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1 Introduction

The group Iso(M) of the isometries of a Riemannian manifold M is a natural
invariant that provides useful information for investigating the properties of
the manifold itself. For this reason it has been the focus of much work ever
since its introduction. For instance, Iso(M) is known to be a compact Lie
group if the manifold is compact, and moreover any compact Lie group arises
as the group of the isometries of some compact Riemannian manifold. Here
by isometry of a Riemannian manifold M we mean a bijective differentiable
map that preserves the geodesic distance between the points of M . It is worth
recalling that differentiability is actually not needed in the definition. Indeed,
in light of a classical result by Myers and Steenrod, [MS39], any metric-space
isometry is automatically a smooth function preserving the Riemannian metric
also. Quite interestingly, questions to do with automatic regularity can also
be posed in the much wider context provided by noncommutative geometry,
and this is in part what the present work aims to do. Noncommutative ge-
ometry is a recent subject shaped by A.Connes that provides a rather elegant
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yet powerful way to fit classical differential geometry into the frame of oper-
ator algebras and quantum physics. One way it does so is through so-called
spectral triples on C∗-algebras, [Con94]. In this paper we deal with two known
spectral triples on the Cuntz algebras On, which are among the most studied
C∗-algebras. Now one good reason to set these problems right on the Cuntz
algebras [Cun77] is their automorphisms have been investigated in great detail
[CKS10,CS11,CHS12a,CHS12b,CHS15] Another is the Cuntz algebras often
exhibit unexpected interplay with several different areas, and any novel emerg-
ing connection is often a source of inspiration for the papers that immediately
afterwards ensue. Our attention, however, is here directed towards determining
the resulting isometric isomorphisms. Problems of this sort have rarely been
addressed before. A recent case in point, though, is the paper [LW17], where
suitable spectral triples on twisted reduced C∗-algebras of discrete groups are
looked at and the corresponding isometry groups are described completely. This
is very much in line with the direction established by E. Park in [Eft95], where,
to our knowledge, the notion of isometry with respect to a given spectral triple
was defined for the first time. That notion should actually be interpreted as
the non-commutative counterpart of the classical definition in which differen-
tiability is assumed from the beginning. It is then natural to consider also the
non-commutative counterpart of the classical definition in which differentiabil-
ity is no longer required at the outset, so as to attempt a comparison between
the two notions, which is made possible by using the so-called Connes distance
between the states of our C∗-algebras. This is quite a legitimate question to
ask, and yet it has not been formulated so far. In this paper, we attack the
problem with a θ-summable spectral triple on On introduced and thoroughly
studied in [GM18,GMR18]. What we actually do is give a complete description
of the corresponding isometries with respect to the stronger notion. Moreover,
the resulting group turns out to be compact as it consists precisely of the Bo-
golubov (i.e., quasi-free) automorphisms [Eva80], and it is thus isomorphic to
the n-dimensional unitary group U(n). Not unexpectedly, the isometries with
respect to the weaker notion prove very hard to deal with, not least because
explicit computations with Connes’s distance are often very demanding. Even
so, we do succeed in showing that the two notions are actually the same for the
so-called modular spectral triple on On, which semi-finite in a suitable sense
[CNNR11]. The resulting isometry group, though, fails to be compact.

2 Preliminaries and notation

2.1 Some generalities on the Cuntz algebras

For an integer n ≥ 2, On denotes the Cuntz algebra with n generating isome-
tries, i.e. the universal C∗-algebra generated by n isometries Si, i = 1, 2, . . . , n,
such that

∑n
i=1 SiS

∗
i = 1. As is known, all endomorphisms of On can be

obtained via the so-called Cuntz-Takesaki correspondence U(On) ∋ u →
λu ∈ End(On), where λu acts on the generating isometries as λu(Si) = uSi,
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i = 1, 2, . . . n. In addition, if u, v ∈ U(On) are such that λu = λv, then u = v.
Now the choice u = z1, z ∈ T yields an action of the compact group T on
On through the so-called gauge automorphisms. The corresponding invariant
subalgebra is known to be a UHF algebra, which is commonly denoted by
Fn := {x ∈ On : λz1(x) = x, for every z ∈ T}. We then denote by τ the unique
trace on Fn, and by E the conditional expectation of On onto Fn obtained
by integrating the gauge action of T on On. The composition ω := τ ◦ E is
known to be the unique KMS state of On (w.r.t. the rescaled gauge action).
Henceforth, we simply denote by (π,H, ξ) the GNS triple corresponding to ω.
A unitary u ∈ Fn is referred to as a gauge-invariant unitary. Now the KMS
state is well known to be invariant under the action of any endomorphism λu

coming from a gauge-invariant unitary u. In other terms, the following result
holds true, see [Lon94, Lemma 2.1].

Lemma 2.1. For any u ∈ U(Fn), one has

ω ◦ λu = ω

In particular, any λu ∈ Aut(On), with u a unitary in Fn, is unitarily imple-
mented on H = L2(On, ω), namely there exists a unitary Uu ∈ B(H) such that
π(λ(x)) = Uuπ(x)U

∗
u , for every x ∈ On. The canonical choice is obviously

given by Uuπ(x)ξ
.
= π(λu(x))ξ, x ∈ On. For brevity, when no confusion can

arise, the underlying representation π is understood without explicit mention
and thus simply dropped.

