n))

��
ι∗xRι

!Z(n) //

��

ι∗xZ(n) //

��

ι∗xRj∗j
∗Z(n)

��
RΓ(GR,Z(n− e))[−e] // 0 // RΓ(GR,Z(n− e))[−(e− 1)]

Now we assume n < 0. By Lemma 2.11, we have an equivalence

ι∗xZ(n) ' τ≤−n−2C∗(GR,Z(n))
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where both sides vanish for n = −1. We obtain the following diagram with
exact rows and columns:

(τ>nĈ(GR,Z(n)))[−1]

��

// τ≤−n−2C∗(GR,Z(n))

��

// C∗(GR,Z(n))

��
ι∗xRι

!Z(n) //

��

ι∗xZ(n) //

��

ι∗xRj∗j
∗Z(n)

��
C∗(GR,Z(n− e))[−e] // 0 // C∗(GR,Z(n− e))[−(e− 1)]

Proposition 2.10. For n < e, we have

ι∗xRι
!Z(n) ' (τ≤e−n−2C∗(GR,Z(n− e)))[−e].

For n ≥ e, we have

ι∗xRι
!Z(n) ' (τ≤n−eRΓ(GR,Z(n− e)))[−e].

Proof. We have

τ>nRΓ̂(GR,Z(n)) ' (τ>n−eRΓ̂(GR,Z(n− e)))[−e]

and an equivalence

ι∗xRι
!Z(n) ' Fib

(
RΓ(GR,Z(n− e))→ τ>n−eRΓ̂(GR,Z(n− e))

)
[−e].

Hence the result follows from Lemma 2.11 below.

Lemma 2.11. For any m ≥ 0, we have an equivalence

τ≤mRΓ(GR,Z(m)) ' Fib
(
RΓ(GR,Z(m))→ τ>mRΓ̂(GR,Z(m))

)
.

Similarly, for any m < 0, we have

τ≤−m−2C∗(GR,Z(m)) ' Fib
(
RΓ(GR,Z(m))→ τ>mRΓ̂(GR,Z(m))

)
.

Proof. The first assertion is obvious. The second equivalence holds for m = −1
since both side vanish. It remains to show that the second equivalence holds
for m ≤ −2. We have the following exact diagram

(τ≤mĈ(GR,Z(m)))[−1]

��

// 0

��

// τ≤mĈ∗(GR,Z(m))

��
C∗(GR,Z(m)) //

��

C∗(GR,Z(m)) //

��

Ĉ∗(GR,Z(m))

��
F // C∗(GR,Z(m)) // τ>mĈ∗(GR,Z(m))
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hence a cofiber sequence

(τ≤mĈ(GR,Z(m)))[−1]→ C∗(GR,Z(m))→ F.

In view of the equivalences

(τ≤mĈ(GR,Z(m)))[−1] ' τ≤m+1(Ĉ(GR,Z(m))[−1]) ' τ≤m+1C∗(GR,Z(m))

we obtain

F ' τ>m+1C∗(GR,Z(m)) = τ≥m+2C∗(GR,Z(m)) = τ≤−m−2C∗(GR,Z(m)).

Lemma 2.12. For any m > 0, we have an equivalence

τ<mRΓ(GR,Z(m)) ' Fib
(
RΓ(GR,Z(m))→ τ≥mRΓ̂(GR,Z(m))

)
.

Similarly, for any m ≤ 0, we have

τ≤−mC∗(GR,Z(m)) ' Fib
(
RΓ(GR,Z(m))→ τ≥mRΓ̂(GR,Z(m))

)
.

Proof. The first assertion is obvious. The second equivalence for m = 0 follows
from the exact sequence

0 = Ĥ−1(GR,Z)→ H0(GR,Z)→ H0(GR,Z)→ Ĥ0(GR,Z)→ 0

and the isomorphism Hi(GR,Z)
∼→ Ĥi(GR,Z) for i > 0.

It remains to show that the second equivalence holds for m ≤ −1. We have the
following exact diagram

(τ<mĈ(GR,Z(m)))[−1]

��

// 0

��

// τ<mĈ∗(GR,Z(m))

��
C∗(GR,Z(m)) //

��

C∗(GR,Z(m)) //

��

Ĉ∗(GR,Z(m))

��
F // C∗(GR,Z(m)) // τ≥mĈ∗(GR,Z(m))

hence a cofiber sequence

(τ<mĈ(GR,Z(m)))[−1]→ C∗(GR,Z(m))→ F.

In view of the equivalences

(τ<mĈ(GR,Z(m)))[−1] ' τ<m+1(Ĉ(GR,Z(m))[−1]) ' τ<m+1C∗(GR,Z(m))

we obtain

F ' τ≥m+1C∗(GR,Z(m)) = τ≤−m−1C∗(GR,Z(m)) ' τ≤−mC∗(GR,Z(m))

since
H−m(GR,Z(m)) = Ĥm−1(GR,Z(m)) = 0.
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2.2.5 The complex Rι!RHom(Z′(e− n),DX∞ [−2e])

We denote by f : X (R)→ {∗} the map from X (R) to the point and we denote
by ωX (R) the orientation sheaf on the e-manifold X (R). We have

DX (R) := f !Z ' ωX (R)[e].

Proposition 2.13. For e− n > 0 we have

Rι!RHom(Z′(e−n),DX∞ [−2e]) ' f∗(τ≤e−n−2C∗(GR,Z(e−n)))⊗L ωX (R)[−e].

Proof. Using Lemma 2.12 and Lemma 2.15, we obtain

Rι!RHom(Z′(e− n),DX∞)[−2e]

' RHom(ι∗Z′(e− n),DX (R))[−2e]

' RHom(f∗τ<e−nRΓ(GR,Z(e− n)),DX (R))[−2e]

' f !RHom(τ<e−nRΓ(GR,Z(e− n)),Z)[−2e]

' f !RHom(τ≤e−n−2RΓ(GR,Z(e− n)),Z)[−2e]

' f !(τ≤e−n−2C∗(GR,Z(e− n)))[−2e]

' f∗(τ≤e−n−2C∗(GR,Z(e− n)))⊗L ωX (R)[−e].

Proposition 2.14. For e− n ≤ 0 we have

Rι!RHom(Z′(e− n),DX∞ [−2e]) ' f∗(τ≤n−eRΓ(GR,Z(n− e)))⊗L ωX (R)[−e].

Proof. Using Lemma 2.12 and Lemma 2.15, we obtain

Rι!RHom(Z′(e− n),DX∞)[−2e]

' RHom(ι∗Z′(e− n),DX (R))[−2e]

' RHom(f∗τ≤n−eC∗(GR,Z(e− n)),DX (R))[−2e]

' f !RHom(τ≤n−eC∗(GR,Z(e− n)),Z)[−2e]

' f !(τ≤n−eRΓ(GR,Z(n− e)))[−2e]

' f∗(τ≤n−eRΓ(GR,Z(n− e)))⊗L ωX (R)[−e].

Lemma 2.15. For any n ∈ Z, the pairing

C∗(GR,Z(−n))⊗LZ C∗(GR,Z(n))→ C∗(GR,Z(0))→ Z[0]

induces a perfect pairing

τ≤nC∗(GR,Z(−n))⊗LZ τ≤nC∗(GR,Z(n))→ Z[0]

of perfect complexes of abelian groups.
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Proof. The result is trivial for n < 0 and clear for n = 0. So we assume n > 0.
The pairing induces an equivalence

C∗(GR,Z(n))→ RHom(C∗(GR,Z(−n)),Z)

hence it is enough to observe that

τ≤nRHom(C∗(GR,Z(−n)),Z) ' RHom(τ≤nC∗(GR,Z(−n)),Z).

For any cohomological complex A∗, we have a short exact sequence

0→ Ext(H−i+1(A∗),Z)→ Hi(RHom(A∗,Z))→ Hom(H−i(A∗),Z)→ 0.

We obtain

Hi(RHom(τ≤nC∗(GR,Z(−n)),Z)) = Hi(RHom(C∗(GR,Z(−n)),Z))

for i ≤ n and i > n + 1. Since we have Hn(GR,Z(−n)) = 0 for any n > 0, we
get

Hn+1(RHom(τ≤nC∗(GR,Z(−n)),Z)) = 0.

Remark 2.16. For n > 0, we have Hn(GR,Z(−n)) = 0 hence

τ≤nC∗(GR,Z(−n)) ' τ<nC∗(GR,Z(−n)).

2.2.6 The map Rι!Z(n)→ Rι!RHom(Z′(e− n),DX∞ [−2e])

Proposition 2.17. The map

Rι!Z(n)→ Rι!RHom(Z′(e− n),DX∞ [−2e])

is an equivalence.

