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1 Introduction

Let F be a non-archimedean local field with residue field f of characteristic p.
The category of smooth representations of GLn(F ) with complex coefficients
is a central object of interest in the classical local Langlands correspondence,
and has been thoroughly studied by many authors. As a result, after the
fundamental work of Bushnell–Kutzko [BK93] and Bernstein–Zelevinsky [BZ76,
BZ77, Zel80] there is a complete classification of its irreducible objects. This
classification is very explicit, but some parts of it depend on choices which can
prove ambiguous in applications and do not always have a clear interpretation
in Galois-theoretic terms across the local Langlands correspondence. The aim
of this short note is to resolve one of these ambiguities by specifying a choice
of so-called β-extensions which has good properties with respect to functorial
procedures such as parabolic induction, the local Langlands correspondence
and the Jacquet–Langlands correspondence.
To put our results in context we begin by recalling some of the main points of
the Bushnell–Kutzko theory of types [BK98], which aims to characterize the
components in the Bernstein decomposition of the category of smooth complex
representations of a p-adic reductive group G in terms of the action of the
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compact open subgroups of G. More precisely, the theory aims to construct
for each Bernstein components s a pair (J, λ) consisting of a compact open
subgroup J of G and an irreducible representation λ of J with the property
that for every irreducible smooth representation π of G we have that π is
contained in s if and only if HomJ(λ, π) is not zero. This aim has been achieved
for GLn(F ) and its inner forms in a series of works of Bushnell–Kutzko and
Broussous, Sécherre and Stevens.
This paper focuses on the structure of types for supercuspidal components
of GLn(F ), called maximal simple types, whose construction was completed
in [BK93]. To construct such a type, one begins with a smooth character θ of a
compact open subgroup H1

θ ⊂ GLn(F ), called a maximal simple character and
enjoying a number of special properties we will not be concerned with here.
Then there is a two-step extension process to be applied to θ, to compact open
subgroups

H1
θ ⊆ J1

θ ⊆ Jθ

of GLn(F ). More precisely, there is a unique irreducible representation ηθ
of J1

θ containing θ, and the quotient Jθ/J
1
θ is isomorphic to a general linear

group over a finite field. Maximal simple types are constructed by taking the
tensor product of an irreducible supercuspidal representation of Jθ/J

1
θ with

certain extensions of ηθ to Jθ, called β-extensions, which are characterized by
the size of their Hecke algebra in GLn(F ). The motivation for this paper is
that β-extensions are not unique, but only uniquely determined up to twist
by a character inflated from Jθ/J

1
θ . Our aim is to show that for any maximal

simple character in GLn(F ) there exists a unique β-extension that enjoys a
certain compatibility with the local Langlands correspondence. In addition to
this, we will extend our construction to all inner forms of GLn(F ) and prove
that it is furthermore compatible with parabolic induction and the Jacquet–
Langlands correspondence.
To explain our construction we begin by recalling a consequence of a theo-
rem of Bushnell and Henniart, namely [BH14, Types Theorem], which gives
a description of the maximal simple types contained in an irreducible super-
cuspidal GLn(F ) representation π in terms of its Langlands parameter rec(π).
More precisely, we will work with the “level zero part” of rec(π), which is a
Galois conjugacy class of characters [χ] of the multiplicative group of a finite
extension en/δ(ΘF ) of the residue field of F , defined in Section 3. This construc-
tion is elementary in nature but quite involved, and amounts to an instance of
Clifford theory for the Weil group WF . On the other hand, let θ : H1

θ → C×

be a maximal simple character contained in π, and write ΘF for its endo-class,
which is an invariant introduced in [BH96] and reflecting the action of the wild
inertia subgroup on rec(π). Then [BH14, Types Theorem] implies that there
exists a unique β-extension κn,F of θ such that the representation

Kκn,F (π) = HomJ1
θ
(κn,F , π)

corresponds to [χ] under the Green parametrization (or equivalently, Deligne–
Lusztig induction). Varying n amongst multiples of the degree of ΘF , we get a
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conjugacy class κm,F of β-extensions of maximal simple characters in GLm(F )
of endo-class ΘF whenever the degree of ΘF divides m.
In order to make these statements precise one should provide definitions of all
the objects involved and normalize them correctly: for instance, the isomor-
phism of Jθ/J

1
θ with a finite general linear group is not canonical and needs

to be handled with some care. We will do this to the extent needed in the
main body of the article, referring to [Dot21] for a full exposition. (We alert
the reader that we will not work with Kκn,F (π) but directly with its Green
parameter: see Section 2, Remark 2.1.) Our main result can be understood
as a generalization of this property of κn,F to essentially square-integrable
representations, or more generally to representations which are simple, in the
sense that their supercuspidal support is inertially equivalent to one of the
form [GLn/r(F )

×r , π⊗r
0 ].

Theorem 1.1. (Theorem 4.4.) Let π be an irreducible smooth repre-
sentation of GLn(F ) whose supercuspidal support is inertially equivalent
to [GLn/r(F )

×r, π⊗r
0 ]. Then the supercuspidal support of every Jordan–Hölder

factor of Kκn,F (π) is a multiple of Kκn/r,F
(π0).