Finally, the Bogolubov automorphisms on On are those of the form λu, where
u is a unitary in F1

n := span{SiS
∗
j : i, j = 1, 2, . . . n}, namely a unitary of the

form u =
∑n

i,j=1 ui,jSiS
∗
j with (ui,j) being a unitary matrix in Mn(C). With a

very minor abuse of notation we identify our unitary u with the corresponding
n× n matrix (ui,j). Doing so, one immediately sees that for any two unitaries
u, v ∈ Mn(C), the composition λu◦λv is just given by λuv, where uv is the usual
raw by column multiplication product between u and v. Phrased differently,
the Bogolubov automorphisms provide a (faithful) representation of the unitary
group U(n) in Aut(On), in which every non-trival λu is outer.

2.2 The spectral triple

In what follows we will often identify On with π(On) to ease the notation.
For k ≥ 1, W k

n denotes the set of words (multi-indices) µ in the alphabet
{1, . . . , n} of length k, while W 0

n only consists of the empty word ∅. Then we set
Sµ := Sµ1

· · ·Sµk
if µ = (µ1µ2 · · ·µk) and S∅ = 1. For µ, ν ∈ Wn = ∪∞

k=0W
k
n ,

we define e∅,∅ = ξ and, for µ, ν 6= ∅, ∅,

eµ,ν =

{
n|ν|/2SµS

∗
νξ t(µ) 6= t(ν)

n|ν|/2
√

n
n−1

(
SµS

∗
ν − 1

nSµS
∗
ν

)
ξ t(µ) = t(ν) 6= ∅
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where, if |µ| ≥ 1, t(µ) denotes the last entry of the multi-index µ and t(∅) = ∅,
and µ = µt(µ) (if |µ| = 1, µ = t(µ)). Then the family {eµ,ν : µ, ν ∈ Wn} is a

spanning set of unit vectors of H.1

Following [GMR18], we consider a convenient decomposition of H into a direct
sum. More precisely, we set Hh,k := span{eµ,ν : |µ| = h and |ν| = k} with
h, k ∈ Z≥0. The Hilbert space H is then seen to decompose into

⊕
h,k≥0 Hh,k,

c.f. [GMR18], where the finite-dimensional subspaces Hh,k are parametrized in
a slightly different but equivalent way. We also need to consider the subspace
F :=

⊕
h≥0 Hh,0.

We are now in a position to recall the definition of the Dirac operator Dκ

on H as given in the above mentioned paper. This is the self-adjoint operator
obtained as the closure of the diagonal operator w.r.t. the above decomposition
acting by multiplication by h on Hh,0 and by −(k+ |h−k|) on Hh,k with k 6= 0,
and extended by linearity to the algebraic direct sum of the subspaces Hh,k.
In other terms, the action of Dκ on the vectors eµ,ν is given by

Dκeµ,∅ = |µ|eµ,∅
Dκeµ,ν = −(|ν|+ | |µ| − |ν| |)eµ,ν , if ν 6= ∅.

Note that the kernel of Dκ is the one-dimensional subspace spanned by ξ.
Now (On,H, Dκ) can be shown to be a θ-summable spectral triple, namely:

1. Dκ is an unbounded self-adjoint operator;

2. the set of elements a ∈ A such that a dom(Dκ) ⊂ dom(Dκ) and [Dκ, a]
is bounded on dom(Dκ) is (norm) dense in A;

3. (1 +D2
κ)

−1 is a compact operator;

4. for any positive t > 0, e−tD2

κ is a trace-class operator.

Note that the third condition is implied by the forth, since (1 + D2
κ)

−1 =∫∞
0

e−t(1+D2

κ)dt. The dense set above is actually a ∗-subalgebra and is usually
referred to as the Lipschitz subalgebra, and shortly denoted as {a ∈ On :
‖[Dκ, a]‖ < +∞}; with a very minor abuse of notation, whenever a sits in
the Lipschitz subalgebra, we continue to denote by [Dκ, a] its unique bounded
extension toH. Moreover, theK-homology class of this spectral triple coincides

with the generator [̂1] ∈ K1(On) ≃ Z/(n − 1)Z, see [GM18, GMR18] As is
known, associated with any general spectral triple (A,H, D) there is a pseudo-
distance on S(A), the state space of A, which is usually referred to as Connes’
distance. This is defined as

dD(ϕ, ϕ′)
.
= sup

{
|ϕ(x) − ϕ′(x)| : x ∈ Awith || [x,D] || ≤ 1

}
, ϕ, ϕ′ ∈ S(A).

1The set {eµ,ν}, though, does not form an orthonormal basis of H; for instance, e1,1

and e2,2 are not orthogonal. As a matter of fact, examples can be given of finite subsets of

{eµ,ν} which even fail to be linearly independent, for easy computations lead to the equality∑n
i=1

ei,i = 0.
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In the above definition and throughout the paper it is tacitly understood that
if one writes ‖[x,D]‖ ≤ 1, x is assumed to lie in the Lipschitz subalgebra. See
e.g. [CI06] for an extensive study of this distance in the case of some natural
spectral triples on AF algebras, and [Mar16] for a broad coverage of many
other cases.

