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Abstract. Let Γn(OK) denote the Hermitian modular group of de-
gree n over an imaginary-quadratic number field K. In this paper
we determine its maximal discrete extension in SU(n, n;C), which co-
incides with the normalizer of Γn(OK). The description involves the
n-torsion subgroup of the ideal class group of K. This group is defined
over a particular number field K̂n and we can describe the ramified
primes in it. In the case n = 2 we give an explicit description, which
involves generalized Atkin-Lehner involutions. Moreover we find a
natural characterization of this group in SO(2, 4).
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1 Introduction

The Hermitian modular group of degree n over an imaginary-quadratic num-
ber field K was introduced by H. Braun [3]. Modular forms associated with
the Hermitian modular group are among the prime examples of automorphic
forms for classical groups, illustrated by for instance Mok’s endoscopic clas-
sification [22]. In this work, we determine the maximal discrete extension in
SU(n, n;C) of the Hermitian modular group, which we call the extended Her-
mitian modular group. We examine in detail the case of n = 2 and its relation
to orthogonal modular groups, and investigate the fields of definition of the
extended Hermitian modular group.
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Discrete extensions of classical lattices in Lie groups have remarkable properties
and applications. Already the case of congruence subgroups Γ0(N) ⊆ SL(2;Z)
admits interesting discrete extensions. For example, the Fricke groups Γ+

0 (N) ⊆
SL(2;R) played a prominent role in Monstrous Moonshine and its elusive genus-
0 properties [1]. Fricke groups Γ+

0 (N) are maximally discrete and are the
normalizer of Γ0(N) in SL(2;R). Moreover, they are generated by Atkin-Lehner
involutions, whose entries lie in Q(

√
d) for suitable d |N .

The symplectic group Sp(n;Z) ⊆ Sp(n;R) is the most common case of higher
rank groups. It is deceptively simple in our context, since Sp(n;Z) is already
maximally discrete (cf. [23]). Nevertheless, there is an analogue of Fricke groups
for the level-N paramodular modular groups in Sp(2;R). These groups, in ana-
logy with the case of Γ0(N) ⊆ SL(2;R), are generated by paramodular Atkin-
Lehner involutions, whose entries lie in Q(

√
d) for suitable d |N . The resulting

paramodular Fricke groups are of great use in Gritsenko’s generalization of the
Maaß lift to the paramodular setting [14], which in turn play a major role in
modularity conjectures for abelian surfaces.

While the utility of maximal discrete extensions is perfectly illustrated by such
applications, the examples given so far might indicate that their structure is
comparatively simple. The present study of Hermitian modular groups shows
the opposite: The maximal discrete extension of the Hermitian modular group
over K reflects properties of the class group of K. It also yields a new invariant
of K. Specifically, the entries of elements of the maximal discrete extension
belong to the ring of integers of an interesting number field K̂n depending on K

and n, which is closely related to the Hilbert class field of K. In Theorem 4
we show that the field extension K̂n ⊇ Q is ramified exactly at the primes
dividing ndK.

In order to state our main theorem, we need some notation. The special unitary
group SU(n, n;C) and the Hermitian modular group Γn(OK) are defined in
Section 2. Given a matrix L ∈ O2n×2n

K
, we let I(L) be the ideal generated by

the entries of L. Moreover, we let Cr be a cyclic group of order r, and

CℓK = {[A]; A fractional ideal in K} and

CℓK[n] = {[A] ∈ CℓK; [A]n = [OK]}

stand for the ideal class group of K with class number hK and its n-torsion
subgroup.

Theorem 1. Let K be an imaginary-quadratic number field with ring of inte-
gers OK.

a) The following is a subgroup of SU(n, n;C) containing Γn(OK):

∆∗
n,K :=

{
1
uL ∈ SU(n, n;C); L ∈ O2n×2n

K
, 0 6= u ∈ C,

un ∈ OK, u
nOK = I(L)n

}
.
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b) The map

∆∗
n,K → CℓK[n], M = 1

uL 7→ [I(L)],

is a surjective homomophism of the groups. If dK 6= −3,−4 its kernel is
equal to

{εM ; ε ∈ C, ε2n = 1, M ∈ Γn(OK)}.

c) The group ∆∗
n,K is the maximal discrete extension of Γn(OK) in

SU(n, n;C) and coincides with the normalizer of Γn(OK) in SU(n, n;C).
The factor group ∆∗

n,K/Γn(OK) is isomorphic to

Cn × CℓK[n], if dK 6= −3,−4.