Proof. For e− n > 0 and any x ∈ X (R), the map

ι∗xRι
!Z(n)→ ι∗xRι

!RHom(Z′(e− n),DX∞ [−2e])

can be identified with the identity

τ≤e−n−2C∗(GR,Z(e− n))[−e] = τ≤e−n−2C∗(GR,Z(e− n))[−e]

by Prop. 2.10 and Prop. 2.13.
For e− n ≤ 0 and any x ∈ X (R), the map

ι∗xRι
!Z(n)→ ι∗xRι

!RHom(Z′(e− n),DX∞ [−2e])

can be identified with the identity

τ≤n−eRΓ(GR,Z(n− e))[−e] = τ≤n−eRΓ(GR,Z(n− e))[−e]

by Prop. 2.10 and Prop. 2.14.
The result follows since the family of functors {ι∗x, x ∈ X (R)} is conservative.
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2.3 Comparison with RΓ(X (C),Z(n))

Recall that we define GR-equivariant sheaves

Z(n) := (2iπ)nZ ⊂ Q(n) := (2iπ)nQ ⊂ R(n) := (2iπ)nR ⊂ C

on X (C). We abbreviate C∗ := RHom(C,Q) for a complex of Q-vector spaces
C and let C± be the image of the idempotent (σ ± 1)/2 if C carries a GR =
{1, σ}-action. Recall that

RΓW (X∞,Z(n)) := RΓ(X∞, i∗∞Z(n))

and that i∗∞Z(n) ⊗ Q ∼= π∗Q(n) ∼= Rπ∗Q(n) in Sh(X∞). We therefore have
isomorphisms

RΓW (X∞,Z(n))Q 'RΓ(X∞, Rπ∗Q(n))

'RΓ(GR;X (C),Q(n)) ' RΓ(X (C),Q(n))+

and combining this with Poincaré duality

RΓ(X (C),Q(r))⊗RΓ(X (C),Q(e− r)) ∪−→ RΓ(X (C),Q(e))
Tr−→ Q[−2e] (7)

on the 2e-manifold X (C) we obtain an isomorphism

RΓW (X∞,Z(d− n))∗Q ' RΓ(X (C),Q(d− n))∗,+ ' RΓ(X (C),Q(n− 1))+[−2e]

using e = d− 1. There is also a tautological isomorphism τ induced by multi-
plication by 2πi in the sense that the diagram

RΓ(X (C),Q(n− 1))+ −−−−→ RΓ(X (C),C)

∼
yτ ∼

y·2πi
RΓ(X (C),Q(n))− −−−−→ RΓ(X (C),C)

(8)

commutes. Combining the previous isomorphisms we obtain an isomorphism(
detZRΓW (X∞,Z(n))⊗ det−1

Z RΓW (X∞,Z(d− n))
)
Q

' detQ
(
RΓ(X (C),Q(n))+ ⊕RΓ(X (C),Q(n− 1))+

)
(9)

' detQ
(
RΓ(X (C),Q(n))+ ⊕RΓ(X (C),Q(n))−

)
' detQRΓ(X (C),Q(n))

' (detZRΓ(X (C),Z(n)))Q

which we denote by λB .

Corollary 2.18. We have

λB
(
detZRΓW (X∞,Z(n))⊗ det−1

Z RΓW (X∞,Z(d− n))
)

= detZRΓ(X (C),Z(n))⊗ det
(−1)n

Z RΓ(X (R),Z/2Z).
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Proof. We write GR = {1, σ}. We have an exact sequence of Z[GR]-modules

0→ Z · (σ − 1)→ Z[GR]
ε→ Z→ 0

where ε is the augmentation map. We have an isomorphism of Z[GR]-modules
(σ − 1) · Z ' (2iπ)Z which maps (σ − 1) to (2iπ). We write Z(n) := (2iπ)nZ,
so that we have an exact sequence of Z[GR]-modules

0→ Z(1)→ Z[GR]
ε→ Z→ 0. (10)

We denote by
p : Sh(GR,X (C))→ Sh(GR,X∞)

the morphism of topoi induced by the equivariant continuous map p : X (C)→
X∞, where GR acts trivially on X∞. The category of abelian sheaves on
Sh(GR,X∞) is equivalent to the category of sheaves of Z[GR]-modules over
X∞. For any sheaf F of Z[GR]-modules over X∞, and any Z[GR]-module M ,
we define

RHomSh(GR,X∞)(M,F)

where M is seen as a constant sheaf of Z[GR]-modules over X∞. We have

Rπ∗Z(n) ' RHomSh(GR,X∞)(Z, Rp∗Z(n)).

Moreover the functor
Ab(GR,X∞) −→ Ab(GR,X∞)

F 7−→ F(1) := F ⊗Z Z(1)

is an equivalence of abelian categories with quasi-inverse (−) ⊗Z Z(−1). In
particular we have

Rπ∗Z(n− 1) ' RHomSh(GR,X∞)(Z, Rp∗Z(n− 1))

' RHomSh(GR,X∞)(Z(1), (Rp∗Z(n− 1))(1))

' RHomSh(GR,X∞)(Z(1), Rp∗Z(n)).

Finally, we have

p∗Z(n) ' Rp∗Z(n) ' RHomSh(GR,X∞)(Z[GR], Rp∗Z(n)).

Therefore, (10) induces an exact triangle

Rπ∗Z(n)→ Rp∗Z(n)→ Rπ∗Z(n− 1)

and an exact diagram:

Rp∗Z(n)

��

// i∗∞Z(n− 1)

��

// i∗∞Z(n)[1]

��
Rp∗Z(n)

��

// Rπ∗Z(n− 1)

��

// Rπ∗Z(n)[1]

��
0 // τ>n−1Rπ̂∗Z(n− 1) // (τ>nRπ̂∗Z(n))[1]
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In particular, there is an exact triangle

i∗∞Z(n)→ Rp∗Z(n)→ i∗∞Z(n− 1)

hence
RΓ(X∞,Z(n))→ RΓ(X (C),Z(n))→ RΓ(X∞,Z(n− 1)). (11)

Moreover, we have the duality equivalence

RΓ(X∞,Z(d− n))
∼→ RHom(RΓ(X∞,Z′(n− 1)),Z[−2e]). (12)

Finally, we have the following exact diagram

ι∗Z/2ZX (R)[−n]

��

// Z′(n− 1)

��

// i∗∞Z(n− 1)

��
0

��

// Rπ∗Z(n− 1)

��

// Rπ∗Z(n− 1)

��
ι∗Z/2ZX (R)[−n+ 1] // τ≥n−1Rπ̂∗Z(n− 1) // τ>n−1Rπ̂∗Z(n− 1)

where Z/2ZX (R) is the constant sheaf Z/2Z on X (R), hence an exact triangle

RΓ(X (R),Z/2Z)[−n]→ RΓ(X∞,Z′(n− 1))→ RΓ(X∞,Z(n− 1)). (13)

Then (11), (12) and (13) induce the following canonical isomorphisms:

detZRΓ(X∞,Z(n))⊗ det−1
Z RΓ(X∞,Z(d− n))

' detZRΓ(X∞,Z(n))⊗ detZRΓ(X∞,Z′(n− 1))

' detZRΓ(X∞,Z(n))⊗ detZRΓ(X∞,Z(n− 1))⊗ detZRΓ(X (R),Z/2Z)[−n]

' detZRΓ(X (C),Z(n))⊗ detZRΓ(X (R),Z/2Z)[−n]

' detZRΓ(X (C),Z(n))⊗ det
(−1)n

Z RΓ(X (R),Z/2Z).

We now introduce some notation: we set

d+(X , n) :=
∑
i∈Z

(−1)idimQH
i(X (C),Q(n))+

and
d−(X , n) :=

∑
i∈Z

(−1)idimQH
i(X (C),Q(n))−.

If Z is a manifold and F a field, we set

χ(Z,F ) :=
∑
i∈Z

(−1)idimFH
i(Z,F ).
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Definition 2.19. For a perfect complex of abelian groups C with finite coho-
mology groups we denote by

χ×(C) =
∏
i∈Z
|Hi(C)|(−1)i

its multiplicative Euler characteristic.

Proposition 2.20. We have

χ×(RΓ(X (R),Z/2Z)[−n]) = 2d+(X ,n)−d−(X ,n).

Proof. We have

d+(X , n) = d−(X , n− 1) = d+(X , n− 2)

hence
d±(X , n) = (−1)n · d±(X , 0).

We obtain
2d+(X ,n)−d−(X ,n) = (2d+(X ,0)−d−(X ,0))(−1)n .

Similarly, we have

χ×(RΓ(X (R),Z/2Z)[−n]) := χ×(RΓ(X (R),Z/2Z))(−1)n ,

hence it is enough to show the result for n = 0. In view of Lemma 2.21 and
Lemma 2.22, we have

d+(X , 0)− d−(X , 0) =
∑
i∈Z

(−1)i ·
(
dimQH

i(X (C),Q)+ − dimQH
i(X (C),Q)−

)
=

∑
i∈Z

(−1)i · Tr
(
σ | Hi(X (C),Q)

)
= χ(X (R),Q)

= χ(X (R),F2).

