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1 Introduction

In recent years, the concept of supports of a projective map of complex alge-
braic varieties has received attention, originating from the Support Theorem of
B.C. Ngô [Ngô]. In non-technical terms, the supports of a projective map are a
collection of irreducible closed subvarieties of the target space, whose singular-
ities (more precisely, their local intersection cohomology) control the variation
of cohomology of the fibres of the map (see Section 2.1 for a brief introduction,
and [M] for a detailed overview over the subject). It thus seems desirable to
compute the supports for interesting classes of projective maps, for example
those arising in contexts of algebraic Lie theory.
In the present paper, we provide an explicit description of the supports of a flat
family called linear degenerations of flag varieties. Based on earlier work on
degenerate versions of flag varieties [CFR, Fei], this family is introduced and
studied in [CFFFR]. Despite the rather simple idea to degenerate flag varieties
by relaxation of the containment relation between the subspaces constituting
the flag, it provides a wealth of new degenerations, which nevertheless share
favourable geometric properties (see Section 2.2 for the precise definitions and
results).
Our main result, Theorem 2.3 below, describes the supports of the family of
linear degenerations explicitly in terms of Motzkin paths. The appearance
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of Motzkin combinatorics is quite surprising and not to be expected a priori.
It shows that the set of supports is highly nontrivial in our case, but still
completely controllable. This description also allows us to prove that the set
of supports is “asymptotically very small” compared to the set of all potential
supports, see Section 7.2.
The determination of the supports of this flat family is made possible by the
observation (which in fact formed the starting point for the present work), that
it features as a special case of the varieties and maps arising in G. Lusztig’s geo-
metric realization of quantized enveloping algebras [Lus2] (all quantum groups
notions will be recalled in Section 3). This allows us to reduce the determina-
tion of supports to an algebraic problem, namely expanding a certain monomial
in Chevalley generators of a quantized enveloping algebra into elements of the
canonical [Lus1], or global crystal [Kas], basis (see Section 4).

Although the inherent piecewise linear combinatorics of Lusztig’s canonical
basis is by now well studied [BFZ, BZ, BZ2, CMM, L], and ultimately led to the
new research areas of crystal basis theory and cluster algebras/combinatorics,
the basis itself remains rather mysterious, and our algebraic reduction of the
support problem is still not readily solvable.

Instead, we use a parametrisation of the canonical basis elements which is dif-
ferent from the one provided by the geometric picture, for which partial results
on the desired expansion can be derived purely algebraically (see Section 6).
We then precisely use the knowledge on the piecewise linear combinatorics of
the canonical basis, namely the ingenious multi-segment duality formula of
Knight and Zelevinsky [KZ, Z2] (to be reviewed in Section 5), to play off two
dual pictures of the canonical basis against each other, which then leads to the
exact determination of the supports, and to the natural appearance of Motzkin
combinatorics (see Section 7.1).

The limitations of this indirect approach, substantiated by further explicit ex-
amples, are discussed in Sections 7.4 and Section 8.
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2 Statement of the main result

2.1 Supports

We give a brief introduction into the concept of supports of a projective mor-
phism and recommend [M] for a thorough review of the topic.

Let f : X → Y be a projective morphism of complex algebraic varieties, with X
assumed to be irreducible and smooth. We view this morphism as the family of
its fibres Xy := f−1(y). We are interested in the behaviour of the cohomology
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H∗(Xy;Q) of the fibre when y varies along Y . This information is clearly
encoded in the complex of constructible sheaves Rf∗QX ∈ Db(Y ), since, for
example, the cohomology of a fibre identifies with a stalk of its cohomology
sheaves,

H∗(Xy;Q) ≃ H∗
y(Rf∗(QX)).

By the Decomposition Theorem [BBD], Rf∗(QX) is isomorphic to a direct sum
of shifts of intersection cohomology complexes,

Rf∗QX ≃

n⊕

i=1

IC(Si,Li)[si]

for finitely many data (Si,Li, si) consisting of a smooth locally closed subvariety
Si ⊂ Y , a non-zero local system Li on Si, and an integer si.

Definition 2.1. The set {Si | i = 1, . . . , n} is called the set of supports of f .

We then find a decomposition (up to shifts):

H∗(Xy;Q) ≃

n⊕

i=1

H∗
y(IC(Si,Li)),

thus the cohomology of Xy is essentially controlled by the local intersection
cohomology of the supports Si.
A point of view advocated in [Ngô] is that the set of supports should be viewed
as a topological invariant of the map f in its own right. We refer to [M] for
a collection of general results on the set of supports, including a codimension
estimate for supports due to Goresky and MacPherson, the description of sup-
ports for semismall maps, Ngô’s support theorem for certain abelian filtrations,
and results of Migliorini and Shende on supports and higher discriminant loci.

2.2 Statement of the main result

Fix n ≥ 1 and denote by V an (n+ 1)-dimensional complex vector space.
We define a family π : F → R of so-called linear degenerations of the
GLn+1(C)-flag variety. The base space for the family of degenerations is
R := HomC(V, V )n−1, on which the group G = GL(V )n acts via base change
with finitely many orbits O(r), indexed by rank tuples r = (rij)1≤i≤j≤n (see
[Z1]). Namely, to a point f∗ = (f1, . . . , fn−1) ∈ R we associate the rank tuple
r(f) = (rank(fj−1 ◦ . . . ◦ fi))i≤j . All these orbits have connected stabilizers.
Let Gri(V ) be the Grassmann variety of i-dimensional subspaces in V . We
define Gr(V ) =

∏n

i=1 Gri(V ), and define

F = {(U∗, f∗) ∈ Gr(V )×R | fi(Ui) ⊂ Ui+1, i = 1, . . . , n− 1}.

We have a canonical projection p : F → Gr(V ) turning F into a homogeneous
vector bundle over Gr(V ), thus F is smooth and irreducible. The projection
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π : F → R is a projective map, whose fibres are denoted by Flf∗(V ) := Ff∗ =
π−1(f∗) and called linear degenerate flag variety. More explicitly,

Flf∗(V ) = {(U1, . . . , Un) ∈ Gr(V ) | fi(Ui) ⊂ Ui+1, i = 1, . . . , n− 1}.

