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1 INTRODUCTION

The Guo-Jacquet conjecture proposed in [10] is a possible generalisation in
higher dimensions of Waldspurger’s well-known theorem on central values of
automorphic L-functions for GLy. We briefly recall it as follows. Let E/F
be a quadratic extension of number fields and 7 the quadratic character of
A*/F* attached to it, where A denotes the ring of adéles of F. Consider the
group G = GLs, and its subgroup H = GL,, X GL,, defined over F. Let 7 be
a cuspidal automorphic representation of G(A) with trivial central character.
We say that 7 is H-distinguished if the two linear forms (called “periods”) on it

Puors / 6(h)dh
H(F)Z(A\H(A)
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and
Pry ¢ — ¢(h)n(det(h))dh
H(F)Z(A)\H(A)

are both non-zero, where Z denotes the centre of G. This property is directly
connected with the non-vanishing of some central L-values (see Friedberg-
Jacquet’s work [9]). We also need to deal with another pair of groups. Let
X (F) denote the set of isomorphic classes of quaternion algebras D/F in which
E embeds. For any D € X(E), let Gp = GL,, p be the algebraic group defined
over F' whose F-points are GL,,(D) and Hp = Resp,rG Ly, E be its subgroup.
Let mp be a cuspidal automorphic representation of G p(A) with trivial central
character. We say that mp is Hp-distinguished if the linear form on it

Pup : ¢ — ¢(h)dh,
Hp(F)Z(A)\Hp(A)

is not zero, where we identify the centre of Gp with Z. One part of the Guo-
Jacquet conjecture says that if mp is Hp-distinguished and 7 is transferred
from 7p by the Jacquet-Langlands correspondence, then 7 is H-distinguished.
We can also expect a converse at least when n is odd. For n = 1, these were
known by Waldspurger [20] and reproved by Jacquet [13].
Now we formally describe the approach of relative trace formulae following
Jacquet [13]. This was adopted by Feigon-Martin-Whitehouse [8] to obtain
some partial results. Let f¢ be a smooth function on G(A) with compact
support. As an analogue of Arthur-Selberg trace formula, the relative trace
formula for the case (G, H) roughly says that there are two ways to write the
integral (viewed as a distribution)

/ / Ky (2, y)n(det(x))ddy,
H(F)\H(A)NG(A)' JH(F)\H(A)NG(A)!

where G(A)! denotes the elements in G(A) with absolute-value-1 determinant
and Kc(z,y) = ZveG(F) f¢ (@ yy). The geometric side is expected to be
a sum of relative (weighted) orbital integrals while the spectral side should be
an expansion of periods. Similarly there is also another formula for the case
of (Gp, Hp). Then the comparison of periods of different pairs of groups pre-
dicted by the Guo-Jacquet conjecture is reduced to the comparison of relative
(weighted) orbital integrals, for which there are already some works such as
Guo’s fundamental lemma [10] and Zhang’s transfer [25].

However, we have neglected analytic difficulty in the above discussion. That
is to say, the double integral above is not convergent and neither are two ways
of its expansions. This is the reason why some restrictive local conditions are
needed in the main results of [8] though they seem kind of artificial. The aim
of this article is to solve this kind of problem at the level of Lie algebras for
the case of (G, H). Notice that such a double integral can be formally written
as a single integral

/ K oy (2)n(det(z) )de,
H(F)\H(A)NG(A)?
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where fO/H(z) = fH(A)ﬁG(A)l fC(xy)dy defines a smooth function on
(G/H)(A) with compact support and K pe/u (2) = 32, c(c/m(r) fEIH (27 ).
Replacing the symmetric space G/H by its tangent space s ~ gl,, @ gl,, at the
neutral element, we are faced with the divergence of the integral

/ kg (2)n(det (x))d,
H(F)\H(A)NG(A)L

where f is a Bruhat-Schwartz function on s(A) and kg () = }°. co(p) fz=lyz).
Our main results can be described as follows.

First of all, as in [2], we replace ks (x) with some explicit k?(z) (see its definition
in (4.0.1) and (4.2.2)) to make the last integral absolutely convergent, where
T € R?" is a truncation parameter. Moreover, there is a relation of equivalence
on s(F) defined by the categorical quotient s//H; we denote by O the set of
classes of equivalence. For each class 0 € O, we define k? o(z) and its integral
similarly by replacing s(F') with 0. Then we have

kf(z) = kf,(x),
oecO

and prove the following theorem which gives the geometric expansion of

/ KT (o) (det () d.
H(F)\H(A)NG(A)!
THEOREM 1.1 (see Theorem 4.14). For T in a suitable cone in R*",
/ KT, (o)n(det(z))do
oco Y HF)\H(A)NG(A)!
s absolutely convergent.

Moreover, we see that each summand in the geometric expansion is a sum of
products of polynomials and exponential functions in T'. In fact, most (namely
regular semi-simple) terms are simply polynomial distributions.

THEOREM 1.2 (see Corollary 5.9). For T in a suitable cone in R®" and each
0 € O, define

Jo (0, f) 12/ k?o(x)n(det(x))dx.

H(F)\H(A)NG(A)!

Then T s JI(n, f) is the restriction of an exponential polynomial in T. In
particular, if 0 is regular semi-simple, it is the restriction of a polynomial in T'.

This property allows us to take the constant term J,(n, f) of JI (5, f) to elim-
inate the truncation parameter. In the infinitesimal setting, the geometric
expansion of the Fourier transform of f plays the role of the original spectral
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side (cf. [5]). Our infinitesimal variant of Guo-Jacquet trace formula equating
the geometric developments of f and its Fourier transform (defined by (3.5.2)
and denoted by f) is the following, which essentially comes from the Poisson
summation formula.

THEOREM 1.3 (see Theorem 7.1). For a Bruhat-Schwartz function f on s(A),

we have the equality
Z Jo(na f) = Z Jo(na f)

0eO 0cO

Such a formula should be of interest for at least two reasons. For one thing,
since this formula is close to but easier than its analogue for the symmetric
space, it gives us a clue to the original relative trace formula (cf. Zydor’s work
[27] on Jacquet-Rallis trace formulae). For another, a simplified version of this
formula (see [25, Theorem 8.4 and p. 1875]) has been used in Zhang’s proof of
the smooth transfer.

The distributions J,(n,-) on s(A) that we obtained are non-equivariant under
the conjugation of H(A)NG(A)! in general, which is close to the situation in [2]
and different from that in [26]. In fact, we have the following formula of non-
equivariance. The lack of equivariance may add difficulty to the comparison of
Guo-Jacquet trace formulae (cf. [4, §22]).

PROPOSITION 1.4 (see Corollary 6.2). For a Bruhat-Schwartz function f on
s(A) and y € H(A) N G(A), we denote f¥(z) := f(yxy™'). Then

Jo(n, ) = n(det(y)) > _ JE(n, 13,
Q

where the sum on @Q runs over all w-stable relatively standard parabolic sub-
groups of G (defined in Section 5.2). Here J?(n, -) 4s an analogue of Jo(n), ")
with G replaced by Q, and fgy is defined by (6.0.1) with s = 0.

Nevertheless, we can write regular semi-simple terms as explicit weighted or-
bital integrals whose weights are the restriction to H(A) of Arthur’s in [2]
for G(A).

THEOREM 1.5 (see Theorem 9.2). Let 0 € O be a reqular semi-simple class,
Py an w-stable relatively standard parabolic subgroup of G and X1 € o an
elliptic element relative to Py (defined in Section 9.2). For a Bruhat-Schwartz
function f on s(A), we have

Jo(, £) = vol([Hx, ) - /H oy [T R (et @)

where Hyx, denotes the centraliser of X1 in H, vol([Hx,]) is its associated
volume and vp,(x) is the volume of some convexr hull.
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This paper is organised in the following way. Section 2 and 3 are devoted to
standard notation in Arthur’s work on trace formulae and characterisation of O
in the specific symmetric pair that we consider respectively. We define the trun-
cated kernel k7 () and prove its integrability in Section 4. This key definition
is partly inspired by [12] [26] [6] (for the decomposition of groups) and [16] (for
the decomposition of linear spaces) apart from Arthur’s pioneering work [2]
and its Lie algebra variant [5]. Section 5 is about the qualitative behaviour of
our distributions with respect to the truncation parameter T'. In Section 6, we
study their variance under the conjugation of H(A) N G(A)!. In Section 7, the
infinitesimal Guo-Jacquet trace formula for the case of (GLay, GL, X GL;,) is
given. Section 8 and 9 aim to express the regular semi-simple distribution as
weighted orbital integrals.

Here are two final remarks. Firstly, actually we study the more general sym-
metric pair (GLptq,0,GLp p X GL4 p) instead of (GLay, GLy, x GLy,) and add
an extra term |Nrd(z1)|§ to the integrand in most of this article. Not only
do we prefer more general results (including the case considered in [24] for in-
stance) or possible applications (cf. [17] for the study of the first derivative
of L-functions), but the study of the case where p = ¢ and s = 0 also yields
consideration on a more general setting including the cases where p # ¢ or
s # 0 (see Theorem 5.8 for example). A simple reason for this comes from
the structure of the intersection of H and semi-standard Levi subgroups of G.
Secondly, there are some similarities between our case and the twisted trace
formula (cf. [15]) for (GL,, x GL,) X o where o exchanges two copies of GL,,.
In fact, we obtain the same weights for regular semi-simple orbits. However, we
shall see that more parabolic subgroups will be needed to define the truncation
here. We shall return to this discussion at the end of this paper.
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2 NOTATION

2.1 ROOTS AND WEIGHTS

Let F' be a number field and G a reductive group defined over F. Denote
by Zg the centre of G. Fix a minimal Levi F-subgroup My of G. All the
following groups are assumed to be defined over F' without further mention.
We call a parabolic subgroup P of G semi-standard if My C P. For any semi-
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standard parabolic subgroup P of GG, we usually write Mp for the Levi factor
containing My and Np the unipotent radical. Denote by Ap the maximal F-
split torus in the centre of Mp. Let X (Mp)r be the group of characters of Mp
defined over F'. Then define

ap = HomZ(X(Mp)F,R)

and its dual space
a}; = X(MP)F ®7z R,

which are both R-linear spaces of dimension dim(Ap). Notice that the restric-
tion X (Mp)r < X(Ap)r induces an isomorphism

a*P o~ X(AP)F ®7z R.

Suppose that P; C P, are a pair of semi-standard parabolic subgroups of G.
The restriction X (Mp,)r < X(Mp,)r induces ap, < ap and its dual map

ap, — ap,. Denote by agf the kernel of the latter map ap, - ap,. The
restriction X (Ap,)r — X(Ap,)r induces ap — ap, and its dual map ap, <
ap,. The latter map ap, — ap, provides a section of the previous map ap, —
ap,. Thus we have decompositions

P
ap =ap, ® aP?
and
* % Po\ %
ap, = ap, ® (ap;)".

When P is a minimal semi-standard parabolic subgroup, since ap, (resp. Ap,)
and allzf are independent of the choice of P;, we write them as ag (resp. Ap)

and aéjz respectively.
For a pair of semi-standard parabolic subgroups P, C P, of GG, write Agﬁ for

the set of simple roots for the action of Ap, on Ngf := Np, N Mp,. Notice that
A% is a basis of (a%)*. Let

(AR)Y = {w) :a € A7)

be the basis of a% dual to A%. If B is a minimal semi-standard parabolic
subgroup contained in Pj, one has the coroot 3" associated to any S € Agz.
For every o € A%, let oV be the projection of 5V to a%, where 8 € AT whose
restriction to a;f is a. Such o is independent of the choice of B. Define

P P
(Ap)Y ={aV e AR},
which is a basis of a%. Denote by
A% ={wa:a€ A%}
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the basis of (a;f)* dual to (A%)V.
For a semi-standard parabolic subgroup P of G, set

ap :={T € ap:Va € A%, o(T) > 0}.
For P, C P, as above, define 7'512 and ?512 as the characteristic functions of
{T € ap: Vo € A2, a(T) > 0}

and R
{T € ap:Vw € AR, w(T) >0}

respectively.

2.2 THE FUNCTIONS Hp AND FF

Let A be the ring of adéles of F' and |- |y the product of normalised local
absolute values on the group of idéles A*. Fix a maximal compact subgroup K
of G(A) that is admissible relative to My in the sense of [3, p. 9]. In this
paper, we choose the standard maximal compact subgroup for inner forms
of GL,, (see [22, p. 191 and 199] for example). More concretely, suppose
that G(F) = GL,(D), where D is a central division algebra over F. For
every place v of F, fix an isomorphism D ®r F, ~ gl (D,), where D, is a
central division algebra over F,,. Under this isomorphism, the completion at v
of G(F) is G, ~ GL,,(D,), where n, = nr,. For v a finite place of F, let
K, ~ GL,, (Op,), where Op, is the ring of integers of D,; for v an infinite place
of F', we choose K, to be the orthogonal group, unitary group and compact
symplectic group (see [11, Chapter 1.2.8] for example) for G, ~ GL,, (R),
GL,,(C) and GL,, (H) respectively; let K := [[, K,. Suppose that P is a
semi-standard parabolic subgroup of G. If m € Mp(A), define Hp(m) € ap by

(Hp(m), x) = log(|x(m)[a)

for all x € X(Mp)r. Write Mp(A)! for the kernel of Hp and A% for the
neutral component for the topology of R-manifolds of the group of R-points of
the maximal Q-split torus in RespgAp. Then any element 2 € G(A) can be
written as z = nmak, where n € Np(A), m € Mp(A)!, a € A® and k € K.
We can define a continuous map Hp : G(A) — ap by setting Hp(x) := Hp(a)
with respect to this decomposition. Notice that Hp induces an isomorphism
from A¥ to ap. If P C @ are a pair of semi-standard parabolic subgroups,
write
AL = A® N Mg (A)*.

Then Hp also induces an isomorphism from A%OO to ag.

Denote by Q¢ the Weyl group of (G, Ap). In the cases to be considered in
this paper, for every s € Q% we can always choose one representative wy €
G(F)NK. In fact, we are dealing with the case of G = GL,, or its inner forms,
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thus we can choose Q¢ to be the group of permutation matrices. For an F-
subgroup H of G and s € QF, we usually write sH := w,Hw;'. Let P, and Py
be a pair of semi-standard parabolic subgroups of G. Denote by Q€ (ap,,ap,)
the (perhaps empty) set of distinct isomorphisms from ap, to ap, obtained
by restriction of elements in Q¢. Denote by Q%(ap,; P») the (perhaps empty)
subset of double classes in QM2\QF /QMr of elements s € QF such that
s(ap,) 2 ap,. Suppose additionally that P; and P, contain a common minimal
semi-standard parabolic subgroup Py of G. We can talk about positive roots
and standard parabolic subgroups with respect to Py. By [15, Lemme 1.3.6],
each s € Q% (ap,,ap,) admits a unique representative (still denoted by s) in
Q% such that s~'a > 0 for all o € Aiz. By [15, Lemme 1.3.7], each s €
Q% (ap,; P2) admits a unique representative (still denoted by s) in Q¢ such
that s7la > 0 for all a € A%. If @ is a parabolic subgroup of G containing
P, U Py, and QMe(ap,,ap,) # 0, we say that P, and P, are Mg-associated.
There is a bijection between QG(Clpl;Pg) and the disjoint union of quotients
OMez (ap,ar)\Q%(ap,,ar) where R runs over standard parabolic subgroups
of G contained in P», modulo Mp,-association (see [15, Lemme 1.3.7]).

From the reduction theory (see [2, p. 941]), we know that there exists a real
number to < 0 and a compact subset o C Np(A)My(A)! for each minimal
semi-standard parabolic subgroup B of G such that for any semi-standard
parabolic subgroup P of G containing B, we have

G(A) = P(F)&5 (05, to)-
Here the Siegel set G5 (op,to) is defined by
65 (0B to) = 0BA% (P, t0)K,

where
A% (Pty) := {a € A :Va € AL a(Hp(a)) > to}.

We shall fix such ty and pp. Additionally, we are authorised to assume
that gsp = wsopwi! for s € Q. Moreover, we require that (Mp(A) N
0B, Mp(A) N K, BN Mp,ty) will play the role of (op, K, B,to) for any semi-
standard parabolic subgroup P of G containing B.

Let B C P and tg be as above. For T' € ag, define the truncated Siegel set

&5 (0m.to, T) := 0pA% (P, to, T)K,
where
A% (P,to,T) := {a € A% (P,ty) : Vo € AL w(Hp(a) — T) < 0}.

