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Abstract. Let G be a connected split reductive group over a com-
plete discrete valuation ring of mixed characteristic. We use the theory
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1 Introduction

Let o denote a complete discrete valuation ring of mixed characteristic p0, pq,
with fraction field L and perfect residue field k. Let G be a connected split
reductive group over o with L-Lie algebra g “ LiepGq b Q.

In [39] we have introduced and studied the crystalline distribution algebra
D:pGq associated to the p-adic completion G of G. It is a certain weak com-
pletion of the classical universal enveloping algebra Upgq. The interest in the
algebra D:pGq comes at least from two sources. On the one hand, it has the
universal property to act as global arithmetic differential operators (in the sense
of Berthelot [6]) on any formal o-scheme which has a G-action. On the other
hand, D:pGq is canonically isomorphic to Emerton’s analytic distribution alge-
bra DanpG˝q as introduced in [26]. Here, G˝ equals the rigid-analytic generic
fibre of the formal completion of G along its unit section. Analytic distribu-
tion algebras are useful tools to study locally analytic representations p-adic
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Lie groups. Let GpLq be the group of L-valued points of G and let Gpnq˝ be
the n-th rigid-analytic congruence subgroup of G (with Gp0q˝ “ G˝). Any
irreducible admissible locally analytic GpLq-representation V has an infinites-
imal character θ and a level n. The latter equals the least natural number
n ě 0 such that VGpnq˝´an ‰ 0, i.e. such that V contains a nonzero Gpnq˝-
analytic vector. The dual space pVGpnq˝´anq1 is naturally a module over the
ring DanpGpnq˝q. Coherent modules over a central reduction like DanpGpnq˝qθ
can be viewed as a p-adic local data, in analogy to classical Harish-Chandra
modules for admissible representations of real-analytic Lie groups.

In this article, we only consider the simplest case: representations of level zero
and with trivial infinitesimal character θ0. We then propose to study the irre-
ducible modules over the ringD:pGqθ0 . Our approach will be geometric through
some crystalline version of localization, similar to the classical procedure of lo-
calizing Upgq-modules. Recall that, in the classical setting of Upgq-modules, a
combination of the Beilinson-Bernstein localization theorem over the flag va-
riety of g together with the formalism of intermediate extensions [3, 13, 35]
produces a geometric classification of many irreducible modules, namely those
which localize to D-modules which are holonomic.

Let in the following B Ă G be a Borel subgroup scheme. In [40] we have
established an analogue of the Beilinson-Bernstein theorem for the sheaf of
arithmetic differential operators D

:
P

on the formal completion P of the flag

scheme P “ G{B: one has a canonical isomorphism H0pP ,D:
P

q » D:pGqθ0
and the global sections functor H0pP ,´q furnishes an equivalence between the

category of coherent D
:
P
-modules and coherent D:pGqθ0 -modules. A quasi-

inverse is given by the adjoint functor L ocpMq “ D
:
P bD:pGqθ0

M . This allows

to pass back and forth between modules over D:pGqθ0 and sheaves on P .

On the other hand, Abe-Caro have recently developed a theory of weights in
p-adic cohomology [1]. On the way, they also developed a formalism of inter-
mediate extensions for arithmetic D-modules. Our aim is to use a combination
of Abe-Caro’s theory, specialized to the flag variety, and localization to obtain
classification results for irreducible D:pGq-modules.

We emphasize straightaway that our results are arithmetic analogues of classi-
cal results on algebraic D-modules on the complex flag variety [35]. However,
the arithmetic setting requires much more care, since the functors in question
(direct images, intermediate extensions etc.) are not straightforward general-
izations of the classical functors and much more subtle. Moreover, we con-
sequently work in absence of Frobenius structures. Since many foundational
results on arithmetic D-modules and p-adic cohomology do contain Frobenius
structures as a standard hypothesis, our level of generality requires several new
arguments in many places.

To be more precise, we introduce some more notation. A nonzero D:pGqθ0 -
module M is called geometrically overholonomic (that we will abbreviate as
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geo-overholonomic), if its localization L ocpMq is overholonomic after any base
change. We then consider the parameter set of pairs pY, Eq where Y Ď Ps

is a connected smooth locally closed subvariety of the special fibre Ps with
Zariski closure X , and E is an irreducible overconvergent isocrystal on the
couple Y “ pY,Xq, which is overholonomic after any base change.1 Two pairs
are equivalent pY, Eq „ pY 1, E 1q if X “ X 1 and the two isocrystals E , E 1 coincide
on an open dense subset of X . Given such a pair pY, Eq we put

LpY, Eq :“ v!`pEq

where v : Y Ñ P “ pPs,Psq is the immersion of couples associated with Y

and v!` is its arithmetic intermediate extension functor. We then have, cf.
Theorem 4.2.3:

Theorem 1. The correspondence pY, Eq ÞÑ H0pP ,LpY, Eqq induces a bijection

tpairs pY, Equ{„
»

ÝÑ tirreducible geo-overholonomic D:pGqθ0-modulesu{»

For example, each couple Y is equipped with the constant overconvergent
isocrystal OY. If Z is a divisor in Ps and U “ PzZ with Y “ pUs,Psq,
then OY “ OP,Qp:Zq equals functions on U with overconvergent singulari-
ties along Z. In general, if Y admits a formal lift with connected rigid-analytic
generic fibre, then OY is irreducible and corresponds therefore to an irreducible
overholonomic D:pGqθ0 -module.

In general, we expect that many D:pGqθ0 -modules, in particular those which
come from admissible GpLq-representations, are in fact geometrically overholo-
nomic. As an example, we treat the case of highest weight modules (but there
are many more, already in dimension one, cf. Theorem 3 below). We show that
the central block of the classical BGG category O0 embeds, via the base change
Upgq Ñ D:pGq, fully faithfully into the category of coherent D:pGq-modules
(cf. Theorem 5.1.7). It is well-known that the irreducible modules in O0 are
parametrized by the Weyl group elements w P W via Lpwq :“ Lp´wpρq ´ ρq
where ρ denotes half the sum over the positive roots and where Lp´wpρq´ρq de-
notes the unique irreducible quotient of the Verma module with highest weight
´wpρq ´ ρ. We write

L:pwq :“ D:pGq bUpgq Lpwq

for its crystalline counterpart. On the other hand, let

Yw :“ BwB{B Ă P “ G{B

be the Bruhat cell in P associated with w P W and letXw be its Zariski-closure,
a Schubert scheme. We have the couple Yw “ pYw,s, Xw,sq and the immersion
v : Yw Ñ P. Our second main result is the following, cf. Theorem 5.1.9:

1This extra condition is automatic, if E has a Frobenius structure.
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Theorem 2. Let w P W . One has a canonical D
:
P -linear isomorphism

L ocpL:pwqq » v!`pOYw
q.

The D:pGq-module L:pwq is geometrically overholonomic.

In the final section, we discuss in more detail the exampleG “ SL2. In this case,
P equals the projective line over o and we show that any irreducible coherent
D

:
P
-module is in fact holonomic. This implies that any irreducible D:pGqθ0 -

module is geometrically holonomic (i.e. localizes to a holonomic module). We
explain the difference between holonomic and overholonomic in this case. In
this case, theorem 1 gives a classification in terms of isocrystals on either a
closed point y of P1

k or an open complement Y of finitely many closed points
Z “ ty1, ..., ynu of P1

k. In the first case, the point is a complete invariant.
For example, the point y “ 8 corresponds to L:p´2ρq. In the second case,
the empty divisor Z “ ∅ corresponds to the trivial representation. For a
non-empty Z, we may suppose that all its points y1, ..., yn are k-rational with
y1 “ 8. There are then two extreme cases

Y “ A1
k and Y “ P1

kzP1pkq,

the affine line and Drinfeld’s upper half plane, respectively. We illustrate the
two by means of two ”new” examples. In the case Y “ A1

k we assume that L
contains the p-th roots of unity µp and we choose an element π P o with

ordppπq “ 1{pp´ 1q.

We let Lπ be the coherent D
:
P -module defined by the Dwork overconvergent

F -isocrystal on Y associated with π. On the other hand, we let n “ L.e be
the nilpotent radical of LiepBq, where e “

`
0 1
0 0

˘
. Let η : n Ñ L be a nonzero

character and consider Kostant’s standard Whittaker module

Wθ0,η :“ Upgq bZpgqbUpnq Lθ0,η

with character η and infinitesimal character θ0 , cf. [42, Formula (3.6.1)] for its
original definition over the complex numbers. It is an irreducible Upgq-module
[11, Lemma 5.3], but not a highest weight module, i.e. it does not lie in O0.
We write

W
:
θ0,η

:“ D:pGq bUpgq Wθ0,η

for its crystalline counterpart. Our third main result is the following, cf. 5.2.3:

Theorem 3. Let ηpeq :“ π. There is a canonical D
:
P -linear isomorphism

L ocpW :
θ0,η

q
»

ÝÑ Lπ.

The crystalline Whittaker module W :
θ0,η

is geometrically overholonomic.

The theorem shows, in particular, that the Dwork isocrystal Lπ is algebraic
in the sense that it comes from an algebraic DP1

L
-module, namely LocpWθ0,ηq,
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by extension of scalars DP1

L
Ñ D

:
P . However, the holonomic DP1

L
-module

LocpWθ0,ηq is not regular, but has an irregular singularity at infinity.

We discuss an example in the Drinfeld case, where Y “ P1
kzP1pkq. We identify

k “ Fq. We assume that L contains the cyclic group µq`1 of pq ` 1q-th roots
of unity. The space Y admits a distinguished unramified Galois covering u :
Y 1 Ñ Y with Galois group µq`1, given by the so-called Drinfeld curve

Y 1 “
!

px, yq P A2
k | xyq ´ xqy “ 1

)
.

The latter admits a smooth and projective compactification Y 1. The covering
map u extends to a smooth and tamely ramified morphism u : Y 1 Ñ P1

k which
maps the boundary bijectively to Z “ P1pkq. We denote by u : Y1 Ñ Y the
morphism of couples induced by u in this situation and we let

E “ R‚urig,˚OY1

be the relative rigid cohomology sheaf. Using results of Grosse-Klönne [29], we
show that E admits an isotypic decomposition into overconvergentF -isocrystals
Epjq on Y of rank one. In particular, each pair pY, Epjqq corresponds in the clas-
sification of theorem 1 to an irreducible geometrically overholonomic D:pGqθ0 -
module H0pP , v!`Epjqq.

We do not know whether the modules H0pP , v!`Epjqq are algebraic, in the sense
that they arise by base change from irreducible Upgq-modules. If algebraic, to
which class do they belong? We recall that irreducible Upgq-modules fall into
three classes: highest weight modules, Whittaker modules and a third class
whose objects (with a fixed central character) are in bijective correspondence
with similarity classes of irreducible elements of a certain localization of the
first Weyl algebra [11]. We plan to come back to these questions in future work.

We would like to warmly thank Daniel Caro for his quick and precise answers to
our questions on overholonomic modules and on several other related problems
for arithmetic D-modules. We also like to thank the anonymous referee whose
comments have led to an improvement of the text at several places.

Notations and Conventions. In this article, o denotes a complete discrete valu-
ation ring of mixed characteristic p0, pq. We let L be its fraction field and k its
residue field, which is assumed to be perfect. We suppose that there exists a
lifting of the Frobenius of k to o. We denote by ̟ a uniformizer of o. All formal
schemes X over o are assumed to be locally noetherian and such that ̟OX is
an ideal of definition. Without further mentioning, all occuring modules will
be left modules.

2 Overholonomic modules and intermediate extensions

For a smooth formal o-scheme X we denote by D
:
X the sheaf of arithmetic

differential operators on X (with p inverted). We refer to [6] for the basic
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features of the category of D
:
X-modules.

2.1 Overholonomic modules

We introduce the framework of overholonomic complexes of arithmetic D-
modules (without Frobenius structure), stable after any base change following
Caro [20], Abe-Caro [1], [2].

Recall that a variety over some field k is a reduced, separated, k-scheme of
finite type.
A frame pY,X,Pq is the data consisting of a separated and smooth formal
scheme P over o, a closed subvariety X of its special fibre Ps, and an open
subscheme Y of X . A morphism between two such frames is the data u “
pb, a, fq consisting of morphisms b : Y 1 Ñ Y, a : X 1 Ñ X, f : P 1 Ñ P such that
f induces b and a. A l.p. frame pY,X,P ,Qq is the data of a proper and smooth
formal scheme Q over o, an open formal subscheme P Ă Q such that pY,X,Pq
is a frame. A morphism of l.p frames is defined in analogy to a morphisms of
frames. It is called complete if the morphism a : X 1 Ñ X is proper.
A couple Y is the data pY,Xq consisting of a k-varietyX and an open subscheme
Y Ă X such that there exists a l.p. frame of the form pY,X,P ,Qq. A morphism
of couples is the data u “ pb, aq consisting of morphisms b : Y 1 Ñ Y, a : X 1 Ñ X

such that b is induced by a. It is called complete if a is proper. Let P be a
property of morphisms of schemes. One says that u is c-P if u is complete and
b satisfies P. For all this, cf. [1, Subsection 1.1].

Denote by P a smooth and proper formal scheme over o.

Let E be a complex of overholonomic D
:
P
-modules, as introduced by Caro [16,

Section 3]. Following [2, Section 1], we say that E is overholonomic after any
base change if the following is true. For any morphism k Ñ k1 of perfect fields,
denote o1 “ o bW pkq W pk1q (where W pkq, resp. W pk1q is the Witt vector ring
of k, resp. k1), f the canonical morphism P 1 “ P ˆSpf o Spf o

1 Ñ P . Then E is
stable by any base change if for any such morphism k Ñ k1, f˚E is a complex of
overholonomic modules. This category is stable by all cohomological operations
except (maybe) by tensor product.

We denote by Db
ovholpD

:
P

q the triangulated category of complexes of overholo-

nomic D
:
P
-modules. Note that by [20, Exemple 3.2.2], an element of the tri-

angulated category of complexes of overholonomic D
:
P

endowed with a Frobe-
nius structure is stable by any base change. In particular, the category F -
Db

ovholpD
:
P

q is the same as the usual one introduced in [1] (without any base
change condition).
Let Z be a closed subset of Ps, the special fibre of P . There are two functors
RΓ:

Z and p:Zq defined on Db
ovholpD

:
P q giving rise to a localization triangle

RΓ:
ZpEq Ñ E Ñ p:ZqE

`1
Ñ

for E P Db
ovholpD

:
P

q, cf. [1, Subsubsection 1.1.8].
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Let now Y “ pY,Xq be a couple such that pY,X,P ,Pq is a l.p. frame. By
abuse of notation, we will sometimes denote the frame pY,X,Pq (or even the
l.p. frame pY,X,P ,Pq) by Y, too. This should not cause confusion. Let

Z :“ XzY and U :“ PzZ.

For E P Db
ovholpD

:
P q one sets

RΓ:
Y pEq :“ RΓ:

X ˝ p:ZqpEq.

The categoryDb
ovholpY{Lq of overholonomic complexes on Y, stable by any base

change, is defined to be the full subcategory of Db
ovholpD

:
Pq formed by objects E

such that there is an isomorphism E
»

ÝÑ RΓ:
Y pEq [1, Définition 1.1.5].

The couple P is obtained by taking Y “ X “ Ps and then Db
ovholpP{Lq “

Db
ovholpD

:
Pq.

We shall make use of the following two lemmas later on.

Lemma 2.1.1. Let α be a morphism in Db
ovholpY{Lq. Then α is an isomorphism

in Db
ovholpY{Lq if and only if α|U is an isomorphism in DbpD:

U q.

Proof. This is [1, Lemma 1.2.3].

Lemma 2.1.2. Let Q be a smooth formal o-scheme, E P Db
cohpD:

Qq, X and T
two closed subsets of Q and S :“ T

Ş
X. Assume that E|QzT has support in

XzT , then we have the following isomorphism RΓ:
Xp:SqpEq » p:T qE.

