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1 Introduction

Let X be a smooth projective variety defined over an algebraically closed field k and

let H be an ample divisor on X . A family S of isomorphism classes of coherent

sheaves on X is called bounded if there exists a scheme S of finite type over k and

an S-flat family E of coherent sheaves on the fibers of X × S → S, which contains

isomorphism classes of all sheaves from S . The following theorem is a crucial step

in the construction of a projective moduli scheme of semistable sheaves with fixed

numerical invariants:

THEOREM 1.1. The family of isomorphism classes of slope H-semistable torsion free

coherent sheaves on X with fixed numerical invariants (e.g., with fixed rank and Chern

classes) is bounded.

Many people contributed to the proof of this result including D. Gieseker, S. Kleiman,

M. Maruyama, F. Takemoto and the author. The final version in characteristic zero

was proven by M. Maruyama using the Grauert–Mülich type restriction theorem. In

general, the above theorem was conjectured by M. Maruyama in late seventies and
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2 A. Langer

finally proven in [4]. It allowed to finish the construction of the moduli scheme of

semistable sheaves on X in case k has positive characteristic p. We refer to [3], [4]

and [8] for more on the history of the problem and earlier results.

The proof of this result in [4] is rather complicated and it uses some purely characteris-

tic p methods through the study of Frobenius pullbacks of torsion free sheaves. Since

its appearance there were no simplifications or other proofs of this result. In this note

we give a new simple proof of Theorem 1.1 that avoids any characteristic p methods.

In fact, as in [4], we prove a more general result that works in mixed characteristic

(see Theorem 3.11).

Our proof proceeds by reducing the statement to the case of projective spaces and

proving Bogomolov’s inequality by induction on the dimension using changes of po-

larization. The main novelty of this approach is that one can prove Bogomolov’s

inequality on projective spaces without using any restriction theorems. This in turn al-

lows to prove restriction theorems and reduce the problem to lower dimensions. This

method is new even in the characteristic zero case. A small variant of this approach

allows us to give a new simple proof of Bogomolov’s inequality on higher dimen-

sional varieties in characteristic zero without using any restriction theorems (see The-

orem 3.13). This inequality implies effective restriction theorems for slope stability

and slope semistability changing the usual logic and allowing to dispense with proving

the Mehta–Ramanathan restriction theorems.

2 Preliminaries

In this section X is a smooth projective n-dimensional variety defined over an alge-

braically closed field k. We assume that n ≥ 1.

2.1 Semistability

Let (L1, ...,Ln−1) be a collection of nef divisors on X . Let us assume that the 1-

cycle L1...Ln−1 is numerically nontrivial, i.e., there exists some divisor D such that

DL1...Ln−1 6= 0. Let E be a rank r torsion free sheaf on X . Then we define the slope

of E with respect to (L1, ...,Ln−1) as

µL1...Ln−1
(E) =

c1(E)L1...Ln−1

r
.

We define µmax,L1...Ln−1
(E) as the maximum of µL1...Ln−1

(F) for all subsheaves F ⊂ E .

Similarly, we define µmin,L1...Ln−1
(E) as the minimum of µL1...Ln−1

(F) for all torsion

free quotients F of E . These are well defined rational numbers. We say that E is slope

(L1, ...,Ln−1)-semistable if µL1...Ln−1
(F) ≤ µL1...Ln−1

(E) for all subsheaves F ⊂ E of

rank less than r. Similarly, we define slope (L1, ...,Ln−1)-stable sheaves using the

strict inequality µL1...Ln−1
(F)< µL1...Ln−1

(E).
In case H is an ample divisor, we define µH(E), µmax,H(E), µmin,H(E) and slope H-

(semi)stability using the collection of (n− 1)-divisors (H, ...,H).

If E is a rank r torsion free sheaf on X we define the discriminant of E as ∆(E) =
2rc2(E)− (r− 1)c2

1(E). We say that Bogomolov’s inequality holds for the collection
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On Boundedness of Semistable Sheaves 3

of nef divisors (L1, ...,Ln−1) if for every slope (L1, ...,Ln−1)-semistable sheaf E we

have ∆(E)L2...Ln−1 ≥ 0. Note that this notion depends on the order of nef divisors in

the collection.

2.2 The Hodge index theorem

The Hodge index theorem implies that if D1 and D2 are divisors on a smooth projective

surface and (a1D1+a2D2)
2 > 0 for some a1,a2 ∈R then D2

1 ·D
2
2 ≤ (D1D2)

2. Now if X

is a smooth projective variety of dimension n ≥ 2 we see that if H1, ...,Hn−2 are ample

divisors and D1,D2 are such that (a1D1 + a2D2)
2H1...Hn−2 > 0 for some a1,a2 ∈ R

then D2
1H1...Hn−2 ·D

2
2H1...Hn−2 ≤ (D1D2H1...Hn−2)

2. If H1, ...,Hn−2 are only nef we

can replace Hi by Hi + tH for some ample H and positive t. Passing with t to 0 we

get the same result as above assuming that H1, ...,Hn−2 are only nef. This allows us to

prove the following version of the Hodge index theorem.

