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Abstract. For g ≥ 2, j = 1, . . . , g and n ≥ g + j we exhibit in-
finitely many new rigid and extremal effective codimension j cycles
in Mg,n, the Deligne-Mumford compactification of the moduli of n-
pointed curves of genus g. The extremal cycles constructed corre-
spond to the strata of quadratic differentials and projections of these
strata under forgetful morphisms. We further show the same holds
for k-differentials with k ≥ 3 if the strata are irreducible. We compute
the class of the divisors in the case of quadratic differentials which
contain the first known examples of effective divisors on Mg,n with
negative ψi coefficients.
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1 Introduction

The moduli space of n-pointed smooth genus g curves, Mg,n, is compactified
by the Deligne-Mumford compactificationMg,n, with codimension-one bound-
ary parameterising stable pointed curves. The irreducible components of the
boundary are given by the divisor δ0, the locus of stable pointed curves with
a non-separating node, and the divisors δi∶S , the locus of stable pointed curves
with a node that separates a component with arithmetic genus i containing pre-
cisely the markings S ⊂ {1, ..., n}. This moduli space has become an important
object across a number of fields in modern mathematics since its conception
and dimension computation by Riemann [R] in 1857. For example, Witten’s
famous conjecture, proven by Kontsevich, links the intersection theory ofMg,n
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with the Korteweg-De Vries (KdV) equation modelling the motion of shallow
water surfaces.

The effective cone of divisors is an important, albeit often hard to compute,
invariant of a projective variety. This cone broadly governs the birational
geometry of the variety with implications to the the Kodaira dimension, Cox
ring, and minimal model of the variety. For this reason, the structure of the
effective cone of Mg,n has become a key question in the birational geometry
of the moduli spaces of curves [HMu, EH, F1, FPop, L, CC1, CTel]. Recently,
there has also been growing interest in understanding the structure of the
effective cones of higher codimension cycles that dictate the finer aspects of the
birational geometry of these spaces [CC2, FL1, FL2]. An initial task in this
pursuit is to identify, in each codimension, the extremal effective cycles that
span the boundary rays of the effective cone of cycles.

The moduli space of abelian differentials H(µ) consists of pairs (C,ω) of a
holomorphic or meromorphic one-form ω on a smooth curve C with fixed mul-
tiplicities of zeros and poles given by µ. Recent seminal work exposes the fun-
damental algebraic attributes of these spaces [Mc, KZ, Mö, EMM, EMa, Fil].
Furthermore, the condition of the existence of a holomorphic or meromorphic
one-form of fixed signature has been used previously both explicitly and under
many guises to obtain divisor classes [Cu, D, C, CC1, L, Mü, GZ, F2, FV] and
in lower genus, higher codimension cycles [CC2, CT, Bl] inMg andMg,n. In
contrast, conditions from k-differentials for k ≥ 2 have remained an untapped
source for effective cycles and questions of the relation of these strata to the
birational geometry ofMg,n have remained largely unexamined. The relevance
of the strata of k-differentials for k ≥ 2 to the birational geometry ofMg,n are
as deserved of investigation as the k = 1 case and in this paper we initiate this
work.

For fixed g and n with g ≥ 2, in codimension less than or equal to n − g, the
author has previously exhibited, from the strata of meromorphic one-forms,
infinitely many extremal divisors [M3] and higher codimension cycles [M4] in
Mg,n intersecting the interior of the moduli space. It is natural to ask if these
and the other finitely many known extremal cycles1 of this type give all such
extremal rays of the effective cones for fixed g and n.

The stratum of k-canonical divisors for k ≥ 1 with signature µ = (m1, ...,mn),
an integer partition of k(2g − 2), forms a subvariety ofMg,n,

Pk(µ) ∶= {[C,p1, ..., pn] ∈ Mg,n ∣ m1p1 + ... +mnpn ∼ kKC},
where the index k is often omitted in the case that k = 1. Further, when k ≥ 2,
if k∣mi and mi ≥ 0 for all i, we impose the extra condition that

m1

k
p1 + . . .

mn

k
pn ≁KC

1See the Introduction of [M3, M4] for a summary of the known extremal cycles in the
cases of divisors and higher codimension cycles respectively.
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to omit the higher dimensional components coming from k-differentials that
are k-th powers of holomorphic differentials. The global k-residue condition
used in the study of the compactification of the strata of k-canonical divisors
was given by [BCGGM2] extending their compactification of the k = 1 case of
the strata of canonical divisors [BCGGM1].
Pushing forward under the morphisms forgetting marked points, we obtain
lower codimension cycles. In the codimension one case, we define the closure
as the divisor

Dn,k
µ = {[C,p1, ..., pn] ∈Mg,n ∣ ∃pn+1, . . . , pn+g−1

with [C,p1, ..., pn+g−1] ∈ Pk(µ)},
in Mg,n for µ = (m1, ...,mn+g−1) with ∑mi = k(2g − 2), where µ has at least
one negative entry if k = 1. In the holomorphic case, where k = 1 and all mi > 0,
due to the change in dimension, we obtain the divisors

Dn
µ = {[C,p1, ..., pn] ∈Mg,n ∣ ∃pn+1, . . . , pn+g−2

with [C,p1, ..., pn+g−2] ∈ P(µ)},
inMg,n for µ = (m1, ...,mn+g−2) and mi > 0 with ∑mi = 2g − 2.
In a projective variety X , a moving curve is a curve class B with B ⋅D ≥ 0 for
any pseudo-effective divisorD. For any k-signature µ with length ∣µ∣ =m ≥ g+1
and µ meromorphic if k = 1, we obtain curve classes inMg,n for 1 ≤ n ≤m via

fibrations of P
k(µ), the closure of Pk(µ). We define the curve Bn,kµ as

Bn,kµ ∶= {[C,p1, ..., pn] ∈Mg,n ∣ fixed general [C,pg+2, ..., pm] ∈Mg,m−g−1

and [C,p1, . . . , pm] ∈ Pk(µ)}.
If in addition, m ≥ n + g these curves provide covering curves for Mg,n as
irreducible curves with class proportional to Bn,kµ cover a Zariski dense subset

of Mg,n and hence must have non-negative intersection with every pseudo-
effective divisor. Let ∣µ∣ denote the length of the partition µ. Further let κ1, κ2
denote the length ∣κ1∣ + ∣κ2∣ vector that is simply the concatenation of the two
vectors κ1 and κ2. For any divisor Dn,k

µ , with ∣µ∣ ≥ 2g in Theorem 4.3 we show

B
n,k
µ,1,−1 ⋅D

n,k
µ = 0,

placing Dn,k
µ on the boundary of the pseudo-effective cone of divisors.

A covering curve B of an effective divisorD is a curve class such that irreducible
curves with numerical class equal to B cover a Zariski dense subset of D. If
B⋅D < 0 andD is irreducible thenD is rigid and extremal in the pseudo-effective
cone (Lemma 4.1). For certain signatures with ∣µ∣ = 2g we are able to show
the covering curve Bn,kµ for the divisor Dn,k

µ is a component of a specialisation

of Bn,kµ,1,−1. The other component of the curve is completely contained in the
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boundary of Mg,n and the positive intersection of this boundary curve with
Dn,k
µ gives

Bn,kµ ⋅Dn,k
µ < 0,

showing these divisors to be rigid and extremal if Dn,k
µ is irreducible.

Theorem 1.1. The divisors Dg+1,k
d,kg−1

in Mg,g+1 for g ≥ 2, k ≥ 2 are rigid and

extremal for d = (d1, d2, d3, kg−2) with d1 + d2 + d3 = k, and di ≠ 0 if Dg+1,k
d,kg−1

is

irreducible.

The classification of the irreducible connected components of Pk(µ) for mero-
morphic signature µ remains in progress for k ≥ 3. However, the classification
in the case of quadratic differentials [Lan, CG] yields the following corollary.

Corollary 1.2. The divisors Dg+1,2
d,2g−1

= Qg+1
d,2g−1

in Mg,g+1 for g ≥ 2 are rigid

and extremal for d = (d1, d2, d3,2g−2) with d1 + d2 + d3 = 2, di ≠ 0 and some di
odd.

This corollary provides infinitely many new rigid and extremal pseudo-effective
divisors inMg,n for g ≥ 2, n ≥ g + 1. Hence the corollary also provides an alter-
nate proof that the pseudo-effective cone is not rational polyhedral and hence
these are not Mori dream spaces. Further, the completion of the classification
of the connected components of the strata of meromorphic k-differentials is
expected to yield infinitely many more rigid and extremal cycles for each k ≥ 3.
We proceed to obtain a general formula for the class of these divisors. The
Picard variety method enumerates certain instances of points satisfying equa-
tions in the Jacobian of components of a nodal curve, while the global k-residue
condition gives the condition that the associated twisted canonical divisors are
smoothable. Many symmetries appear in the class of the divisor Q2g−2

12g−2,2g−1
in

Mg,2g−2 due to the symmetries in the signature. Utilising this we compute the
class of this divisor by comparing the intersection of this divisor and the inter-
section of the standard basis of PicQ(Mg,2g−2) with a number of test curves in
the boundary of the moduli space.

