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1 Introduction

The Guo-Jacquet conjecture proposed in [10] is a possible generalisation in
higher dimensions of Waldspurger’s well-known theorem on central values of
automorphic L-functions for GL2. We briefly recall it as follows. Let E/F
be a quadratic extension of number fields and η the quadratic character of
A×/F× attached to it, where A denotes the ring of adèles of F . Consider the
group G = GL2n and its subgroup H = GLn ×GLn defined over F . Let π be
a cuspidal automorphic representation of G(A) with trivial central character.
We say that π is H-distinguished if the two linear forms (called “periods”) on it

PH : φ 7→

∫

H(F )Z(A)\H(A)

φ(h)dh
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and

PH,η : φ 7→

∫

H(F )Z(A)\H(A)

φ(h)η(det(h))dh

are both non-zero, where Z denotes the centre of G. This property is directly
connected with the non-vanishing of some central L-values (see Friedberg-
Jacquet’s work [9]). We also need to deal with another pair of groups. Let
X(E) denote the set of isomorphic classes of quaternion algebras D/F in which
E embeds. For any D ∈ X(E), let GD = GLn,D be the algebraic group defined
over F whose F -points are GLn(D) and HD = ResE/FGLn,E be its subgroup.
Let πD be a cuspidal automorphic representation of GD(A) with trivial central
character. We say that πD is HD-distinguished if the linear form on it

PHD : φ 7→

∫

HD(F )Z(A)\HD(A)

φ(h)dh,

is not zero, where we identify the centre of GD with Z. One part of the Guo-
Jacquet conjecture says that if πD is HD-distinguished and π is transferred
from πD by the Jacquet-Langlands correspondence, then π is H-distinguished.
We can also expect a converse at least when n is odd. For n = 1, these were
known by Waldspurger [20] and reproved by Jacquet [13].
Now we formally describe the approach of relative trace formulae following
Jacquet [13]. This was adopted by Feigon-Martin-Whitehouse [8] to obtain
some partial results. Let fG be a smooth function on G(A) with compact
support. As an analogue of Arthur-Selberg trace formula, the relative trace
formula for the case (G,H) roughly says that there are two ways to write the
integral (viewed as a distribution)

∫

H(F )\H(A)∩G(A)1

∫

H(F )\H(A)∩G(A)1
KfG(x, y)η(det(x))dxdy,

where G(A)1 denotes the elements in G(A) with absolute-value-1 determinant
and KfG(x, y) =

∑
γ∈G(F ) f

G(x−1γy). The geometric side is expected to be

a sum of relative (weighted) orbital integrals while the spectral side should be
an expansion of periods. Similarly there is also another formula for the case
of (GD, HD). Then the comparison of periods of different pairs of groups pre-
dicted by the Guo-Jacquet conjecture is reduced to the comparison of relative
(weighted) orbital integrals, for which there are already some works such as
Guo’s fundamental lemma [10] and Zhang’s transfer [25].
However, we have neglected analytic difficulty in the above discussion. That
is to say, the double integral above is not convergent and neither are two ways
of its expansions. This is the reason why some restrictive local conditions are
needed in the main results of [8] though they seem kind of artificial. The aim
of this article is to solve this kind of problem at the level of Lie algebras for
the case of (G,H). Notice that such a double integral can be formally written
as a single integral

∫

H(F )\H(A)∩G(A)1
KfG/H (x)η(det(x))dx,
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where fG/H(x) =
∫
H(A)∩G(A)1

fG(xy)dy defines a smooth function on

(G/H)(A) with compact support and KfG/H (x) =
∑

γ∈(G/H)(F ) f
G/H(x−1γx).

Replacing the symmetric space G/H by its tangent space s ≃ gln ⊕ gln at the
neutral element, we are faced with the divergence of the integral

∫

H(F )\H(A)∩G(A)1
kf (x)η(det(x))dx,

where f is a Bruhat-Schwartz function on s(A) and kf (x) =
∑

γ∈s(F ) f(x
−1γx).