Hence the result follows from

χ×(RΓ(X (R),Z/2Z)) = 2χ(X (R),F2).

Lemma 2.21. Let Y be a compact orientable manifold with an involution σ
whose fixed points form a closed submanifold Z. Then we have∑

i∈Z
(−1)i · Tr

(
σ | Hi(Y,Q)

)
= χ(Z,Q).
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Proof. Let GR := {1, σ}. If C is a perfect complex of Q-vector spaces with
GR-action, we set

Tr (σ | C) :=
∑
i∈Z

(−1)i · Tr
(
σ | Hi(C)

)
.

Let Y ◦ := Y − Z. The exact triangle

RΓc(Y
◦,Q)→ RΓ(Y,Q)→ RΓ(Z,Q)

gives

Tr (σ | RΓ(Y,Q)) = Tr (σ | RΓc(Y
◦,Q)) + Tr (σ | RΓ(Z,Q))

= Tr (σ | RΓc(Y
◦,Q)) + χ(Z,Q)

since σ acts trivially on Z hence on RΓ(Z,Q). Therefore the result follows
from

Tr (σ | RΓc(Y
◦,Q)) :=

∑
i∈Z

(−1)i · Tr
(
σ | Hi

c(Y
◦,Q)

)
=

∑
i∈Z

(−1)i · Tr
(
σ | Hi

c(Y
◦,Q)∗

)
=

∑
i∈Z

(−1)i · Tr
(
σ | Hd−i(Y ◦,Q)

)
= (−1)d

∑
i∈Z

(−1)i · Tr
(
σ | Hi(Y ◦,Q)

)
= 0.

where we use Poincaré duality and the Lefschetz fixed point theorem. Here
d = dim(Y ).

Lemma 2.22. Let Z be a topological space which is homotopy equivalent to a
finite CW -complex. Then we have

χ(Z,F ) = χ(Z,F ′)

for any pair of fields F, F ′.

Proof. The complex RΓ(Z,Z) is quasi-isomorphic to a strictly perfect complex
of abelian groups C∗ and we have∑

i∈Z
(−1)irankZC

i =
∑
i∈Z

(−1)idimF (Ci ⊗Z F )

=
∑
i∈Z

(−1)idimFH
i(C∗ ⊗Z F ) = χ(Z,F )

for any field F . The result follows.
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Combining Corollary 2.18 with Prop. 2.20 we obtain.

Proposition 2.23. We have

λB
(
detZRΓW (X∞,Z(n))⊗ det−1

Z RΓW (X∞,Z(d− n))
)

= detZRΓ(X (C),Z(n)) · 2d−(X ,n)−d+(X ,n)

Proof. Note that if C is as in Definition 2.19 then

detZC = Z · χ×(C)−1

under the canonical isomorphism

detQCQ ∼= Q

arising from the acyclicity of CQ.

3 Duality for derived de Rham cohomology and the Bloch con-
ductor

In this section X is a regular scheme of dimension d, proper and flat over
Spec(Z). We denote by

LX/Z ∼= ΩX/Z[0] (14)

the cotangent complex of X over Z, a perfect complex of OX -modules cohomo-
logically concentrated in degree 0. For any r ∈ Z we let

L ∧r LX/Z ∼= L ∧r ΩX/Z[0]

be the r-th derived exterior power of LX/Z [13][4.2.2.6] which is again a perfect
complex of OX -modules. By definition L∧r LX/Z = 0 for r < 0 but L∧r LX/Z
is in general nonzero for r > d− 1 = rankOX ΩX/Z.

3.1 Coherent duality for L ∧r LX/Z
This subsection is a review of material from [23], [15] and [24] in the context
of our global arithmetic scheme X . The key result is Thm. 3.3 which is an
immediate translation of [24][Cor. 4.9] to our context.

Lemma 3.1. There is a canonical map

L ∧d−1 LX/Z → detOXLX/Z
∼= ωX/Z (15)

where ωX/Z is the relative dualizing sheaf. Hence we get induced maps

L ∧r LX/Z ⊗L L ∧d−1−r LX/Z → L ∧d−1 LX/Z → ωX/Z

and
L ∧r LX/Z → RHom(L ∧d−1−r LX/Z, ωX/Z) (16)

in the derived category of coherent sheaves on X .
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Proof. The multiplicative structure on derived exterior powers will be briefly
recalled in the proof of Prop. 3.5 below, so it remains to show the existence of
(15). Assume first there is a closed embedding i : X → P of X into a smooth
Z-scheme P with ideal sheaf I. The exact sequence of coherent sheaves on X

0→ I/I2 → i∗ΩP/Z → ΩX/Z → 0

can be viewed as a realization of (14) as a strictly perfect complex since I/I2

and i∗ΩP/Z are locally free of ranks n − d + 1 and n, respectively, where n is
the relative dimension of P over Z. The natural map

∧d−1ΩX/Z ⊗ ∧n−d+1(I/I2)→ ∧ni∗ΩP/Z

has adjoint

∧d−1ΩX/Z → Hom(∧n−d+1(I/I2),∧ni∗ΩP/Z) =: ωPX/Z

and combined with the natural map

L ∧d−1 LX/Z → H0(L ∧d−1 LX/Z) ∼= ∧d−1ΩX/Z

we obtain a morphism (15)P depending on i : X → P . If i′ : X → P ′ is another
embedding into a smooth Z-scheme P ′ an isomorphism

εP
′,P : ωPX/Z

∼−→ ωP
′

X/Z

was constructed in [2][A.2] which satisfies the usual cocycle condition in the
presence of a third embedding i′′. Since embeddings into smooth schemes al-
ways exist Zariski locally on X the cocycle condition implies that one can define
ωX/Z by glueing the locally defined ωPX/Z. It remains to show that likewise the
locally obtained maps (15)P glue to a global map (15). By considering the
fibre product P ′′ := P ×Spec(Z) P

′ the construction of εP
′,P can be reduced to

the case where there exists a smooth morphism u : P ′ → P over Spec(Z) and
under X . Namely one defines

εP
′,P := εP

′′,P ′(q′)−1 ◦ εP
′′,P (q)

where q′ : P ′′ → P ′ and q : P ′′ → P are the projections and

εP
′,P (u) : ωPX/Z

∼−→ ωP
′

X/Z

depends on u. More precisely, εP
′,P (u) is defined by the commutative diagram
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with exact rows and columns

0 0y y
0 −−−−→ I/I2 −−−−→ i∗ΩP/Z −−−−→ ΩX/Z −−−−→ 0y y ‖

0 −−−−→ I ′/(I ′)2 −−−−→ i′∗ΩP ′/Z −−−−→ ΩX/Z −−−−→ 0y y
i′∗ΩP ′/P i′∗ΩP ′/Py y

0 0

where the columns are the transitivity triangles of the cotangent complex for
X → P ′

u−→ P and P ′ u−→ P → Spec(Z), respectively, and we refer to [2][(A.2.2)]
for the precise sign conventions. The above commutative diagram induces a
commutative diagram

∧d−1ΩX/Z −−−−→ ωPX/Z

‖
yεP ′,P (u)

∧d−1ΩX/Z −−−−→ ωP
′

X/Z,

so that (15)P is indeed compatible with the isomorphisms εP
′,P (u) and there-

fore also with the isomorphisms εP
′,P .

Definition 3.2. The Bloch conductor of the arithmetic scheme X is the pos-
itive integer

A(X ) :=
∏
p

p(−1)d−1dp

where the product is over all prime numbers p, dp := deg cXd,XFp
(ΩX/Z) ∈ Z and

cXd,XFp
(ΩX/Z) ∈ CH0(XFp)

is a localized Chern class introduced in [4].

The Bloch conductor was introduced in [4] and further studied in
[5],[23],[15],[24]. The deepest result about the Bloch conductor is its equality
with the Artin conductor, defined in terms of the l-adic cohomology of X , in
certain cases. This equality was proven for d = 2 in [4] and if X has everywhere
semistable reduction in [15]. For general regular X it is conjectured but still
open. The equality of the Bloch and the Artin conductor is important for es-
tablishing cases of Conjecture 1.3 via the Langlands correspondence but plays
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no role in this section. Here we only review the (slightly) more elementary
results of [23] and [24] about A(X ). Also note that our normalization of A(X )
is different from these references so that A(X ) equals the Artin conductor
rather than its inverse.
The following theorem was proven by T. Saito in [24][Cor. 4.9]. The case d = 2,
r = 1 is due to Bloch [5][Thm. 2.3] and the case r ≥ d−1 can already be found
in T. Saito’s earlier article [23]. We give some details of Saito’s proof since the
exposition in [24] is rather short.

Theorem 3.3. For any r ∈ Z let CrX/Z be the mapping cone of (16), a perfect
complex of OX -modules. Then RΓ(X , CrX/Z) has finite cohomology and

χ×RΓ(X , CrX/Z) = A(X )(−1)r

where χ× is the multiplicative Euler characteristic (see Definition 2.19).