Proposition 1.3. The class of the divisor Qg = Q
2g−2
12g−2,2g−1

in PicQ(Mg,2g−2)
is:

Qg = 3(22g−3) 2g−2∑
j=1

ψj − 4
gλ + 4g−2δ0 − 2

2g−3 ∑
S,Sc≠∅

(∣S∣ − 2i)(∣S∣ − 2i + 2)δi∶S
−

g∑
i=1

22(g−i)−1(4i(i − 1) + 2)iδi∶∅.
By carefully identifying the components and multiplicities of the pullback of
divisors Qn

d,2g−1
under gluing morphisms we obtain a general formula for the

class of these divisors from the class of Qg and the known classes in the case
of holomorphic abelian differentials.
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Proposition 1.4. The class of the divisor Qn
d,2g−1

inMg,n for d = (d1, . . . , dn)
with ∑di = 2g − 2 is:

Qnd,2g−1 = (4g − 1) n∑
j=1

(dj + 2)dj
8

ψj − (4g − 1)λ + 4g−2δ0
− ∑
dS≥2i

1

8
(dS − 2i + 2)(4(4i − 1) + (dS − 2i)(4g − 1))δi∶S

for all di even and non-negative and

22g−3
n∑
j=1

dj(dj + 2)ψj − 4gλ + 4g−2δ0 +∑
i,S

ci∶Sδi∶S

where

ci∶S =
⎧⎪⎪⎨⎪⎪⎩
−(dS − 2i + 2)(22g−3(dS − 2i)+ 22i−1) if N ⊂ S and dS ≥ 2i

−22g−3(dS − 2i)(dS − 2i + 2) if N ⊂ S, dS < 2i or N ⊄ S,S
c

otherwise, where N = {j ∣ dj is odd or negative} and dS ∶= ∑j∈S dj for any
subset S ⊂ {1, . . . , n}.
It is well known that effective divisors inMg,1 must have non-negative ψ coef-
ficient. However, for a divisor above inMg,n with n ≥ 2, setting some di = −1
gives cψi

= −22g−3 < 0 providing the first known examples of effective divisor
classes with negative ψi coefficients inMg,n. Hence in addition to the extremal
divisors of Corollary 1.2, the above divisors for n ≥ 2 extend the known effec-
tive cone ofMg,n. Even in the case ofM2,2 this extends the known effective
cone, a question that has persisted since Rulla [Ru] provided the only identified
extremal rays of the cone2.
At this point we can use the strategy of gluing morphisms by Chen-
Coskun [CC2] in the genus g = 1 case, generalised to the general genus g ≥ 2
case in [M4], to construct for each rigid and extremal divisor in Mg,n, an
extremal effective codimension 2 cycle in Mg+1,n−1. However, all such cycles
are supported in the boundary and reflect the structure of the effective cone
of divisors on Mg,n. For this reason we restrict our attention to cycles that
intersect the interior of the moduli space.
Our method to prove the rigidity and extremality of cycles in higher codimen-
sion utilises the rigidity of the divisor classes as the base case of an inductive
argument similar to that of Chen and Tarasca [CT]. Consider any effective
decomposition of the codimesion d cycle [V ] for irreducible V in Mg,n given
by [V ] =∑ ci[Vi]

2The known extremal rays are the four irreducible boundary divisors, the two pullbacks
of the Weierstrass divisor onM2,1 under the morphism forgetting one of the marked points,
and the closure of the locus of smooth pointed curves where the points are conjugate under
the hyperelliptic involution.
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with ci > 0 and Vi irreducible codimension d subvarieties of Mg,n not sup-
ported on V . We show by pushing forward this relation under the morphism
forgetting the last point ϕ ∶ Mg,n Ð→ Mg,n−1, that in our case the rigidity
and irreducibility of the codimension d − 1 cycle ϕ∗[V ] = [ϕ∗V ] implies that
some Vi must be supported on V providing a contradiction to the assumed
effective decomposition and hence showing [V ] is rigid and extremal. In low
genus g = 2,3 some extra candidates for effective decompositions arise. These
candidates are eliminated by pushing forward an implied effective cycle under
a forgetful morphism to obtain an assumed effective divisor which has negative
intersection with a moving curve constructed in Proposition 4.2 providing a
contradiction.

Theorem 1.5. For g ≥ 2, k ≥ 1 and j = 0, . . . , g − 1 if Pk(d1, d2, d3, k2g−3)
is irreducible the cycle [ϕj∗Pk(d1, d2, d3, k2g−3)] is rigid and extremal in

Eff g−j(Mg,2g−j), where ϕj ∶Mg,2g Ð→Mg,2g−j forgets the last j points with
d1 + d2 + d3 = k and some di = k if g = 2 and j = 0.

Again, though the classification of the connected components of meromor-
phic strata of k-differentials is not complete, the classification in the case of
quadratic differentials [Lan, CG] yields the following corollary.

Corollary 1.6. For g ≥ 2 and j = 0, . . . , g−1 the cycle [ϕj∗Q(d1, d2, d3,22g−3)]
is rigid and extremal in Eff g−j(Mg,2g−j), where ϕj ∶Mg,2g Ð→Mg,2g−j forgets
the last j points with di ≠ 0, d1 + d2 + d3 = 2, some di odd and in the case g = 2
and j = 0 some di = 2.

This provides infinitely many new rigid and extremal rays of the effective cone
in these cases and it is expected that the future classification of the irreducible
connected components of the strata of meromorphic k-differentials for k ≥ 3
will yield more infinite families of extremal cycles.
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2 Preliminaries

2.1 Strata of k-differentials

The stratum of k-differentials of signature µ = (m1, . . . ,mn), an integer parti-
tion of k(2g − 2) is defined as

Hk(µ) ∶= {(C,ω) ∣ g(C) = g, (ω) =m1p1 + ... +mnpn, for pi distinct}
where ω is a meromorphic differential on C which for k ≥ 2 is not equal to
the k-th power of a holomorphic differential. Hence Hk(µ) is the space of

Documenta Mathematica 26 (2021) 1817–1850



k-Differentials and Rigid Cycles 1823

k-differentials with prescribed multiplicities of zeros and poles by µ. If non-
empty, Hk(µ) has dimension 2g + n − 2 unless k = 1 and µ is holomorphic (all
mi ≥ 0) where the dimension is 2g + n − 1.

The stratum of k-canonical divisors with signature µ is defined as

Pk(µ) ∶= {[C,p1, ..., pn] ∈Mg,n ∣ m1p1 + ... +mnpn ∼ kKC}
where again, in the case that k∣mi and mi ≥ 0 for all i we impose the additional
requirement

m1

k
p1 + ... +

mn

k
pn ≁KC .

The codimension of non-empty Pk(µ) inMg,n is equal to g−1 if k = 1 and µ is
holomorphic and equal to g in all other cases. The references for the dimension
statements are for k = 1 and µ holomorphic [V],[P], k = 1 and µ meromor-
phic [FP], and the generalisation to k ≥ 2 is given in [S].

2.2 Connected components of the strata of quadratic differen-

tials

The classification of the connected components of the strata of quadratic dif-
ferentials of finite area was completed by Lanneau [Lan].

Theorem 2.1. Suppose Q(µ) ∶= H2(µ) is a stratum of quadratic differentials
with genus g ≥ 2 and no poles of order greater than one. Then the following
statements hold:

(1) In g = 2 there are two non-connected strata Q(−1,−1,6) and
Q(−1,−1,3,3) with two connected components. All other strata are
connected.

(2) In genus g ≥ 3 there are three families of strata with two connected com-
ponents

Q(4(g − k) − 6,4k + 2) for 0 ≤ k ≤ g − 2,
Q(2(g − k) − 3,2(g − k) − 3,4k + 2) for 0 ≤ k ≤ g − 1,

Q(2(g − k) − 3,2(g − k) − 3,2k + 1,2k + 1) for − 1 ≤ k ≤ g − 2.

each stratum possessing a hyperelliptic and non-hyperelliptic component.
There are 4 sporadic strata in g = 3 and 4:

Q(−1,9), Q(−1,3,6), Q(−1,3,3,3), Q(12)
which each have two connected components. All other strata are non-
empty and connected.

Proof. [Lan]
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Although the classification of the connected components for higher strata of
k-differentials is still in progress [CG], the classification for quadratic differ-
entials with infinite area (a non-simple pole) is complete. In addition to the
components that arise as the square of a connected component of meromophic
one-forms classified by Boissy [Bo], Chen and Gendron classified the primitive
connected components.

Theorem 2.2. Suppose Q(µ) ∶= H2(µ) is a stratum of quadratic differentials
with genus g ≥ 2 and at least one pole of order two or more. Then there are
two primitive connected components of quadratic differentials if

• µ = (2n,−l,−l) with l odd,
• µ = (n,n,−2l) with n odd,

• µ = (n,n,−l,−l) with n and l not both even,

• µ = (2n,−2) or (2n,2n,−2).
In all other cases there is exactly one primitive connected component.

Proof. [CG]

Observe that as a consequence of the above two theorems we have the following.

Corollary 2.3. Q(µ) is connected and hence irreducible for µ =(d1, d2, d3,22g−3) when di ≠ 0 and some di is odd.

2.3 Degeneration of k-differentials

A stable pointed curve [C,p1, ..., pn] ∈ Mg,n is contained in the stratum of
twisted k-canonical divisors with signature µ defined by Farkas and Pandhari-
pande [FP] in the k = 1 case, and by the five authors [BCGGM2] and Schmitt [S]
for k ≥ 2 denoted P̃k(µ), if there exists a collection of (possibly meromorphic)
non-zero k-differentials {ηj} on the irreducible components Cj of C known as
a twisted k-differential with (ηj) =Dj ∼Kk

Cj
such that

1. The support of Dj contains the set of marked points and the nodes lying
in Cj and ηj contains no zeros or poles outside these points, moreover if
pi ∈ Cj then ordpi(Dj) =mi.