LEMMA 2.1. Let (L1, ...,Ln−1) be a collection of nef divisors such that the 1-

cycle L1...Ln−1 is numerically nontrivial. Then for any ample divisor H we have

HL1...Ln−1 > 0. Moreover, if DL1...Ln−1 = 0 for some divisor D then D2L2...Ln−1 ≤ 0.

Proof. If L1...Ln−1 is numerically nontrivial then there exists some divisor M such that

ML1...Ln−1 > 0. But then there exists some m > 0 such that H0(X ,OX(mH−M)) 6= 0.

Therefore mHL1...Ln−1 ≥ ML1...Ln−1 > 0, which proves the first claim. To prove the

second claim let us take D such that DL1...Ln−1 = 0. The above version of the Hodge

index theorem implies that for any t > 0 and any ample H we have

D2L2...Ln−1 · (L1 + tH)2L2...Ln−1 ≤ (D(L1 + tH)L2...Ln−1)
2 = t2(DHL2...Ln−1)

2.

Passing with t to 0 we see that if L2
1L2...Ln−1 > 0 then D2L2...Ln−1 ≤ 0. If

L2
1L2...Ln−1 = 0 then dividing the above inequality by t and passing with t to 0 again

gives D2L2...Ln−1 ≤ 0.

3 Boundedness of semistable sheaves

3.1 Change of polarization

The following proposition has a similar proof as [7, Proposition 6.2]. Since it is crucial

for the following arguments, we give all details of its proof for the convenience of the

reader.

PROPOSITION 3.1. Let X be a smooth projective variety of dimension n and let

(L1, ...,Ln−1) be a collection of nef divisors such that the 1-cycle L1...Ln−1 is nu-

merically nontrivial. If Bogomolov’s inequality holds for (L1, ...,Ln−1) then it holds

for any (M,L2, ...,Ln−1) such that M is nef and ML2...Ln−1 is numerically nontrivial.

Proof. The proof is by induction on the rank of E with rank 1 being left to the reader.

Let us assume that Bogomolov’s inequality holds for all sheaves of rank less than r

which are slope semistable with respect to some ML2...Ln−1, where M is nef and
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4 A. Langer

ML2...Ln−1 is numerically nontrivial. Let us now fix some nef M such that ML2...Ln−1

is numerically nontrivial and let E be a slope ML2...Ln−1-semistable torsion free sheaf

of rank r. If E is slope L1L2...Ln−1-semistable then ∆(E)L2...Ln−1 ≥ 0 by the assump-

tion that Bogomolov’s inequality holds for L1...Ln−1. So we can assume that E is

not slope L1L2...Ln−1-semistable. In this case we consider Mt = (1− t)M + tL1 for

t ∈ [0,1]. Let us note that MtL2...Ln−1 is numerically nontrivial, as otherwise for any

ample H we get (1− t)HML2...Ln−1 + tHL1...Ln−1 = 0, which contradicts the first

part of Lemma 2.1. Now we have the following lemma.

LEMMA 3.2. There exist some rational t0 ∈ [0,1) and slope Mt0 L2...Ln−1-semistable

torsion free sheaves E ′ and E ′′ of ranks r′, r′′ less than r, such that the sequence

0 → E ′ → E → E ′′ → 0

is exact and µMt0
L2...Ln−1

(E ′) = µMt0
L2...Ln−1

(E ′′) = µMt0
L2...Ln−1

(E).

Proof. Let S be the set of all saturated subsheaves F ⊂ E of rank less than r such that

µL1L2...Ln−1
(F)> µL1L2...Ln−1

(E). Note that for any F ∈S we have r!µL1L2...Ln−1
(F) ∈

Z and µL1L2...Ln−1
(F) ≤ µmax,L1L2...Ln−1

(E), so the set {µL1L2...Ln−1
(F) : F ∈ S } is

finite. Let us take E ′ ∈ S such that the quotient

s(F) :=
µML2...Ln−1

(E)− µML2...Ln−1
(F)

µL1L2...Ln−1
(F)− µL1L2...Ln−1

(E)

attains the minimum among all F ∈ S . Such E ′ exists since r!(µML2...Ln−1
(E)−

µML2...Ln−1
(F)) is a non-negative integer (because by assumption E is slope

ML2...Ln−1-semistable) and the denominator takes only a finite number of positive

values. Let us set t0 =
s(E ′)

1+s(E ′) so that s(E ′) = t0/(1− t0). For any F ⊂ E of rank less

than r we have

µMt0
L2...Ln−1

(E)− µMt0
L2...Ln−1

(F) =(1− t0)(µML2...Ln−1
(E)− µML2...Ln−1

(F))

− t0(µL1L2...Ln−1
(F)− µL1L2...Ln−1

(E)).

This difference is clearly non-negative if F 6∈ S and ≥ 0 if F ∈ S with equality for

F = E ′. Therefore E ′ and E ′′ = E/E ′ satisfy the required assertions.