Proof. First note that over the open subset X sm ⊆ X where X → Spec(Z) is
smooth the complex L∧rLX/Z is concentrated in degree 0 with cohomology the
locally free sheaf ΩrX sm/Z = ∧rΩX sm/Z. The map (15) is also an isomorphism
over X sm. Hence, by linear algebra, the map (16) is an isomorphism over X sm
and CrX/Z is supported in X \ X sm. Since XQ → Spec(Q) is smooth X \ X sm

is contained in a finite union of closed fibres XFp
. By [15][Lemma 5.1.1] any

point x ∈ X \ X sm has a Zariski open neighborhood U ⊆ X such that there
exists a closed embedding

U → P

where P → Spec(Z) is smooth of relative dimension d. The exact sequence

0→ NU/P → ΩP/Z ⊗OP
OU → ΩU/Z → 0 (17)

then shows that ΩX/Z can be locally generated by d sections and that ∧dΩX/Z
is locally monogenic. Following [15][Lemma 5.1.3] let

i : Z → X

be the closed subscheme with support X \ X sm [15][Lemma 3.1.2] defined by
the ideal sheaf

Ann ∧d ΩX/Z.

Then i∗ ∧d ΩX/Z is an invertible OZ-module by definition and hence i∗ΩX/Z
is locally free of rank d, as the d generating sections have no relation on Z. It
follows that

Li∗ΩX/Z|U =
(
NU/P ⊗OU

OU∩Z
0−→ ΩP/Z ⊗OP

OU∩Z
)

and hence that
L := L1i∗ΩX/Z

is an invertible OZ-module.
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Lemma 3.4. The coherent sheaves Hi(CrX/Z) are OZ-modules and there are
canonical isomorphisms

L ⊗OZ
Hi(CrX/Z) ∼= Hi−1(Cr+1

X/Z) (18)

for any i, r ∈ Z.

Proof. We follow the proof of [23][Prop. 1.7] where the case r ≥ d−1 is treated,
see also [15][Lemma 2.4.2]. Recall that

LX/Z|U ∼= ΩU/Z[0]

is represented by the strictly perfect complex (17) where the conormal bundle
NU := NU/P is invertible and EU := ΩP/U ⊗OP

OU is a vector bundle of rank
d. For r ≥ 0 we have isomorphisms

L ∧r LX/Z|U ∼=L ∧r
(
NU

v−→ EU

)
∼=ΓrNU → Γr−1NU ⊗ EU → Γr−2NU ⊗ ∧2EU → · · · → ∧rEU
∼=N⊗rU → N⊗r−1

U ⊗ EU → N⊗r−2
U ⊗ ∧2EU → · · · → ∧rEU (19)

where Γi denotes the divided power functor and ΓiNU ∼= N⊗iU since NU is
invertible. The differential is given by

x′⊗x⊗y ∈ N⊗i−1
U ⊗NU⊗∧r−iEU 7→ x′⊗v(x)∧y ∈ N⊗i−1

U ⊗∧r−i+1EU (20)

on local sections. This computation of the derived exterior powers of a strictly
perfect two-term complex goes back to Illusie [13][4.3.1.3] and is also recalled
in [15][1.2.7.2]. From this description it is clear that there is an identity of
complexes

NU ⊗ L ∧r
(
NU

v−→ EU

)
=
(
σ<0L ∧r+1

(
NU

v−→ EU

))
[−1] (21)

where σ<0 refers to the naive truncation. Similarly we find

RHom(L ∧d−1−r LX/Z, ωX/Z)|U ∼= Hom(L ∧d−1−r
(
NU

v−→ EU

)
,KU )

∼=Hom(∧d−1−rEU ,KU )→ · · · → Hom(N⊗iU ⊗ ∧
d−1−r−iEU ,KU )→ · · · (22)

where
KU := N−1

U ⊗ ∧dEU ∼= ωX/Z|U .

Using the canonical isomorphism

NU ⊗Hom(N⊗iU ⊗ ∧
d−1−r−iEU ,KU )

∼= Hom(N⊗i−1
U ⊗ ∧d−1−(r+1)−(i−1)EU ,KU ) (23)
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we find a canonical isomorphism of complexes

σ>0NU ⊗Hom(L ∧d−1−r
(
NU

v−→ EU

)
,KU )

∼= Hom(L ∧d−1−(r+1)
(
NU

v−→ EU

)
,KU )[−1]. (24)

The complex CrX/Z|U is obtained by splicing together (19) placed in degrees
≤ −1 with (22) placed in degrees ≥ 0 via the map

φr : ∧rEU → Hom(∧d−1−rEU ,KU ) ∼= Hom(NU ⊗ ∧d−1−rEU ,∧dEU )

dual to

∧rEU ⊗NU ⊗ ∧d−1−rEU → ∧dEU ; y ⊗ x⊗ y′ 7→ v(x) ∧ y ∧ y′.

Denoting by ψ the canonical isomorphism

ψ : ∧r+1EU ∼= Hom(∧d−1−rEU ,∧dEU ) ∼= NU ⊗Hom(∧d−1−rEU ,KU )

we have a commutative diagram

NU ⊗ ∧rEU NU ⊗ ∧rEU

(20)

y id⊗φr

y
∧r+1EU

ψ−−−−→
∼

NU ⊗Hom(∧d−1−rEU ,KU )

φr+1

y y
Hom(∧d−2−rEU ,KU )

(23)−1

−−−−→
∼

NU ⊗Hom(NU ⊗ ∧d−2−rEU ,KU )

(25)

as one verifies easily on local sections. Combining (21), (24) and (25) we obtain
a canonical isomorphism

NU ⊗ CrX/Z|U ∼= Cr+1
X/Z|U [−1]. (26)

As in [23][(1.6.1)] one has an isomorphism

Cd−1
X/Z|U ∼= KU ⊗Kos(E∗U ⊗NU

v∗⊗id−−−−→ N∗U ⊗NU ∼= OU )

where Kos(P → A) denotes the Koszul algebra associated to a A-module ho-
momorphism P → A where P is finitely generated projective over A. Using
the fact that Hi(Kos(P → A)) is a module over the ring H0(Kos(P → A))
[26][15.28.6] one deduces that all coherent sheaves Hi(Cd−1

X/Z|U ) are modules
over H0(Kos) ∼= OU∩Z . Using (26) and the fact that NU is invertible we de-
duce that all coherent sheaves Hi(CrX/Z|U ) are modules over OU∩Z , and an
isomorphism (

L ⊗OZ
Hi(CrX/Z)

)
|U ∼= Hi−1(Cr+1

X/Z)|U (27)
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whose construction a priori depends on the choice of U → P . However, as in
the proof of [23][(1.7.2)] one shows that for a different embedding U → P ′,
leading to a different strictly perfect resolution N ′U → E′U of LX/Z|U , one has
a quasi-isomorphism

g : (N ′U → E′U )→ (NU → EU )

unique up to homotopy, inducing quasi-isomorphisms

gr : L ∧r (N ′U → E′U )→ L ∧r (NU → EU )

for all r, unique up to homotopy, which commute with the isomorphisms (21),
(24) and (25). Hence (27) is in fact independent of the choice of U → P
which also implies that the local isomorphisms (27) glue to the global isomor-
phism (18).

Since X → Spec(Z) is proper and CrX/Z is a perfect complex complex of OX -
modules RΓ(X , CrX/Z) is a perfect complex of abelian groups. It has a finite
filtration with subquotients

RΓ(X ,Hi(CrX/Z)[−i]) ∼= RΓ(Z,Hi(CrX/Z)[−i])

which are perfect complexes of abelian groups with torsion cohomology, as Z is
supported in a finite union of closed fibres XFp . Hence RΓ(X , CrX/Z) has finite
cohomology. We can view χ× as a homomorphism

χ× : G(Z)→ K0(Z;Q) ∼= Q×,>0; [F ] 7→ [RΓ(Z,F)]

where G(Z) is the Grothendieck group of the category of coherent sheaves
on Z and K0(Z;Q) is the Grothendieck group of the category of finite abelian
groups (which is also the relative K0 for the ring homomorphism Z→ Q). By
[15][Lemma 5.1.3.3] one has [L⊗OZ

F ] = [F ] in G(Z) for any coherent sheaf F
on Z. Hence (18) implies

χ×RΓ(Z,Hi(CrX/Z)) = χ×RΓ(Z,Hi−1(Cr+1
X/Z))

and therefore
χ×RΓ(X , CrX/Z) = χ×RΓ(X , Cr+1

X/Z)−1

for any r ∈ Z. On the other hand we have

χ×RΓ(X , CdX/Z) = χ×RΓ(X , L ∧d LX/Z[1]) = A(X )(−1)d

by [23][Prop. 2.3]. This finishes the proof of the theorem.
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3.2 Duality for derived de Rham cohomology

Denote by

· · · → F r+1 → F r → · · · → RΓdR(X/Z) = F 0 = F−1 = · · ·

the Hodge filtration of (Hodge completed) derived de Rham cohomology and
by Fn/Fm the mapping cone of Fm → Fn for m ≥ n. Since

F r/F r+1 ∼= RΓ(X , L ∧r LX/Z[−r]) (28)

is a perfect complex of abelian groups, so are all Fn/Fm for m ≥ n. Denote
by C∗ = RHom(C,Z) the Z-dual of a perfect complex of abelian groups.