Following [Eft95], we say that an automorphism α ∈ Aut(A) is isomet-
ric with respect to the given spectral triple (A,H, D) if there exists a uni-
tary U ∈ B(H) such that α(x) = UxU∗ for any x ∈ A and [U,D] = 0.
Accordingly, we can also define Iso(A,H, D)

.
= {α ∈ Aut(A) : α =

ad(U) for some U ∈ U(H) with [D,U ] = 0}. It is then not difficult to see that
any automorphism α ∈ Iso(A,H, D) preserves Connes’ distance between any
pair of states, i.e. dD(ϕ, ϕ′) = dD(ϕ ◦ α, ϕ′ ◦ α), for all ϕ, ϕ′ ∈ S(A). In other
words, if we define

ISO(A,H, D)
.
= {α ∈ Aut(A) : dD(ϕ, ϕ′) = dD(ϕ ◦ α, ϕ′ ◦ α)∀ϕ, ϕ′ ∈ S(A)}.

then we have the group inclusions Iso(A,H, D) ⊂ ISO(A,H, D) ⊂ Aut(A).

We call Iso(A,H, D) and ISO(A,H, D) the isometry group and the large isom-

etry group of the spectral triple, respectively. In general, one would expect
the large isometry group to contain the isometry group strictly, and any re-
sult stating the equality between the two should be construed as a regular-
ity result for the given spectral triple. Indeed, this is exactly what hap-
pens in the commutative case, where the groups defined above allow to re-
cover the group of all isometries on the underlying Riemannian manifold.
More precisely, if (M, g) is a compact oriented Riemannian manifold and
d + d∗ is the de Rham operator on the Hilbert space L2(Λ∗(M)) of com-
plex forms on M , then (C(M), L2(Λ∗(M)), d + d∗) is a spectral triple whose
Connes’ distance gives back the geodesic distance between the points of M and
Iso(C(M), L2(Λ∗(M)), d+d∗) is (up to an isomorphism) nothing but the group
of Riemannian isometries of (M, g) [Eft95, Theorem 1.2]. Furthermore, com-
bining the automatic regularity results we have recalled (see also [Hel78, The-
orem 11.1]), one can easily see that in the classical case all three groups do
coincide, that is

Iso(M) ≃ Iso(C(M), L2(Λ∗(M)), d+ d∗) = ISO(C(M), L2(Λ∗(M)), d+ d∗)

3 Bogolubov automorphisms as isometries of (On,H, Dκ)

This section provides the full characterization of the group Iso(On,H, Dκ).
As announced, the group consists exactly of all Bogolubov automorphisms.
We start by showing that any Bogolubov automorphism is isometric with re-
spect to the spectral triple (On,H, Dκ), which is done below. For the sake of
self-containment we provide a detailed proof, even though this is basically an
instance of the “frame independence” stated in [GMR18].
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Proposition 3.1. All Bogolubov automorphisms of On are in Iso(On,H, Dκ).

Proof. Let (ui,j)i,j=1,2,...,n be a unitary matrix in Mn(C) and let u be the
corresponding unitary in On, i.e. u =

∑n
i,j=1 ui,jSiS

∗
j . What we have to

prove is that λu ∈ Aut(On) can be implemented by a unitary U ∈ U(H) such
that [U,Dκ] = 0. We will show this is indeed the case if U is defined as
USµS

∗
νξ

.
= λu(SµS

∗
ν )ξ, for every µ, ν ∈ Wn. In order to see that U commutes

with Dκ, it will be sufficient to check that U leaves invariant all the finite-
dimensional subspaces Hh,k, h, k ∈ Z≥0.
To this end, since {eµ,ν : |µ| = h and |ν| = k} is a spanning set for Hh,k, we
need to make some computation to make sure that for any eµ,ν , with µ, ν ∈ Wn,
one has that Ueµ,ν is in fact a finite linear combination of vectors eµ′,ν′ with
|µ′| = |µ| and |ν′| = |ν|.
Let us set µ = (µ1, µ2, . . . µr) and ν = (ν1, ν2, . . . , νs), where r and s can
be safely assumed to be greater than zero. There are two cases to deal with
according to whether µr and νs differ or not.

If they do differ, then eµ,ν is equal to SµS
∗
νξ and Ueµ,ν is accordingly

λu(SµS
∗
ν )ξ, which can be computed as follows:

λu(SµS
∗
ν )ξ = uSµ1

uSµ2
. . . uSµr−1

(
uSµr

S∗
νsu

∗) . . . S∗
ν2u

∗S∗
ν1u

∗ξ

= uSµ1
uSµ2

. . . uSµr−1

(∑

i,j

ui,jSiS
∗
j Sµr

)
S∗
νsu

∗ . . . S∗
ν2u

∗S∗
ν1u

∗ξ

= uSµ1
uSµ2

. . . uSµr−1

(∑

i

ui,µr
Si

)
S∗
νsu

∗ . . . S∗
ν2u

∗S∗
ν1u

∗ξ

= uSµ1
uSµ2

. . . uSµr−1

(∑

i

ui,µr
Si

)(∑

i′

ui′,νsS
∗
i′
)
. . . S∗

ν2u
∗S∗

ν1u
∗ξ

= uSµ1
uSµ2

. . . uSµr−1

( ∑

i,i′:i6=i′

ui,µr
ui′,νsSiS

∗
i′

+
∑

i

ui,µr
ui,νsSiS

∗
i

)
. . . S∗

ν2u
∗S∗

ν1u
∗ξ

Now

uSµ1
uSµ2

. . . uSµr−1

( ∑

i,i′:i6=i′

ui,µr
ui′,νsSiS

∗
i′

)
S∗
νs−1

u∗ . . . S∗
ν2u

∗S∗
ν1u

∗ξ

is easily recognized to be a finite linear combination of vectors eµ′,ν′ with
|µ′| = |µ| and |ν′| = |ν|.