Now to finish the proof of the proposition note that by the induction assumption we

have ∆(E ′)L2...Ln−1 ≥ 0 and ∆(E ′′)L2...Ln−1 ≥ 0. Therefore by the Hodge index

theorem (see the second part of Lemma 2.1) we get

∆(E)L2...Ln−1

r
=

∆(E ′)L2...Ln−1

r′
+

∆(E ′′)L2...Ln−1

r′′

−
r′r′′

r

(

c1(E
′)

r′
−

c1(E
′′)

r′′

)2

L2...Ln−1 ≥ 0.
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On Boundedness of Semistable Sheaves 5

Remark 3.3. Lemma 3.2 is rather standard (see, e.g., [3, Lemma 4.C.5]) but we give

all the details as the proof in [3] uses Grothendieck’s lemma that fails in our case (it

fails even in the surface case when both L1 and M are not ample).

3.2 Bogomolov’s inequality and restriction theorem on projec-

tive spaces

THEOREM 3.4. Let H be a hyperplane on Pn and let E be a slope H-semistable torsion

free coherent sheaf on P
n. Then ∆(E)Hn−2 ≥ 0.

Proof. The proof is by induction on the dimension n starting with n = 2. In this

case the proof follows by standard arguments involving the Riemann–Roch theorem.

More precisely, we prove the inequality by induction on the rank r of E . If E is slope

H-stable then h0(E nd E) = 1 and h2(E nd E) = h0(E nd E(−3)) = 0, so χ(E nd E) =
−∆(E)+ r2χ(O

P2) ≤ 1, i.e., ∆(E) ≥ r2 − 1 ≥ 0. If E is slope H-semistable but not

slope H-stable then there exists slope H-semistable torsion free sheaves E ′ and E ′′ of

ranks r′, r′′ less than r, such that the sequence

0 → E ′ → E → E ′′ → 0

is exact and µH(E
′) = µH(E

′′) = µH(E). Then by the Hodge index theorem (or using

the fact that PicP2 is generated by H) and the induction assumption we get

∆(E)

r
=

∆(E ′)

r′
+

∆(E ′′)

r′′
−

r′r′′

r

(

c1(E
′)

r′
−

c1(E
′′)

r′′

)2

≥ 0,

which finishes the proof.

Now let us assume that n ≥ 3. Let E be a slope H-semistable torsion free coherent

sheaf on P
n. Let Λ ⊂ |OPn(1)| be a general pencil of hyperplanes. Let q : Y → P

n

be the blow up of Pn in the base locus of Λ and let p : Y → Λ = P
1 be the canonical

projection.

We claim that Bogomolov’s inequality holds for the collection (p∗OΛ(1),q
∗(H)n−2).

Namely, let F be a torsion free sheaf on Y , which is slope p∗OΛ(1)q
∗(Hn−2)-

semistable. Existence of the flattening stratification (see [3, Theorem 2.1.5]) implies

that there exists a non-empty open subset U ⊂ P
1 such that F is flat over U . Moreover,

we can assume that for every s ∈U the restriction Fs to the fiber of p over s is torsion-

free (cf. [3, Corollary 1.1.14 and Lemma 3.1.1]). Since F is slope p∗OΛ(1)q
∗(Hn−2)-

semistable, it is also slope Hn−2
η -semistable on the fiber Yη = P

n−1
k(η)

of p over the

generic point η ∈ Λ (if F ′ ⊂ FYη destabilizes FYη then we can extend it to a coher-

ent subsheaf of F , which destabilizes F with respect to (p∗OΛ(1),q
∗(H)n−2)). By

openness of slope semistability for flat families (cf. [3, Propposition 2.3.1] and [8,

Chapter 1, Theorem 4.2]), the set of s ∈U such that Fs is slope semistable on the fiber

Ys = P
n−1
k(s)

is open. Since it contains the generic point η , it is non-empty and hence

there exists a closed (geometric) point s of U ⊂ Λ for which Fs is slope semistable.

Therefore by the induction assumption ∆(F)q∗(Hn−2) = ∆(Fs)H
n−3
s ≥ 0, where Hs is

a hyperplane in Ys. This proves our claim.
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6 A. Langer

Now Proposition 3.1 implies that Bogomolov’s inequality holds also for q∗(H)n−1.

Since E is torsion free, it is locally free outside of a closed subset of codimension ≥ 2.

So E is locally free along the base locus of Λ and thus q∗E is torsion free. This implies

that q∗E is slope q∗(H)n−1-semistable and hence ∆(E)Hn−2 = ∆(q∗E)(q∗H)n−2 ≥ 0.

As in [4, Theorem 5.1] the above theorem implies the following corollary:

COROLLARY 3.5. Let E be a torsion free rank r sheaf on P
n. Then we have

∆(E)Hn−2 + r2(µmax,H(E)− µH(E))(µH(E)− µmin,H(E))≥ 0.