We call ∆∗
n,K in Theorem 1 the extended Hermitian modular group of degree n.

The proof of Theorem 1 is inspired by ideas presented in [6] and will be given
in Section 3. Specifically, we build up and employ a normal form theory
for elements of ∆∗

n,K. To conclude the maximality of ∆∗
n,K, we crucially em-

ploy Corollary 1, which itself rests on a characterization of discrete subgroups
of SU(n, n;K) ⊆ SU(n, n;C) that extend the Hermitian modular group.
Due to the work of Borcherds there is special interest in the case n = 2, which
can be viewed as an orthogonal group SO(2, 4). In Theorem 3 we derive an
explicit isomorphism. We describe the extended Hermitian modular group of
degree 2 explicitly by means of generalized Atkin-Lehner involutions and show
that it admits a natural description in the orthogonal context.

2 Preliminaries

The special unitary group SU(n, n;C) consists of all matrices

M = (A B
C D ) ∈ SL2n(C) satisfying M

tr
JM = J, (1)

J =
(
0 −I
I 0

)
, I =

(
1 0

. . .
0 1

)
,

where the blocks A,B,C,D are always square matrices.

Lemma 1. Given M = (A B
C D ) ∈ SU(n, n;C) then

detA, detB, detC, detD ∈ R.

Proof. It suffices to show the result for the A-block, because the other cases
are obtained from multiplication with J . As detA = 0 is clear, let detA 6= 0.
Then we have

(
I 0

−CA−1 I

)
M

(
I −A−1B
0 I

)
=

(
A 0

0 A
tr−1

)
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due to (1). Hence
1 = detM = (detA)

/
(detA)

yields the claim.

The group SU(n, n;C) acts on the Hermitian half-space (cf. [3])

Hn := {Z ∈ Cn×n; 1
2i(Z − Z

tr
) positive definite}

via
Z 7→ M〈Z〉 = (AZ +B)(CZ +D)−1.

Throughout this paper let

K = Q(
√
−m) ⊆ C, m ∈ N squarefree,

be an imaginary-quadratic number field. Its discriminant and ring of integers
are

dK =

{
−m

−4m
and

OK = Z+ ZωK =

{
Z+ Z(1 +

√−m)/2, if m ≡ 3 (mod 4),

Z+ Z
√−m, if m ≡ 1, 2 (mod 4).

Denote its unit group by O∗
K
.

The Hermitian modular group of degree n is given by

Γn(OK) := SU(n, n;C) ∩ O2n×2n
K

.

It is well-known that Γ1(OK) = SL2(Z).

2.1 Reduction to triangular form

We review two lemmas on discrete subgroups ∆n,K of SU(n, n;C), whose proofs
follow closely previous work. In the first lemma we determine the integrality
properties of the entries of any M ∈ ∆n,K.

Lemma 2. Let ∆n,K be a discrete subgroup of SU(n, n;C) containing Γn(OK)
or a subgroup of SU(n, n;C), which contains Γn(OK) as a normal subgroup.
Given M ∈ ∆n,K there exists u ∈ C\{0} such that

uM ∈ O2n×2n
K

.

Any such u satisfies ℓ = |u|2 ∈ N.

Proof. Γn(OK) possesses a fundamental domain of finite positive volume in
Hn due to [3]. If ∆n,K is discrete, we can proceed in exactly the same way as
Ramanathan [23], Theorem 1. We have r = [∆n,K : Γn(OK)] < ∞ and conclude

(MRM−1)s ∈ Γn(OK) for all R ∈ Γn(OK), s := r! .
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We use this for

R =

(
I H
0 I

)
,

(
I 0
H I

)
, H = H

tr ∈ On×n
K

. (2)

If R =
(
A∗ B∗

C∗ D∗

)
, A∗ = (aij), we end up with

saijakℓ ∈ OK for all i, j, k, ℓ = 1, . . . , n.