Proof. First remark that the canonical morphism RΓ:
Xp:T qE Ñ p:T qE is an

isomorphism outside T by hypothesis, between two coherent D
:
Qp:T q-modules,

so that it is an isomorphism and the module p:T qE has support in X . Then we
may apply the Mayer-Vietoris exact sequence [14, Théorème 2.2.16] and obtain
an exact triangle

p:SqE Ñ p:T qE
à

p:XqE Ñ p:pT
ď
XqqE

`1
Ñ .

The result follows then from RΓ:
Xp:XqE “ RΓ:

Xp:pT
Ť
XqqE “ 0.

As a next step, recall that there is a canonical t-structure on Db
ovholpY{Lq, cf.

[1, Subsection 1.2]. First of all, Dě0
ovholpY{Lq is defined to be the strictly full

subcategory of objects E P Db
ovholpY{Lq such that

E|U P Dě0pD:
Uq

(analogously for ď 0). The truncation functors relative to the couple Y are
defined to be

τYě0 “ p:Zq ˝ τě0 resp. τYď0 “ p:Zq ˝ τď0,
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where τě0 resp. τď0 are the usual truncation functors. The functors τYě0 and
τYď0 define a t-structure on Db

ovholpY{Lq whose heart is denoted by OvholpY{Lq
[1, Definition 1.2.9]. As the truncation functors commute with base change,
the category OvholpY{Lq is stable by any base change.

Main examples: (i) In the case where Y “ P, the category OvholpP{Lq is the

category of overholonomic arithmetic D
:
P
-modules on P , stable by any base

change.
(ii) If Z is a divisor in Ps with open complement Y “ PszZ and Y “ pY,Ps,Pq,

then OvholpY{Lq is the category of overholonomic D
:
Pp:Zq-modules, stable by

any base change.

Definition 2.1.3. Let Y “ pY,X,Pq be a frame and let Z “ XzY . If Y is
smooth, and if there exists a divisor T of Ps such that

Z “ X
č
T,

we say that Y is smooth outside of T . In this case, we let UT :“ PzT .

For the rest of this subsection, we let Y “ pY,X,Pq be a frame which is smooth
outside T , for some divisor T Ă Ps.

In this case, the category of coherent D
:
P

p:Zq-modules contains a full subcate-
gory, denoted by Caro

Isoc::pY{Lq,

which is equivalent to the category of overconvergent isocrystals on Y , over-
convergent along Z, the equivalence being given by a certain specialization
functor [1, Subsubsection 1.2.14]. This category does not depend on the choice
of the ambient formal scheme P . Since we work here with modules without
Frobenius structure, we consider from now on the full subcategory of objects
of Isoc::pY{Lq, belonging to OvholpY{Lq, thus consisting of objects which are
overholonomic after any base change.
To avoid too many notations, let us keep the notation Isoc::pY{Lq for this
category. The following result is due to Caro.

Theorem 2.1.4. (Caro) Let Y “ pY,X,Pq be smooth outside a divisor T Ă Ps.

Let E be a coherent D
:
P -module, that is an overholonomic D

:
Pp:T q-module, sta-

ble by any base change (see [14] and [20]), and such that E|UT
P impspY ãÑUT ,`q,

which means that

(i) the module E|UT
has support in Y ,

(ii) for any affine open V Ă UT , for any smooth formal scheme Y lifting
Y

Ş
V and for any lifting v : Y ãÑ V of the closed immersion Y

Ş
V ãÑ V,

the module v!E|V is coherent over OY.

Then E P Isoc::pY{Lq.
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Proof. This is [18, Corollaire 3.5.10] and [15, Théorème 2.5.10].

In the situation of the theorem, there is the following equivalent characterisa-
tion of the objects in the subcategory impspY ãÑU ,`q, which we will use later
on.

Proposition 2.1.5. Let Y “ pY,X,Pq be smooth outside a divisor T Ă Ps and

let E be a coherent D
:
UT

-module. Then E P impspY ãÑUT ,`q if and only if

(i) the module E|UT
has support in Y and

(ii) there exist affine opens pUiqiPI of UT , such that

(a) pYi :“ Y
Ş

UiqiPI is a Zariski cover of Y ,

(b) for each i, there exists a smooth formal affine scheme Yi lifting Yi
and a lifting ui : Yi ãÑ Ui of the closed immersion Yi ãÑ Ui, such
that u!iE|Ui

is a coherent OYi
-module.

Proof. Let us start with maps of smooth affine formal schemes as in the state-
ment

ui : Yi Ñ Ui

with Yi a smooth lifting of Yi. Let us consider an affine open V and a lifting
v : Y ãÑ V of the closed immersion Y

Ş
V ãÑ V as in (ii) of 2.1.4. We have to

show that v!E|V is a coherent OY-module. This is a local question on Y. We
put Vi :“ Ui

Ş
V and may thus work over each

Zi :“ Y
č

Vi.

Let vi :“ v|Zi
: Zi ãÑ Vi be the restriction of the map v and put Ei :“ E|Vi

. We
shall also need the restrictions ui :“ ui|YiXV : Yi

Ş
V ãÑ Vi. The maps vi and

ui are thus liftings of the closed immersion Yi :“ Y
Ş

Vi ãÑ Vi. Since Zi and Yi

are affine, there exists, by formal smoothness, an isomorphism a : Zi » Yi

Ş
V

of o-formal schemes; The following diagram of formal schemes is not necessarily
commutative but induces a commutative diagram of special fibers

Vi Vi

Zi
a

„
//?�

vi

O

Yi

Ş
V .

?�

ui

O

We can thus apply [15, Proposition 2.2.2] and we see that there is an isomor-
phism of functors vi`a

! » ui`. Applying this to u!iEi and using Berthelot-
Kashiwara theorem for the closed immersion Yi

Ş
V ãÑ Vi we find that

vi`a
!u!iEi » Ei. Using Berthelot-Kashiwara theorem for the closed immer-

sion Zi ãÑ Vi, we get that v!iEi » a!u!iEi. By hypothesis, u!iEi is a coherent
OYi

Ş
V -module, so that v!iEi is a coherent OZi

-module as well, which proves
our claim.
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2.2 Intermediate extensions

We keep the notation of the previous subsection. We introduce the intermedi-
ate extension functor for arithmetic D-modules following Abe-Caro [1]. Note
that this part of Abe-Caro’s article does not make use of the fact that the
residue field k is finite, as they state at the beginning of their paper. All their
results remain thus true when we consider the category of modules, which are
overholonomic after any base change.

Let
u : Y ÝÑ Y1

be a complete morphism of couples. There is a canonical homomorphism

θu,E : u!E ÝÑ u`E

for any complex E P Db
ovholpYq, cf. [1, Subsubsection 1.3.4]. The morphism is

compatible with composition in the following sense: if w “ u2 ˝ u1, where u1
and u2 are c-complete morphisms of couples, then

u2! ˝ u1!

θu2˝u1

88

u2!pθu1
q
// u2! ˝ u1`

θu2
pu1`q

// u2` ˝ u1` (2.2.0)

by [1, Proposition 1.3.7]. We denote by an exponent p´q0 “ H0
t p´q the appli-

cation of the first cohomology sheaf H0
t “ τYď0τ

Y
ě0 relative to the t-structure on

Db
ovholpY{Lq (and similar for Y1). If u is a c-immersion, and if E P OvholpY{Lq,

then the intermediate extension of E on Y1 is defined to be

u!`pEq :“ impθ0u,E : u0! E Ñ u0`Eq.

Note that if u is a c-affine immersion, then u` and u! are t-exact by [1, Re-
mark 1.4.2], so that the definition simplifies to

u!`pEq “ impθu,E : u!E Ñ u`Eq.

Remark: There are also versions with Frobenius F -Isoc::pY{Lq and F -
OvholpY{Lq [1, Subsubsections 1.2.13/14], which we will occasionally make use
of (e.g. in subsection 3.4). The category F -Isoc::pY{Lq is a full subcategory of
F -OvholpY{Lq. The intermediate extension functor preserves Frobenius struc-
tures [1, Definition 1.4.1]. Recall that in this case, the base change condition
on overholonomic modules is automatically satisfied.

2.3 A classification result

We keep the notation of the previous subsections. In particular, P still denotes
a smooth and proper formal scheme over o. Our goal here is to classify the
D

:
P
-modules overholonomic after any base change, which are irreducible, up to
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isomorphism. Although this is in analogy to the classical setting of algebraic
D-modules on complex varieties [35, Sous-section 3.4], this requires some care,
since the functors in questions (direct images, intermediate extensions etc.) are
not straightforward generalizations of the classical functors.

We will only consider couples that arise from a smooth locally closed subvariety
Y Ď Ps by taking its Zariski closure X “ Y in Ps. Then pY,X,Pq is a frame
and pY,X,P ,Pq is a l.p. frame and Y “ pY,Xq is a couple. By abuse of
notation, we will sometimes denote the frame pY,X,Pq (or even the l.p. frame
pY,X,P ,Pq) by Y, too. This should not cause confusion.

For such a couple Y “ pY,Xq, we consider the corresponding c-locally closed
immersion

v : Y ÝÑ P.

The associated intermediate extension functor between categories of overholo-
nomic modules, stable by any base change,

v!` : OvholpY{Lq ÝÑ OvholpP{Lq,

is given by

v!`pEq :“ im
`
θ0v,E : v0! E ÝÑ v0`E

˘
.

Let us suppose for a moment that Y Ď Ps is closed and lifts to a closed
immersion Y Ď P between o-smooth closed formal schemes. Then OvholpY{Lq

identifies with the category of overholonomic D
:
Y
-modules and the functor v!`

coincides with the direct image functor appearing in the Berthelot-Kashiwara
equivalence [9]. By the latter equivalence, the functor v!` induces a bijection

between the (isomorphism classes of) irreducible D
:
Y -modules and irreducible

D
:
P
-modules supported on Y .

The case of a closed immersion generalizes as follows. Recall that OvholpY{Lq
denotes the category of overholonomic modules on Y stable by any base change.

Lemma 2.3.1. Let M P OvholpP{Lq. There is an open dense smooth subscheme
U Ă Ps with the property: if u: U “ pU ,Ps,Pq Ñ P denotes the corresponding
c-open immersion, then u!M is an overconvergent isocrystal on U, which is
overholonomic after any base change.

Proof. The module M is overcoherent with finite extraordinary fibers, and by
[17, Théorème 3.7], there exists a divisor T such that p:T qM is an overconver-
gent isocrystal along T . Denote U “ PzT , and u: U ãÑ P the c-immersion of
triples, then u!M “ p:T qM is an overconvergent isocrystal on U. Since M is
overholonomic, so is u!M, by stability of overholonomicity under inverse image
(no Frobenius structure needed), cf. [1, Subsubsection 1.3.14].

Since any overholonomicD
:
P -moduleM is coherent by definition [16, Section 3],

we may view its support SupppMq as a closed reduced subvariety of Ps.
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Proposition 2.3.2. Let M be an irreducible object of OvholpP{Lq. There is an
open dense smooth affine subscheme of an irreducible component of SupppMq
with the property: if v : Y Ñ P denotes the corresponding immersion, then
E :“ v!M is an irreducible overconvergent isocrystal on Y. Moreover, the
overconvergent isocrystal E lies in OvholpY{Lq and v!`pEq “ M.

Proof. Take Xs an irreducible component of SupppMq, then there exists some
divisor T 2 Ă Ps such that U “ PzT 2 is affine, Y 1

s “ Xs

Ş
pPszT 2q is a smooth

affine dense open subset of Xs, and T
2 contains all the irreducible components

of SupppMq which are not equal to Xs (6.0.2). Denote

U :“ pUs,Ps,Psq and Y1 :“ pY 1
s , Xs,Psq.

Since the scheme Y 1
s is smooth and affine, there exists a smooth affine formal

scheme Y1 lifting Y 1
s over Spf o, and since U is a formally smooth Spf o-formal

scheme, the closed immersion Y 1
s ãÑ Us can be lifted to a closed immersion

k̃: Y1
ãÑ U . Note that SupppM|Uq “ Y 1

s by our choice of Z. The overholo-

nomic module M is a D
:
P -module, so that M|U is a overholonomic D

:
U -module

with support in Y 1
s , and N “ k̃!M|U is an overholonomic D

:
Y1-module by

Caro-Kashiwara theorem for overholonomic complexes [16, Théorème 2.11].
The module N is in particular overcoherent after any base change with finite
extraordinary fibers and using [17, Théorème 3.7] we see that there exists
some divisor T 1 of Y1 such that p:T 1qN is an overconvergent isocrystal. This
isocrystal is overholonomic after any base change as well, by stability of over-
holonomicity by localization [16, Proposition 2.4, (5)]. It can not be zero,

otherwise SupppN q would be contained in T 1. Let T
1
be the closure of T 1

in Xs.

Then by 6.0.3 T
1 Ş

Y 1
s “ T 1 and by 6.0.1 there exists a divisor T of Ps such

that V “ PzT is affine, T
1 Ť

T 2 Ă T and

Y “ V
č

Y1 Ă Y1zT 1

is open, hence dense, in Y 1
s (note that Y 1

s is irreducible, since its closure is).
Note that Ys “ V

Ş
Xs, so that the frame Y “ pYs, Xs,Psq is smooth outside

the divisor T . Denote by v the c-affine immersion Y Ñ P and by k the closed
immersion Y ãÑ V . As N|Y1zT 1 is a locally free OY1zT 1-module of finite type,

the module N|Y “ k!M|V is a locally free OY-module of finite type and we can

apply 2.1.4 and 2.1.5 to see that E “ p:T qM P Isoc::pY{Lq. It is non zero by
construction.
Then by 2.1.2, we see that E “ p:T qM “ v!M. In particular, E is over-
holonomic after base change, by stability of overholonomicity under inverse
image [1, Subsubsection 1.3.14]. Denote V “ pUs,Ps,Pq, a the c-open affine
immersion V Ñ P. As a is the inclusion of the complement of a divisor
T of Ps, a

!0M “ a!M “ p:T qM P OvholpV{Lq and is irreducible by [1,
Lemma 1.4.6], since it is non zero. Since the module p:T qM has support in
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X again by 2.1.2, we can apply Abe-Caro’s version of Kashiwara’s theorem
[1, Proposition 1.3.2(iii)] for the c-closed immersion Y ãÑ V which implies that
E “ v!M P OvholpY{Lq is irreducible.
Moreover, by adjointness [1, Lemma 1.1.10]

Hompv!E ,Mq “ HompE , v!Mq ‰ 0

and there is therefore a non-zero morphism v!E Ñ M. In other words, M is
a quotient of v!E . But v!E “ v0! E , since Ys is affine, and v!`E is the unique
irreducible quotient of v0! E [1, Proposition 1.4.7(ii)]. We therefore must have
v!`E “ M.

Consider now a pair pY, Eq where Y Ď Ps is a connected smooth locally closed
subvariety and E is an irreducible overconvergent isocrystal on Y “ pY,Xq,
which belongs to OvholpY{Lq, the category of overholonomic modules on Y

that is stable after base change. We write

LpY, Eq :“ v!`pEq P OvholpP{Lq.

Remark: We recall that any overconvergent F -isocrystal on Y “ pY,Xq is
automatically overholonomic [1, Subsubsection 1.2.14].

Proposition 2.3.3. The D
:
P -module LpY, Eq is an irreducible object of

OvholpP{Lq, with support Y and satisfies v!LpY, Eq “ E.

Proof. The irreducibility statement and the fact that 0 ‰ v!LpY, Eq Ă v!v0`E “
E follow from [1, Proposition 1.4.7(i)] and its proof. As it is irreducible as

an overholonomic D
:
P -module, it is a fortiori irreducible as an element of

OvholpP{Lq (with base change condition). Since E is irreducible, v!LpY, Eq “ E
as claimed or by [1, Lemma 1.4.5(ii)]. Finally, if k : Y Ñ U is a c-closed immer-
sion and u : U Ñ P a c-open immersion such that v “ u˝k, then v!` “ u!` ˝k!`
[1, Lemma 1.4.5(i)]. The support of k!`E “ k`E equals Y and the support of
LpY, Eq “ u!`k!`E equals Y .