Note that Flid(V ) ≃ GLn+1(C)/B is the type A complete flag variety; more
generally, a generic fibre of π is isomorphic to the GLn+1(C)-complete flag
variety. By G-equivariance, the isomorphism type of Flf∗(V ) only depends
on the rank tuple of f∗. Denote by r1 the special rank tuple given by r1 :=
(n+ 1 + i− j)1≤i≤j≤n.
One of the main results of [CFFFR] classifies the irreducible fibres of dimension
dim(GLn+1(C)/B):

Theorem 2.2 ([CFFFR]). The following statements are equivalent:

1. the linear degenerate flag variety Flf∗(V ) is irreducible of dimension n(n+
1)/2;

2. r(f∗) ≥ r1 componentwise;

3. for any i = 1, · · · , n− 1, we have ri,i+1 ∈ {n, n+ 1}.

If this is the case, Flf∗(V ) is normal, locally a complete intersection, prehomo-
geneous, and admits an affine paving.

We denote by U ⊂ R the set of all f∗ such that r(f∗) ≥ r1 and by FU the
pre-image of U under π; thus π : FU → U is a projective map between smooth
irreducible varieties which is flat with irreducible fibres.
By the Decomposition Theorem [BBD] (using G-equivariance and connected-
ness of stabilizers), Rπ∗QFU

decomposes into a direct sum of shifts of intersec-

tion cohomology complexes (with respect to trivial local systems) IC(O(r)).
Denote by Mn the set of Motzkin paths from (0, 0) to (n, 0), that is, Mn is
the set of all tuples of nonnegative integers

x = (0 = x0, x1, . . . , xn−1, xn = 0)

such that
xi − xi−1 ∈ {−1, 0, 1}, i = 1, . . . , n.

To such a Motzkin path x ∈ Mn we associate a tank tuple r(x) ≥ r1, where

r(x)ij = n+ 1− max
i≤k≤l≤m≤j

(xl−1 + xl − xk−1 − xm).

Our main result gives a complete description of the set of supports of the map π:

Theorem 2.3. The intersection complex IC(O(r)) appears (up to shift) as a
direct summand of Rπ∗QFU

if and only if r is of the form r(x) for a Motzkin
path x ∈ Mn.

The proof of this theorem is given in Section 7.1.
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2.3 An elementary example

Taking V = C3 in the previous section and identifying Gr1(V ) ≃ P(V ),
Gr2(V ) ≃ P(V ∗), we have

F ≃ {(v, ϕ, f) ∈ P(V )× P(V ∗)×Hom(V, V ) : ϕ(f(v)) = 0}.

Using the GL3(C) × GL3(C)-equivariance, we see that Fl(f)(V ) only depends
on the rank r ∈ {0, 1, 2, 3} of f . Choosing coordinates and diagonalizing f , we
arrive at the following four types of degenerations:

1. when the rank r = 3,

Fl(3)(V ) ≃ {((x0 : x1 : x2), (y0 : y1 : y2)) ∈ P2×P2 : x0y0+x1y1+x2y2 = 0},

is the GL3(C)-flag variety, thus an irreducible three-dimensional smooth pro-
jective variety;

2. when the rank r = 2,

Fl(2)(V ) ≃ {((x0 : x1 : x2), (y0 : y1 : y2)) ∈ P2 × P2 : x0y0 + x1y1 = 0},

is an irreducible normal three-dimensional projective variety with an isolated
singularity;

3. when the rank r = 1,

Fl(1)(V ) ≃ {((x0 : x1 : x2), (y0 : y1 : y2)) ∈ P2 × P2 : x0y0 = 0},

is isomorphic to (P2×P1)∨P1×P1 (P2×P1), thus a three-dimensional reducible
non-normal projective variety with two irreducible components intersecting
in codimension one;

4. when the rank r = 0,

Fl(0)(V ) ≃ P2 × P2,

is four-dimensional.

Denoting by O(r) ⊂ End(V ) the locus of linear maps of rank r, we see that
π : F → End(V ) is flat over O(3) ∪ O(2) ∪ O(1), and is flat with irreducible
fibres over O(3) ∪ O(2).

Borrowing the formula of Section 8.1, we have

Rπ∗QF ≃ IC(O(3))⊗H∗(GL3(C)/B)⊕ IC(O(2)).
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3 Quantum groups and canonical bases

Let A be the Cartan matrix of the Lie algebra g = sln+1 over C, and let g =
n−⊕h⊕n+ be a triangular decomposition. Let α1, · · · , αn be the corresponding
simple roots and

∆+ = {αi,j = αi + · · ·+ αj | 1 ≤ i ≤ j ≤ n}

be the set of positive roots of g. We define N := #∆+ = n(n+ 1)/2.
Let w0 be the longest element in Sn+1, the Weyl group of g, and let R(w0) be
the set of all reduced decompositions of w0.
Let i = (i1, · · · , iN) ∈ R(w0) be such a reduced decomposition of w0. Then the
set {β1, β2, · · · , βN}, where βk = si1 · · · sik−1

(αik), coincides with ∆+. This
induces a convex ordering on ∆+ by letting

β1 < β2 < · · · < βN .

For a variable v, let Uv(g) be the quantized enveloping algebra associated to g

over Q(v), with generators Ei, Fi and K±1
i for i = 1, · · · , n. Let U+

v (g) be
the positive part of Uv(g): it is the Q(v)-subalgebra of Uv(g) generated by the
Chevalley generatorsE1, E2, · · · , En, which is isomorphic to the free associative
algebra in E1, · · · , En subject to the quantum Serre relations: for |i − j| > 1,
the generators Ei and Ej commute, and for |i− j| = 1, we have

E2
i Ej − (v + v−1)EiEjEi + EjE

2
i = 0.

We fix the following notation: for k ∈ N and 0 ≤ m ≤ k, we define quantum
numbers, quantum factorials and quantum binomial coefficients in Z[v, v−1] by

[k]v :=
vk − v−k

v − v−1
, [k]v! = [k]v[k − 1]v · · · [1]v,

[
k

m

]

v

=
[k]v!

[m]v![k −m]v!
;

these are Laurent polynomials of degree k − 1, k(k − 1)/2 and m(k − m),
respectively. We also define the divided powers of the Chevalley generators:

E
(k)
i =

Ek
i

[k]v!
.