The same holds for B∗, C∗, D∗. Thus the existence of u ∈ C\{0} satisfying

uM = L ∈ O2n×2n
K

follows. The identity

|u|2J = (uM)trJ(uM) = L
tr
JL

yields |u|2 ∈ OK ∩ R = Z, because the elements on the right hand side are
integral. If Γn(OK) is normal in ∆n,K, we can take the same arguments with
s = 1.

The second lemma in this section is a result of Ensenbach [7] (cf. [25]), which
allows us to simplify the shape of M ∈ ∆n,K.

Lemma 3. Let ∆n,K be a discrete subgroup of SU(n, n;C) containing Γn(OK)
or a subgroup of SU(n, n;C), which contains Γn(OK) as a normal subgroup.
Given M ∈ ∆n,K there exists an R ∈ Γn(OK) such that

RM =

(
A∗ B∗

0 D∗

)
, A∗ ∈ SLn(C).

Proof. Apply Lemma 2 and let L = uM = (A B
C D ) ∈ O2n×2n

K
. Then (C

tr
, A

tr
) is

a Hermitian pair in the sense of Braun [2]. Due to [2], Theorem 3, there exists
a coprime pair in this class, which can be completed to a matrix in Γn(OK).
Multiplying by its inverse yields the shape of RM . If ∆n,K is discrete, we
obtain | detA∗| = 1 as the index [∆n,K : Γn(OK)] is finite. If Γn(OK) is nomal
in ∆n,K then (2) for H = I yields | detA∗|2, | detD∗|2 ∈ Z, hence | detA∗| = 1.
In view of Lemma 1 we may multiply by

(
P 0
0 P

)
, P = diag (1, . . . , 1,−1),

in order to obtain detA∗ = 1.

3 Consequences for discrete subgroups

We start our investigation of discrete subgroups of SU(n, n;C), with the special
case of subgroups of SU(n, n;K).
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Lemma 4. Let ∆n,K be a discrete subgroup of SU(n, n;K) containing Γn(OK).
Then

∆n,K = Γn(OK).

Proof. We assume that there exists an M ∈ ∆n,K with an entry in K\OK.
Then there is a prime ideal ℘ ⊆ OK and an entry x of M = (mij) such that
the exponent e(x, ℘) of the prime ideal decomposition of OKx is < 0. Choose
M = (A B

0 D ), A = (aij), as in Lemma 3 with C = 0 and assume without
restriction that

e(a11, ℘) ≤ min{e(mij , ℘), 1 ≤ i, j ≤ 2n}.
After multiplying with matrices

(
U

tr
0

0 U−1

)
, U =

(
1 0
g I

)
,

(
1 gtr

0 I

)
, g ∈ On−1

K
,

we may assume

e(a11, ℘) < min{e(aj1, ℘), e(a1j , ℘), j = 2, . . . , n}.

Considering Ar = (a∗ij), r ∈ N, we get

e(a∗11, ℘) = r e(a11, ℘) ≤ e(a∗ij , ℘), 1 ≤ i, j ≤ n},
e(a∗11, ℘) < min{e(a∗j1, ℘), e(a∗1j , ℘), j = 2, . . . , n}.

Since the multiplication by unimodular matrices does not change the ideal
generated by the entries of M r, the cosets

Γn(OK)M
r, r ∈ N0,

are mutually distinct. This contradicts

[∆n,K : Γn(OK)] < ∞.

An immediate application is

Corollary 1. Let ∆n,K be a discrete subgroup of SU(n, n;C) containing
Γn(OK). Then ∆n,K is contained in the normalizer of Γn(OK) in SU(n, n;C).

Proof. Let M ∈ ∆n,K, u ∈ C\{0}, M = 1
uL, L ∈ O2n×2n

K
according to

Lemma 2. Then

MΓn(OK)M
−1 = LΓn(OK)L

−1 ⊆ ∆n,K ∩ SU(n, n;K).

Hence we can apply Lemma 4 to the group generated by Γn(OK) and
MΓn(OK)M

−1. The result is

MΓn(OK)M
−1 = Γn(OK).
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Now let M = 1
uL, L ∈ O2n×2n

K
, belong to the normalizer of Γn(OK) in

SU(n, n;C), ℓ = uu ∈ N and recall that I(L) stands for the ideal generated by
the entries of L. If N denotes the reduced norm of an ideal in OK, we obtain

Lemma 5. I(L) is an invariant of the double coset with respect to Γn(OK).
One has

a) ℓ = N (I(L)), ℓOK = I(L) · I(L),
b) un ∈ OK, u

nOK = I(L)n.