The second summand

uSµ1
uSµ2

. . . uSµr−1

(∑

i

ui,µr
ui,νsSiS

∗
i

)
S∗
νs−1

u∗ . . . S∗
ν2u

∗S∗
ν1u

∗ξ
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can be more conveniently rewritten as

uSµ1
uSµ2

. . . uSµr−1

(∑

i

ui,µr
ui,νs

(
SiS

∗
i − 1

n
I

))
S∗
νs−1

u∗ . . . S∗
ν2u

∗S∗
ν1u

∗ξ

thanks to the equality
∑

i ui,µr
ui,νs = 0, which follows from the unitarity of

(ui,j). It is now straightforward to recognize in the sums above a finite lin-
ear combination of vectors eµ′,ν′ with |µ′| = |µ| and |ν′| = |ν| with t(µ′) = t(ν′).

If µr and νs coincide, then eµ,ν = (SµS
∗
ν − 1

nSuS
∗
ν )ξ. Therefore, Ueµ,ν is

now given by λu(SµS
∗
ν − 1

nSuS
∗
ν )ξ. The computations can be carried out in

much the same way as above by taking into account the orthogonality relation∑
i ui,µr

ui,νs = 1, which is crucial to get rid of the extra terms coming from
1
nSuS

∗
νξ. More precisely, we now have

Uueµ,ν = λu

(
SµS

∗
ν − 1

n
SµS

∗
ν

)
ξ

= uSµ1
uSµ2

. . . uSµr−1

( n∑

i,j=1

ui,jSiS
∗
j Sµr

S∗
νsu

∗ − 1

n

)
S∗
νs−1

u∗ . . . S∗
ν1u

∗ξ

= uSµ1
uSµ2

. . . uSµr−1

(∑

i

ui,µr
Si

∑

j

uj,νsS
∗
j − 1

n

)
S∗
νs−1

u∗ . . . S∗
ν1u

∗ξ

= uSµ1
uSµ2

. . . uSµr−1

(∑

i6=j

ui,µr
uj,νsSiS

∗
j +

∑

i

ui,µr
ui,νs

(
SiS

∗
i − 1

n

))

×S∗
νs−1

u∗ . . . S∗
ν1u

∗ξ

and the conclusion is exactly as above.

Finally, when the length of either µ or ν (or both) is zero, the claim can be
checked without difficulties.

We next prove that, conversely, any automorphism α ∈ Iso(On,H, Dκ) must
be a Bogolubov automorphism. To this end, we need a preliminary result.

Lemma 3.2. If λu ∈ Aut(On) belongs to Iso(On,H, Dκ), then the unitary u
must lie in Fn.

Proof. All we need to check is that under our assumption the unitary u is forced
to be invariant under the action of the gauge automorphisms. For brevity,
from now on λu will be denoted by α. Let U ∈ U(H) be any unitary such
that Uπ(x)U∗ = π(α(x)), for every x ∈ On and UDκ = DκU . By applying
the commutation relation on the GNS vector ξ we see that DκUξ = 0. Since
the kernel of Dκ is the one-dimensional subspace generated by ξ, Uξ must
be a multiple of ξ. Therefore, without any loss of generality, we may safely
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assume that Uξ = ξ, which readily implies that Uπ(x)ξ = π(α(x))ξ, for every
x ∈ On. But then for any x ∈ On one has ω(x) = (π(x)ξ, ξ) = (Uπ(x)ξ, Uξ) =
(π(α(x)ξ, ξ) = ω(α(x)), that is ω ◦ α = ω. For the next step, we consider the
unique normal extensions (still denoted in the same way) of ω and α to the
von Neumann algebra M := π(On)

′′. Denoting by σω
t and σω◦α

t , t ∈ R, the
modular automorphism groups of M with respect to ω and ω ◦ α respectively,
a standard application of the KMS condition shows that σω◦α

t = α−1 ◦ σω
t ◦ α,

for any real t, see e.g. Formula 5 on page 40 of [Str81]. But then σω
t and

α−1 ◦ σω
t ◦ α must coincide as automorphisms of π(On)

′′. In other terms, α
and σω

t commute for every t ∈ R. In particular, their respective restrictions
to π(On) still commute. Because the restriction of σω

t ’s to π(On) are nothing
but rescaled gauge automorphisms, that is σt

ω = λn−it1, t ∈ R, (see e.g. [CP96,
CNNR11]), we find that our given automorphisms α = λu commutes with
the gauge automorphisms, that is λu ◦ λz1 = λz1 ◦ λu, for every z ∈ T. But
λu ◦λz1 = λzu and λz1 ◦λu = λzλz1(u), hence u = λz1(u) for every z ∈ T, which
is exactly what we wanted to prove.

We are finally in a position to prove the main result of the present section.

Theorem 3.3. The group Iso(On,H, Dκ) reduces to the Bogolubov automor-

phisms, i.e.

Iso(On,H, Dκ) = {λu : u ∈ U(F1
n)}

Proof. Thanks to Proposition 3.1 we need only prove the inclusion
Iso(On,H, Dκ) ⊂ {λu : u ∈ U(F1

n)}. If α sits in Iso(On,H, Dκ), Lemma 3.2
tells us that α is actually equal to λu, where u is a suitable unitary in Fn. All
is left to show, therefore, is that u lies in fact in F1

n. The equality DκU = UDκ,
applied on the vectors of the form πω(Si)ξ, givesDkπω(λu(Si))ξ = πω(λu(Si))ξ,
for every i = 1, 2, . . . , n. We now claim that this equality can only be fulfilled
if πω(λu(Si))ξ lies in span{eµ,ν : µ, ν ∈ Wn such that |µ| = 1, |ν| = 0}. In
other words, λu preserves the space spanned by S1, . . . , Sn in On and as such
is a Bogolubov automorphism.