Notice that in this case we have rec(π)|IF
∼= rec(π0)

⊕r|IF , and rec(π0) is an
irreducible representation with a level zero part [χ0]. Then Theorem 1.1 re-
lates [χ0] to a type-theoretic invariant of π, namely the supercuspidal support
of Kκn,F (π), and in this sense it generalizes [BH14, Types Theorem] to non-
cuspidal simple representations.
An equivalent way of stating Theorem 1.1 is that κn,F and κn/r,F are com-

patible in the sense of [Dot21, Section 3.3], and this is the statement that we
actually prove in Theorem 4.4. As n varies, the representations κn,F can there-
fore be understood as forming a family of β-extensions canonically attached
to ΘF , by virtue of their compatibility with parabolic induction and the local
Langlands correspondence. Furthermore, in Section 4.1 we apply the main re-
sults of [Dot21] to extend this family to all inner forms of GLn(F ) and prove
compatibility with the Jacquet–Langlands correspondence. This can be under-
stood as a further generalization of [BH14, Types Theorem] to simple Bernstein
components of inner forms of GLn(F ). See Theorem 4.5.
We end this introduction by discussing the relationship of this note with other
works in the literature. The lack of a canonical choice of β-extensions has
been noticed in several contexts, for instance [Blo12] and [BHS18], and our
method provides a complete solution to this problem for inner forms of GLn.
We emphasize that the compatibility of two given β-extensions in two different
general linear groups (such as GLn(F ) and GLn/r(F )) could presumably be
addressed by explicit calculations using only the constructions of [BK93]: the
main contribution of this note is another method to address this compatibility,
which works for all inner forms of GLn(F ), uniformly in n and without needing
any calculation. It consists in adapting a technique from [SS19,Dot21] involving
congruences modulo a prime ℓ 6= p. The main input is the verification of
certain formal and numerical properties of the local Langlands correspondence
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with respect to reduction mod ℓ, which we do by applying work of Vignéras
[Vig01a,Vig01b]. As a result, it is quite likely that the method would apply to
other groups if similar properties of the local Langlands correspondence were
established.

1.1 Notation and conventions

To keep this note concise we will not dwell for long on type-theoretic back-
ground but refer the reader to standard references such as [BK93,BH14] for
a detailed treatment of the theory. Our notation in this paper will mostly
follow [Dot21]. We let F denote a non-archimedean local field, f the residue
field of F , Fn the unramified extension of F of degree n in some fixed algebraic
closure F of F , and fn the residue field of Fn. Similar conventions will be
used for other local fields: for example, the residue field of E is denoted by e.
The group of Teichmüller roots of unity in F is denoted µF . We write WF for
the Weil group of F/F , IF for the inertia group and PF for the wild inertia
group. We normalize the Artin map ArtF : F× → W ab

F so that uniformizers
correspond to geometric Frobenius elements. If σ is a representation of WF , its
twist by the unramified character ofWF sending a geometric Frobenius element
to q−n for n ∈ Z is denoted σ(n). This character for n = 1 corresponds to the
normalized absolute value of F under ArtF , hence we denote it by w 7→ |w|.

For a prime number ℓ, we say that an element g of a finite group is ℓ-primary
if it has order a power of ℓ and ℓ-regular if it has order coprime to ℓ. We
write g(ℓ) for the ℓ-regular part of g and g(ℓ) for the ℓ-primary part of g, so

that g = g(ℓ)g(ℓ).

Representations of a locally profinite group like GLn(F ) or WF are assumed
to be smooth (and finite-dimensional for WF ), with coefficients over an alge-
braically closed field R of characteristic different from p, which will be special-
ized to C, Qℓ and Fℓ in the course of the paper. When R = Qℓ and V is a
Qℓ-integral representation of finite length we write rℓ(V ) for the semisimplified
mod ℓ reduction in the sense of [Vig01a, Section 1.4]. Parabolic induction from
a standard Levi subgroup is always normalized and taken along the upper-
triangular parabolic, and we write π1 × · · · × πn for the parabolic induction of
π1 ⊗ · · · ⊗ πn. Working with normalized induction requires us to fix a square
root of q in R×, but changing it does not modify the inertial class of the super-
cuspidal support of any given irreducible representation, hence the choice will
not affect any of our results about inertial classes.
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2 Invariants of representations of GLn(F )

Let R be an algebraically closed field of characteristic different from p. The
irreducible smooth representations of R[GLn(F )] are partitioned according to
the blocks of the category of smooth representations, which are parametrized by
inertial classes of supercuspidal supports, following work of Bernstein [Ber84]
(when R has characteristic zero) and Sécherre–Stevens [SS16] (when R has
positive characteristic). By definition, an inertial class is simple if it contains
a representative of the form

[
GLn/r(F )

×r, π⊗r
0

]

for an irreducible supercuspidal R[GLn/r(F )]-representation π0.
In [Dot21] we have written down a parametrization of simple inertial classes s
in terms of two type-theoretic invariants, which we recall briefly. The first
one is denoted cl(s) and consists of an endo-class of simple characters defined
over F . To any endo-class ΘF there are associated the following objects:

• a finite unramified extension E/F contained in our fixed algebraic clo-
sure F/F , called the unramified parameter field of ΘF . The degree [E : F ]
is denoted f(ΘF ).

• a number δ(ΘF ), called the degree of ΘF , which is divisible by [E : F ].
We also introduce e(ΘF ) = δ(ΘF )/f(ΘF ).

• when ΘF is the endo-class of a maximal simple character in GLn(F ),
the degree δ(ΘF ) divides n and we have the finite cyclic Galois
group Gal(en/δ(ΘF )/e), which we denote Γ(ΘF ). It acts on the set of

R-valued characters of e×n/δ(ΘF ), which we denote XR(ΘF ).

The second invariant of simple inertial classes, called the level zero part, de-
pends on the choice of a lift ΘE → ΘF of ΘF = cl(s) to an endo-class defined
over E and on the choice of a conjugacy class κ of β-extensions of maximal
simple characters in GLn(F ) of endo-class ΘF . (We will also refer to such ob-
jects as maximal β-extensions of endo-class ΘF .) The invariant associates to a
simple inertial class of R[GLn(F )]-representations of endo-class cl(s) = ΘF an
orbit of Γ(ΘF ) on XR(ΘF ), denoted

Λ(s,ΘE, κ) ∈ Γ(ΘF )\XR(ΘF ).

When π is an irreducible representation of R[GLn(F )] in the inertial class s

we will sometimes use the notation Λ(π,ΘE , κ) to denote the same thing
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as Λ(s,ΘE, κ). By [Dot21, Formulas (3.5) and (3.6)], the map Λ(−,ΘE, κ) de-
pends in a simple way on the choice of ΘE and κ. By [Dot21, Theorem 3.21],
the pair (cl(s),Λ(s,ΘE , κ)) determines the simple inertial class s uniquely.