Two pairs are said to be equivalent pY, Eq „ pY 1, E 1q if Y “ Y 1 and there is an
open dense U Ă Y contained in the intersection Y X Y 1 such that u!E » u1!E 1.
Here u denotes the c-open immersion U “ pU, Y ,Pq Ñ Y and similarly for u1.
This defines an equivalence relation „ on the set of pairs.

Theorem 2.3.4. The correspondence pY, Eq ÞÑ LpY, Eq induces a bijection

tpairs pY, Equ{„
»

ÝÑ tirreducible objects of OvholpY{Lqu{»

Proof. Let us show that the map in question is well-defined. Let pY, Eq and
pY 1, E 1q be two equivalent couples. Choose an open dense U Ă Y contained in
the intersection Y X Y 1 such that u!E » u1!E 1. Note that v ˝ u “ v1 ˝ u1. Define
F “ pv ˝ uq!LpY, Eq and similarly for LpY 1, E 1q. Then pv ˝ uq!`F “ LpY, Eq
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according to 2.3.2 and F “ u!v!LpY, Eq “ u!E according to 2.3.3. Hence,
F » F 1 and we obtain LpY, Eq » LpY 1, E 1q.
Let us next show that the map is injective. So suppose that LpY, Eq » LpY 1, E 1q
for two couples pY, Eq and pY 1, E 1q. Then 2.3.3 implies Y “ Y 1 and moreover,
if U Ă Y is open dense and contained in the intersection Y X Y 1, then pv ˝
uq!LpY, Eq “ u!E . Since v ˝ u “ v1 ˝ u1, we obtain u!E » u1!E 1 as desired.
This proves the injectivity. The surjectivity of the map is a direct consequence
of 2.3.2.

Let Y Ď Ps be a smooth locally closed subvariety and Y “ pY,Xq.

Definition 2.3.5. Let d :“ dimpPsq ´ dimpY q. We define the constant over-
holonomic module on the frame Y to be

OY “ RΓYpOP,Qqrds.

Proposition 2.3.6. Suppose that Y is connected and there exists a smooth
formal scheme Y over o, so that the immersion Y Ñ P lifts to some morphism
of formal schemes Y ãÑ P. The module OY lies in F -Isoc::pY{Lq. If the rigid-
analytic generic fiber YL is connected, then OY is an irreducible object in the
category OvholpY{Lq.

Proof. Denote Z “ XzY and U “ PzZ. We have the closed immersion of
smooth formal schemes v : Y ãÑ U . Then, by [7, Proposition 1.4], we see that

OY|U “ RΓYpOU ,Qqrds » v`v
!OU ,Qrds “ v`OY .

This coincides with sp`OY and hence lies in the category F -Isoc::pY,U{Lq, in

the notation of [1, Subsubsection 1.2.14]. This shows OY P F -Isoc::pY{Lq.

The irreducibility statement is based on the following lemma.

Auxiliary lemma. Let Q be a connected smooth formal scheme over o and
QL its generic fiber (as rigid analytic space). Assume furthermore that QL is
connected.

(i) The constant isocrystal OQL
is irreducible in the category of convergent

isocrystals.

(ii) The coherent D
:
Q-module OQ,Q is irreducible in the category of D

:
Q-

modules.

Proof of the auxiliary lemma. We begin by (i). Let E be a subobject of OQL

in the abelian category of convergent isocrystals over QL, and E1 “ OQL
{E

be the quotient. As convergent isocrystals over QL, E and E1 are locally free
OQL

-modules so that there exists an admissible cover by affinoids Ui (i P I)
such that E|Ui

and E1
|Ui

are free OUi
-modules for each i. Fix i0 and denote
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by A “ ΓpUi0 ,OUi0
q. Since Ui0 is affinoid, we have an exact sequence of free

A-modules
0 Ñ ΓpUi0 , Eq Ñ A Ñ ΓpUi0 , E

1q Ñ 0.

Take x a point of Ui0 , and Lpxq its residue field, then the previous exact se-
quence remains exact after tensoring by Lpxq, meaning that ΓpUi0 , Eq is either
equal to 0 or to A. Assume for example that this is equal to 0, so that E|Ui0

“ 0
by Tate’s acyclicity theorem. By Zorn’s lemma there is a maximal subset J Ă I

such that E|Ui
“ 0 for each i P J . Assume that J ­“ I then J 1 “ IzJ is not

empty. By connectedness, the union
Ť

iPJ 1 Ui intersects the union
Ť

iPJ Ui, thus
there exist l P J 1, i P J such that Ul

Ş
Ui ‰ H. Since E|Ul

is either equal to 0
or to OUl

, we see that it is zero by restricting to Ul

Ş
Ui, which contradicts the

fact that J ‰ I. This proves (i).
For (ii) we use then that the abelian category of convergent isocrystals over
the generic fiber QL of the formal scheme Q is equivalent to the category of
coherent D

:
Q
-modules, that are coherent OQ,Q-modules ([6, Proposition 4.1.4]).

The functors sp˚ and sp˚ realize this equivalence of categories. Let E be a non-
zero coherent D

:
Q
-submodule ofOQ,Q, then E “ sp˚E is a convergent isocrystal,

that is a subobject of OQL
. By (i), it is either 0 or equal to the constant

convergent isocrystal OQL
. Thus E is either 0 or OQ,Q and this proves (ii).

Thus the auxiliary lemma is proved.

Let us come back to the proof of the proposition. Let α : E ãÑ OY be an
injective morphism in the category OvholpY{Lq. As remarked in the beginning
of the proof,

OY|U “ RΓYpOU ,Qqrds » v`v
!OU ,Qrds “ v`OY .

By Kashiwara’s theorem for the closed immersion v : Y ãÑ U [9] and the

previous lemma, v`OY is irreducible in the category of coherent D
:
U
-modules

with support in Y, so that E|U is either 0 or equal to v`OY . Using 2.1.1, we
conclude that E is either 0 or equal to OY.

Example: If T is a divisor in Ps , U :“ PzT and Y “ pUs,Ps,Pq, then

OvholpY{Lq is the usual category of overholonomic D
:
P

p:T q-modules. In this
case, if U and its generic fiber UL are connected, then the constant overholo-
nomic module OY “ OP,Qp:T q is an irreducible D

:
P

p:T q-module by the previous
proposition (applied to Y “ Us).

Proposition 2.3.7. The module v!`pOYq is an overholonomic F -D:
P -module,

which is irreducible as D
:
P
-module.

Proof. This follows from the Theorem 2.3.4 and the above proposition.

3 Some compatibility results between generic and special fibre

We keep the notations introduced in the preceding section. In this section,
we place ourselves into certain integral situations involving schemes over o and
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establish various compatibilities between the classical intermediate extensions
on generic fibres and Abe-Caro intermediate extensions arising after reduction
on the special fibre. We will focus in particular on the cases of open immersions
and proper morphisms.

The results of this section are then applied in the final section 5 in the case
of highest weight representations, in order to compare intermediate extensions
over the Bruhat cells in generic and special fibre, cf. Proposition 5.1.8 and
Theorem 5.1.9.

3.1 Notations

For a o-scheme X , we write Xs and XQ for its special and generic fiber respec-
tively. We denote

Xi “ X ˆ Spec o{̟i`1

and write X for the associated formal scheme obtained by ̟-adic completion.
We also have the frame X “ pXs, Xs,Xq.

If f : X Ñ Y is a morphism of o-schemes, then fs, fQ, fi and f̂ will denote
the induced morphisms Xs Ñ Ys, XQ Ñ YQ, Xi Ñ Yi and X Ñ Y respectively.

Moreover, F “ pfs, fs, f̂q will denote the induced morphism of frames X Ñ Y.

3.2 Open immersions

Let P be a smooth scheme over o. The closed immersions Pi ãÑ P for any i
give rise to a canonical ringed space morphism

α : P “ limÝÑ
i

Pi Ñ P.

This morphism α comes with the diagram

P
α
Ñ P

j
Ðâ PQ

which will be our basic underlying structure in the following.

We record a first simple property.

Lemma 3.2.1. (i) There is a canonical isomorphism

OP,Q » j˚OPQ
.

(ii) There is a canonical isomorphism

D
pmq
P,Q » j˚DPQ

for any m.
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Proof. For the first isomorphism, we see that there is a canonical morphism
of quasi-coherent OP -sheaves, OP Ñ j˚OPQ

, sending a local section f to f .
After tensoring with Q, we get a map OP,Q Ñ j˚OPQ

and if P “ SpecA, this
morphism is the Identity of AQ “ ΓpP,OP,Qq “ ΓpP, j˚OPQ

q. This proves (i).
For (ii), we start with the canonical morphism

D
pmq
P Ñ j˚DPQ

» j˚D
pmq
P,Q .

We deduce from this a morphism D
pmq
P,Q Ñ j˚DPQ

. To check that it is an
isomorphism, it is enough to consider the case where P is affine with local
coordinates x1, . . . , xM . Then both sheaves are free OP,Q-modules with basis

Bk and we conclude using (i).

If E is a quasi-coherent OPQ
-module, one defines

E :“ α´1j˚E .

Lemma 3.2.2. The formation E ÞÑ E is an exact functor from quasi-coherent
OPQ

-modules to OPQ
-modules. It extends to a derived functor Db

qcohpOPQ
q Ñ

DbpOPQ
q.

Proof. This statement comes from the fact that the functor j˚ is exact on quasi-
coherent OPQ

-sheaves, since j is affine, as well as α´1. The functor E ÞÑ E is
thus exact as the composition of two exact funtors.

In particular, one can consider the sheaf DPQ
over the formal scheme P .

Lemma 3.2.3. There is an injective flat morphism of sheaves of rings

DPQ
ãÑ D

:
P
.

Proof. If U Ă P is an open affine of P with local coordinates x1, ..., xM , then
we have the following description

ΓpU, α˚pD:
Pqq “

#ÿ

ν

aνBrνs | aν P OU b Q | Dc ą 0, η ă 1, ||aν || ď cη|ν|

+

and

ΓpU,DP,Qq “

$
&
%

ÿ

ν,finite

aνBrνs | aν P OU b Q

,
.
- .

This gives the inclusion. For the flatness, we know that D
:
P is flat over pDp0q

P,Q

[6, Cor. 3.5.4]. Moreover the sheaf pDp0q
P

is flat over D
p0q
P , by completion, so

that D
:
P

is flat over DPQ
.

The proof of the following lemma is easy and left to the reader.
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Lemma 3.2.4. (i) Let E be a coherent DPQ
-module, then D

:
P b

DPQ

E is a

coherent D
:
P
-module.

(ii) Let E P Db
cohpDPQ

q, then D
:
P b

DPQ

E P Db
cohpD:

P q.

The following proposition of commutation of duality with scalar extension is
due to A. Virrion. Her statement involves perfect complexes, but as PQ is
smooth, the sheaf DPQ

has finite cohomological dimension and the category

Db
cohpDPQ

q coincides with the category of perfect complexes of DPQ
-modules.

Proposition 3.2.5. Let E P Db
cohpDPQ

q, then

D
:
P b

DPQ

D
DPQ

pEq » D
D

:
P

pD:
P b

DPQ

Eq.

Proof. This is [55, Propositions 1.4 and 4.4].

Let us recall that, if d “ dimpPQq,

DDPQ
pEq :“ RHomDPQ

pE ,DPQ
rdsq bOPQ

ωPQ
.

Definition 3.2.6. Let P be a smooth o-scheme, Z Ă P a divisor, we say
that Z is a transversal divisor if Zs and ZQ are divisors respectively of Ps and
PQ.

In the following, let Z be a transversal divisor in P .

We write j for the open immersion P zZ Ă P . We can define, for E a coherent
DPQ

-module,

p˚ZQqE “ DPQ
p˚ZQq bDPQ

E .

Note that p˚ZQqE “ jQ`jQ!E . In the same way, we define for E a coherent

D
:
P -module,

p:ZsqE “ D
:
P

p:Zsq b
D

:
P

E .

Let Y “ P zZ with immersion j : Y ãÑ P and let J be the frame morphism

J : Y :“ pYs, Ps,Pq Ñ P :“ pPs, Ps,Pq.

Then p:ZsqE “ J`J
!E . By definition, in this situation, J` is the forget functor

from the category OvholpY{Lq to the category OvholpP{Lq. Moreover the
functor jQ` is exact since ZQ is a divisor of PQ and induces an equivalence
of categories between coherent DPQ

p˚ZQq-modules and coherent DYQ
-modules.

At the level of sheaves of OYQ
-modules, jQ` “ jQ˚. Recall also that in this

situation objects of OvholpY{Lq consist of degree zero complexes of D
:
P p:Zsq-

modules by [1, Remark 1.2.7 (iii)].
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Proposition 3.2.7. Let E P Db
holpYQq, such that F “ D

:
P b

DPQ

jQ`E P

Db
ovholpYq. Let cQ resp. C be the canonical isomorphism E » DYQ

˝ DYQ
pEq

resp. F » DY ˝ DYpFq. Then we have a commutative diagram

jQ`E
jQ`cQ //

1bidjQ`E

��

jQ`DYQ
˝ DYQ

pEq

��

J`pD:
P b

DPQ

jQ`Eq
J`C // J`DY ˝ DY

´
D

:
P b

DPQ

jQ`E
¯
.

Proof. Let us first remark that the sheaf D
:
P p:Zsq is flat over D

:
P and thus

flat over DPQ
. This is why no derived tensor product appears in the previous

diagram. Moreover, it is enough to prove the statement for a single DYQ
-

holonomic module E such that F “ D
:
P

b
DPQ

jQ˚E is an overholonomic module

over Y. In this case, all complexes are single modules in degree 0. The top
horizontal arrow of the diagram is induced by the following map :

E // HomDYQ
pHomDYQ

pE ,DYQ
qq // DYQ

˝ DYQ
pEq

x
✤ // evxpϕq “ ϕpxq.

Recall that C : F Ñ DYDYF is defined in our case as follows: as F is over-
holonomic over Y, one has

F » p:ZsqF “ D
:
P

p:Zsq b
D

:
P

F .

We therefore see using the base change result [55, Propositions 1.4 and 4.4]
that

DYpFq “ D
:
Pp:Zsq b

D
:
P

DPpFq

“ RHom
D

:
P

p:ZsqpF ,D:
Pp:Zsqrdsq bOP

ωP ,

“ RHom
D

:
P

p:ZsqpF ,D:
Pp:Zsqrdsq bOPp:Zsq ωPp:Zsq,

and the canonical map C is then given by the following composition

F // Hom
D

:
P

p:ZsqpHom
D

:
P

p:ZsqpF ,D:
Pp:Zsqqq // DY ˝ DYpFq .

Note that C is an isomorphism, since it is an isomorphism when restricted to
PzZ by [6, Théorème 4.3.10]. Moreover, one has a canonical isomorphism

F » D
:
P p:Zsq b

DPQ
p˚ZQq jQ`E ,

so that we can use again [55, Propositions 1.4 and 4.4], to obtain the following
isomorphisms

DYpFq » D
:
P

p:Zsqb
DPQ

p˚ZQqRHomDPQ
p˚ZQqpjQ`E ,DPQ

p˚ZQqrdsqb
OP

ωP p˚Zq,
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DYpFq » D
:
Pp:Zsq b

DPQ
p˚ZQq jQ`DYQ

E ,

where we identify

jQ`DYQ
E “ RHomDPQ

p˚ZQqpjQ`E ,DPQ
p˚ZQqrdsq bOP

ωPQ
p˚ZQq.