Note that, except for the identity, the isometries in Iso(On,H, Dκ) are all outer
automorphisms.

4 Modular isometry group

In this section the focus is on the so-called modular spectral triple, whose Dirac
operator Dω acting on Hω is simply given by the logarithm of the modular
operator ∆ω, i.e. Dω

.
= log∆ω, cf. [CNNR11]. Before going any further, we

ought to point out that this triple, strictly speaking, is not a spectral triple in
the sense of Connes in that the resolvent of Dω fails to be a compact operator
on the Hilbert space Hω, but rather a semi-finite spectral triple. Even so,
the pseudo-distance between states as defined above continues to make perfect
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sense. Recall that if Aut(On,Fn) denotes the group of all automorphisms of On

leaving Fn globally invariant, we have (cf. [CRS10])

Aut(On,Fn) = {λu ∈ Aut(On) | u ∈ U(Fn)}
= {α ∈ Aut(On) | α ◦ λz1 = λz1 ◦ α, z ∈ T} .

Proposition 4.1. There holds the group inclusion

Aut(On,Fn) ⊂ Iso(On,H, Dω).

Proof. By Lemma 2.1, any λu ∈ Aut(On,Fn) preserves the KMS state ω, and
thus is unitarily implemented on H by Uu, i.e. πω(λu(x)) = Uuπω(x)U

∗
u , for

every x ∈ On. The proof is then completed by showing that Uu and the Dirac
operator Dω commute, that is UuD(Dω) ⊂ D(Dω) and UuDωξ = DωUuξ, for
any ξ ∈ D(Dω). As is known, this amounts to proving that Uu∆

it
ω = ∆it

ωUu

for every t ∈ R, which follows by easy computations taking into account that
λu ◦ αt = αt ◦ λu and ∆it

ωπω(x)∆
−it
ω = πω(α−t logn(x)), for any t ∈ R, where

{αt : t ∈ R} are gauge automorphisms of On.

Remark 4.2. It is worth noting that the sole possibility for an inner auto-
morphism α of On to be in Iso(Dω) is that α = ad(u) for some u ∈ U(Fn).
Indeed, if α is also implemented by a certain V ∈ U(H) such that V Dω =
DωV , then V commutes with ∆it

ω as well, for any real number t. But then
ad(u) ◦ αt = αt ◦ ad(u), t ∈ R, which is only possible when u ∈ Fn.

Connes’ distance with respect to Dω is always infinite between two states whose
restrictions to Fn do not coincide. This is the content of the following result,
for which we first need to prove a lemma that has an interest in its own.

We first set some notation. We denote by O(k)
n ⊂ On the so-called spectral

eigenspaces for the action of the gauge automorphisms, that is O(k)
n := {x ∈

On : αt(x) = eiktx, for any t ∈ R}. As can be easily seen, O(k)
n is the norm

closure of span{SαS
∗
β : |α| − |β| = k}, which we also denote by algO(k)

n .

Lemma 4.3. If x is in algO(k)
n , k ∈ Z, then x sits in the domain of the deriva-

tion induced by Dω and [Dω, x] = −ik log(n)x. In particular, ‖[Dω, x]‖ =
|k| logn‖x‖.

Proof. It is enough to recall that for such an x the equality ∆it
ωx∆

−it
ω =

e−itk log nx holds. Notably, the function R ∋ t → ∆it
ωx∆

−it
ω ∈ On is dif-

ferentiable and so the commutator [Dω, x] is a bounded operator given by
d
dt (∆

it
ωx∆

−it
ω )|t=0 = −ik log(n)x.

Proposition 4.4. If ϕ, ϕ′ ∈ S(On) are two states such that ϕ ↾Fn
6= ϕ′ ↾Fn

,

then dDω
(ϕ, ϕ′) = +∞.
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Proof. By hypothesis, there exists x in algO0
n such that ϕ(x) 6= ϕ′(x). Thanks

to Lemma 4.3 we have ‖[Dω, x]‖ = 0. But then we have

dDω
(ϕ, ϕ′)

.
=sup{|ϕ(y)− ϕ′(y)| : y ∈ On s.t. ‖[Dω, y]‖ ≤ 1}
≥ sup

λ∈R

|λ| |ϕ(x) − ϕ′(x)| = +∞ ,

which ends the proof.

Therefore, a natural question is whether there exist two states of On which
are at a finite Connes’ distance from each other. The following theorem fully
settles the question, showing that the only possibility for two states of On to
be at an infinite distance is precisely when their restrictions to Fn differ from
each other.
Before doing this, we need to spell out the way the commutator with the Dirac
operator Dω is understood. To this aim, we consider M, the von Neumann
algebra generated by On in the GNS representation of the KMS state ω, acted
upon by the associated modular group of automorphims ad(∆it

ω ). Now the
closed densely defined derivation, δ, on M associated with this one-parameter
group of automorphisms (see e.g. [BR87]) is nothing but the commutator with
the Dirac operator. As a consequence of a minor variation of [BR76, Theorem
4], the domain of δ intersected with On coincides with the ∗-subalgebra A of
the Lipschitz elements. In particular, we find that the commutator [Dω, x] lies
in the von Neumann algebra M whenever x is a Lipschitz element of On.