Let U+
v denote the Z[v, v−1]-subalgebra of U+

v (g) generated by the divided

powers E
(r)
i for i = 1, · · · , n and r ∈ N.

Let · : U+
v (g) → U+

v (g) be the bar involution: it is the Q-algebra map on U+
v (g)

defined by
v 7→ v−1, Ei 7→ Ei for i = 1, · · · , n.

3.1 PBW basis of U+
v (g)

For any i = 1, · · · , n, Lusztig defined on Uv(g) an algebra automorphism
Ti : Uv(g) → Uv(g) (more precisely, the automorphism T ′

i,−1 defined in [Lus3,
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Proposition 37.1.2.]). We do not need the full definition here, but only the
following formulas for i, j = 1, . . . , n:

Ti(Ej) = Ej if |i− j| > 1, Ti(Ej) = EjEi − v−1EiEj if |i− j| = 1.

We fix a reduced decomposition i = (i1, · · · , iN ) and let βi be as defined above.
For k = 1, · · · , N and m ∈ N, define

E
(m)
βk

:= Ti1Ti2 · · ·Tik−1
(E

(m)
ik

)

which plays the role of a divided power of a PBW root vector associated to βk.
For m = (m1,m2, · · · ,mN ) ∈ NN , we denote

E
(m)
i := E

(m1)
β1

E
(m2)
β2

· · ·E
(mN )
βN

.

Then the set
{E

(m)
i | m ∈ NN}

forms a Z[v, v−1]-basis of U+
v ([Lus1, Proposition 2.3]).

3.2 Canonical basis of U+
v

We fix on NN the the following orderings: for a = (a1, · · · , aN ), b =
(b1, · · · , bN) ∈ NN ,

1. lexicographic type ordering >L: a >L b if there exists 1 ≤ i ≤ N such
that a1 = b1, · · · , ai−1 = bi−1 and ai < bi;

2. lexicographic type ordering >R: a >R b if there exists 1 ≤ i ≤ N such
that aN = bN , · · · , ai+1 = bi+1 and ai < bi;

3. a partial order ≻: a ≻ b if both a >L b and a >R b hold.

There is another basis of U+
v , whose existence is guaranteed by the following

theorem.

Theorem 3.1 ([Lus3]). Let i ∈ R(w0).

1. For any n ∈ NN , there exists a unique element b
(n)
i ∈ U+

v satisfying the
following properties:

• b
(n)
i is bar-invariant: b

(n)
i = b

(n)
i ;

• the following upper-triangularity property holds:

b
(n)
i − E

(n)
i ∈

∑

m≺n

v−1Z[v−1]E
(m)
i .

2. The map ϕi sending n to b
(n)
i is a bijection between NN and a basis B of

U+
v ; the basis B does not depend on the choice of i ∈ R(w0).
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This basis B, defined by Lusztig in [Lus1], is called the canonical basis. This
basis was later shown to be the same as the global crystal basis of Kashiwara
[Kas]. The map ϕi : NN → B is called the Lusztig parametrisation of the
canonical basis B with respect to the reduced decomposition i, see also [BFZ,
BZ2, Cal, CM].

3.3 More on the transition matrix

We fix a reduced decomposition i ∈ R(w0).
For n < m, let ζnm ∈ Z[v−1] and wn

m ∈ Z[v, v−1] be the base change coefficients
given by:

b
(n)
i =

∑

m4n

ζnmE
(m)
i and E

(n)
i =

∑

m4n

wn
mE

(m)
i . (1)

In fact, ζnn = wn
n = 1, and for m ≺ n, ζnm ∈ v−1Z[v−1].

Since the basis elements b
(n)
i are bar-invariant, we have

E
(n)
i = E

(n)
i +

∑

m≺n

(
ζnmE

(m)
i − ζnmE

(m)
i

)
.

Comparing this with Formula (1) for the bar-involution, we find: for s ≺ n,

wn
s = ζns − ζns −

∑

m:s≺m≺n

ζnmwm
s . (2)

According to [Lus1, Section 9.11], one can solve Equation (2) for the coefficients
ζns uniquely.

4 Geometric realisation of quantum groups and reduction of the

theorem

4.1 Geometric realization of U+
v (g)

We discuss the geometric realisation of U+
v (g) developed in [Lus1, Lus2]. Let Ω

be the quiver

1 → 2 → · · · → n.

By [Lus2, 10.17.], there exists an isomorphism of Q(v)-algebras

λΩ : U+
v (g) → KΩ ⊗Q(v),

between U+
v (g) and (a scalar extension of) the Grothendieck group of a certain

category of perverse sheaves on representation spaces of the quiver Ω (with an
algebra structure given by a certain convolution construction). By [Lus2, 0.3],
in our case of a quiver of Dynkin type A, this is just the category of direct
sums of shifts of intersection cohomology complexes of orbit closures on these
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representation spaces; the isomorphism λΩ is the inverse of the isomorphism Θ

of [Lus1, Proposition 9.8.].
More precisely, we can translate the geometric setup of Section 2.2 to the
notation of [Lus2] as follows:
We consider the graded vector space V =

⊕n
i=1 V . Then, in the notation of

[Lus2, 1.2.], the base space R is EV, and the group action of G on R coincides
with the action ofGV on EV there. The orbitO(r) equalsOm(r) in the notation
of [Lus1, 4.15., 4.16.].
We consider the sequences

i = (1, 2, · · · , n, 1, 2, · · · , n), a = (n, n− 1, · · · , 1, 1, 2, . . . , n).

In [Lus2, 1.4., 1.5.], a map πi,a : F̃i,a → EV is defined, where F̃i,a is a variety
consisting of an element f∗ ∈ EV = R, together with a compatible so-called
flag of type (i, a). But the definition of such flags in [Lus2, 1.4.] precisely
means that such a flag, for the above pair (i, a), consists of nothing else but
an element (U1, . . . , Un) of Gr(V ) such that fi(Ui) ⊂ Ui+1 for all i. In other

words, the map πi,a : F̃i,a → EV is precisely our family π : F → R of linear
degenerations.