Using again [55, Propostions 1.4 and 4.4] between the sheaves DPQ
p˚ZQq and

D
:
P p:Zsq, we find a canonical isomorphism

DYDYpFq » D
:
P

p:Zsq b
DPQ

p˚ZQq jQ`DYQ
DYQ

E ,

which allows us to write the diagram of the statement in the following way

jQ`E
jQ`cQ //

1bidjQ`E

��

jQ`DYQ
˝ DYQ

pEq

1bid

��
J`pD:

P p:Zsq b
DPQ

p˚Zsq jQ`Eq
J`C // D:

Pp:Zsq b
DPQ

p˚ZQq jQ`DYQ
DYQ

E .

The commutativity of this diagram follows then from the identity p1 b
idqpevxq “ evp1 b xq for a local section x P jQ`E .

Corollary 3.2.8. In the situation of the proposition, let E P Db
holpYQq, such

that F “ D
:
P

b
DPQ

jQ`E P Db
ovholpYq. We then have a commutative diagram

jQ`E
„ //

��

jQ`j
!
QjQ!E

��
D

:
P

b
DPQ

jQ`E
„ // J`J

!J!pD
:
P

b
DPQ

jQ`Eq.

Proof. We have the following equality as functors on Db
holpYQq

j!QjQ! “ j!QDPQ
jQ`DYQ

“ DYQ
j!QjQ`DYQ

“ DYQ
DYQ

» id.

On the other hand let us notice that J ! “ D
:
P p:Zsq b

D
:
P

¨ is a scalar extension

so that again by [55, Propositions 1.4 and 4.4], J !DP “ DYJ
!. Moreover if

F P Db
ovholpYq, J !J`F “ D

:
P p:Zsq b

D
:
P

F » F by definition of elements of

Db
ovholpYq. Using these remarks, we compute

J !J! “ J !DPJ`DY

“ DYJ
!J`DY

“ DYDY » id,
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so that the diagram of the corollary is the same as the diagram of the previous
Proposition 3.2.7.

We next give another compatibility statement.

Proposition 3.2.9. Let E P Db
holpPQq, such that F “ D

:
P b

DPQ

jQ`E P

Db
ovholpPq. Let can : E Ñ jQ`j

!
QE and CAN : F Ñ J`J

!F be the canoni-
cal morphisms. Then the following diagram is commutative

E
can //

��

jQ`j
!
QE

��
D

:
P b

DPQ

E
CAN // J`J

!pD:
P b

DPQ

Eq.

Proof. If we explicit all functors in our situation, we find the following diagram
that is clearly commutative

E
can //

��

DPQ
p˚ZQq b

DPQ

E

��
D

:
P b

DPQ

E
CAN // D:

P p:Zsq b
DPQ

E .

Recall that a relative normal crossing divisor is transversal.

Proposition 3.2.10. Let Z Ă P be a relative normal crossing divisor. Then
one has

OP,Qp:Zsq » D
:
P b

DPQ

jQ˚OYQ
.

Proof. This is a result of Berthelot, cf. [5, Proposition 4.3.2].

Note that the sheaf j˚OYQ
is equal toOPQ

p˚ZQq and the isomorphism is given by

the canonical inclusion of sheaves of rings OPQ
p˚ZQq ãÑ OP,Qp:Zsq, sending 1

to 1. This allows us to identify OP,Qp:Zsq with D
:
P

b
DPQ

j˚OYQ
“ OY. In the

same situation as in 3.2.7 we have

Proposition 3.2.11. Let Z Ă P be a relative normal crossing divisor.

(i) DYQ
OYQ

“ OYQ
, DYOY “ OY,

(ii) there is a canonical isomorphism J!OY » D
:
P

b
DPQ

jQ!OYQ
.
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Proof. The fact that DYQ
OYQ

“ OYQ
is classical and comes from the fact that on

the smooth scheme YQ, the DYQ
-module OYQ

admits a resolution by the Spencer
complex, and that this complex is auto-dual. To see the second statement, we
use the fact proved in [44, Lemme 4.2.1] that OY “ OP,Qp:Zsq also admits a
resolution by a Spencer complex (with d “ dim YQ)

0 Ñ D
:
P p:Zsq bOP

ΛdTP Ñ . . . Ñ D
:
P p:Zsq bOP

Λ1TP Ñ D
:
Pp:Zsq

that is auto-dual for the functor DY “ RHom
D

:
P

p:Zsqp ¨ ,D:
P

p:Zsqrdsq bOP
ωP .

This proves (i) and (ii) follows from the computation

J!OY “ DPJ`DYOY

“ DPJ`OY

“ DPpD:
P

b
DPQ

j`OYQ
q by 3.2.10,

» D
:
P

b
DPQ

DPQ
pj`OYQ

q by 3.2.5.

3.3 Proper morphisms

Before giving compatibility results for direct images relative to proper mor-
phisms, we establish two auxiliary lemmas.

Lemma 3.3.1. Let f : P Ñ Q be a morphism of smooth o-schemes and F P
D`

qcohpOPQ
q with F P D`pOPQ

q. There is a natural map RfQ˚pFq Ñ Rf̂˚pFq.

Proof. We have the following diagram

P
α //

f̂

��

P

f

��

PQ
j

oo

fQ

��
Q

α // Q QQ,
j

oo

in which both squares are commutative diagrams (the left one is commutative
as it is commutative when P and Q are replaced by Pi and Qi). Let E be a
quasi-coherent sheaf on PQ, we have a canonical map j˚E Ñ α˚α

´1j˚E . If we

compose this map by f˚, we get by adjunction by α a map fQ˚E Ñ f̂˚E . Let

F
»
Ñ I‚,‚ be an injective resolution of F by a double complex of quasi-coherent

OPQ
-modules. As the functor E ÞÑ E is exact on quasi-coherent OPQ

-modules,

we have a quasi-isomorphism Rf̂˚pFq » Rf̂˚pI‚,‚q. We finally obtain the map
of the lemma by the following composition

RfQ˚pFq » fQ˚pI‚,‚q Ñ f̂˚pI‚,‚q Ñ Rf̂˚pI‚,‚q » Rf̂˚pFq.
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Lemma 3.3.2. Let f : P Ñ Q be a morphism of smooth o-schemes, E P
Db

cohpDPQ
q. There is a canonical morphism in D`pDQQ

q

D
:
Q b

DQQ

fQ`pEq Ñ f̂`

´
D

:
P b

DPQ

E
¯
.

Proof. It is enough to prove that there is a morphism

fQ`pEq Ñ f̂`

´
D

:
P b

DPQ

E
¯
.

Denote the transfer sheaves DQQÐPQ
“ ωP {Q bOPQ

f˚
QDQQ

, and

pDpmq
PÑQ “ limÐÝ

i

f˚
i D

pmq
Qi

, pDpmq
QÐP “ ωP{Q bOP

pDpmq
PÑQ, D

:
QÐP “ limÝÑ

m

pDpmq
QÐP,Q.

Recall that

fQ`pEq “ RfQ˚

´
DQQÐPQ

bL

DPQ
E

¯
, f̂`

´
D

:
P b

DP
E

¯
“ Rf̂˚

´
D

:
QÐP bL

DP
E

¯
.

Note that we have

f´1
Q D

QQ

» α´1f´1pDQ b Qq “ f̂´1α´1pDQ b Qq,

and for all m ě 0, we have maps: α´1pDQq Ñ pDpmq
Q . The latter induce maps

f̂˚pα´1pDQqq Ñ pDpmq
PÑQ, which in turn give rise to maps of transfer sheaves

DQQÐPQ
Ñ D

:
QÐP

.

Take E P Db
cohpDPQ

q. Since DQQÐPQ
is a quasi-coherent OPQ

-module, we see
that

DQQÐPQ
bL

DPQ
E P Db

qcohpOPQ
q,

so that we can apply 3.3.1 to this complex of sheaves. The map of the statement
arises then from the composition

RfQ˚

`
DQQÐPQ

bL

DP
E

˘
Ñ Rf̂˚

´
DQQÐPQ

bL

DP
E

¯
Ñ Rf̂˚

´
D

:
QÐP bL

DP
E

¯
.

We assume from now on for the rest for this subsection that

f : P ÝÑ Q

is a proper morphism between smooth o-schemes.

Both sheaves DPQ
and D

:
P have finite cohomological dimension [8, Corollaire

4.4.8], as well as Rf˚ since f is proper. Take ˚ P t´, bu and E P D˚
cohpDPQ

q, then

fQ`pEq (resp. f̂`pD:
P b

DPQ

Eq are objects of D˚
cohpDQQ

q, (resp. D˚
cohpD:

Qq),

and thanks to the lemma, there is a map

D
:
Q

b
DQQ

fQ`pEq Ñ f̂`pD:
P

b
DPQ

Eq.
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Our goal (see 3.3.4) is to prove that this map is an isomorphism, provided
that P and Q are projective o-schemes.

As usual, we will factorize f into a closed immersion followed by a projection.
We first deal with the case of a closed immersion. So let i : P ãÑ Q be a closed
immersion of smooth o-schemes, defined by some sheaf of ideals I Ă OQ. We
then have the following compatibility result for closed immersions

Proposition 3.3.3. Let ˚ P t´, bu Let E P D˚
cohpDPQ

q, then there is a canonical

isomorphism in D˚
cohpD:

Qq

D
:
Q b

DQQ

iQ`pEq » ı̂`

´
D

:
P b

DPQ

E
¯
.

Proof. It is well known that i`Q sends D˚
cohpDPQ

q to D˚
cohpDQQ

q, resp. ı̂` sends

D˚
cohpD:

P q to D˚
cohpD:

Qq. Finally both functors send D˚
cohpDPQ

q to D˚
cohpD:

Qq.
The map from the LHS to the RHS is the one given in the previous Lemma 3.3.2.
Since i is a closed immersion, i is affine, it has finite cohomological dimension
and both functors are way out left in the sense of [34, Section I,7]. Proving that
the map is an isomorphism is a local question on Q, so that we can assume
that Q is affine and P as well. In this case any coherent DPQ

-module is a
quotient of a finite free DPQ

-module, and using a standard dévissage argument
for way out left functors [34, I, Proposition 7.1, (iv)] we are reduced to prove
the lemma in the case where E “ DPQ

. In this case, we have the following
formulas

iQ`pDPQ
q “ i˚

`
DQQÐPQ

˘
, ı̂`

´
D

:
P

¯
“ ı̂˚

´
D

:
QÐP

¯

As ı̂ is a quasi-compact morphism, Rı̂˚ “ ı̂˚ commutes with inductive limits
so that

ı̂˚

´
D

:
QÐâP

¯
“ lim

ÝÑ
m

ı̂˚

´
pDpmq
QÐâP,Q

¯
.

Let us fix an integer m, we have to show that

ı̂˚

´
pDpmq
QÐâP,Q

¯
» pDpmq

Q,Q b
DPQ

i˚
`
DQQÐPQ

˘
. (3.3.0)

We first compute the left hand side of this formula. By [9, Theorem 3.5.3], we

know that ı̂`p pDpmq
P

q is a coherent pDpmq
Q

-module, and as ı̂ is affine, we have by
[30, Proposition 13.2.3]

ı̂`p pDpmq
P

q » lim
ÐÝ
i

i˚pD
pmq
QiÐâPi

q. (3.3.1)

We now come to the right hand side of the formula 3.3.0. We need the

Auxiliary lemma. The sheaf i`pD
pmq
P q is a coherent D

pmq
Q -module.

Documenta Mathematica 26 (2021) 2005–2059



Intermediate Ext. and Crystalline Distrib. Algebras 2029

Proof. We have

i`D
pmq
P “ i˚

´
i˚ω´1

Q bOQ
i˚D

pmq
Q bOP

ωP

¯

» ω´1
Q bOQ

D
pmq
Q bOQ

i˚ωP by the projection formula,

the left D
pmq
Q -module structure being given by the one of ω´1

Q bOQ
D

pmq
Q , that

is by the right structure on D
pmq
Q twisted on the left, which makes this left

D
pmq
Q -module a coherent module. This proves the auxiliary lemma.

Returning back to the proof of the proposition, consider the pDpmq
Q -module

M “ pDpmq
Q b

α´1D
pmq
Q

α´1i`D
pmq
P .

The auxiliary lemma implies that M is coherent, and so [6, Proposition 3.2.4]
implies

M » lim
ÐÝ
i

D
pmq
Qi

b
D

pmq
Qi

i˚D
pmq
QiÐâPi

» lim
ÐÝ
i

i˚D
pmq
QiÐâPi

As MQ coincides with pDpmq
Q

b
DQQ

iQ`pDPQ
q, this module is isomorphic with

the right-hand side of 3.3.0. Comparing with the left-hand side 3.3.0 proves
the proposition.

As before, let ˚ P tb,´u.

Proposition 3.3.4. Let P , Q be smooth and projective o-schemes, let f : P Ñ
Q be a proper morphism, and f̂ : P Ñ Q be the formal completion of f . Let
E P D˚

cohpDPQ
q, then there is a functorial isomorphism in D˚

cohpD:
Qq

D
:
Q

b
DQQ

fQ`pEq » f̂`

´
D

:
P

b
DPQ

E
¯
.

Proof. We already noticed that both functors send objects of D˚
cohpDPQ

q to

objects of D˚
cohpD:

Q
q, as f has finite cohomological dimension. Moreover both

functors are way out left in the sense of [34, Section I,7]. The map from LHS to
RHS was defined in 3.3.2. Using [53, Tag 0C4Q], we know that f is projective.
Then, using the previous compatibility result 3.3.3 for closed immersions, it is
enough to prove the statement when P is a relative projective space over Q,
say P “ PM

Q and f : PM
Q Ñ Q is the canonical map. Since the question is local

on Q, we can (and we do assume) that Q is affine, smooth with coordinates
t1, . . . , ts. Let E be a coherent DP,Q-module. As PQ is a noetherian space, E
is an inductive limit of its sub OPQ

-coherent sheaves, so that there is a OPQ
-

coherent sheaf E 1 and a surjection of DPQ
-modules DPQ

bOPQ
E 1

։ E , where
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the DPQ
-module structure on the left hand side is given by the one of DPQ

. By
Serre’s theorem, for some a, r P N, there is a surjection of coherentOPQ

-modules
OPQ

p´aqr ։ E 1, and we see that there is a surjection of coherent DPQ
-modules

DPQ
p´aqr ։ E . Iterating this process, we see that each coherent DPQ

-module
has some resolution by DPQ

-modules of the type DPQ
p´aqr. Finally using again

the dévissage argument for way out left functors of [34, I, Proposition 7.1,
(iv)] we are reduced to prove the proposition for a projective morphism f :
P “ PM

Q Ñ Q, with Q affine, endowed with coordinates, and E “ DPQ
p´aq,

with a P N. Let us assume this from now on.

Since Rf˚ commutes with inductive limits, because PM
Q and Q are quasi-

compact, it is also enough to prove that, for all m, we have

pDpmq
Q

b
DQQ

f`pDPQ
p´aqq » f̂`

´
pDpmq
P,Q b

DPQ

DPQ
p´aq

¯
. (3.3.1)

The following lemma therefore completes the proof of the proposition.

Lemma 3.3.5. Assertion 3.3.1 is true for any m.

Proof. Let F “ D
pmq
P p´aq, we have

f`pFq “ Rf˚

´
D

pmq
QÐP b

D
pmq
P

D
pmq
P p´aq

¯

“ Rf˚

´
f˚

D
pmq
Q bOP

ωP {Qp´aq
¯
,

“ pD
pmq
Q bOQ

ω´1
Q q bOQ

Rf˚pωP p´aqq (by the projection formula),

where the left D
pmq
Q -module structure is given by the left structure of D

pmq
Q bOQ

ω´1
Q , obtained by twisting the right structure of D

pmq
Q . As ωQ is free of rank 1,

ωP » ωP bOP
f˚ω´1

Q » ωP {Q » OP p´M ´ 1q,

where M :“ dimPQ ´ dimQQ. We refer for example to [33, III,Theorem 5.1]
for the computation of Rf˚pOP p´M ´ 1qq over any affine base Q, which is a
complex of finite free OQ-modules. More precisely, denote

d “ maxtrankpH0pP,OP p´a´M ´ 1qqq, rankpHM pP,OP p´a´M ´ 1qqqu.