Remark 2.1. Let π be an irreducible representation in the inertial class s. We
make explicit the connection of Λ(s,ΘE , κ) to the representationKκ(π) that oc-
curs in the introduction. Assume first that π is supercuspidal. The group Jθ/J

1
θ

is noncanonically isomorphic to a finite general linear group, and the role of
the lift ΘE → ΘF is to select an inner conjugacy class of isomorphisms

Ψ(ΘE) : Jθ/J
1
θ

∼
−→ GLn/δ(ΘF )(e).

Then Kκ(π) can be unambiguously identified with a representation
of GLn/δ(ΘF )(e), which turns out to be irreducible and supercuspidal. By
the Green parametrization, it corresponds to an element of Γ(ΘF )\XR(ΘF ),
which is Λ(s,ΘE, κ) by definition.

Assume now that the supercuspidal support of π is inertially equivalent
to [GLn/r(F )

×r , π⊗r
0 ]. Then cl(π) = cl(π0), and by [Dot21, Proposition 3.13,

Definition 3.14] there exists a unique conjugacy class κ0 of maximal β-
extensions in GLn/r(F ) that is compatible with κ, in the sense that for all
irreducible representations π0 of GLn/r(F ) there is an isomorphism

Kκ(π
×r
0 )

∼
−→ Kκ0

(π0)
×r.

(See [Dot21, Definition 3.11] for more details on the definition of compatibility.)
By definition, Λ(π,ΘE , κ) is the inflation of Λ(π0,ΘE, κ0) to e×n/δ(ΘF ) via the

norm e×n/δ(ΘF ) → e×n/rδ(ΘF ).

3 Invariants of Weil–Deligne representations

In this section we are concerned with establishing analogues for Weil–Deligne
representations of the invariants of Section 2. We do so in order to give a
precise definition of κn,F and to state its properties within the framework
of [SS19,Dot21].

3.1 Local Langlands correspondence

To start with, we briefly review the local Langlands correspondence for GLn(F ).
The Langlands parameters for GLn(F ) can be identified with Frobenius-
semisimple Weil–Deligne representations, which are pairs (V,N) consisting of a
semisimple smooth representation of WF and a nilpotent monodromy operator
N : V (1) → V . They can be written uniquely as direct sums

V =
⊕

i

σi ⊗ Sp(ni)
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for irreducible smooth representations σi of WF . The special representa-
tion Sp(n) has a basis {e1, · · · , en} such that wei = |w|i−1ei for w ∈ WF ,
and the monodromy acts as Nei = ei+1 for i ∈ {1, . . . , n− 1}.
The local Langlands correspondence is a bijection, denoted rec, of the iso-
morphism classes of irreducible smooth representations of C[GLn(F )] onto the
complex Frobenius-semisimple Weil–Deligne representations of dimension n. It
restricts to a bijection rec0 from supercuspidal irreducible representations to
irreducible smooth C[WF ]-representations (notice that since the kernel of N is
stable under WF , these have trivial monodromy). Amongst the many proper-
ties of rec, we will need its compatibility with the Bernstein–Zelevinsky classi-
fication.
To state this compatibility, recall that a segment of supercuspidal representa-
tions of C[GLn(F )], of length m, consists of a sequence

(ρ, ρ(1), . . . , ρ(m− 1))

of twists of a supercuspidal ρ by powers of the unramified character
g 7→ | det(g)|. The Bernstein–Zelevinsky classification is a bijection of∐

m≥0 IrrC[GLm(F )] with the set of multisets of segments of supercuspidal
representations. Assume that π ∈ IrrC[GLn(F )] corresponds to the multi-
set {∆1, . . . ,∆r}, where ∆i = (ρi, . . . , ρi(ni−1)). Then the construction of rec
from rec0 implies that rec(π) =

⊕
i rec(ρi)⊗ Sp(ni). Hence, if π has supercus-

pidal support

[GLn1
(F )× · · · ×GLnr (F ), π1 ⊗ · · · ⊗ πr] (3.1)

then the WF -representation underlying rec(π) is rec(π1) ⊕ · · · ⊕ rec(πr). This
property of rec implies that the inertial class of an irreducible representation
of GLn(F ) is described by the restriction to inertia of its Langlands parameter,
in the following sense. For a Weil–Deligne representation τ , write τ |IF to
denote the restriction to IF of the underlying WF -representation. Let π1, π2
be two irreducible smooth representations of C[GLn(F )]. Then rec(π1)|IF

∼=
rec(π2)|IF if and only if π1 and π2 are inertially equivalent.

Remark 3.1. We have followed the normalization of [Rod82] in our summary of
the Bernstein–Zelevinsky classification, and we refer the reader to [Rod82, Sec-
tion 4.4] for more details about its interplay with the local Langlands corre-
spondence.

In the course of this paper will also need to work over Qℓ for primes ℓ 6= p. To
do so, we can fix a ring isomorphism ιℓ : C → Qℓ and then transfer rec to a bi-
jection recℓ from irreducible smooth Qℓ[GLn(F )]-representations to Frobenius-
semisimple Weil–Deligne representations of dimension n over Qℓ. Some care
has to be taken here since the Langlands correspondence does not commute
with all automorphisms of C, and one way of getting around this is to fix a
square root of q in C and Qℓ and to work with isomorphisms ιℓ that preserve
it. However, any two choices of ιℓ define bijections recℓ which differ at most by
a quadratic unramified twist at any given Qℓ-representation of GLn(F ). Since
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we will mostly be concerned with the restriction to inertia of Weil–Deligne
representations, our results will be independent of the choice of ιℓ.

