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1 Introduction

A long-standing problem in homotopy theory is to determine the effect on
homotopy type from attaching a cell. Starting with a space X one considers a

cofibration Sm
f

−→ X −→ X ∪ CSm where, for a space A, CA is the reduced
cone on A. The aim is to determine the homotopy type of X ∪ CSm, or the
based loop space Ω(X ∪ CSm), from information on the homotopy type of X
and the homotopy class of f . Rational homotopy theory has developed methods
for dealing with certain kinds of cell attachments, called inert or lazy [FT, HaL,
HeL]. These methods do not translate well to the p-local case, except for primes
that are large relative to the dimension ofX divided by its connectivity (see, for
example, [A]), and therefore give limited information on the integral homotopy
type.
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If cell attachments are generalized to attaching a cone, and the context is spe-
cialized somewhat, then information can sometimes be obtained. For example,
suppose that there is a fibration F −→ E −→ B. Then the map E −→ B
extends to a map E ∪ CF −→ B. If G is the homotopy fibre of this new
map, then Ganea [Ga] showed that G ≃ F ∗ ΩB, where the right side is the
join of F and ΩB. Further, he showed that there is a homotopy equivalence
Ω(E ∪CF ) ≃ ΩB×Ω(F ∗ΩB). Note that this holds integrally. Ganea’s result
can be recovered as a special case of Mather’s Cube Lemma [M], and the Cube
Lemma has been used in a wide variety of contexts to identify the integral
homotopy types of certain spaces.

We consider the following case related to the cell attachment problem and

Ganea-type results. Suppose that there is a cofibration A
f

−→ Y −→ Y ∪ CA;

there is a map Y −→ Z which induces a principal fibration ΩZ −→ E
p

−→ Y ;
and the map Y −→ Z extends to a map Y ∪ CA −→ Z, inducing a principal

fibration ΩZ −→ E′
p′

−→ Y ∪CA. In Sections 2 and 3 we develop new techniques
that relate the action of a principal fibration to relative Whitehead products in
order to identify the homotopy type of E′ and the homotopy class of p′ in terms
of the homotopy type of E and the homotopy classes of p and f . This requires
certain hypotheses on the spaces and maps involved, but these are fulfilled in
a wide variety of contexts.

The new methods are powerful and should have numerous applications. We use
them to prove general results about certain cell attachments in Theorems 4.1
and 5.1. Philosophically, these cell attachments are integral versions of in-
ert maps in rational homotopy theory. Key examples are (n − 1)-connected
2n-dimensional Poincaré Duality complexes M having Hn(M ;Z)) ∼= Zd for
d ≥ 2 and n /∈ {4, 8}, and (n − 1)-connected (2n + 1)-dimensional Poincaré
Duality complexes M having Hn+1(M ;Z)) ∼= Zd for d ≥ 1. In Examples 4.2
and 4.4 we give an explicit homotopy decomposition of ΩM and identify the
homotopy classes of the maps from the factors into ΩM . In Examples 5.2

and 5.3 we go further: if M is M with a point removed and M
j

−→ M is the
inclusion, then we explicitly identify the homotopy fibre of j, the homotopy
class of the map from the fibre intoM , and show that Ωj has a right homotopy
inverse. Collectively, these results give a thorough picture of the homotopy the-
ory associated to M . They subsume most of the results in [B, BB, BT, BW]
and often go much further. For example, the statements about the map j were
known only in the case when M is a simply-connected 4-manifold. Finally, in
Section 6 we give an entirely new example that gives conditions for when the
map M#N −→ M ∨ N that collapses the collar in a connected sum of two
Poincaré duality complexes has a right homotopy inverse after looping.
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2 Principal fibrations and relative Whitehead products

In this section we define relative Whitehead products and relate them to the
action induced by a principal fibration. This will be an important technical
tool used later in the paper. The material in this section is a development of
that in [Gr, §3], which in turn was a development on [N, §6.10]. We give a full
account in order to have to hand all the material needed for later.
In what follows, it should be pointed out that by a fibration we mean a strict
fibration, not a fibration up to homotopy. All spaces are assumed to be path-
connected and pointed, with the basepoint generically denoted by ∗, and to
have the homotopy type of a finite type CW -complex. For a space X , let
XI be the space of (not necessarily pointed) continuous maps from the unit
interval I to X . Let PX = {ω ∈ XI | ω(0) = ∗} be the path space of X . Let
ev1 : PX −→ X be the evaluation map, defined by ev1(ω) = ω(1). The loop
space ΩX is the subspace of PX with the property that ev1(ω) = ∗. It is well

known that there is a fibration ΩX −→ PX
ev1−→ X .

Let ΩZ
i

−→ E
p

−→ B be a principal fibration induced by a map ϕ : B −→ Z.
Precisely, E and p are defined by the pullback

E //

p

��

PZ

ev1

��
B

ϕ
// Z.

So E = {(b, ω) ∈ B × PZ | ω(1) = b} and p is the projection, p(b, ω) = b.
This principal fibration has an action of the fibre on the total space,

a : ΩZ × E −→ E

defined by a(γ, (b, ω)) = (b, ω ◦ γ). One useful property this satisfies is the
following. The definition of p as a projection implies that there is a strictly
commutative diagram

ΩZ × E
a //

π2

��

E

p

��
E

p
// B.

(1)

Consider the map B ∨ E
1∨p
−→ B. Since the composite E

p
−→ B

ϕ
−→ Z is null

homotopic, there is a homotopy commutative diagram

B ∨ E
1∨p

//

p1

��

B

ϕ

��
B

ϕ
// Z

where p1 is the pinch map onto the first wedge summand. We wish to have a
model for the homotopy fibre of p1.
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In general, if f : X −→ Y is a continuous map with Y connected, there is a
standard way of turning f into a fibration. Define the space X̃ as the pullback

X̃ //

��

Y I

ev1

��
X

f
// Y

where ev1(ω) = ω(1). Then X̃ = {(x, ω) ∈ X × Y I | f(x) = ω(1)}. Let f̃ be
the composite

f̃ : X̃ −→ Y I
ev0−→ Y

where ev0(ω) = ω(0). Then f̃ is a fibration. Define ι : X −→ X̃ by ι(x) =
(x, cf(x)) where cf(x) is the constant path at f(x). Then there is a strictly
commutative diagram

X
ι //

f

��

X̃

f̃��⑦⑦
⑦
⑦⑦
⑦
⑦⑦

Y

in which f̃ is a fibration and ι is a homotopy equivalence. The homotopy fibre
of f is the actual fibre of f̃ , which is the space Ff = {(x, ω) ∈ X̃ | ω(0) = ∗},

and this maps to X by the composite Ff −→ X̃ −→ X . Note that if this
construction is applied to the inclusion of the basepoint ∗ −→ Y then ∗̃ is the
“reverse” path space on Y , ∗̃ = {ω ∈ Y I | ω(1) = ∗}, and Ff = ΩY . If the
construction is applied to the identity map Y −→ Y then Ff is precisely the
path space PY .

Apply this construction to the pinch map B ∨ E
p1
−→ B. The restriction of p1

to B is the identity map on B. So the part of the fibre Fp1 corresponding
to B ⊆ B ∨ E is PB and this maps to B by sending γ ∈ PB to γ(1) ∈ B.
The restriction of p1 to E is the constant map to the basepoint, so the part of
the fibre Fp1 corresponding to E ⊆ B ∨ E is ΩB × E, and this maps to E by
projecting (γ, e) to e. The two parts of the fibre Fp1 that correspond to the
basepoint ∗ ⊆ B ∨ E match at ΩB. Thus Fp1 = PB ∪ΩB ΩB × E and the
map PB ∪ΩB ΩB ×E −→ B ∨E is given by sending γ ∈ PB to γ(1) ∈ B and
projecting (γ, e) ∈ ΩB ×E to e ∈ E. The initial model for the homotopy fibre
of p1 is therefore PB ∪ΩB ΩB × E.
It is convenient to express this homotopy fibre in terms of the cone on ΩB, up
to homotopy equivalence. For a space Y , the reduced cone on Y is defined by
CY = (Y × I)/ ∼ where (y, 0) ∼ ∗ and (∗, t) ∼ ∗. Observe that Y includes
into CY by sending y to (y, 1). Notice that CY is a lower cone, which we use
instead of the more usual upper cone, as it makes several subsequent formulas
easier to follow. It is well known that the map of pairs

ξ : (CΩB,ΩB) −→ (PB,ΩB)
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Homotopy Groups of Poincaré Duality Complexes 187

defined by ξ(γ, t)(s) = γ(st) is a homotopy equivalence.
Collecting all the information above, and noting that all the constructions
involved are natural, we obtain the following.