2. If q is a node of C and q ∈ Ci ∩Cj then ordq(Di) + ordq(Dj) = −2k.
3. If q is a node of C and q ∈ Ci ∩ Cj such that ordq(Di) = ordq(Dj) = −k

then for any q′ ∈ Ci ∩Cj , we have ordq′(Di) = ordq′(Dj) = −k. We write
Ci ∼ Cj .

4. If q is a node of C and q ∈ Ci ∩ Cj such that ordq(Di) > ordq(Dj) then
for any q′ ∈ Ci ∩Cj we have ordq′(Di) > ordq′(Dj). We write Ci ≻ Cj .
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5. There does not exist a directed loop C1 ⪰ C2 ⪰ ... ⪰ Ck ⪰ C1 unless all ⪰
are ∼.

In addition to P
k(µ) known as the main component, P̃k(µ) contains extra com-

ponents completely contained in the boundary. Bainbridge, Chen, Gendron,
Grushevsky and Möller provided the condition that a twisted k-canonical di-
visor lies in the main component. First consider the case k = 1 [BCGGM1].
Let Γ be the dual graph of C. A twisted canonical divisor of type µ is the limit
of canonical divisors on smooth curves if there exists a twisted differential {ηj}
on C such that

1. If q is a node of C and q ∈ Ci ∩ Cj such that ordq(Di) = ordq(Dj) = −1
then resq(ηi) + resq(ηj) = 0; and

2. there exists a full order on the dual graph Γ, written as a level graph Γ,
agreeing with the order of ∼ and ≻, such that for any level L and any
connected component Y of Γ>L that does not contain a prescribed pole
we have

∑
level(q) = L,
q ∈ Ci ⊂ Y

resq(ηi) = 0

Condition (b) is known as the global residue condition. For k ≥ 2, twisted
k-differentials can be lifted by a covering construction and the conditions for
membership in the main component reduced to the conditions in the case of k =
1 on the covering curve [BCGGM2]. Bainbridge, Chen, Gendron, Grushevsky
and Möller show via this strategy that a twisted k-canonical divisor of type µ
is the limit of k-canonical divisors on smooth curves if there exists a twisted
k-differential {ηj} on C such that

1. If q is a node of C and q ∈ Ci ∩ Cj such that ordq(Di) = ordq(Dj) = −k
then reskq(ηi) = (−1)kreskq(ηj); and

2. there exists a full order on the dual graph Γ, written as a level graph Γ,
agreeing with the order of ∼ and ≻, such that for any level L and any
connected component Y of Γ>L one of the following cases holds

(a) Y contains a marked pole.

(b) Y contains a vertex v such that ηv is not a k-th power of a (possibly
meromorphic) abelian differential.

(c) (”Horizontal criss-cross in Y .”) For every vertex v of Y the k-
differential ηv is the k-th power of an abelian differential ωv. More-
over, for every choice of a collection of k-th roots of unity {ζv ∣v ∈
Y } there exists a horizontal edge e in Y where the differentials{ζvωv}v∈Y do not satisfy the matching residue condition.
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(d) (”Vertical criss-cross in Y .”) For every vertex v of Y the k-differential
ηv is the k-th power of an abelian differential ωv. Moreover, there
exists a level K > L and a collection of k-th roots of unity {ζe∣e ∈ E}
indexed by the set E of non-horizontal edges e of Y whose lower end
lies in Y=K , such that the following two conditions hold. First, there
exists a directed simple loop γ in the dual graph of Y≥K such that

∏
e∈γ∩E

ζ±1e ≠ 1,
where the sign of the exponent is ±1 according to whether γ passes
through e in upward or downward direction. Second, for every con-
nected component T of Y>K the equation

∑
e∈ET

ζeresq−e (ωv−(e)) = 0
holds, where ET is the subset of edges in E such that their top
vertices lie in T , and further, v−(e) specifies the unique vertex of
lowest level attached to e in the level graph Γ, and q−e is the point
in the corresponding irreducible curve corresponding to the node
specified by e.

(e) (”Y imposes a residue condition.”) The k-residues at the edges
e1, . . . , eN joining Y to Γ=L satisfy the equation

PN,k (reskq−e1 (ηv−e1 ), . . . , reskq−eN (ηv−eN )) = 0
for

Pn,k(R1, . . . ,Rn) ∶= ∏
{(r1,...,rn)∣rki =Ri}

n∑
i=1

ri,

where the product is taken over all n-tuples of complex numbers{r1, . . . , rn} such that rki = Ri for all i. As Pn,k is symmetric with
respect to the k-th roots of Ri it is a polynomial in Ri. The vertices
v−e and points q−e are as specified in (d).

Condition (e) is known as the global k-residue condition.

Example 2.4. Fix k ≥ 2 and (d1, d2, d3) ∈ Z3 such that d1+d2+d3 = k. Consider
k-differentials ωC on a genus g = 3 curve C and ωY on a rational curve Y such
that

(ωC) = ky′ + kp4 + kp5 + kp6 ∼ kKX

(ωY ) = −3ky + d1p1 + d2p2 + d3p3 ∼ kKY

and further assume that ωC is the k-th power of a holomorphic differential.
Then the twisted k-differential {ωC , ωY } gives

[C ∪y′=y Y, p1, . . . , p6] ∈ P̃k(d1, d2, d3, k3) ⊂M3,6
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pictured in Figure 1. But not all such stable pointed curves belong to the

main component P
k(d1, d2, d3, k3). The global k-residue condition gives the

requirements that such a stable pointed curve is indeed smoothable. In this
case the twisted k-differential associated to [C ∪y′=y Y, p1, . . . , p6] implies a
unique level graph pictured in Figure 1. Hence the global k-residue condition
is simply

resky(ωY ) = 0.

C

Y ≅ P1
p1
p2
p3

y y′

p4
p5

p6

y′ + p4 + p5 + p6 ∼KC

C

Y

Level graph Γ

Figure 1: A twisted k-differential in P̃k(d1, d2, d3, k
3) ⊂M3,6

Example 2.5. Let C and Y be as in the previous example. Consider the
unique (up to scaling) k-differential ωX on rational curve X with

(ωX) = −2kx + p7 − p8 ∼ kKX .

Then for any x′ ∈ C with x′ ≠ y′, p4, p5, p6, the twisted k-differential{ωC , ωX , ωY } gives
[C ∪y′=y Y ∪x′=x X,p1, . . . , p8] ∈ P̃k(d1, d2, d3, k3,1,−1) ⊂M3,8

pictured in Figure 2. Again, not all such stable pointed curves belong to the

main component P
k(d1, d2, d3, k3). In this case the dual graph of the curve

contains 3 vertices and any possible twisted differential implies two conditions
C ≻ X and C ≻ Y on the level dual graph Γ. There are three level graphs
that satisfy these conditions. However, if X and Y appear on different levels
of the graph the global k-residue condition will imply that reskx(ωX) = 0 if
the component X appears on higher level or resky(ωY ) = 0 if the component Y
appears on higher level. But observe that by sending x, p7 and p8 to 0,1 and∞
we have

ωX =
c(z − 1)
z2k

(dz)k
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for some c ∈ C∗, giving reskx(ωX) ≠ 0. Hence only level graphs with X on the
lowest level are possible. In the case that Y appears on a higher level than X
the global k-residue condition gives the requirement

resky(ωY ) = 0.
If X and Y appear on the same level in Γ the global k-residue condition gives

reskx(ωX) = (−1)kresky(ωY ).
These two possible level graphs are pictured in Figure 2.

C

Y ≅ P1
p1
p2
p3

y y′

p4
p5

p6

X ≅ P1

p7

p8

x

x′

y′ + p4 + p5 + p6 ∼KC

C

YX

C

Y

X

Possible level graphs Γ

Figure 2: A twisted k-differential in P̃k(d1, d2, d3, k
3,1,−1) ⊂M3,8

2.4 Divisor theory on Mg,n

PicQ(Mg,n) is generated by λ, the first Chern class of the Hodge bundle, ψi
the first Chern class of the cotangent bundle onMg,n associated with the ith
marked point for i = 1, . . . , n and the irreducible components of the boundary
∆0 the locus of curves inMg,n with a nonseparating node and ∆i∶S for 0 ≤ i ≤ g,
S ⊂ {1, . . . , n} the locus of curves with a separating node that separates the
curve such that one of the components has genus i and contains precisely the
marked points in S. Let δ0 denote the class of ∆0 and δi∶S the class of ∆i∶S .
Hence δi∶S = δg−i∶Sc and observe we require ∣S∣ ≥ 2 for i = 0 and ∣S∣ ≤ n − 2 for
i = g.
For g ≥ 3, these divisors freely generate PicQ(Mg,n), but for g = 2, the classes
λ, δ0 and δ1 generate PicQ(M2) with the relation

λ =
1

10
δ0 +

1

5
δ1.