Proof. I(L) does not change, if we multiply by unimodular matrices. Using
Lemma 3 with A∗ = 1

uA we get

un = detA ∈ OK.

Then AD
tr

= ℓI yields ℓ ∈ I(L) · I(L). As the proof of Lemma 2 shows

xy ∈ ℓOK for all entries x, y of L,

we obtain
I(L) · I(L) ⊆ ℓOK

and therefore equality. Computing the reduced norm N we get

ℓ2 = N (ℓOK) = N (I(L) · I(L)) = N (I(L))2.

Computing the determinant we obtain

un = detA ∈ I(L)n, i.e. unOK ⊆ I(L)n

hence
ℓn = | detA|2 = N (unOK) ≥ N (I(L))n = ℓn.

Therefore unOK = I(L)n follows.

We are now in position to establish our main theorem.

Proof of Theorem 1. a) Given M = 1
uL, M

′ = 1
u′
L′ ∈ ∆∗

n,K we have

(uu′)nOK ⊆ I(LL′)n ⊆ I(L)n · I(L′)n = unOK · u′nOK,

hence MM ′ ∈ ∆∗
n,K. The result follows from

M−1 =

(
D

tr −B
tr

−C
tr

A
tr

)
.

b) At first M = 1
uL = 1

u′
L′ with integral L,L′ implies

u′

u I = L′L−1 ∈ GL2n(K),
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hence
u′

u ∈ K and u′

u OK · I(L) = I(L′).

Thus [I(L)] ∈ CℓK[n] is well-defined by M . Hence the map is a homomophism
of the groups due to Lemma 5 and a). If dK 6= −3,−4 we have

unOK = vnOK ⇔ un = ±vn ⇔ u = εv, ε2n = 1.

Given [A] ∈ IK[n] we may assumeA ⊆ OK. According to [8], Satz 2.1, resp. [24]
there is a matrix A ∈ On×n

K
with elementary divisors A, . . . ,A and OK detA =

An, i.e.

A ∈ An×n, OK detA = An, u :=
n
√
detA ∈ C, ℓ = uu = N (A). (3)

Then we have AGA−1 ∈ On×n
K

for all G ∈ On×n
K

as well as 1
ℓAA

tr ∈ SLn(OK).
Thus

M = 1
u

(
A 0
0 D

)
∈ ∆∗

n,K, D = ℓA
tr−1

follows. As this M is mapped onto [A], the map is surjective.

c) Observe that the image consists of at most hK elements. Thus

[∆∗
n,K : Γn(OK)] < ∞

follows. Hence ∆∗
n,K is discrete. Thus it coincides with the normalizer of Γn(OK)

according to Corollary 1. The result on the factor group follows from b).

It is a consequence of the proof that representatives of the Γn(OK)-cosets in
∆∗

n,K can be given in the form

(
A

tr
0

0 A−1

)
, A = 1

uL ∈ SLn(C), u ∈ C, L ∈ On×n
K

, I(L)n = OK detL.

(4)

We formulate a special case and include the cases dK = −3,−4 from Theorem 1
in

Corollary 2. Let K be an imaginary-quadratic number field such that the
class number hK is coprime to n. Then the extended Hermitian modular group
is equal to

{
diag (ε, . . . , ε, εδ, ε, . . . , ε, εδ)M ; M ∈ Γn(OK), ε ∈ C, δ ∈ O∗

K, ε
2nδ2 = 1

}
.

If n = 1 our result reproves the fact that SL2(Z) = Γ1(OK) = ∆∗
1,K coincides

with its normalizer and maximal discrete extension in SL2(R).

The same arguments as in (4) can be used in order to obtain
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Corollary 3. Let K be an imaginary-quadratic number field. Then the max-
imal discrete extension of SLn(OK) in SLn(C) coincides with the normalizer
of SLn(OK) in SLn(C) and is given by

{
1
uL ∈ SLn(C); L ∈ On×n

K
, 0 6= u ∈ C, OK detL = I(L)n

}
.

The explicit description of this group in the case n = 2 is contained in [21].