3.2 Endo-classes

Bushnell and Henniart have shown how to attach an endo-class to an irre-
ducible Weil group representation, making use of the following result. Write P∨

F

for the set of complex irreducible smooth representations of the wild inertia
group PF ⊂ GF , and E(F ) for the set of endo-classes of simple characters
over F . There is a left action of WF on P∨

F by conjugation. If σ is an irre-
ducible representation of WF , then let r1F (σ) ∈WF \P

∨
F be the orbit contained

in the restriction σ|PF (which need not be multiplicity-free).

Theorem 3.2 (See [BH14], Ramification Theorem). The Langlands correspon-
dence induces a bijection

ΦF :WF \P
∨
F → E(F )

such that ΦF (r
1
F (σ)) is the endo-class of rec−1(σ) for any irreducible σ. If

γ : F → F is a topological automorphism, extended in some way to an auto-
morphism of WF , then ΦF (γ

∗[α]) = γ∗ΦF [α] for all [α] ∈ WF \P
∨
F .

The Ramification Theorem holds with coefficients in Qℓ, because any isomor-
phism ιℓ : C

∼
−→ Qℓ induces via recℓ a bijection between endo-classes for F

over Qℓ and orbits of WF on irreducible smooth Qℓ-representations of PF .
This bijection is independent of the choice of ιℓ.
Since PF is a pro-p group, the orbits of its irreducible smoothFℓ-representations
under WF are identified with those over Qℓ by choosing a lattice (which will be
unique up to homothety) and reducing mod ℓ (the reduction will be irreducible).
Similarly, the endo-classes over Qℓ are identified with those over Fℓ, and the
Ramification Theorem also holds over Fℓ.

3.3 Level zero maps

By definition, a supercuspidal inertial type for WF is the restriction to inertia
of an irreducible representation σ ofWF . In this section, we use Clifford theory
for the groupWF over the algebraically closed field R (of characteristic different
from p), as in [Vig01b] and Section 1 of [BH14], to define the level zero part of
a supercuspidal inertial type.
Let σ be an irreducible smooth R[WF ]-representation of dimension n. Since PF

is a normal subgroup of WF , the restriction σ|PF is semisimple and consists
of a single WF -orbit of irreducible representations (possibly with multiplicity).
Let α be a representative of this WF -orbit, which we will denote [α]F . Let T =
Tα be the tamely ramified extension of F corresponding to the stabilizer inWF

of the isomorphism class of α. It is a subfield of F .
By [BH14, 1.3], there exists a unique extension ρα of α to IT with p-primary
determinant, and ρα extends to WT . We denote by ρ(α) an arbitrary choice
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of extension of ρα to WT . As in [Vig01b, Section 2.6], there exists a unique
tamely ramified representation σtr(α) of WT , denoted τ in [BH14], such that
σ ∼= IndF

T (ρ(α)⊗ σtr(α)).

Lemma 3.3. The α-isotypic component of σ, denoted σα, is isomorphic to
ρ(α) ⊗ σtr(α) as a representation of WT .

Proof. Notice that ρ(α)⊗σtr(α) is an irreducibleWT -subspace of σα. Let {gi}
be a set of representatives of WF /WT in WF . Then gi(ρ(α) ⊗ σtr(α)) ⊂ σgiα,
hence

R[WF ](ρ(α) ⊗ σtr(α)) =
⊕

i

gi(ρ(α)⊗ σtr(α))

and R[WF ](ρ(α)⊗σ
tr(α)) would be a properWF -subspace of σ if ρ(α)⊗σtr(α)

were properly contained in σα.

The representation σtr(α) can be written uniquely as an induced representation
IndTTd

(χ1(α)) for some unramified extension Td/T of degree d > 0 and some

Gal(Td/T )-orbit of T -regular characters [χ1(α)] of T
×
d such that χ1(α) is trivial

on the 1-units U1(Td). (We regard χ1(α) as a character of WTd
via the Artin

reciprocity map Art−1
Td

: WTd
→ T×

d .) We find that σ ∼= IndFTd
(ρd(α) ⊗ χ1(α))

for the restriction ρd(α) of ρ(α) to WTd
.

Remark 3.4. Write χ(α) = χ1(α)|µTd
. Let [χ(α)] be its orbit under Gal(Td/T ).

The restriction of σα to ITd
= IT is a direct sum of the twists ρα ⊗ χ for χ ∈

[χ(α)], hence we can recover [χ(α)] from σ as follows. Take the α-isotypic
component σα and restrict it to ITα . The restriction will decompose as a direct
sum of twists of ρα (which is the only irreducible extension of α to ITα with
p-primary determinant character) by characters of µTd

. Since µTd
has order

coprime to p and dim ρα is a power of p, the map χ 7→ ρα ⊗ χ is injective, and
this determines [χ(α)] as the set of characters such that ρα⊗χ is a constituent
of σα|ITα .

By Theorem 3.2, the WF -orbit [α]F defines an endo-class ΘF = ΦF [α]F .

Lemma 3.5. We have the equality d = n/δ(ΘF ).

Proof. By [BH14, Tame Parameter Theorem], the field T is isomorphic over F
to a tame parameter field for ΘF , and the degree δ(ΘF ) equals [T : F ] dimα.
One the other hand, σ decomposes as the direct sum of its α-isotypic com-
ponents for α ∈ [α]F . Since the orbit [α]F has [T : F ] elements, Lemma 3.3
implies that we have the equality

n = [T : F ](dimα)(dim σtr(α)).

Hence d = dimσtr(α) = n/δ(ΘF ).

Let us introduce the maximal unramified extension E = T ur
α of F in Tα. This

is independent of the choice of α, and by [BH14, Tame Parameter Theorem]
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it is the unramified parameter field of ΘF in F . At this stage, we have at-
tached to σ an endo-class ΘF of degree dividing n = dim(σ), and whenever
we choose a representative α of the orbit [α]F attached to ΘF , we obtain a
Gal(en/δ(ΘF )/e)-orbit [χ(α)] of e-regular characters of e

×
n/δ(ΘF ), since µT = µE ,

µTd
= µEd

and d = n/δ(ΘF ). This is the same set of data occurring in Sec-
tion 2. To complete the connection, we consider how [χ(α)] changes when we
change representative α ∈ [α]F .