Pulling back this relation under the forgetful morphism forgetting all marked
points gives the only relation on these generators in PicQ(M2,n).
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2.5 Maps between moduli spaces

For a fixed general [X,q, q1] ∈Mh,2 consider the map

πh ∶ Mg,n → Mg+h,n[C,p1, . . . , pn] ↦ [C⋃p1=qX,q1, p2, . . . , pn]
that glues points p1 and q to form a node. The pullback of the generators of
PicQ(Mg+h,n) are presented in [AC]

π∗hλ = λ, π∗hδ0 = δ0, π∗hδh∶{1} = −ψ1

and

π∗hψi =
⎧⎪⎪⎨⎪⎪⎩
0 for i=1

ψi for i = 2, . . . , n

and for 1 ∈ S

π∗hδi∶S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for i < h

−ψ1 for i = h,S = {1}
δi−h∶S otherwise.

2.6 Divisors from k-strata of differentials

The following divisor notation is used in this paper.

Definition 2.6. For ∣µ∣ = g − 2 + n if k = 1 and all entries of µ are ≥ 0 and∣µ∣ = g − 1 + n otherwise, if we express µ in exponential notation as

µ = (d1, . . . , dn, eα1

1
, . . . , eαr

r ),
where ei ≠ ej for i ≠ j. Then D

n,k
µ for n ≥ 1 is the divisor inMg,n defined by:

Dn,k
µ ∶=

1

α1!⋯αr!
ϕ∗P

k(µ),
where ϕ forgets the last r = g − 2 points for k = 1 and all di, ei ≥ 0 or the last
r = g − 1 marked points otherwise.

In the case that k = 1 we will drop this index, that is, Dn,1
µ = Dn

µ. In the case

of quadratic differentials, that is, k = 2 we use the notation Dn,2
µ = Qnµ. For

example, let d = (d1, . . . , dn) be an n-tuple of integers satisfying ∑dj = g with
dj ≥ 0. Logan [L] computed the class of the pointed Brill-Noether divisors in
Mg,n, which from our perspective are the divisors

Dn
d,1g−2 = −λ +

n∑
j=1

(dj + 1
2
)ψj − 0 ⋅ δ0 − ∑

i,S

(∣dS − i∣ + 1
2

) δi∶S (1)

in PicQ(Mg,n), where dS ∶= ∑j∈S dj .
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3 Divisor class computation

In this section we compute the divisor classes defined above for the strata of
quadratic differentials. Our strategy is to first compute the class of Q2g−2

12g−2,2g−1

(which we will denote Qg) in PicQ(Mg,2g−2) via test curves. Utilising the
symmetries in this class due to the symmetries in the signature we compute
the intersection number of a number of test curves inMg,2g−2 with Qg and the
standard generators of PicQ(Mg,2g−2) providing the class of Qg.

We then use gluing maps between moduli spaces of curves and other known
classes from the strata of differentials to compute a formula for the general
divisor Qn

d,2g−1
in PicQ(Mg,2g−2) where d = (d1, . . . , dn) and ∑di = 2g − 2.

Consider the following test curves:

• Ai∶s: For i = 0, . . . , g, s = 1, . . . ,2g − 2 and s ≤ 2g − 5 if i = g and s ≤ 2g − 3
if i = g − 1. Fix general smooth pointed curves [X,p1, . . . , ps, x] ∈ Mi,s+1

and [Y, ps+1, . . . , p2g−2] ∈ Mg−i,2g−2−s. Form the curve by attaching x to
a point y that varies in Y . See Figure 3.

• Bi∶s: For i = 0, . . . , g, s = 0, . . . ,2g−3 and s ≥ 2 if i = 0. Fix general smooth
pointed curves [X,p1, . . . , ps, x] ∈ Mi,s+1 and [Y, ps+2, . . . , p2g−2, y] ∈
Mg−i,2g−2−s. Form the curve by attaching x to y and allowing ps+1 to
vary freely in X . See Figure 3.

• Ci∶s: For i = 0, . . . , g, s = 0, . . . ,2g − 4 and s ≥ 1 if i = 0 and s ≤ 2g − 5
for i = g. Fix general smooth pointed curves [X,p1, . . . , ps, x] ∈ Mi,s+1,[Y, ps+3, . . . , p2g−2, y] ∈ Mg−i,2g−3−s and [Z, z1, z2, ps+2] ∈ M0,3. Form the
curve by attaching x to z1, y to z2 and allowing ps+1 to vary freely in Z.
See Figure 3.

For some choices of parameters these curves coincide. Observe, for example,
that C0∶1 = B0∶2 and A0∶1 = σBg,2g−3 where σ permutes the first and (2g − 2)th
point.

Ai∶s Bi∶s Ci∶s

p1, . . . , ps
g(X) = i

ps+1, . . . , p2g−2

g(Y ) = g − i

p1, . . . , ps
g(X) = i

ps+2, . . . , p2g−2

g(Y ) = g − i

ps+1

p1, . . . , ps
g(X) = i

ps+3, . . . , p2g−2
g(Y ) = g − i

ps+2

ps+1
g(Z) = 0

Figure 3: Test curves Ai∶s, Bi∶s and Ci∶s inMg,2g−2.
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Lemma 3.1. The following intersection numbers hold,

Ai∶s ⋅ δi∶{1,⋯,s} = −(4g − 2i − 4 − s),
Ai∶s ⋅ δi∶{1,...,s,j} = Ai∶s ⋅ ψj = 1 for j = s + 1, . . . ,2g − 2,

Bi∶s ⋅ δi∶{1,...,s} = 1,
Bi∶s ⋅ δi∶{1,...,s+1} = −1,
Bi∶s ⋅ψs+1 = 2i − 1 + s,
Bi∶s ⋅ψj = Bi∶s ⋅ δ0∶{j,s+1} = 1 for j = 1, . . . , s,

Ci∶s ⋅ δi∶{1,...,s} = Ci∶s ⋅ δg−i∶{s+3,...,2g−2} = −1,
Ci∶s ⋅ ψs+1 = Ci∶s ⋅ψs+2 = 1,
Ci∶s ⋅ δ0∶{s+1,s+2} = Ci∶s ⋅ δi∶{1,...,s+1} = Ci∶s ⋅ δg−i∶{s+3,...,2g−2,s+1} = 1.

All other intersections are zero.

Proof. This is a simple exercise in intersection theory. See [HMo]. Here we
provide the example of test curve Ai∶s. Clearly

Ai∶s ⋅ δi∶{1,...,s,j} = Ai∶s ⋅ ψj = 1 for j = s + 1, . . . ,2g − 2,

and the only other non-zero intersection is Ai∶s ⋅ δi∶{1,⋯,s} which we obtain by
computing the degree of the restriction of the normal bundle of δi∶{1,⋯,s} to the
curve Ai∶s. Let S be the surface obtained by blowing up Y × Y at the points(pi, pi) for i = s + 1, . . . ,2g − 2 and let π ∶ S Ð→ Y × Y be the blowdown. If ∆
denotes the diagonal in Y × Y and ∆̃ the proper transform in S we have

Ai∶s ⋅ δi∶{1,⋯,s} = deg(N∆̃/S ⊗NY ×{x}/Y ×X) = ∆̃2 = −(4g − 2i − 4 − s).

Intersecting these test curves directly with the divisor Q2g−2
12g−2,2g−1

, which we
denote Qg, we obtain the following.

Lemma 3.2. The following intersection numbers hold,

Ai∶s ⋅Qg =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4g−1(s − 2i)2(g − i) for s ≠ 0,2g − 2

(4g−i − 1)4i(g − i − 1)2(g − i)
+4i(g − i)(g − i + 1)(g − i − 1) for s = 2g − 2.

Proof. Observe Ai∶s for s ≠ 0,2g − 2 intersects Qg for y ∈ Y such that there
exists {qj} with

(ωX) = (2i − s − 4)x + s∑
j=1

pj + 2
i∑
j=1

qj ∼ 2KX

(ωY ) = (s − 2i)y + 2g−2∑
j=s+1

pj + 2
g−1∑
j=i+1

qj ∼ 2KY .
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This follows from a simple dimension count. As the smooth pointed curves[X,p1, . . . , ps, x] ∈ Mi,s+1 and [Y, ps+1, . . . , p2g−2] ∈ Mg−i,2g−2−s are general,
the 2-canonical divisors on component X and component Y must belong to
projectivised strata with at least dimension 3i+s−2 and 5g−3i−s−5 respectively.
This is the only such configuration that satisfies this requirement.
By the Picard variety method [[M1],§2.5] for any general genus g curve C and
non-zero integers di, the degree of the map

Cg → Pic∑di(C)(p1, . . . , pg) ↦ OX(∑gi=1 dipi)
is ∏gi=1 d2i g!. Hence the degree of the map

X i
→ Pic2i(X)(q1, . . . , qi) ↦ OX(2q1 + ⋅ ⋅ ⋅ + 2qi)

is 4ii! while the degree of the map

Y g−i → Pic2g−4i+s−2(Y )(y, qi+1, . . . , qg−1) ↦ OY ((s − 2i)y + 2qi+1 + ⋅ ⋅ ⋅ + 2qg−1)
is 4g−i−1(s − 2i)2(g − i)! and accounting for the ordering of the qj we obtain

Ai∶s ⋅Qg = 4
g−1(s − 2i)2(g − i)

for s ≠ 0,2g − 2. When s = 2g − 2 the situation is slightly more complicated. In
this case we have two possibilities. In the first case by a dimension count we
require y and {qj} such that

(ωX) = (2(i − g) − 2)x + 2g−2∑
j=1

pj + 2
i∑
j=1

qj ∼ 2KX

(ωY ) = (2(g − i) − 2)y + 2 g−1∑
j=i+1

qj ∼ 2KY

and further the global k-residue condition requires

((g − i) − 1)y + g−1∑
j=i+1

qj ≁KY

and hence by enumerating the solutions to

((g − i) − 1)y + g−1∑
j=i+1

qj ∼ ηY ⊗KY

for the 4g−i − 1 bundles ηY ≁ OY with η⊗2Y ∈ OY we obtain

(4g−i − 1)4i(g − i − 1)2(g − i)
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smoothable twisted k-canonical divisors of this type. The second case is y and{qj} such that

(ωX) = (2(i − g) − 2)x + 2g−2∑
j=1

pj + 2
i+1∑
j=1

qj ∼ 2KX

(ωY ) = 2(g − i)y + g−1∑
j=i+2

2qj ∼ 2KY

such that ωY = η
⊗2
Y for a holomorphic differential ηY with

(ηY ) = (g − i)y + g−1∑
j=i+2

qj ∼KY

and further the global k-residue condition requires

res2xωX = 0.