It is known that A% (P, to,T) N Mp(A)! has compact closure (see [15, Lemme
1.8.1]). Denote by FE(-,T) the characteristic function of the projection of
&5 (en,t0,T) to P(F)\G(A).
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2.3 BRUHAT-SCHWARTZ FUNCTIONS AND HAAR MEASURES

Write g for the Lie algebra of G. For an F-linear subspace s of g, denote
by S(s(A)) the Bruhat-Schwartz space of s(A), namely the C-linear space of
functions on s(A) generated by foo ® x°°, where f is a Schwartz function on
s(F ®gR) and x> is the characteristic function of an open compact subset of
5(A°°), where we denote by A> the ring of finite adéles of F.

Let P be a semi-standard parabolic subgroup of G. For every algebraic
subgroup V of Np (resp. every subspace h) of g), choose the unique Haar
measure on V(A) (resp. on h(A)) such that vol(V(F)\V(A)) = 1 (resp.
vol(h(F)\h(A)) = 1). We also take the Haar measure on K such that
vol(K) = 1.

Fix a Euclidean norm || - || on ag invariant by the group Q¢ and Haar measures
on all subspaces of ag compatible with this norm. If P C ) are a pair of semi-
standard parabolic subgroups, we obtain Haar measures on A% and AIQ,’OO via
the isomorphism Hp.

Denote by pp € (a$)* the half of the sum of weights (with multiplicities) for
the action of Ap on np. We choose compatible Haar measures on G(A) and
its Levi subgroups by requiring that for any f € L'(G(A)),

f(z)de = / / / f(nmk)e=207 (He ) qn dimdi:
G(A) Np(d) JMp(a) JK

:/ / / /f(nmak)eiQ”P(HP(a))dndmdadk.
Np(A) JMpa) Jax JK

3 THE SYMMETRIC PAIR

Let F' be a number field and D a central division algebra over F. Let d
be the degree of D, i.e., dimp(D) = d?>. Denote by GL, p the reductive
group over F' whose F-points are GL, (D). For z € GL, (D), we write Nrd(x)
for its reduced norm, Trd(z) for its reduced trace and Prd, for its reduced
characteristic polynomial. For € GL,(D) x GL4(D), denote by z1 (resp. xz2)
its projection to the first (resp. second) component. Until further notice, we
shall work in a more general setting than that of Guo-Jacquet for later use, i.e.,
we shall study the case of (GLpyq,p,GLp,p X GLg,p) and add an additional
term |[Nrd(z1)|3 in the integral of the modified kernel.

3.1 GROUPS AND LINEAR SPACES

Let G := GLptqp and H := GL, p X GL, p its subgroup by diagonal embed-

ding. Define an involution § on G by 0(g) = ege™ !, where € = ( 16” 01 )
—lq

Thus H = GY, where G? denotes the #-invariant subgroup of G.

Define an anti-involution « on G by ¢(g) = 8(g~!). Denote by S the i-invariant
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subvariety of G. There is a symmetrization map
s: G — 5, s(g) == gu(g),

by which one can regard the symmetric space G/H as a subvariety of S. We
see that H x H acts on G by left and right translation and that H acts on .S
by conjugation.

Let g := Lie(G) and b := Lie(H). Denote by df the differential of . Thus

h={Xecg:(df)(X)=X).

Let s be the tangent space of S at the neutral element. We shall always view
s as a subspace of g. Then

s={X eg: (d)(X) = -X},

and

s(F) = { ( - > . A € Matyx, (D), B € Mathp(D)}

~ Matyy (D) & Matyxp(D).
There is an H(F)-action on s(F') by conjugation, i.e.,

(h1,hs) - (A, B) = (hyAhy ' ho Bhi).

3.2 SEMI-SIMPLE ELEMENTS

We say that an element X € s is semi-simple if the orbit H - X is Zariski closed
in 5. By a regular element X € s, we mean that the stabiliser Hx has minimal
dimension.

PROPOSITION 3.1. An element X of s(F) is semi-simple if and only if it is
H(F)-conjugated to an element of the form

—

X(4) =

o oo
oo oo
SESESY
oo oo

with A € GL,, (D) being semi-simple in the usual sense. More precisely, the set
of H(F)-conjugacy classes of semi-simple elements of s(F) is bijective to the
set of pairs (m,{A}) where 0 < m < min{p, q} is an integer and {A} is a semi-
simple conjugacy class in GLy, (D). Moreover, X (A) is reqular semi-simple if
and only if m = min{p,q} and A is regular semi-simple in GLyingp g (D) in
the usual sense.
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Proof. The case D = F is [14, Proposition 2.1 and Lemma 2.1] while the
case p = ¢ is [24, Proposition 5.2]. This proposition is nothing but a slightly
more general one combining both cases, whose proofs are similar and still work
here. O

ProrosiTiON 3.2. If p < q, an element € s s reqular semi-simple

(B 0
if and only if Prdap is separable and Prdap(0) # 0. If p > q, an element
0 A
B 0
Prdga(0) # 0.

Proof. We only consider the case p < ¢ since the other case can be deduced
by symmetry. We may study the proposition over an algebraic closure F of F.

For A € Matgpxaq(F) and B € Matggxap(F), we see that

€ s is reqular semi-simple if and only if Prdga is separable and

det (Md<p+q> - (g gl)) = AUa=P) Qet(N21,, — AB). (3.2.1)
0 A .
Let X := B 0 € s and denote by Prdyx the reduced polynomial of X

viewed as an element of g. Then Prdy and Prd4p determine each other.

Suppose that Prdap is separable and Prdap(0) # 0. Let X = X, + X,
be the Jordan decomposition in g, where X is semi-simple, X, is nilpotent
and X,X, = X,Xs. By the uniqueness of the Jordan decomposition, we
see that X, X,, € s. From Proposition 3.1, up to conjugation by H, we may

0 14, O
supposethat X, =| C 0 0 |, whereC € GLg, (F) is semi-simple. Since
0O 0 O

Prdx = Prdx,, we deduce that Prda4p = Prdc. Then Prdc is separable and
Prde (0_) # 0 by our assumption. By linear algebra, C' is regular semi-simple in

GLgp(F), which implies that X € s is regular semi-simple by Proposition 3.1.
Since XX, = X, X, simple computation (cf. [14, Lemma 2.1]) shows that

0 D O
X,=| DC 0 0 |,whereD € glyy(F) and DC = CD. On the one hand,
0 0 0

because X, is nilpotent and C' is invertible, we see that D is nilpotent. On the
other hand, because DC' = C'D and C' is regular semi-simple, we see that D is
semi-simple. Hence, we have D = 0 and thus X,, = 0. Therefore, X = X, € s
is regular semi-simple.

The other direction is a direct consequence of Proposition 3.1. O

3.3 INVARIANTS
Denote by ¢ the affine space A4™in{r-a} Define a morphism = : s — ¢ by

A
mapping <g 0) € s to the coefficients of the reduced characteristic poly-
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nomial of AB. It is constant on H-orbits. Denote by c¢,s the subset of
(ci)o<i<dmin{p,q3—1 € ¢ such that the polynomial

. dmin{p,q}—1 '
POy = At 3 o
=0

is separable and ¢y # 0. It is a principal Zariski open subset of ¢. Denote by
* the subset of (¢;)o<i<dmin{p,q}—1 € ¢ such that co # 0. Then ¢, C ¢*.

PROPOSITION 3.3. The pair (¢,7) defines a categorical quotient of s by H
over F.

Proof. Tt suffices to consider the case p < ¢ since the case p > ¢ can be obtained
by symmetry. o
We first extend the base field to an algebraic closure F' of F. Then Hy ~
GL,, 7 % GLy, 7 and s~ Mat ;. 7 @ Matgy gy 7+ For (¢i)o<i<dp—1 € oF,
denote by A((cz)0<l<dp 1) € gl;, 7 its companion matrix

o 0 --- 0 —Co

1 0 -+ 0 —¢
A((ci)ogicap-1) = 0 1 . 1 —c

: .0 :

0 - 0 1 —cgp

Define a morphism ¢z — s by mapping (¢;)o<i<dp—1 to

0 1dp 0
A((¢i)o<i<ap-1) 0 0
0 0 O

This is a section of 7, so 7 is surjective. By Propositions 3.2 and 3.1, the fibre of
any point in the non-empty open subset ¢F s & O contains exactly one closed
orbit. We may use Igusa’s criterion (see [18, Theorem 4.13] and Remark 3.4
below) to show that the pair (¢, ) defines a categorical quotient of s by H.
The morphism 7 : § — ¢ defined over F' factors through the categorical quotient
Spec(F[s]?) of s by H over F. This induces a dual morphism F[c] — F[s]¥
of F-algebras. We have shown that after the base change to F, it is an iso-
morphism of F-algebras. By Galois descent, we deduce that the morphism
F[c] — F[s]¥ is an isomorphism of F-algebras, i.e., the pair (c¢,7) defines a
categorical quotient of s by H over F. O

Remark 3.4. We notice that ¢z can be of dimension 1 (when D = F' and
min{p, ¢} = 1) in the proof of Proposition 3.3 above, so the first condition in
[18, Theorem 4.13| may not be satisfied. However, as is evident from the proof
of Igusa’s criterion, this condition can be replaced with the surjectivity of .
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The categorical quotient (¢, ) defines a relation of equivalence on s(F’), where
two elements are in the same class if and only if they have the same image
under w. We denote by O the set of equivalent classes for this relation. By
Proposition 3.1, two semi-simple elements of s(F') belong to the same class of O
if and only if they are conjugate by H(F'). Denote by O, the subset of O with
images in ¢,;. By Proposition 3.2, each class in O, is a regular semi-simple
H(F)-orbit in s(F'). Denote by O* the subset of O with images in ¢*. Then
Ors CO*.

3.4 RELATIVELY STANDARD PARABOLIC SUBGROUPS

FiXJSO a minimal parabolic subgroup of H defined over F' and M a Levi factor
of Py defined over F. Then M is also a minimal Levi subgroup of G defined
over F. For a semi-standard parabolic subgroup P of G (namely M, C P), we
say that P is “relatively standard” if 150 C P,i.e., PNH is a standard parabolic
subgroup of H (namely Py C PN H). We shall suppose that 0p, € 0B for all
relatively standard minimal parabolic subgroup B of G. Denote by K the
standard maximal compact subgroup of G(A) and by Ky := H(A) N K the
maximal compact subgroup of H(A). Up to conjugation by G(F), we may
assume that My is the subgroup of diagonal matrices in G and that ]50 is the
product of groups of upper triangular matrices.

We can describe the embedding H < G via D-bimodules. Let V := (eq,- -
vep)p (resp. W := (f1,- -, fy)p) be the free D-bimodule generated by the
basis {e1,- - -, ep} (resp. {f1,- -, fq}). Set GL(V) to be the group of F-linear
automorphisms on V, which acts on V' on the left. Denote by GL(V)p the
subgroup of GL(V') which respects the right D-module structure on V. Put
G:=GL(VaeW)pand H := GL(V)p x GL(W)p. Then Mj is the stabiliser
in G (or in H) of the D-lines (e;)p,1 <4 < pand (f;)p,1 < i < q. Suppose

that Py is the direct product of the stabiliser in GL(V)p of the flag

0 g <61>D - <617€2>D ,C,_ e G <€15' : '7€P>D =V

= =

and the stabiliser in GL(W)p of the flag

0C (fi)yp € (fi,fo)p C---C{f1,--~ fo)p =2 W.

A relative standard parabolic subgroup P of G can be interpreted as the sta-
biliser in G of the flag

0 g <€1,- . 'aepufla' . 'afq1> g <€1,' . 'aeppfla' . 'afquepl-i-la' * Epitpas

D
fq1+15' : '7f¢11+Q2>D ,C,_ e g <617' : 'aeplvfla' : 'afqlv' Y Ep—pi+1y° 5 Epy
fQ*QZ‘i’l’. : 'afq>D = V@VV,

1 1
where Y p; =p, > ¢ = q and we allow p; or g; to be zero. In particular, we
i=1 i=1
have

Mp ~ GLPH—quD X X GLpz-i—quD
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and
MPH ~ GL;Dl,D X oo X GLPhD X GthD X X Gqu,D.

PROPOSITION 3.5. Let P be a relative standard parabolic subgroup of G. For
all X € (mpNs)(F) and U € (np Ns)(F), we have

m(X) =m(X +U).

Proof. 1t is a consequence of [16, Lemma 2.1]. We can also give a direct proof
as follows. Because of (3.2.1), for any X € s(F), n(X) is determined by
the coefficients of the reduced characteristic polynomial of X regarded as an
element of g(F'). The proposition follows from the easy fact: for X € mp(F)
and U € np(F), the reduced characteristic polynomial of X + U is equal to
that of X. O

COROLLARY 3.6. Let P be a relative standard parabolic subgroup of G and
o € O. For all subsets S; C (mp Ns)(F) and Sy C (np Ns)(F), we have
Oﬂ(Sl@Sg): (0(751)@52.

3.5 FOURIER TRANSFORM

Fix a nontrivial unitary character ¥ of A/F. Let (-,-) be the non-degenerate
H(A)-invariant bilinear form on s(A) defined by

<X1,X2> = TI‘d(XlX2> (351)

for all X1, X, € s(A). For f € S(s(A)), its Fourier transform f € S(s(A)) is
defined by

f(X) = / F(X)T(X, X))dX (3.5.2)
s(A)
for all X € s(A).

4 INTEGRABILITY OF THE MODIFIED KERNEL

Fix a minimal semi-standard parabolic subgroup Py of G. For any semi-
standard parabolic subgroup P of G and T € ag, denote by Tp the projection
of sT in ap, where s is any element in Q€ such that sPy C P. Notice that this
definition is independent of the choice of s.

For a semi-standard parabolic subgroup P of G, z € G(A) and T € qay, define

FP(x,T) := Flp, (2, Tsp, ),
where s is any element in Q¢ such that sPy C P.

LEMMA 4.1. The above definition of F¥' (x,T) is independent of the choice of s.
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Proof. For any s € Q¢ and any minimal semi-standard parabolic subgroup
B C P, since we choose ws € G(F) N K, we have

Ff (2, T) = Ff (w; e, s7'T).
Let 5,5 € QF be such that sP,,s'Py C P. Then s’s~! € QMr_ By the last

equality and the left Mp(F)-invariance of F}p, (-, Tsp,), we have

- -1
Flp (2, Typ,) = Flp (w,l 12,88 Top,) = Flp (2, Tsp,).

This completes the proof of the lemma. O

Let f € S(s(A)), P be arelatively standard parabolic subgroup of G and 0 € O.
Write Py := PN H. For x € Mp, (F)Np, (A)\H(A), define

kppo(z) = Y / f@ Y (X + U)z)dU.
Xemp(F)No (npns)(A)
For T € ap and « € H(F)\H(A), define
Kfo(n) = D (-)tmrfae % T FE(Hp(0x) — Tp) -y po(02).
{P:P,CP} sePy (F)\H(F)
(4.0.1)

We know that the sum over § € Py (F)\H(F) is finite from the following
lemma.

LEMMA 4.2. Let P be a semi-standard parabolic subgroup of G. For all x €
G(A) and T € ap, the sum

S A (Hp(ow) - T)
SEP(FI\G(F)
is finite.

Proof. This is a particular case of [2, Lemma 5.1]. O

4.1 REDUCTION THEORY

LEMMA 4.3. There exists a point Ty € aJISO such that for any semi-standard
parabolic subgroup Q of G, any minimal semi-standard parabolic subgroup B
of G contained in Q, any T € T4 + a;o and any © € G(A), we have

> Y FP(6x,T)rE (Hp(dx) — Tp) = 1.

{P:BCPCQ} e P(F\Q(F)
Proof. This is [2, Lemma 6.4] in our case. O

We shall fix such a 7. If T € Ty + aJISO, we shall say that T is sufficiently
regular.
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LEMMA 4.4. For any relatively standard parabolic subgroup @ of G, any suffi-
ciently regular T and any x € H(A), we have

> > FP (62, T)r(Hp(6x) — Tp) = 1.

{P:ﬁongQ} 5€PH(F)\QH(F)

This is an analogue of [26, Proposition 2.3] whose proof relies on [12, (2.5) in
p. 674] (cf. Lemma 4.11 below). It is essentially a restricted form to x € H(A)
from Lemma 4.3 for z € G(A). We can give a proof close to the steps in an
early version of [26], which reflects that a main complexity of the truncation
here arises from the fact that none of the Siegel sets of H is contained in any
Siegel set of G, as mentioned in [12]. However, we shall adopt alternatively the
point of view in [6] to give a more conceptual proof here, which might be useful
in other relative trace formulae as well.

First we introduce a variant (see [6, §1.5]) of some concepts and results in [6, §2]
without reproducing proofs. We say that a semi-standard parabolic subgroup @
of G is standard if Py C . For P C @ a pair of standard parabolic subgroups
of G, denote by pg the half of the sum of weights (with multiplicities) for the

action of Ap on np Nmg. We denote by a;o the closure of a;o in ag.