There are several cases:

(i) If a ď ´M ´ 1, then f`pFq » D
pmq
Q bOQ

Od
Q is concentrated in degree 0,

(ii) if a ě 0, then f`pFq » D
pmq
Q bOQ

Od
Qr´M s is concentrated in degree M ,

(iii) if ´M ď a ď ´1, then f`pFq=0.
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Note also that we have the following isomorphism of (twisted) left pDpmq
Q,Q-

modules

pDpmq
Q,Q b

D
pmq
Q

pD
pmq

Q b
OQQ

ωQ
´1q » pDpmq

Q,Q bOQ
ω´1
Q .

We will first compute the left-hand side of 3.3.1. Let us denote

A :“ pDpmq
Q b

α´1D
pmq
Q

α´1f`pFq P Db
cohp pDpmq

Q q

“ p pDpmq
Q

bOQ
ω´1
Q

q bα´1OQ
α´1Rf˚pωP p´aqq,

that consists of a complex concentrated in at most one degree where it is

isomorphic to a direct sum of d copies of pDpmq
Q . In particular, by 3.2.1 of [9],

it satisfies A » R lim
ÐÝi

pD
pmq
Qi

bL
pDpmq
Q

Aq. Since A is a complex of finite free

pDpmq
Q -modules, we have

D
pmq
Qi

bL
pDpmq
Q

A “ D
pmq
Qi

b pDpmq
Q

A » D
pmq
Qi

bOQi
ω´1
Qi

bα´1OQ
α´1Rf˚pωP p´aqq,

is a complex either in degree M or 0, where it is isomorphic to a direct sum

of d copies of D
pmq
Qi

. Finally we have

A » R limÐÝ
i

´
D

pmq
Qi

bOQi
ω´1
Qi

bα´1OQ
α´1Rf˚pωP p´aqq

¯
.

To compute the right-hand side of 3.3.1, we introduce B “ f̂`p pDpmq
P

p´aqq, so
that we have

B » Rf̂˚

´
f̂˚p pDpmq

Q bOQ
ω´1
OQ

q bOP
ωPp´aq

¯

» Rf̂˚R limÐÝ
i

´
f˚
i pD

pmq
Qi

bOQi
ω´1
Qi

q bOPi
ωPi

p´aq
¯

» R limÐÝ
i

Rfi˚

´
f˚
i pD

pmq
Qi

bOQi
ω´1
Qi

q bOPi
ωPi

p´aq
¯

by [53, Tag 0BKP]

» R lim
ÐÝ
i

´
D

pmq
Qi

bOQi
ω´1
Qi

bOQi
Rfi˚ωPi

p´aq
¯
.

Again, by using the computation of [33, III,Theorem 5.1], we see that
Rfi˚ωPi

p´aq » Rfi˚OPi
p´a ´ M ´ 1q, is a complex concentrated in only one

degree and

Rfi˚ωPi
p´aq » OQi

bOQ
Rf˚ωP p´aq.

This finally shows that B is isomorphic to A. This implies the lemma.
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3.4 Compatibility for intermediate extensions of constant coef-

ficients

We now come to the main application of our previous compatibility results.
For this we place ourselves in the following axiomatic situation (S):

(i) Y is an affine and smooth scheme over o.

(ii) there is an immersion v : Y ãÑ P into a smooth projective scheme P
over o. Let X :“ Y be the Zariski closure of Y in P and Z :“ XzY .

(iii) There is a smooth and projective o-scheme X 1, a surjective morphism

b : X 1 Ñ X

inducing an isomorphism Y 1 :“ b´1Y » Y , such that Z 1 “ X 1zY 1 is a
transversal divisor as defined in 3.2.6 with normal crossings. We have
the open immersion j1 : Y » b´1Y ãÑ X 1.

As usual X,Y etc. denote the formal schemes obtained from these schemes by
p-adic completion, and Xs, Ys etc. denote their special fiber. For simplicity, we
also write v for the morphism of frames

v : Y “ pYs, Xs,Pq ÝÑ pPs, Ps,Pq “ P

induced by the immersion v : Y ãÑ P . Let us introduce the composite mor-
phism

g : X 1 b
Ñ X ãÑ P.

By p-adic completion we obtain a morphism ĝ: X1 Ñ P , and a morphism of
frames

u “ pIdYs
, bs, ĝq : Y1 “ pYs, X

1
s,X

1q Ñ Y “ pYs, Xs,Pq.

Denoting G “ pgs, gs, ĝq and J 1 “ pj1
s, idX1

s
, idX1 q, we then have the basic

commutative diagram of frames:

Y1 “ pYs, X
1
s,X

1q
J 1

//

u

��

pX 1
s, X

1
s,X

1q “ X1

G

��
Y “ pYs, Xs,Pq

v // pPs, Ps,Pq “ P.

The frame morphism u is c-affine, and the first morphism of this frame is equal
to the identity, so that by [1, Lemma 1.2.8], we know that u! and u` are
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t-exact, and u! “ u`, as functors of abelian categories F -OvholpY1{Lq Ñ F -
OvholpY{Lq and equal to H0

tu` “ H0
tu!. Let

Q :“ v ˝ u “ G ˝ J 1,

which is a c-affine immersion, (in particular Ys ãÑ Ps is an immersion). Note
that we have

J 1
`OY1 “ OX1,Qp:Z 1

sq,

and that in our case J 1
` is the forget functor F -OvholpY1{Lq Ñ F -OvholpX1{Lq.

Let vQ be the immersion YQ ãÑ PQ. We now fix once and for all the following
notations:

θvQ “ θvQ,OYQ
: vQ!OYQ

Ñ vQ`OYQ
resp. θj1

Q
“ θj1

Q
,OYQ

θQ “ θ0Q,OY1
“ θQ,OY1 : Q!OY1 Ñ Q`OY1 resp. θJ 1 “ θJ 1,OY1 .

We also need the two morphisms

θalgv “ θvQ resp. θ
alg
j1 “ θj1

Q
.

Our goal is to describe the relation between the classical intermediate extension
vQ!`OYQ

on the generic fibre and the Abe-Caro intermediate extension v!`OY

on the special fibre.
We start with the following lemma.

Lemma 3.4.1. We have the following commutative diagram in F -OvholpX1{Lq,
where all maps are canonical

D
:
X1 b

DX1
Q

j1
Q!OYQ

//

p1q »

��

D
:
X1 b

DX1
Q

j1
Q`OYQ

»p3q

��
J 1
!OY1

θJ1 // J 1
`OY1

and where the upper horizontal arrow equals D
:
X1 b θ

alg
j1 .

Proof. The diagram of the statement can be completed by the following dia-
gram

D
:
X1 b

DX1
Q

j1
Q!OYQ

cQ //

D
:

X1 bθ
alg

j1

**

p1q

��

D
:
X1 b

DX1
Q

j1
Q`j

1!
Qj

1
Q!OYQ

» //

p2q

��

D
:
X1 b

DX1
Q

j1
Q`OYQ

»p3q

��
J 1
!OY1

C //

θJ1

44J 1
`J

1!J 1
!OY1

» // J 1
`OY1 .
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Let us prove that both squares of this diagram are commutative. The isomor-
phism p3q is given by Berthelot’s result 3.2.10. The right square of this diagram
is commutative by 3.2.8, horizontal maps of this square are isomorphisms, so
that (2) is an isomorphism as well. The left square of this diagram is commuta-
tive by 3.2.9 applied to j1

Q!OYQ
and 3.2.11. Moreover (ii) of 3.2.11 tells us that

(1) is an isomorphism. We conclude that the external square is commutative
with vertical arrows being isomorphisms.

Recall that Q “ G ˝ J 1 “ v ˝ u, vQ “ gQ ˝ j1
Q, θ

alg
v “ θvQ,OYQ

and θQ “ θQ,OY
.

Corollary 3.4.2. There is a commutative diagram (with canonical vertical
maps) in F -OvholpPq

D
:
P

b
DPQ

vQ!OYQ
//

»

��

D
:
P

b
DPQ

vQ`OYQ

»

��
Q!OY1

θQ // Q`OY1

where the upper horizontal arrow equals the map D
:
P

b θalgv .

Proof. As G is c-proper, G` “ G!, and using 2.2.0, we can see that θQ “
G` ˝ θJ 1 . Similarly, we have the equality vQ “ gQ ˝ j1

Q, and as gQ is proper,
θvQ “ gQ`˝θj1

Q
.We finally use the compatibility for projective morphisms 3.3.4,

and we observe that we obtain the diagram of the corollary after applying ĝ`

to the previous diagram 3.4.1.

Remark: We have the identifications θj1
Q
pOYQ

q » OX1
Q
and θJ 1OX1,Qp:Z 1

sq »
OX1,Q, and that

D
:
X1 b

DX1
Q

OX1
Q

» OX1,Q.

We have the constant overholonomic modules on Y resp. Y1

OY “ RΓYpOP,Qqrds resp. OY1 “ RΓY1 pOX1,Qq “ OX1,Qp:Z 1
sq

as defined in 2.3.5, where d “ dimPs ´ dimYs.

Lemma 3.4.3. There are canoncical isomorphisms

(i) u!OY » OY1 ,

(ii) u`OY1 » OY.

Proof. By [1, Lemma 1.2.8], u! and u` are exact functors of the categories
Ovhol(Y{L) and Ovhol(Y1{L), and quasi-inverse, so that (ii) is a direct con-
sequence of (i). Recall also that, by [14, Formula 2.2.6.1, Théorème 2.2.8,
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Théorème 2.2.14], RΓY1 ˝ RΓY1 “ RΓY1 . We compute

u!OY “ RΓY1 ˝ ĝ!pRΓ:
Xs

p:ZsqpOP,Qqrdsq

» RΓY1 ˝ RΓ:
X1

s
˝ p:Z 1

sqĝ!OP,Qrds [14, Théorème 2.2.18]

» RΓY1 ˝ RΓY1OX1,Q

» RΓY1OX1,Q.

We come to the main result, which describes the relation between the clas-
sical intermediate extension vQ!`OYQ

on the generic fibre and the Abe-Caro
intermediate extension v!`OY on the special fibre.

Theorem 3.4.4. There is a canonical isomorphism

D
:
P

b
DPQ

vQ!`pOYQ
q » v!`pOYq.

Proof. Again, by [1, Lemma 1.2.8], u` “ u!, and θQ “ θv ˝ u`. By previous
Lemma 3.4.3, u`OY1 » OY and we have a commutative diagram

v`OY

»

��

θv // v!OY

»

��
Q`OY1

θQ // Q!OY1 .

Now we have

v!`pOYq “ impθvq

» impθQq

» D
:
P b

DPQ

impθalgv q by 3.4.2,

» D
:
P b

DPQ

vQ!`pOYQ
q.

4 Localization theory on the flag variety

We specialize the above theory to the case where P is the (formal) flag variety
of a connected split reductive group G over o. Such a space is coherently D:-
affine and its algebra of global differential operators H0pP ,D:

P
q identifies with

(a central reduction of) the crystalline distribution algebra of G. Truly in the
spirit of classical localization theory [3], this allows us to analyze geometrically
the module theory of the distribution algebra.
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4.1 Crystalline distribution algebras

In this subsection, G can be any connected affine smooth group scheme over o.
Let I be the kernel of the morphism o-algebras εG : orGs Ñ o which represents
1 P G. Then I{I2 is a free o “ orGs{I-module of finite rank. Let t1, . . . , tN P I
whose classes modulo I2 form a base of I{I2. The m-PD-envelope of I is
denoted by PpmqpGq. This algebra is a free o-module with basis

ttku “ t
tk1u
1 ¨ ¨ ¨ t

tkNu
N ,

where qi!t
tkiu
i “ tki

i with i “ pmqi ` r et r ă pm [6, Sous-section 1.5]. The
algebra PpmqpGq has a descending filtration by the ideals

Itnu “
à

|k|ěn

o ¨ ttku.

The quotients Pn
pmqpGq :“ PpmqpGq{Itn`1u are generated, as o-module, by

the elements ttku where |k| ď n and there is an isomorphism Pn
pmqpGq »À

|k|ďn ot
tku as o-modules. There are canonical surjections prn`1,n :

Pn`1
pmq pGq ։ Pn

pmqpGq.

We note
LiepGq :“ HomopI{I2, oq.

The Lie-algebra LiepGq is a free o-module with basis ξ1, . . . , ξN dual to
t1, . . . , tN . For m1 ě m, the universal property of divided power alge-
bras gives homomorphismes of filtered algebras ψm,m1 : Ppm1qpGq Ñ PpmqpGq
which induce on quotients homomorphismes of algebras ψn

m,m1 : Pn
pm1qpGq Ñ

Pn
pmqpGq. The module of distributions of level m and order n is D

pmq
n pGq :“

HomopPn
pmqpGq, oq The algebra of distributions of level m is defined to be

DpmqpGq :“ lim
ÝÑ
n

Dpmq
n pGq

where the limit is taken with respect to the maps Homopprn`1,n, oq.

For m1 ě m, the algebra homomorphisms ψn
m,m1 give dually linear maps Φn

m,m1

: D
pmq
n pGq Ñ D

pm1q
n pGq and finally a morphism of filtered algebras Φm,m1 :

DpmqpGq Ñ Dpm1qpGq. The direct limit

DistpGq “ lim
ÝÑ
m

DpmqpGq

equals the classical distribution algebra of the group scheme G [23, II.§4.6.1].

Let now G be the completion of G along its special fibre. We write Gi “
Spec orGs{πi`1. The morphism Gi`1 ãÑ Gi induces D

pmqpGi`1q Ñ DpmqpGiq.
We put

pDpmqpGq :“ limÐÝ
i

DpmqpGiq.
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If m1 ě m, one has the morphisms Φ̂m,m1 : pDpmqpGq Ñ pDpm1qpGq and the
crystalline distribution algebra is defined to be

D:pGq :“ lim
ÝÑ
m

pDpmqpGq b Q.

Note, as for differential operators, that this dagger-algebra appears with co-
efficients tensored by Q. For more details on the basic theory of the algebra
D:pGq we refer to [39, 40].

For a character θ : Zpgq Ñ L of the center Zpgq of the universal enveloping
algebra of the L-Lie algebra g “ LiepGq b Q, we will always denote by

D:pGqθ :“ D:pGqθ bZpgq,θ L

the corresponding central reduction of D:pGq. The trivial character is the
character θ0 with ker θ0 “ Zpgq X pUpgqgq.

4.2 The localization theorem and overholonomicity

We keep the notation of the previous subsection, but specialize now to the case
of a connected split reductive group scheme G over o. Let in the following
θ “ θ0 be the trivial character. Our goal is to analyze the central block of the
category of D:pGq-modules, i.e. the category of D:pGqθ0 -modules. We keep the
notation from the preceding section.

We let B Ă G be a Borel subgroup containing a maximal split torus T , with
unipotent radical N . Denote by

P :“ G{B

the flag scheme. It is a smooth and projective scheme over o. We denote by
P its formal completion. The G-action on P by translations endowes P with a
G-action. We recall the localization theorem for arithmetic D-modules on the
flag variety.

Theorem 4.2.1. (a) The global section functor induces an equivalence of cat-

egories between coherent D
:
P
-modules and coherent H0pP ,D:

P
q-modules. A

quasi-inverse is given by the functor

L ocpMq “ D
:
P b

H0pP,D
:
P

q M.

(b) The G-action on P induces an algebra isomorphism

D:pGqθ0
»

ÝÑ H0pP ,D:
Pq.

Proof. This summarizes the main results of [40] and [45].