As x and pj are chosen general in X , we have that for each of the 4i bundles ηX
such that

η⊗2X ∼ 2KX(−(2(i − g) − 2)x − 2g−2∑
j=1

pj)
there is a unique ωX (up to the scaling by C

∗) that satisfies this. Two such
differentials would provide a one dimensional family of qj on X satisfying the
above and hence contradicting the points x and pj being in general position.
In Y the condition is that y is a Weierstrass point. There are (g − i)(g − i − 1)(g − i + 1) such points and hence

4i(g − i)(g − i + 1)(g − i − 1)
solutions of this type.

Lemma 3.3. The following intersection numbers hold,

Bi∶s ⋅Qg =

⎧⎪⎪⎨⎪⎪⎩
4g−1i for s ≠ 0,2g − 3

4g−1i − 4g−ii for s = 0.

Proof. By a simple dimension count as in the proof of Lemma 3.2, we require
points ps+1 and {qj} such that

(ωX) = (2i − s − 3)x + ps+1 + s∑
j=1

pj + 2
i−1∑
j=1

qj ∼ 2KX

(ωY ) = (s − 2i − 1)y + 2g−2∑
j=s+2

pj + 2
g−1∑
j=i

qj ∼ 2KY .
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Using the Picard variety method [[M1],§2.5] as above to obtain the degree of
the relevant maps we obtain 4i−1i! solutions on X and 4g−i(g − i)! solutions
on Y . Hence allowing for labelling we obtain Bi∶s ⋅Qg = 4

g−1i for s ≠ 0,2g − 3.
When s = 0 we must omit the unique solution in X where x = ps+1. In this
case the 2-canonical divisor on X is a square of a holomorphic canonical divisor
and the additional global residue condition on the quadratic differential on the
rational bridge between x and y containing ps+1 is not satisfied. By [[M1],§2.5]
this occurs with multiplicity i. Hence Bi∶0 ⋅Qg = 4

g−1i − 4g−ii.

Lemma 3.4. The following intersection numbers hold,

Ci∶s ⋅Qg =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for s ≠ 0,2g − 4

4g−ii for s = 0

4i(g − i) for s = 2g − 4.

Proof. For s ≠ 0,2g − 4 a twisted quadratic differential of the type required
would violate the assumption that the chosen pointed curves are general, hence
Ci∶s ⋅Qg = 0 in these cases.

Consider s = 0. By a simple dimension count as in the proof of Lemma 3.2,
smoothable quadratic differentials of the type required are of the form

(ωX) = (2i − 2)x + 2 i−1∑
j=1

qj ∼ 2KX

(ωY ) = −2iy + 2g−2∑
j=3

pj + 2
g−1∑
j=i

qj ∼ 2KY

(ωZ) = (−2i − 2)z1 + (2i − 4)z2 + p1 + p2 ∼ 2KZ.

Using the Picard variety method [[M1],§2.5] as above there are 4g−i(g− i)! such
solutions on Y . But the only solution on X comes from a square of the unique
such holomorphic differential. Hence the global k-residue condition requires
the res2Z(ωZ) = 0. But as Z is a rational curve, using the cross-ratio sending
z1, p2 and z2 to 0,1 and ∞ and letting p1 = b we obtain

ωZ =
(z − 1)(z − b)

z2i+2
(dz)2.

Taking the square root we obtain the residue as a degree i polynomial in b

giving i solutions for b. Hence Ci∶0 ⋅Qg = 4
g−ii. The case s = 2g − 4 follows by

symmetry.

Comparing the intersection of curves Ai∶s, Bi∶s and Ci∶s with the standard
generators of PicQ(Mg,2g−2) (Lemma 3.1) and Qg (Lemmas 3.2, 3.3, 3.4) we
obtain the following.
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Proposition 1.3. The class of the divisor Qg = Q
2g−2
12g−2,2g−1

in PicQ(Mg,2g−2)
is:

Qg = 3(22g−3) 2g−2∑
j=1

ψj − 4
gλ + 4g−2δ0 − 2

2g−3 ∑
S,Sc≠∅

(∣S∣ − 2i)(∣S∣ − 2i + 2)δi∶S
−

g∑
i=1

22(g−i)−1(4i(i − 1) + 2)iδi∶∅.
Proof. Observe that ci∶S = ci∶T for any S,T ⊂ {1, . . . ,2g − 2} such that ∣S∣ = ∣T ∣
and similarly cψj

= cψi
for i, j ∈ {1, . . . ,2g − 2}. Hence we let ci∶s = ci∶S = ci∶T

where s = ∣S∣ = ∣T ∣ and cψ = cψj
= cψi

. With these identifications and Lemma 3.1
we obtain the following.

Ai∶s ⋅Qg = (2g − 2 − s)(cψ + ci∶s+1) − (4g − 2i − 4 − s)ci∶s
Bi∶s ⋅Qg = (2i + 2s − 1)cψ + sc0∶2 + ci∶s − ci∶s+1
Ci∶s ⋅Qg = 2cψ + c0∶2 + cg−i∶2g−s−3 − cg−i∶2g−s−4 + ci∶s+1 − ci∶s.

where by convention c0∶1 = −cψ. Hence by Lemmas 3.2, 3.3 and 3.4 we obtain
all coefficients except c0 and cλ. Observe that the curves Ai∶s alone are enough
to compute these coefficients, while curves Bi∶s and Ci∶s provide cross-checks.
Fix a general smooth pointed curve [Y, y, q1, . . . , q2g−2] ∈ Mg−2,2g−1 and con-
sider the map

π ∶ M2,1 → Mg,2g−2(X,x) ↦ (X ⋃x=y Y, q1, . . . , q2g−2).
Set theoretically, π∗Qg has two components. One where x is a Weierstrass
point, the other where x is zero of a quadratic differential of signature (2,2).
However, these two conditions are known to coincide. Observe

π∗Qg = −c2∶∅ψ + (cλ + c0)λ + (c1∶∅ − 2c0)δ1∶1
via the known pullback of the generators under π and the extra relation λ =
1

10
δ0 +

1

5
δ1∶{1} in PicQ(M2,1). Hence as c2∶∅ = −18(4g−2) we have π∗Qg =

6(4g−2)W where W = 3ψ − λ − δ1,{1} is the known class of the Weierstrass
divisor [Cu]. This gives the remaining coefficients.

Pulling back classes under gluing morphisms allows us to leverage our under-
standing of the degeneration of quadratic differentials by the class of Qg and
known classes in the k = 1 case to obtain a general formula for the divisors of
interest.

Proposition 1.4. The class of the divisor Qn
d,2g−1

inMg,n for d = (d1, . . . , dn)
with ∑di = 2g − 2 is:

Qnd,2g−1 = (4g − 1) n∑
j=1

(dj + 2)dj
8

ψj − (4g − 1)λ + 4g−2δ0
− ∑
dS≥2i

1

8
(dS − 2i + 2)(4(4i − 1) + (dS − 2i)(4g − 1))δi∶S
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for all di even and non-negative and

22g−3
n∑
j=1

dj(dj + 2)ψj − 4gλ + 4g−2δ0 +∑
i,S

ci∶Sδi∶S

where

ci∶S =

⎧⎪⎪⎨⎪⎪⎩
−(dS − 2i + 2)(22g−3(dS − 2i)+ 22i−1) if N ⊂ S and dS ≥ 2i

−22g−3(dS − 2i)(dS − 2i + 2) if N ⊂ S, dS < 2i or N ⊄ S,S
c

otherwise, where N = {j ∣ dj is odd or negative} and dS ∶= ∑j∈S dj for any
subset S ⊂ {1, . . . , n}.
Proof. Fix a general smooth pointed curve [Y, y, q1, . . . , qs] ∈ Mi,s+1 and con-
sider the map

π ∶ Mg−i,n+1−s → Mg,n(X,x, qs+1, . . . , qn) ↦ (X ⋃x=y Y, q1, . . . , qn).
For any S ⊂ {1, . . . , n} with ∣S∣ = s, after possibly reordering d without loss of
generality, consider S = {1, . . . , s}, define

d
′ = ( s∑

j=1

dj − 2i, ds+1, . . . , dn)
d
′′ = (1 − i + 1

2

s∑
j=1

dj ,
ds+1

2
, . . . ,

dn

2
)

and specify three cases

Case A: d contains only even non-negative entries and d′′ contains only
non-negative integer entries,

Case B: d contains an odd or negative entry and d′′ contains only
non-negative integer entries,

Case C: dj is odd or negative for some j ∈ S or ∑j∈S dj ≥ 2i and Case B is
not satisfied.