Proof. Let 0 = F0 ⊂ F1 ⊂ ·· · ⊂ Fm = E be the Harder–Narasimhan filtration of E and

let us set F i = Fi/Fi−1, ri = rkF i, µi = µH(F
i). Then by Theorem 3.4 we have

∆(E)Hn−2

r
= ∑

∆(F i)Hn−2

ri

−
1

r
∑
i< j

rir j

(

c1F i

ri

−
c1F j

r j

)2

Hn−2

= ∑
∆(F i)Hn−2

ri

−
1

r
∑
i< j

rir j(µi − µ j)
2 ≥−

1

r
∑
i< j

rir j(µi − µ j)
2.

So the required inequality follows from [4, Lemma 1.4].

As in [4, Corollary 5.4] the above corollary implies the following restriction theorem

(we state only a simplified version for slope semistability, but more precise versions

need to be used in its proof).

THEOREM 3.6. Let E be a torsion free rank r sheaf on P
n, n ≥ 2. Let D ∈ |mH| be a

general hypersurface of degree

m >
(r− 1)2∆(E)Hn−2 + 1

r(r− 1)
.

If E is slope H-semistable then the restriction ED is slope HD-semistable.

Proof. First, one proves a restriction theorem for slope stability following the proof

of [4, Theorem 5.2] with βr = 0. Then one uses this theorem to factors of the Jordan–

Hölder filtration of E as in the proof of [4, Corollary 5.4]. Finally, one uses the fact

that a restriction of a torsion free sheaf to a general hypersurface of fixed degree is still

torsion free (see [3, Lemma 1.1.12 and Corollary 1.1.14]).

The above restriction theorem is sufficient for our proof of the boundedness result.

However, we prefer to use similar methods to prove the following new restriction

theorem that is slightly better suited for our proof of Theorem 3.11. To simplify

exposition we omit polarization in the notation of slopes.

THEOREM 3.7. Let E be a torsion free rank r sheaf on P
n, n ≥ 2. Then for a general

hyperplane D ∈ |H| we have

µmax(ED)− µmax(E)≤
∆(E)Hn−2

2r
+

r

2
(µmax(E)− µ(E))(µ(E)− µmin(E)).
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On Boundedness of Semistable Sheaves 7

Proof. First let us consider the case when E is slope H-stable.

LEMMA 3.8. If E is slope H-stable and r ≥ 2 then for any hyperplane D ∈ |H| such

that ED is torsion free, we have

µmax(ED)− µ(E)≤
∆(E)Hn−2 − 1

2r
.

Proof. Let S ⊂ ED be a saturated subsheaf of rank ρ ≥ 1 and let T = ED/S. Let E ′ be

the kernel of the composition E → ED → T . Then we have

∆(E ′)Hn−2 = ∆(E)Hn−2 −ρ(r−ρ)+ 2r(r−ρ)(µ(T)− µ(E))

= ∆(E)Hn−2 −ρ(r−ρ)− 2rρ(µ(S)− µ(E)).

Since E ′ ⊂ E and E is slope H-stable we have

µmax(E
′)− µ(E ′) =

r−ρ

r
+ µmax(E

′)− µ(E)≤
r−ρ

r
−

1

r(r− 1)
.

Similarly, since E(−H)⊂ E ′ we have

µ(E ′)− µmin(E
′) =

ρ

r
+ µ(E(−H))− µmin(E

′)≤
ρ

r
−

1

r(r− 1)
.

Hence by Corollary 3.5 we obtain

0 ≤ ∆(E ′)Hn−2 + r2(µmax(E
′)− µ(E ′))(µ(E ′)− µmin(E

′))

≤ ∆(E)Hn−2 −ρ(r−ρ)− 2rρ(µ(S)− µ(E))+

(

ρ −
1

r− 1

)(

r−ρ −
1

r− 1

)

= ∆(E)Hn−2 −
r

r− 1
+

1

(r− 1)2
− 2rρ(µ(S)− µ(E))

≤ ∆(E)Hn−2 − 1− 2rρ(µ(S)− µ(E)).

In particular, if µ(S)≥ µ(E) then

µ(S)− µ(E)≤
∆(E)Hn−2 − 1

2r
.

If ED is not slope HD-semistable then taking for S the maximal destabilizing subsheaf

of ED we get

µmax(ED)− µ(E)≤
∆(E)Hn−2 − 1

2r
.

If ED is slope HD-semistable but not slope HD-stable then taking for S any slope HD-

stable subsheaf of ED of the same slope, we get ∆(E)Hn−2 ≥ 1, which gives the re-

quired inequality. If ED is slope HD-stable then n > 2 (for n = 2 the restriction ED is

a direct sum of line bundles, so it is not stable). Then ∆(E)Hn−2 = ∆(ED)H
n−3 ≥ 1

follows from the previous cases by induction on the dimension n.
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Now we can deal with slope H-semistable sheaves.

LEMMA 3.9. If E is slope H-semistable then for a general hyperplane D ∈ |H| we

have

µmax(ED)− µ(E)≤
∆(E)Hn−2

2r
.