4.2 Reduction

Using the geometric approach of the previous subsection, we can now reduce
the problem of determining the supports of π : FU → U to an algebraic problem
of expanding a monomial in the canonical basis.
We consider the reduced decomposition

i+ := (n, n− 1, n, n− 2, n− 1, n, · · · , 1, 2, · · · , n) ∈ R(w0),

for which the induced ordering on the positive roots is

αn,n, αn−1,n, αn−1,n−1, αn−2,n, αn−2,n−1, αn−2,n−2, · · · , α1,n, · · · , α1,1.

For a rank tuple r, we define, for all 1 ≤ i ≤ j ≤ n,

mi,j = ri,j − ri−1,j − ri,j+1 + ri−1,j+1

(if i = 0 or j = n + 1 we set ri,j = 0), which we enumerate according to the
ordering on positive roots:

m(r) = (mn,n,mn−1,n,mn−1,n−1, · · · ,m1,n, · · · ,m1,1),

and we associate the corresponding PBW type basis element, resp. canonical
basis element

E+(r) = E
(m(r))
i+

, b+(r) = b
(m(r))
i+

.

The monomial

M = E
(n)
1 E

(n−1)
2 · · ·E

(2)
n−1EnE1E

(2)
2 · · ·E

(n−1)
n−1 E(n)

n

can be expanded into a Z[v, v−1]-linear combination of elements in B.
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Proposition 4.1. An orbit closure O(r) ⊂ U is a support of the projective
map π : FU → U if and only if the canonical basis element b+(r) appears with
non-zero coefficient in the expansion of M .

Proof. We use the notation of the previous subsection. By [Lus2, Prop. 10.13.],
the isomorphism λΩ maps the monomial M to a shift of the complex Rπ∗QF

on R. On the other hand, λΩ maps b+(r) to a shift of the complex IC(O(r))
by [Lus1, 9.4., Theorem 9.13.].
We conclude that IC(O(r)) appears as a direct summand of Rπ∗QF on R if
and only if b+(r) appears with non-zero coefficient in the expansion of M in
the canonical basis. Restriction to the open G-invariant subset U ⊂ R yields
the desired statement.

5 Multi-segment duality

5.1 Notation

We fix a reduced decomposition i ∈ R(w0) and identify a monomial m =

(m1,m2, · · · ,mN ) ∈ NN with the PBW basis element E
(m)
i .

For 1 ≤ i ≤ j ≤ n we denote ei,j the coordinate of NN corresponding to Eαi,j
.

For m ∈ NN , we write

m =
∑

1≤i≤j≤n

mi,jei,j ,

which is called a multi-segment in [KZ].
We define a multi-segment (a,x) ∈ Nn × Nn−1, for a = (a1, · · · , an) and x =
(x1, · · · , xn−1) in NN , by:

(a,x) :=
∑

1≤i≤n

aiei,i +
∑

1≤j≤n−1

xjej,j+1.

We will use the convention a0 = an+1 = x0 = xn = 0.

5.2 Multi-segment duality

Let i− ∈ R(w0) be the reduced decomposition

i− := (1, 2, 1, 3, 2, 1, · · · , n, n− 1, · · · , 1).

The multi-segment duality map is by definition the piecewise linear map ζ :
NN → NN defined by:

ζ := ϕ−1
i+

◦ ϕi− .

For a multi-segment m =
∑

1≤i≤j≤n mi,jei,j ∈ NN , we define a rank tuple
(ri,j)i≤j by

ri,j(m) :=
∑

[i,j]⊂[k,ℓ]

mk,ℓ.

Documenta Mathematica 26 (2021) 1981–2003



Supports for Linear Degenerations 1991

As in the previous section, the multi-segment m can be recovered from the
rank tuple by

mi,j = ri,j(m)− ri−1,j(m)− ri,j+1(m) + ri−1,j+1(m),

where rk,ℓ is formally defined as zero if 1 ≤ k ≤ ℓ ≤ n is not fulfilled.

5.3 Specialization of the Knight-Zelevinsky formula

By [BZ, 3., Remark], the multi-segment duality ζ can be described using the
explicit formula [KZ, Theorem 1.2.] (see also [Z2]). Namely, we have

r̂(ζ(m)) = r(ζ̂(m)),

where r 7→ r̂ is the involution on rank tuples given by

r̂i,j = rn+1−j,n+1−i,

and the map ζ̂ on multi-segments is given by the following formula:

ri,j(ζ̂(m)) = min
ν

∑

(k,l)∈[1,i]×[j,n]

mν(k,l)+k−i,ν(k,l)+l−j ,

where the minimum ranges over all maps ν : [1, i] × [j, n] → [i, j] such that
ν(k, l) ≤ ν(k′, l′) whenever k ≤ k′ and l ≤ l′.
This formula simplifies considerably in the case where mi,j = 0 for j − i ≥ 2.
Namely, in this case, a summand contributing to the above sum can be non-zero
only if for the indices k and l specifying the summand, we have

1 ≥ (l − j) + (i − k),

that is,
(k, l) ∈ {(i, j), (i− 1, j), (i, j + 1)}.

Denoting
p = ν(i− 1, j), q = ν(i, j), r = ν(i, j + 1),

the above formula thus reduces to

ri,j(ζ̂(m)) = min
i≤p≤q≤r≤j

(mp−1,p +mq,q +mr,r+1).

In particular, this applies to the following situation: given x ∈ Nn−1 as above
such that xi +xi+1 ≤ n+1 for all i, we define ai(x) = n+1− xi −xi−1 (again
using the convention x0 = 0 = xn), and finally define the multi-segment

x′ = (a(x),x).

We then find the following formula (the special case being easily worked out):

Proposition 5.1. For x as before, we have

ri,j(ζ̂(x
′)) = n+ 1− max

i≤k≤l≤m≤j
(xl−1 + xl − xk−1 − xm).

In particular, we have

ri,i+1(ζ̂(x
′)) = n+ 1−max(0, xi − xi+1, xi − xi−1).
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6 Expansion of the monomial M

As in Section 4, we consider the following monomial M ∈ U+
v :

M = E
(n)
1 E

(n−1)
2 · · ·E

(2)
n−1EnE1E

(2)
2 · · ·E

(n−1)
n−1 E(n)

n .