DEFINITION 4.5. For g € G(A), @Q a standard parabolic subgroup of G and
T e aJISU, we define the degree of T-instability of g with respect to Q by the
following formula

deg?(g) := I(Ilga6>)<<p§, Hp(3g) —T)

where (P,0) runs over the pairs of a standard parabolic subgroup P C @ and
an element 6 € P(F)\Q(F).

By Lemma 4.2, we know that the supremum of (pIQ), Hp(dg) —T) in the defi-
nition is finite and attainable.

LEMMA 4.6 (cf. [6, Lemme 2.2.1]). Let g € G(A), Q be a standard parabolic
subgroup of G and T € aJISO. The following two conditions are equivalent:

(1) deg@(g) < 0;

(2) for all parabolic subgroup P C @, all 6 € P(F)\Q(F) and all w € ﬁg, we
have (w, Hp(dg) — T) < 0.

DEFINITION 4.7. Let g € G(A) and T € af;, . We say that a pair (P,6) of
a standard parabolic subgroup P C G and an element § € P(F)\G(F) is T-
canonical for g if it satisfies the following two conditions:

(1) (p%, Hp(3g) — T) = deg¥(g);

(2) for any parabolic subgroup @ O P such that (pg, Hq(ég) —T) = deg?(g),
we have QQ = P.
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LEMMA 4.8 (cf. [6, Lemme 2.3.2]). Let g € G(A) and T € a_jgo. Then (P,9) is
a T-canonical pair for g if and only if it satisfies the following two conditions:

(1) degz(dg) < 0;
(2) for any a € AR, we have (o, Hp(6g) — T) > 0.
PROPOSITION 4.9 (cf. [6, Proposition 2.4.1]). Let g € G(A) and T € a_JISO. Then

there exists a unique T-canonical pair for g.

Let T € ag and @ be a standard parabolic subgroup of G. Define ﬁQ(-, T) as
the characteristic function of g € G(A) such that deg% (9) <0.

PROPOSITION 4.10 (cf. [6, Proposition 2.5.1]). For g € G(A), Q a standard
parabolic subgroup of G and T € aJISU, we have

(1)
> Y. FP(8g,T)rE (Hp(59) — Tp) = 1;
{P:PoCPCQ} dcP(F)\Q(F)
(2)
FogT)= Y (-pfme/ae) N 2R(Hp(6g) — Tp).
{P:PyCPCQ} SEP(F)\Q(F)

Since we have similar formulae for F@(.,T) for sufficiently regular 7' (see
Lemma 4.3), we know that F?(-,T) = FEU(~,T) for such T. Now we can
return to the proof of Lemma 4.4.

Proof of Lemma 4.4. Tt is noticeable that the identity is reduced to its ana-
logues for semi-standard Levi factors of @, which is a product of GLy, 44, D
whose intersection with H is GL,, p X GLg4, p. By induction on the rank of G,
it suffices to prove the identity for Q@ = G.

For a standard parabolic subgroup P of G, fix a set of representatives Qp ¢ in
{s € QC|Py C s~'P} for the relation s, ~ sy if and only if sos7 € QMP. We
can rewrite the equality in the lemma as

Z Z Z F}:O (wséz,Tpo)Tg(Hp(ws&c) —Tp)=1.

{P:PyC P} s€Qp. g 6€(s—1 P) g (F)\H (F)
In fact, this follows from
F¥ P (82, T) = FELF (62, Ty p) = FE (ws62, Try)

and
quP(HsflP((S‘T) —Ts1p) = Tg(HP(wS(S‘T) —Tp).

S
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Combining the double sums over s and 4, we claim that the equality above is
equivalent to

> > Fh (82, Tp, )78 (Hp(6x) — Tp) = 1.
{P:PyCP}§cP(F)\P(F)QGH(F)

In fact, for any s € Qp g, consider the map
(s'P)y(F)\H(F) — P(F)\P(F)QCH(F),§ + wsd.

Firstly, it is well-defined: if §; = w; 'pwsde with p € P(F), then w61 = pwsda.
Secondly, it is injective: if wsd; = pwsdy with p € P(F), then & = w; 'pwsds
with wylpws = 5152_1 € (s71P)g(F). Thirdly, for s; # s2 in Qp ¢, we have
W, 01 # Pws,do with p € P(F): otherwise, s P = (6267 1)~ (s5 ' P)(267 ")
with 02071 € H(F), so (s;"P)y = (0207 ") (55 P)g (6267 "), and then
8207 € (s7'P)u(F) = (s5 ' P)y(F) for both of (s;'P)y and (sy'P)y are
standard parabolic subgroups of H, which implies sl_lP =55 lp contradicting
$1 # so. Fourthly, any 5 € Q¢ appears in the image of the map for some s €
Qpg: since (71 P)y is a semi-standard parabolic subgroup of H, there exists
an 5o € QF such that Py C s3 (37 'P)x) = (s5 (3 P))m = ((5s0) ' P)m,
ie., 559 € Qp . To sum up, we finish the argument of the claim.

It suffices to prove an analogue of the last equality by replacing F};O with FP

for T € aJISU, as they are identical for sufficiently regular T'. That is to say, for
r € H(A) = G?(A), if (P,6) is the unique T-canonical pair for z, we need to
prove that § € P(F)\P(F)QYH(F). Recall that 6(g) = ege™* for g € G(A),
1, 0
0 -1,
that (P,0) is the unique T-canonical pair for g € G(A) if and only if (P,6(J))
is the unique T-canonical pair for (g). In particular, if (P,d) is the unique
T-canonical pair for z € H(A), we have § = 6(4). Denote by &y a representative
of § € P(F)\G(F). Then dpedy* € P(F).

Suppose that dpedy ' = mu, where m € Mp(F) and u € Np(F). Both of mu
and m are semi-simple in G(F) (in the classical sense) for (mu)? = m? = 1.
Applying [2, Lemma 2.1] to the characteristic function of the singleton {u},
one obtains that mu is Np(F)-conjugated to mu’ for some v’ € Np(F) such
that mu’ = v/m. Since both of mu’ and m are semi-simple in G(F'), by the
uniqueness of Jordan decomposition, we have u’ = 1, i.e., 50650_1 is Np(F)-
conjugated to m. By linear algebra, m is Mp(F')-conjugated to a diagonal
matrix with entries {41} with expected multiplicities p and ¢ respectively. In
sum, oedy  is P(F)-conjugated to weew; ' for some s € Q. Suppose that
po € P(F) satisfies dpedy ' = po(wsew; )py'. Then wilpytdy € G/(F) =
H(F),ie., § = P(F)é € P(F)\P(F)QYH(F). O

where € = . Since € € My(F) N K, from Lemma 4.8, we deduce

LEMMA 4.11. Let P be a relatively standard parabolic subgroup of G. For any
a € A%O (Pp,to), there exists a relatively standard minimal parabolic subgroup
0

B C P such that a € AR (P, to).
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Proof. This is an analogue of [12, (2.5) in p. 674]. To begin with, we re-
duce ourselves to proving the case P = (. For this purpose, suppose that
the assertion is true in this case, and consider the case P # G. Since

A%OO (P, to) = Aoﬁ?mMp (Mp,,,to), by our assumption, there exists a minimal

parabolic subgroup B, of Mp containing Py Mp such that a € AF (Mp,to).
Let B := B,Np. Then B is a relatively standard minimal parabolic subgroup
of G contained in P, and A¥ (Mp,to) = AF(P,to). Thus a € A¥(P,to),
which implies the lemma. Therefore, we may and shall only consider the case
P = @ in the rest of the proof.

Let a € A%‘; (H,to). Then a = diag(ax, - -, ap4q), where 2> el for1 <i<
p—land p+1<i<p+q—1. In the definition of Siegel sets, we suppose
that to < 0, so 0 < e’ < 1. Note that A (G, to) = {diag(bi, - - "bP+q)|b,_-bﬁ >
el V1 <i <p+q—1}. Thus we need to show that there exists a permutation
s € QY such that s-a = diag(as-1(1y, "+, @5-1(ptq)) satisfies the following two
conditions:

(1) s(i)<s(@i+1)for1<i<p—landp+1<i<p+q-—1;

Gs=16) t ;
(2) m>e° for1<i<p+4+gq-—1.
Firstly, we show that one can move a1 to its left hand side in (a1, - - -, Gptq)
such that both the first p+1 elements and the last g—1 ones in the new sequence
are in “good” order (which means that the quotient of any consecutive pairs is
> ¢'0), while keeping the original relative orders among (a1, - - -, a,) and among
(Apt1s-+ Aptq). If == > €' we are already done (one can take s = 1). In

general, write
& > efo }} .
ap+1

When 1 <4 < p—1, since ef* < 1, ‘;1—:11 < e' implies 22+L > ¢=%0 > 1: there
P

@iq+1

Ap+1

i1 = max{(),max{l <i<p

is an s € Q¢ such that s-a = diag(ar, -+, @iy, Gpi1s Qig 1155 Apy Apt2, s Aptg)-
When 4; = 0, which implies a,41 > a1, there is an s € Q¢ such that s-a =
diag(apt1, a1, - *5 Qpy Apta,* * * Gptq)-

Secondly, we consider moving a2 as before. One should check that a,4o will
not exceed the new place of ap41, which results from the fact that % > elo,
Thus one can move ap11 and ap4o to their left hand side in (a1, - -, aptq)
such that both the first p + 2 elements and the last ¢ — 2 ones in the new
sequence are in "good" order, while still keeping the original relative orders
among (a1, - - -, ap) and among (ap41,- - -, Aptq)-

To finish the argument of our claim, it suffices to move apy3,- - -, ap4q one by
one as above. After moving a; to its left hand side, where p + 3 < i < p + ¢,
one requires that both the first ¢ elements and the last p + ¢ — ¢ ones in the
new sequence are in "good" order, while the original relative orders among
(a1,- -+, ap) and among (ap+1,- - -, aptq) are kept. As in the second step above,
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this is possible since % > efo. After one moves the last element apq, the
sequence satisfies the desired two conditions. O

ProproOSITION 4.12. Let B be an arbitrary minimal semi-standard parabolic
subgroup of G. Let P be a parabolic subgroup of G containing B. Suppose that T
is sufficiently regular. If m € op N Mp(A),a € AF(P,ty) and k € KN Mp(A)
satisfy FE (mak,Tg) =1, then a € A% (P, to,T5).

Proof. Tt results from Lemma 4.6, since ﬁ§(~,T) = FE(-,T) for sufficiently
regular 7. Here we write F5 (-, T') for F¥' (-, T) when B plays the role of Py. O

For a relatively standard parabolic subgroup P of G, denote by 7)(150, P) the
set of relatively standard minimal parabolic subgroups of G contained in P.
For B € P(Py, P), write

AS>2(Ptg) := A% (P,to) N G(A)!
and for all T' € ag,
AS>®(Ptg,T) := AR (P, to, T) N G(A)*.

COROLLARY 4.13. Let P be a relatively standard parabolic subgroup of G. For
sufficiently regular T, the following subset of Mp, (A) N G(A)!

U (op N Mpy (8) - (A% (Pu,to) N AG(Pito, Tp)) - (Ku N Mp, (A))
BEP(Po,P)
projects surjectively on {m € Mp, (F)\Mp, (A) NG(A)L|FF(m,T) = 1}.

Proof. This is an analogue of [26, Corollaire 2.5]. By Lemma 4.11, the following
subset of Mp, (A) N G(A)!

U (ep N Mp,(8)) - (AF (Pa,to) N AG®(P tg)) - (Kg N Mp, (A))
BeP(Py,P)

projects surjectively on Mp, (F)\Mp, (A) N G(A)L. Recall that 0p, € op for

all B € P(Py, P) and that Ky C K by our choices (see Section 3.4). Therefore,
the statement to be proved follows from Proposition 4.12. O

4.2 INTEGRABILITY

THEOREM 4.14. For all sufficiently reqular T and all s € R,

/H(F)\H(A)mG(A)l |k%0($)”Nrd(m)|§dx =
o€

where we write © = (x1,%2) € GLp p(A) X GLy p(A).
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Proof. Let P, C P, be a pair of relatively standard parabolic subgroups of G.
Following [2, §6], for Ty € ap,, we define the characteristic function

op(T) = Y (~1)ImAn/A0r8 (1y)75(Ty).
{Q:P2CQ}
Recall that for P O P; a relatively standard parabolic subgroup of G, we have
(see [2, p. 943])
H(TOFE (M) = > of(Th).
{P2:PCP>}

Denote Py i := Py N H. For x € P, yg(F)\H(A), we put
X;l,Pg (:L') = FPl (1"’ T)Ugf (HPl (:L') - TP1)5

and

kP17P270(‘T) = Z (_1)dim(AP/AG)kf7P7U(‘T)‘
(P:PLCPCP;)

Using Lemma 4.4 and the left invariance of Hp and kf p, by Pu(F), we have

kfolz) = > S X p ke pe(dr)  (4.2.1)

{Py,P;:PyCP,CP,} 0P, u(F)\H(F)

for x € H(F)\H(A). Thus

/ KT (2)|[Ned (a3 de
oco Y HF)\H(A)NG(A)!

D S Xy (@), py o ()] N2 (1) [

~ 1
0eO {Py,P2:PyCP,CPs} Pl,H(F)\H(A)mG(A)

It suffices to prove that for any pair of relatively standard parabolic subgroups
P1 Q PQ of G,

/ Vo pa@) [k o) [Nrd (1) [ < .
a0 PLa(F)\H(A)NG(A)!

If P, = P, # G, by [2, Lemma 6.1], we have Ulljf = 0 and then XITDMPZ =0,
so the integration is zero. If P, = P, = G, by Corollary 4.13, every x €
H(F)\H(A) N G(A)" with F&(x,T) = 1 has a representative in the compact
subset
U Qﬁo 'A%’OO(G,fo,TB)-KH,
BeP(Py,G)

so the integral is bounded by an integral of a continuous function over a compact
subset and thus convergent. Therefore, we reduce ourselves to proving the
following proposition. O
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PROPOSITION 4.15. Let f € S(s(A)), s € R and P1 C P, be two relatively
standard parabolic subgroups of G. Fix any two positive real numbers ey and N .
Then there exists a constant C' such that

/ Xb, s (@) kb Py o (2)|[N1d (1) [fda < CeNITI
oc0J P (F)\H(A)NG(A)!

for all sufficiently reqular T satisfying a(T) > € || T || for any o € AIGDO
For x € H(F)\H(A), define

kro(@) =Y kpaol®)= Y fla ' Xax)

0eO Xes(F)

=Yk}, (x). (4.2.2)

0eO

and

COROLLARY 4.16. Let f € S(s(A)) and s € R. Fiz any two positive real
numbers e¢g and N. Then there exists a constant C such that

/ kT () — FC (2, T)ky,c(2)||Nrd(z1)[3dz < CeNITI
H(F)\H(A)NG(A)!

for all sufficiently reqular T satisfying a(T) > €o | T || for any o € AIGDO
Proof. For x € H(F)\H(A), we have

kf(z) = FO(@, Dkso(@) = Y ki (x) = FO@,T) > kf.a.ol()
0cO 0cO
=Y (kf (@) = FO (@, T)ksc,0(x)).
0cO

By (4.2.1), since X1T317P2 =0 for P, = P, # G, we have
kfo(@) = F9(2,T)kf,6,0(2)
= Z Z X£17P2 (5:L')l€p17p210(5$).

{P1,Py:PyCP,C Py} 0€EP u (F)\H(F)
Therefore,

/(F)\H(A)OG(A)l [kF (@) = F @, T)ksq (@)l INvd(z: ) . dv

>/ 670 (2) = FO (0. Tk o) [N o

oco / H(F)\H(A)NG(A)!

S

0cO {Pl,Pz:ﬁo§P1§P2}

/ X (), o () N1
Py g (F)\H(A)NG(A)?!

We now conclude by applying Proposition 4.15 to the last expression. o

DOCUMENTA MATHEMATICA 27 (2022) 315-381



AN INFINITESIMAL GUO-JACQUET TRACE FORMULA. 1 337

Proof of Proposition 4.15. Let P be a relatively standard parabolic subgroup
of G such that P, C P C P,. For any X € mp(F) N o, there exists a unique
relatively standard parabolic subgroup R of G such that P, € R C P and

X e (mp(F)Ne(F)No)— U mp(F)ﬂq(F)ﬂ(J). Write
PICQCR

, (= mMpR — U mprMNq
{Q:PLCQC R}

mp

and
P,
ng:=ngNmp.

By Corollary 3.6, we have

(mp(F)Ne(F)No)— U mp(F)Nq(F)No
PICQCR

=(m7, (F) No) & ((ng Ns)(F)).

Hence

ki po(r) = / N X +U)x)dU
ﬂpﬂﬁ

Xernp(F)r‘m

= Y > Z / ) fl €+ X + U)a)dU.