Proof. Let 0 = F0 ⊂ F1 ⊂ ·· · ⊂ Fm = E be a Jordan–Hölder filtration of E and let us

set F i = Fi/Fi−1 and ri = rkF i. Then for any j Theorem 3.4 implies that

∆(E)Hn−2

r
= ∑

∆(F i)Hn−2

ri

−
1

r
∑
i< j

rir j

(

c1F i

ri

−
c1F j

r j

)2

Hn−2

= ∑
∆(F i)Hn−2

ri

≥
∆(F j)Hn−2

r j

.

Since by [3, Lemma 1.1.12 and Corollary 1.1.14] a restriction of a torsion free sheaf

to a general hyperplane D ∈ |H| is still torsion free, Lemma 3.8 shows that

µmax((F
j)D)− µ(E) = µmax((F

j)D)− µ(F j)≤
∆(Fj)H

n−2

2r j

≤
∆(E)Hn−2

2r
.

Therefore we have

µmax(ED)≤ max
j

µmax((F
j)D)≤ µ(E)+

∆(E)Hn−2

2r
.

In general, we consider the Harder–Narasimhan filtration 0 = F0 ⊂ F1 ⊂ ·· · ⊂ Fm = E

of E . Let us set F i = Fi/Fi−1 and ri = rkF i. Then the proof of Corollary 3.5 shows

that for any j we have

∆(Fj)H
n−2

r j

≤
∆(E)Hn−2

r
+ r(µmax(E)− µ(E))(µ(E)− µmin(E)).

Since by Lemma 3.8

µmax(ED)≤ max
j

µmax((F
j)D)≤ max

j

(

µ(F j)+
∆(Fj)H

n−2

2r j

)

≤ µmax(E)+max
j

∆(Fj)H
n−2

2r j

,

we get the required inequality.

Remark 3.10. 1. Using [3, Corollary 1.1.15] it is sufficient to assume in Theo-

rems 3.6 and 3.7 that k is an infinite, not necessarily algebraically closed, field.
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On Boundedness of Semistable Sheaves 9

2. Note that a similar method as that of proof of Theorem 3.7 gives some inequal-

ities on the slope of the maximal destabilizing subsheaf of the restriction ED for

a general divisor D ∈ |mH| for m ≥ 1 on an arbitrary normal variety (cf. [4,

Theorem 5.2, Corollary 5.4]). We leave the details of proof to the interested

reader.

3.3 Proof of boundedness of semistable sheaves

Let Xk be an n-dimensional projective scheme over an algebraically closed field k

and let H = OXk
(1) be an ample divisor on Xk. If E is a coherent sheaf of pure

dimension d on Xk then there exist integers a0(E), . . . ,ad(E) and rational numbers

α0(E), . . . ,αd(E) such that

χ(Xk,E(m)) =
d

∑
i=0

ai(E)

(

m+ d− i

d− i

)

=
d

∑
i=0

αi(E)
mi

i!
.

One defines the generalized slope of E by µ̂(E) =
αd−1(E)

αd(E)
= a1(E)

a0(E)
+ d+1

2
. It is used to

define µ̂max(E) in the same way as the usual slope is used to define µmax, i.e., µ̂max(E)
is the maximum of µ̂(F) for all subsheaves F ⊂ E .

Let f : X → S be a projective morphism of noetherian schemes of relative dimension n

and let OX/S(1) be an f -very ample line bundle on X . Let us consider the following

families of sheaves.

1. Let SX/S(d;r,a1, . . . ,ad ,µmax) be the family of isomorphism classes of coherent

sheaves on the fibres of f such that E on a geometric fibre Xs is a member of

the family if E is of pure dimension d, µ̂max(E)≤ µmax, a0(E) = r, a1(E) = a1

and ai(E)≥ ai for i ≥ 2.

2. Let S ′
X/S

(d;r,a1,a2,µmax) be the family of isomorphism classes of coherent

sheaves on the fibres of f such that E on a geometric fibre Xs is a member

of the family if E is of pure dimension d and it satisfies Serre’s condition S2,

µ̂max(E)≤ µmax, a0(E) = r, a1(E) = a1 and a2(E)≥ a2.

The following theorem was first proven in [4, Theorem 4.4]. Here we sketch a simple

proof of this theorem based on the results of the previous subsection.

THEOREM 3.11. The families SX/S(d;r,a1, . . . ,ad ,µmax) and S ′
X/S

(d;r,a1,a2,µmax)

are bounded.