Then

π∗Qnd,2g−1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4iQn+1−s
d′,2g−i−1

+ (4i − 1)Dn+1−s
d′′,1g−i−2

+ Boundary classes, for Case A

4iQn+1−s
d′,2g−i−1

+ 4iDn+1−s
d′′,1g−i−2

+ Boundary classes, for Case B

4iQn+1−s
d′,2g−i−1

+ Boundary classes, for Case C.

The cases occur when the choice of S splits the signature such that a new
component arises coming from quadratic differentials that are the square of
holomorphic differentials. The components are clear set theoretically from ap-
plying the global k-residue condition. Note that the global k-residue condition
also implies that the boundary components in the equations do not contain
δ1∶∅ or δ0∶T for any T . Setting i = 0 the multiplicities in the equations are
clear and we obtain the coefficients of λ,ψj , δ0 and δ0∶S . These values then give
the multiplicities in the equations for i ≥ 1. The relations in the three cases
described are enough to complete the class computation.
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4 Rigidity and extremality of divisors

An effective divisor D is extremal or spans an extremal ray in the pseudo-
effective cone if the divisor class D cannot be written as a sum D1 + D2 of
pseudo-effective Di with Di non-proportional classes. An effective divisor D is
rigid if h0(mD) = dimH0(mD) = 1 for every positive integer m.
A curve B contained in an effective divisorD is known as a covering curve forD
if irreducible curves with numerical class equal to B cover a Zariski dense subset
of D. The following lemma provides a well-known trick for showing a divisor
is rigid and extremal.

Lemma 4.1. If B is a covering curve for an irreducible effective divisor D with
B ⋅D < 0 then D is rigid and extremal.

Proof. [CC1, Lemma 4.1].

A curve B is known as a moving curve if B ⋅D ≥ 0 for all effective divisors D.
Fibrations offer one method of obtaining moving curves as if the numerical
equivalence classes of B cover a Zariski dense subset of X and the general
curve is irreducible then necessarily, B ⋅D ≥ 0 for all effective divisors D. As
the Jacobian of a fixed genus g curve has dimension g, by fixing all but g + 1
points which we allow to vary we obtain the curve Bn,kµ defined as

Bn,kµ ∶= {[C,p1, ..., pn] ∈Mg,n ∣ fixed general [C,pg+2, ..., pm] ∈Mg,m−g−1

and [C,p1, ..., pm] ∈ Pk(µ)},
where m = ∣µ∣ is the length of the signature and we require µ meromorphic if
k = 1. A similar construction is possible by fixing all but g points in the case
where k = 1 and µ is a holomorphic signature.

Proposition 4.2. The class of Bn,kµ is a moving curve inMg,n when ∣µ∣ ≥ n+g.
Proof. Fix general [C,p1, ..., pn] ∈Mg,n. To be contained in a numerical equiv-
alence class of a curve Bn,kµ we require pn+1, ..., pm on C such that

m∑
i=1

mipi ∼ kKC .

Let d =∑ni=1mi and consider the map

f ∶ Cm−n Ð→ Picd(C)(pn+1, ..., pm) z→ kKC(−∑mi=n+1mipi).
The domain and target have dimension m−n and g respectively. Hence curves
with numerical equivalence class equal to Bn,kµ for ∣µ∣ ≥ n + g cover a Zariski

dense subset ofMg,n as the fibre f−1(∑ni=1mipi) will be non-empty for general[C,p1, ..., pn] when m ≥ n + g.
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There remains the possibility that a general curve with numerical class Bn,kµ
is reducible with components of differing class. However, if this were to occur,
taking the closure of a distinguishable component over all [C,pn+1, ..., pm] ∈
Mg,m−n contradicts the irreducibility of Mg,n. Hence if Bn,kµ is reducible,
all components of the general curve must have the same class and are hence
proportional to Bn,kµ .

Theorem 4.3. For g ≥ 2, k-signature µ with ∣µ∣ = n + g − 1 for n ≥ g + 1,

B
n,k
µ,1,−1 ⋅D

n,k
µ = 0.

Proof. Fix general [C,pg+2, . . . , pn+g+1] ∈ Mg,n. If B
n,k
µ,1,−1 and Dn,k

µ have non-
empty intersection we require some q1, ..., qg−1 ∈ C such that

n+g−1∑
i=1

mipi + pg+n − pg+n+1 ∼ n∑
i=1

mipi +
g−1∑
i=1

mi+nqi ∼ kKC

and hence
n+g−1∑
i=n+1

mipi + pg+n − pg+n+1 −
g−1∑
i=1

mi+nqi ∼ OC .
This implies the existence of a degree d = 1+∑∣mi∣ cover of P1 with ramification
profile above 0 and∞ given by the points with positive and negative coefficients
respectively in the equation above. Riemann-Hurwitz implies that in a general
such cover there will be 4g − 2 other simple ramification points. Hence the
dimension of the space of such covers is 4g − 3 and as g + 1 points are fixed
general and dim(Mg,g+1) = 4g − 2 there does not exist such qi for a general
choice of pi for i = n + 1, ..., g + n + 1.

Proposition 4.4. If Dn,k
µ is an irreducible divisor then Bn,kµ is the class of a

covering curve.

Proof. The numerical classes of Bn,kµ cover a Zariski dense subset of Dn,k
µ . If

the general curve Bn,kµ is reducible the components must have the same class
as otherwise, taking the closure of one of these components over all numerical
classes of Bn,kµ would contradict the irreducibility of Dn,k

µ . Hence irreducible

curves with class proportional to Bn,kµ cover a Zariski dense subset of Dn,k
µ .

By observing that for some signatures µ the curve Bn,kµ forms a component of

a specialisation of Bn,kµ,−1,1 we obtain the negative intersection of the covering

curve for the corresponding divisors Dn,k
µ .

Proposition 4.5. Bg+1,k
d,kg−1

⋅D
g+1,k
d,kg−1

< 0 for g ≥ 2 and d = (d1, d2, d3, kg−2) with
d1 + d2 + d3 = k and k ∤ di for some i.
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Proof. Our proof generalises the proof of Proposition 5.4 in [M3] via the global
k-residue condition. Theorem 4.3 implies

B
g+1,k
d,kg−1,1,−1

⋅D
g+1,k
d,kg−1

= 0

Curves numerically equivalent to B
g+1,k
d,kg−1,1,−1

are constructed as one-

dimensional fibres of the morphism forgetting the first g + 1 points

π ∶ P
k(d, kg−1,1,−1)Ð→Mg,g+1.

Consider the fibre above the nodal pointed curve with pg+2, ..., p2g general
points in C, a general genus g curve and p2g+1 and p2g+2 lying on a ratio-
nal tail X above a general point x on the curve C. We describe the fibre by
applying the global k-residue condition to find the position of p1, . . . , pg+1 that
give smoothable twisted k-canonical divisors of the required type.

C

Y ≅ P1
p1
p2
p3

y

p4
p5

p6

X ≅ P1

p7

p8

x

y + p4 + p5 + p6 ∼KC

C

p1

p2

p3
p4

p5

p6

X ≅ P1

p7

p8

x

d1p1 + d2p2 + d3p3 + kp4 + kp5 + kp6 ∼ kKC

Figure 4: Two components of B4,k

d1,d2,d3,k
3,1,−1

inM3,4 when p7 and p8 sit on a P1 tail.

Fix [C ∪x=x′ X,pg+2, . . . , p2g+2] ∈ Mg,g+1 as described above and consider

the associated curve B
g+1,k
d,kg−1,1,−1

. The assumption that the pointed curve

[C,pg+2, . . . , p2g] is general means that the smoothable twisted k-canonical di-

visors of interest are of only two different types. Denote by δ(Bg+1,k
d,kg−1,1,−1

)
the curve contained in the boundary of Mg,g+1, that is, the irreducible curve
contained in δ0∶{1,2,3} obtained as an irreducible component of the fibre of π
over a general point in δ0∶{2g−1,2g}. Consider di ≠ k for i = 1,2,3. In this case

δ(Bg+1,k
d,kg−1,1,−1

) is the curve created by the points p1, p2, p3 moving freely on a

P
1-tail we denote Y attached to the curve C at a point y. The resulting twisted
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k-canonical divisor is of the form

y +
2g∑
i=4

pi ∼ KC

p2g+1 − p2g+2 − 2kx ∼ kKX

d1p1 + d2p2 + d3p3 − 3ky ∼ kKY .

The pointed nodal curve in the left of Figure 4 shows this situation for g = 3
which is presented in detail in Example 2.5. On a general curve C with
pg+2, . . . , p2g fixed we have h0(KC − pg+2 − ... − p2g) = 1 providing (g − 1)! so-
lutions for y, p4, ..., pg+1. It remains to check the global k-residue condition to
find which such twisted k-canonical divisors are smoothable. Observe for any
k-differential ωX on X with (ωX) ∼ p2g+1 − p2g+2 − 2kx we have reskx(ωX) ≠ 0.
Hence as discussed in Example 2.5, Figure 5 gives the two possible level graphs
to provide smoothable twisted k-canonical divisors of this type. The global
k-residue condition from Graph A is

reskx(ωX) + (−1)kresky(ωY ) = 0,
which can be obtained for any configuration of points on rational curve Y with
resky(ωY ) ≠ 0 by scaling the differential. Graph B gives the condition

resky(ωY ) = 0.
Hence all configurations of y, p1, p2, p3 on the rational tail Y are included.