Proposition 3.5. a) For n ≤ d there is a (Poincaré) duality map

εn : Fn/F d → (RΓdR(X/Z)/F d−n)∗[−2d+ 2] (29)

satisfying
χ×Cone(εn) = A(X )d−n. (30)

b) In particular, the discriminant of the Poincaré duality pairing

RΓdR(X/Z)/F d ⊗LZ RΓdR(X/Z)/F d → Z[−2d+ 2] (31)

has absolute value A(X )d.

Remark 3.6. For d = 1 we have X = Spec(OF ) and A(X ) = |DF |, and b)
reduces to the fact that the trace pairing

OF ×OF → Z; (a, b) 7→ Tr(ab)

has discriminant DF . For d = 2 it was shown by Bloch in [5][Thm. 2] that the
Poincaré duality pairing on the complex

RΓ(X ,OX → ΩX/Z) ∼= RΓdR(X/Z)/F 2

has discriminant ±A(X )2. For d ≥ 3 it seems harder to describe the complex
RΓdR(X/Z)/F d more explicitly.

Remark 3.7. If P is a perfect complex of abelian groups and P ⊗LZ P → Z[2δ]
is a pairing which induces an isogeny φ : P → P ∗[2δ] in the sense that Cone(φ)
has finite cohomology groups, we obtain isomorphisms

detZP
∗ ' detZP ⊗Z detZ Cone(φ)

and
detZP ⊗ detZP ' det−1

Z Cone(φ)

and hence a duality pairing on determinants

〈·, ·〉 : detQPQ ⊗ detQPQ ' Q.
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The discriminant of the pairing is 〈b, b〉 ∈ Q where b is a Z-basis of detZP .
Since

〈−b,−b〉 = (−1)2〈b, b〉 = 〈b, b〉

the discriminant is a well-defined rational number (of absolute value
χ× Cone(φ)).

Proof. Poincaré duality for algebraic de Rham cohomology of XQ/Q is discussed
in [26][Prop. 50.20.4]. It turns out that one can lift the construction of the cup
product pairing in loc. cit. to the derived de Rham complex on X since we
are truncating by F d. More precisely, choose a simplicial resolution P• → OX
in XZar where Pi is a free Z-algebra in XZar and denote by Ω

[n,m]
P•/Z the complex

(of simplicial modules)
ΩnP•/Z → · · · → ΩmP•/Z

in degrees [n,m], zero for n > m, where the differential is the de Rham differ-
ential. Define a complex of sheaves of abelian groups on XZar

LΩ
[n,m]
X/Z := Tot∗•Ω

[n,m],∼
P•/Z

so that

L ∧n LX/Z[−n] = LΩ
[n,n]
X/Z ; RΓdR(X/Z)/Fn = RΓ(X , LΩ

[0,n−1]
X/Z ).

Here and in the following we denote byM∼• the (n-tuple) chain complex associ-
ated to a (n-tuple) simplicial moduleM• [13][1.1] and we decorate the (partial)
totalization of an n-tuple complex with the indices that are contracted into
one. We use the convention that totalization of an upper and a lower index
leads to an upper index. As in [26][50.4.0.1] the wedge product on differential
forms induces a map of bicomplexes

Tot∗,∗ Tot•,• Ω?,∼P•/Z ⊗Z Ω?,∼P•/Z = Tot∗,∗ Tot•,•

(
Ω?P•/Z ⊗Z Ω?P•/Z

)∼
σ−→Tot∗,∗

(
∆
(

Ω?P•/Z ⊗Z Ω?P•/Z

))∼
=
(

Tot∗,∗∆
(

Ω?P•/Z ⊗Z Ω?P•/Z

))∼
∪−→Ω?,∼P•/Z → Ω

[0,d−1],∼
P•/Z

where σ is induced by shuffle map Tot•,• (M• ⊗N•)∼ → (∆ (M• ⊗N•))∼ of
[13][(1.2.2.1)] and ∆ denotes the diagonal simplicial object of a bisimplicial
object. Since we have truncated to degrees ≤ d − 1 the above pairing factors
through a pairing

Tot∗,∗ Tot•,•Ω
[n,d−1],∼
P•/Z ⊗Z Ω

[0,d−1−n],∼
P•/Z → Ω

[0,d−1],∼
P•/Z

Documenta Mathematica 26 (2021) 1633–1677



Special Value Conjectures & the Functional Equation 1663

and hence we obtain a pairing

LΩ
[n,d−1]
X/Z ⊗LZ LΩ

[0,d−1−n]
X/Z = Tot∗,∗ Tot∗•Ω

[n,d−1],∼
P•/Z ⊗Z Tot∗•Ω

[0,d−1−n],∼
P•/Z

'Tot∗,∗ Tot∗• Tot∗• Ω
[n,d−1],∼
P•/Z ⊗Z Ω

[0,d−1−n],∼
P•/Z

'Tot∗,∗•,• Ω
[n,d−1],∼
P•/Z ⊗Z Ω

[0,d−1−n],∼
P•/Z

'Tot∗•Tot∗,∗ Tot•,• Ω
[n,d−1],∼
P•/Z ⊗Z Ω

[0,d−1−n],∼
P•/Z

→Tot∗•Ω
[0,d−1],∼
P•/Z = LΩ

[0,d−1]
X/Z

and an induced pairing on cohomology

RΓ(X , LΩ
[n,d−1]
X/Z )⊗LZ RΓ(X , LΩ

[0,d−1−n]
X/Z ) −−−−→ RΓ(X , LΩ

[0,d−1]
X/Z )

‖ ‖

Fn/F d ⊗LZ RΓdR(X/Z)/F d−n −−−−→ RΓdR(X/Z)/F d.

Lemma 3.8. One has Hi(X , LΩ
[0,d−1]
X/Z ) = 0 for i > 2d − 2. Moreover, the

natural map

H2d−2(X , L ∧d−1 LX/Z[−d+ 1])→ H2d−2(X , LΩ
[0,d−1]
X/Z )

induces an isomorphism

g : H2d−2(X , L ∧d−1 LX/Z[−d+ 1])/tor ∼= H2d−2(X , LΩ
[0,d−1]
X/Z )/tor

and therefore a trace map

RΓ(X , LΩ
[0,d−1]
X/Z )[2d− 2]→ H2d−2(X , LΩ

[0,d−1]
X/Z )/tor

g−1

−−→

H2d−2(X , L∧d−1LX/Z[−d+1])/tor
(15)∗−−−→ H2d−2(X , ωX/Z[−d+1])/tor

Tr−→ Z
(32)

Proof. We first remark that Hi(X ,F) = 0 for i ≥ d and any coherent sheaf F
on X . Indeed, this is clear for i > d since the cohomological dimension of XZar
is d. Duality for f : X → Spec(Z)

RHomZ(Rf∗F ,Z) ∼= RHomX (F , ωX/Z[d− 1])

evaluated in degree −d

HomZ(Hd(X ,F),Z) ∼= H−1RHomX (F , ωX/Z) = 0

shows that Hd(X ,F) is torsion. Evaluation in degree −d+ 1

0→ Ext1(Hd(X ,F),Z)→ HomX (F , ωX/Z)→ HomZ(Hd−1(X ,F),Z)→ 0
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shows that Hd(X ,F) = 0 since ωX/Z is a line bundle, f is flat, and therefore
HomX (F , ωX/Z) is torsion free.
Since L ∧r LX/Z is an object of the derived category of coherent sheaves con-
centrated in degrees ≤ 0 we also have Hi(X , L ∧r LX/Z) = 0 for i ≥ d. The
exact triangle

RΓ(X , L ∧r LX/Z)[−r])→ RΓ(X , LΩ
[n,r]
X/Z)→ RΓ(X , LΩ

[n,r−1]
X/Z )→

and an easy induction then show that Hi(X , LΩ
[n,m]
X/Z ) = 0 for i ≥ d + m. In

particular, the map

H2d−2(X , L ∧d−1 LX/Z[−d+ 1])→ H2d−2(X , LΩ
[0,d−1]
X/Z )

is surjective and an isomorphism after tensoring with Q (see the proof of
[26][Prop. 50.20.4]), hence induces an isomorphism

g : H2d−2(X , L ∧d−1 LX/Z[−d+ 1])/tor ∼= H2d−2(X , LΩ
[0,d−1]
X/Z )/tor.