Lemma 3.6. Let g ∈ WF . Then [χ(ad(g)∗α)] only depends on the image of g
in WF /WE

∼= Gal(E/F ).

Proof. By our explicit description of [χ(α)] in terms of the α-isotypic compo-
nent of σ (see Remark 3.4) it follows that g∗[χ(ad(g)∗α)] = [χ(α)]. However, by
definition, the group WE fixes the Gal(Ed/E)-conjugacy classes of characters
of µEd

, for every d.

By Theorem 3.2, a lift ΘE of ΘF to E defines an orbit [α]E of WE on [α]F .
Hence we can define a set of characters

Λ+(σ,ΘE) ∈ Γ(ΘF )\XR(ΘF )

by setting Λ+(σ,ΘE) = [χ(α)] for any α such that ΘE = ΦE [α]E . By
Lemma 3.6 this is well-defined. The behaviour of this level zero map Λ+(−,ΘE)
under change of lifts is the same as for GLn(F ).

Lemma 3.7. Let γ ∈ Gal(E/F ). Then γ∗Λ+(−, γ∗ΘE) = Λ+(−,ΘE).

Proof. By Theorem 3.2, if ΘE = ΦE [α] then γ∗ΘE = ΦE(ad(g)
∗[α]) for any

lift g ∈WF of γ. We have seen in the proof of Lemma 3.6 that g∗[χ(ad(g)∗α)] =
[χ(α)], which implies the lemma.

Now we prove that the endo-class and the level zero part of a supercuspidal
inertial type determine it uniquely, in analogy with the case of GLn(F ).

Proposition 3.8. Let σ1, σ2 be irreducible R[WF ]-representations. Assume
that σ1, σ2 have the same endo-class ΘF under Theorem 3.2. Fix a lift ΘE →
ΘF . Then Λ+(σ1,ΘE) = Λ+(σ2,ΘE) if and only if σ1|IF

∼= σ2|IF .

Proof. Choose a representative α of the WE-orbit of representations of PF

attached to ΘE. By Remark 3.4, the restriction to ITα of the isotypic compo-
nent σi,α is

σi,α|ITα
∼= ρα ⊗

⊕

ξ∈Λ+(σi,ΘE)

ξ. (3.2)

Hence σi|IF determines Λ+(σi,ΘE), since it determines the isomorphism class
of σi,α|ITα

. For the converse, the Mackey formula

ResWF

IF
σ = ResWF

IF
IndWF

WTα
σα =

⊕

γ∈WTα\WF /IF

IndIFγ−1ITαγ Res
γ−1WTαγ

γ−1ITαγ ad(γ)∗σα

(3.3)
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implies that it suffices to prove that σi,α|ITα
∼= σi,α|ITα

if Λ+(σ1,ΘE) =
Λ+(σ2,ΘE), which is immediate from (3.2).

By Proposition 3.8, we have a well-defined injection

Λ+(−,ΘE)

mapping the set of supercuspidal inertial types of dimension n over R contain-
ing ΘF into the set Γ(ΘF )\XR(ΘF ). Its image consists of the e-regular orbits.
The domain of this map consists, of course, of those irreducible representations
whose restriction to PF corresponds to ΘF .
Now we extend this to certain non-supercuspidal types. The Langlands param-
eter of a simple R[GLn(F )]-representation π has restriction to inertia isomor-
phic to σ⊕m, for somem|n and some supercuspidal inertial type σ of dimension
n/m. This motivates the following definition.

Definition 3.9. A simple inertial type of endo-class ΘF is a representation
of R[IF ] isomorphic to σ⊕m for some supercuspidal inertial type σ of endo-
class ΘF .

We extend the map Λ+ to simple inertial types of endo-class ΘF and dimen-
sion n by putting

Λ+(σ⊕m,ΘE) = N∗Λ+(σ,ΘE)

where N : e×n/δ(ΘF ) → e×n/mδ(ΘF ) is the norm map.

Remark 3.10. To see that n/mδ(ΘF ) is an integer, one could notice that it
equals dim σtr by the proof of Lemma 3.5, since σ is an n/m-dimensional irre-
ducible representation of WF of endo-class ΘF .

Finally, because of the statement of [BH14, Types Theorem], it will be con-
venient to twist Λ+ by a certain automorphism of e×n/δ(ΘF ). Let pr be the

degree of any parameter field P of ΘF over the maximal tamely ramified ex-
tension of F it contains (this is the degree of the “wildly ramified part” of the
endo-class ΘF ).

Definition 3.11. Let τ be a simple inertial type of endo-class ΘF . Define the
level zero part of τ by

Λ(τ,ΘE) = Λ+(τ,ΘE)
p−r

.

3.4 Comparison with GLn(F )

Let κ be a conjugacy class in GLn(F ) of β-extensions of maximal simple char-
acters of endo-class ΘF . Then κ together with a lift ΘE → ΘF defines a
map Λ(−,ΘE , κ) on simple inertial classes with endo-class ΘF . On the other
hand, the local Langlands correspondence over C puts the simple C-inertial
classes with endo-class ΘF in bijection with the simple C-inertial types with
endo-class ΘF . We also write rec for this bijection. From now on in this paper
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we will work with a fixed choice of lift ΘE → ΘF , which we will therefore omit
from the notation. By Lemma 3.7, the specific choice of lift will not affect the
results: what matters here is that the same lifts gets used for GLn(F ) and
for WF .

Definition 3.12. Let κ be a maximal β-extension of endo-class ΘF in GLn(F ).
We define a permutation ξ(κ) of the set Γ(ΘF )\XC(ΘF ), depending on κ, via

ξ(κ)(Λ(π, κ)) = Λ(recπ)

for any simple irreducible representation π of GLn(F ) with endo-class ΘF .