In the case that some di, say d3 = k, the curve δ(Bg+1,kd,kg−1,1,−1
) will include more

components. There will be g − 1 components specified by i = 3, ..., g + 1 where
p1, p2 and pi move freely on a P

1-tail attached to C at a point y such that
y + p3 + ... + pi−1 + pi+1 + ... + p2g ∼ KC . Further, there is a component where

p3, ...pg+1 are fixed such that ∑2g
i=3 pi ∼ KC and p1 and p2 sit on a rational tail

attached to C at a point y that varies freely in C.

C

X Y

Graph A

C

X

Y

Graph B

Figure 5: Level graphs giving the global k-residue condition.
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The other candidate for smoothable twisted k-canonical divisors in this special
fibre are twisted k-canonical divisors of the form

d1p1 + d2p2 + d3p3 +
2g∑
i=4

kpi ∼ kKC

p2g+1 − p2g+2 − 2kx ∼ kKX ,

where the points p1, ..., pg+1 vary in a one dimensional family in the curve C.
The pointed curve in the right of Figure 4 shows this situation for g = 3. As
there are poles on both components the global k-residue condition is empty and
all solutions of this type are smoothable. Hence this component is simply the
curve Bg+1,k

d,kg−1
. This completes the classification of the components of the curve

in the case k ∤ di, as by a simple dimension count, any other configuration
would contradict the assumption that the pointed curve [C,pg+2, . . . , p2g] is
general. Hence

B
g+1,k
d,kg−1,1,−1

∼ δ(Bg+1,k
d,kg−1,1,−1

) +Bg+1,k
d,kg−1

.

As detailed in Example 2.4, δ(Bg+1,k
d,kg−1,1,−1

) intersects Dg+1,k
d,kg−1

at the non-empty

finite set of points where the k-residue at y is zero. Hence

δ(Bg+1,k
d,kg−1,1,−1

) ⋅Dg+1,k
d,kg−1

> 0,
but by Theorem 4.3

B
n,k
µ,1,−1 ⋅D

n,k
µ = 0

and hence
B
g+1,k
d,kg−1

⋅D
g+1,k
d,kg−1

< 0.

Theorem 1.1. The divisors Dg+1,k
d,kg−1

in Mg,g+1 for g ≥ 2, k ≥ 2 are rigid and

extremal for d = (d1, d2, d3, kg−2) with d1 + d2 + d3 = k, and di ≠ 0 if Dg+1,k
d,kg−1

is

irreducible.

Proof. Proposition 4.4 and Proposition 4.5 give a covering curve for the divisors
with negative intersection. Hence by Lemma 4.1 the divisors are rigid and
extremal.

Remark 4.6. Pullbacks of the above rigid and extremal divisors under forgetful
morphisms are also rigid and extremal. Fix n > g + 1, and let ϕ ∶Mg,n Ð→

Mg,g+1 forget all but the first g + 1 points. We have ϕ∗Dg+1,k
d,kg−1

is also rigid

and extremal. Observe that ϕ∗Dg+1,k
d,kg−1

= Dn,k

d,0n−g−1,kg−1
is irreducible as the

pullback of an irreducible divisor intersecting the interior of Mg,n. Further,

B
n,k

d,0n−g−1,kg−1
provides a covering curve for ϕ∗Dg+1,k

d,kg−1
with

ϕ∗B
n,k

d,0n−g−1,kg−1
= Bg+1,k

d,kg−1
.
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Hence by the projection formula

B
n,k

d,0n−g−1,kg−1
⋅ ϕ∗D

g+1,k
d,kg−1

= ϕ∗B
n,k

d,0n−g−1,kg−1
⋅D

g+1,k
d,kg−1

= Bg+1,k
d,kg−1

⋅D
g+1,k
d,kg−1

< 0.

Though the classification of the connected components of the meromorphic
k-strata of differentials is still in progress, Chen and Gendron [CG] have com-
pleted the k = 2 case of quadratic differentials for non-simple poles, which
with Lanneau’s classification of the finite area cases [Lan] (See Corollary 2.3)
provides the following result.

Corollary 1.2. The divisors Dg+1,2
d,2g−1

= Qg+1
d,2g−1

in Mg,g+1 for g ≥ 2 are rigid

and extremal for d = (d1, d2, d3,2g−2) with d1 + d2 + d3 = 2, di ≠ 0 and some di
odd.

5 Rigidity and extremality of higher codimension cycles

In this section we use the property of rigidity inductively on the codimension
under the forgetful morphism that forgets marked points. The general strategy,
first used by Chen and Tarasca [CT] to show that marking Weierstrass points
on genus g = 2 curves gave rigid and extremal cycles inM2,n for n = 2, . . . ,6, is
to assume there exists a non-trivial effective decomposition. By pushing this de-
composition forward under the forgetful morphism we use the assumed rigidity
in lower codimension to deduce that the assumed decomposition must include
the original cycle hence contradicting the assumed non-triviality. Some com-
plications arise in low genus g = 2,3 when there are multiple candidates for the
cycle we find in the decomposition. We deal with these cases by ruling out the
extraneous candidates by showing their inclusion would violate our effectivity
assumption through the use of moving curves constructed in Proposition 4.2.

Theorem 1.5. For g ≥ 2, k ≥ 1 and j = 0, . . . , g − 1 if Pk(d1, d2, d3, k2g−3)
is irreducible the cycle [ϕj∗Pk(d1, d2, d3, k2g−3)] is rigid and extremal in

Eff g−j(Mg,2g−j), where ϕj ∶Mg,2g Ð→Mg,2g−j forgets the last j points with
d1 + d2 + d3 = k and some di = k if g = 2 and j = 0.

Proof. The cases for k = 1 appear in [M3] in the case of divisors, that is, j = g−1
and [M4] for j = 0, . . . , g − 2. The divisorial case for k ≥ 2 is Theorem 1.1. The
remaining cases follow below as the content of Propositions 5.2, 5.5 and 5.6.

Again, while the classification of the connected components of the strata of
k-differentials is still in progress, the completed case of quadratic differentials
given in Corollary 2.3 yields the following.

Corollary 5.1. For g ≥ 2 and j = 0, . . . , g−1 the cycle [ϕj∗Q(d1, d2, d3,22g−3)]
is rigid and extremal in Eff g−j(Mg,2g−j), where ϕj ∶Mg,2g Ð→Mg,2g−j forgets
the last j points with di ≠ 0, d1 + d2 + d3 = 2, some di odd and in the case g = 2
and j = 0 some di = 2.
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We begin by proving the most general case where the complications mentioned
above do not occur.

Proposition 5.2. For g ≥ 3, k ≥ 2 and j = 0, . . . , g − 1 if Pk(d1, d2, d3, k2g−3)
is irreducible the cycle [ϕj∗Pk(d1, d2, d3, k2g−3)] is rigid and extremal in

Eff g−j(Mg,2g−j), where ϕj ∶Mg,2g Ð→Mg,2g−j forgets the last j points with
d1 + d2 + d3 = k and some di = k if g = 3.

Proof. Proceed by induction. Assume [(ϕj+1)∗Pk(d1, d2, d3, k2g−3)] is rigid

and extremal. If [(ϕj)∗Pk(d1, d2, d3, k2g−3)] is not extremal then it can be
expressed as

[(ϕj)∗Pk(d1, d2, d3, k2g−3)] =∑ ci[Vi]
for ci > 0, Vi irreducible with class not proportional to[(ϕj)∗P(d1, d2, d3, k2g−3)]. Let πm ∶ Mg,2g−j Ð→ Mg,2g−j−1 forget the
mth point. Pushing forward yields

(πm)∗[(ϕj)∗Pk(d1, d2, d3, k2g−3)] = [(ϕj+1)∗Pk(d1, d2, d3, k2g−3)]
= ∑ ci(πk)∗[Vi]

for eachm = 4, ...,2g−j for g ≥ 3. Without loss of generality, assume that d3 = k
when g = 3. Then the equation will hold in the g = 3 case for m = 3, . . . ,6 − j.
Now fix m, as the LHS is non-zero there is at least one Vi such that (πm)∗[Vi]
is non-zero and as the LHS is extremal, (πm)∗[Vi] is necessarily a positive

multiple of the rigid cycle [(ϕj+1)∗Pk(d1, d2, d3, k2g−3)]. Hence Vi must be
supported on

(πm)−1(ϕj+1∗Pk(d1, d2, d3, k2g−3))
and further, (πm′)∗[Vi] is non-zero for any other m′ = 4, ...,2g − j for g ≥ 4 or
m′ = 3, . . . 6 − j for g = 3. This argument for each m′ yields Vi is supported

in the intersection of (πm)−1(ϕj+1∗Pk(d1, d2, d3, k2g−3)) for m = 4, ...,2g − j for
g ≥ 4 or m = 3, . . . 6 − j for g = 3. A general element of Vi is hence of the form[C,p1, ..., p2g−j] ∈Mg,2g−j with

d1p1 + d2p2 + d3p3 +
2g−j∑

i=4,i≠m

kpi +
j+1∑
i=1

kqi ∼ kKC

for some qi with m = 4, ...,2g − j. But this implies that for g ≥ 4 the pi for
i = 4, ...,2g − j are all pairwise distinct and hence distinct. Similarly for g = 3
the pi for i = 3, . . . ,6 − j are all distinct.