Remark 1. a) The result for SU(n, n;K) differs from the corresponding result
for Sp(n;K) in [23], Theorem 2, as the index [∆∗

n,K : Γn(OK)] is not independent
of n. Moreover the factor group does not only contain elements of order 1 or 2,
if n > 2.
b) The entries of the coset

(
A

tr
0

0 A−1

)
Γn(OK)

in (4) are algebraic integers of the algebraic number field Q(
√−m,u) of degree

≤ 2n, because (a/u)n ∈ OK for any entry a of A.
c) It follows from (4) that

Mn ∈ Γn(OK) for all M ∈ ∆∗
n,K.

4 Orthongonal groups

We have a closer look at the Hermitian modular group for n = 2. We also
revisit a family of isomorphisms between SU(2, 2;C)/{±I} and the connected
component SO0(2, 4;R) of the special orthogonal group SO(2, 4;R). We deter-
mine isomorphisms that are compatible with the discrete subgrous Γn(OK) and
thus allow us to shed a different light on our main theorem.
Let d ∈ N be a squarefree divisor of dK. Then

Ad = OKd+ OK(m+
√
−m) ⊆ OK

is the unique ideal of reduced norm d in OK. If e|dK is squarefree and coprime
to d the prime ideal decomposition yields

A2
d = dOK, Ad · Ae = Ade.

Following [21] we determine u, v ∈ Z such that

ud− v(m2 +m)/d = 1,

i.e.

Vd :=
1√
d

(
ud v(m+

√
−m)

m−
√
−m d

)
∈ SL2(C), Wd :=

(
V

tr

d
0

0 V −1

d

)
∈ SU(2, 2;C).

(5)

Then we get

Γ2(OK)Wd = WdΓ2(OK) =

{
1√
d
M ∈ SU(2, 2;C); M ∈ A4×4

d

}
.
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Theorem 2. For an imaginary-quadratic number field K, the extended Hermi-
tian modular group of degree 2 is given by

∆∗
2,K =

⋃

d|dK,d �−free

Γ2(OK)Wd.

It contains Γ2(OK) as a normal subgroup of index 2ν ,

ν := ♯{p; p prime, p|dK},

and the factor group satisfies

∆∗
2,K/Γ2(OK) ∼= Cν

2 .

Proof. The result follows from Theorem 1, Corollary 2 and [21]. But we also
give a direct proof. Let

M = 1
uL = 1

u

(
A∗ B∗

0 D∗

)
∈ ∆∗

2,K

according to Theorem 1 and Lemma 3. Then N (A∗) = ℓ = uu ∈ N and
| detA∗|2 = ℓ2. If we consider (ℓ + detA∗)M instead of M , if necessary, we
may assume detA∗ ∈ N. Cancelling integers we may even assume 1

rA
∗ 6∈ O2×2

K

for r > 1, hence

M =
1√
ℓ
L.

In view of ℓOK = I(L)2 due to Theorem 1, we conclude that ℓ is a squarefree
divisor of dK from the prime ideal decomposition in OK.

We consider particular examples in

Remark 2. a) One has

iI ∈ Γ2(OK)Wm,

hence

∆∗
2,K = Γ2(OK) ∪ (iI)Γ2(OK),

if dK 6= −4 is a prime discriminant. If dK = −4 one has

(
1+i√

2

)(U 0
0 U

)
∈ Γ2(OK)W2, U =

(
1 0
0 i

)
,

and therefore

∆∗
2,K = Γ2(OK) ∪

(
1+i√

2

)(
U 0
0 U

)
Γ2(OK).

This group is isomorphic to U(2, 2;OK) and already appeared, when the at-
tached graded ring of Hermitian modular forms was determined (cf. [10]).
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b) Theorem 1 and Theorem 2 reprove a result of Hecke that

CℓK[2] ∼= Cν−1
2 .

c) If CℓK = CℓK[2] we conclude that

∆∗
n,K =





⋃
ε∈C, ε2n=1

εI · Γ2(OK), if n is odd,

⋃
ε∈C, ε2n=1

d|dK, d �−free

εI · ŴdΓn(OK), if n is even,

where
Ŵd = diag (V

tr

d , . . . , V
tr

d , V −1
d , . . . , V −1

d ) ∈ SU(n, n;C).