Remark: A. Sarrazola-Alzate has extended the above theorem to the case of an
arbitrary central character θ using a twisted version of the sheaf D

:
P
, cf. [46].
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Definition 4.2.2. A D:pGqθ0 -module M is called geometrically (F -

)overholonomic if the coherent D
:
P
-module L ocpMq lies in the full subcategory

(F -)OvholpP{Lq.

Remark: Already in the classical situation of algebraic D-modules on complex
flag varieties, it is difficult in dimension ą 1 to translate the condition of being
a holonomic D-module to the algebraic side. Nevertheless, this condition cuts
out an interesting abelian finite length subcategory inside all Lie algebra rep-
resentations, which contains many examples (highest weight representations,
Whittaker modules etc.) It is the cristalline analogue of this category which
we propose to study.

Recall from 2.1 the set of equivalence classes of pairs pY, Eq where Y Ď Ps

is a connected smooth locally closed subvariety and E is an irreducible over-
convergent isocrystal on Y “ pY,Xq, which is an object of OvholpY{Lq (the
category of overholonomic modules, stable by any base change). We put
LpY, Eq :“ v!`pEq P OvholpP{Lq where v : Y Ñ P is the immersion of cou-
ples associated with Y .

Theorem 4.2.3. The correspondence pY, Eq ÞÑ H0pP ,LpY, Eqq induces a bijec-
tion

tpairs pY, Equ{„
»

ÝÑ tirreducible geo-overholonomic D:pGqθ0-modulesu{»

Proof. This follows from the classification theorem 2.3.4 together with 4.2.1.

We point out a related interesting property of the category of overholonomic
D

:
P -modules.

It is conjectured by de Jong that, if X is a connected smooth projective variety
over an algebraically closed field of characteristic p ą 0 with trivial étale funda-
mental group, then any isocrystal on X is constant. This conjecture is proved
under certain additional assumptions by Esnault-Shiho in [27]. In our case, the
fibration G Ñ G{B “ P is a separable proper morphism with geometrically
connected fibre between locally noetherian connected schemes. To compute
the fundamental group of Ps, we may pass to a simply connected cover of the
semisimple derived group of Gs. The homotopy exact sequence [31, Exp. 10
Cor. 1.4] implies then that étale fundamental group of Ps is trivial. Here is a
short representation-theoretic proof of de Jong’s conjecture for the flag variety
Ps.

2

2The homotopy exact sequence implies in the same manner that the generic fibre PL

has trivial étale fundamental group. By Chern-Weil theory and Grothendieck’s theorem on
formal functions, the de Rham Chern classes on PL become trivial after tensoring with Q.
But these classes correspond to the rational crystalline classes on Ps via the comparison
theorem between de Rham and crystalline cohomology, from which one may deduce the
conjecture. We thank H. Esnault for explaining this general argument to us.
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Proposition 4.2.4. Any convergent isocrystal on Ps is constant.

Proof. Any convergent isocrystal E may be viewed as a coherent D
:
P -module

which is coherent over OP,Q [6, Proposition (4.1.4)]. Then H0pP , Eq is a finite
dimensional representation of the reductive L-Lie algebra g and hence com-
pletely reducible (semisimple). In addition, it has central character θ0. But the
trivial one dimensional representation is the only irreducible g-representation
of finite dimension and with central character θ0. Since the trivial representa-
tion localizes to the trivial connection OP,Q and since localization commutes
with direct sums, the isocrystal E must be constant.

4.3 Link to locally analytic representations

In this subsection, we explain how the methods and results of the present
paper might ultimately have applications to locally analytic representations.
Although this is more of a speculation and we do not prove any substantial
result in this subsection, we like to include it in this paper, as it has been a
major source of motivation for us in writing this paper.

To put everything in context, we briefly recall some classical results from the
geometric representation theory of non-compact real Lie groups [32, 47]. Let
GR be a non-compact connected reductive real Lie group (GLnpRq is a first
example) and let g “ C bR LiepGRq be its complexified Lie algebra. Let
KR Ă GR be a maximal compact subgroup with complexification K. Given
an admissible GR-representation

3 V , we denote by VKR´fin Ď V its subspace of
KR-finite vectors. It is dense in V and naturally equipped with the structure
of a Harish-Chandra pg,Kq-module. The formation

V ÞÑ HCpV q :“ VKR´fin

is a covariant, exact and faithful functor from admissible GR-representations of
finite length to Harish-Chandra pg,Kq-modules. One calls two finite length
representations V1 and V2 infinitesimally equivalent if HCpV1q » HCpV2q.
Classifying irreducible representations according to infinitesimal equivalence
is a first step towards a full classification of irreducible representations.4 Any
Harish-Chandra moduleM admits a globalization (i.e. a finite length represen-
tation V with HCpV q » M) which implies, by its functorial properties, that
HC even preserves irreducibility. Hence, classifying irreducible representations
up to infinitesimal equivalence is the same as classifying irreducible Harish-
Chandra modules for the pair pg,Kq. If GR admits a connected complexifi-
cation (GLnpRq is a first example), then irreducible Harish-Chandra modules
have infinitesimal characters. In this case, the classification of modules with

3Representation here means a jointly continuous linear action of GR on a complete locally
convex Hausdorff space V over C. For the notion of admissibility, see for example [47, Section
3.1].

4For unitary representations, infinitesimal equivalence already implies equivalence, a fa-
mous result of Harish-Chandra [32].
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fixed character θ is equivalent, using Beilinson-Bernstein localization, to the
classification of irreducible twisted Harish-Chandra sheaves on the complex
flag variety of g. The latter, in turn, is a special case of the general classifi-
cation of holonomic twisted D-modules as intermediate extensions over locally
closed subvarieties [3].

We like to speculate how this might generalize from real-analytic to p-adic an-
alytic Lie groups. Concretely, let GpLq be the group of L-valued points of our
split connected reductive group G. This is a non-compact locally L-analytic
group whose basic theory of admissible locally analytic representations (in cer-
tain complete locally convex Hausdorff spaces over L) has been developed by
Schneider-Teitelbaum in a series of papers [50, 51, 52]). We have the n-th con-
gruence subgroup scheme Gpnq of the o-group scheme G. It is a smooth affine

group scheme over o. We denote by zGpnq the completion of Gpnq along the unit

section 1 P Gpnqk in its special fibre and by Gpnq˝ :“ zGpnq
rig

its rigid-analytic
generic fibre (in the sense of Berthelot, cf. [4, 22]). By construction, Gpnq˝

is a rigid-analytic group over L, whose underlying space is strictly quasi-Stein
(in the sense of [26, Definition 2.1.17]), and which comes with an associated
rigid-analytic distribution algebra DanpGpnq˝q, cf. [26, Section 5.2]. The latter
naturally contains Upgq and one has the central reduction

DanpGpnq˝qθ :“ DanpGpnq˝q bZpgq,θ L

for each character θ of the center Zpgq of Upgq.

We need the following basic lemma. For the notion of a good analytic open
subgroup, we refer to [26, Section 5.2]. Let e be the ramification index of the
extension L{Qp.

Lemma 4.3.1. The congruence subgroup kerpGpoq Ñ Gpo{πnqq is a good ana-
lytic open subgroup of GpLq for n larger than e

p´1
.

Proof. Choose a closed embedding of the group scheme G into some GLm{o

[10, Proposition 13.2] and identify LiepGLm{oq “ Matmpoq. For n larger than
e

p´1
, the o-Lie lattice πnMatmpoq exponentiates to the open subgroup 1 `

πnMatmpoq of GLmpLq. Hence the o-Lie lattice πnLiepGq Ď g exponentiates
to the congruence subgroup kerpGpoq Ñ Gpo{πnqq. By definition, the latter is
thus a good analytic open subgroup of GpLq.

The lemma and [26, Section 5.3] imply that the ring DanpGpnq˝q is coherent
for any n larger than e

p´1
. The corresponding category ModfppDanpGpnq˝q of

finitely presented DanpGpnq˝q-modules is then abelian.

Let V be an admissibleGpLq-representation. Let VGpnq˝´an Ď V be its subspace
of Gpnq˝-analytic vectors [26, Definition 3.4.1]. The latter is naturally a module
over DanpGpnq˝q, cf. [26, Corollary 5.1.8] (adapted to the σ-affinoid rigid group
Gpnq˝). For fixed n and nonzero V , the subspace VGpnq˝´an may be zero, which
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is why we introduce the subcategory ReppnqpGpLqq of representations V which
are topologically generated, as GpLq-representations, by their Gpnq˝-analytic

vectors. Any topologically irreducible G-representation lies in ReppnqpGpLqq,
for sufficiently large n and, moreover, admits an infinitesimal character [24].

Proposition 4.3.2. For sufficiently large n, the formation HC
pnq
p´adicpV q :“

pVGpnq˝´anq1 defines a contravariant exact and faithful functor

HC
pnq
p´adic : Rep

pnqpGpLqq ÝÑ ModfppDanpGpnq˝q.

Proof. Let n be larger than e
p´1

. The lemma and [25, A.13/14] show that the

functor is well-defined and exact. The property HC
pnq
p´adicpV q “ 0 obviously

implies V “ 0. Since HCn
p´adic is exact, this gives faithfulness.

We believe that the functors HC
pnq
p´adic are the correct p-adic analogue for the

functor HC in the real setting. Let V1 and V2 be two topologically irreducible
admissible GpLq-representations. We say V1 and V2 are infinitesimally equiv-

alent if HC
pnq
p´adicpV1q » HC

pnq
p´adicpV2q for some sufficiently large n, such that

V1, V2 P ReppnqpGpLqq. It would be interesting to classify topologically ir-
reducible representations up to infinitesimal equivalence. At the moment, a
p-adic analogue of Casselman’s globalization result is not known (at least to
our knowledge), but it still seems relevant to obtain more information on the
categories ModfppDanpGpnq˝

θq and their irreducible modules. At first step, one
might want to consider only the trivial character θ0 and might ask, analogous
to the real-analytic setting, for a geometric approach via some sort of p-adic
Beilinson-Bernstein localization.

A first basic result in this direction is [39, Proposition 5.3.1] which provides a
canonical isomorphism

DanpGpnq˝q » D:pGpnqq

with the crystalline distribution algebra D:pGpnqq of the p-adic completion
Gpnq of Gpnq. Moreover, in [38] we have introduced the sheaf of arithmetic dif-

ferential operators D
:
P,n of congruence level n on the formal flag scheme P

of G. We proved that the global sections of D
:
P,n give back D:pGpnqqθ0

and that P is coherently D
:
P,n-affine. We therefore expect that the cate-

gory ModfppDanpGpnq˝
θ0

q and its irreducible modules can effectively be studied
through the geometry of arithmetic D-modules with congruence level struc-
tures on P . Even if we are ultimately only interested in results up to sufficiently
large n, we expect that the methods for higher n will strongly be inspired by
the classical case n “ 0. The methods and results in the present article in the
case n “ 0 thus form a first step in this programme.
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5 Highest weight representations and the rank one case

We keep the notation from the preceding section.

5.1 Highest weight representations

We assume in this section that the field L is locally compact. This allows us to
make use of the results in [48]. Under this hypothesis, we establish a crystalline
version of the central block of the classical BGG category O. We go on and
show that its irreducible objects are geometrically overholonomic and compute
their associated parameters pY, Eq in the geometric classification 4.2.3.

Let ∆ be the set of simple roots in Φ`. We fix a (Chevalley) basis for LiepGq
compatible with its root space decomposition. In particular, we obtain a o-
basis t1, ..., tn of LiepT q which is made up from a L-basis of the center of g and
finitely many elements tα, indexed by α P ∆, such that βptαq P Z for all β P Φ.
Let Γ :“ Zě0Φ

` Ă QΦ “: Λr Ď Λ where Λr and Λ are the root lattice and the
integral weight lattice respectively.

For w P W we let λw “ ´wpρq ´ ρ. These are |W | pairwise different elements
of Λr.

Let O0 be the central block of the classical BGG category, e.g. [36]. This is a
full abelian subcategory of finitely generated Upgqθ0 -modules which is noethe-
rian and artinian. Its irreducible objects are given by the unique irreducible
quotients Mpλwq Ñ Lpλwq where

Mpλwq :“ Upgq bUptq,λw
L

is the Verma module with highest weight λw for w P W .

To define a crystalline variant of the category O0 we follow the constructions
given in [48] in the case of the Arens-Michael envelope of Upgq. In order to do
so, we need the field L to be locally compact.

By the discussion in [39, Subsection 5.3] the algebraD:pGq “ lim
ÝÑm

pDpmqpGqbQ

is an inductive limit of Hausdorff locally convex L-vector spaces with injec-
tive and compact transition maps. According to [49, Corollary 7.19/Lemma
16.9/Proposition 16.10] it is therefore Hausdorff, complete and barrelled.

The framework of diagonalisable modules over suitable commutative topolog-
ical L-algebras as described in [48, sec. 2] applies therefore to the L-algebra
D:pT q. Note that it contains the universal enveloping algebra Uptq as a dense
subalgebra. A L-valued weight λ of D:pT q is a L-algebra homomorphism
D:pT q Ñ L. A set of weights Y is called relatively compact if its image under
the injective map λ ÞÑ pλpt1q, ..., λptnqq has a compact closure in Ln. Let λ be
weight and M some topological D:pT q-module. A nonzero m P M is called
a λ-weight vector if h.m “ λphq.m for all h P D:pT q. In this case λ is called
a weight of M . The closure Mλ in M of the L-vector space generated by all

Documenta Mathematica 26 (2021) 2005–2059



Intermediate Ext. and Crystalline Distrib. Algebras 2043

λ-weight vectors is called the λ-weight space of M . The module M is called
D:pT q-diagonalisable if there is a set of weights ΠpMq with the property: to
every m P M there exists a family tmλ P MλuλPΠpMq converging cofinitely
against zero in M and satisfying

m “
ÿ

λPΠpMq

mλ.

Given a diagonalisable moduleM we may formM ss “ ‘λPΠpMqMλ (depending
on the choice of ΠpMq).

Definition 5.1.1. The category O:
0 equals the full subcategory of D:pGqθ0 -

modules M satisfying:

(1) M is a coherent D:pGqθ0 -module

(2) M is D:pT q-diagonalisable with ΠpMq contained in the union of the
cosets λw ´ Γ

(3) All weight spaces Mλ, λ P ΠpMq, are finite dimensional over L.

By definition, given M P O:
0, then any finitely generated Upgq-submodule of

M ss lies in O0. In particular, M ss contains a maximal vector, i.e. a nonzero
m P Mλ (of some weight λ) such that n.m “ 0. We will make precise the

relation between the two categories O0 and O:
0 below.

We list some basic properties of the category O:
0.

Proposition 5.1.2. (i) The direct sum of two modules of O:
0 is in O:

0

(ii) the (co)kernel and (co)image of an arbitrary D:pGqθ0-linear map between

objects in O
:
0 is in O

:
0

(iii) the sum of two coherent submodules of an object in O:
0 is in O:

0

(iv) any finitely generated submodule of an object in O:
0 is in O:

0

(v) O:
0 is an abelian category.

Proof. This can be proved using a variant of the proof of [48, Proposition 3.6.3].
Note that any ΠpMq which is contained in the union of the cosets λw ´ Γ is
relatively compact. Indeed, Γ is relatively compact its closure being contained

in the compact subset Z
|∆|
p of Ln, cf. [48, Lemma 3.6.1].

We exhibit Verma type modules in O:
0. The main difference between the case of

the crystalline distribution algebra and the case of the Arens-Michael envelope
treated in [48] is that not every weight t Ñ L extends to a weight of D:pT q.
The following lemma is sufficient for our purposes.
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Lemma 5.1.3. Any linear form λ : LiepT q Ñ o such that λphiq P Zp for all
i “ 1, ..., n extends canonically to a L-algebra homomorphism D:pT q Ñ L.