Our main results can be described as follows.
First of all, as in [2], we replace kf (x) with some explicit kTf (x) (see its definition
in (4.0.1) and (4.2.2)) to make the last integral absolutely convergent, where
T ∈ R2n is a truncation parameter. Moreover, there is a relation of equivalence
on s(F ) defined by the categorical quotient s//H ; we denote by O the set of
classes of equivalence. For each class o ∈ O, we define kTf,o(x) and its integral
similarly by replacing s(F ) with o. Then we have

kTf (x) =
∑

o∈O

kTf,o(x),

and prove the following theorem which gives the geometric expansion of
∫

H(F )\H(A)∩G(A)1
kTf (x)η(det(x))dx.

Theorem 1.1 (see Theorem 4.14). For T in a suitable cone in R2n,

∑

o∈O

∫

H(F )\H(A)∩G(A)1
kTf,o(x)η(det(x))dx

is absolutely convergent.

Moreover, we see that each summand in the geometric expansion is a sum of
products of polynomials and exponential functions in T . In fact, most (namely
regular semi-simple) terms are simply polynomial distributions.

Theorem 1.2 (see Corollary 5.9). For T in a suitable cone in R2n and each
o ∈ O, define

JT
o
(η, f) :=

∫

H(F )\H(A)∩G(A)1
kTf,o(x)η(det(x))dx.

Then T 7→ JT
o
(η, f) is the restriction of an exponential polynomial in T . In

particular, if o is regular semi-simple, it is the restriction of a polynomial in T .

This property allows us to take the constant term Jo(η, f) of JT
o
(η, f) to elim-

inate the truncation parameter. In the infinitesimal setting, the geometric
expansion of the Fourier transform of f plays the role of the original spectral

Documenta Mathematica 27 (2022) 315–381



318 H. Li

side (cf. [5]). Our infinitesimal variant of Guo-Jacquet trace formula equating
the geometric developments of f and its Fourier transform (defined by (3.5.2)

and denoted by f̂) is the following, which essentially comes from the Poisson
summation formula.

Theorem 1.3 (see Theorem 7.1). For a Bruhat-Schwartz function f on s(A),
we have the equality ∑

o∈O

Jo(η, f) =
∑

o∈O

Jo(η, f̂).

Such a formula should be of interest for at least two reasons. For one thing,
since this formula is close to but easier than its analogue for the symmetric
space, it gives us a clue to the original relative trace formula (cf. Zydor’s work
[27] on Jacquet-Rallis trace formulae). For another, a simplified version of this
formula (see [25, Theorem 8.4 and p. 1875]) has been used in Zhang’s proof of
the smooth transfer.

The distributions Jo(η, ·) on s(A) that we obtained are non-equivariant under
the conjugation of H(A)∩G(A)1 in general, which is close to the situation in [2]
and different from that in [26]. In fact, we have the following formula of non-
equivariance. The lack of equivariance may add difficulty to the comparison of
Guo-Jacquet trace formulae (cf. [4, §22]).

Proposition 1.4 (see Corollary 6.2). For a Bruhat-Schwartz function f on
s(A) and y ∈ H(A) ∩G(A)1, we denote fy(x) := f(yxy−1). Then

Jo(η, f
y) = η(det(y))

∑

Q

JQ
o
(η, fη

Q,y),

where the sum on Q runs over all ω-stable relatively standard parabolic sub-
groups of G (defined in Section 5.2). Here JQ

o (η, ·) is an analogue of Jo(η, ·)
with G replaced by Q, and fη

Q,y is defined by (6.0.1) with s = 0.

Nevertheless, we can write regular semi-simple terms as explicit weighted or-
bital integrals whose weights are the restriction to H(A) of Arthur’s in [2]
for G(A).

Theorem 1.5 (see Theorem 9.2). Let o ∈ O be a regular semi-simple class,
P1 an ω-stable relatively standard parabolic subgroup of G and X1 ∈ o an
elliptic element relative to P1 (defined in Section 9.2). For a Bruhat-Schwartz
function f on s(A), we have

Jo(η, f) = vol([HX1 ]) ·

∫

HX1 (A)\H(A)

f(x−1X1x)vP1 (x)η(det(x))dx,

where HX1 denotes the centraliser of X1 in H, vol([HX1 ]) is its associated
volume and vP1(x) is the volume of some convex hull.
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An Infinitesimal Guo-Jacquet Trace Formula. I 319