Moreover there is another group involved in this context, namely

GK :=

{
1√
k
M ∈ SU(2, 2;C); k ∈ N, M ∈ O4×4

K

}
⊇ SU(2, 2;K),

which naturally appears in the associated Hecke theory (cf. [7], [25]).

Now we consider the orthogonal setting. Let

S =

(
2 2Re(ωK)

2Re(ωK) 2ωKωK

)
, S0 =



0 0 1
0 −S 0
1 0 0


 , S1 =



0 0 1
0 S0 0
1 0 0


 .

Then S1 is of signature (2, 4). We define the attached special orthogonal group
by

SO(S1;R) := {M ∈ SL6(R); S1[M ] := M tr
1 S1M = S1}

and denote by SO0(S1;R) the connected component of the identity matrix I.
Let

ΣK := {M ∈ SO0(S1;R); M ∈ I + Z6×6S1}
stand for discriminant kernel and Σ∗

K
:= SO0(S1;Z) for the full group of inte-

gral matrices in SO0(S1;R).
The group SO0(S1;R) acts on the orthogonal half-space (cf. [13])

HK := {z = x+ iy = (τ1, z, w, τ2)
tr ∈ C4, Im τ1 > 0, ytrS0y > 0}

via

z 7→ M̃〈z〉 := 1

M̃{z}
(
− 1

2S0[z]b+Kz + c
)
,

where

M̃ =



α atrS0 β
b K c
γ dtrS0 δ


 , M̃{z} = − γ

2S0[z] + dtrS0z + δ.
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We consider the bijection between the (complexified) Hermitian 2× 2 matrices
and R4 (resp. C4)

ϕ :

(
α β + γωK

β + γωK δ

)
7→ (α, β, γ, δ)tr ,

which satisfies
ϕ(H2) = HK.

There is an isomorphism between SU(2, 2;C)/{±I} and SO0(S1;R), where

±M 7→ M̃ , given by

ϕ(M〈Z〉) = M̃〈ϕ(Z)〉, det(CZ +D) = M̃{ϕ(Z)} for all Z ∈ H2. (6)

Just as in [11] we obtain an explicit version, if we use the abbreviation

(
α β
γ δ

)♯

=

(
δ −β
−γ α

)

for the adjoint matrix, via φ(Z) = z

det(CZ +D) = M̃{z}, (AZ +B)(CZ +D)♯ = − 1
2S0[z]b+Kz + c,

where




α = detA, β = − detB, γ = − detC, δ = detD,
a = −ϕ(A♯B), b = −ϕ(AC♯), c = ϕ(BD♯), d = ϕ(C♯D),

Kz = ϕ(AZD♯ +BZ♯C♯).
(7)

Theorem 3. Let K be an imaginary-quadratic number field. Then the map

φ : SU(2, 2;C) → SO0(S1;R), M 7→ M̃,

given by (6) and (7) is a surjective homomorphism of the groups with kernel
{±I}. It satisfies

φ(GK) = SO0(S1;Q),

φ(∆∗
2,K) = Σ∗

K,

φ(Γ2(OK)) = ΣK.

Proof. The groups on the left hand side are generated by the matrices

J,

(
I H
0 I

)
, H = H

tr
,

(
U

tr
0

0 U−1

)
, detU ∈ R\{0},

with coefficients in the appropriate set. This is clear for SU(2, 2;C) (cf. [19]),
with a slight adaption also for GK, for Γ2(OK) due to [16], Theorem 3, and for
∆∗

2,K by virtue of Theorem 2. Hence the image is contained in the right hand
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side in any case.
On the other hand it follows from [20] that the groups on the right hand side
are generated by matrices of the type

J̃ =




0 0 P
0 I 0
P 0 0


 , P =

(
0 −1
−1 0

)
,



1 λtrS0 − 1

2S0[λ]
0 I λ
0 0 1


 ,



1 0 0
0 K 0
0 0 1


 ,

K ∈ SO0(1, 3).

They appear as images of elements in the groups on the left hand side due to
(7), if one invokes [21] for the last type of matrices. As the kernel of φ is clearly
{±I}, the claim follows.