Note that if x ∈ O(k)
n , then there exists a sequence {xl : l ∈ N} ⊂ algO(k)

n such
that ‖x − xl‖ → 0 for l → ∞. But then [Dω, xl] = −ik log(n)xl converges
to −ik log(n)x for l → ∞. Therefore, since the derivation δ(·) = [Dω, ·] is
closed, the commutator [Dω, x] exists as densely defined (on the domain of
Dω) bounded operator and is given by [Dω, x] = −ik log(n)x.

Theorem 4.5. If ϕ, ϕ′ ∈ S(On) are two states whose restrictions to Fn coin-

cide, then their Connes’ distance is finite and moreover dDω
(ϕ, ϕ′) ≤ 2π√

3
.

Proof. Let E be the canonical expectation of On onto Fn. For any y ∈ On we
have the inequality ‖E(y∗y)‖ ≤ ‖y‖2 since E is contractive. We now want to
apply this inequality to y

.
= [Dω, x], with x ∈ On given by a finite sum of the

type
∑

0<|k|≤N xk, where each xk sits in Ok
n, i.e. αθ(xk) = eikθxk. As [Dω, x] =∑

0<|k|≤N kxk, we find ‖∑0<|k|≤N k2x∗
kxk‖ = ‖E(y∗y)‖ ≤ ‖[Dω, x]‖2. In

particular, for any x of the form above we see that ‖[Dω, x]‖ ≤ 1 implies
‖∑0<|k|≤N k2x∗

kxk‖ ≤ 1. Now a standard application of the Cauchy-Schwarz
inequality to the free Hilbert module of any finite rank obtained by taking the
direct sum of On with itself as many times as needed yields the inequality

‖x‖ =
∥∥∥

∑

0<|k|≤N

xk

∥∥∥ =
∥∥∥
∑

0<k≤N

1

k
kxk

∥∥∥ ≤
( ∑

0<|k|≤N

1

k2

) 1

2

∥∥∥
∑

0<|k|≤N

k2x∗
kxk

∥∥∥
1

2

≤ π√
3
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which holds true as long as ‖[Dω, x]| ≤ 1 (a similar estimate appears in the
arXiv version of [AC04]). Now we claim that for any Lipschitz x ∈ On such
that E(x) = 0 and ‖[Dω, x]‖ ≤ 1 one still has ‖x‖ ≤ π√

3
. In order to prove

this, it is enough to reason as above taking into account that with little effort
one can also see that:

• any x ∈ On with E(x) = 0 is the norm limit of the sequence

FN (x) =
∑

0<|k|≤N

(
1− |k|

N

)
xk

by virtue of a well-known version of Fejér’s theorem;

• for any Lipschitz element x ∈ On one has [Dω, x]k = kxk, k ∈ Z, if

xk ∈ O(k)
n is the k-th spectral component of x, and moreover

‖
∑

k∈Z

k2x∗
kxk‖

1

2 ≤ ‖[Dω, x]‖

We are now ready to prove the theorem. Let ϕ, ϕ′ ∈ S(On) as in the statement.
Since their restrictions to Fn coincide, we have |ϕ(y)−ϕ′(y)| = |ϕ(y−E(y))−
ϕ′(y−E(y))|, which means the distance dDω

(ϕ, ϕ′) can also be obtained as the
supremum of the set

{|ϕ(x) − ϕ′(x)| : x ∈ On is Lipschitz withE(x) = 0 and ‖[Dω, x]‖ ≤ 1}.

The conclusion is now immediate.

To complete the picture, one might also want to explicitly compute the modular
distance in a number of relevant cases.

Theorem 4.5 is instrumental in proving the following full characterization of the
group of the isometric automorphisms of the Cuntz algebra On with respect to
the modular spectral triple.

Theorem 4.6. The chain of equalities ISO(On,H, Dω) = Iso(On,H, Dω) =
Aut(On,Fn) holds.

Proof. Since the inclusions Aut(On,Fn) ⊂ Iso(On,H, Dω) ⊂ ISO(On,H, Dω)
have already been established, we need only prove the inclusion
ISO(On,H, Dω) ⊂ Aut(On,Fn). To this end, let Φ be an automorphism
in ISO(On,H, Dω). All we have to show is Φ(Fn) ⊂ Fn, for the same argu-
ment will then apply to Φ−1. Suppose, on the contrary, that Φ(Fn) is not
contained in Fn. Then there exists x ∈ Fn such that Φ(x) does not belong to
Fn. In particular, we find that Φ(x) − E(Φ(x)) is different from zero, where
E is the canonical conditional expectation of On onto Fn. Since the states
of any C∗-algebra separate the elements of the C∗-algebra itself, there must
exist ϕ ∈ S(On) such that ϕ(Φ(x)) 6= ϕ(E(Φ(x))). Let us now denote by
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ϕ′ ∈ S(On) the state obtained by compounding ϕ with E, namely ϕ′ := ϕ ◦E.
By construction ϕ and ϕ′ coincide on Fn. By Theorem 4.5 ϕ and ϕ′ are
then at a finite Connes’ distance from each other, i.e. dDω

(ϕ, ϕ′) < ∞. On
the other hand, because ϕ ◦ Φ and ϕ′ ◦ Φ fail to coincide on Fn by construc-
tion, the distance between ϕ ◦ Φ and ϕ′ ◦ Φ is infinite by Proposition 4.4.
This means Φ cannot preserve Connes’ distance, which means Φ is not in
ISO(On,H, Dω).