We now prove (30) by downward induction on n starting with the trivial case
n = d. The induction step is provided by the diagram with exact rows and
columns

Fn+1/F d
εn+1−−−−→ (F 0/F d−n−1)∗[−2d+ 2] −−−−→ Cone(εn+1)y y y

Fn/F d
εn−−−−→ (F 0/F d−n)∗[−2d+ 2] −−−−→ Cone(εn)y y y

Fn/Fn+1 −−−−→ (F d−n−1/F d−n)∗[−2d+ 2] −−−−→ RΓ(X , CnX/Z)[−n]

where the bottom exact triangle is RΓ(X ,−)[−n] applied to (16) in view of
(28) and coherent sheaf duality for f : X → Spec(Z):

(F d−n−1/F d−n)∗[−2d+ 2]

∼=RHom(Rf∗(L ∧d−1−n LX/Z)[−d+ 1 + n],Z)[−2d+ 2]

∼=RHomX (L ∧d−1−n LX/Z[−d+ 1 + n], ωX/Z)[−d+ 1]

∼=RΓ(X , RHomX (L ∧d−1−n LX/Z, ωX/Z))[−n].

By Theorem 3.3 we have

χ×(Cone(εn)) = χ×(Cone(εn+1)) ·A(X )

which gives χ×(Cone(εn)) = A(X )d−n by induction.
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For any n ∈ Z we have an exact triangle on the generic fibre X = XQ

Fn → RΓdR(X/Q)→ RΓdR(X/Q)/Fn (33)

and we also have a duality isomorphism (29)Q for any n ∈ Z since Fn = F d = 0
on the generic fibre for n ≥ d.

Corollary 3.9. Let n ∈ Z and denote by λdR the isomorphism(
det−1

Z RΓdR(X/Z)/Fn ⊗ detZRΓdR(X/Z)/F d−n
)
Q

' det−1
Q RΓdR(X/Q)/Fn ⊗ detQRΓdR(X/Q)/F d−n

(29)Q' det−1
Q RΓdR(X/Q)/Fn ⊗ det−1

Q Fn

(33)
' det−1

Q RΓdR(X/Q)

'
(
det−1

Z RΓdR(X/Z)/F d
)
Q .

Then

λdR
(
det−1

Z RΓdR(X/Z)/Fn ⊗ detZRΓdR(X/Z)/F d−n
)

=A(X )d−n · det−1
Z RΓdR(X/Z)/F d.

Proof. For n ≤ d this is clear from Prop. 3.5 and the fact that (33) is the scalar
extension to Q of the exact triangle

Fn/F d → RΓdR(X/Z)/F d → RΓdR(X/Z)/Fn.

For n > d we have RΓdR(X/Z)/F d−n = 0 and an exact triangle

F d/Fn → RΓdR(X/Z)/Fn → RΓdR(X/Z)/F d

where

χ×(F d/Fn) =

n−1∏
r=d

χ×
(
RΓ(X , L ∧r LX/Z[−r])

)
=

n−1∏
r=d

χ×
(
RΓ(X , CrX/Z[−r − 1])

)
=A(X )d−n

by (28) and Theorem 3.3. Hence

det−1
Z RΓdR(X/Z)/Fn = A(X )d−n · det−1

Z RΓdR(X/Z)/F d

inside det−1
Q RΓdR(X/Q).
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4 The archimedean Euler factor

Following [22], for any pure R-Hodge structure M over R of weight w(M) we
define

hj(M) = dimF j/F j+1 = hj,w(M)−j(M)

d±(M) = dimRM
F∞=±1

tH(M) =
∑
j

jhj(M) =
w(M) · dimRM

2
=
w(det(M))

2

L∞(M, s) =
∏

p<q:=w(M)−p

ΓC(s− p)h
p,q

·
∏

p=
w(M)

2

ΓR(s− p)h
p,+

ΓR(s− p+ 1)h
p,−

where
ΓR(s) = π−s/2Γ(s/2); ΓC(s) = 2(2π)−sΓ(s).

Note that the factorization of L∞(M, s) corresponds to the decomposition ofM
into simple R-Hodge structures over R. Also recall the leading coefficient of
the Γ-function at j ∈ Z

Γ∗(j) =

{
(j − 1)! j ≥ 1

(−1)j/(−j)! j ≤ 0
(34)

Lemma 4.1. (see also [22][4.3.2, Lemme C.3.7]) For any pure R-Hodge struc-
ture M over R one has

L∗∞(M, 0)

L∗∞(M∗(1), 0)
= ±2d+(M)−d−(M)(2π)d−(M)+tH(M)

∏
j

Γ∗(−j)hj(M)

Proof. The functional equation of the Γ-function

Γ(s)Γ(1− s) =
π

sin(πs)
(35)

implies

ΓC(s)ΓC(1− s) =
2

sin(πs)
; ΓR(1 + s)ΓR(1− s) = cos(

πs

2
)−1.

Hence
ΓC(s− p)

ΓC(−s− (−q − 1))
=

ΓC(s− p)
ΓC(1− (s− q))

= ΓC(s− p)ΓC(s− q) sin(π(s− q))
2

.

(36)
Using in addition the identity ΓR(s)ΓR(s+ 1) = ΓC(s) we find

ΓR(s− p)
ΓR(−s− (−p− 1))

=
ΓR(s− p)ΓR(s− p+ 1)

ΓR(1− (s− p))ΓR(s− p+ 1)

=ΓC(s− p) cos(
π(s− p)

2
) (37)
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and similarly

ΓR(s− p+ 1)

ΓR(−s− (−p− 1) + 1)
=

ΓR(s− p+ 1)ΓR(s− p)
ΓR(2− (s− p))ΓR(s− p)

=ΓC(s− p) cos(
π(s− p− 1)

2
). (38)

Every pure R-Hodge structure M over R is the direct sum of simple R-Hodge
structures. The simple R-Hodge structures areMp,q of dimension 2 for integers
p < q and Mp,± of dimension 1 for integers p (where F∞ operates via ±(−1)p).
From the above definition of L∞(M, s) and (36), (37), (38) we obtain the
following table

M M∗(1) L∞(M, s) L∞(M,s)
L∞(M∗(1),−s)

Mp,q M−p−1,−q−1 ΓC(s− p) ΓC(s− p)ΓC(s− q) · sin(π(s−q))
2

Mp,+ M−p−1,+ ΓR(s− p) ΓC(s− p) · cos(π(s−p)
2 )

Mp,− M−p−1,− ΓR(s− p+ 1) ΓC(s− p) · cos(π(s−p−1)
2 )

We have
sin(π(s− q))|∗s=0 = (−1)qπ

and

cos(
π(s− p)

2
)

∣∣∣∣∗
s=0

=

{
(−1)p/2 p even
(−1)(p−1)/2 π

2 p odd

It is now straightforward to verify the entries of the following table which
confirm Lemma 4.1 for simple R-Hodge structures. Since all quantities are
additive in M the general case follows by writing M as a sum of simple R-
Hodge structures.

M d+(M) d−(M) hj(M) tH(M) ± L∗∞(M,0)
L∗∞(M∗(1),0)

Mp,q 1 1 1 for j = p, q p+ q (2π)p+q+1Γ∗(−p)Γ∗(−q)
0 else

Mp,+

p even 1 0 1 for j = p p 2(2π)pΓ∗(−p)
p odd 0 1 1 for j = p p 2(2π)pΓ∗(−p) · π2
Mp,−
p even 0 1 1 for j = p p 2(2π)pΓ∗(−p) · π2
p odd 1 0 1 for j = p p 2(2π)pΓ∗(−p)

Suppose now X is a regular scheme, proper and flat over Spec(Z) with generic
fibre X := XQ. The archimedean Euler factor of X is defined as

ζ(X∞, s) =
∏
i∈Z

L∞(hi(X), s)(−1)i (39)

where hi(X) is the R-Hodge structure on Hi(X (C),R).
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Corollary 4.2. One has
ζ∗(X∞, n)

ζ∗(X∞, d− n)
=± 2d+(X ,n)−d−(X ,n) · (2π)d−(X ,n)+tH(X ,n)

·
∏
p,q

Γ∗(n− p)h
p,q·(−1)p+q

where

d±(X , n) =
∑
i

(−1)id±(hi(X)(n)), tH(X , n) =
∑
i

(−1)itH(hi(X)(n))

and hi(X)(n) denotes the R-Hodge structure on Hi(X (C), (2πi)nR).

Proof. For M = hi(X)(n) one has M∗(1) ∼= h2d−2−i(X)(d− n) and

hj(M) = hj,i−2n−j(M) = hp−n,i−p−n(M) = hp,i−p = hp,q

with p+ q = i, j = p− n. Therefore Lemma 4.1 implies

ζ∗(X∞, n)

ζ∗(X∞, d− n)
=
∏
i

L∗∞(hi(X)(n), 0)(−1)i

L∗∞(h2d−2−i(X)(d− n), 0)(−1)2d−2−i

=2d+(X ,n)−d−(X ,n)(2π)d−(X ,n)+tH(X ,n)
∏
p,q

Γ∗(n− p)h
p,q·(−1)p+q

.