Lemma 2.1. A model for the homotopy fibre of the pinch map B ∨E
p1
−→ B is

CΩB ∪ΩB ΩB × E, and with respect to this model the map

ψ : CΩB ∪ΩB ΩB × E −→ B ∨ E

from the fibre is given by sending (γ, t) ∈ CΩB to γ(t) ∈ B and projecting
(γ, e) ∈ ΩB × E to e ∈ E. Further, all of this is natural for maps B ∨ E −→
B′ ∨ E′. �

From this description we can immediately determine the following composition.

Corollary 2.2. The composite CΩB ∪ΩB ΩB ×E
ψ

−→ B ∨E
1∨p
−→ B is given

by sending (γ, t) ∈ CΩB to γ(t) ∈ B and by sending (γ, e) ∈ ΩB×E to p(e). �

Next, we wish to produce an alternative description of the composition in

Corollary 2.2 which depends on the action of the principal fibration ΩZ
i

−→

E
p

−→ B. The composite ΩB
Ωϕ
−→ ΩZ

i
−→ E is null homotopic since it is the

composition of two consecutive maps in a homotopy fibration sequence. An
explicit null homotopy is as follows. Recall that

E = {(b, ω) ∈ B × PZ | ω(1) = ϕ(b)}.

Define
H : ΩB × I −→ E

by H(γ, t) = (γ(t), (Ωϕ)(γt)) where γt(s) = γ(st). Notice that γ0 is the con-
stant map and γ1 = γ. Observe that:

(i) (Ωϕ)(γt)(1) = ϕ(γt(1)) = ϕ(γ(t));

(ii) H(γ, 0) = (γ(0), (Ωϕ)(γ0) = (∗, ∗);

(iii) H(γ, 1) = (γ(1), (Ωϕ)(γ1) = (∗, (Ωϕ)(γ)) = (i ◦ Ωϕ)(γ).

Item (i) implies that H(γ, t) ∈ E so H is well-defined, item (ii) implies that
H0 is the constant map and item (iii) implies that H1 = i ◦ Ωϕ.
Recalling that CΩB is a lower cone with ΩB including in by sending b to (b, 1),
the homotopy H can be used to define a map K : CΩB −→ E by K(γ, t) =
H(γ, t). Then there is a strictly commutative diagram

ΩB
Ωϕ

//

��

ΩZ
i // E

CΩB.

K

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧
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Consider the composite CΩB
K
−→ E

p
−→ B. From the description of E as

{(b, ω) ∈ B × PZ | ω(1) = ϕ(b)} and p as the projection p(b, ω) = b, we obtain

(p ◦K)(γ, t) = (p ◦H)(γ, t) = p((γ(t), (Ωϕ)(γt))) = γ(t). (2)

That is, p ◦K is the evaluation map.

We relate K to the action ΩZ × E
a

−→ E for the principal fibration ΩZ
i

−→

E
p

−→ B. Let θ be the composite

θ : ΩB × E
Ωϕ×1
−−→ ΩZ × E

a
−−→ E.

Since the restriction of a to ΩZ is i, the restriction of θ to ΩB is i◦Ωϕ. On the
other hand, by definition ofK in terms of the homotopyH and item (iii) above,
the restriction of K to ΩB ⊆ CΩB is i ◦Ωϕ. Therefore there is a pushout map

ΩB //

��

ΩB × E

�� θ

��

CΩB //

K
..

CΩB ∪ΩB ΩB × E

Γ

))❚
❚

❚
❚

❚
❚

❚
❚

❚

E

(3)

that defines Γ.

Lemma 2.3. The composite CΩB∪ΩBΩB×E
Γ

−→ E
p

−→ B is given by sending
(γ, t) ∈ CΩB to γ(t) ∈ B and by sending (γ, e) ∈ ΩB × E to p(e).

Proof. The restriction of Γ to CΩB is K, so the restriction of p ◦ Γ to CΩB is
p◦K, which by (2) is the evaluation map sending (γ, t) to γ(t). The restriction
of Γ to ΩB×E is θ, so the restriction of p◦Γ to ΩB×E is p◦θ = p◦a◦(Ωϕ×1).
Using (1), there is a strictly commutative diagram

ΩB × E
Ωϕ×1

//

π2

��

ΩZ × E
a //

π2

��

E

p

��
E E

p
// B

which shows that p ◦ θ sends (γ, e) ∈ ΩB × E to p(e).

Corollary 2.2 and Lemma 2.3 combine to give the following.

Proposition 2.4. There is a strictly commutative diagram

CΩB ∪ΩB ΩB × E
Γ //

ψ

��

E

p

��
B ∨ E

1∨p
// B.

�
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Proposition 2.4 is a key technical result. It relates the homotopy fibre of the
pinch map fromB∨E to B to the action induced by the principal fibration p. Its
importance will be seen in how it is used to relate certain Whitehead products
on B to the principal action.
Let G be an H-group, which is a homotopy associative H-space with a ho-
motopy inverse. For example, any loop space is an H-group. By [S], the
multiplication m on G is homotopic to one in which the basepoint is a strict
unit, that is, one for which m(x, ∗) = x = m(∗, x) for any x ∈ G (this is true
for any H-space, not just H-groups). From here on it will be assumed that
the multiplication on G has a strict unit. If there are maps f : A −→ G and
g : B −→ G the commutator c(f, g) : A×B −→ G of f and g is defined point-
wise by c(f, g)(a, b) = f(a)g(b)f(a)−1g(b)−1. Since the multiplication on G
has a strict unit, the restriction of c(f, g) to G∨G is null homotopic, so c(f, g)
extends to a map

〈f, g〉 : A ∧B −→ G

called the Samelson product of f and g. As the connecting map for the homo-
topy cofibration A∨B −→ A×B −→ A∧B is null homotopic (since ΣA∨ΣB
retracts off Σ(A×B)), the homotopy class of 〈f, g〉 is determined uniquely by
that of c(f, g).
In general, if X and Y are path-connected spaces then there are homeomor-
phisms Σ(X ∧ Y ) ∼= ΣX ∧ Y ∼= X ∧ ΣY . In what follows the version used
will depend only on aesthetics. Carrying on from the previous paragraph, if
G = ΩZ then f, g have adjoints f ′ : ΣA −→ Z and g′ : ΣB −→ Z respectively.
The Whitehead product of f ′ and g′ is the map [f ′, g′] : ΣA∧B −→ Z obtained
by taking the adjoint of the Samelson product 〈f, g〉.
Let X and Y be path-connected spaces. Let i1 : ΣX −→ ΣX ∨ ΣY and
i2 : ΣY −→ ΣX ∨ ΣY be the inclusion of the left and right wedge summands
respectively. Let

W : ΣX ∧ Y −→ ΣX ∨ ΣY

be the Whitehead product W = [i1, i2]. It is well known that there is a homo-

topy cofibration ΣX ∧ Y
W
−→ ΣX ∨ ΣY −→ ΣX × ΣY where the right map

is the inclusion of the wedge into the product. Observe that the pinch map
p1 : ΣX∨ΣY −→ ΣX factors as the composite ΣX∨ΣY −→ ΣX×ΣY

π1−→ ΣX
where π1 is the projection onto the first factor. Thus p1 ◦W is null homotopic,
implying that W lifts to the homotopy fibre of p1. Using the model for the
homotopy fibre of p1 already established, we obtain a lift

CΩΣX ∪ΩΣX ΩΣX × ΣY

ψ

��
ΣX ∧ Y

W //

λ

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦
ΣX ∨ ΣY

(4)

for some map λ. In the homotopy fibration sequence

Ω(ΣX ∨ ΣY )
Ωp1
−→ ΩΣX

∂
−→ CΩΣX ∪ΩΣX ΩΣX × ΣY,
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where ∂ is the fibration connecting map, the map Ωp1 has a right homotopy
inverse, implying that ∂ is null homotopic. Thus the homotopy class of the
lift λ is uniquely determined by the homotopy class of W . The naturality of W
therefore implies the naturality of the homotopy class of the lift λ.
We develop this in the context of the wedge B ∨ E used previously. Suppose
that there are maps f : ΣX −→ B and g : ΣY −→ E. Consider the diagram

CΩΣX ∪ΩΣX ΩΣX × ΣY
Θ //

ψ

��

CΩB ∪ΩB ΩB × E
Γ //

ψ

��

E

p

��
ΣX ∧ Y

W //

λ

66❧❧❧❧❧❧❧❧❧❧❧❧❧
ΣX ∨ ΣY

f∨g
// B ∨ E

1∨p
// B

(5)

where Θ = CΩf ∪Ωf (Ωf × g). The left triangle commutes by (4). The
middle square strictly commutes by the naturality of Lemma 2.1. The right
square strictly commutes by Proposition 2.4. Observe that the naturality of the
Whitehead product W = [i1, i2] implies that the composite along the bottom
row of (5) is homotopic to the Whitehead product [f, p ◦ g]. Thus Γ ◦Θ ◦ λ is
a lift of [f, p ◦ g] through p.