The proof of our main result will be based on the following two properties
of ξ(κ), one of which involves reduction modulo a prime. If ℓ 6= p is a prime
number, any isomorphism ιℓ : C → Qℓ defines a bijection recℓ analogous
to rec by means of the resulting identification of simple inertial classes and
simple inertial types over C with their analogues over Qℓ. Then the map recℓ
defines a permutation ξℓ(κ) of Γ(ΘF )\XQl

(ΘF ) in the same way, and ξℓ(κ) is

intertwined with ξ(κ) by ιℓ.

Lemma 3.13. Define the parametric degree of [χ] ∈ Γ(ΘF )\XC(ΘF ) as the size
of the orbit [χ]. Then the map ξ(κ) preserves parametric degrees.

Proof. This is an immediate consequence of the definition of the level zero
maps together with the compatibility of rec with the Bernstein–Zelevinsky
classification.

Theorem 3.14. Let ℓ 6= p be a prime number. Two elements
of Γ(ΘF )\XC(ΘF ) have the same ℓ-regular part if and only if their im-
ages under ξ(κ) have the same ℓ-regular part.

Proof. (Compare [Vig01b, Section 6.2].) By the discussion above, it suffices to
fix an isomorphism ιℓ : C

∼
−→ Qℓ and to prove the theorem for ξℓ(κ) instead

of ξ(κ). Since ξℓ(κ) is a bijection, it suffices to prove that it preserves equal-
ity of ℓ-regular parts. Consider two simple irreducible integral Qℓ[GLn(F )]-
representations πi with endo-class ΘF . Write Λ(πi, κ) = [ψi], and assume
[ψ1]

(ℓ) = [ψ2]
(ℓ).

We need to prove that ξℓ(κ)[ψ1]
(ℓ) = ξℓ(κ)[ψ2]

(ℓ), or equivalently that
Λ+(recQℓ

π1)
(ℓ) = Λ+(recQℓ

π2)
(ℓ). Assume that ψi is norm-inflated from an

e-regular character µi of e×n/aiδ(ΘF ). By [Dot21, Lemma 3.20], the equality

Λ(rℓπi, rℓκ) = [ψi]
(ℓ) holds. (Strictly speaking, we should work with an irre-

ducible factor of rℓπi. However, the irreducible factors of rℓπi all have the same
supercuspidal support, hence there is no ambiguity in writing Λ(rℓπi, rℓκ). The
same remark applies to the following lemma.)

Lemma 3.15. We can choose the πi in their inertial class so that the rℓ(πi)
have the same supercuspidal support.
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Proof. First choose the πi so that they have supercuspidal support of the
form (π0

i )
⊗ai for integral representations π0

i . By the classification of cuspi-
dal Fℓ[GLn(F )]-representations, the supercuspidal support of rℓ(π

0
i ) has the

form τi ⊗ · · · ⊗ τi(mi − 1) for some supercuspidal τi. It follows from the fact
that Λ(rℓπi, rℓκ) = [ψi]

(ℓ) together with our assumption on [ψi]
(ℓ) that rℓ(π1)

and rℓ(π2) are inertially equivalent. By uniqueness of supercuspidal support, it
follows that a1m1 = a2m2 and τ1 is an unramified twist of τ2. So there exist un-
ramified Qℓ-characters χi such that any two Qℓ-representations πi with super-
cuspidal support χiπ

0
i ⊗χiπ

0
i (mi)⊗· · ·⊗χiπ

0
i ((ai−1)mi) satisfy the conclusion

of the lemma. (One can take χ1 = 1 and then χ2 such that τ1 = rℓ(χ2)τ2.)

Choose π1, π2 as in Lemma 3.15. Write τi for the semisimpleWF -representation
underlying recQℓ

(πi). It is a direct sum of ai copies of some irreducible rep-

resentation σi. By [Vig01a, Théorème principal], our assumption on the πi
implies that rℓ(τ1) = rℓ(τ2).
By Theorem 3.2, there exists an irreducible representation α of PF that is
contained in both σ1 and σ2 and whose WE -orbit corresponds to ΘE. Let WT

be the stabilizer of α in WF and fix a Qℓ-integral extension ρ(α) of α to WT .
Then σi can be written as the induction of its α-isotypic component:

σi ∼= IndF
T (ρ(α) ⊗ σtr

i (α)).

There exist integers di = n/aiδ(ΘF ) and tamely ramified characters χi = χi(α)
of T×

di
such that σtr

i (α) = IndTTdi
χi(α) and σi = IndFTdi

ρ(α) ⊗ χi(α). By

definition, we have Λ+(recQℓ
πi) = N∗[χi|µTdi

], where we write N : e×n/δ(ΘF ) →

e×di
for the norm, and χi|µTdi

is viewed as a character of the residue field of Tdi ,

which is identified with edi . So it will suffice to prove that (χ1|µTd1
)(ℓ) and

(χ2|µTd2
)(ℓ) are both norm-inflated from µT -regular characters of the same µTr

for some r > 0, and that these characters of µTr are conjugate over T .
Since the wild inertia group PF is a pro-p group, we can identify its representa-
tions over Qℓ and Fℓ, and we will write α to indicate the representation rℓ(α).
Since ρ(α) is a Qℓ-integral extension of α to WT , its reduction rℓ(ρ(α)) is irre-
ducible, and we will also denote it by ρ(α). Now we use the fact that rℓ(σi) is
the semisimplification of IndF

Tdi
(ρ(α)⊗ rℓ(χi)). The character ξi = rℓ(χi) need

not be ℓ-regular, and it extends to its stabilizer in WT , which is the Weil group
of some intermediate unramified extension Tri of T . Since ρ(α) extends toWT ,

hence to WTri
, the induction Ind

Tri

Tdi
(ρ(α) ⊗ ξi) semisimplifies to a direct sum

(possibly with multiplicity) of representations of the form ρ(α) ⊗ ξ̃i, where ξ̃i
ranges over extensions of ξi to T