{R:P\CRCP} ¢emB (F)No X €(nkNs)(F)

Denote by P the semi-standard parabolic subgroup of G' opposite to P and

write

nr =ngNmp.

Note that the restriction of (-,-) (defined in (3.5.1)) to ((nk Ns)(A)) x ((wg N
s)(A)) is also non-degenerate. For any £ € (mpr Ns)(A), applying the Poisson
summation formula to the Bruhat-Schwartz function f(npm)(m flzH e+ +

U)xz)dU, we get

/ fE '+ X +U)n)dU = Y 2pH(X),

xe(ngms)(F) Xe@Ens)(F)

. . x,R _ .
where the partial Fourier transform ;™ of f(np ney(a) (T Ye+-4+U)x)dU is
defined by (recall the notation ¥ in Section 3.5)

x,R o ZC_I T
(X)) = /( et </(nm)(A)f< E+X+0U) )dU) U((X, X))dX
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for all X € (@h Ns)(A). Since (U, X) = 0 for U € (np Ns)(A) and X €
(nh Ns)(A), as well as ng Ns = (npNs) @ (nf Ns), we have

BR) = [ e+ e R
(nrNs)(A)

for all X € (ih Ns)(A), whose expression is actually independent of P.
To sum up,

brpo@= D, 3, ) #X).
{R:PLCRCP} cemi (F)No Xe(whns)(F)

Hence

kpopo(z)= ) (FL)IARAOL, b (2)
{P:PLCPCP,}

_ Z (71)dim(Ap/Ac;) Z Z Z (I)?R()’(\v)

{P:PLCPCP;} {R:P1CRCP} éemi (F)No X e(RENs)(F)
im z,R/ v
= 2 > POENC A D DR Y
{R:PLCRCPy} ¢emB (F)no \{P:RCPCP} Xe@Ens)(F)
For a relatively standard parabolic subgroup Ps; of G containing R, we write
@) =g - U 7
{Q:RCQCPs}
Then
z,R/ v z,R /3
S oetm- % bR
Xe@Ens)(F) {P3:REPsCPY Re((mh3) ns)(F)
We have
im z,R /v
Y a3 i)

{P:RCPCP>} Xe(@Ehns)(F)

N SIS > et
{P:RCPCP,} {P5:RCP3CP} Xe((mh3)/ns)(F)
:(71)dim(Ap2/AG) Z Z (I)?R(X)

{P3:RCP3CP>} XG((_PS)IQE)(F)

11R
Z (_1)dim(Ap/Ap2).

{P:PsCPCP}
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From [2, Proposition 1.1], we know that

Z (71)dim(Ap/Ap2) _ )1 i Py= Py
{P:P;CPCP,} 0, otherwise.
3 CPy

‘We obtain
im z,R/ v
P A D DI 0
{P:RCPCPs} Xe@Ens)(F)
=(—1)dim(4r,/Ac) Z <I>§’R()?).
Xe((@g2)'ns)(F)
Thus
im z,R /3
kpy pao(z) = (—1)1mUAR/A0) R > @ (X).
{R:PLCRC P} cemf (F)No Re((wh2)'ns)(F)
Now

/ XDy, (@) kP, py,0 ()| |Nrd (1) [5 da
oc0 Y Pru(F)\H(A)NG(A)*

<

/ Xgl,PQ (x)
oc0 ’ Pru(F)\H(A)NG(A)*F

2 > S PR | Ned(e))pde

{R:PLCRC P2} cem (F)No Xe((Wh2)'Ns)(F)

- Z /P Xpy,p, (%)

{R:PLCRC Py} Y Pr (FO\H(A)NG(A)!

) S [ePR(R)INd () 3 da.

Ee(mMP Ns)(F) Xe((Wh2) Ns)(F)

We reduce ourselves to bounding

/ ><1T31,P2 (5’3)
P (F)\H(A)NG(A)?

> S D)) Ned (o) [ de

ge(mB Ns)(F) Xe(@h2)/ns)(F)

(4.2.3)

for any fixed relatively standard parabolic subgroup R of G such that P, C
RCP;.

By Iwasawa decomposition and our choices of measures, the integral over
Py g (F)\H(A) N G(A)! can be decomposed as integrals over

(nlamlvk) € NPl,H(F)\NPLH(A) X MPl,H(F)\MPLH(A) N G(A)l X KH'
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Then

/ ><1T>1,P2 ()
Py g (F)\H(A)NG(A)?
> > |07 " (X)||INvd(21) |5 do

€E(ME, N9)(F) Xe((@y?)'Ns)(F)

= / / / FP (my,T)
Kpu MPl,H(F)\MPl’H (A)HG(A)I NPl,H(F)\NPl’H (A)

’n1m1k, v
OB (Hp ) ~Tr) Y >l
€EmP Ns)(F) Xe((W2)/ns)(F)

e 271 (e (MO)INYd (my )| dng dma dE,

where we write m1 = (m1,1,m1,2) € GLp p(A) X GLy p(A).
By Corollary 4.13, the following subset of Mp, ,, (A) N G(A)!

U (ep,nMpy i (8)-(A% (P, to)NAG ™ (Pryto, Tw))-(KuNMp, 4, (A))
BEP(Py,P1)

projects surjectively on {m1 € Mp, ,,(F)\Mp, ,,(A) N G(A)'|FF(my,T) = 1}.
Let Ty € Np, ,(A) be a compact subset which projects surjectively on

Np, y (F)\Np, ;; (A). ThenT'1-(0p NMp, , (A)) is a compact subset of N (A).
Let I'; € Np, ,(A), I's C NEZ "(A) and Ty C Mp (A)! be compact subsets

(independent of T') such that F1 (g, N Mp, ,;(A)) C ToI'sI'y. We have

/ 35 ()
Py g (F)\H(A)NG(A)!

> > |28 (X)|INrd(21) |} da

ge(mB Ns)(F) Re((Wh2) Nns)(F)
S ‘@ Z / / /G / / UP1 HPl TP1) Z
BeP(Bo,Pr) Ky JTy JA (P1,t0,Tp) /T3 JT2 56(5\1@ ns) (F)

3 gt (X)) |e =2 T2 ) |Nrd (a1)[§ dnadndadmad,
Xe((@?)ns)(F)

where ¢; = vol(Kg N Mp, ;;(A)) is a constant independent of T'.

LEMMA 4.17. Let z € H(A),£ € (mgNs)(A) and X € (RpNs)(A). Let R C P,
be a pair of relatively standard parabolic subgroups of G. For ny € Np, ,(A),
we have

o2 H(X) = 0P (X).
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Proof of Lemma 4.17. Let Us := 712_157’1,2 —&. Then

-~

@Zﬂ’R(X) = / fx™ng (€ 4+ U)ngz) T ((U, )AQ)dU
(nrNs)(A)
- / @Y€+ Us + 1y 'Wna)a) B (U, R))dU.
(nrNs)(A)

Since both Us and n;lUng — U belong to (np, Ns)(A), we have
Uy +n53'Uny — U, X) =0,
so

o2 (X)) = Fla™ Y€+ Us + ny 'Ung)z) ¥ ((Us 4+ ny 'Ungy, X))dU.
(nrNs)(4)

Because the change of variables Us + ng 'Uny +— U does not change the Haar
measure, we obtain

-~

nax, v z,R
o2 H(X) = 0P (X))

Using Lemma 4.17, we get

-~ ~ -~

nanamk,R namk,R aa”*namk,R
P (X) = e R = o (X).

By change of variables a~'Ua + U, using the fact that
U, X) = (a""Ua,a ' Xa),

we have
(I)ngnamk,R()?) _ 62p3,+(HB(a))q)aflnamk,R(afl)?a)
¢ a"1¢a !

where we denote by pr + the half of the sum of weights (with multiplicities)
for the action of Ag on ng Ns. From the reduction theory (see [2, p. 944]), we
know that for a satisfying oﬁf (Hp,(a) —Tp,) # 0, a~'na belongs to a compact
subset independent of T'. In sum,

/ N
Py g (F)\H(A)NG(A)!

> S el (R Ned ()| de

ge(mp Ns)(F) Xe((wh2)ns)(F)

< e Z sup/ 6(2PR,+_29150)(HB(Q))0.£§ (Hp, (a) — Tp,)
AG > (P10, Ts)

— yel’
BeP(Po,P1)

> > 0¥, (¢~ Xa)||Nrd(ay) [} da,

ge(my Ns)(F) Re((mh2) ns)(F)
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where c¢s is a constant independent of T', and I is a compact subset of H(A)N
G(A)! independent of T

Denote by O the ring of integers of F'. Fix an F-basis for each weight space
for the action of Ag(F') on s(F). Since the function f € S(s(A)) is compactly
supported at finite places, there exists an Op-scheme structure on such weight
spaces independent of T' such that the sums over ¢ € (mf Ns)(F) and X €
((WE2) N's)(F) can be restricted to & € m3 (F)Ns(Op) and Xe @) (F) N
s5(Op) respectively. To see this, one may consult [5, §1.9 and p. 363] for
details, and one needs to replace mgr and ng in loc. cit. by mpNs and ngNs
respectively.

Fix an R-basis {ey,--- ,e¢} of the R-linear space s(F ®g R), whose dimension
is denoted by ¢, consisting of eigenvectors for the action of A%. Let || - || be
the standard Euclidean norm with respect to this basis. Consider a sufficiently
large integer k > 0 to be described precisely at the end of the proof. There
exists an even integer m > 0, a real number k, > 0 for each a € A?, and a
real number c3 > 0 satisfying the following conditions (cf. [5, (4.10) in p. 372]
or [2, p. 946-947]):

(1) if R = Py, m = 0;
(2) for all a € A — ARk, > k;

(3) for all ag € A% (P2, o),

) lag' Kaol ™™ <e5 [ e Feotoo),  (4.2.)

Re@r2) (F)ns(Or) N

We fix such data.
We extend any differential operator 0 on s(F ®gR) to s(A) by defining 9(foo ®
X*°) := (0f) ® X (see Section 2.3 for the notation). We also write

ﬁﬂﬂfw=/ (N (@ €+ V)2) (U, X))dU
(nrNs)(A)

— — . .
For a multi-index i = (i1,--- ,ir) € Z5,, denote by 0 := (%)“ . (6%[)”
the corresponding differential operator on s(F ®g R). Since m is even, the
function X — || X||™ is a polynomial with Z-coefficients on WL Ns)(F @gR).
Invoking integration by parts (see |7, Theorem 3.3.1.(f)] for example), we see
that there exists a differential operator 8™ on 5(F ®g R) satisfying the fol-

lowing two conditions.
rd
(1) 8™ is a finite Z-linear combination of @ * ’s with the properties:

.
e the sum of components of i is m;

— .
e all components of i are even integers;
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e all non-zero components of ¢ correspond to eigenvectors lying in

(nh? Ns)(F @gR).
(2) For X # 0, we have

R/ Si—m) w2y, RAd(y~ o™ &
907 (X)| = || X|| 7 @AM DT (X)),

-
We fix such a 9(™). Suppose that 9™ = r—0", where 7 is a finite set of
—
iez
multi-indices and r— € Z. Then for X # 0, we have

R —13 m R,0 1%
825 0 K] < (o) Kol 3 020 0 R,

zEI

where c4(y) is a continuous function of y.

Denote by ®(Ap,mgr N s) the set of weights of Ag in mp Ns. For any u €
®(Ap,mg Ns), let m, be the corresponding weight space. From [21, §41|, we
know that there exists a function ¢, € S(m,(A)) for each p € ®(Ap, mg N s)
and a function ¢n,,ns € S((ngNs)(A)) such that for all £+ U € (mpNs)(A) B
(ngNs)(A) and y € T,

Z|a Ny (E+0)y)| < T &) | dnnnsV),

4 EI pneEP(Ap,mprNs)

where ¢,, denotes the projection of £ to m,(A).
Let a € Ag’oo(Pl, to, Tp) be such that J?f (Hp,(a) —Tp,) # 0. It is shown in
[5, p. 375] that a(Hp(a)) > to for all @ € AL, Now we have

> S jerh (a7 Xa)

EE(ME Ns)(F) Xe(®2)/ns)(F)

> S jert, (o X

gemi (F)Ns(Or) Xe(@h2) (F)Ns(Or)

< ) > a@leXa|” ’”Z@y’ffg; (a1 %a)|

gemi (F)Ns(Or) Xe(@h2) (F)Ns(Or) Ter

<es Y [T ulu@ e

gemi (F)Ns(Or) \ned(Ap,mrNs)

> la™* Xa =™

Xe@@p) (F)ns(OF)

SC5¢3 Z H ¢u(#(a)71§u) ) H eikaa(HB(a))a

EGﬁIgl(F)ﬂﬁ(OF) HEDP(Ap,mRNs) aeA?
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where ¢5 := supca(y) f(ans)(A) Pnpns(U)dU, and we have applied (4.2.4) to
yel )
ao = a in the last inequality. Thus

/ N
Py g (F)\H(A)NG(A)!

> S eI Ned (e[ d

ge(@my Ns)(F) Re((@h2)'Ns)(F)

< cocses Z e(QPR,+—2Pﬁ0)(HB(a))U£f (Hp, (a) — Tp,)
Ag’oo(Pl,to,TB)

Z H ¢u(ﬂ(a)_1€u)

56:71,131 (F)Ns(OF) \HEP(AB,mrNs)

BEP(Po,P1)

H e~ kaa(Hp(a)) INrd(aq)|ida.

aGA?

Denote by X7 the positive weights of mp M s under the action of Az. Con-
sider the subsets S of £5"™ with the following property: for all @ € AR~ ALy
there exists u € S such that its a-coordinate is > 0. Then

> || BRI )

¢emy (F)Ns(Op) \HEP(Ap,mrNs)

<3 |11 Y o)

peS \é_em_,(0OF)—{0}
H Z ¢u(ﬂ(a71)€+)
pexMRT \éyemy(OF)

The rest of the proof is analogous to that of [5, Proposition 4.4], and we shall
only sketch main steps and point out additional ingredients. By the argument
in [5, p. 373, for a € A% (P2, to), we have bounds for two factors

11 > (@) | <o J[ e hote@)

peS \é-em_,(Or)—{0} acAR_AT1

and

I [ X et | < cretomtomaiimm),

peshE™ \Erem,(Or)
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where c¢g and c¢7 are constants independent of T'. We deduce that

2ons =20 )Hp@) I oulul@¢

gemf (F)Ns(Or) \HED(Ap,mpNs)

H e~ FeaHp(@) | \Nrd(ay)[3

aGA?

<egelPret—20m)H@) T kalin@) | ((Gon.i=2on.4)(Hp (@)

aeAR_AT

H e~ FeaHp(@) | \Nrd(ay)[3

aGA?

:cge(2p3'+_2pﬁo)(HB(a))|Nrd(a1)|3 . H o—ka(Hp(a))

aeAR_AD:

[ e *etio@

aeA;Q
where cg is a constant independent of T'. The last expression only differs from
[5, (4.17) in p. 375] by a factor
1/p %
e(QPB,+_2pﬁ0)(HB(U«))|Nrd(a1)|§ — (2084 =2pp))(Hp(a)) INrd(as) 11&
[Nrd(as)[}/”

in the form of e*(5(2) where \ € (ag)*. We shall see that this discrepancy
will be unimportant when we follow the end of the proof of [5, Proposition 4.4]
(cf. |26, end of §3.2]). Write

A= Z caor | + N,

aEA?

where ¢, € R and X € (a§))*. By [4, Lemma 8.3.(b)], there exists a constant
cg > 0 such that for all T} € aIGD1 satisfying Jgf (Th) = 1, we have

N(To) <eo | Y BT |,

BeAy?
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where we write Ty = T2 + Ty with T? € agf and T» € aIGDZ. Hence, when

a € Ag’oo(Pl,to, Tp) satisfies agf (Hp,(a) — Tp,) # 0, we have

Mis@) = | ] ecatin@) | . X iry(@)

aGA?

_ H eCac(Hp(a)) | | e,\’(HP2(a)—T,§2)eA’(T§2)

P
acAG?
< H ecea(Hp(a)) | H eoote | ecroll Il
NN BeA?

where Tﬁ; is the projection of T'p, to CLIGD2 via the decomposition ap, = a% dag,

we let > tgwy with t5 € R be the projection of Hp, (a) — Tp, to a% via
BeAL?

the decomposition ap, = a% @ ap,, and c1g is a constant independent of T

To bound (4.2.3), it suffices to plug this extra factor into [5, (4.18) in p. 375].

More precisely, set

o ko + ca, for alloeGAngAg;
| kot kdca, forallacAE AL

Then there exists a constant ¢;; > 0 independent of T' such that

/ X, (@)
P1 g (F)O\H(A)NG(A)!