This paper is organised in the following way. Section 2 and 3 are devoted to
standard notation in Arthur’s work on trace formulae and characterisation of O
in the specific symmetric pair that we consider respectively. We define the trun-
cated kernel kTf,o(x) and prove its integrability in Section 4. This key definition
is partly inspired by [12] [26] [6] (for the decomposition of groups) and [16] (for
the decomposition of linear spaces) apart from Arthur’s pioneering work [2]
and its Lie algebra variant [5]. Section 5 is about the qualitative behaviour of
our distributions with respect to the truncation parameter T . In Section 6, we
study their variance under the conjugation of H(A)∩G(A)1. In Section 7, the
infinitesimal Guo-Jacquet trace formula for the case of (GL2n, GLn ×GLn) is
given. Section 8 and 9 aim to express the regular semi-simple distribution as
weighted orbital integrals.
Here are two final remarks. Firstly, actually we study the more general sym-
metric pair (GLp+q,D, GLp,D×GLq,D) instead of (GL2n, GLn×GLn) and add
an extra term |Nrd(x1)|sA to the integrand in most of this article. Not only
do we prefer more general results (including the case considered in [24] for in-
stance) or possible applications (cf. [17] for the study of the first derivative
of L-functions), but the study of the case where p = q and s = 0 also yields
consideration on a more general setting including the cases where p 6= q or
s 6= 0 (see Theorem 5.8 for example). A simple reason for this comes from
the structure of the intersection of H and semi-standard Levi subgroups of G.
Secondly, there are some similarities between our case and the twisted trace
formula (cf. [15]) for (GLn ×GLn)⋊ σ where σ exchanges two copies of GLn.
In fact, we obtain the same weights for regular semi-simple orbits. However, we
shall see that more parabolic subgroups will be needed to define the truncation
here. We shall return to this discussion at the end of this paper.
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2 Notation

2.1 Roots and weights

Let F be a number field and G a reductive group defined over F . Denote
by ZG the centre of G. Fix a minimal Levi F -subgroup M0 of G. All the
following groups are assumed to be defined over F without further mention.
We call a parabolic subgroup P of G semi-standard if M0 ⊆ P . For any semi-
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standard parabolic subgroup P of G, we usually write MP for the Levi factor
containing M0 and NP the unipotent radical. Denote by AP the maximal F -
split torus in the centre of MP . Let X(MP )F be the group of characters of MP

defined over F . Then define

aP := HomZ(X(MP )F ,R)

and its dual space
a∗P := X(MP )F ⊗Z R,

which are both R-linear spaces of dimension dim(AP ). Notice that the restric-
tion X(MP )F →֒ X(AP )F induces an isomorphism

a∗P ≃ X(AP )F ⊗Z R.

Suppose that P1 ⊆ P2 are a pair of semi-standard parabolic subgroups of G.
The restriction X(MP2)F →֒ X(MP1)F induces a∗P2

→֒ a∗P1
and its dual map

aP1 ։ aP2 . Denote by aP2

P1
the kernel of the latter map aP1 ։ aP2 . The

restriction X(AP1)F ։ X(AP2)F induces a∗P1
։ a∗P2

and its dual map aP2 →֒
aP1 . The latter map aP2 →֒ aP1 provides a section of the previous map aP1 ։

aP2 . Thus we have decompositions

aP1 = aP2 ⊕ aP2

P1

and
a∗P1

= a∗P2
⊕ (aP2

P1
)∗.

When P1 is a minimal semi-standard parabolic subgroup, since aP1 (resp. AP1 )
and aP2

P1
are independent of the choice of P1, we write them as a0 (resp. A0)

and aP2
0 respectively.

For a pair of semi-standard parabolic subgroups P1 ⊆ P2 of G, write ∆P2

P1
for

the set of simple roots for the action of AP1 on NP2

P1
:= NP1 ∩MP2 . Notice that

∆P2

P1
is a basis of (aP2

P1
)∗. Let

(∆̂P2

P1
)∨ := {̟∨

α : α ∈ ∆P2

P1
}

be the basis of aP2

P1
dual to ∆P2

P1
. If B is a minimal semi-standard parabolic

subgroup contained in P1, one has the coroot β∨ associated to any β ∈ ∆P2

B .