×
ri . All these extensions are unramified twists

of each other.
Next we are going to prove that each induced representation IndFTri

(ρ(α)⊗ ξ̃i)

is irreducible. To do so, observe first that the representation

Xi = IndTTri
(ρ(α)⊗ ξ̃i) ∼= ρ(α) ⊗ IndTTri

(ξ̃i)
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is irreducible, since its restriction to WTri
is semisimple and has multiplicity

one. Now we have a PF -linear decomposition

IndFT (Xi) =
⊕

g∈WF /WT

gXi

and since WT is the stabilizer of α in WF , this is actually the decomposition
into isotypic components for PF . Since gXi is an irreducible representation
of gWT g

−1, it follows that IndFT (Xi) is irreducible over WF .
It follows from the above that rℓ(σi) is a direct sum of unramified twists
of a single irreducible representation, which can be taken to be any of the
IndFTri

(ρ(α) ⊗ ξ̃i). Since rl(τ1) = rl(τ2) and rl(τi) is a multiple of rl(σi) in the

Grothendieck group, we see that IndFTr1
(ρ(α) ⊗ ξ̃1) and IndFTr2

(ρ(α) ⊗ ξ̃2) are
unramified twists of each other. Comparing dimensions, this implies that r1 is
equal to r2, and we denote their common value by r. Passing to the α-isotypic
components Xi, we find that the restriction to µTr of the ξ̃i are conjugate
over T . But since ξi = rl(χi) this implies that (χ1|µTd1

)(l) and (χ2|µTd2
)(l) are

conjugate over T , after descending to µTr via the norm.

4 Canonical β-extensions

We will work over the complex numbers unless otherwise stated. Fix an endo-
class ΘF of degree dividing n. We begin by defining the conjugacy class κn,F
of maximal β-extensions in GLn(F ) that appears in the introduction. To do
so, fix a maximal simple character θ of endo-class ΘF in GLn(F ) and recall
that any two β-extensions of θ are twists of one another by a character of e×

inflated through

Jθ/J
1
θ

∼
−→ GLn/δ(ΘF )(e)

det
−−→ e×.

Since the order of e× is coprime to p and the dimension of any β-extension is
a power of p, and J1

θ is a pro-p group, there exists a unique β-extension of θ
whose determinant character is p-primary (that is to say, has order equal to a
power of p). We will refer to it as the p-primary β-extension of ΘF and denote
it by κp.
Now we describe κn,F as a quadratic twist of κp. Let ǫ1θ be the symplectic
sign character of θ (as defined in [BH14, 5.4]). Write ǫGal for the quadratic
character of e× which is nontrivial if and only if p 6= 2 and the ramification
degree of a tame parameter field of ΘF over F is even. Then [BH14, Types
Theorem] implies that if we set

κn,F = ǫGalǫ
1
θκp

then
Λ(π, κn,F ) = Λ(recπ) (4.1)

for every supercuspidal representation π of GLn(F ) with endo-class ΘF . (The
reference [BH14] is written in a slightly different language than this paper, and
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it is a lengthy but routine matter to translate between the two. See [Dot19,
Section 6.2] for a fuller treatment.) In other words, the permutation κn,F
fixes all the Galois orbits of e×-regular characters of e×n/δ(ΘF ). The formal

properties of ξ(κn,F ) given in Section 3.4 now allow us to deduce that ξ(κn,F )
is the identity. Namely, we have the following theorem.

Theorem 4.1. Fix n > 0 divisible by δ(ΘF ). Assume that for every t > 0 the
maximal β-extension κtn,F of endo-class ΘF in GLtn(F ) satisfies ξ(κtn,F )[ξ] =
[ξ] whenever ξ is a e-regular character of e×tn/δ(ΘF ). Then ξ(κtn,F ) is the identity

for all t.

Proof. This is proved using a technique introduced in [SS19, Lemma 9.11].
Replacing n by tn, it suffices to prove the theorem when t = 1. We write κ
for κn,F . Assume that α is a character of e×n/δ(ΘF ) which is not e-regular. We

need to prove that ξ(κ)[α] = [α]. Consider a simple representation π of GLn(F )
with supercuspidal support π⊗r

0 such that Λ(π, κ) = [α].
Let a ≥ 1 be some large integer (a ≥ 7 will suffice) and write κ∗ for the
maximal β-extension in GLan(F ) compatible with κ. Let πa be a representation
of GLan(F ) with supercuspidal support π⊗ar

0 . Since compatible β-extensions
satisfy a transitivity property (see [Dot21, Proposition 3.16]) we know that
Λ(πa, κ

∗) is the inflation [α∗] of α to e×an/δ(ΘF ).

By (3.1) we have rec(πa)|IF = rec(π0)|
⊕ar
IF

, so that if Λ(recπ) = [µ] then
Λ(recπa) = [µ∗]. Hence by definition we have [µ] = ξ(κ)[α] and [µ∗] = ξ(κ∗)[α∗]
(although at this stage we do not know whether [α] = [µ]). So it suffices to
prove that ξ(κ∗)[α∗] = [α∗]: since the norm is surjective in finite extensions
of finite fields, this will imply that [α] = [µ]. Notice that it also follows that
ξ(κ∗)[α∗] = (ξ(κ)[α])∗, which will be useful later in the proof.
Write e[α]× for the fixed field of the stabilizer of α in Gal(en/δ(ΘF )/e).
By [SS19, Lemma 8.5, Remark 8.7], there exist an e-regular character β
of e×an/δ(ΘF ) and a prime number ℓ 6= p not dividing the order of e[α]×

such that α∗ is the ℓ-regular part of β. By Proposition 3.14 we have that
(ξ(κ∗)[α∗])(ℓ) = (ξ(κ∗)[β])(ℓ), and it suffices now to prove that ξ(κ∗)[β] = [β]
and that ξ(κ∗)[α∗] is ℓ-regular. That ξ(κ∗)[α∗] is ℓ-regular follows by Propo-
sition 3.13, because it has the same parametric degree as [α∗] and ℓ does not
divide the order of e[α]×.
By assumption, there exists some β-extension κan,F in GLan(F ) such that
ξ(κan,F )[β] = [β]. So there exists some character δ of e× such that ξ(κ∗)[β] =
[δβ] for every e-regular character β of e×an/δ(ΘF ), because κan,F and κ∗ are e×-

twists of each other. We will prove that δ is trivial: this implies the theorem.
Fix an e-regular character α+ of e×n/δ(ΘF ). Because a is large enough, again

by [SS19, Lemma, 8.5, Remark 8.7] there exist some prime number q 6= p not
dividing the order of e×n/δ(ΘF ) = e[α+]