Lemma 4.3. One has
C∞(X , n)

C∞(X , d− n)
= ±

∏
p,q

Γ∗(n− p)h
p,q·(−1)p+q

Proof. Since X (C) is smooth proper of dimension d − 1 the Hodge numbers
hp,q are nonzero only for 0 ≤ p ≤ d− 1. By definition (2)

C∞(X , n) =
∏

0≤p≤n−1,q

(n− p− 1)!h
p,q·(−1)p+q

=
∏

0≤p≤n−1,q

Γ∗(n− p)h
p,q·(−1)p+q

. (40)

On the other hand (35) implies

Γ∗(j)Γ∗(1− j) = ±1

and therefore we have∏
n≤p≤d−1,q

Γ∗(n− p)h
p,q·(−1)p+q

=±
∏

n≤p≤d−1,q

Γ∗(1− (n− p))−h
p,q·(−1)p+q

=±
∏

0≤p≤d−n−1,q

Γ∗(d− n− p)−h
p,q·(−1)p+q

=± C∞(X , d− n)−1. (41)

Combining (40) and (41) gives the Lemma.
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5 The main result

Recall the definition of the completed Zeta-function of X

ζ(X , s) := ζ(X , s) · ζ(X∞, s)

where ζ(X∞, s) was defined in (39). We repeat Conjecture 1.3 from the intro-
duction.

Conjecture 1.3. (Functional Equation) Let X be a regular scheme of di-
mension d, proper and flat over Spec(Z). Then ζ(X , s) has a meromorphic
continuation to all s ∈ C and

A(X )(d−s)/2 · ζ(X , d− s) = ±A(X )s/2 · ζ(X , s).

This conjecture is true for d = 1 where it reduces to the functional equation of
the Dedekind Zeta function. It is true for d = 2 by [5][Prop. 1.1] provided that
the L-function L(h1(XQ), s) satisfies the expected functional equation involving
the Artin conductor of the l-adic representation H1(XQ̄,Ql). This is the case
if X is a regular model of a potentially modular elliptic curve over a number
field F in view of the compatibility of the (local) Langlands correspondence
for GL2 with ε-factors and hence conductors. Potential modularity of elliptic
curves is known if F is totally real or quadratic over a totally real field. We refer
to [7][1.1] for a discussion of these results and for the original references. In [7]
potential modularity is also shown for abelian surfaces over totally real fields F
and hence Conjecture 1.3 should hold for regular models of genus 2 curves over
totally real fields F (since this involves the local Langlands correspondence for
GSp4/F we are unsure whether the conductor in the functional equation is
indeed the Artin conductor).

Remark 5.1. We do not actually know a published reference for Conjecture 1.3.
Serre’s article [25] deals with what one might call the Hasse-Weil Zeta function
of X which only depends on the generic fibre XQ and he conjectures its func-
tional equation with A(X ) replaced by the Artin conductor of XQ, defined in
terms of the l-adic representations Hi(XQ̄,Ql). In the case d = 2 Bloch [5] dis-
cusses Conjecture 1.3 with A(X ) replaced by a modified Artin conductor Ã(X )
which also depends on the l-adic representations Hi(XF̄p

,Ql) for bad primes
p 6= l. In [4] Bloch proves that A(X ) = Ã(X ) for d = 2 and conjectures that
A(X ) = Ã(X ) for general regular X . This identity has since become known
as "Bloch’s conductor formula" but it is still conjectural for general regular X .
For X with semistable reduction it was proven by Kato and Saito in [15], and
we have followed their terminology in calling Ã(X ) the Artin conductor of X .
We prefer to state Conjecture 1.3 with A(X ) rather than Ã(X ) in order to avoid
Bloch’s conductor formula which is a very deep result.

We repeat Theorem 1.4 from the introduction which is the main result of this
paper.
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Theorem 1.4. Assume X is a regular scheme of dimension d, proper and flat
over Spec(Z) which satisfies Conjectures L(X et, n), L(X et, d−n), AV(X et, n),
B(X , n) and B(X , d− n) in [8]. Assume that ζ(X , s) satisfies Conjecture 1.3.
Then Conjecture 1.1 for (X , n) is equivalent to Conjecture 1.1 for (X , d− n).

Proof. The reduction of Theorem 1.4 to Theorem 1.2 was already made in
[8][Cor. 5.31]. We repeat the argument here with the assumptions of Theorem
1.4 in effect. From [8][Prop. 5.29] recall the invertible Z-module

Ξ∞(X/Z, n) := detZRΓW (X∞,Z(n))⊗ det−1
Z RΓdR(X/Z)/Fn

⊗det−1
Z RΓW (X∞,Z(d− n))⊗ detZRΓdR(X/Z)/F d−n,

the canonical isomorphism

∆(X/Z, n)⊗ Ξ∞(X/Z, n)
∼−→ ∆(X/Z, d− n) (42)

and the canonical trivialization

ξ∞ : R ∼−→ Ξ∞(X/Z, n)⊗ R

such that the diagram

∆(X/Z, n)⊗ Ξ∞(X/Z, n)⊗ R // ∆(X/Z, d− n)⊗ R

R⊗ R

λ∞⊗ξ∞

OO

= // R

λ∗∞

OO
(43)

commutes. Here λ∗∞ is the isomorphism (3) associated to (X , d − n). Taking
leading terms at s = n in Conjecture 1.3 we find

ζ∗(X , d− n) = ±A(X )n−d/2 · ζ∗(X∞, n)

ζ∗(X∞, d− n)
· ζ∗(X , n)

or equivalently

C∞(X , d− n)ζ∗(X , d− n) =±A(X )n−d/2 · ζ∗(X∞, n)

ζ∗(X∞, d− n)
· C∞(X , d− n)

C∞(X , n)

·C∞(X , n)ζ∗(X , n).

It is then clear from (43) and (42) that any two of the identities

λ∗∞(Z) =C∞(X , d− n)ζ∗(X , d− n)) ·∆(X/Z, d− n)

ξ∞(Z) =

(
A(X )n−d/2 · ζ∗(X∞, n)

ζ∗(X∞, d− n)
· C∞(X , d− n)

C∞(X , n)

)
· Ξ∞(X/Z, n)

λ∞(Z) =C∞(X , n)ζ∗(X , n) ·∆(X/Z, n)

imply the third. Recall that

x∞(X , n)2 ∈ R>0
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is the strictly positive real number such that

ξ∞(Z) = x∞(X , n)2 · Ξ∞(X/Z, n).

Theorem 1.2 shows that the second identity holds, and we therefore obtain
Theorem 1.4 (equivalence of the first and third identity).

Remark 5.2. The reason for writing x∞(X , n)2 as a square is the following.
The canonical isomorphism

Ξ∞(X/Z, n)⊗ Ξ∞(X/Z, d− n) ∼= Z

implies that
x∞(X , n)2 · x∞(X , d− n)2 = 1

and hence
x∞(X , n)2 = ±x∞(X , n) · x∞(X , d− n)−1.

The identity of Theorem 1.2 can therefore be written in the following more
symmetric form

A(X )n/2 · ζ∗(X∞, n) · x∞(X , n)−1 · C∞(X , n)−1

=±A(X )(d−n)/2 · ζ∗(X∞, d− n) · x∞(X , d− n)−1 · C∞(X , d− n)−1

and this is how it was presented in [8][Cor. 5.31] (note that there is a typo
in the statement of [8][Cor. 5.31] and C(X , n) and C(X , d − n) have to be
replaced by their inverses). However, we do not know any deeper significance
of this symmetric rewriting.

It remains to prove Theorem 1.2 which we repeat here for the convenience of
the reader.

Theorem 1.2. Let X be a regular scheme of dimension d, proper and flat over
Spec(Z). Then we have

x∞(X , n)2 = ±A(X )n−d/2 · ζ∗(X∞, n)

ζ∗(X∞, d− n)
· C∞(X , d− n)

C∞(X , n)
.

Proof. By Corollary 4.2 and Lemma 4.3 this identity is equivalent to

x∞(X , n)2 = ±A(X )n−d/2 · 2d+(X ,n)−d−(X ,n) · (2π)d−(X ,n)+tH(X ,n). (44)

Lemma 5.2. The isomorphism ξ∞ is induced by the sequence of isomorphisms(
detZRΓW (X∞,Z(n))⊗ det−1

Z RΓW (X∞,Z(d− n))
)
R (45)

(9)R−−→ detR
(
RΓ(X (C),R(n))+ ⊕RΓ(X (C),R(n− 1))+

)
(47)−−→ detRRΓ(X (C),C)+

(48)+−−−→ detRRΓdR(XC/C)+

' detRRΓdR(XR/R) '
(
detZRΓdR(X/Z)/F d

)
R

λ−1
dR−−→

(
detZRΓdR(X/Z)/Fn ⊗ det−1

Z RΓdR(X/Z)/F d−n
)
R
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where λdR was defined in Cor. 3.9.