> > |0 (X)|[Nrd (1) |3 da
ge(MmB Ns)(F) Xe(@h2)/ns)(F)

< cuvol(Agl’Oo(tm TB))eclollT“

11 (e—k'aa(TB)/ (1+t)"ae<09—ké>tdt),
0

NN

where ALV (19, Tg) = A% (P1,to, Tp) N Mp, (A)', and n,’s are positive in-
tegers independent of T. We know that vol(Agl’Oo(tO,TB)) is of polynomial
growth in T and that ko, > k + ¢, for all a € A? — Agl # (). For sufficiently
regular T satisfying a(Tg) > €|/ for all o € A§, if we choose sufficiently
large k, then the last expression is bounded by Ce~NITl with a constant C
independent of T. O
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5 EXPONENTIAL POLYNOMIAL DISTRIBUTIONS

Let T be sufficiently regular, o0 € O and 7 be the quadratic character of A* /F*
attached to a quadratic field extension E/F. For f € S(s(A)) and s € C, define

I s )= [ KT (o) (Ned(2) Ned ()| de - (5.0.1)
H(F)\H(A)NG(A)!
and
I, f) o= [ K7 (@)n(Nrd (@))|Nrd (a1 ) [3.da,
H(F)\H(A)NG(A)!

where k}ro(z) and k?(z) are defined by (4.0.1) and (4.2.2) respectively, and we
write z = (21,22) € GLp p(A) X GLg,p(A). From Theorem 4.14, we know that

JET(n,s,-) and JET (1), s,-) are well-defined distributions on S(s(A)) and that

TGy, f) =D IS5 (0., ),

0eO

which is an analogue of the geometric side of Arthur’s trace formula.

5.1 A GENERALISED CASE IN THE PRODUCT FORM
Let @ be a relatively standard parabolic subgroup of G. Then
MQ = GLP1+Q17D XX GLpz-i—qz,D

and
Mgy ~GLy, p X+ xGLp,pXGLy pX---XGLg p,

! !
where > p; = p, > ¢; = ¢ and we allow p; or ¢; to be zero. The tangent space
i=1 i=1
of Mg/Mg,, at the neutral element is

0 MatPiXQi,D
Mo e = @ (Ma't‘h xpi,D 0 .
{1<i<l|piqi #0}

The conjugate action of Mg, (F) on (mg Ns)(F) can be described as follows:

T GLy, (D) 0 Mat,, xq, (D)
(1) if p;g; # 0, < GL, (D) acts on Maty, xp, (D) 0

by conjugation;

e GL,,(D) : . .
(2) if pig; = 0, ( GL, (D) acts on 0 (viewed as a 0-dimensional

vector space) trivially.
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We may generalise integrability in last section to the product setting here whose
proof is similar.

Define a relation of equivalence on (mg N s)(F) which is similar to that on
s(F) on each component. We denote by O™e™ the set of equivalent classes
for this relation. For o € O, the intersection o N mg(F) is a finite (perhaps
empty) union of classes 01, -++, 0; € O™2M%. Fix the minimal parabolic subgroup
]56 = 150 NMg, = ]50 N Mg of Mg, and its Levi factor My. We say that a
parabolic subgroup P’ of Mg is semi-standard (resp. relatively standard) if
My C P’ (resp. 150’ C P’). Notice that there exists a bijection from the set of
semi-standard (resp. relatively standard) parabolic subgroups of G contained
in @ to the set of semi-standard (resp. relatively standard) parabolic subgroups
of Mg given by P — P N Mg, whose inverse is given by P’ — P'Ng.

Choose so € QF (not unique) such that sgPy € Q. Fix the minimal semi-
standard parabolic subgroup Pj = (soP) N Mg of Mg depending on the
choice of . For any semi-standard parabolic subgroup P’ of Mg and T € ao,
denote by T the projection of sT in ap:, where s € Q< such that sP; C P'.
For s € QM and a semi-standard parabolic subgroup P C @ of G, we see that
sPy € PN Mg if and only if sqoPy € P. Then (s@T)pnm, = Tp which is
independent of the choice of ¢o. If T' € aJISU is sufficiently regular with respect
to Py C G, then ¢oT' € aJIgé is sufficiently regular with respect to Pj C M.
Let f" € S((mg Ns)(A)), P’ be a relatively standard parabolic subgroup
of Mg and 1 < j < t. Write P;; := P'N Mg, = P NnH. For
HARS MP}J (F)NP}I (A)\MQH (A)v define

e @)= S / P (X +D)2)dU.  (5.1.1)
Xemp (F)no; 7 (MprNs)(A)

For T € ap and « € Mg, (F)\Mg, (A), define

OEIED SIS
{P":P}CP"}
M M
So o FRCHp(0n) = Tp) - kG, (0).
SEPL (F)\Mqy (F)

For sufficiently regular T' € aJ]SO and {s;}1<i<; € C!, define
Q.T _ A Q,sQT
I (s )= [ K527 (2 (Ned (2))
Mq y (F)\Mq g (A)NMq (A)!

. H |Nrd(mi71)

1<i<l

H

Si
Ldx,

where we write © = (21,...,21) € GLp,44,,0(A) X -+ X GLp,+q,,p(A) and z; =
(i1, 252) € GLp, p(A) x GLg, p(A). As explained above, kJ%CQ,T and Jg’T

;05
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are independent of the choice of ¢g. Then we have well-defined distributions
Jgg’T(n, {s:},-) on S((mg Ns)(A)). It only depends on the projection of ¢oT'
to a?Q p, and does not depend on Tg. Now we define

t
JET =3 "JgoT (5.1.2)
j=1

and
JoT .= Z J?’T.
0cO
For f € S(s(A)), define f7) € S((mg Ns)(A)) by

FA(X) = /KH /(an)(A)f(k‘ (X + V)k)n(Ned(k))dV dk (5.1.3)
for all X € (mg Ns)(A).

5.2 w-STABLE PARABOLIC SUBGROUPS

In our case, we can embed G into g in the standard way. For any linear subspace
v of g, we denote by v* the intersection of v and G in g. Assume that p = q.
Let us denote n := p = ¢q. Then s*(F) is the union of classes in O*. Let

1, O
Section 3.4. Then w is the element in G exchanging e; and f; for all 1 <7 < n.
We see that wPyw™! = Py. We say that a semi-standard parabolic subgroup Q
of G is “w-stable” if wQw™! = Q. By Chevalley’s theorem, this condition is
equivalent to w € Q). Recall that a relatively standard parabolic subgroup @
of G is understood as the stabiliser in G of the flag

w = (0 1”> € G(F). In this section, we shall freely use the notation in

0 g <€1a' . 'aepufla' . 'afq1>D g <ela' : 'aep1+p23f15' : 'an1+qz>D
,C,_ T g <€15 o '7€P1+“'+p“f17 t 'an1+“'+qL>D7

! !
where > p; = > ¢; =n and we allow p; or ¢; to be zero.
i=1 i=1

PROPOSITION 5.1. Assume that p = ¢ = n. Let Q be a relatively standard

parabolic subgroup of G. Then @ is w-stable if and only if p; = q; for all
1< <.

Proof. Since w € G exchanges e; and f; for all 1 < i < n, the parabolic
subgroup wQw ™! of G is the stabiliser in G of the flag

0 g <f17' ! "fplvel" ! "GQ1>D ,C,_ <f1a' ' '7fp1+p2761" ' '7€q1+q2>D
g e g <f15 o 'ﬂfp1+'”+Pl’€1’ T "€Q1+"'+QL>D‘
Then wQw™! = Q if and only if the flags associated to wQw ™! and Q are the

same, which is equivalent to p; = ¢; for all 1 <4 </. O
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An illustrating example of w-stable relatively standard parabolic subgroups
of G looks like (when [ = 2)

S *x O ¥
* X X X
S *x O *
* K X K

X
PROPOSITION 5.2. Assume that p = q = n. The map P, — <E" E") n-

duces a bijection from the set of standard parabolic subgroups in GL,, p (namely
containing the group of upper triangular matrices) to the set of w-stable rela-
tively standard parabolic subgroups in G.

Proof. Tt is known that there is a bijection between the set of standard parabolic
subgroups in GL, p and the set of partitions of n. By Proposition 5.1, the
latter set is in bijection with the set of w-stable relatively standard parabolic
subgroups in G. The composition of these bijection is exactly given by the map

X
P, — <p" p"> ) O
Pn Pn

PRrROPOSITION 5.3. Assume that p = q =n. Let Q C R be a pair of relatively
standard parabolic subgroups of G. If Q is w-stable, then R is w-stable.

Proof. Suppose that R is the stabiliser in GG of the flag
0 ,C,_ <€17 t '76T15f17 te 'aft1>D ,C,_ <617 T '56T1+T27f15 o '7ft1+t2>D
g Tt g <€13 T ')€T1+"'+Tl/afla c 'aft1+“‘+t1/>D'

The condition @ C R tells us that the partition (p1,---,p;) (resp. (q1,- -, q))
is a refinement of the partition (r1,---,7) (resp. (t1,---,trr)) of n, and that
forall 1 < j <1, r; and t¢; are divided into the same number of segments in
these two refinements. Hence, if p; = ¢; for all 1 < i <[, then r; = ¢; for all
1 < j <I’. Thus this proposition results from Proposition 5.1. O

For any relative standard parabolic subgroup @ of G, define
@w-st — ﬂ R,
{R:QCR,wRw—1'=R}
which is the minimal w-stable parabolic subgroup of G containing Q.

PROPOSITION 5.4. Assume that p = q = n. Let o € O. The following three
conditions are equivalent:

(1) 0 € O%;

(2) for all relatively standard parabolic subgroup Q of G, if o N q(F) # 0, then
Q@ is w-stable;
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(3) for all relatively standard parabolic subgroup @ of G, if o Nmg(F) # 0,
then @ is w-stable.

Proof. The direction (2)=-(3) is trivial. We actually have (2)<(3) from Propo-
sition 3.5.

Next, we prove the direction (1)=-(2). We assume that o € O* and that
0N q(F) # 0 for some relatively standard parabolic subgroup @ of G. If Q is
not w-stable, let k be the minimal integer such that 1 < k <[ — 1 and that

> pi— > a#0.

1<i<k 1<i<k

Without loss of generality, we may assume that

Z Pi — Z ¢ <0.

1<i<k 1<i<k

ES3

Let <0 A> € 0Nq(F). Then A € gl,,(D) is in the form of <0

*
B 0 *>, where the

size of the zero matrix in the lower left corner is at least < > pi) X (1 +
k+1<i<l

> pi). Therefore, A is not invertible, which contradicts with o € O*.
k+1<i<l

This establishes (1)=(2).

Finally, we prove the direction (3)=-(1). We assume (3). Suppose that 0 ¢ O*.
Let P(\) := Prdap()), where (g 61
5], there exists 1 < m < n such that P(\) = A¥R()\), where R(\) = Prdc ()
for some C € GL,,—, (D). Let @ be the relative standard parabolic subgroup of

0 0 1,—m O

is any element in 0. By [23, Proposition

. 0 0 0 0

G withl =2,p; = ¢ =n—mand ps = g2 = m. Then C o 0 0 €
00 0 0

o Nmg(F), which contradicts with (3). This shows (3)=-(1). O

Denote by pg,+ the half of the sum of weights (with multiplicities) for the
action of Ag on ng N's. We see that pg+ = po — po, and that for @ C
R a pair of relatively standard parabolic subgroup of G, the restriction of

200+~ 2001, 10 0 cauals (Gpns —2pm, ),

LEMMA 5.5. Assume that p = q = n. Let Q be a relatively standard parabolic
subgroup of G. For allw"” € AY,, we have (2pq +—2pq, )(w") > 0. Moreover,
2pQ,+ —2pq, viewed as an element of (ag)* is zero if and only if Q) is w-stable.

Proof. Put e € aj (resp. f; € afj) to be the character of the action of Ay
on e; (resp. fi). Write e; € ag (resp. f € ag) to be the dual basis, i.e.,
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ef(ef) = 5” (resp. fi(f)) = 5%3) for 1 < 4,5 < n. A basis of aQ is given

by b =y 4 qp i1t ey gy, T bt T Sl g, fOT
1< <. erte hf € (ag)* to be the dual basis. Denote

l

Ek: (pi + @)
i=k41
wy = T(hY‘f'""f'hX)

(pz + qi)
2n

s
HM»
il

(Wi + -+ 1)

Recall that
(AG)Y ={=/N<k<i-1}

is a basis of ag. We can also see that

QpQ,Jr]aQ = dimp(D) Z (pigj + @ip;)(hi — hj)

1<i<j<i
and that
2pQu |aQ = dimp (D) Z (pipj + Giq;)(hi — h}),
1<i<j<l
SO

(20Q.+ = 2004 )|, = dimp(D) Y (pi —ai)(az — py) (B} — ).
1<i<j<l

l

!
Since ) p; = >_ ¢; =n, we have
i=1 i=1

0, ifk+1<i | < 1< | < k;
(h:hp(w,z){’ LS mae e R

1, fl<i<kandk+1<j<l
Then

(2pq.+ — 200y )(@)) = dimp(D) > (pi — a:)(gj — p;)

1<:<
k+1<_]<l
=dime@) | 3 pi= D w2 w3 ow
1<i<k 1<i<k k+1<<l k+1<j<1
2

1<i<k 1<i<k

It is clear that (2pg,+ — 2pg, ) (@) = 0 for all 1 < k <1 — 1 if and only if
pi=gq; forall 1 <i <. O
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5.3 EXPONENTIAL POLYNOMIALS

Let T1,T> € ag. Following [3, §2]|, define I'p(T1,72) € R inductively on
dim(Ap/Ag) by setting

RN —To) = Y (~1)HmA/AZ(T)D (T, Ta)
{Q:PCQ}

for any relatively standard parabolic subgroup P of G. This definition can be
explicitly given by [3, (2.1) in p. 13] and only depends on the projections of
T1,T5 onto ag. For T = (t1,...,tp+q) € ag, we denote X1 (T) :=t1 + - - - + .
If we use the notation in Section 3.4 and put e € af (resp. f € af) to be
the character of the action of Ay on e; (resp. f;), it is equivalent to say that
¥ = Z1gigp e;. For T, € ag and s € C, write

po.s(Th) = /G e2pQ =20 +sE) (TP (T, Ty)dT . (5.3.1)
a“Q

When p =g =mn,s =0 and Q is w-stable, it is reduced to

pQ.o(T2) = /G Lo(Ty, T5)dTy

4Q

by Lemma 5.5.

For @ C R a pair of relatively standard parabolic subgroups of G, denote
by Z(A§)"Y the lattice generated by (Af)Y in afy and by Z(AF)Y the lattice
generated by (AG)Y in af. Following [3, §2|, for A € a5 ¢ = ag ®r C, define

05\ =vol(ali /Z(AE)) T M=)

wVE(Ag)V

and
05N ==vol(aG/Z(AH) T  MeY).

ave(AR)Y

PROPOSITION 5.6. Let Q be a relatively standard parabolic subgroup of G, Ty €
ag and s € C. The function Ty +— To(Th,T2) is compactly supported on ag.
Moreover, the function To — pg s(T2) is an exponential polynomial in To;
more precisely, there exists a polynomial pg r,s (not necessarily unique) on ag
of degree < dim(Ag/Acg) for each relatively standard parabolic subgroup R

containing QQ such that
pQ.s(Ta) = Z e(sz,wzpaHﬂEl)(TfR)pQ rs(TC5),
{R:QCR}
where we write TQCfR for the projection of T> € ag in ag via the decomposition
ag = ag @ ag @ag. Whenp=gq=n and s =0, the purely polynomial term of
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pQ,0(T2) is given by

Z pQ,R,O(TQC,;R)a

{R:QCR,wRw—1=R}

which is a homogeneous polynomial in T of degree dim(Aaw-st/AG),' n par-
ticular, if Q is w-stable, then pgo(T2) is a homogeneous polynomial in Tr of
degree dim(Ag/Ag).

Proof. The first statement is [3, Lemmas 2.1]. First let us prove the second
one.
From [3, Lemma 2.2|, we know that the integral

/ AMTIT o (T, Ty)dTy
ClG

Q

is an entire function in A\ € ag ¢, and its value is given by

Z (_1)dim(AQ/AR)eA(TfR)é\g()\)—leg()\)—l
{R:QCR}

when the latter expression makes sense.