× and some e-regular character β+ of

e×an/δ(ΘF ) such that α∗
+ is the q-regular part of β+.

We know that ξ(κ)[α+] = [α+] by regularity of α+. On the other hand,
ξ(κ∗)[α∗

+] = [δβ+]
(q) = [δ(q)α∗

+], and since ξ(κ∗)[α∗
+] = (ξ(κ)[α+])

∗ we find
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that [α∗
+] = [δ(q)α∗

+]. Since δ is a character of e×, and q does not divide the

order of e×n/δ(ΘF ), we also know that δ(q) = δ. So we can write δ = (α∗
+)

|e|i−1

for some integer i ∈ {0, . . . , n
δ(ΘF ) − 1}.

Now we can take α+ to be a generator of the character group of e×n/δ(ΘF ),

hence we can assume that α+ has order |e|n/δ(ΘF ) − 1. However, the equality

δ = (α∗
+)

|e|i−1 implies that the order of α∗
+ divides (|e|i − 1)(|e| − 1). Since

|e| ≥ 2 we have |e|n/δ(ΘF ) − 1 > (|e|i − 1)(|e| − 1), hence i = 0 and δ is
trivial.

Corollary 4.2. The permutation ξ(κn,F ) is the identity for every n > 0
divisible by δ(ΘF ).

Proof. By (4.1), the hypotheses of Theorem 4.1 hold true.

Remark 4.3. Since any two β-extensions of the same maximal simple charac-
ter are twists of each other by a character of e×, the property that ξ(κn,F ) is
the identity determines κn,F uniquely. Actually, by [Dot21, Proposition 3.6],
the fact that ξ(κn,F ) fixes the e-regular characters already suffices to deter-
mine κn,F uniquely.

It is now a simple matter to prove our main result, namely that the canoni-
cal β-extensions κn,F form a compatible family as n varies amongst multiples
of δ(ΘF ).

Theorem 4.4. Let ΘF be an endo-class over F , and fix a positive multiple n
of δ(ΘF ). Then κn,F is compatible with κtn,F for each positive integer t.

Proof. By [Dot21, Proposition 3.16] it suffices to prove that κn,F is compat-
ible with κδ(ΘF ),F , which is a β-extension in GLδ(ΘF )(F ). Write κ+δ(ΘF ),F

for the β-extension in GLn(F ) compatible with κδ(ΘF ),F . Let πδ(ΘF ) be
a supercuspidal representation of GLδ(ΘF )(F ) with endo-class ΘF such that
Λ(πδ(ΘF ), κδ(ΘF ),F ) = [1]. There exists a character χ of e× such that χκn,F ∼=

κ+δ(ΘF ),F , and then Λ(π, κn,F ) = χΛ(π, κ+δ(ΘF ),F ) for all simple representa-

tions π of endo-class ΘF .

Let π be a simple representation of GLn(F ) with supercuspidal support iner-

tially equivalent to π
⊗n/δ(ΘF )
δ(ΘF ) . By Corollary 4.2 we know that ξ(κδ(ΘF ),F ) is the

identity, and so Λ(recπδ(ΘF )) = Λ(πδ(ΘF ), κδ(ΘF ),F ) = [1]. By construction of
the level zero map for Langlands parameters, we know that Λ(recπ) is inflated
from Λ(recπδ(ΘF )), hence Λ(recπ) = [1]. This implies that Λ(π, κn,F ) = [1],
since ξ(κn,F ) is the identity, again by Corollary 4.2. On the other hand, we
have that Λ(π, κ+δ(ΘF ),F ) = [1], by compatibility of κδ(ΘF ),F and κ+δ(ΘF ),F . It

follows that χ = 1, hence κn,F is compatible with κδ(ΘF ),F .
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4.1 The case of GLm(D)

Using the Jacquet–Langlands correspondence we can now construct canoni-
cal maximal β-extensions in all inner forms GLm(D) of GLn(F ). We refer
to [Dot21] for analogues of the constructions in Section 2 for the group GLm(D).

Theorem 4.5. Let D be a central division algebra over F of dimension d2

and let m be a positive integer such that md = n. Let ΘF be an endo-class
over F of degree dividing n. Then there exists a unique conjugacy class κm,D

of maximal β-extensions in GLm(D) of endo-class ΘF such that

Λ(π, κm,D) = Λ(JL(π), κn,F )

for all essentially square-integrable representations π of endo-class ΘF ,
where JL(π) denotes the Jacquet–Langlands transfer of π to GLn(F ).

Proof. The uniqueness part follows as in the case of GLn(F ), see Remark 4.3.
Let θ be a maximal simple character in GLm(D) of endo-class ΘF . Define a
β-extension of θ by setting

κm,D = ǫGalǫ
1
θκp

where κp is the p-primary β-extension and ǫGal is a quadratic character that is
nontrivial if and only if p 6= 2 and the ramification degree of a tame parameter
field of ΘF over F is even. Then the theorem is an immediate corollary of the
main results of [Dot21], which imply that cl(JL(π)) = ΘF and

Λ(π, ǫGalκm,D) = Λ(JL(π), ǫGalκn,F ).
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