Proof. Recall that the distribution algebra DistpGmq of the o-group scheme
Gm is generated as an o-module by the elements

`
δ1
k

˘
for k P N where δ1

is a generator of LiepGmq, cf. [41, Part I.7.8]. Our choice of Chevalley basis
implies an isomorphism of group schemes T »

ś
i“1,...,nGm such that the basis

element hi becomes the generator of the i-th copy LiepGmq. Since
`
λphiq

k

˘
P Zp,

the associated L-algebra homomorphism λ : Uptq Ñ L restricts to an o-algebra
homomorphism DistpT q Ñ o. Since DistpT q “ limÝÑm

DpmqpT q, this extends

then to a L-algebra homomorphism D:pT q Ñ L,

We may apply the lemma to any weight λw and hence consider the D:pGq-
module

M :pλwq :“ D:pGq bD:pT q,λw
L.

Proposition 5.1.4. The module M :pλwq lies in O:
0. We have

M :pλwqss “ Mpλwq and M :pλwq “ D:pGq bUpgq Mpλwq.

There is a canonical inclusion preserving bijection between subobjects of
M :pλwq and abstract Upgq-submodules of Mpλwq. In particular, M :pλwq
admits a unique maximal subobject and hence a unique irreducible quotient
L:pλwq. The latter satisfies L:pλwqss “ Lpλwq.

Proof. This can be proved as in [48, Proposition 3.7.1]. Note that the triangular
decomposition

DpmqpGq “ DpmqpN´q bo D
pmqpT q bo D

pmqpNq,

cf. [40, Subsection 2.2], implies that M :pwq » D:pN´q as a left D:pN´q-
module. This implies the first displayed identity. Moreover, M :pλwq equals
the quotient of D:pGq by the left ideal generated by kerpλwq, which implies
the second displayed identity. Note also that the nonzero quotient morphism
M :pλwq Ñ L:pλwq yields a nonzero quotient morphism M :pλwqss Ñ L:pλwqss

since p´qss is faithful and exact [48, Proposition 2.0.2]. Hence M :pλwqss “
Mpλwq implies L:pλwqss “ Lpλwq.

Corollary 5.1.5. The modules L:pλwq exhaust, up to isomorphism, all the

irreducible objects in O:
0.

Proof. Let L be an irreducible object in O:
0. Take a maximal vector m P Lss of

some weight λ. Then Upgqm is a highest weight module inO of weight λ, cf. [36,
Section 1.2]. Hence Zpgq acts on the maximal vectorm via the central character
θλ associated to λ via the Harish-Chandra homomorphism [36, Section 1.7].
But Upgqm Ă L whence θλ “ θ0 and so λ “ λw for some w P W . We obtain
a nonzero D:pGq-linear map M :pλwq Ñ L, 1 b 1 ÞÑ m. So L is an irreducible
quotient of M :pλwq, i.e. L » L:pλwq.
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Corollary 5.1.6. The category O:
0 is artinian and noetherian.

Proof. This can be deduced similarly to [48, Proposition 4.2.2]. In fact, let

M P O
:
0 and consider the finite-dimensional L-vector space V :“

ř
wMλw

.
Suppose N 1 Ł N Ď M are two subobjects. Let m P NzN 1 be a maximal vector
of some weight λ. As in the preceding proof we deduce from the action of Zpgq
on m that λ “ λw for some w P W . So m P N X V whence dimLN X V ą
dimLN

1 X V . This implies that M has finite length.

Given a module M P O0, we can define the coherent D:pGqθ0 -module

M : :“ D:pGq bUpgq M.

Theorem 5.1.7. The functor F : M ù M : is exact and induces an equiva-
lence of abelian categories

O0
»

ÝÑ O:
0.

A quasi-inverse is given by the functor p´qss.

Proof. The ring extension Upgq Ñ D:pGq is flat [40, Lemma 4.1]. We already
now that F pMpλwqq “ M :pλwq. Since any object M P O0 admits a finite
composition series with irreducible constituents of the form Lpwq, there is a
surjection ‘wMpλwq Ñ M . Since F commutes with direct sums, we see that
F pMq equals the quotient of ‘wM

:pλwq modulo a finitely generated submodule

and so lies in O:
0, according to parts (iii)-(v) of 5.1.2. We therefore have an

exact functor F : O0 Ñ O:
0. Given M P O:

0 we have a functorial morphism
M Ñ F pMqss,m ÞÑ 1 b m which is bijective for irreducible M according

to 5.1.4. By dévissage, we obtain M » F pMqss in general. Let M P O:
0. To

obtainM ss P O0 we use induction on the length ofM and suppose that N Ă M

is a maximal submodule, i.e. M{N » L:pλwq for some w, such that Nss P O0.
Exactness of p´qss and L:pλwqss “ Lpλwq implies that M ss is an extension
of two finitely generated Upgq-modules and hence itself finitely generated. So
M ss P O0. We may now deduce that p´qss is also a right quasi-inverse to F .

Indeed, for any M P O:
0, there is a natural morphism F pM ssq Ñ M in O:

0

which is bijective for irreducibleM according to 5.1.4. By dévissage, we obtain
F pM ssq » M in general.

To conclude, we will show that the irreducible modules L:pλwq are all geomet-
rically F -overholonomic.5 To do this, fix w P W and let

Yw :“ BwB{B Ă P “ G{B

be the Bruhat cell in P associated with w P W . Let v : Yw ãÑ P be the
corresponding immersion over o and let vQ : YwQ ãÑ PQ be the corresponding

5The local compactness assumption on L is not necessary for this.
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immersion on the level of L-algebraic varieties. It is well-known (e.g. [35,
Proposition 12.3.2]) that there is a canonical isomorphism of DPQ

-modules

LocpLpλwqq :“ DPQ
bUpgq Lpλwq » vQ!`pOYwQ

q.

Let Xw Ď P be the Zariski closure of the Bruhat cell Yw in P , a Schubert
scheme. We let

X 1
w ÝÑ Xw

be its Demazure desingularization, which is defined at the level of o-schemes
[41, II, 13.6]. We are then in the axiomatic situation (S), the point of departure
for subsection 3.4, so that all the results of this subsection apply. In particu-
lar, we have the frame Yw “ pYw,s, Xw,s,Pq together with its c-locally closed
immersion

v : Yw ÝÑ P

and the constant overholonomic module OYw
on Yw. Its intermediate extension

v!`pOYw
q is an overholonomic F -D:

P
-module, cf. 2.3.7. In this situation, the

main theorem 3.4.4 implies directly the following result.

Proposition 5.1.8. There is a canonical isomorphism of D
:
P -modules

D
:
P b

DPQ

vQ!`pOYwQ
q » v!`pOYw

q.

Now consider the localization

L ocpL:pλwqq “ D
:
P bD:pGq Lpλwq:.

Theorem 5.1.9. Let w P W . There is a D
:
P -linear isomorphism

L ocpL:pλwqq » v!`pOYw
q.

The crystalline highest weight module L:pλwq is geometrically F -
overholonomic.

Proof. We write Lpwq resp. L:pwq for Lpλwq resp. L:pλwq. Since L:pwq “
D:pGq bUpgq Lpwq, associativity of tensor products yields a canonical isomor-
phism

D
:
P

bD:pGq Lpwq: » D
:
P

bUpgq Lpwq

» D
:
P b

DP
pDP bUpgq Lpwqq

» D
:
P b

DP
LocpLpwqq.

Since LocpLpwqq » vQ!`pOYwQ
q, the asserted isomorphism follows now in com-

bination with 5.1.8. Since v!`pOYw
q is a overholonomic F -D:

P -module, the
module L:pwq is seen to be geometrically F -overholonomic.
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5.2 The SL2-case

We first establish some general results for curves. We also assume, in the case
p “ 2 that o is an unramified extension of Z2. If o has ramification index equal
to e, one can choose an integer h satisfying

e

p´ 1
ă h ď e.

Then p P ̟ho. Denote by σ the p-power map o{̟ho Ñ o{̟ho and by σpsq the
composite σ ˝ . . . ˝ σ (s times). Let X be a smooth o-formal scheme of relative
dimension 1, X1 a smooth formal scheme lifting Xpsq “ X ˆσpsq Spec po{̟hoq
where X denotes the special fiber of X. Let F be the relative Frobenius X Ñ
Xpsq, such that the composite map X Ñ X given by p1 ˝ F equals the map
x ÞÑ xp

s

(where p1 denotes the first projection Xpsq Ñ X), and F : X Ñ
X1 a lifting of the relative Frobenius. Such a lifting F always exists, if X is
affine or equal to the formal projective line. In [8], Berthelot proved, for
any l P N, that the O-module inverse image F˚ induces an equivalence of

categories between coherent pDplq
X1,Q-modules (resp. D

:
X1-coherent modules) and

pDpl`sq
X,Q -modules (resp. D

:
X-coherent modules). Denote

F 5
dp pDplq

X1,Qq :“ HomOX1 pOX, pDplq
X1,Qq,

where the Hom is taken for the right OX1-module structure of pDplq
X1,Q. This

module is a p pDplq
X1,Q,

pDpl`sq
X,Q q-bimodule and a quasi-inverse functor for F˚ is given

by

E 1 ÞÑ F 5
dp pDplq

X1,Qq b pDpl`sq
X,Q

E .

In the same manner, a quasi-inverse for F˚, on the level of D
:
X-modules,

is constructed via the pD:
X1 ,D

:
Xq-bimodule F 5

dpD:
X1 q, which is defined anal-

ogously. Moreover, if X is affine and endowed with a local coordinate t,

then F 5
dp pDp0q

X1,Qq, is a finite free left pDp0q
X1,Q-module of rank p. The left pDp0q

X1,Q-

module structure of F 5
dp pDp0q

X1,Qq is given by pP ¨ uqpxq :“ P ¨ upxq, and we have

an explicit isomorphism of pDp0q
X1,Q-modules F 5

dp pDp0q
X1,Qq » p pDp0q

X1,Qq‘p given by

u ÞÑ pup1q, uptq, . . . , uptp´1qq P p pDp0q
X1,Qq‘p .

We will need the following lemma. Recall that a smooth formal o-scheme

Y is called coherently pDp0q
Y,Q-affine, if the global section functor induces an

equivalence between coherent modules over pDp0q
Y,Q and over its ring of global

sections respectively.

Lemma 5.2.1. Let Y be an irreducible smooth formal curve over o, which is

coherently pDp0q
Y,Q-affine. If F is a coherent pDp0q

Y,Q-module, such that F has no

subquotient isomorphic to pDp0q
Y,Q, then F is holonomic.
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Proof. Let us prove the lemma. Using Caro’s criterion [17, Théorème 2.6,

Proposition 2.8], it suffices to show that Hom pDp0q
Y,Q

pF , pDp0q
Y,Qq “ 0. Denote by

D “ ΓpY, pDp0q
Y,Qq, which is a coherent ring, by hypothesis. There is an open

affine V Ă Y, such that the ring E “ ΓpV, pDp0q
V,Qq has no zero divisors [28].

Fact. Restriction to V Ă Y gives an inclusion D Ă E.
Proof of the fact. The inclusion comes, after taking global sections overY, from

the inclusion of sheaves pDp0q
Y,Q ãÑ j˚

pDp0q
V,Q, where j denotes the inclusion V Ă Y.

The statement is local over Y, so that we can assume that Y is irreducible and

endowed with a local coordinate and associated derivation B, so that D
p0q
Y is

OY-free on the basis tBνuνě0. The inclusion OY ãÑ j˚OV therefore implies the

inclusion D
p0q
Y ãÑ j˚D

p0q
V . Passing to p-adic completions and inverting p gives

the inclusion pDp0q
Y,Q ãÑ j˚

pDp0q
V,Q, as claimed.

Returning to the proof of the lemma, the inclusion D Ă E, shows that also
D has no zero divisors. Moreover, F “ ΓpY,Fq is a coherent D-module. If
x1, . . . , xr denotes a finite set of D-module generators for F , then let Ni :“ři

k“1D ¨ xk Ă F for i ą 0 and N0 :“ 0. Any Ni, being a finitely generated

submodule of F , is coherent over D and therefore Ni “ pDp0q
Y,Q bDNi is coherent

over pDp0q
Y,Q. By construction, we have the finite filtration

0 “ N0 Ă N1 Ă . . . Ă Nr´1 Ă Nr.

We will prove by finite induction on i ě 0, that Hom pDp0q
Y,Q

pNi, pDp0q
Y,Qq “ 0. This

is trivial for i “ 0. Assume that this is true for some i. We have an exact
sequence of coherent pDp0q

Y,Q-modules

0 Ñ Ni Ñ Ni`1 Ñ Ni`1{Ni Ñ 0,

thus an exact sequence

0 Ñ Hom pDp0q
Y,Q

pNi`1{Ni, pDp0q
Y,Qq Ñ Hom pDp0q

Y,Q

pNi`1, pDp0q
Y,Qq

Ñ Hom pDp0q
Y,Q

pNi, pDp0q
Y,Qq.

The coherent left pDp0q
Y,Q-module Ni`1{Ni is generated by a single element xi`1

and is thus isomorphic to pDp0q
Y,Q{J with J some finitely generated left ideal of

pDp0q
Y,Q. By hypothesis J ‰ 0, so that J “ ΓpY,J q ‰ 0. Take f P J a non

zero element. Consider u P Hom pDp0q
Y,Q

p pDp0q
Y,Q{J , pDp0q

Y,Qq and 1 the class modulo

J of 1 P D. Writing also u for its global sections, we have fup1q “ upf ¨ 1q “
up0q “ 0. Since D has no zero divisor, this means up1q “ 0 and u “ 0. Thus,

Hom pDp0q
Y,Q

pNi`1{Ni, pDp0q
Y,Qq “ 0, and this proves the assertion for i ` 1.
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Then we have the following

Proposition 5.2.2. Assume that X is affine or equal to the formal projective
line over o. Any irreducible coherent D

:
X-module is holonomic.

Note that we do not assume any Frobenius structure here.

Proof. By [17, Théorème 2.6, Proposition 2.8], it is enough to show

Hom
D

:
X

pE ,D:
Xq “ 0. Let m P N, and Epmq be a coherent pDpmq

X,Q-module such

that
E » D

:
X b pDpmq

X,Q

Epmq.

As
Hom

D
:
X

pE ,D:
Xq » Hom pDpmq

X,Q

pEpmq, pDpmq
X,Qq b pDpmq

X,Q

D
:
X,

it is enough to prove that

Hom pDpmq
X,Q

pEpmq, pDpmq
X,Qq “ 0.

As we have remarked above, the relative Frobenius X Ñ Xpmq admits a lift-
ing F . By Frobenius descent applied to F , we have

Hom pDpmq
X,Q

pEpmq, pDpmq
X,Qq » Hom pDp0q

X1,Q

pF , F 5
dp pDp0q

X1,Qqq,

where
F “ F 5

dp pDp0q
X1,Qq b pDpmq

X,Q

E ,

is a coherent (left) pDp0q
X1,Q-module. We will now prove that F is holonomic.

If X is affine, then X1 is again affine. In the case of the projective line, X1 is

again isomorphic to the projective line. In both cases, X1 is coherently pDp0q
X1,Q-

affine (for the case of the projective line, see [37]). In order to apply the
previous lemma, we have to prove that F has no subquotient isomorphic to
pDp0q
X1,Q. Assume, for a contradiction, that F admits such a subquotient. Then

F˚ pDp0q
X1,Q is a subquotient of F˚F » Epmq, and

D
:
X b pDpmq

X,Q

F˚ pDp0q
X1,Q

is a subquotient of D
:
X b pDpmq

X,Q

Epmq » E . By compatibility of the Frobenius

with tensor product [8, Chapitre 3], this is equivalent to saying that F˚D
:
X1 is

a subquotient of E . Using the equivalence of categories [8, Théorème 4.2.4],
we get that

F 5
D

:
X1 b

D
:
X

F˚
D

:
X1 is a subquotient of F 5

D
:
X1 b

D
:
X

E .