Fix € € aj) ¢ such that 95(5) # 0 and 0G(c) # 0 for all relatively stan-
dard parabolic subgroups R containing ). Then for ¢ € R* whose absolute
value is small enough, we also have 95(2pQ7+ — 2pgy + X1 +te) # 0 and
05 (2p0,+ — 2pqu + sX1 + te) # 0 for all relatively standard parabolic sub-
groups R containing Q). Let A = 2pg 1 —2pg,, + 31 +te in the formula above,
and we obtain
Po.s(Ty) = lim (—1)dim(Aa/AR) (200 +=2p@ +sT1+te)(T5R)

t—0
{R:QCR}

105200+ = 2pQu + 551 + )M 0F (20,1 — 2pqu + sT1 +te) .
Since the restriction of 2pg + — 2pg, + sX1 to ar equals 2pr + — 2pR,, + 531,

we get
(2004200 +551)(TS'R) _ o(2pR.+—2pRy +551)(T5 R)

We can put pg, R,S(TSR) to be the constant term of the Laurent series devel-
opment around t = 0 of

t s (—1)8mA@/AR) N TERGE (20 | — 2po, + 551 + te) !

~91G2(2pQ1+ —2pgy + 58X + tE)il.

Then pQ,R,s(TQCfR) is a polynomial in TQCfR of degree < dim(Ag/Ag). Hence we
prove the existence in the second statement.
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Now let p = ¢ = n and s = 0. From Lemma 5.5, we know that the purely
polynomial term of pg o(71>2) is given by

> pQ.ro(T5R)-
{R:QCR,wRw—'=R}

Next we compute the degree of pg ro that we chose above for each w-stable
parabolic subgroup R containing ). Denote

Ny = t{w" € (AF)" : (2p0,+ = 2pqu)(@") = 0}

and
Nz = t{a € (AR)" : (2pq.+ — 2pqu)(a) = 0},

where f means the cardinality of a finite set. Then
deg(pQﬁRﬁo) = Nl —+ N2.

Recall that both of (3%)\/ and (A%)Y are bases of a§. Since R is relatively
standard and w-stable, by Lemma 5.5, we have

Ny = dim(AR/Ag).

Keep the notation as in the proof of Lemma 5.5 for (). Since R is relatively
standard and w-stable, by Proposition 5.1, we may suppose that R is the sta-
biliser in G of the flag

0 g <€15 o '7€T15f17 o 'afr1>D g <€15 o '7€T1+T25f17 t 'afT1+T2>D
g t g <€1, o "e’f1+“‘+7‘l/afla Y fT1+'”+Tl/>D'
The fact that @ C R tells us that both of the partitions (p1, ---,p;) and (g1, -+, q)

are refinements of the partition (r1,- -, ry) of n, and that every r; is divided
into the same number of segments in these two refinements. Then

(ﬁg)v = {projection of w) € (ﬁg)v to ag 1<k<i-1,
k J
Y ita) £y 21 <<l - 1}
i=1 i=1

= {projection of w) € (ﬁg)v to ag 1<k<i-1,

k k i
M<j<l—1sty pi=)» ¢= ir}
=1 =1

i=1

Because the restriction of 2pg + — 2pg,, to ar equals 2pr + — 2pr,, and R is
relatively standard and w-stable, by Lemma 5.5, we do not need the projection,
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ie.,

(2p0,+ — 2pQx) (projection of wy € (ﬁg)v to ag)
=(200.+ — 20au) (@) € (B§)).
From the proof of Lemma 5.5, for any 1 < k < [, we have (2pg,+ —2pq,, )(w)) =
0 if and only if ij pi = ij q;- We can also see that @w_St is the w-stable
parabolic subgro&?R contzgiiling Q@ with maximal I’ := dim(Ag). To sum up,

we have

N1 = dim(Aaw—st/AR).

Hence for each w-stable parabolic subgroup R containing @,
deg(pQﬁRﬁo) = N1 + N2 = dim(Aaw—st/AR) + dlm(AR/AG) = dim(Aaw-st/AG>.

The assertion about the particular case where @ is w-stable is [3, Lemma 2.2]
combined with Lemma 5.5; it can also be read from the results above that we
have proved. O

5.4 QUALITATIVE BEHAVIOUR IN T’

For a relatively standard parabolic subgroup @ of G, let {5?}1§i§l € 7! be the
explicit constants determined by

H |Nrd($i,1)

1<i<i

5 (2004 ~200,) (Hay =) (5.4.1)

forallz € Mg, (A)NMg(A)', where we write z = (x1, ..., 7;) € GLp, 14, p(A)X
cee X GLpl-l-ql,D(A) and T; = (mi,1,$i72) S GLpi,D(A) X GLqi,D(A). priQi =0

for some 1 < i <, we shall take [Nrd(z;1)|3* =1 and s% = 0 by convention.
Then such constants are unique.

PROPOSITION 5.7. Let @ be a relatively standard parabolic subgroup of G. If
piq; # 0 for some 1 <1i <1, then

57 =2d (Z(Pk — )+ Y (a _Pk)> :
k<i k>i

When p = q =mn, if Q is w-stable, then s? =0 forall<i<lI.

Proof. Assume that p;g; # 0 for some 1 < ¢ <I. Let x € Mg, (A). We have
(1) the contribution of ;1 to e?°@+Hax (#)) is the d( Sag—>. qk)—th power

k>i k<i
of |Nrd(x;1)|a;
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(2) the contribution of z; 1 to e2ren (Hoy (¥)) ig the d( Sor—>. pk)—th power
k>i k<i

of |Nrd(x;1)|a;

(3) the contribution of z; 5 to e?,@+Her () s the d( Spg—>. pk)—th power
k>i k<i
of [INrd(z;2)|a;

(4) the contribution of z; 5 to e2Pen (Her (#)) s the d( Sag—>. qk)-th power
k>i k<i
of |Nrd(zi12)|A.

In sum, the contribution of z; to e(2r@.+—2rer)(Hey (%)) ig the product of the

d( S s — ) + 3 (g — pk))—th power of |Nrd(z;1)[a and the d( S (g —
k<i k>1 k<t

o)+ > (b — qk))-th power of |Nrd(z;2)]a.
k>i

Now let z € Mg, (A)NMg(A)*. Then |Nrd(x;1)Nrd(x;2)|a = [Nrd(z;)|a = 1.

Therefore, the contribution of z; to e(?r@+—2rex)(Hay (#)) is the 2d( > (pk —
f<i

ar)+ > (g —pk))-th power of |[Nrd(x;,1)|a. We have proved the first statement.

k>i
The second statement is nothing but a special case of the first one, since we
have pi = qi for 1 < k <[ in this case. O

THEOREM 5.8. Let T’ be sufficiently regular, o € O and f € S(s(A)). Then
for all sufficiently reqular T and s € C, we have

J0G7T(775 s, f) = Z pQ,s(TQ _ Té)e(QPQHr*?PQH JrsEl)((T/)g)
{Q:PCQ}
JET (1, {52 + 5}, f3),

where we write (T’)g for the projection of T¢, € ag in ag via the decomposition
ag = ag @ ag, the distributions JOG’T and J?’T/ are defined by the formulae

(5.0.1) and (5.1.2) respectively, and fg and pg,s are defined by the formulae
(5.1.8) and (5.3.1) respectively.

COROLLARY 5.9. Let 0 € O, f € S(s(A)) and s € C. Then the functions
T — JOG’T(n,s,f) and T + JET(n, s, f) are the restriction of exponential
polynomials in T, so we can extend them to all T € ag. When p = q = n
and s = 0, their purely polynomial terms have degree < n — 1; in particular, if
0€0* (eg,0€0), T J(,G’T(n,O,f) is the restriction of a polynomial in
T of degree < n — 1.

Proof of Corollary 5.9. It results from Theorem 5.8, Propositions 5.6 and 5.4.
O
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Remark 5.10. We may extend our result to the product form in Section 5.1
by similar argument. Let @) be a relatively standard parabolic subgroup of G.
Let 0 € O, f' € S((mg Ns)(A)) and {s;}1<i<; € C'. Then the functions
JET (0, {s:i}, 1) and JT(n,{s;}, f') are the restriction of exponential poly-
nomials in 7" independent of T, so we can extend them to all T" € ay.

Proof of Theorem 5.8. Let P be a relatively standard parabolic subgroup of G,
§ € Py(F)\H(F) and z € H(A)NG(A)!. Substituting Ty = Hp(dz) — T} and
Ty = Tp — T in the definition of I'p(17, T5), we get

FE(Hp(Ox) —Tp) = Y (—1)4mAe/16)28 (Hp(62) — Tp)

(Q:PCQ)
To(Hp(0x) — Th, Tp — Th).
Then
IS (0,5, f)
-/ (X cummerno S e - 1)
H(F)\H(A)NG(A)! (P:PyCP} SePy(F)\H(F)

“kfpo (5:0)) 7(Nrd(z))|Nrd(z1)|3dz

Y (Cpiman/ae 3 < 3

(P:ByCP} SePu(F\H(F) “{Q:PCQ}

/H(F)\H(A)ﬁG(A)l

(—1) I Ae/AFR (Hp (5x) — Tp)To(Hp(S7) — Th, Tp — Tz/v)) ks,p.o(67)
-n(Nrd(x))|Nrd(x1)|3dx.

Exchanging the order of two sums over P and (), and decomposing the sum
over Py (F)\H(F) into two sums over Py (F)\Qu(F) and Qg (F)\H(F), we
have

LRYEEDS D SRNEIEEA
(@:Bycq@y T HINHIMINGWT b 5 cpeqy
> Y. FR(Hp(8w) - Tp)
6'€Qu(F)\H(F) 6€ P (F)\Qu (F)
To(Hp(66'z) — Tp, Tp — Tp)ks, p,o(66'x)n(Nrd(x))|Nrd(z1 ) |3 dz.

Combining the integral over H(F)\H(A) N G(A)! and the sum over
Qu(F)\H(F) into an integral over Qm(F)\H(A) N G(A)!, and using the
fact that

Pr(F\Qu(F) = (Pu(F) N Moy, (F)\Mqy (F),
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we obtain
I8, )= > > (-pydimiar/de)
(Q:Rocqy @TUINHBNGWT b B pegy

79 (Hp(0z) — Tp)Tq(Hp(6z) — Tp, Tp — Tp)
5€(Py (F)NMq,; (F))\Mq 4 (F)

-k po(6x)n(Nrd(x))|Nrd(z1)|3de.

By Iwasawa decomposition and our choices of measures, the integral over
m(F)\H(A)NG(A)! can be decomposed as integrals over

(m,a,m, k) € Ny (F)\Nay () x AS™ x Mo, (F)\ Mg, (4) N Mg(A)! x K.
Then

- ¥ [ [ [
) 2 K J Ma, (F)\Maq,, (8)nMa(a)t J A= INg, (F)\Na,, (4)

{Q:PCQ}

Y. (ytmar/ae > 78 (Hp(namk) — Tp)

{P:P,CPCQ} Se(Pu (F)NMq g (F)\Mg; (F)
To(Hp(dnamk) — Tp, Tp — Tp)ky,p,o (dnamk)n(Nrd(mk))[Nrd(aimi)[3
e 2ren (Hoy (@) dn dadmdk.
Notice that
78 (Hp(dnamk) — Tj) = 73 (Hp(dm) + Hp(a) — Tp) = 78 (Hp(6m) — Tp),
and that
Lq(Hp(dnamk) — Tp, Tp — Tp) = Tq(Hg(dnamk) — T}, Tq — T3)
=Tq(Hg(a) — Th, Tg — Th).

In addition, by change of variables, we see that

by po(Gnamk) = 3 / F((Snamk)" (X + U)snamk)dU
Xemp(F)no ? (WPNS)(A)
= Z / f((0a " 'namk) (X + a"'Ua)da™ ' namk)dU
e (npns)(4)

= Z / f((6a™ namk) ™Y (X + U)da™ ‘namk)e?re+Hala) qrr
p(F)No (npNs)(A)
+(HQ(G))kaDJ,(5(flnaml<:).
Since da~'nad~! € Ng,, (A) C Np, (A) and ks p, is left invariant by Np, (A),
we deduce that

kf po(dnamk) = e?re+He(@ g, o (5mk).
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In sum, the integrand for the term indexed by ) in the above formula for

JET (n, s, f) is independent of n € Ngn (F)\Ng, (A). We can choose the Haar
measure such that vol(Ng, (F)\Ng, (A)) = 1. Then

JE s f) = ) (AGM INtd(ay) |5 e(?ra+—20en) (Ha(a)
Q

{Q:PCQ}
To(Hg(a) - Th, T — Té)da) / 1 >
May (F)\Moy (A)0Ma(8)' b 5 by
(—1)dim(Ar/Aq) 3 7C(Hp(6m) — Tp)

6€(Pu (F)NMqy (F)\Mqy (F)

( / kfypyo(émk)n(Nrd(k))dk> n(Nrd(m))|Nrd(my)|§ e~ 2Pen Hen (M) g,
Ku
By the definition of the Haar measure on Ag’m, we have

[ INrdan)felre-s e eDT g (Ho () ~ T, T ~ To)da

— /G e2ra—20@u +STOT (T4 — T}y, Tg — Th)dT)
a3
:e(2pQ,+72pQHJrSEl)((T,)g) /G 6(2PQ,+72PQH+521)(T1)FQ(T1, TQ — Té)dTl
a3
:e(2PQ,+*2PQH+521)((T,)g)pQ,s(TQ — Té?)

Since np = ng @ ng, by change of variables, we see that

k’f P, g (5mk:
= > / / F((6mk)™ (X + U + V)omk)dV
Xemp(F)No Pns)(4) (nons)(A)
— 200+ (Hay (m)) /
2 m)(A)

Xemp(F)No

/ P (Em) " (X + U)om + V)R)AV,
(n@Ns)(A)
SO we can write

[ b ma(Gmkin e

et oy (m)  § / fQ(((Sm) L(X + U)om)dU
n Ns)(

XEmp(F)mo

—e20Q,+(Hoy (M) Z k: om)

f" PNMQ,0; (
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by (5.1.1). Now we can draw our conclusion by noting that

JET ({32 + s}, £3)
t

=1 I May (P\May (M) 5o

Ppcin, (Hpontg (0m) — (5@T") Py

Se((PNMQ)(F)NMq y (F)\Mq 4 (F)

ke (5m)n(Nrd(m))|Nrd(my ) |5 @@+ =20en) (Hag (M) gy,

fg,PF‘IMQ,OJ

:/ Z (_1)dim(AP/AQ)
M

Q@ (F)\Mgqy (A)NMq(A)! (P:PyCPCQ}

M
72 (Hp(om) — g kanPmMQ o) (6m)
S€(Pr (F)NMgq 4 (F)\Mq g (F)

n(Ned(m))[Nrd(my )| e+ =20n) Han i,

5.5 INDEPENDENCE OF CONSTANT TERMS

Let JE(n,s,f) and J%(n,s,f) be the constant terms of JUG’T(n,s,f) and
J&T(n, s, f) respectively. We fix a common minimal Levi subgroup My of H
and G.

Firstly, the distributions J&(n, s, f) and J%(n,s, f) are independent of the
choice of the relatively standard minimal parabolic subgroup Py of G at the
very beginning of last section. In fact, let Pj be another relatively standard
minimal parabolic subgroup of G and o € Q¢ such that P} = o0Py. Denote
by JS , (77, s, f) and Jg, (n, s, f) the distributions obtained starting from Fj.

Then if T € ap;, we have Jg;’z(n,s,f) = JOG’U?IT(n,s,f), S0 Jg;,a(n,s,f) =
Js (s, f).

Secondly, the distributions J&(n, s, f) and J%(n, s, f) are independent of the
choice of the minimal parabolic subgroup ]30 of H. In fact, let ]36 be another
minimal parabolic subgroup of H and o € Q¥ such that ]36 =0 'P,. Put P} :=
o 1Py. Denote by J}%’Ta(n,s,f) and J}% 0(77,s,f) the distributions obtained
starting from ]56 and PJ. We can apply the argument of [5, Proposition 4.6] after
some minor modifications here to prove that JUG’T(n, s, f) = Jg,’iilT(n, s, f),

6>

so JE(n,5,f) = IS, (n.5.F).
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6 NON-EQUIVARIANCE

Let @ be a relatively standard parabolic subgroup of G, s € R and y € H(A)N
G(A). For f € S(s(A)), define ff . € S((mg Ns)(A)) by

1o (X) = /K ) /( o FOOE VRN Ho v

(6.0.1)
for all X € (mg Ns)(A), where pg s is defined by the formula (5.3.1).