Proof. For simplicity we consider only the family S = SX/S(d;r,a1, . . . ,ad ,µmax)
but a similar proof works also for the other family. We proceed by induction on d

with d = 0 being trivial (for d = 0, E ∈ S is 0-dimensional with fixed h0(X ,E) = r;

such E are quotients of O
⊕r
X , so they form a bounded family). Let us assume that

the family SX/S(d − 1;r,a1, . . . ,ad−1,µmax) is bounded for all possible X/S and all

r,a1, . . . ,ad−1,µmax.
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Theorem 3.7 and our induction assumption imply that the family

S
P

d
S/S(d;r,a1, . . . ,ad ,µmax) is bounded for all r,a1, . . . ,ad ,µmax (this reduction

step is a classical result of M. Maruyama; see [8, Chapter 2, Proposition 3.4]). The

remaining part of the proof depends on projection’s method, which is originally due to

C. Simpson and J. Le Potier (see proof of [8, Chapter 2, Theorem 7.9]). Without loss

of generality we can shrink S so that X/S embeds into P
N
S for some fixed N. Let us fix

a linear subspace T = P
N−d−1
S ⊂ P

N
S . It is sufficient to bound the subfamily S̃ of S

that contains classes of all sheaves E on the geometric fiber Xs such that the support

of E does not intersect Ts (as in the proof of [8, Chapter 2, Theorem 7.9], this follows

from the fact that PGL(N+1) acts on S and every orbit meets the subfamily S̃ ). Let

us fix such E . Taking the linear projection P
N
S 99K P

d
S from T and restricting it to the

scheme-theoretic support Z of E , we get a well defined finite morphism π : Z → P
d
s .

Since E is pure of dimension d, π∗E is torsion free and we have

(∗) H i(Xs,E(m)) = H i(Z,E(m)) = H i(Pd
s ,π∗E ⊗O

Pd
s
(m)).

In particular, we get equality χ(Xs,E(m)) = χ(Pd
s ,π∗E ⊗O

Pd
s
(m)) of Hilbert polyno-

mials. Moreover, one can prove that

µmax(π∗E)− µ(π∗E)≤ µ̂max(E)− µ̂(E)+ (a0(E))
2

(see [6, Lemmas 6.2.1 and 6.2.2] or proof of [8, Chapter 2, Lemma 7.11] for a weaker,

non-explicit estimate). By definition, this implies that there exist some constants

r′,a′1, . . . ,a
′
d ,µ

′
max such that for all E in S̃ , the pushforward π∗E is in the family

SP := S
P

d
S/S(d;r′,a′1, . . . ,a

′
d ,µ

′
max). We claim that boundedness of the family SP

implies boundedness of S̃ . This follows from the fact that boundedness of a fam-

ily implies that there is a common bound on the Castelnuovo–Mumford regularity of

sheaves in this family (see [3, Lemma 1.7.6] or [8, Chapter 1, Theorem 3.11]). But

equality (∗) implies then existence of a common bound on the Castelnuovo–Mumford

regularity of sheaves in the family S̃ . So again using [3, Lemma 1.7.6] (or [8, Chap-

ter 1, Theorem 3.11]), we get boundedness of the family S .

The above result has many applications. Let us just recall that by the proof of [9, The-

orem 1] it implies the following Bogomolov type inequality for strongly semistable

sheaves.

COROLLARY 3.12. Let X be a smooth projective variety of dimension n ≥ 2 defined

over an algeraically closed field k of characteristic p > 0. Let H be an ample divisor

and let E be a strongly H-semistable sheaf on X. Then we have ∆(E)Hn−2 ≥ 0.

A generalization of the above result was first proven in [4, Theorem 3.2] as part of the

proof of Theorem 3.11.

3.4 Bogomolov’s inequality in characteristic zero

In characteristic zero a similar proof as that of Theorem 3.4 allows us to reduce Bo-

gomolov’s theorem in higher dimension to the surface case:
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THEOREM 3.13. Let X be a smooth projective variety defined over an algebraically

closed field k of characteristic 0. Let (D1, ...,Dn−1) be a collection of nef divisors

on X such that the 1-cycle D1...Dn−1 is numerically nontrivial. If E is a slope

(D1, ...,Dn−1)-semistable torsion free coherent sheaf on X then

∆(E)D2...Dn−1 ≥ 0.

Proof. The proof is by induction on the dimension n assuming the inequality in di-

mension n = 2.

Let E be a slope (D1, ...,Dn−1)-torsion free coherent sheaf on X of dimension n > 2.

By Proposition 3.1 we can assume that D1 is very ample. Let Λ ⊂ |OX (D1)|
be a general pencil of hyperplanes. Let q : Y → X be the blow up of X in the

base locus of Λ and let p : Y → Λ = P
1 be the canonical projection. As in the

proof of Theorem 3.4, the induction assumption implies that Bogomolov’s inequal-

ity holds for (p∗OΛ(1),q
∗D2, ...,q

∗Dn−1). Therefore by Proposition 3.1 it also holds

for (q∗D1, ...,q
∗Dn−1). But q∗E is torsion free and it is slope (q∗D1, ...,q

∗Dn−1)-
semistable, so

∆(E)D2...Dn−1 = ∆(q∗E)q∗(D2...Dn−1)≥ 0.