The goal of this section is to study the expansion of the monomial M into
canonical basis elements with respect to the parametrisation of the canonical
basis induced by the reduced decomposition i−. In this section we fix i− to be
the reduced decomposition, and will drop this index.

6.1 Expansion in PBW basis

For β = αi,i+1, we will denote Ei,i+1 := Eβ for simplicity: it is given by

Ei,i+1 = Ei+1Ei − v−1EiEi+1.

The following formula can be found in [Lus3, Lemma 42.1.2 (f)]: for a, b, c ∈ N,

E
(a)
i+1E

(b)
i E

(c)
i+1 =

min(a,b)∑

r=0

v−(a−r)(b−r)

[
a+ c− r

c

]

v

E
(b−r)
i E

(r)
i,i+1E

(a+c−r)
i+1 . (3)

Let e1, e2, · · · , en, f1, f2, · · · , fn ∈ N. For a tuple x = (x1, x2, · · · , xn−1) ∈
Nn−1 satisfying for i = 1, · · · , n− 1,

0 ≤ xi ≤ min(ei, fi+1),

we define E(x) to be the monomial

E
(e1+f1−x1)
1 E

(x1)
1,2 E

(e2+f2−x1−x2)
2 E

(x2)
2,3 · · ·

· · ·E
(en−1+fn−1−xn−2−xn−1)
n−1 E

(xn−1)
n−1,n E(en+fn−xn−1)

n .

We extend the tuple by setting x0 = xn = 0.

Lemma 6.1. We have the identity E
(f1)
1 · · ·E

(fn)
n E

(e1)
1 · · ·E

(en)
n =

=
∑

x

v−
∑n−1

i=1
(ei−xi)(fi+1−xi)

n∏

i=1

[
ei + fi − xi−1 − xi

fi − xi−1

]

v

E(x),

where the sum ranges over all possible tuples x = (x1, x2, · · · , xn−1) ∈ Nn−1

satisfying for any i = 1, · · · , n− 1, 0 ≤ xi ≤ min(ei, fi+1).

Proof. We prove the formula by induction on n. When n = 2, by equation (3),

we can write E
(f1)
1 E

(f2)
2 E

(e1)
1 E

(e2)
2 into

E
(f1)
1




min(e1,f2)∑

x1=0

v−(e1−x1)(f2−x1)

[
e2 + f2 − x1

f2 − x1

]

v

E
(e1−x1)
1 E

(x1)
1,2 E

(e2+f2−x1)
2



 .

Documenta Mathematica 26 (2021) 1981–2003



Supports for Linear Degenerations 1993

Once the first monomial is multiplied into the bracket, we have:

min(e1,f2)∑

x1=0

v−(e1−x1)(f2−x1)

[
e1 + f1 − x1

f1

]

v

[
e2 + f2 − x1

f2 − x1

]

v

×

×E
(e1+f1−x1)
1 E

(x1)
1,2 E

(e2+f2−x1)
2 .

In general, we rewrite

E
(f1)
1 · · ·E(fn)

n E
(e1)
1 · · ·E(en)

n

into

E
(f1)
1 · · ·E

(fn−1)
n−1 E

(e1)
1 · · ·E

(en−2)
n−2 E(fn)

n E
(en−1)
n−1 E(en)

n .

By the induction hypothesis, E
(f1)
1 · · ·E

(fn−1)
n−1 E

(e1)
1 · · ·E

(en−2)
n−2 can be written

into
∑

y

v−
∑n−2

i=1
(ei−yi)(fi+1−yi)

n−1∏

i=1

[
ei + fi − xi−1 − xi

fi − xi−1

]

v

E(y)

where we set y0 = yn−1 = 0 and the sum ranges over all tuples y =
(y1, y2, · · · , yn−2) ∈ Nn−2 satisfying 0 ≤ yi ≤ min(ei, fi+1) for any i =
1, · · · , n − 2. Note that in the above formula en−1 = 0, so the q-binomial
number for i = n− 1 is 1. Therefore the product in this formula is in fact up
to i = n− 2.

For any y as above, the power of En−1 in E(y) reads (fn−1 − yn−2). The

monomial E(y)E
(fn)
n E

(en−1)
n−1 E

(en)
n can be written as

E
(e1+f1−y1)
1 E

(y1)
1,2 E

(e2+f2−y1−y2)
2 E

(y2)
2,3 · · ·E

(en−2+fn−2−yn−3−yn−2)
n−2 E

(yn−2)
n−2,n−1·

·E
(fn−1−yn−2)
n−1 E(fn)

n E
(en−1)
n−1 E(en)

n .

After applying the formula in the case n = 2 to the monomial

E
(fn−1−yn−2)
n−1 E(fn)

n E
(en−1)
n−1 E(en)

n ,

we obtain the formula in the lemma.

6.2 Expansion in canonical basis

We consider the special case of Lemma 6.1 where (e1, e2, · · · , en) = (1, 2, · · · , n)
and (f1, f2, · · · , fn) = (n, n− 1, · · · , 1). Let t0 = (t01, t

0
2, · · · , t

0
n−1) be the tuple

with t0k = min(k, n− k).

Let P be the set of tuples y ∈ Nn−1 such that t0 − y ∈ Nn−1. We define a
partial order > on P by: x ≥ y if x − y ∈ Nn−1. Note that x ≥ y implies
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x′ < y′, recalling that we associate to x = (x1, · · · , xn−1) ∈ P the multi-
segment element x′ in NN defined by:

x′ =

n−1∑

k=1

xkek,k+1 +

n∑

ℓ=1

(n+ 1− xℓ − xℓ−1)eℓ,ℓ,

where we formally set x0 = xn = 0. Then for x = (x1, x2, · · · , xn−1) ∈ Nn−1,
we have E(x′) =

= E
(n+1−x1)
1 E

(x1)
1,2 E

(n+1−x1−x2)
2 · · ·E

(n+1−xn−2−xn−1)
n−1 E

(xn−1)
n−1,n E(n+1−xn−1)

n .