Definition 2.5. The composite [f, g]r = Γ ◦ Θ ◦ λ is the relative Whitehead
product of the maps f and g.

Remark 2.6. The relative Whitehead product generalizes the usual Whitehead

product. If the underlying homotopy fibration E
p

−→ B −→ Z has Z = ∗ then
E = B and p is the identity map, so (5) implies that [f, g]r is homotopic to the
composite along the lower row of the diagram, which with p = 1 is the usual
Whitehead product [f, g].

Remark 2.7. The naturality of the construction of Γ and Θ, and the natural-
ity of the homotopy class of λ, implies that the relative Whitehead product is
natural, up to homotopy, for maps of principal fibrations

E //

p

��

E′

p′

��
B // B′

and maps

ΣX
f

//

Σa
��

B

��

ΣY
g

//

Σb
��

B

��
ΣX ′

f ′

// B′ ΣY ′
g′

// B′.

It will be useful in what follows to now introduce some homotopies. Let X
and Y be path-connected pointed spaces. Let X ⋉ Y be the left half-smash
of X and Y , defined as the quotient space (X × Y )/ ∼ where (x, ∗) ∼ ∗. Let
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Homotopy Groups of Poincaré Duality Complexes 191

q : X × Y −→ X ⋉ Y be the quotient map. Observe that there is a pushout
diagram

X //

��

X × Y
q

//

��

X ⋉ Y

CX // CX ∪X X × Y
e // X ⋉ Y

(6)

where e collapes the cone to a point. Since CX is (naturally) contractible, e is
a natural homotopy equivalence. In our context, the space CΩB ∪ΩB ΩB × E

that is the homotopy fibre of the pinch map B∨E
p1
−→ B is naturally homotopy

equivalent to ΩB ⋉ E.

Let

ǫ : X ⋉ Y −→ CX ∪X X × Y (7)

be a natural right homotopy inverse of e. Considering the spaces and maps
in (5), let Γ be the composite

Γ : ΩB ⋉ E
ǫ

−→ CΩB ∪ΩB ΩB × E
Γ

−→ E

and let λ be the composite

λ : ΣX ∧ Y
λ

−→ CΩΣX ∪ΩΣX ΩΣX × ΣY
e

−→ ΩΣX ⋉ ΣY.

Then the definitions of Γ, λ and Θ, and the naturality of ǫ, imply that there is
a homotopy commutative diagram

ΣX ∧ Y
λ // ΩΣX ⋉ ΣY

Ωf⋉g
//

ǫ

��

ΩB ⋉ E
Γ //

ǫ

��

E

ΣX ∧ Y
λ // CΩΣX ∪ΩΣX ΩΣX × ΣY

Θ // CΩB ∪ΩB ΩB × E
Γ // E.

(8)

Combining (5) and (8) and the definition of the relative Whitehead product
[f, g]r as Γ ◦Θ ◦ λ, we immediately obtain the following.

Lemma 2.8. There is a homotopy commutative diagram

ΩΣX ⋉ ΣY
Ωf⋉g

//

��

ΩB ⋉ E
Γ //

��

E

p

��
ΣX ∧ Y

W //

λ

77♦♦♦♦♦♦♦♦♦♦♦
ΣX ∨ ΣY

f∨g
// B ∨ E

1∨p
// B

and the relative Whitehead product ΣX ∧ Y
[f,g]r
−−→ E is homotopic to the com-

posite Γ ◦ (Ωf ⋉ g) ◦ λ. �
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Note that Γ ◦ (Ωf ⋉ g) ◦ λ satisfies the same naturality properties as Γ ◦Θ ◦ λ
stated in Remark 2.13.
Consider the diagram

ΩB × E

��

θ

))❙❙
❙❙

❙❙
❙❙❙

❙❙
❙❙❙

❙❙
❙❙

CΩB ∪ΩB ΩB × E
Γ //

e

��

E

ΩB ⋉ E

Γ

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

where θ is the composite ΩB×E
Ωϕ×1
−−→ ΩZ×E

a
−−→ E and a is the action from

the principal fibration ΩZ −→ E −→ B. The upper triangle commutes by (3).
The lower triangle homotopy commutes since, by definition, Γ = Γ ◦ ǫ, and as
ǫ ◦ e is homotopic to the identity map on ΩB ⋉ E, we obtain Γ ◦ e ≃ Γ. Also,
by (6), the left vertical composite is the quotient map q. This establishes the
following proposition, which encapsulates the connection between the action of
a principal fibration and the relative Whitehead product.

Proposition 2.9. Let ΩZ −→ E −→ B be a principal fibration induced by a

map B
ϕ

−→ Z. Let θ be the composite ΩB × E
Ωϕ×1
−−→ ΩZ × E

a
−−→ E where

a is the action associated to the principal fibration. Then there is a homotopy
commutative diagram

ΩB × E

q

��

θ

((PP
PP

PP
PP

PP
PP

PP

ΩB ⋉ E
Γ // E

which is natural for maps of principal fibrations.

Next, we aim to better identify the maps involved in the homotopy commutative
diagram in Lemma 2.8. This requires two preliminary lemmas.

Lemma 2.10. Let Q and R be pointed spaces. Then there is a homotopy equiv-
alence Q ⋉ ΣR ≃ (ΣQ ∧ R) ∨ ΣR. Further, this decomposition is natural for
maps Q −→ Q′ and R −→ R′.

Proof. In general, if T is a pointed space then there is a homeomorphism
Q⋉ T ∼= (Q+) ∧ T , where Q+ is the union of Q and a disjoint basepoint. Note
that Σ(Q+) ≃ ΣQ ∨ S1. Therefore, if T = ΣR then there are homotopy
equivalences

Q⋉ ΣR ∼= (Q+) ∧ΣR ≃ Σ(Q+) ∧R ≃ (ΣQ ∨ S1) ∧R ≃ (ΣQ ∧R) ∨ ΣR.

The naturality of the decomposition follows from the naturality of each homo-
topy equivalence.
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Homotopy Groups of Poincaré Duality Complexes 193

In general, if X and Y are path-connected spaces and j1 : X −→ X ∨ Y and
j2 : Y −→ X ∨ Y are the inclusions, then Ganea [Ga] showed that there is a
homotopy fibration

ΣΩX ∧ ΩY
[ev1,ev2]
−−−−→ X ∨ Y −−−−→ X × Y

where the right map is the inclusion of the wedge into the product and [ev1, ev2]

is the Whitehead product of the composites ev1 : ΣΩX
ev
−→ X

j1
−→ X ∨ Y and

ev2 : ΣΩY
ev
−→ Y

i2−→ X ∨ Y . Further, this fibration splits after looping, that
is, Ω[ev1, ev2] has a left homotopy inverse. We will use Ganea’s result to prove
the following lemma.

Lemma 2.11. Let X and Y be path-connected spaces. Then there is a homo-
topy equivalence e : (ΣΩX ∧ Y ) ∨ ΣY −→ ΩX ⋉ ΣY that satisfies a homotopy
commutative diagram

(ΣΩX ∧ Y ) ∨ ΣY
e //

[ev1,j2]+j2

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

ΩX ⋉ ΣY

xxqqq
qq
qq
qq
qq

X ∨ΣY.

Further, this homotopy equivalence is natural for maps X −→ X ′

and Y −→ Y ′.

Proof. Since the pinch mapX∨ΣY
p1
−→ X factors as the compositeX∨ΣY −→

X × ΣY
π1−→ X where π1 is the projection, using Ganea’s result we obtain a

homotopy fibration diagram

ΣΩX ∧ ΩΣY
a // ΩX ⋉ ΣY

b //

��

ΣY

i2

��
ΣΩX ∧ ΩΣY

[ev1,ev2]
// X ∨ΣY //

p1

��

X × ΣY

π1

��
X X

(9)

where i2 is the inclusion of the second factor and a and b are induced by the
fibration diagram. Let η : Y −→ ΩΣY be the suspension map, which is the
adjoint of the identity map on ΣY , and let c be the composite

c : ΣΩX ∧ Y
Σ1∧η
−−→ ΣΩX ∧ ΩΣY

a
−−→ ΩX ⋉ ΣY.