PROPOSITION 6.1. For f € S(s(A)) andy € H(A)NG(A)!, we denote f¥(z) :=
flyzy=1). Then for all sufficiently reqular T, o € O and s € R, we have

JET(n, s, f¥) = n(Nrd(y))|Nrd(y1)[3
> el et I IR ({52 + 5}, 1 ),
{Q:PCQ}

where J&T and J&T are defined by the formulae (5.0.1) and (5.1.2) re-
spectively, {S?}lgigl € 7' are the explicit constants determined by (5.4.1),
and we write Tg for the projection of Ty € ag in ag via the decomposition

ag = ag D ag.
Foro e O and f € S(s(A)) (resp. f' € S((mgNs)(4A))), thanks to Corollary 5.9

(resp. Remark 5.10), we may take the constant term J& (1, s, f) of JUG’T(U, s, f)

(resp. JE(n,{si}, f) of JET(n, {s:}, ) for s € C (vesp. {si}1<i<i € Ch).
When s = 0 (resp. s; = 0 for all 1 < 4 < 1), denote J(n, f) := J¥(n,0, f)

(vesp. J&(n, f') == J& (0, {0}, f)).
COROLLARY 6.2. Assume that p=q=n. Let f € S(s(A)),y € H(A) N G(A)!
and o € O. We have
JE (0, f*) = n(Nrd(y) > T2, £0.)-
{Q:PCQwQw=1=Q}

Proof of Corollary 6.2. We apply Proposition 6.1 to the case s = 0 and consider
the constant terms of both sides. Because JUQ’T is independent of Tg, by
Lemma 5.5, only w-stable ) contribute to the purely polynomial term. Then
we apply Proposition 5.7 to the case p = ¢ = n to conclude. O

Proof of Proposition 6.1. By definition,

JET(n,s, f¥) =/ (
H(F)\H(A)NG(A)!

Z (—1)dim(4r/Ac) Z

(P:PyCP} S€ Py (F)\H(F)

?S(Hp(éz) —Tp)- kfy1p10(5x))n(Nrd(z))|Nrd(z1)|gdz,
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where
kfy7P70 (5:0)

_ /( " Fy(62) " (X + U)say™)dU = ky.po(dzy™).

Xemp(F)No
By change of variables, we have

I s = [ (
H(F)\H(A)NG(A)!

Z (71)dim(Ap/AG) Z

(P:ByCP} 6€ Py (F)\H(F)
75 (Hp(dwy) — Tp) - kf,P,o(5z)>n(Nrd(wy))INrd(wlyl)IRdw-

For x € H(A) and P a relatively standard parabolic subgroup of G, let kp(z)
be an element in Ky such that zkp(z)~! € Py(A). Then

75 (Hp(0zy) — Tp) = 75 (Hp(6z) — Tp + Hp(kp(5z)y)).

Substituting 71 = Hp(dz) — Tp and To = —Hp(kp(dz)y) in the definition of
Tp(T1,Ts), we get

TE(Hp(Suy) —Tp) = Y (=1)"mA/AIZL(Hp(52) — Tp)
{Q:PCQ}
~FQ (Hp (5:6) — Tp, 7Hp(kp (5:C)y))

Thus

I s ) = [ > (ptmiriae)

HENHANGA)! 57 py

> (X e e - 1r)

sePu(F)\H(F) “{Q:PCQ}

Tqo(Hp(0x) - Tp, HP(kP(&E)y))) kf.p,o(62)n(Nrd(zy))|Nrd(z1y1)[} dz,

Exchanging the order of two sums over P and (), and decomposing the sum
over Py (F)\H(F) into two sums over Py (F)\Qu(F) and Qg (F)\H(F), we
obtain

ISORED'S S (e

{@:Rcqy” TINIWNERT b cpeqy

> > FR(Hp(06'w) — Tp)

8'€Qu(F)\H(F) € Pu(F)\Qu (F)
To(Hp(66'z) — Tp,—Hp(kp(66'z)y))ks,p.o (66" z)n(Nrd(xy))|Nrd(z1y1)| 3 d.
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Combining the integral over H(F)\H(A) N G(A)! and the sum over
u(F)\H(F) into the integral over Qg (F)\H(A)NG(A)!, and using the fact
that

Py (F)\Qu(F) = (Pu(F) N Mg, (F))\Mq, (F),
we have
J0G7T(77a3afy) = Z Z (_1)dim(AP/AQ)
{@:Pycqy " ATINHIINGRT (b 5 cpeq)

Z ?S(HP(&E) —1Tp)

SE(PH (F)NMa,, (F)\Ma, (F)
To(Hp(6z) = Tp, —Hp(kp(52)y))ky,p.o (02)n(Nrd(zy)) [Nrd(1y1)[} dz.

By Iwasawa decomposition and our choices of measures, the integral over
m(F)\H(A)NG(A)! can be decomposed as integrals over

(n,a,m, k) € Ny (F)\Noy (&) x AG™ x Mg, (F)\Maq, (A) N Mo ()" x Ks.

Then
= Y [ f /.
{QﬁogQ} Kg MQH (F)\MQH (A)ﬂMQ(A)l 14Q’Oc
J Xy oy
Now (FN\Now ®) (p. B c pcy 8€(Pr (F)NMg 4 (F)\Mg ; (F)

?S (Hp(dnamk) — Tp)L'q(Hp(0namk) — Tp, —Hp(kp(dnamk)y))
-k p.o(6namk)n(Nrd(mky))|Nrd(aymyy, )|5 e 2Pen Haun (@) dndadmdk.

As in the proof of Theorem 5.8, we see that
7¢(Hp(dnamk) — Tp) = 7S (Hp(5m) — Tp),

and that
kf po(Onamk) = 2P+ Ho(@) g, p (5mk).

In addition,

To(Hp(dnamk) —Tp,—Hp(kp(dnamk)y))
=I'o(Hg(dnamk) — T, —Hg(kp(dnamk)y))
=Tq(Hq(a) — T, —Hq(kq(dnamk)y))
=To(He(a) - To, —He(ky)).

To sum up, the integrand for the term indexed by () in the above formula
for J&T (n, s, f¥) is independent of n € Nou (F)\Ng, (A). We can choose the
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Haar measure such that vol(Ng, (F)\Ng,(A)) = 1. Then

= ¥ [ [
o )= Z Ku J Mg, (F)\Mq,; (8)NMq(a)* JAG> ~Z

{Q:PCQ} {P:PoCPCQ}

(—1)dmar/ae) > 75 (Hp(6m) — Tp)
de(Pu (F)NMqy (F)\Mqy (F)

Tq(Hg(a) — T, —Haq(ky))e* e+ el kg p o (§mk)n(Nrd(mky))

ANrd(armyy: ) [ e~2Pn Hem (@) dodmdk.

First, let us compute the integral on Ag’oo, which is
/AG,OO INrd(ar)[jet?0e+ 200 ()T (Ho (a) — To, — Hg(ky))da

::/G e(QPQ,Jr*QPQH+521)(T1)FQ(T1 - Ty, *HQ(ky))dTl
te]
:e(QPQ,+*QPQH+SEI)(Tg)/ e(Qde,*QPQHJFSEl)(Tl)FQ(Tl,7HQ(ky))dT1

G
4Q

—e(20q.+ =200y Jrsﬁl)(TS)pQ’S (—Hg(ky)).

Next, we consider the integral on Ky, which is
[ bapa Gmbm(Nrd) .« (~Ho (k)
H

As in the proof of Theorem 5.8, we see that

kfpo(dmk) = 2@, +(Hgy (m)) Z / dU
Xemp(F)No (n2Ns)(A)

/ FEH(Om) N X + U)om + V)k)dV,
(ngNs)(A)
SO we can write
[ b Gmbn(Nea) . (- Ho )
Ky

oy (m) 3 / |, ey () (X 0)sm)

XEmp(F)ﬂO
_ 2 H m
e+ (Hau(m) Zka oy PNMG 0, (0m)
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by (5.1.1). Hence
JET (1,5, 1) = n(Ned())INed(g) [ . ePa+—2pau+s5)(TG)
{Q:PyCQ}

/ Z (71)d1m(Ap/AQ)
M. 1

Qu (F)\Mqy (A)NMq(A) {(P:PyCPCQ}

)3 R(6m) =T S HE )

d€(Pu (F)NMq g (F)\Mq 4 (F)
(Nrd(m))|Nrd(my)|§e@re+—2peu) (Hay () gy,

As in the proof of Theorem 5.8, we notice that

J(?7T(77’ {S? + S}’ fg,s,y) =

by

{P:PyCPCQ}

(—1)dim(4r/AQ) 3 79 (Hp(dm) — Tp)
6€ (P (F)N\Mag ; (F)\Mo; (F)

/MQH (FN\Mg y; (A)NMq (A)*

(Z K prbdans, <6m>)n(Nrd<m>>|Nrd<m1>|ze<2ﬂQv+-2ﬂQH><H@H<m>>dm.
Then we finish the proof. O

7 AN INFINITESIMAL TRACE FORMULA FOR Matyy 4 p ®Matgxp p//GLp D X
GLy D

THEOREM 7.1. For f € S(s(A)) and s € R,

S IEms, /)= I (s, f),

0O 0O
where f is the Fourier transform of f defined by (8.5.2), and JE(n, s,-) denotes
the constant term of JOG’T(n, 8,).
Proof. From the Poisson summation formula, we know that for any x € H(A),

> fexn - Y jux
Xes(F) Xes(F)
ie.,
kia(z) = ks o(2).

Using Corollary 4.16, for all sufficiently regular T satisfying «(T) > ¢ || T ||
for any a € Ap,, we have

TG (1,8, ) = FC (@, T)ky,c(x)n(Nrd(z))|Nrd(z1) |7 do

/H<F>\H<A>mG<A>1
<Cye-NITI
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and
J9T (s, f) — / F% (2, T)k; o(x)n(Nrd(z))|Nrd(z:) [} da
H(F)\H(A)NG(A)!
<Coe NITII,
Thus

|74 (.5, f) =TT (n, s, f)| < (C1 + Co)e NITIL

By Corollary 5.9, we know that both of J%T(n,s, f) and JG’T(n,s,f) are
exponential polynomials in 7. Because we can choose N to be large enough,
we deduce that

JET(n,s, f) =TT (n,s, f).

Since
T (s, )= 5 (0,5, f)
0O
and A R
T (.5, f) = I (s, f),
0cO
we obtain )
SIS s ) =D IS (s, f).
0€O 0O
We may conclude by taking the constant terms of both sides. O

8 THE SECOND MODIFIED KERNEL

In this section and the next, we shall focus on the case where p = ¢ = n
in order to get better description for distributions associated to regular semi-
simple orbits. We shall change our notation by denoting G := GLs, p and
H :=GL, p x GL, p without further mention.

Let f € S(s(A)), P be a relatively standard parabolic subgroup of G and
0 € O, (see Section 3.3). For z € Py (F)\H(A), define

Jr.po(z) == Z Z f((nz) ™t Xna).
Xemp(F)No nENpy (F)
Let T € ag. For x € H(F)\H(A), define
Jfele) = Y (mptm@riAer N R (Hp(0w) = Tp) - jipe(5).
{P:P,CP} S€Pu (F)\H(F)

By Lemma 4.2, we know that the sum over § € Py(F)\H(F) is finite. Re-
call that since 0 € O,s C OX, if mp(F)No # 0, then P is w-stable by
Proposition 5.4. Thus the above definitions only involve the relatively stan-
dard parabolic subgroups that are w-stable.
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LEMMA 8.1. Let P be a relatively standard parabolic subgroup of G and o € O,.
For X e mp(F)No, the map

Np, = np ﬂs,nr—m”len—X

is an F-isomorphism of algebraic varieties and preserves the Haar measures on
A-points.

Proof. Since P is relatively standard and w-stable, we can suppose

P = (pn,D pn,D) 8 ,
pn,D pn,D

where
GLnl,D Matnl Xno,D e Matnl xXny,D
GL”2,D T Mathan,D
Pn,D = .
GL,, b

Then we have

— mPn,D — NPn,,D
mpMNs= <umD > ,Np, = < NPn,D>

and
_ np, p
npMNs= (nPn,D ) .
Let
Ay
A
X = B, emp(F)No,
B
where A;, B; € GL,,(D) for 1 <4 <, and
1 Cip -+ Cy
1 - Oy
= 1 eN
"= 1 Dy --- Dy Pr
1 - Dy
1
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where Cij,Dij S MatnanhD for 1 <i < j <I. Then

U
XnnX(V )anﬂs,

where we denote

0 A1Dip—Ci24s -+ A1Dy—Cuds
0 <o AgDgy — CyAy
U .= . . S nPn,D
0
and
0 BiCi2 —D12By --- BiCy—DubB
0 -+ ByCy — Doy By
V.= . . € np, p-
0

We claim that the morphism of F-affine spaces

Matni ><nj,D @ Matnl an,D — Matnixnj,D @ Matnl ><nj,D
(Cij, Dij) = (AiDyj — Cij Aj, BiCij — Di; Bj)

induces an F-linear isomorphism on F-points. In fact, since it gives an F-
linear map between finite dimensional linear spaces of the same dimension,
we only need to prove that this map is injective under base change to an
algebraic closure of F. Then without loss of generality, it suffices to con-
sider the case where D = F. If AiDij — CijAj = BzCz_] — Diij = 0, then
CijAij = AiDiij = AiBiCij and DiijAj = BiCijAj = BiAiDij- Since X
is regular semi-simple, A;B; and A;B; (resp. B;A; and B;A;) have no com-
mon eigenvalue. By the classical theory of Sylvester equation [19], we know
that C;; = D;; = 0 and conclude.

From this claim, we know that the map

Np, -npNs,n— Xn—nX

is an F-isomorphism of algebraic varieties and preserves the Haar measures on
A-points. Notice that n=*Xn — X = n=}(Xn — nX). It is not hard to check
that here n~! functions as some translation AiD;; —CijA; — AiDy; — Cij A+
(a polynomial of Cyjand Dy jr,i" >4, < jori > 1,5 < j), so an analogous
assertion still holds for the map n+— n"'Xn — X. o

THEOREM 8.2. For all sufficiently reqular T, all s € R and o € O,,

/ |jJ:‘F,o($)||Nrd($1)|§dx < 00,
H(F)\H(A)NG(A)?
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where we write © = (z1,22) € GLyp, p(A) X GLy, p(A). Moreover, for s € C,
I s )= [ 7o ()n(Ned () Nrd (1) d
H(F)\H(A)NG(A)!

Proof. As in the proof of Theorem 4.14, using the left invariance of j; p, by
Py (F), we reduce ourselves to proving

/ V(@) paa (@) [Nrd (1) [ dar < oo,
Py g (F)\H(A)NG(A)!
where P; C P, are a pair of relatively standard parabolic subgroups of G and
for x € Py g (F)\H(A), we put
Jrope(@) = Y (=)IArAD b ().
{P:P,CPCP,}
In addition,
rpol) = Y > > Yo fa) N E+ X)na),
{R:PLCRCP} ¢emlt (F)No X€(nfns)(F) n€Npy (F)

where we use the notations tﬁl@l and nﬁ in the proof of Proposition 4.15.

Applying Lemma 8.1, we get

Jrpo(®) = > > > > f@T e+ X +u)x)

{R:PiCRCP} ¢emB (F)No X€(nfNs)(F) u€(npns)(F)

. 3 S faE+ X)),

{R:PICRCP} temf (F)no X€(nrNs)(F)

Hence

FPyPyo(x) = Z (_1)dim(Ap/AG)
{P:PCPCP>}

(S ¥ ¥ selerxm)

{R:PICRCP} ¢€ml (F)No X €(npns)(F)

= Z Z < Z (1>dim(AP/AG)>

{R:PICRCPy} ¢emll (F)no ~ {P:RCPCP,}

> fETHE+ X)),

Xe(mpns)(F)

By [2, Proposition 1.1], we have

G Pao(z) = (—1)timAr/Ac) R Yo fETHE+ X)),

gemp2 (F)no X €(np,N9)(F)
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Applying Lemma 8.1 again, we obtain

JPpro(@) = (—1)HmAn/Ae) R > f(new)Ménou),

66171% (F)no n2ENP, 5 (F)

where we denote P i := P, N H.

Decomposing the integral over x € Py g (F)\H(A)NG(A)! into double integrals
ni € NPI,H (F)\NPI,H (A) andy € MPI,H(F)NPI,H (A)\H(A)ﬂG(A)l, and using
the fact that xp, p, (2) is left invariant under Np, ,, (A), we have

/ By ()i, e () [Nl
Py (F)\H(A)NG(A)*!

_ / / X5 (n19)
Mp, g (F)Np, 5 (M\H(ANG(A)Y I Np, 1 (F)\Np, 1 (A)

> > H(nanay)enanay)| INrd(yr) |3 dnady

565\§?(F)ﬁo n2€Np, 4 (F)

><1T>1,P2 (y) Z

<,
Mes (P3NP r NBAINGEA)! gem; (F)no

/N S | f((ranay) nanay)ldny | Nrd(y)|3dy-

Py (FO\NPy () n2€Np, 4 (F)

Since P1,iy € P2 g and vol(Np, ,, (F)\Np, ;;(A)) = 1, we see that

/ F(nanry) ™~ nanay)dn,
NPy g (F)\NPy g (A) n2€Np, o (F)

\/IVPLH(F)\NPLH(A) \/]Vp2yH(F)\NP2yH(A)
Z |f((nanniy) ™ €nannay)|dndn,

n2€Np, ; (F)

/ [ 1) gy dnan,
NPl’H(F)\NPl,H(A) NPQ,H(A)

/ / |f(n1y) (€ + U)nyy)|dUdny,
NPI,H(F)\NPI,H(A) (npyNs)(A)
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where we have applied Lemma 8.1 in the last equality. Therefore
Xb,.p, ()|iPy, Pao(2)|INvd (1) da

)(1T>1,1>2 (y) Z

gemp? (F)no

< / / F(nay) € + U)my)ldUdm) INed(yn) 3.y
Ny i (F\Npy 5 (8) J (npyns)(8)

-/ G X (f e+ Upaiav
Py g (F)\H(A)NG(A)! (anF‘Is)(A)

~ Py

EGmPl (F)No

/Pl,H<F>\H<A>mG<A>1

<

/]MpLH (F)Np, ; (A\H(A)NG(A)!