Lemma 6.2. For x,y ∈ P, the coefficient wx′

y′ is non-zero only if x ≥ y. If this
is the case,

wx′

y′ = v−
∑n−1

k=1
1
2
(xk−yk)(xk−yk−1)(v−1 − v)

∑n−1

k=1
(xk−yk)

n−1∏

k=1

[xk − yk]v!×

×
n∏

k=1

[
n+ 1− yk−1 − yk

xk − yk

]

v

[
n+ 1− xk − yk−1

xk−1 − yk−1

]

v

,

where we formally set y0 = yn = x0 = xn = 0.

Proof. Using again Ti(Ei+1) = Ei+1Ei − v−1EiEi+1 = Ei,i+1, as well as the
commutation relations Ei,i+1Ei = vEiEi,i+1 and Ei+1Ei,i+1 = vEi,i+1Ei+1, it
is easy to show that

E
(n)
i,i+1 =

n∑

k=0

v−
1
2
k(k−1)[k]v!(v

−1 − v)kE
(k)
i E

(n−k)
i,i+1 E

(k)
i+1.

Applying this formula to E(x′) yields the claimed formula for the coefficients
wx′

y′ .

Corollary 6.3. Let x ∈ P and p ∈ NN . Then wx′

p 6= 0 only if there exists
y ∈ P such that x ≥ y and p = y′.

In particular, if we write d = x− y = (d1, · · · , dn−1) and set d0 = dn = 0, the
previous formula reads

wx′

y′ = v−
1
2

∑n−1

k=1
dk(dk−1)(v−1 − v)

∑n−1

k=1
dk

n−1∏

k=1

[dk]v!×

×
n∏

k=1

[
ak + dk + dk−1

dk

]

v

[
ak + dk−1

dk−1

]

v

, (4)

where ak = n+ 1− xk−1 − xk.
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Lemma 6.4. For x,y ∈ P, the coefficient ζx
′

y′ is non-zero only if x ≥ y.

Proof. We prove that if x � y then ζx
′

y′ = 0.
For x = (x1, · · · , xn−1) ∈ P , we denote its height by ht(x) = x1 + · · ·+ xn−1.
The poset P is graded by the height.
By Corollary 6.3, Formula (2) reads

ζx
′

y′ − ζx
′

y′ = wx′

y′ +
∑

ζx
′

z′ w
z′

y′ .

where the sum is over all z ∈ P such that z ≥ y and x′ ≻ z′.
First we show that if ht(x) ≤ ht(y) then ζx

′

y′ = 0. Notice that by Lemma 6.2, for

w, z ∈ P , ht(w) ≤ ht(z) implies w � z and hence ww′

z′ = 0. According to the

above formula, ht(x) ≤ ht(y) implies that ζx
′

y′ − ζx
′

y′ = 0. As ζx
′

y′ ∈ v−1Z[v−1],
it must be zero.
It remains to consider the case when ht(x)−ht(y) ≥ 1. We deal with this case
by induction on ht(x)−ht(y). We first assume that this difference is 1. In this
case x ≥ y is equivalent to x < y since y = x − ei for some 1 ≤ i ≤ n − 1.
Assume furthermore that x � y, then x′ < y′ does not hold. By definition,

ζx
′

y′ = 0.

In general, assuming x � y, we claim that in the above formula either wz′

y′ = 0

or ζx
′

z′ = 0. Let us assume that wz′

y′ 6= 0. By Lemma 6.2, z ≥ y and hence

x � z. Applying the induction hypothesis to ht(x)− ht(z) shows that ζx
′

z′ = 0.

As wx′

y′ = 0, we obtain again ζx
′

y′ − ζx
′

y′ = 0, hence ζx
′

y′ = 0.

By Lemma 6.1, we can expand M into

M =
∑

y∈P

λyE(y′). (5)

For y = (y1, · · · , yn−1),

λy = v−
∑n−1

k=1
(k−yk)(n−k−yk)

n∏

k=1

[
n+ 1− yk−1 − yk

k − yk

]

v

, (6)

where we formally set y0 = yn = 0.
For x ∈ Nn−1, let b(x′) be the canonical basis element corresponding to the
PBW basis element E(x′).
Since the transition matrix between the canonical basis and the PBW basis is
unipotent triangular, we can deduce that

M =
∑

y∈P

µyb(y
′). (7)

Combining Equations (1), (5), (7) and applying a Möbius type transformation
to the partial order ≻, we can rewrite µy as follows in view of Lemma 6.4:
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Lemma 6.5. For y ∈ P, we have:

µy = λy −
∑

y<z

λz


ζz

′

y′ +
∑

u≥1

(−1)u
∑

y<p1<···<pu<z

ζ
p′

1

y′ ζ
p′

2

p′

1

· · · ζz
′

p′

u


 . (8)

For x,y ∈ P , the constants ζx
′

y′ can be computed recursively from Equation (2)

once the values of wx′

y′ are known.

6.3 Non-vanishing property of coefficients

Recall that Mn is the set of Motzkin paths from (0, 0) to (0, n).

Proposition 6.6. For y ∈ Mn we have µy 6= 0.

Proof. Let z ∈ P be such that z > y. By Lemma 6.5 and the fact that the
coefficients ζnm are in v−1Z[v−1], it suffices to show that the degree of λy is
greater or equal to the degree of λz.

By (6), the degree of λy is given by:

deg λy =
n∑

k=1

(k − yk)(n+ 1− k − yk−1)−
n−1∑

k=1

(k − yk)(n− k − yk)

= (1 − y1)n+

n−1∑

k=1

(k + 1− yk+1)(n− k − yk)−

n−1∑

k=1

(k − yk)(n− k − yk)

= (1− y1)n+

n−1∑

k=1

(n− k − yk)(yk − yk+1 + 1).

Hence the difference of degrees equals deg λy − deg λz =

= n(z1 − y1) +

n−1∑

k=1

((n− k − yk)(yk − yk+1 + 1)− (n− k − zk)(zk − zk+1 + 1))

= n(z1−y1)+

n−1∑

k=1

((zk−yk)(k+1−n−zk+1)+(zk+1−yk+1)(n−k−yk)+(z2k−y2k))

= n(z1−y1)+(z21−y21)+(z1−y1)(2−n−z2)+

n−1∑

k=2

(zk−yk)(zk+yk−zk+1−yk−1+2)

=

n−1∑

k=1

(zk − yk)(zk − zk+1 + yk − yk−1 + 2).
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As z− y > 0, we can assume that for k = 1, · · · , n− 1, we have zk = yk + αk

for some αk ∈ N. Then the above formula reads:

n−1∑

k=1

αk(yk + αk − yk+1 − αk+1 + yk − yk−1 + 2)

=

n−1∑

k=1

(α2
k − αkαk+1) +

n−1∑

k=1

αk(yk − yk+1 + yk − yk−1 + 2)

=

n−2∑

k=1

1

2
(αk − αk+1)

2 +

n−1∑

k=1

αk((yk − yk+1 + 1) + (yk − yk−1 + 1)).