Remark 3.14. For n > 2 Bogomolov’s inequality is usually stated for collections of

ample divisors and obtained by restricting to surfaces using Mehta–Ramanathan’s the-

orem (see [3, Theorem 7.3.1]). This approach works well if D1, ...,Dn−1 are multiples

of the same ample divisor H giving ∆(E)Hn−2 ≥ 0. However, to the author’s knowl-

edge there is no written account of Mehta–Ramanathan’s restriction theorem for non-

proportional ample divisors. The only other approach to Theorem 3.13 is that from [4,

Theorem 3.2], where it is a part of a complicated induction procedure.

Remark 3.15. As in the case of Theorem 3.6, Theorem 3.13 implies effective restric-

tion theorems for slope stability and slope semistability (see [4, Theorem 5.2 and

Corollary 5.4]). This approach makes proving the Mehta–Ramanathan restriction the-

orems [3, Theorems 7.2.1 and 7.2.8] obsolete as we recover much stronger results.

4 Appendix: Bogomolov’s inequality on surfaces

In the proof of Theorem 3.13 we used Bogomolov’s inequality on smooth projective

surfaces in the characteristic zero case. Contemporary accounts of proof of such an

inequality usually assume the fact that symmetric powers of a semistable vector bun-

dle are semistable (see, e.g., [3, Theorem 3.4.1]). Unfortunately, the proof of this fact

on surfaces (usually) uses some kind of restriction theorem and reduction to the curve

case (see, e.g., [3, Corollary 3.2.10] for Maruyama’s proof using the Grauert–Mülich

theorem). Although the original approach of Bogomolov (see [1, 10.12, Corollary 2

and Lemma 7.2]) does not use any restriction theorems, we give another simpler ac-

count of proof that is motivated by a quite similar proof from [2].
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4.1 Bounding the slope of the Frobenius pull-back

Let X be a smooth n-dimensional variety defined over an algebraically closed field of

characteristic p> 0 and let FX/k : X ′ →X be the geometric Frobenius morphism. Let E

be a quasi-coherent OX ′ -module. Then F∗
X/k

E = F−1
X/k

E ⊗
F−1

X/k
OX ′

OX has a canonical

connection defined by ∇can(e⊗ f ) = e⊗ d f .

THEOREM 4.1. (Cartier) There is an equivalence of categories between the cate-

gory of quasi-coherent OX ′ -modules and the category of quasi-coherent OX -modules

with integrable k-connection and vanishing p-curvature. This equivalence is given by

the functors sending an OX ′ -module E to (F∗
X/k

E,∇can) and (V,∇) to V ∇ = {v ∈ V :

∇(v) = 0}.

The following proposition is a variant of some well-known results (see, e.g., [4, Corol-

lary 2.5]).

PROPOSITION 4.2. Assume X is projective and fix a very ample divisor H such that

TX (H) is globally generated. Then for any rank r torsion free sheaf E we have

µmax,H(F
∗
X E)≤ pµmax,H(E)+ (r− 1)Hn.

Proof. Let us first assume that E is slope H-semistable and let E0 = 0 ⊂ E1 ⊂ ... ⊂
Em = F∗

X E be the Harder–Narasimhan filtration of F∗
X E . Note that none of the sub-

sheaves Ei ⊂ F∗
X E descends to a subsheaf of E , as it would contradict semistability

of E . Therefore by Cartier’s theorem these subsheaves are not preserved by the canon-

ical connection ∇can of F∗
X E . It follows that the induced OX -linear maps

Ei → F∗
X E/Ei ⊗ΩX

are nonzero. Since TX(H) is globally generated, we can embed ΩX into OX(H)⊕N for

some positive integer N. So for every i = 1, ...,m− 1 we have non-zero maps

Ei → F∗
X E/Ei⊗OX(H)⊕N ,

whose existence implies

µ(Ei/Ei−1)≤ µ(Ei+1/Ei)+Hn.

Summing these inequalities for i = 1, ...,m− 1 we get

µmax(F
∗
X E)≤ µmin(F

∗
X E)+ (m− 1)Hn ≤ µ(F∗

X E)+ (r− 1)Hn = pµ(E)+ (r− 1)Hn,

which proves the required inequality.

Now if E is not H-semistable then we can apply the obtained inequality to all the

quotients of the Harder–Narasimhan filtration of E . Since µmax,H(F
∗
X E) is bounded

from the above by the maximum of slopes of any filtration with semistable quotients,

we immediately get the required inequality.

Documenta Mathematica 27 (2022) 1–16



On Boundedness of Semistable Sheaves 13

4.2 Bounding the number of sections

The following proposition is a special case of a much more general and precise result

(see [5, Theorem 3.3]). However, the proof given below is completely elementary,

whereas the one in [5] uses Bogomolov’s inequality that we will prove using this

proposition.

PROPOSITION 4.3. There exists an explicit function f depending only on r and C

such that the following holds. Let X be a smooth projective surface and let H be a

very ample divisor on X. If E is a rank r torsion free sheaf on X with

µmax,H(E)≤C ·H2

then we have

h0(X ,E)≤ f (r,C) ·H2.