- INrd(zq)|3dz,

whose convergence results from that of the formula (4.2.3) when R = P.

Now we begin to prove the second statement. From the first statement, now
we have the right to write

/ JEo@n(Nv () Nvd e
H(F)\H(A)NG(A)!

- X ()i, o o()n(Nrd ()

{P1,P2:15(JQP1 ChPo} P (F)\H(A)NGA)!

- INrd(z1)|3 dz,

where
jPl,P270(‘T) = Z (_1)dim(AP/AG)jfaPaU($)
{P:P,CPCP,}
= Z (,1)dim(AP/AG) Z Z f((n:c)len:E)
{P:P,CPCP,} Xemp(F)NoneNp, (F)

Decompose the integral over x € Py (F)\H(A) N G(A)! into double integrals
over ny € Np, ,(F)\Np, ,(A) and y € Mp, ,(F)Np, ,(A)\H(A) N G(A)*.
Since Np, ,,(F)\Np, ;;(A) is compact, by Lemma 8.1 and (21, §41],

> Y f((mmy) " Xnny)|

Xemp(F)NoneNp,, (F)

= Y S 1 (my)THX + wnay)l

Xemp(F)Noue(npns)(F)
is bounded independently of n1 € Np, ,, (F)\Np, ,;(A). Then using the fact
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that XJT-‘>1, p, () is left invariant under Np, , (A), we have

/ JEo(w)n(Nva(z) Ned ()
H(F)\H(A)NG(A)!

= > / Xbom W) Y

~ 1
{P1,P2:PoCP1CP>} Mey i (F)Npy  (WNH(A)NG(R) {P:PLCPCP>}

(—1)dim(Ar/Ac) Z " (/N Z

Xemp(F Py (FO\NPy () nENp, (F)

f((nmy)1Xnn1y)dn1)n(Nrd(y))lNrd(yl)lidy-

Since P1, g C Py and vol(Np, (F)\Np, (A)) = 1, we see that

/N Z f((nnay) ™ Xnnyy)dny

P (PANP 3 (8) e ()
/NPl,H (F)\Np, ;4 (A) /NpH (F)\Np,, (A)

Z f((nngnly)lenngnly)dngdnl

’nENpH (F)

:/ / f(nn1y) ™t Xnnyy)dndn,
NPl’H(F)\NPl,H(A) NPH(A)

:/ / f((n1y) Y (X + U)niy)dUdn,,
NPI,H(F)\NPI,H(A) (npNs)(A)
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where we have applied Lemma 8.1 in the last equality. Therefore

/ 7o @n(Nvd(a) Nvd )

H(F)\H(A)NG(A)!

= > / Xbop W) Y
{P17P2115()QP1§P2} I\/IPl,H(F)NPLH(A)\H(A)OG(A)I {P:P,CPCP;}

Npy o (F)\Npy ; (8) J (npns)(a)

Xemp(F)No

F((nay) ™ (X + U)my)dUdm)n(Nrd(y))|Nrd(y1)Iidy

- Z gl,P2 (:L') Z (71)dim(AP/AG)

/ Y
{P\,Py:PyCP,CP,} P (FONH(A)NGA)! {P:P1CPCP}

Z /( o) flz™HX +U)x)dU | n(Nrd(z))|Nrd(z1)| d

Xemp(F)No

{P1,P2:PyCP CP:}
- |INrd(zq)|3dz.

/ 5 b (@)kp o (2)n(NEd(2))
PLH(F)\H(A)HG(A)1

From the proof of Theorem 4.14, we are authorised to write

I s )= [ o ()n(Nvd () INvd o)
H(F)\H(A)NG(A)!

-y X o @)y ()
{Pl,chﬁg§P1§P2} Py g (F)\H(A)NG(A)!
-n(Nrd(z))[Nrd(21)[3 dz,

which completes the proof. O

9 WEIGHTED ORBITAL INTEGRALS

As in the last section, we shall assume that p = ¢ = n in the following dis-

cussion. Moreover, we shall suppose that s = 0 in the orbital integral for

convenience, since |Nrd(z1)|% is not invariant under the translation by AZ.

Recall that for 0 € O and f € S(s(A)), we denote by JE(n, f) the constant
G,T

term of J,"" (n,0, f).
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9.1 WEYL GROUPS

From Section 5.5, we may choose Py to be the stabiliser in G of the flag

0 ,C,_ <61>D ,C,_ <€15f1>D ,C,_ <617f1762>D g <615f15627f2>D
g ot g <elaf1 "'aenafn>D :V@W

by the notation in Section 3.4. Then all w-stable relatively standard parabolic
subgroups of G contain Py. Denote by £ the stabiliser in G of the flag

0C (e1, fi)p & (e1, fi,e2, f2)p S-S (e, fi-en, fu)p =V OW.

It is the minimal w-stable relatively standard parabolic subgroup of G. A
parabolic subgroup P of G is relatively standard and w-stable if and only if
Py C P. Let P, be the group of upper triangular matrices in GL, p. We
can talk about positive roots for G, H and GL,, p with respect to Py, ]30 and
Py, respectively.

X X
LEMMA 9.1. Let P, = Pin Pin and Py = P2 P2 be a pair of
pl,n pl,n p?,n p2,n
w-stable relatively standard parabolic subgroups of G, where Py, and Ps , are
standard parabolic subgroups of GLy, p.

Sn

1) The map s, — s = induces a bijection from

Sn

a) the set of representatives s, of QL»r(ap,  ap,, ) in QELnD such that

spta>0 forall a € AI;(’)"H

to

b) the set of representatives s of Q%(ap,,ap,) in QF such that s~ a > 0 for
all o € AJ2.

Sn

2) Themapsn»—>s<

) induces a bijection from
n

a) the set of representatives s, of QCLmP(ap, ;i Ps,) in QLD such that

P n
sn(ap,,) 2 ap,, and s;'a >0 for all o € Aﬁfé,n

to

b) the set of representatives s of Q% (ap,; Py) in QF such that s(ap,) 2 ap, and
s7la >0 for all a € Aﬁi.

Proof. Suppose that P ,, and P» , correspond to the partitions (nq,---,n;) and
(nf,- - -,np) respectively of n. Then P, and P, correspond to the partitions
(2n1,- -+, 2n;) and (2n],- - -, 2n},) respectively of 2n. For an integer m > 0,
denote by S, the symmetric group of degree m.
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1) From [4, p. 33|, the set Q¢Ln2(ap, ., ap, ) is empty unless I = ', in which
case

Qe (ap, L ap,,) ~{sp € S V1 <i<lnl=ng i} (9.1.1)
Similarly, the set Q¢ (ap,,ap,) is empty unless [ = I, in which case
Q%ap,,ap,) ~{s €8 : V1 <i<1,2n] = 2ny;)}. (9.1.2)

The map in the lemma is induced by the obvious bijection between the right
hand sides of (9.1.1) and (9.1.2).

2) From [4, p. 59|, the set a) is identified with the set of s,, € S; C S,, such that
(M, (1)s " = s M, 1)) 18 finer than (nf,---,nj, ), and such that syt() < spt(i+1)
for any 1 < ¢ <n—1 that is not of the form n} + - -+ nj for some 1 <k <’
Similarly, the set b) is identified with the set of s € S; C Sy, such that
(2n4(1), -+ 2n4()) is finer than (2n], ---,2n},), and such that s (i) < s~ (i+1)
for any 1 < < 2n—1 that is not of the form 2n/ +---4+2n] for some 1 < k <.
The map in the lemma is induced by the obvious bijection between these two
sets. O

For P; and P, a pair of w-stable relatively standard parabolic subgroups
of G, denote by QF (ap,,ap,) the (perhaps empty) set of distinct isomorphisms
from ap, to ap, obtained by restriction of elements in Q. It is a subset of
Q% (ap,,ap,) a priori. However, since the image of the map in Lemma 9.1.1)
is contained in Q7 we actually have Q (ap,,ap,) = Q%(ap,,ap,) (cf. [15,
Lemme 2.8.1]). Denote by Q (ap,; P») the set of s € |J Q(ap,,ag) such that
aQ

s(ap,) 2 ap, and st > 0 for each a € , where the union takes over all
ag associated to some w-stable relatively standard parabolic subgroup @ of G.
Then Q (ap,; P,) = Q% (ap,; ) by Lemma 9.1.2).

AP2OH

9.2 REGULAR SEMI-SIMPLE TERMS

Let 0 € O, (see Section 3.3). It is possible to choose an element X; € o
and a relatively standard parabolic subgroup P; of G such that X; € mp, (F)
(thus P; is w-stable by Proposition 5.4) but X; cannot be H(F')-conjugated
to an element in the Lie algebra of any relatively standard parabolic subgroup
R C P;. We call such X; an elliptic element in (mp, Ns)(F).

X
Let P, = (pl’" pl’") be an w-stable relatively standard parabolic sub-

Pin Pin
group of G, where P, is a standard parabolic subgroup of GL, p. Let
X; = 0 A € (mp, Ns)(F) be a regular semi-simple element in 5. Then

By 0
X is elliptic in (mp, N s)(F) if and only if A;B; is elliptic in mp, , (F) in the
usual sense, i.e., the component of A;B; in each block of mp, , (F) has irre-
ducible reduced characteristic polynomial (see [23, Proposition 5] for example).
Let Hx, be the centraliser of X7 in H. Then X is elliptic in (mp, Ns)(F) if
and only if the maximal F-split torus in Hyx, is Ap,.
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THEOREM 9.2. Let 0 € O,4, Py be a relatively standard parabolic subgroup of G
and X1 € o be an elliptic element in (mp, Ns)(F). For f € S(s(A)), we have

JE(n, f) = vol(A% Hx, (F)\Hx, (A))

-/ £ Kraor, (@)n(Nrd(@))d.
Hx, (A)\H(A)

where vp, (x) is left-invariant under Hx, (A) and equals the volume of the pro-
jection onto a of the convex hull of {—Hq(x)}, where Q runs over all semi-
standard parabolic subgroups of G with Mg = Mp, .

Proof. Consider a relatively standard parabolic subgroup P of G and X €
mp(F) No (thus P is w-stable by Proposition 5.4). There exists an w-stable
relatively standard parabolic subgroup P, C P and X, € (mp, Ns)(F) such
that X is conjugate to X via an element in Mp,, (F) and the maximal F-split
torus in Hx, is Ap,. Then any element in H(F') which conjugates X; and X5
will conjugate Ap, and Ap,. It follows that there exists s € 2 (ap,,ap,) and
m € Mp,, (F) such that
X = mw Xjw; tm

Suppose that P3 C P is another relatively standard parabolic subgroup, s’ €
QO (ap,,ap,) and m’ € Mp, (F) such that

’ — =1
X=m wS/Xle,lm

Then there is { € Hx (F) such that
m'wy = (mws.
Since Hx C Mp,,, we see that
wy = Ew,

for some £ € Mp,, (F). In sum, for any given P a relatively standard parabolic
subgroup of G and X € mp(F)No, there is a unique s € Q (ap,; P) such that
X = mwsXw;tm™! for some m € Mp, (F).

For x € Py(F)\H(A), we obtain

rpelz)= Y Y fl(ne) Xnz)
Xemp(F)NoneENp, (F)
= Z Z f(mnz) tws X 1wy 'mn)

SEQH(GPI;P) mEMp wsX wfl(F)\MPH (F) nENPH (F)
H WsA1Ws

= Z Z f((mz)rw X w 'me),

SEQH(GPIQP) me]MPH ,1(F)\PH(F)

ws X wg
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-1 denotes the centraliser of wsXjw; ! in Mp,. For T € ag

s

and x € HEEF)\H(A), we have

|
£
=
€

ity (x) = (-pdimAr/ac) N 2 (Hp(03) — Tp) - jf.po(02)
{P:2,CP} sePy (F)\H(F)
= (~1)dmr/e) NN FE(Hp(sx) — Tp)
{P:2,CP} S€Py (F)\H(F)

1> > f((mésc)-lwsst—lmax))

seQH (ap,;P)
) meMPH,wsxlws,l(F)\PH(F)

= Z (—1)dim(Ar/Ac) Z Z

: C : H .
{P:2,C P} s€EQH (ap;P) 56MPH’MSX1LU;1(F)\H(F)

7S(Hp(0z) — Tp) - f((02) tw. X w; Lox).

Notice that the centraliser of w, X w; ! in H is actually contained in Mp,,. We
deduce that

Jfelw) =D (-ntmar/aer R >
{P:g%gP} SGQH(aPI;P) 66HNSXIN;I(F)\H(F)
7S (Hp(0z) — Tp) - f((02) twsX1w tox)

_ Z (—1)dim(Ar/Ac) Z Z

{P:2,C P} s€QH (ap,;P) S€Hx, (F)\H(F)

7S (Hp(wsdz) — Tp) - f((6x) 1 X 0z).

For y € H(A), write

xr(y) == Z (‘”dim(AP/AG) Z ?g(HP(Wsy) —Tp).
{P:@ng} SEQH(CLPI;P)
Then
Jho(x) = > f((0x) "1 X10x) - xr(0x).
S€Hx, (F)\H(F)

For sufficiently regular T', using Theorem 8.2 and the fact that j;{a (x)n(Nrd(x))
is left invariant by A%, we have

JET (1,0, ) = / JT (@) (Ned(z))de
H(F)\H(A)NG(A)*

-/ > J(60) 7 Xibe) - xr(9) | n(Nrd(2))de.
AFHINHA) \ seH x| (F)\H(F)
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Hence,
J0G7T(77a 0, f) = VOl(AOPSI HX1 (F)\HXI (A))

/ fz™ X 2)vp, (2, T)n(Nrd(z))dz, (9.2.1)
Hx, (A)\H(A)

where

vp, (z,T) := / xr(ax)da.
AZ\AF,

Here we have cheated by assuming that vp, (z,T) is well-defined and left-
invariant under Hx, (A) in the last equality, which is explained below along
with its geometric interpretation.

Let @Q be a parabolic subgroup of G containing Py. Since &y C Pj, by the
charaterisation in [4, p. 59], Q% (ap,; Q) is empty unless &y C Q, in which case
we have Q% (ap,; Q) = Q7 (ap,; Q) by Lemma 9.1.2). Therefore, we have

xr(y) =Y (-nim@e/del N 2 (Hg (wey) — Tg)-
{Q:PoCQ} s5€Q%(apy;Q)

Compared to [2, p. 951], vp, (x,T) is nothing but the restriction to H(A) of
Arthur’s weight for G(A). It is shown in [I, Corollary 3.3] that the integral
over a can be taken over a compact subset. From [1, Corollary 3.5], vp, (z,T)
equals the volume of the projection onto a§ of the convex hull of {Tg—Hg(x)},
where () takes over all semi-standard parabolic subgroups of G with Mg =
Mp,. For y € Hx, (A) C Mp,nu(A), the convex hull associated to vp, (yz,T)
is a translation of that associated to vp, (x,T'), so they have the same volume,
ie., vp (yz,T) = vp, (z,T). By taking constant terms of both sides of (9.2.1),
we obtain the theorem. O

Remark 9.3. As mentioned in the proof of Theorem 9.2, the weights we get
for regular semi-simple orbits are the restriction to H(A) of Arthur’s weights
(see [2, p. 951]) for G(A). They are also the same as those (see [15, p. 131])
appearing in the twisted trace formula for (GL,, p x GL,, p) X o, where ¢ acts
on GL, . p X GL, p by o(z,y) := (y,z). For P, a standard parabolic subgroup

X
of GL,.p and P = (E” En an w-stable relatively standard parabolic sub-

group of G, we may identify ap with the o-invariant subspace of ap, «p,. The
w-stable relatively standard parabolic subgroups of G here play the role of the
o-stable standard parabolic subgroups of GL, p x GL,, p, which correspond
to the standard parabolic subsets of (GL,, p X GL, p) % ¢ in the sense of [15,
§2.7]. However, we need more (namely relatively standard) parabolic subgroups
in our truncation to deal with o ¢ O*.
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