Since y ∈ Mn, degλy − deg λz is non-negative. This finishes the proof.

7 Proof and discussion of the main result

7.1 Proof of the main result

In light of Section 4, our main result Theorem 2.3 reduces to the following
statement:

In the expansion

M =
∑

r

γrb+(r),

a rank tuple r ≥ r1 appears with non-zero coefficient γr if and only if r is of
the form r(x′) for a Motzkin path x.

By the previous section, we have

M =
∑

x∈P

γxb−(x
′),

with γx 6= 0 if x ∈ Mn is a Motzkin path. By the definition of the multi-
segment duality, this equation can be rewritten as

M =
∑

x∈P

γxb+(r̂(ζ̂(x
′))).

We thus want to decide for which x ∈ P the inequality r̂(ζ̂(x′)) ≥ r1 holds.
This condition being invariant under the involution ·̂, it reduces to the condition
ri,i+1(ζ̂(x

′)) ≥ n. By Proposition 5.1, this is equivalent to x being a Motzkin
path.

We thus find that a rank tuple r ≥ r1 appears in the above expansion with
non-zero coefficient γr only if r = r(x) for a Motzkin path x. But in this case,
we already know that the coefficent γr is non-zero, and the claim follows.

Documenta Mathematica 26 (2021) 1981–2003



1998 X. Fang, M. Reineke

7.2 Asymptotics

We would like to decide how large the set of supports is compared to the set
of all orbit closures O(r) for O(r) ⊂ U , at least asymptotically for large n.

Proposition 7.1. The fraction of the number of supports by the number of all
orbit closures tends to zero exponentially fast for n → ∞.

Proof. The number of supports equals the n-th Motzkin number Mn, and the
number of all orbit closures equals the n-th Bell number Bn by [CFFFR, Sec-
tion 4.2.].
By [E, Equation (48b)], we have Bn ≥ nn(1−ξn) where

ξn = O

(
1

log2 n

)
.

We have Mn ≤ O(3n) trivially. It thus suffices to show that for C > 0, we have

lim
n→∞

Cn

nn(1−log−2 n)
= 0.

Indeed,

Cn

nn(1−log−2 n)
=

Cnnn log−2 n

nn
= exp(n(log−1 n− logn+ logC)),

and when n → ∞, this term tends to zero.

7.3 PBW locus

Inside U ⊂ R there exists an open subset UPBW ⊆ U , called PBW locus, such
that the fibers Flf∗(V ) over this locus can be naturally identified with Schubert
varieties [CFFFR] in some partial flag varieties. The following definition of the
PBW locus rephrases Definition 3, Definition 4 and Proposition 2 in [CFFFR].

Definition 7.2. An orbit O(r) belongs to the PBW locus if the rank tuple
r = (rij)1≤i≤j≤n satisfies the following properties:

1. for 1 ≤ k ≤ n− 1, we have rk,k+1 ∈ {n, n+ 1};

2. for 1 ≤ i ≤ j ≤ n with j − i ≥ 2, we have

rij = n+ 1−#{k | i ≤ k ≤ j − 1, rk,k+1 = n}.

Notice that these rank tuples are uniquely determined by rk,k+1 for k =
1, · · · , n− 1, hence there are exactly 2n−1 such orbits.

Proposition 7.3. Let r be a rank tuple such that the orbit O(r) is contained
in the PBW locus. Then O(r) is contained in the support of π : FU → U .
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We start with giving the candidates in Motzkin paths parameterising the orbits
in the PBW locus.

Definition 7.4. A Motzkin path x = (x1, · · · , xn−1) ∈ Mn is said to have a
single peak, if there exists 1 ≤ p ≤ n− 1 such that

1. for any 1 ≤ s ≤ p, we have xs−1 ≤ xs;

2. for any p ≤ t ≤ n− 1, we have xt ≥ xt+1.

If this is the case, p is called a peak. Let Sn denote the set of Motzkin paths in
Mn having a single peak.

Lemma 7.5. The cardinality of Sn is 2n−1.

Proof. The proof is executed by induction. We consider a Motzkin path x =
(x1, · · · , xn−1) ∈ Sn. If xn−1 = 0 then (x1, · · · , xn−2) ∈ Sn−1: by induction
there are 2n−2 such paths. If xn−1 = 1 we look at x1: if x1 = 1 then (x2 −
1, · · · , xn−2 − 1) ∈ Sn−2, by induction there are 2n−3 such paths; if x1 = 0
we continue to look at x2. Repeating this procedure we count the cardinality
of Sn:

#Sn = 2n−2 + · · ·+ 21 + 20 + 1 = 2n−1.

Proof of Proposition 7.3. As both Sn and the number of orbits in the PBW
locus have the same cardinality, by the invariance under the involution ·̂, it
suffices to show that for a single peak Motzkin path x = (x1, · · · , xn−1) ∈ Sn,

the orbit O(r(ζ̂(x′))) is contained in the PBW locus.

Using Proposition 5.1, we show that for any 1 ≤ i ≤ j ≤ n, the ranks rij(ζ̂(x
′))

coincide with those given in Definition 7.2:

1. The condition rk,k+1 ∈ {n, n+ 1} is clear by Proposition 5.1. Moreover,
rk,k+1 = n if and only if max(0, xk − xk+1, xk − xk−1) = 1, which is
equivalent to xk = xk+1 + 1 or xk = xk−1 + 1.

2. Assume that 1 ≤ p ≤ n− 1 such that p is maximal among the peaks of x:
under this assumption xp+1 = xp − 1.

• If 1 ≤ i < j ≤ p, the condition (2) in Definition 7.2 can be rewritten
as:

rij = n+ 1−#{k | i ≤ k ≤ j − 1, xk = xk−1 + 1}

= n+ 1− (xj−1 − xi−1).