Proof. The isomorphism ξ∞ was defined in [8][Prop. 5.29](
detZRΓW (X∞,Z(n))⊗Z det−1

Z RΓdR(X/Z)/Fn
)
R

' detRRΓD(X/R,R(n))

' detRRΓD(X/R,R(d− n))∗[−2d+ 1]

' detRRΓD(X/R,R(d− n))

'
(
detZRΓW (X∞,Z(d− n))⊗Z det−1

Z RΓdR(X/Z)/F d−n
)
R

using the defining exact triangle

(RΓdR(X/Z)/Fn)R[−1]→ RΓD(X/R,R(n))→ RΓ(X (C),R(n))+

and duality

RΓD(X/R,R(n)) ' RΓD(X/R,R(d− n))∗[−2d+ 1]

for Deligne cohomology. This duality is constructed in [8][Lemma 2.3] by taking
GR-invariants in

RΓD(X/C,R(n)) ' RΓD(X/C,R(d− n))∗[−2d+ 1] (46)

which is obtained as follows. Dualizing the defining exact triangle

(RΓdR(X/Z)/F d−n)C[−1]→ RΓD(X/C,R(d− n))→ RΓ(X (C),R(d− n))

and using Poincaré duality (7) and (29)C on X (C) we obtain the bottom exact
triangle in the diagram

RΓ(X (C),R(n))[−1] RΓ(X (C),R(n))[−1]y y
FnC ←−−−− (RΓdR(X/Z)/Fn)C[−1]

β←−−−− RΓ(X (C),C)[−1]

‖
y y

FnC ←−−−− RΓD(X/C,R(d− n))∗[−2d+ 1] ←−−−− RΓ(X (C),R(n− 1))[−1]

The right hand column is induced by the decomposition

C ∼= R(n)⊕ R(n− 1) (47)

on coefficients, and the map β is the comparison isomorphism

RΓ(X (C),C) ' RΓdR(XC/C) (48)

composed with the natural projection. It is then clear that all rows and columns
in the diagram are exact, and the middle column is the defining exact triangle of
RΓD(X/C,R(n)), giving (46). Recalling that (9) was also defined using Poincaré
duality (7) we find that the isomorphisms used in (45) are precisely those used
in the construction of (46)+.

Documenta Mathematica 26 (2021) 1633–1677



Special Value Conjectures & the Functional Equation 1673

We call the real line detRRΓ(X (C),C)+ the de Rham real structure of
detCRΓ(X (C),C) and the real line detRRΓ(X (C),R(n)) the Betti real structure
of detCRΓ(X (C),C). By (8) we have

detRRΓ(X (C),C)+ · (2πi)d−(X ,n) = detRRΓ(X (C),R(n)). (49)

In the remaining computations of the proof of Theorem 1.2 all identities should
be understood up to sign. We choose bases of the various Z-structures of the
de Rham real line appearing in (45)

Z · b̃B = detZRΓW (X∞,Z(n))⊗ det−1
Z RΓW (X∞,Z(d− n))

Z · bdR = detZRΓdR(X/Z)/F d

Z · b̃dR = detZRΓdR(X/Z)/Fn ⊗ det−1
Z RΓdR(X/Z)/F d−n

and we also choose a basis

Z · bB = detZRΓ(X (C),Z(n))

of the natural Z-structure in the Betti real structure. Let P ∈ C× be the
Betti-de Rham period, i.e. we have

bdR = P · bB

under the comparison isomorphism (48). Note that P depends on n which is
fixed in this proof.

Lemma 5.3. Let εB ∈ {±1} be the discriminant (see Remark 3.7) of the
Poincaré duality pairing

RΓ(X (C),Z(n))⊗RΓ(X (C),Z(n))
Tr◦∪−−−→ Z(2n− d+ 1)[−2d+ 2]

and εdR ·A(X )d the discriminant of the deRham duality pairing (31). Then

P =
√
εBεdR · (2πi)tH(X ,n) ·A(X )

d
2 .

Moreover P · (2πi)d−(X ,n) is real and hence we have

P · (2πi)d−(X ,n) = (2π)d−(X ,n)+tH(X ,n) ·A(X )
d
2 .

Proof. We have a commutative diagram

RΓ(X (C),Z(n))⊗RΓ(X (C),Z(n))
Tr◦∪−−−−→ Z(2n− d+ 1)[−2d+ 2]y y

RΓ(X (C),C)⊗RΓ(X (C),C)
Tr◦∪−−−−→ C[−2d+ 2]x x

RΓdR(X/Z)/F d ⊗LZ RΓdR(X/Z)/F d
(31)−−−−→ Z[−2d+ 2]
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where the bottom square commutes since the comparison isomorphism

RΓ(X (C),C) ' RΓdR(XC/C) ' RΓdR(XQ/Q)C

is compatible with cup product and cycle classes, and the trace map sends the
cycle class of a closed point to its degree over the base field. We also use the
fact that the trace map in algebraic de Rham cohomology

H2d−2
dR (XQ/Q)

∼←− Hd−1(XQ,Ω
d−1
XQ/Q)

Tr−→ Q

is the base change of the Trace map (32) under Spec(Q) → Spec(Z) by [27].
Applying the construction of Remark 3.7 we then obtain a pairing

〈·, ·〉 : detCRΓ(X (C),C)⊗C detCRΓ(X (C),C) ' C

which restricts to the corresponding Q-valued pairing on detZRΓdR(X/Z)/F d

and a Q · (2πi)(2n−d+1)χ-valued pairing on detZRΓ(X (C),Z(n)). Here

χ := rankZRΓ(X (C),Z(n)) = dimRRΓ(X (C),R(n))

=
∑
i

(−1)i dimRH
i(X (C),R(n))

is the Euler characteristic of the manifold X (C). We then have

εdR ·A(X )d = 〈bdR, bdR〉 = P 2〈bB , bB〉 = P 2εB(2πi)(2n−d+1)χ

and moreover

−(2n− d+ 1)χ =
∑
i<d−1

(−1)i(i− 2n+ 2d− 2− i− 2n) dimRH
i(X (C),R(n))

+(−1)d−1(d− 1− 2n) dimRH
d−1(X (C),R(n))

=2 tH(X , n).

Hence
P 2 = εdRεB · (2πi)2 tH(X ,n) ·A(X )d

which shows the first statement. Since both bB and bdR · (2πi)d−(X ,n) = P ·
(2πi)d−(X ,n) · bB lie in the Betti real structure, the factor P · (2πi)d−(X ,n) is
real. This proves the second statement.

Corollary 5.4. With notation as in Lemma 5.3 we have

εBεdR = (−1)d−(X ,n)+tH(X ,n) = (−1)d−(X ,0)+ d−1
2 χ.

Proof. This follows from tracking powers of i in Lemma 5.3 and the fact that
εB and εdR are independent of n (hence so is the right hand side).

Documenta Mathematica 26 (2021) 1633–1677



Special Value Conjectures & the Functional Equation 1675

Remark 5.5. Corollary 5.4 generalizes the classical fact that the sign of the
discriminant of a number field F is (−1)r2 where r2 = d−(Spec(OF ), 0) is the
number of complex places. In this case εB = 1. For an example with εB = −1
consider X = P1

Spec(Z). The intersection pairing on

RΓ(P1(C),Z) ' RΓ(S2,Z) ' Z[0]⊕ Z[−2]

has Gram matrix
A :=

(
0 1
1 0

)
and hence εB = det(A) = −1. The intersection pairing on

RΓdR(X/Z)/F 2 ' H0(X ,OX )[0]⊕H1(X ,Ω1
X/Z)[−2] ' Z[0]⊕ Z[−2]

has the same Gram matrix, hence εdR = −1. Since d−(X , 0) = d−(h2(X )) = 1
and d = χ = 2 we indeed have

εBεdR = 1 = (−1)d−(X ,0)+ d−1
2 χ.

We can now finish the proof of Theorem 1.2 by verifying (44). By Prop. 2.23
we have

b̃B · (2πi)d−(X ,n) = bB · 2d−(X ,n)−d+(X ,n)

and by Corollary 3.9
b̃−1
dR = A(X )d−n · b−1

dR.

Therefore

x∞(X , n)−2 =b̃B · b̃−1
dR

=(2πi)−d−(X ,n) · 2d−(X ,n)−d+(X ,n) · bB ·A(X )d−n · b−1
dR

=2d−(X ,n)−d+(X ,n) ·A(X )d−n · (2πi)−d−(X ,n) · P−1

=2d−(X ,n)−d+(X ,n) ·A(X )d−n · (2π)−d−(X ,n)−tH(X ,n) ·A(X )−
d
2

=A(X )
d
2−n · 2d−(X ,n)−d+(X ,n) · (2π)−d−(X ,n)−tH(X ,n)

which is (44).
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