Let d be the composite

d : ΣY →֒ ΩX × ΣY −→ ΩX ⋉ ΣY
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and let
e : (ΣΩX ∧ Y ) ∨ΣY −→ ΩX ⋉ ΣY

be the wedge sum of c and d.
We will show that e is a homotopy equivalence. Granting this for the moment,
observe that when c is composed toX∨ΣY the left square in (9) implies that we
obtain [ev1, ev2] ◦ (Σ1∧ η). By the naturality of the Whitehead product this is
homotopic to [ev1, ev2◦Ση]. As Ση is a left homotopy inverse for the evaluation
map and, by definition, ev2 = j2 ◦ev, we obtain [ev1, ev2 ◦Ση] ≃ [ev1, j2]. Next,
by Lemma 2.1 and the homotopy equivalence ǫ in (7), the composite

ΣY
d

−→ ΩX ⋉ ΣY −→ X ∨ ΣY (10)

is the inclusion j2 of the right wedge summand. Therefore, as e is the wedge
sum of c and d, the composite (ΣΩX ∧ Y ) ∨ΣY

e
−→ ΩX ⋉ΣY −→ X ∨ΣY is

homotopic to [ev1, j2]+j2, giving the homotopy commutative diagram asserted
by the lemma. Naturality then follows by the naturality of the homotopy
fibration diagram (9) and of the maps c and d.
It remains to show that e is a homotopy equivalence. To do so it suffices to
show that Ωe is a homotopy equivalence, for then Ωe induces an isomorphism
of homotopy groups and hence so does e, implying that e is a homotopy equiv-
alence. (Technically, this is a weak homotopy equivalence, but as all spaces
have the homotopy type of finite type CW -complexes, we obtain an honest
homotopy equivalence.) To show that Ωe is a homotopy equivalence, by Dror’s
extension of Whitehead’s Theorem to path-connected H-spaces [D], it suffices
to show that Ωe induces an isomorphism in integral homology. Finally, to see
this it suffices to show that Ωe induces an isomorphism in homology with field
coefficients for any field. Assume from now on that homology is taken with
field coefficients.
First, we show that Ωc has a left homotopy inverse. The homotopy commu-
tativity of the upper left square in (9) implies it suffices to show that the
composite

Ω(ΣΩX ∧ Y )
Ω(Σ1∧η)
−−−−−−→ Ω(ΣΩX ∧ ΩΣY )

Ω[ev1,ev2]
−−−−−−→ Ω(X ∨ ΣY )

has a left homotopy inverse. Since Ω[ev1, ev2] has a left homotopy inverse, it
therefore suffices to show that Ω(Σ1 ∧ η) has a left homotopy inverse, and to
show this it suffices to show that Σ1 ∧ η has a left homotopy inverse. But this
is the case since the evaluation map ΣΩΣY

ev
−→ ΣY is a left homotopy inverse

for Ση and therefore 1 ∧ ev is a left homotopy inverse for 1 ∧ Ση ≃ Σ1 ∧ η.
Second, we show that d is a left homotopy inverse for b. As noted above, the

composite ΣY
d

−→ ΩX ⋉ ΣY −→ X ∨ ΣY is the inclusion of the right wedge
summand, so composing further with X ∨ ΣY −→ X × ΣY

π2−→ ΣY gives the
identity map on ΣY . The homotopy commutativity of the upper right square

in (9) then implies that ΣY
d

−→ ΩX⋉ΣY
b

−→ ΣY is homotopic to the identity
map.
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Now consider homology. In general, if B is a path-connected space and homol-
ogy is taken with a coefficient ring that is a PID, then the Bott-Samelson Theo-
rem states that there is an algebra isomorphism H∗(ΩΣB) ∼= T (H̃∗(B)), where

T ( ) is the free tensor algebra functor, and the suspension map B
η

−→ ΩΣB in-
duces the inclusion of the generating set in homology. In our case, Lemma 2.10
implies that ΩX⋉ΣY is homotopy equivalent to the suspension Σ((ΩX∧Y )∨Y )
and the coefficient ring in homology is a field, so there is an algebra isomor-
phism H∗(Ω(ΩX ⋉ ΣY )) ∼= T (V ), where V = H̃∗((ΩX ∧ Y ) ∨ Y ). Since Ωc
has a left homotopy inverse, (Ωc)∗ is a monomorphism. Consequently, as the
adjoint of c is homotopic to the composite

c̃ : ΩX ∧ Y
η

−→ ΩΣ(ΩX ∧ Y )
Ωc
−→ Ω(ΩX ⋉ ΣY )

and η∗ is also a monomorphism, we obtain that c̃∗ is a monomorphism. Since Ωd
has a left homotopy inverse, (Ωd)∗ is a monomorphism. Consequently, as the
adjoint of d is homotopic to the composite

d̃ : Y
η

−→ ΩΣY
Ωd
−→ Ω(ΩX ⋉ ΣY )

and η∗ is also a monomorphism, we obtain that d̃∗ is a monomorphism. Further,
since d is the inclusion of ΣY into ΩX⋉ΣY , the image of d̃∗ is the submodule

H̃∗(Y ) ⊆ V . Since b is a left homotopy inverse for d, the composite Y
d̃

−→

Ω(ΩX ⋉ ΣY )
Ωb
−→ ΩΣY is a monomorphism with image H̃∗(Y ). In (9) the

composite b◦a is null homotopic since these are consecutive maps in a homotopy
fibration, so as c factors through a, we have Ωb ◦ c̃ null homotopic, and hence
(Ωb)∗◦ c̃∗ = 0. Therefore, in reduced homology, the images C and D of c̃∗ and d̃
are disjoint. Thus, as both c̃∗ and d̃∗ are monomorphisms in reduced homology,
their wedge sum is as well and it has image C⊕D ⊆ T (V ). As the tensor algebra
is free, this implies that there is a monomorphism T (C ⊕D) −→ T (V ). But
this monomorphism is realized by the multiplicative extension (via the James
construction) of

(ΩX ∧ Y ) ∨ Y
c̃∨d̃
−→ Ω(ΩX ⋉ ΣY )

to

υ : ΩΣ((ΩX ∧ Y ) ∨ Y ) −→ Ω(ΩX ⋉ ΣY ).

Since the domain and range of υ have the same homotopy type, the fact that υ∗
is a monomorphism implies that it is in fact an isomorphism. Finally, observe
that the definitions of c̃ and d̃ as adjoints implies that υ ≃ Ω(c ∨ d), that is,
υ ≃ Ωe. Hence Ωe induces an isomorphism in homology.

Returning to Lemma 2.8 and incorporating Lemma 2.11 we obtain a homotopy
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commutative diagram

(ΣΩΣX ∧ Y ) ∨ ΣY
e //

[ev1,j2]+j2 ))❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘
ΩΣX ⋉ ΣY

Ωf⋉g
//

��

ΩB ⋉ E
Γ //

��

E

p

��
ΣX ∨ ΣY

f∨g
// B ∨ E

1∨p
// B.

The naturality of the Whitehead product implies that the composite in the
lower direction of this diagram is homotopic to [f ◦ ev, p ◦ g] + p ◦ g. We record
this as follows.

Corollary 2.12. There is a homotopy commutative diagram

ΩΣX ⋉ ΣY
Ωf⋉g

//

e−1

��

ΩB ⋉ E
Γ // E

p

��
(ΣΩΣX ∧ Y ) ∨ ΣY

[f◦ev,p◦g]+p◦g
// B �

Corollary 2.12 says that the map Γ ◦ (Ωf ⋉ g) appearing in the definition of a
relative Whitehead product is itself already a lift of Whitehead products, up
to a homotopy equivalence.

Remark 2.13. The naturality at each stage of the construction implies that the
homotopy commutative diagram in Corollary 2.12 satisfies the same naturality
properties listed in Remark 2.7.

Finally, we better identify the map λ in the other part of the diagram in
Lemma 2.8. Let η : X −→ ΩΣX be the suspension map, which is the adjoint
of the identity map on ΣX .

Proposition 2.14. There is a homotopy commutative diagram

ΣΩΣX ∧ Y
include// (ΩΣX ∧ ΣY ) ∨ ΣY

e // ΩΣX ⋉ ΣY

��
ΣX ∧ Y

W //

Ση∧1

77♣♣♣♣♣♣♣♣♣♣♣
ΣX ∨ ΣY.

Consequently, the map ΣX ∧ Y
λ

−→ ΩΣX ⋉ ΣY in Lemma 2.8 can be chosen

to be the composite L : ΣX ∧ Y
Ση∧1
−−→ ΣΩΣX ∧ ΣY →֒ (ΩΣX ∧ ΣY ) ∨ ΣY

e
−→

ΩΣX ⋉ Y .