Now a few results concerning the homogeneity of the action of automorphisms
on the pure states of On are known. One example worth mentioning is certainly
a result due to Bratteli and Kishimoto, see [BK00], that any two inequivalent
gauge-invariant pure states ω1, ω2 ∈ S(On) can be transformed into each other,
i.e. ω2 = ω1 ◦ α, through an automorphism α ∈ Aut(On,Fn). In light of
the interpretation of Aut(On,Fn) as the isometries of On with respect to the
modular spectral triple, we can restate this result saying that the modular
isometries of On act transitively on gauge-invariant pure states. Moreover,
this seems to indicate that there might be room for some speculation on the
differential geometric features of the Cuntz algebras, as is done for instance in
[Joa19], for not always a Riemannian manifold is acted upon transitively by its
isometry group.
There is another consequence of the homogeneity result recalled above that we
would like to discuss, which might provide a valid test for probing the presently
unknown relative size of ISO(On,H, Dκ). Indeed, should ISO(On,H, Dκ) turn
out to contain Aut(On,Fn), then all gauge-invariant pure states would be at
the same distance from the KMS state ω.

Proposition 4.7. Suppose that ISO(On,H, Dκ) ⊃ Aut(On,Fn). If ω = τ ◦E
is the KMS state, then we have

dDκ
(ω, ω1) = dDκ

(ω, ω2)

for all ω1, ω2 gauge-invariant pure states in S(On)

Proof. We first deal with the case when ω1 and ω2 are inequivalent. Thanks
to the result of Bratteli and Kishimoto, there exists an automorphism α ∈
Aut(On,Fn) = {β ∈ Aut(On) : β ◦ αt = αt ◦ β, t ∈ R} such that ω2 =
ω1 ◦ α, where αt = λeit1, t ∈ R, are the gauge automorphisms. But then
dDκ

(ω, ω2) = dDκ
(ω ◦ α, ω1 ◦ α) = dDκ

(ω, ω1), as under our hypothesis α sits
in ISO(On,H, Dκ) and ω is α-invariant.
If ω1 and ω2 are equivalent, we can always find a third gauge-invariant pure
state ω′ which is inequivalent to ω1 and therefore to ω2 as well. But then
from the previous part of the proof we see that dDκ

(ω, ω1) = dDκ
(ω, ω′) =

dDκ
(ω, ω2), and the proof is thus complete.

Of course, the conclusion above, in particular, holds for the modular spectral
triple, where ISO(On,H, Dω) is just Aut(On,Fn). However, this can easily be
checked directly thanks to Proposition 4.4.
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It would be interesting to prove similar results to those established in the
previous sections for many other related C∗-algebras as well, e.g. the 2-adic
ring C∗-algebraQ2 and its relatives, whose endomorphisms and automorphisms
of late have been given much attention (see e.g. [ACR18a,ACR18b,ACR20,
ACRS20])).

5 On the Connes distance between particular states

As an outlook for the foreseeable future, we gather in this section some results to
do with the Connes distance induced by our spectral triple (On,H, Dκ), which
we believe are likely to play a role in describing ISO(On,H, Dκ) completely.
First, it is worth pointing out that quite a large set of vector states exist whose
Connes’ distance from the KMS state is finite. This will result as an application
of the following.

Lemma 5.1. Let ω ∈ S(On) be the KMS state considered above. If ϕ ∈ S(On)
is dominated by ω, that is ϕ(x∗x) ≤ Mω(x∗x) for some M ≥ 1 for any x ∈ On,

then

dDκ
(ω, ϕ) ≤ M

1

2

Proof. By definition, the distance dDκ
(ω, ϕ) is obtained as the sup of the nu-

merical set {|ω(x)−ϕ(x)| : x ∈ On,with ‖[x,Dκ]‖ ≤ 1}. Since the two commu-
tators [Dκ, x] and [Dκ, x − ω(x)1] coincide, there is no loss of generality if we
further assume that ω(x) = 0. Therefore, the distance dDκ

(ω, ϕ) is also given
by the sup of the set

{|ϕ(x)| : x ∈ On, ω(x) = 0 and ‖[Dκ, x]‖ ≤ 1}

Now we have the chain of inequalities ‖[Dκ, x]‖ ≥ ‖[Dκ, x]ξ‖ = ‖Dκxξ‖ ≥ ‖xξ‖,
where the last one is due to the assumption that ω vanishes on x, which says xξ
is a direct sum of eigenvectors of Dκ associated with eigenvalues whose absolute
value is greater than or equal to 1. But then, for any such x, we must have
|ϕ(x)| ≤ ϕ(x∗x)

1

2 ≤ M
1

2ω(x∗x)
1

2 = M
1

2 ‖xξ‖ ≤ M
1

2 .

Of course, Lemma 5.1 actually implies that dDκ
(ϕ, ϕ′) < ∞ for all pairs of

states ϕ, ϕ′ of On dominated by ω. Now the above lemma applies in particular
to states of the form ϕx′(x) := (x′xξ, ξ), with x′ ∈ π(On)

′ with x′ ≥ 0 and
(x′ξ, ξ) = 1, which is a fairly rich set of states in that the subspace {x′ξ :
x′ ∈ π(On)

′} is dense in H. However, proving that Connes’s distance between
any two vector spaces associated with π is still finite appears to be no easy
task. The information obtained above, though, is already enough to provide a
simple, if indirect, proof that no non-scalar operator in On can commute with
the Dirac operator Dκ.