In this case, the maximum in Proposition 5.1 is attained when l =
m = j and k = i, and the maximum is clearly xj−1 − xi−1.

• If p ≤ i < j ≤ n − 1, a similar argument shows that rij = n +
1− (xi −xj), and the maximum in Proposition 5.1 is attained when
l − 1 = k − 1, l = i and m = j, and the maximum is xi − xj .
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• If i ≤ p ≤ j, the rank rij in Definition 7.2 count the number of those
k such that either i ≤ k ≤ p and xk = xk−1 + 1, or p ≤ k ≤ j − 1
and xk = xk+1 + 1. By considering two cases xp = xp−1 + 1 and
xp = xp−1 we obtain the uniform formula:

rij = n+ 1− (xp−1 − xi−1)− (xp − xj).

We then examine the maximum in Proposition 5.1: min(xk−1+xm)
is attained when k = i and m = j; and max(xl−1 + xl) is attained
when l = p. In this case the maximum is (xp−1 − xi−1) + (xp − xj).

7.4 Remarks

We discuss some limitations of our approach and potential directions for further
explorations.

• Our approach to the determination of the set of supports is not strong
enough to give a general description of the graded vector spaces V ∗(r)
encoding shifts and multiplicities of intersection cohomology complexes
in the decomposition

Rπ∗QFU
≃

⊕

r

IC(O(r))⊗ V ∗(r).

Namely, the Poincaré polynomial of V ∗(r) equals (up to shift) the coeffi-
cient γr above. Since the relevant canonical basis elements b+(r) are not
explicitly known except for small n, the coefficients γr are not known.

• This missing information prevents us from applying our main result quan-
titatively, as a tool to determine the cohomology of the degenerations
Flf∗(V ). Fortunately, this cohomology can be determined using the affine
pavings of [CFFFR].

• Another main result of [CFFFR] determines the flat locus U ′ of the family
π : F → R: a fibre Flf∗(V ) is of dimension n(n + 1)/2 (but typically
reducible) if and only if r(f∗) ≥ r2 for a certain explicit rank tuple r2. Our
present methods are not strong enough to determine the set of supports
of the extended family π : FU ′ → U ′ on this larger open set U ′, since the
degree estimates of Section 6.3 do not generalize further, as an example
for n = 6 showed.

• Due to the complicated nature of the Knight-Zelevinsky formula for the
multi-segment duality, there seems to be no obvious intrinsic description,
in terms of inequalities between the components ri,j , for when a rank
tuple r is Motzkin.
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• Since the multi-segment duality admits a geometric interpretation in
terms of preprojective varieties for the quiver Ω by [KZ], there is, yet
unexplored, potential for re-geometrization of our present methods for
the proof of the main result.

• It can be proved that the multiplicity space V ∗(r), for the orbit O(r)
of maximal codimension, is isomorphic to the cohomology of a point if
n is even, and to the cohomology of a projective line if n is odd. We
omit the proof here, since it requires several pages of calculations, and
the relevance of this observation is not evident at this point.

8 Small rank examples

We provide explicit results when n = 2, 3, 4. Recall that in these cases, the
Motzkin numbers are 2, 4, 9.

8.1 The case n = 2

In this case, let b1 = b((1)′) and b2 = b((0)′). Then

M = b1 + [3]v!b2,

consistent with the calculations in Section 2.3.

8.2 The case n = 3

In this case, let b1 = b((1, 1)′), b2 = b((1, 0)′), b3 = b((0, 1)′) and b4 =
b((0, 0)′). Then

M = [2]v!b1 + [3]v!(b2 + b3) + [4]v!b4.

Let rki be the rank tuple associated to bi: (in the order (r1,2, r1,3, r2,3))

rk1 = (3, 2, 3), rk2 = (3, 3, 4), rk3 = (4, 3, 3), rk4 = (4, 4, 4).

The orbit corresponding to all these rank tuples lie in the PBW locus, hence
they belong to U . The number 4 coincides with the Motzkin number.

8.3 The case n = 4

In this case, let

b1 = b((1, 2, 1)′), b2 = b((1, 2, 0)′), b3 = b((1, 1, 1)′), b4 = b((1, 1, 0)′),

b5 = b((1, 0, 1)′), b6 = b((1, 0, 0)′), b7 = b((0, 2, 1)′), b8 = b((0, 2, 0)′),

b9 = b((0, 1, 1)′), b10 = b((0, 1, 0)′), b11 = b((0, 0, 1)′), b12 = b((0, 0, 0)′).
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Then

M = b1+[2]v!b2+[3]v!b3+[3]v[3]v[2]vb4+

[
4

2

]

v

b5+[4]v[3]v[3]vb6+[2]v!b7+

+[2]v!
2b8 + [3]v[3]v[2]vb9 + [4]v[3]v[2]v[2]vb10 + [4]v[3]v[3]vb11 + [5]v!b12.

Let rki be the rank tuple associated to bi (which is stated in the order
(r1,2, r1,3, r1,4, r2,3, r2,4, r3,4))

rk1 = (4, 3, 2, 4, 3, 4), rk2 = (4, 2, 2, 3, 3, 5), rk3 = (4, 4, 3, 5, 4, 4),

rk4 = (4, 3, 3, 4, 4, 5), rk5 = (4, 4, 4, 5, 4, 4), rk6 = (4, 4, 4, 5, 5, 5),

rk7 = (5, 3, 2, 3, 2, 4), rk8 = (5, 3, 3, 3, 3, 5), rk9 = (5, 4, 3, 4, 3, 4),

rk10 = (5, 4, 4, 4, 4, 5), rk11 = (5, 5, 4, 5, 4, 4), rk12 = (5, 5, 5, 5, 5, 5).

Among them,
rk1, rk3, rk4, rk6, rk9, rk10, rk11, rk12

are exactly all rank tuples whose orbits belong to the PBW locus. The orbit
corresponding to the tuple rk5 belongs to U , and the orbits corresponding to
rk2, rk7, rk8 do not belong to U . There are thus 9 rank tuples with corre-
sponding orbits in U , parametrised by Motzkin paths.
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