Hence Vi is supported on (ϕj)∗Pk(d1, d2, d3, k2g−3) and [Vi] is a positive mul-

tiple of [(ϕj)∗Pk(d1, d2, d3, k2g−3)] providing a contradiction.
The base case for the inductive argument is the divisorial case j = g−1 presented
in Theorem 1.1.
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To extend Proposition 5.2 to all cases of Theorem 1.5 we will need to rule
out some new candidates for the cycle obtained by the above process. The
candidate for an alternate cycle in the effective decomposition pushes forward
to be an effective multiple of the boundary cycle δ0∶{2,3} and we will rule this
cycle out by intersection theory. Here we provide two lemmas giving explicit
values of intersection numbers we’ll require.

Lemma 5.3. For k ≥ 2, µ = (−h, k2, h) with k ∤ h, in M2,3

B
3,k
µ,1,−1 ⋅ δ0∶{2,3} = 8k

2h2.

Proof. We need to enumerate the points p1 and p2 such that

−hp1 + 2kp2 + hq1 + q2 − q3 ∼ kKC

with p1 ≠ p2, pi ≠ qj and any limits that may occur with these points colliding
that will satisfy the global k-residue condition.
Consider the map

fh,−2k ∶ C ×C Ð→ Pich−2k(C)(p1, p2) z→ OC(hp1 − 2kp2).
discussed in [[M4], §2.5]. Analysing the fibre of this map above hq1 + q2 − q3 −
kKC ∈ Pich−2k(C) will provide us with the solutions of interest. By [[M4],
Proposition 2.4] for h ≥ 1 and h ≠ 2k this map is finite of degree 8k2h2, simply
ramified along the diagonal ∆ and the locus of pairs of points that are conjugate
under the hyperelliptic involution denoted I. For h = 2k this map is generically
finite of degree 8k2h2 = 32k4, contracts ∆ and is simply ramified along I.
Further, for general qi the fibre will contain no solutions where p1 and p2
coincide with each other or any of the qi.

Lemma 5.4. For k ≥ 2, µ = (d2, d3, k3, d1) with k ∤ d1 and d1 + d2 + d3 = k, in
M3,4

B
4,k
µ,1,−1 ⋅ δ0∶{3,4} = 24k

2d22d
2

3.

Proof. We need to enumerate the points p1, p2, p3 such that for fixed general
qi,

d2p1 + d3p2 + 2kp3 + kq1 + d1q2 + q3 − q4 ∼ kKC

with pi ≠ pj for i ≠ j and pi ≠ qj and any limits that may occur with these
points colliding that will satisfy the global k-residue condition.
Consider the map

f ∶ C3
Ð→ Pic3k−d1(C)(p1, p2, p3) z→ OC(d2p1 + d3p2 + 2kp3).

The fibre of this map above kKC(−kq1 − d1q2 − q3 + q4) ∈ Pic3k−d1(C) will
give us the solutions of interest. Take a general point e ∈ C and consider the
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isomorphism

h ∶ Pic3k−d1(C) Ð→ J(C)
L z→ L⊗OC(−de).

Now let F = h ○ f , then degF = deg f . Observe

F (p1, p2, p3) = OC(d2(p1 − e) + d3(p2 − e) + 2k(p3 − e)).
Let Θ be the fundamental class of the theta divisor in J(C). By [ACGH] §1.5
we have

degΘg = g! = 6

and the dual of the locus of OC(m(x − e)) for varying x ∈ C has class m2Θ in
J(C). Hence

degF = degF∗F
∗([OC])

= deg (d22Θ ⋅ d23Θ ⋅ (2k)2Θ)
= 24k2d22d

2

3.

As we have chosen the qi general, the general fibre will contain no points
where the pi coincide with each other or with the qi. Hence we have found all
solutions.

With the above lemmas we proceed to prove the remaining cases of Theo-
rem 1.5.

Proposition 5.5. For g = 3 and j = 0,1,2 if Pk(d1, d2, d3, k3) is irreducible,

the cycle [ϕj∗Pk(d1, d2, d3, k3)] is rigid and extremal in Eff 3−j(Mg,6−j), where
ϕj ∶M3,6 Ð→M3,6−j forgets the last j points with d1 + d2 + d3 = k and di ≠ 0.

Proof. The case where some di = k is covered by Proposition 5.2. Assume
di ≠ k, we proceed by induction. The argument used in the proof of Propo-

sition 5.2 shows that if [(ϕ1)∗Pk(d1, d2, d3, k3)] is rigid and extremal then

[Pk(d1, d2, d3, k3)] is rigid and extremal.
Let Vi and ci be as in the proof of Proposition 5.2. In the remaining case

j = 1, Vi is supported in the intersection of (πm)−1(ϕ2∗P
k(d1, d2, d3, k3)) for

m = 4,5. In this case there are two possible candidates for where the irre-
ducible cycle Vi is supported. By assumption the cycle Vi is not supported on

ϕ1∗P
k(d1, d2, d3, k3) so it must be supported on X = α∗D

4,k

d1,d2,d3,k3
where

α ∶ M3,4 → M3,5[C,p1, p2, p3, y] ↦ [C⋃y=y′ Y, p1, . . . , p5].
where [Y, y′, p4, p5] is a rational curve marked at three distinct points. Then X

is irreducible if P
k(d1, d2, d3, k3) is irreducible. Hence [Vi] is proportional to[X] and

π1∗[Vi] = eδ0∶{3,4}
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for some e > 0. As the cycle [(ϕ1)∗Pk(d1, d2, d3, k3)] − ci[Vi] is an effective
codimension two cycle in M3,5, by pushing down under the morphism that
forgets the first marked point we obtain the effective divisor class

π1∗ ([(ϕj)∗Pk(d1, d2, d3, k3)] − ci[Vi]) =D4,k

d2,d3,k3,d1
− cieδ0∶{3,4}.

However, by Theorem 4.3 and Lemma 5.4 we observe

B
4,k
µ,1,−1 ⋅ (D4,k

µ − cieδ0∶{3,4}) = 0 − 24k2d22d23cie < 0,
for µ = (d2, d3, k3, d1), which contradicts the assertion of Proposition 4.2 that

B
4,k
µ,1,−1 is a moving curve. Hence Vi is not supported on X and must be

supported on ϕ1∗P
k(d1, d2, d3, k3) contradicting our assumption of an effec-

tive decomposition. Hence [ϕ1∗P
k(d1, d2, d3, k3)] is rigid and extremal if

[ϕ2∗P
k(d1, d2, d3, k3)] is rigid and extremal. The base case for the inductive

argument is the divisorial case j = 2 presented in Theorem 1.1.

Proposition 5.6. For g = 2 and gcd(h, k) = 1 if Pk(h,−h, k, k) is irreducible,

the cycle [Pk(h,−h, k, k)] is rigid and extremal in Eff 2(M2,4).
Proof. [πm∗P(h,−h, k, k)] is rigid and extremal for m = 3,4 by Theorem 1.1.

If [Pk(h,−h, k, k)] is not extremal then it can be expressed as

[P(h,−h,1,1)] =∑ ci[Vi]
for ci > 0, Vi irreducible with class not proportional to [Pk(h,−h, k, k)]. Hence
by the same argument in the proof of Proposition 5.5 we obtain that some Vi
must be supported on the intersection

π−13 (π3∗Pk(h,−h, k, k)) ∩ π−14 (π4∗Pk(h,−h, k, k))
which has two irreducible components. However, as Vi is by assumption, not

supported on P
k(h,−h, k, k) it must be supported on X = α∗D

3,k

h,−h,k2 where

α ∶ M2,3 → M2,4[C,p1, p2, y] ↦ [C⋃y=y′ Y, p1, . . . , p4].
where [Y, y′, p3, p4] is a rational curve marked at three distinct points and

D
3,k

h,−h,k2
= ϕ1∗P

k(h,−h, k, k) = π4∗Pk(h,−h, k, k).
The irreducibility of X follows from the assumed irreducibility of

P
k(h,−h, k, k). Hence if Vi is supported on X then [Vi] is proportional

to [X] and
π1∗[Vi] = eδ0∶{2,3}
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for some e > 0.
As the cycle [Pk(h,−h, k, k)] − ci[Vi] is effective, by pushing down under the
morphism that forgets the first marked point we obtain the effective class

π1∗ ([Pk(h,−h, k, k))] − ci[Vi]) =D3,k
−h,k,k,h − cieδ0∶{2,3}.

However, by Proposition 4.3 and Lemma 5.3

B
3,k
µ,1,−1 ⋅ (D3,k

−h,k,k,h − cieδ0∶{2,3}) = 0 − 8k2h2eci < 0,
for µ = (−h, k, k, h) which contradicts the assertion of Proposition 4.2 that

B
3,k
µ,1,−1 is a moving curve. Hence Vi is not supported on X and must be

supported on P
k(h,−h, k, k) providing a contradiction with the given effective

decomposition. Hence [Pk(h,−h, k, k)] is rigid and extremal.
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