Proposition 5.2. If x ∈ On commutes with the Dirac operator Dκ, i.e.

[x,Dκ] = 0, then x = λ1 for some λ ∈ C.
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Proof. Let x ∈ On be such that [x,Dκ] = 0. For any pair of states ϕ, ϕ′ at
a finite Connes’ distance dDκ

(ϕ, ϕ′) < ∞, we must have ϕ(x) = ϕ′(x). For,
otherwise the supremum of the set

{|ϕ(y)− ϕ′(y)| : y ∈ On with ‖[y,Dκ]‖ ≤ 1}

would be clearly infinite. Since all vector states ωx′ξ, with x′ ∈ πω(On)
′, are

at a finite distance from each other, we then find (xη1, η1) = (xη2, η2) for
any normalized η1, η2 ∈ Hω due to cyclity of ξ, which implies x = λ1, with
λ = (xξ, ξ). This is seen as follows. We decompose x into the sum of its
real and imaginary parts, namely x = x+x∗

2 + ix−x∗

2i = y1 + iy2, and observe
that (yiη1, η1) = (yiη2, η2) for any normalized η1, η2 ∈ Hω, i = 1, 2. But if
y = y∗ then the equality (yη1, η1) = (yη2, η2) becomes ((y − λ1)η, η) = 0 for
any η ∈ Hω, where λ := (yξ, ξ) ∈ R. But because y − λ1 is self-adjoint, we
have y − λ1 = 0.

Connes’ distance also proves to be finite between vector states associated e.g.
with the eigenvectors eµ,ν , with µ, ν ∈ Wn, of the Dirac operator Dκ. If xµ,ν

is the unique element in On such that eµ,ν = xµ,νξ, we have the following
estimate, where ωµ,ν is the vector state associated with wµ,ν , i.e. ωµ,ν(x) :=
(xeµ,ν , eµ,ν), x ∈ On.

Proposition 5.3. For any µ, ν and µ′, ν′ in Wn, Connes’ distance between

ωµ,ν and ωµ′,ν′ is finite. More precisely, the following upper bound holds:

dDκ
(ωµ,ν , ωµ′,ν′) ≤ ‖

(
n|µ|−|ν|xµ,νx

∗
µ,ν − n|µ′|−|ν′|xµ′,ν′x∗

µ′,ν′

)
ξ‖

Proof. After making some computations, the difference ωeµ,ν
(x) − ωeµ′,ν′

(x),
x ∈ On, is easily seen to coincide with the scalar product (x∗ξ, (xµ,νσ−i(x

∗
µ,ν)−

xµ′,ν′σ−i(x
∗
µ′,ν′))ξ) where we have used the KMS condition and the equality

σt = λn−it1, t ∈ R. Therefore, the absolute value of the difference above can
be estimated in the following way

|ωeµ,ν
(x)− ωeµ′,ν′

(x)| ≤ ‖x∗ξ‖‖(xµ,νσ−i(x
∗
µ,ν)− xµ′,ν′σ−i(x

∗
µ′,ν′))ξ‖

Since there is no loss of generality if we also assume ω(x) = 0 (i.e. xξ ⊥ ξ), we
have ‖x∗ξ‖ ≤ ‖[D, x∗]ξ‖, so the above inequality can also be rewritten as

|ωeµ,ν
(x)− ωeµ′,ν′

(x)| ≤ ‖[D, x∗]ξ‖‖(xµ,νσ−i(x
∗
µ,ν)− xµ′,ν′σ−i(x

∗
µ′,ν′))ξ‖

which gives the sought inequality since σ−i(SαS
∗
β) is easily seen to be

n|α|−|β|SαS
∗
β .

Finally, we would like to end the present section by discussing a general prop-
erty enjoyed by Connes’s distance along with some consequences that might be
relevant to our case: Connes’ distance is a convex function in one of the two
variables. More precisely, we have the following.
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Lemma 5.4. For any ω, ω1, ω2 ∈ S(On) one has

dDκ
(ω, αω1 + βω2) ≤ αdDκ

(ω, ω1) + βdDκ
(ω, ω2)

for any α, β ≥ 0 with α+ β = 1.

Proof. A straightforward application of the definition:

dDκ
(ω, αω1+βω2) = sup{|ω(x)−αω1(x)−βω2(x)| : x ∈ On with ‖[x,Dκ]‖ ≤ 1}

But |ω(x)−αω1(x)−βω2(x)| ≤ α|ω(x)−ω1(x)|+β|ω(x)−ω2(x)|, whence the
conclusion as the supremum of a sum is less than or equal to the sum of the
corresponding suprema.

In particular, if we apply the above inequality to ω and αω + βω′, we see that
dDκ

(ω, αω+ βω′) ≤ βdDκ
(ω, ω′). Notably, if ω is a state for which there exists

another state ω′ such that 0 < dDκ
(ω, ω′) < ∞, then the sequence of states

ωn := n−1
n ω+ 1

nω
′ converges to ω with respect to dDκ

, i.e. 0 < dDκ
(ω, ωn) ≤ 1

n .
This also says that the distance must al least take countably many distinct
values.
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