Proof. Recall thatW is the Whitehead product [j1, j2]. Let L be the composite
comprising the upper direction around the diagram in the statement of the
proposition. By Lemma 2.11, L ≃ [ev1, j2] ◦ (Ση ∧ 1). By the naturality of
the Whitehead product, this is homotopic to [ev1 ◦ Ση, j2]. As the composite

Documenta Mathematica 27 (2022) 183–211



Homotopy Groups of Poincaré Duality Complexes 197

ΣX
Ση
−→ ΣΩΣX

ev
−→ ΣX is homotopic to the identity map, we obtain ev1◦Ση =

j1 ◦ ev ◦ Ση ≃ j1. Thus L ≃ [j1, j2] =W .

Consequently, L lifts W to the homotopy fibre of the pinch map ΣX ∨ΣY −→
ΣY . As the loop of the pinch map has a right homotopy inverse, the homotopy
class of the lift of W to the homotopy fibre is uniquely determined by the
homotopy class of W . Thus we may unambiguously choose the lift λ of W in
Lemma (8) to be L.

3 Relative Whitehead products and the homotopy type of cer-

tain pushouts

This section fuses a construction in [GT] with relative Whitehead products.

Suppose that there is a cofibration A
f

−→ Y −→ Y ∪ CA. Let ΩZ −→ E′ −→
Y ∪ CA be a principal fibration induced by a map ϕ : Y ∪ CA −→ Z. Define
spaces Q and E and maps p and e by the iterated pullback

Q //

��

E
e //

p

��

E′

��
A

f
// Y // Y ∪ CA.

(11)

Observe that there are principal fibrations ΩZ −→ Q −→ A and ΩZ −→

E −→ Y induced by the composites A
f

−→ Y −→ Y ∪ CA
ϕ

−→ Z and Y −→

Y ∪CA
ϕ

−→ Z respectively. The map A −→ Z is trivial since it factors through
two consecutive maps in a cofibration. Thus Q ≃ ΩZ×A. However, there may
be many inequivalent choices of a decomposition and we wish to choose one
such that E′ is the pushout of the projection ΩZ × A −→ A and an “action”
map ΩZ ×A −→ E.

Lemma 3.1. There is a map of pairs (CA,A) −→ (E′, E) such that the com-
posite (CA,A) −→ (E′, E) −→ (Y ∪ CA, Y ) is the standard inclusion.

Proof. Start with the standard inclusion (CA,A) −→ (Y ∪ CA, Y ). Consider
the composite h : A×I −→ CA −→ Y ∪CA, where the left map is the quotient
map to CA = A∧ I. The map h is a pointed homotopy which at t = 0 sends A
to the base of the cone in Y ∪ CA and at t = 1 sends A to the basepoint.
Thus h1 lifts to E′, so the homotopy extension property implies that h lifts
to a map h : A × I −→ E′. As this occurs in the pointed category, h factors

as a composite A × I −→ CA
h
′

−→ E′. The pullback property of E then
implies that there is a map g : A −→ E such that p ◦ g is the identity on A
and e ◦ g is h′. Thus g and e ◦ g give a map of pairs (CA,A) −→ (E′, E) with
the property that the composite (CA,A) −→ (E′, E) −→ (Y ∪ CA, Y ) is the
standard inclusion.
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Since the homotopy fibration ΩZ −→ E −→ Y is principal, there is a homotopy
action ΩZ × E

a
−→ E. Let ϑ be the composite

ϑ : ΩZ ×A
1×g
−→ ΩZ × E

a
−→ E.

The following was shown in the first half of the proof of [GT, Theorem 2.2].

Theorem 3.2. Using the map of pairs in Lemma 3.1, there is a homotopy
pushout

ΩZ ×A
ϑ //

π1

��

E

��
ΩZ // E′. �

The value of Theorem 3.2 is that it allows for the homotopy type of E′ to
be identified in terms of known maps. In the previous section we related the
action ϑ to relative Whitehead products. We now make this explicit in the
context of the pushout in Theorem 3.2.

Let h be the composite Y −→ Y ∪CA
ϕ

−→ Z. Consider the homotopy fibration
sequence

ΩY
Ωh
−→ ΩZ −→ E

p
−→ Y

h
−→ Z.

Suppose that the map ΩZ −→ E is null homotopic. Then Ωh has a right
homotopy inverse s : ΩZ −→ ΩY . Let g : A −→ E be the restriction of g to A.
Consider the diagram

ΩZ × A
1×g

//

q

��

ΩZ × E
s×1

//

q

��

ΩY × E
Ωh×1

//

q

��

ΩZ × E
a // E

ΩZ ⋉ A
1⋉g

// ΩZ ⋉ E
s⋉1

// ΩY ⋉ E.

Γ

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

The left and middle squares commute by naturality and the right triangle
homotopy commutes by Proposition 2.9. Since Ωh ◦ s is homotopic to the
identity map on ΩZ, the composite along the top row is homotopic to a◦(1×g),
which by definition, is ϑ. Thus we obtain a homotopy commutative diagram

ΩZ ×A
ϑ //

q

��

E

ΩZ ⋉A
s⋉g

// ΩY ⋉ E
Γ // E.

(12)

The factorization of ϑ through the half-smash ΩZ ⋉ A implies that, in the
homotopy pushout in Theorem 3.2, the space ΩZ may be pinched out, proving
the following.
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Theorem 3.3. Given the same hypotheses as in Theorem 3.2, suppose in

addition that the map Ø1u11megaY
Ωh
−→ ΩZ has a right homotopy inverse

s : ΩZ −→ ΩY . Then there is a homotopy cofibration

ΩZ ⋉A
Γ◦(s⋉g)
−−−−−−→ E −−−−−−→ E′. �

Ideally, if the homotopy types of ΩZ, A and E are known, and the homotopy
class of Γ ◦ (s⋉ g) can be identified, then the homotopy type of E′ could also
be identified. Since Ωh has a right homotopy inverse, the homotopy class of

Γ◦(s⋉g) is determined by the homotopy class of its composition with E
p

−→ Y .
In Theorem 3.4 the homotopy class of p◦Γ◦ (s⋉g) is described more precisely,
provided that A is a suspension. Let γ be the composite

γ : ΣΩZ
Σs
−→ ΣΩY

ev
−→ Y.

Theorem 3.4. Given the same hypotheses as Theorem 3.3. Suppose in addition
that A ≃ ΣA. Then there is a homotopy commutative diagram

ΩZ ⋉A
s⋉g

//

e−1

��

ΩY ⋉ E
Γ // E

p

��
(ΣΩZ ∧ A) ∨ A

[γ,f ]+f
// Y

where e is the homotopy equivalence from Lemma 2.11.

Proof. Generically, let e1 : ΣΩQ ∧ R −→ ΩQ ⋉ ΣR be the restriction of the
homotopy equivalence (ΣΩQ ∧ R) ∨ ΣR

e
−→ ΩQ ⋉ ΣR in Lemma 2.11 to the

first wedge summand. Consider the diagram

ΩZ ∧A

≃

��

ΩZ ∧ A
e1 //

η∧1

��

ΩZ ⋉A
s⋉1

//

η⋉1

��

ΩY ⋉ A

1⋉g

&&▼
▼▼

▼▼
▼▼

▼▼
▼

η⋉1

��
ΩΣΩZ ∧ A

e1 // ΩΣΩZ ⋉A
ΩΣs⋉1

//

��

ΩΣΩY ⋉ A
Ωev⋉g

//

��

ΩY ⋉E
Γ //

��

E

p

��
ΣΩZ ∧ A

W // ΣΩZ ∨A
Σs∨1 // ΣΩY ∨ A

ev∨g
// Y ∨E

1∨p
// Y.

The L-shaped part of the diagram on the left homotopy commutes by Propo-
sition 2.14, and the square in its upper right corner homotopy commutes by
the naturality of e1. The upper middle square homotopy commutes by the
naturality of η and the upper triangle homotopy commutes since η is a right
homotopy inverse of Ωev. The three remaining squares on the bottom homo-
topy commute by the construction of relative Whitehead products. Thus the
entire diagram homotopy commutes. Observe that the upper direction around
the diagram is the restriction of Γ ◦ (s⋉ g) ◦ e to ΩZ ∧A, while the naturality
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of the Whitehead product implies that the lower direction around the diagram
is homotopic to [ev ◦ Σs, p ◦ g] = [γ, f ]. Thus the diagram in the statement of
the theorem homotopy commutes when restricted to ΣΩZ ∧ A ≃ ΩZ ∧ A. On
the other hand, the restriction of the diagram in the statement of the theorem
to A clearly homotopy commutes since the restriction of Γ(s ⋉ g) to A is g.
This completes the proof.

A special case of Theorems 3.3 and 3.4 that will be used in the next section

is given by taking Z = Y ∪ CA and Y
ϕ

−→ Z as the identity map. This gives
the following diagram of spaces and maps that collects the data going into
Theorem 3.3:

E //

p

��

E′

��
A

f
// Y //

h

��

Y ∪ CA

=

��
Y ∪ CA Y ∪ CA.