Proof. Since h0(X ,E) ≤ h0(X ,E∗∗) and E∗∗ is locally free, it is sufficient to prove

the above proposition assuming that E is locally free. The proof is by induction on

the rank r. For r = 1 E is a line bundle, so if µmax,H(E) = c1(E) ·H ≤ C ·H2 then

h0(X ,E(−(⌈C⌉+ 1)H)) = 0. Therefore for a general divisor Y ∈ |(⌈C⌉+ 1)H| we

have

h0(X ,E)≤ h0(Y,EY ) = (⌈C⌉+ 1)c1(E) ·H ≤C(⌈C⌉+ 1) ·H2,

so we can take f (1,C) =C(⌈C⌉+ 1).
If r = 2 then let us take any section OX → E (if there are no sections there is nothing

to prove) and its saturation L → E . Let us set L′ = E/L. By definition we have

µ(L)≤ µmax(E)≤C ·H2,

so

h0(X ,L)≤ f (1,C) ·H2.

On the other hand, we have

µ(L′) = 2µ(E)− µ(L)≤ 2µ(E)≤ 2µmax(E)≤ 2C ·H2,

so

h0(X ,L′)≤ f (1,2C) ·H2.

This implies

h0(X ,E)≤ h0(X ,L)+ h0(X ,L′)≤ ( f (1,C)+ f (1,2C)) ·H2.

Now let us assume that the proposition holds for sheaves of rank less than r (for some

r > 2) and let us consider a torsion free sheaf E of rank r.

If h0(X ,E) 6= 0 then let E ′ be the image of the evaluation map H0(X ,E)⊗OX → E .

By definition h0(X ,E ′) = h0(X ,E), so if r′ = rkE ′ < r then we get h0(X ,E) ≤
f (r′,C) · H2.

So we can assume that rkE ′ = r. Replacing E with E ′ we can also assume that E is

globally generated. Since r > 2 the cokernel of a general section OX → E is torsion
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free. Let us set E ′ = E/OX . Let F ′ ⊂ E ′ be the maximal destabilizing subsheaf of E ′

and let F ⊂ E be the preimage of F ′ in E . Let us set r′ = rkF ′. Then

µ(F) =
r′

r′+ 1
µ(F ′)≤ µmax(E)≤C ·H2,

so

µmax(E
′)≤

r′+ 1

r′
C ·H2 ≤ 2C ·H2.

By the induction assumption we have

h0(X ,E ′)≤ f (r− 1,2C) ·H2,

so h0(X ,E)≤ (1+ f (r− 1,2C)) ·H2.

Summing up, we see that as f (r,C) we can take f (1,C) + f (1,2C) for r = 2 and

1+ f (r− 1,2C) for r > 2.

4.3 Bogomolov’s inequality on surfaces

THEOREM 4.4. (Bogomolov, [1, 10.12, Corollary 2 and Lemma 7.2]) Let X be a

smooth projective surface defined over an algebraically closed field k of characteris-

tic 0. Let H be a very ample divisor and let E be a torsion free sheaf on X. If E is

slope H-semistable then ∆(E)≥ 0.

Proof. Since ∆(E) ≥ ∆(E∗∗), replacing E with E∗∗ we can assume that E is locally

free.

Let us first assume that detE ≃ OX . Without loss of generality we can assume that

TX (H) is globally generated (we can always replace H by its large multiple). There

exists a finitely generated over Z subring R ⊂ k, a smooth projective scheme X →
S = Spec R and a locally free sheaf E on X such that X ⊗R k = X and E ⊗R k = E .

By Propositions 4.2 and 4.3 there exists a constant C such that for all closed points

s ∈ S we have

h0(Xs,F
∗
Xs

Es)≤C

and

h2(Xs,F
∗
Xs

Es) = h0(Xs,F
∗
Xs

E
∗
s ⊗ωXs

)≤C.

Therefore

χ(Xs,F
∗
Xs

Es)≤ 2C.

But by the Riemann–Roch theorem we have

χ(Xs,F
∗
Xs

Es) = rχ(Xs,OXs
)−

∫

Xs

c2(F
∗
Xs

Es) = rχ(X ,OX )− p2
s ·

∫

X
c2(E),

where ps is the characteristic of the residue field k(s). Therefore taking ps ≫ 0 we get
∫

X c2(E)≥ 0, as required.

To prove the inequality in the general case we need the following covering lemma due

to Bloch and Gieseker (see [3, Theorem 3.2.9]).
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LEMMA 4.5. Let X be a smooth projective variety defined over some algebraically

closed field k and L be a line bundle on X. Let us fix a positive integer r. Then there

exists a smooth projective variety Y , a finite surjective morphism f : Y → X and a line

bundle M on Y such that M⊗r ≃ f ∗L.

Let us apply this lemma to L= detE . Then E ′ = f ∗E⊗M−1 is a slope f ∗H-semistable

vector bundle with detE ′ ≃ OY (see, e.g., [3, Lemma 3.2.2]). Therefore ∆(E ′)≥ 0 by

the first part of the proof. But ∆(E) = ∆(E ′)/deg f , so ∆(E)≥ 0.
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