Remark 3. a) By Theorem 1 and 3 clearly Σ∗
K
is the normalizer and the max-

imal discrete extension of ΣK in SO0(S1;R).
b) The result on the normalizer for n = 2 is contained in [27] with a completely
different proof. Applications to Hermitian modular forms are described in [28].
It is clear from (4) that the Siegel-Eisenstein series for Γn(OK) (cf. [2]) is a
modular form with respect to the extended Hermitian modular group ∆∗

n,K.
c) Köhler [18] showed that the paramodular group of degree 2 and squarefree
level N can be embedded into the Hermitian modular group Γ2(OK), if N = uu
for some u ∈ OK. The normalizer of the paramodular group (cf. [17]) can be
embedded into ∆∗

2,K, whenever m = N .
d) Theorem 3 illustrates that the exceptional isogeny between the real Lie
groups SU(2, 2;C) and SO0(S1;R) in general does not decend to an isogeny
of algebraic groups (cf. [12]). Indeed, when constructing the underlying iso-
morphism of the special unitary and the spin group, one typically employs
a diagonal quadratic from of signature (2, 4) as opposed to the one that is
associated with S1.

5 Field extensions associated with discrete groups

There is no analogue of the isomorphism between SU(2, 2;C)/{±I} and
SO0(S1;R) for general n, which we utilized when inspecting the special
case n = 2. Let µ ⊆ C be the set of 2n-th roots of unity. Theorem 1 con-
nects the quotient group ∆∗

n,K/µΓn(OK) with the n-torsion subgroup of the
ideal class group of K if dK 6= −3,−4. Class groups of imaginary-quadratic
number fields including their n-torsion are elusive, only conjecturally governed
by the Cohen-Lehnstra heuristic [5] and its recent global refinement [15]. For
this reason a detailed description of ∆∗

n,K for general n is out of reach. We
next narrow down the field of definition of ∆∗

n,K and provide an algorithm to
compute representatives of ∆∗

n,K/µΓn(OK) for given K and n.
The field of definition of ∆∗

n,K is

K̂n = K̂
(
∆∗

n,K

)
:= Q

(
mi,j ; M = (mij) ∈ ∆∗

n,K, 1 ≦ i, j ≤ 2n
)
⊆ C. (8)
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Clearly Remark 1 b) yields

∆∗
n,K ⊆ O2n×2n

K̂n

.

Obviously K ⊆ K̂n holds for n ≥ 2. We quote some examples from our con-
siderations above. Therefore let ζr = e2πi/r stand for a primitive r-th root of
unity.

Examples. a) Clearly K̂1 = Q holds.
b) If n = 2 Theorem 2 yields

K̂2 = Q(ζ4,
√
p; p prime, p|dK).

c) One has for n ≥ 2

K̂n =

{
K[ζ4n], if dK = −4,

K[ζ6n], if dK = −3.

If hK is coprime to n and n ≥ 2, dK 6= −3,−4, then

K̂n = K[ζ2n]

holds.

d) If CℓK = CℓK[2] and n ≥ 2, dK 6= −3,−4, we have

K̂n =

{
K[ζ2n], if n is odd,

K[ζ2n,
√
p, p prime, p|dK], if n is even.

The examples show that K̂n is an interesting number field. We want to gener-
alize the fact that only ramified primes appear in the definition of K̂2 to the
case of arbitrary n.

Theorem 4. Let K be an imaginary-quadratic number field. Then the field
extension

K̂n = K̂(∆∗
n,K) ⊇ Q

is ramified exactly at the primes dividing ndK.

Proof. Observe that K and Q(µ) are ramified at dK and n. Since K̂n contains

both K and Q(µ), we conclude that K̂n is ramified at ndK.

In the remainder of the proof, we show that K̂n is unramified outside of ndK.
Recall that the composite of two field extension F ⊇ K and F ′ ⊇ K is unram-
ified at a prime ideal p ⊆ OK if and only if both F and F ′ are so.
Let n ≥ 2, as K̂1 = Q is trivial. Moreover dK = −3 and dK = −4 are clear due
to the Example. Therefore let dK 6= −3,−4. We have K ⊆ K(∆∗

n,K) and the
matrix entries of elements of Γn(OK) lie in K. Observe that K is unramified
outside of dK. The cyclotomic field Q(µ) is unramified outside of n. Therefore,
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we can focus on the ramification of fields generated by representatives of ∆∗
n,K/

µΓn(OK).