(13)

Here, the middle row is a cofibration, the two columns are homotopy fibrations,
and the upper square is a homotopy pullback. The map h in general is the

composite Y −→ Y ∪ CA
ϕ

−→ Z, so in this case it is simply the inclusion
Y −→ Y ∪ CA. Thus the space E is the homotopy fibre of this inclusion
and the space E′ is contractible. From Theorems 3.3 and 3.4 we obtain the
following.

Proposition 3.5. Let A
f

−→ Y
h

−→ Y ∪ CA be a cofibration and consider the

homotopy fibration E
p

−→ Y
h

−→ Y ∪CA. Suppose that Ωh has a right homotopy
inverse s : Ω(Y ∪ CA) −→ ΩY . Then there is a homotopy equivalence

Ω(Y ∪CA) ⋉A
Γ◦(s⋉g)
−−−−−−→ E.

Further, if A ≃ ΣA then there is a homotopy commutative diagram

Ω(Y ∪ CA)⋉A
Γ◦(s⋉g)

≃

//

e−1≃

��

E

p

��
(ΣΩ(Y ∪ CA) ∧ A) ∨ A

[γ,f ]+f
// Y.

Consequently, there is a homotopy fibration

ΣΩ(Y ∪ CA) ∧ A) ∨ A
[γ,f ]+f
−−−−→ Y

h
−−−−→ Y ∪ CA. �

That is, Proposition 3.5 identifies the homotopy type of E and, if A is a sus-

pension, identifies the map E
p

−→ Y in terms of f and a Whitehead product.
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4 The based loops on highly connected Poincaré Duality com-

plexes I

In this section Proposition 3.5 is used to analyze the homotopy theory of certain
cell attachments, as described in Theorem 4.1. This is then applied to identify
the homotopy types of the based loops on certain Poincaré Duality complexes.

By the Hilton-Milnor Theorem the inclusion Sm ∨ Sn
i

−→ Sm × Sn has a right
homotopy inverse after looping; that is, there is a map t : ΩSm × ΩSn −→
Ω(Sm ∨ Sn) such that Ωi ◦ t is homotopic to the identity map.

Theorem 4.1. Suppose that there is a cofibration

Sm+n−1 −→ Y −→ Y ′ = Y ∪ em+n

where m,n ≥ 2. Suppose also that:

(i) there is a homotopy equivalence Y ≃ Sm ∨ Sn ∨ ΣX;

(ii) the composite of inclusions f : ΣX →֒ Y →֒ Y ′ has homotopy cofibre D
with the property that H∗(D) ∼= H∗(Sm × Sn).

Let q : Y ′ −→ D be the map to the homotopy cofibre and let s be the composite

ΩSm × ΩSn
t

−→ Ω(Sm ∨ Sn) −→ ΩY ′. Then:

(a) the composite ΩSm × ΩSn
s

−→ ΩY ′
Ωq
−→ ΩD is a homotopy equivalence;

(b) there is a homotopy fibration

(Σ(ΩSm × ΩSn) ∧X) ∨ΣX
[γ,f ]+f
−−−−→ Y ′ q

−−−−→ D

where γ = ev ◦ Σs;

(c) there is a homotopy equivalence

ΩY ′ ≃ ΩSm × ΩSn × Ω((ΩSm × ΩSn)⋉ ΣX).

Proof. For part (a), let r be the composite r : Sm ∨ Sn →֒ Y ′
q

−→ D. The
definitions of r and s imply that Ωr ◦ t = Ωq ◦ s. So to prove part (a) it is
equivalent to show that Ωr ◦ t is a homotopy equivalence. This is proved by
directly copying the argument in [BT, Lemmas 2.2 and 2.3].

For part (b), consider the homotopy cofibration ΣX
f

−→ Y ′
q

−→ D. Define the

space E and the map p by the homotopy fibration E
p

−→ Y ′
q

−→ D. Part (a)
implies the map Ωq has a right homotopy inverse s′ : ΩD −→ ΩY ′. Therefore
Proposition 3.5 implies that there is a homotopy fibration

(ΣΩD ∧X) ∨ ΣX
[γ′,f ]+f
−−−−→ Y ′ q

−−−−→ D
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where γ′ = ev ◦ Σs′. Substituting in the homotopy equivalence for ΩD in
part (a), which also lets us substutite γ = ev ◦ s for γ′ = ev ◦ s′, we obtain a
homotopy fibration

(Σ(ΩSm × ΩSn) ∧X) ∨ ΣX
[γ,f ]+f
−−−−→ Y ′ q

−−−−→ D,

proving part (b).
Finally, for part (c), since Ωq has a right homotopy inverse by part (a), the
homotopy fibration in part (b) splits after looping, giving a homotopy equiva-
lence

ΩY ′ ≃ ΩD × Ω((ΩSm × ΩSn)⋉ ΣX).

Substituting in the homotopy equivalence ΩD ≃ ΩSm × ΩSn from part (a)
then completes the proof.

Example 4.2. For n ≥ 2, let M be an (n − 1)-connected 2n-dimensional
Poincaré Duality complex. By Poincaré Duality,

Hm(M) ∼=





Z if m = 0 or m = 2n
Zd if m = n
0 otherwise

for some integer d ≥ 0. Assume d ≥ 2 and n /∈ {2, 4, 8}. By [BT, Lemma 3.3]
generators x1, . . . , xd of Hn(M) can be chosen such that x1 ∪ x2 generates
H2n(M) for some x1 6= x2. (Note that if n ∈ {2, 4, 8} then the existence of
an element of Hopf invariant one allows for the possibility that only x1 ∪ x1
generates H2n(M).) Now give M a CW -structure by corresponding one n-cell
to each xk and attaching the top cell. Then there is a homotopy cofibration

S2n−1 g
−→

d∨

i=1

Sn
j

−→M

where j∗ sends xk to the generator of the kth sphere in the wedge, and g attaches
the top cell of M . Let ΣX =

∨d
i=3 S

n and let f be the composite f : ΣX →֒
∨d
i=1 S

n j
−→M . Define the space D and the map q by the homotopy cofibration

ΣX
f

−→M
q

−→ D.

Since x1∪x2 generates H2n(M) and x1, x2 correspond to
∨2
i=1 S

n, the space D
satisfies H∗(D) ∼= H∗(Sn×Sn). Therefore, Theorem 4.1 applies, and we obtain
a homotopy fibration

(Σ(ΩSn × ΩSn) ∧X) ∨ ΣX
[γ,f ]+f
−−−−→M

q
−−−−→ D

where γ = ev ◦ Σs and a homotopy equivalence

ΩM ≃ ΩSn × ΩSn × Ω((ΩSn × ΩSn)⋉ ΣX). (14)
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Example 4.2 improves on some of the relevant results in [BB, BT]. Using
different methods, in [BT] the same decomposition for ΩM was obtained if n /∈
{2, 4, 8} and using yet another set of methods, in [BB] the same decomposition
for ΩM was obtained for all n. But in neither case was the map from the fibre
of q into M identified.

Remark 4.3. In general, there are homotopy equivalences B ⋉ ΣA ≃
(ΣB ∧ A) ∨ ΣA and Σ(B ×A) ≃ ΣB ∨ ΣA ∨ (ΣA ∧ B), and a property of the
James construction is that ΣΩSn is homotopy equivalent to a wedge of spheres.
Combining these facts shows that (ΩSn×ΩSn)⋉ΣX is homotopy equivalent to
a wedge of spheres, and if desired, a precise enumeration of these spheres can
be made. The Hilton-Milnor Theorem then implies that Ω((ΩSn×ΩSn)⋉ΣX)
is homotopy equivalent to an infinite product of spheres. Hence the decomposi-
tion (14) implies that the homotopy groups of ΩM can be determined to exactly
the same extent as can the homotopy groups of spheres.

Example 4.4. For n ≥ 2, let M be an (n− 1)-connected (2n+ 1)-dimensional
Poincaré Duality complex. By Poincaré Duality,

Hm(M) ∼=





Z if m = 0 or m = 2n+ 1
Zd if m = n
Zd ⊕G if m = n+ 1
0 otherwise

for some integer d ≥ 0 and some finite abelian group G. Assume that d ≥ 1.
Rationally, M still satisfies Poincaré Duality, so we can choose generators
x1, . . . , xd of the subgroup Zd in Hn(M) and y1, . . . , yd of the subgroup Zd in
Hn+1(M) such that x1 ∪ y1 generates H2n+1(M). Give M a CW -structure by
associating an Sn to each xk, an S

n+1 to each yk, and an (n+ 1)-dimensional
Moore space Pn+1(tj) to each cyclic direct summand Z/tjZ of G. Write

M ≃ Sn ∨ Sn+1 ∨ ΣX (15)

where the Sn corresponds to x1, the Sn+1 corresponds to y1, and ΣX =
(
∨d
i=2 S

n ∨ Sn+1) ∨ (
∨s
j=1 P

n+1(tj)). Give M a CW -structure by attaching

the top cell to M . Then there is a homotopy cofibration

S2n g
−→ Sn ∨ Sn+1 ∨ ΣX

j
−→M.