By [8, Proposition 4.2.2] the left-hand side of the previous formula is isomor-

phic to D
:
X1 as bi-D:

X1-module. Moreover, since F˚ establishes an equivalence

Documenta Mathematica 26 (2021) 2005–2059



2050 C. Huyghe, T. Schmidt

of categories, the right-hand side of the previous formula is an irreducible D
:
X1-

module. We finally arrive at the fact that D
:
X1 is a subquotient of the irreducible

module F 5D
:
X1 b E , which gives a contradiction. Hence the lemma applies and

proves that F is holonomic.

Consider now an open V Ă X, endowed with a local coordinate. Then F 5 pDp0q
V1,Q

is a free left pDp0q
V1,Q-module of rank p. As F is holonomic,

Hom pDp0q

V1,Q

pF |V1 , pDp0q
V1,Qq “ 0,

which implies that

Hom pDp0q

V1,Q

pF |V1 , F 5 pDp0q
V1,Qq “ 0.

Using a covering of X by such V, one arrives at

Hom pDpmq
X,Q

pEpmq, pDpmq
X,Qq “ Hom pDp0q

X1,Q

pF , F 5 pDp0q
X1,Qq “ 0.

This implies Hom
D

:
X

pE ,D:
Xq “ 0 and shows that E is holonomic.

After these more general results, we return to the setting of 4.2 in the case of
G “ SL2. We let B be the subgroup of upper triangular matrices and T Ă B

be the subgroup of diagonal matrices. We identify Λ “ Z so that ∆ “ tαu with
α “ 2. We identify

P “ G{B “ P1
o

with the projective line P1
o over o. We choose an affine coordinate t around

zero. The group G acts by fractional transformations

ˆ
a b

c d

˙
. ptq “

ˆ
at ` b

ct ` d

˙

in the usual way. The stabiliser of the point 8 P P1
o is B.

Remark: In this setting, proposition 5.2.2 shows that any irreducible D:pGqθ0 -
module is geometrically holonomic, i.e. localizes to a holonomic module. Under
the presence of Frobenius structures, one knows that for coherent modules on
quasi-projective varieties, the notions of holonomicity and overholonomicity are
equivalent [19]. In general, the implication “holonomic ùñ overholonomic”
for coherent modules on curves is an open question6.

In this setting, the theorem 4.2.3 gives a classification of in terms of irreducible
overconvergent isocrystals E on couples Y “ pY,Xq where Y is either :

(1) a closed point of P1
k or

6The key problem is to verify whether an overconvergent isocrystal which is coherent and
holonomic comes - up to alteration of the curve - from a convergent log-isocrystal. We thank
Daniel Caro for explaining this point to us.
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(2) an open complement of finitely many closed points Z “ ty1, ..., ynu of P1
k.

In case (1), the point is a complete invariant, since we have necessarily E “ OY

in this case. Suppose that the point is k-rational. Since the (finitely many)
k-rational points P1pkq of P1

k form a single orbit under the natural action of the
(finite) group Gpkq of k-rational points of G, it suffices to consider the point

t8u “ Y1,s “ X1,s

in P1
k. According to 5.1.9, the global sections of v!`pOYq are equal to the

D:pGqθ0 -module L:p´2q, the crystalline version of the classical anti-dominant
Verma module Mp´2q “ Lp´2q.
Suppose now that the point is k1-rational for a finite extension field k1{k. Let
M “ H0pP , v!`pOYqq. Let o1 be a finite extension of o with residue field k1 and
quotient field L1. The base change ML1 “ M bL L

1 has the same geometric
parameter, but now considered a rational point of the special fibre of P ˆo o

1.
This means that M is a twisted form of the module L:p´2q, with respect to
the field extension L1{L.

We come to case (2). For Z “ ∅ and hence Y “ P1
k we obtain the trivial

representation, i.e. the augmentation character D:pGq Ñ L. Indeed, there are
no convergent isocrystals on P besides the constant one, cf. 4.2.4. Let n ą 0.
Modulo the appearance of twisted forms (see the above argument), we may
assume that all points y1, ..., yn are k-rational and y1 “ 8. There are then two
extreme cases

Y “ A1
k resp. Y “ P1

kzP1pkq,

the affine line and so-called Drinfeld’s upper half plane, respectively.

We discuss an interesting example in the case Y “ A1
k. For this, we assume

that L contains the p-th roots of unity µp and we choose an element π P o with

ordppπq “ 1{pp´ 1q.

We have the affine coordinate t on A1
o and we let B “ d{dt. We let L̟ be

the coherent D
:
P
-module defined by the Dwork overconvergent F -isocrystal Lπ

on Y associated with π, i.e. Lπ “ v!`Lπ where v : Y Ñ P. Recall that
the underlying OP,Q-module of Lπ is OP,Qp8q, endowed with a compatible

D
:
P -module structure for which Bp1q “ ´π, [9, Subsection 4.5.5].

Write n “ L.e with e “
`
0 1
0 0

˘
. Let η : n Ñ L be a nonzero character and

consider Kostant’s standard Whittaker module

Wθ0,η :“ Upgq bZpgqbUpnq Lθ0,η

with character η and central character θ0, cf. [42, Formula (3.6.1)] for its
original definition over the complex numbers. It is an irreducible Upgq-module,
cf. [11, Lemma 5.3] which holds over any field of characteristic zero (note that
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in Block’s notation gpqq “ q ´ ηpeq ‰ q here), but does not lie in O0. In fact,
the restriction of the DP1

L
-module LocpWθ0,ηq to A1

L has an irregular singularity

at 8 [43, Example 4.4].

Let W :
θ0,η

:“ D:pGq bUpgq Wθ0,η.

Theorem 5.2.3. Let ηpeq :“ π. There is a canonical D
:
P
-linear isomorphism

L ocpW :
θ0,η

q
»

ÝÑ Lπ.

The crystalline Whittaker module W :
θ0,η

is geometrically F -overholonomic.

Proof. For any character η, the module Wθ0,η admits the presentation

Wθ0,η “ Upgq{Upgqpe´ ηpeqq.

For our particular choice, one finds W :
θ0,η

“ D:pGq{D:pGqpe ´ πq. The canon-
ical morphism Upgq Ñ DP1

L
maps e to ´B, cf. [35, Example 11.2.1], and the

isomorphism of part (b) in theorem 4.2.1 is compatible with this morphism.
We obtain

L ocpW :
θ0,η

q “ D
:
P

{D:
P

pB ` πq

which coincides with the standard presentation of the D
:
P
-module Lπ [5, Propo-

sition 5.2.3].

Remark: It is interesting to note that the Dwork isocrystal Lπ is algebraic in
the sense that it comes from an algebraic DP1

L
-module, namely LocpWθ0,ηq, by

extension of scalars DP1

L
Ñ D

:
P .

We discuss an example in the second case, where Y “ P1
kzP1pkq. We identify

k “ Fq. We assume that L contains the cyclic group µq`1 of pq ` 1q-th roots
of unity. We consider the so-called Drinfeld curve

Y 1 “
!

px, yq P A2
k | xyq ´ xqy “ 1

)
.

It is an affine smooth irreducible curve and the map px, yq ÞÑ rx : ys is an
unramified Galois covering

u : Y 1 ÝÑ Y

with Galois group µq`1. The group µq`1 acts by homotheties ζ.px, yq “
pζ.x, ζ.yq. We have a smooth projective compactification

Y 1 “
!

rx : y : zs P P2
k | xyq ´ xqy “ zq`1

)

and the covering extends to a smooth (and tamely ramified) morphism
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u : Y 1 ÝÑ P1
k,

given by rx : y : zs ÞÑ rx : ys. The boundary Z 1 “ Y 1zY 1 is mapped bijectively
to Z “ P1pkq and the ramification index at each point in Z is q ` 1. For more
details the reader may consult [12, chap. 2]. We denote by u : Y1 Ñ Y the
morphism of couples induced by u. We let E “ R‚urig,˚OY1 be the relative rigid
cohomology sheaf which, in our situation, is just the direct image of OY under
the morphism u endowed with the Gauss-Manin connection.

Proposition 5.2.4. The relative rigid cohomology sheaf, as an overconvergent
F -isocrystal on Y, admits a decomposition E “ ‘j“0,...,qEpjq, where Epjq is the
isotypic subspace (of rank one) on which µq`1 acts by the character ζ ÞÑ ζj.
In particular, each pair pY, Epjqq corresponds to an irreducible geometrically
overholonomic D:pGqθ0-module H0pP , v!`Epjqq.

Proof. The cover u : Y 1 Ñ Y is an abelian prime-to-p Galois covering as
considered in [29]. The relative rigid cohomology, as an overconvergent F -
isocrystal on the base Y (denoted there by E:) together with its decomposition
E: “ ‘jE

:pjq is constructed in [29, sec. 2]. Note that u : Y 1 Ñ Y is even equal
to (one of the q ´ 1 connected components of) the Deligne-Lusztig torsor for
the nonsplit torus µq`1 in the finite group GpFqq, a special situation considered
in [29, sec. 4].

Are the modules H0pP , v!`Epjqq algebraic in the sense that they arise from ir-
reducible Upgq-modules, by extension of scalars Upgq Ñ D:pGq? Let us remark
that the théorème d’algébrisation of Christol-Mebkhout [21, Theorem 5.0-10]
implies that any overconvergent F -isocrystal on the open Y is algebraic, i.e.
comes from an algebraic connection on a characteristic zero lift of Y . How-
ever, this does not imply (at least a priori) that the intermediate extensions
preserve this algebraicity. To our knowledge, the most general result in this
direction at the moment is our theorem 3.4.4 above. Actually, to prove this al-
gebraicity result, it would be enough to prove an analogous statement to 3.4.4
in the case where the map b (using notations of 3.4) induces a finite étale
cover Y 1 :“ b´1Y Ñ Y . To prove 3.4.4, we use the equivalence of categories [1,
Lemma 1.2.8]. We need to replace this argument in the case where b induces a
finite étale cover Y 1 :“ b´1Y Ñ Y .

If the modules H0pP , v!`Epjqq are algebraic, to which class do they belong? We
recall that irreducible Upgq-modules fall into three classes: highest weight mod-
ules, Whittaker modules and a third class whose objects (with a fixed central
character) are in bijective correspondence with similarity classes of irreducible
elements of a certain localization of the first Weyl algebra [11]. We plan to
come back to these question in future work.

We finish this paper with the remark, still in the case (2), that if we concentrate
on the subcategory of overconvergent F -isocrystals on Y “ P1

kzZ which are
unit-root, then work of Tsuzuki [54, Theorem 7.2.3] shows that this category
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is equivalent to the category of p-adic representations of the étale fundamental
group πet

1 pY q with finite monodromy (i.e. representations such that for each
y P Z the inertia subgroup at y acts through a finite quotient). Of course, the
trivial representation corresponds to the constant isocrystal OY.

6 Appendix: Complements on divisors

Lemma 6.0.1. Let P be a normal, irreducible, separated noetherian scheme, Z
a proper closed subset of P , x R Z, then there exists an effective Cartier divisor
D of P such that x R D and Zred is a subscheme of Dred, where Zred and
Dred are the reduced schemes associated to Z and D respectively. Moreover
U “ P zD can be chosen to be an affine subset of P .

Proof. Let V “ P zZ and U an affine subscheme of V containing x. Then as P
is irreducible, U is dense and since P is normal, we can apply [53, tag 0EGJ]
to see that P zU is the support of a Cartier divisor D of P . We finally get
the inclusion of topological spaces |Z| Ă |P |. Let JZ and JD be the sheaves
of ideals defining the closed subschemes D and Z, the inclusion of topological
spaces implies that on any affine subset of P , there exists n such that J n

D Ă JZ .
As P is noetherian, there exists N such that J N

D Ă JZ , which implies that there
is a closed immersion Zred ãÑ Dred.

Lemma 6.0.2. Let P be a normal and irreducible separated noetherian scheme,
X a proper closed subset of P , X1, . . . , Xr its irreducible components.

(i) There exist effective Cartier divisors D1, . . . , DN such that X “
ŞN

i“1Di.

(ii) There exists an effective Cartier divisor D containing X2

Ť
. . .

Ť
Xr and

such that X1

Ş
pP zDq is dense in X1. Moreover U “ P zD can be chosen

to be an affine subset of P .

Proof. Let us prove (i). Let D be the set of effective Cartier divisors contain-
ing X , which is not empty by the previous lemma. Note that X “

Ş
DPDD.

Indeed, if not, there exists some x P
Ş

DPDD such that x R X . But, by
the previous lemma we can find some divisor in D not containing x, which
is a contradiction. It remains to show that this intersection is finite. If not,
there is a sequence pDiqiPN of divisors of D such that Zj :“

Ş
iďj Di Ĺ Zj´1.

Denote by Ii the sheaf of ideals defining Di, so that Zj “ V pI1 ` . . . ` Ijq
and consider U “ SpecA Ă P an affine open. As A is noetherian, the se-
quence I1pUq ` . . .`IjpUq is stationary, meaning that there exists n such that
Zn

Ş
U “ Zm

Ş
U , for any m ě n. As P is noetherian, we see that there

exists N such that Zm “ ZN for any m ě N . This is a contradiction and the
intersection is finite.
Let us prove (ii). Let Y “ X2

Ť
. . .

Ť
Xr and x P X1zY . Applying 6.0.1 we see

that there exists a divisor D containing Y such that x R D. Then pP zDq
Ş
X1

is dense since X1 is irreducible.
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Lemma 6.0.3. Let Y be an open dense normal subscheme of an irreducible
scheme X, D a divisor of Y , then D

Ş
Y “ D.

Proof. The question is local over X and we can assume that X is affine equal
to SpecA and Y “ Dphq. Localizing again on X and using the normality of Y ,
we can assume that the divisor is given by a single equation, i.e. D “ V pgq
for some g P A. Then D “ V pA

Ş
Ar1{hsgq, so that gA Ă A

Ş
Ar1{hsg and

D
Ş
Y Ă D, which proves the claim as obviously D Ă D

Ş
Y .

From now on we consider varieties over some field k.

Lemma 6.0.4. Let P be an irreducible, normal, quasi-projective variety and
X Ď P a closed subvariety with irreducible components X1, . . . , Xr. There
exist reduced effective Cartier divisors D1, . . . , Dr in P such that

@i P t1, . . . , ru, Xi Ă Di and @j ‰ i, pP zDiq
č
Xj is dense in Xj .

Proof. Pick a point xi of Xi for each irreducible component Xi, then as P zXi

is quasi-projective, there is a dense affine open subset Ui Ă P zXi containing
x1, . . . , xi´1, xi`1, . . . xr ([53, tag 01ZY]). And as P is normal, again by [53,
tag 0EGJ], P zUi is the support of some effective Cartier divisor Di containing
Xi and such that pP zDiq

Ş
Xj is dense in Xj for j ‰ i.
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Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci.,
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1960/61. Institut des Hautes Études Scientifiques, Paris, 1963.

[32] Harish-Chandra. Representations of a semisimple Lie group on a Banach
space. I. Trans. Amer. Math. Soc. 75:185–243, 1953.

[33] Robin Hartshorne. Algebraic geometry. Graduate Texts in Math., 52.
Springer, New York, 1977.

[34] Robin Hartshorne. Residues and duality. Lecture notes of a seminar on
the work of A. Grothendieck, given at Harvard 1963/64. With an
appendix by P. Deligne. Lecture Notes in Mathematics, 20. Springer,
Berlin, 1966.

Documenta Mathematica 26 (2021) 2005–2059

http://arxiv.org/PS_cache/arxiv/pdf/1106/1106.2446v2.pdf
https://www.math.uchicago.edu/~emerton/pdffiles/jacquet-two.pdf
https://www.math.uchicago.edu/~emerton/pdffiles/jacquet-two.pdf


2058 C. Huyghe, T. Schmidt

[35] Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki. D-modules,
perverse sheaves, and representation theory, Progress in Mathematics,
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D-modules arithmétiques. Rend. Semin. Mat. Univ. Padova 139:1–76,
2018.

[40] Christine Huyghe and Tobias Schmidt. D-modules arithmétiques sur la
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