Since ∆∗
n,K/µΓn(OK) ∼= CℓK[n] is finite, we conclude that it suffices to show the

analogue of Theorem 4 for individual elements M of ∆∗
n,K. This allows us to

employ Theorem 1 b) and further restrict to fields generated by the entries of
the matrices 1

u (A 0
0 D ) ∈ ∆∗

n,K in (3).

Now, recall from, for example, Section 3.1 of [4] that the Hilbert class field L

of K is defined as the maximal abelian unramified extension of K and we may
assume L ⊆ C by fixing an embedding. L has the property that every ideal A ⊆
OK yields a principal ideal AOL ⊆ OL. More precisely, L ⊇ K is a Galois
extension with Galois group canonically isomorphic to CℓK. The n-torsion
subgroup of CℓK via the Galois correspondence gives rise to an intermediate
extension

L ⊇ L[n] ⊇ K

with the property that an ideal A ⊆ OK yields a principal ideal AOL[n] ⊆ OL[n]

if and only [A] ∈ CℓK[n]. This can be inferred from, for instance, the unique
factorization property of ideals in OK and the splitting behavior over L of prime
ideals in OK, which is outlined in [4].

Choose an ideal A ⊆ OK satisfying [A] ∈ CℓK[n] and let A ∈ On×n
K

be a matrix
with elementary divisors A, . . . ,A as in the proof of Theorem 1. Then there is
an element u′ ∈ OL[n] such that AOL[n] = u′OL[n]. Set v = det A/u′n ∈ O∗

L[n].

Then we have un = det A with u = u′ n
√
v, and therefore 1

u (A 0
0 D ) ∈ ∆∗

n,K for D,
again, as in the proof of Theorem 1. In particular, we have found a preimage
of [A] ∈ CℓK[n] under the homomorphism in Theorem 1 b), whose entries are
contained in L[n]( n

√
v).

To finish the proof, we have to show that L[n]( n
√
v) ⊇ Q is unramified outside

of ndK. As L ⊇ K is unramified, so is L[n] ⊇ K. If p ⊆ OK is a prime ideal that
does not divide n, then the polynomial Xn − v is separable modulo p, since its
derivative nXn−1 does not vanish modulo p and neither does v.

We turn to the computation of representatives of ∆∗
n,K/µΓn(OK), which we have

implemented based on the computer algebra package Hecke [9]. By virtue of the
proof of both Theorem 1 and 4, it is naturally reduced to finding matrices 1

uA

of determinant 1 with A ∈ On×n
K

and elementary divisors A, . . . ,A for [A] ∈
CℓK[n]. The computation of such A is achieved by the function hermitian

extension in [26].

The two key aspects of hermitian extension are the use of the Hilbert class
field in [26] and the function elementary divisor matrix. The latter pro-
duces an n × n matrix A over OK with elementary divisors A, . . . ,A. To this
end, we employ pseudo-matrices from Definition 1.4.5 of [4]. Specifically, the

pseudo-matrix Ã = (I, (A, . . . ,A)) trivially has the desired elementary divi-

sors. The Steinitz form of Ã is a pseudo-matrix Ã′, whose associated ideals are
trivial, save the last one, which equals the Steinitz class of the ideals associated
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with Ã (cf. Theorem 1.2.12 of [4]). Since [A] ∈ CℓK[n] by assumption, this
Steinitz class is principal and yields the desired matrix A.
We conclude this paper with a brief excerpt of discriminants of the fields gen-
erated by the entries of ∆∗

n,K, which we have obtained through our script.
Observe that the powers of the discriminant of K originate in the Hilbert class
field.

Table 1: Discriminants d
K̂n

of the fields generated by the entries of ∆∗
n,K given

n and K = Q(
√−m)

m −23 −31 −59 −83

n 3

d
K̂n

314 233 314 313 314 593 314 833

m −39 −55 −56 −68 −84

n 4

d
K̂n

272 316 1316 272 516 1116 244 78 248 178 232 38 78
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[16] Klingen, H. Über die Erzeugenden gewisser Modulgruppen. Nachr.
Akad. Wiss. Göttingen, Math.-Phys.-Chem. Abt. 1956:173–183, 1956.
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