Let f be the composite f : ΣX →֒ Sn ∨ Sn+1 ∨ΣX
j

−→M . Define the space D
and the map q by the homotopy cofibration

ΣX
f

−→M
q

−→ D.

Since x1 ∪ y1 generates H2n+1(M) and x1, y1 correspond to Sn ∨Sn+1 in (15),
the space D satisfies H∗(D) ∼= H∗(Sn×Sn+1). Therefore, Theorem 4.1 applies,
and we obtain a homotopy fibration

(Σ(ΩSn × ΩSn+1) ∧X) ∨ ΣX
[γ,f ]+f
−−−−→M

q
−−−−→ D
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where γ = ev ◦ Σs and a homotopy equivalence

ΩM ≃ ΩSn × ΩSn+1 × Ω((ΩSn × ΩSn+1)⋉ ΣX). (16)

Example 4.4 improves on the result in [B]. That paper used different methods
to obtain the same homotopy decomposition, but did not describe the map
from the fibre of q into M .

Remark 4.5. As in Remark 4.3, the fact that ΣX is homotopy equivalent to
a wedge of spheres and Moore spaces implies that (ΩSn ×ΩSn+1)⋉ΣX is ho-
motopy equivalent to a wedge of spheres and Moore spaces. The Hilton-Milnor
Theorem can then be applied to Ω((ΩSn × ΩSn+1) ⋉ ΣX) to decompose fur-
ther. In particular, the smash product of two mod-pr Moore spaces is homotopy
equivalent to a wedge of two mod-pr Moore spaces for p a prime and r 6= 2,
so if the 2-torsion in Hn(M) is controlled in this way then the output of the
Hilton-Milnor Theorem is a product of looped spheres and looped Moore spaces.
Therefore the decomposition (16) implies that the homotopy groups of M can
be calculated to the same extent as can the homotopy groups of spheres and
Moore spaces.

Remark 4.6. The n = 2 case of simply-connected 4-dimensional Poincaré
Duality complexes can be recovered. In this case, we rely on the arugment
in [BT, Section 4]; this is phrased in terms of simply-connected 4-manifolds
but works equally well for simply-connected Poincaré Duality complexes. If M
is such a space then ΩM ≃ S1 × ΩZ where Z is a simply-connected torsion-
free 5-dimensional Poincar’e Duality complex. If H3(Z) = 0 then Z ≃ S5 and
otherwise Z is one of the cases considered in Example 4.4. Therefore, in all
cases, we obtain a decomposition of ΩM .

5 The based loops on highly connected Poincaré Duality com-

plexes II

Theorem 4.1 can be pushed further. Consider again the cofibration

Sm+n−1 g
−→ Y

j
−→ Y ′ = Y ∪ em+n

where g attaches the (m + n)-cell and j is the inclusion. In Theorem 5.1 we
identify the homotopy fibre of j and show that Ωj has a right homotopy inverse.

Theorem 5.1. Assume that there is a cofibration Sm+n−1 g
−→ Y

j
−→ Y ′ as in

Theorem 4.1. Then the following hold:

(a) the map Ωj has a right homotopy inverse t : ΩM −→ ΩY ;

(b) there is a homotopy fibration

(ΣΩY ′ ∧ Sm+n−2) ∨ Sm+n−1 [γ,g]+g
−−−−→ Y

j
−−−−→ Y ′

where γ = ev ◦ Σt.
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Proof. Throughout the proof we write Y as Sm ∨ Sn ∨ ΣX .
For part (a), Theorem 4.1 gives a homotopy decomposition of ΩY ′ via the map

Y ′
q

−→ D but does not immediately relate this to j. To do so, let q be the
composite

q : Sm ∨ Sn ∨ ΣX
j

−→ Y ′ q
−→ D.

Recall that there is a homotopy cofibration ΣX
f

−→ Y ′
q

−→ D. We claim that

there is a homotopy cofibration Sm+n−1∨ΣX
g+i
−→ Sm∨Sn∨ΣX

q
−→ D where i

is the inclusion of ΣX . To see this, consider the homotopy pushout diagram

Sm+n−1

i1
��

Sm+n−1

g

��
Sm+n−1 ∨ ΣX

g+i
//

q2

��

Sm ∨ Sn ∨ ΣX //

j

��

D

ΣX // Y ′ // D.

(17)

Here, i1 is the inclusion of the first wedge summand, q2 is the pinch onto the
second wedge summand, and D is the homotopy cofibre of g + i. The map
ΣX −→ Y ′ along the bottom row can be identified by restricting j ◦ (g + i) to
ΣX : this is the definition of f . Hence D ≃ D and the homotopy cofibration

along the bottom row of the diagram is ΣX
f

−→ Y ′
q

−→ D. By definition,
q = q ◦ j, so from the middle row of the diagram we obtain a homotopy

cofibration Sm+n−1 ∨ ΣX
g+i
−→ Sm ∨ Sn ∨ ΣX

q
−→ D.

Next, recall from Theorem 4.1 that the right homotopy inverse s of Ωq is defined

as the composite ΩSm × ΩSn
t

−→ Ω(Sm ∨ ΩSn) −→ ΩY ′. The latter map is

the loops on the composite Sm ∨Sn →֒ Sm ∨Sn ∨ΣX
j

−→ Y ′. Thus if s is the
composite

s : ΩSm × ΩSn
t

−→ Ω(Sm ∨ Sn) −→ Ω(Sm ∨ Sn ∨ ΣX)

then s is a right homotopy inverse for Ωq◦Ωj = Ωq. Therefore, if t = m+ n− 1
to compress notation, applying Theorem 3.5 to the homotopy cofibration

St ∨ΣX
g+i
−→ Sm ∨ Sn ∨ ΣX

q
−→ D gives a homotopy fibration

(Σ(ΩSm × ΩSn) ∧ (St ∨ ΣX)) ∨ (St ∨ ΣX)
[γ,g+i]+(g+i)
−−−−−−−−→ Sm ∨ Sn ∨ ΣX

q
−→ D

where γ = ev ◦ Σs. By Theorem 4.1, there is a homotopy fibration

(Σ(ΩSm × ΩSn) ∧X) ∨ ΣX
[γ,f ]+f
−−−−→ Y ′ q

−−−−→ D

where γ = ev◦Σs. The two fibrations are compatible: (i) by definition, q = q◦j,
(ii) by (17), j ◦ (g + i) ≃ f ◦ q2, (iii) note that s = Ωj ◦ s so γ = j ◦ γ, and
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(iv) the Whitehead product is natural. Thus there is a homotopy commutative
diagram

(Σ(ΩSm × ΩSn) ∧ (St ∨ ΣX)) ∨ (St ∨ ΣX)
[γ,g+i]+(g+i)

//

(1∧q2)∨q2

��

Sm ∨ Sn ∨ΣX
q

//

j

��

D

(Σ(ΩSm × ΩSn) ∧X) ∨ ΣX
[γ,f ]+f

// Y ′
q

// D

where the two rows are homotopy fibrations. If i2 : ΣX −→ Sm ∨ Sn ∨ ΣX is
the inclusion, then i2 is a right homotopy inverse for q2. Therefore (1∧ i2)∨ i2
is a right homotopy inverse for (1 ∧ q2) ∨ q2. Consequently, letting

A = (Σ(ΩSm ×ΩSn) ∧X) ∨ ΣX B = Sm ∨ Sn ∨ΣX ψ = (1 ∧ i2) ∨ i2

and letting µ be the loop multiplication, the composite

ΩA× (ΩSm × ΩSn)
Ωψ×s
−−→ ΩB × ΩB

µ
−−→ ΩB

Ωj
−−→ ΩY ′

is a homotopy equivalence. Therefore Ωj has a right homotopy inverse.

Part (b) is now straightforward. The right homotopy inverse for Ωj implies

that Theorem 4.1 can be applied to the homotopy cofibration Sm+n−1 g
−→

Sm ∨ Sn ∨ΣX
j

−→ Y ′ to obtain a homotopy fibration

(ΣΩY ′ ∧ Sm+n−2) ∨ Sm+n−1 [γ,g]+g
−−−−→ Sm ∨ Sn ∨ ΣX

j
−−−−→ Y ′

where γ = ev ◦ Σt.

Example 5.2. Let n ≥ 2 but n /∈ {2, 4, 8}. Let M be an (n − 1)-connected
2n-dimensional Poincaré Duality complex with Hn(M) ∼= Zd for d ≥ 2. As in
Example 4.2, there is a homotopy cofibration

S2n−1 g
−→

d∨

i=1

Sn
j

−→M

where g is the attaching map for the top cell. By Theorem 5.1, Ωj has a right
homotopy inverse t : ΩM −→ Ω(

∨d
i=1 S

n) and there is a homotopy fibration

(ΣΩM ∧ S2n−2) ∨ S2n−1 [γ,g]+g
−−−−→

d∨

i=1

Sn
j

−−−−→M

where γ = ev ◦ Σt.

All cases in Example 5.2 are new. Also new are all cases in the following.
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Example 5.3. For n ≥ 2, let M be an (n− 1)-connected (2n+ 1)-dimensional
Poincaré Duality complex with Hn+1(M) ∼= Zd for d ≥ 1. As in Example 4.4,
there is a homotopy cofibration

S2n g
−→ Sn ∨ Sn+1 ∨ ΣX

j
−→M

where g is the attaching map for the top cell. By Theorem 5.1, Ωj has a right
homotopy inverse t : ΩM −→ Ω(Sn ∨ Sn+1 ∨ ΣX) and there is a homotopy
fibration

(ΣΩM ∧ S2n−1) ∨ S2n [γ,g]+g
−−−−→ Sn ∨ Sn+1 ∨ ΣX

j
−−−−→M

where γ = ev ◦ Σt.

One useful application of Theorem 5.1 is to show that certain maps are null
homotopic after looping.

Lemma 5.4. Let Sm+n−1 g
−→ Y

j
−→ Y ′ be a cofibration as in Theorem 4.1.

Suppose that there is a map a : Y ′ −→ Z such that a ◦ j is null homotopic.
Then Ωa is null homotopic.

Proof. By Theorem 5.1, Ωj has a right homotopy inverse t : ΩY ′ −→ ΩY . So
Ωa ≃ Ωa ◦ Ωj ◦ t but Ωa ◦ Ωj is null homotopic, implying that Ωa is null
homotopic.

Example 5.5. Let M be an (n−1)-connected 2n-dimensional Poincaré Duality
complex and let G be a topological group group. Let P −→ M be a principal
G-bundle classified by a map of the form a : M

π
−→ S2n ǫ

−→ BG where π is the
pinch map to the top cell and ǫ represents a generator of π2n−1(G). Depending
on G, there may be a finite or countably infinite number of such principal
bundles which are inequivalent. Since a factors through π, the composite a◦j is
null homotopic. Therefore Ωa is null homotopic by Lemma 5.4. Consequently,
there is a homotopy equivalence ΩP ≃ ΩM ×ΩG, and this holds independently
of the bundle type.
Carrying on, observe that a map f : M −→ BG classifying a principal G-bundle
has a factorization in the form of a if and only if the restriction of f to the
n-skeleton

∨d
i=1 S

n of M is null homotopic. This would occur, for example,
if πn(BG) ∼= πn−1(G) = 0. In particular, if M is a 2-connected 6-manifold
and G is a simply-connected simple compact Lie group then π2(G) = 0 so every
principal G-bundle P over M has the property that ΩP ≃ ΩM × ΩG. Spe-
cializing further, if G = SU(n) then the pinch map π induces an isomorphism
[M,BSU(n)] ∼= [S6, BSU(n)] and if n ≥ 3 then π5(SU(n)) ∼= Z, so there
are countably many distinct principal SU(n)-bundles over M but all become
homotopy equivalent after looping.

Example 5.6. This is a variation on the previous example. Let M be an
(n− 1)-connected 2n-dimensional Poincaré Duality complex and let a : M

π
−→
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S2n ǫ
−→ M be a self-map where π is the pinch map to the top cell and ǫ is

any element of π2n(M). Since a factors through π, the composite a ◦ j is null
homotopic. Therefore Ωa is null homotopic by Lemma 5.4. In particular, a
induces the zero map in homotopy groups. This is despite the fact that a itself
need not be null homotopic.

6 The collar map for a connected sum

In this section we give an entirely new example of our methods to demon-
strate their strength. Let M and N be simply-connected closed n-dimensional
Poincaré Duality complexes. LetM and N be the (n−1)-skeletons ofM and N
respectively, and let

Sn−1 f1
−→M

j1
−→M

Sn−1 f2
−→ N

j2
−→ N

be the homotopy cofibrations that attach the top cells to M and N . The
connected sum M#N is given by the homotopy cofibration

Sn−1 f1+f2
−−−−→M ∨N −−−−→M#N.

Geometrically, M#N is obtained by cutting an n-disc out of the interior of
the top cell in each of M and N and then gluing the two together along the
boundary of the removed n-disc. We can then collapse that collar (the boundary
of the n-disc) to a point to obtain a cofibration

Sn−1 g
−→M#N

j
−→ M ∨N.

In [HaL, Theorem 5.1], Halperin and Lemaire showed that if M is any simply-
connected closed, compact Poincaré Duality complex then the attaching map

for the top cell of M is rationally inert, implying that the inclusion M
j1
−→M

has the property that, rationally, Ωj1 has a right homotopy inverse. Halperin
and Lemaire go on [HaL, Theorem 5.4] to show that if at least one of H∗(M ;Q)
or H∗(N ;Q) is not monogenic (generated by a single element) then the map

M#N
j

−→M ∨N also has the property that, rationally, Ωj has a right homo-
topy inverse.
We will prove an integral variation of this statement. Integrally, it may not be
true that Ωj1 and Ωj2 have right homotopy inverses. However, we show that
if they do then Ωj does as well.

Proposition 6.1. Let M and N be simply-connected closed n-dimensional

Poincaré Duality complexes. If the inclusions M
j1
−→ M and N

j2
−→ N have

right homotopy inverses after looping, then so does the map M#N
j

−→M ∨N .
In particular, there is a homotopy equivalence

Ω(M#N) ≃ Ω(M ∨N)× Ω(Ω(M ∨N)⋉ Sn−1).
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Proof. Observe that the composite M ∨ N −→ M#N
j

−→ M ∨ N is j1 ∨ j2.
We will show that Ω(j1 ∨ j2) has a right homotopy inverse, implying that Ωj
also has a right homotopy inverse. Granting this, the homotopy cofibration

Sn−1 g
−→ M#N

j
−→ M ∨ N satisfies the hypotheses of Proposition 3.5, and

therefore we obtain the asserted homotopy equivalence for Ω(M#N).

It remains to show that Ω(j1∨j2) has a right homotopy inverse. In general, the
inclusion of the wedge of simply-connected spaces into their product induces a
natural homotopy fibration sequence ΩX ∗ ΩY −→ X ∨ Y −→ X × Y which
splits after looping to give a natural homotopy equivalence

Ω(X ∨ Y ) ≃ ΩX × ΩY × Ω(ΩX ∗ ΩY ).

In our case we obtain a homotopy fibration diagram

ΩM ∗ ΩN //

Ωj1∗Ωj2

��

M ∨N //

j1∨j2

��

M ×N

j1×j2

��
ΩM ∗ ΩN // M ∨N // M ×N

and a homotopy commutative diagram

ΩM × ΩN × Ω(ΩM ∗ ΩN) //

Ωj1×Ωj2×Ω(Ωj1∗Ωj2)

��

Ω(M ∨N)

Ω(j1∨j2)

��
ΩM × ΩN × Ω(ΩM ∗ ΩN) // Ω(M ∨N)

where the horizontal maps are homotopy equivalences. By hypothesis, Ωj1 and
Ωj2 have right homotopy inverses, and therefore so does Ωj1×Ωj2×Ω(Ωj1∗Ωj2).
Hence Ω(j1 ∨ j2) also has a right homotopy inverse.

For example, if m ≥ 2 then Sm × S2n−m is a Poincaré Duality complex of
dimension 2n, Sm × S2n−m ≃ Sm∨S2n−m, and the inclusion Sm∨S2n−m −→
Sm × S2n−m has a right homotopy inverse after looping. If m 6= n then Sm ×
S2n−m is not an (n− 1)-connected 2n-dimensional Poincaré Duality complex,
so it is different from the spaces in Example 4.2. Given an (n − 1)-connected
2n-dimensional Poincaré Duality complex M , by Proposition 6.1 there is a
homotopy equivalence

Ω(M#(Sm × S2n−m)) ≃

Ω(M ∨ (Sm × S2n−m))× Ω(Ω(M ∨ (Sm × S2n−m))⋉ S2n−1).

Similarly, one can consider the connected sum of Sm×S2n+1−m and one of the
(n− 1)-connected (2n+ 1)-dimensional manifolds in Example 4.4.
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