For every α ∈ ∆P2

P1
, let α∨ be the projection of β∨ to aP2

P1
, where β ∈ ∆P2

B whose

restriction to aP2

P1
is α. Such α∨ is independent of the choice of B. Define

(∆P2

P1
)∨ := {α∨ : α ∈ ∆P2

P1
},

which is a basis of aP2

P1
. Denote by

∆̂P2

P1
:= {̟α : α ∈ ∆P2

P1
}
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the basis of (aP2

P1
)∗ dual to (∆P2

P1
)∨.

For a semi-standard parabolic subgroup P of G, set

a+P := {T ∈ aP : ∀α ∈ ∆G
P , α(T ) > 0}.

For P1 ⊆ P2 as above, define τP2

P1
and τ̂P2

P1
as the characteristic functions of

{T ∈ a0 : ∀α ∈ ∆P2

P1
, α(T ) > 0}

and
{T ∈ a0 : ∀̟ ∈ ∆̂P2

P1
, ̟(T ) > 0}

respectively.

2.2 The functions HP and FP

Let A be the ring of adèles of F and | · |A the product of normalised local
absolute values on the group of idèles A∗. Fix a maximal compact subgroup K
of G(A) that is admissible relative to M0 in the sense of [3, p. 9]. In this
paper, we choose the standard maximal compact subgroup for inner forms
of GLn (see [22, p. 191 and 199] for example). More concretely, suppose
that G(F ) = GLn(D), where D is a central division algebra over F . For
every place v of F , fix an isomorphism D ⊗F Fv ≃ glrv (Dv), where Dv is a
central division algebra over Fv. Under this isomorphism, the completion at v
of G(F ) is Gv ≃ GLnv (Dv), where nv = nrv. For v a finite place of F , let
Kv ≃ GLnv(ODv ), whereODv is the ring of integers of Dv; for v an infinite place
of F , we choose Kv to be the orthogonal group, unitary group and compact
symplectic group (see [11, Chapter 1.2.8] for example) for Gv ≃ GLnv(R),
GLnv (C) and GLnv(H) respectively; let K :=

∏
v Kv. Suppose that P is a

semi-standard parabolic subgroup of G. If m ∈ MP (A), define HP (m) ∈ aP by

〈HP (m), χ〉 = log(|χ(m)|A)

for all χ ∈ X(MP )F . Write MP (A)1 for the kernel of HP and A∞
P for the

neutral component for the topology of R-manifolds of the group of R-points of
the maximal Q-split torus in ResF/QAP . Then any element x ∈ G(A) can be
written as x = nmak, where n ∈ NP (A), m ∈ MP (A)1, a ∈ A∞

P and k ∈ K.
We can define a continuous map HP : G(A) → aP by setting HP (x) := HP (a)
with respect to this decomposition. Notice that HP induces an isomorphism
from A∞

P to aP . If P ⊆ Q are a pair of semi-standard parabolic subgroups,
write

AQ,∞
P := A∞

P ∩MQ(A)
1.

Then HP also induces an isomorphism from AQ,∞
P to a

Q
P .

Denote by ΩG the Weyl group of (G,A0). In the cases to be considered in
this paper, for every s ∈ ΩG, we can always choose one representative ωs ∈
G(F )∩K. In fact, we are dealing with the case of G = GLn or its inner forms,
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thus we can choose ΩG to be the group of permutation matrices. For an F -
subgroup H of G and s ∈ ΩG, we usually write sH := ωsHω−1

s . Let P1 and P2

be a pair of semi-standard parabolic subgroups of G. Denote by ΩG(aP1 , aP2)
the (perhaps empty) set of distinct isomorphisms from aP1 to aP2 obtained
by restriction of elements in ΩG. Denote by ΩG(aP1 ;P2) the (perhaps empty)
subset of double classes in ΩMP2 \ΩG/ΩMP1 of elements s ∈ ΩG such that
s(aP1) ⊇ aP2 . Suppose additionally that P1 and P2 contain a common minimal
semi-standard parabolic subgroup P0 of G. We can talk about positive roots
and standard parabolic subgroups with respect to P0. By [15, Lemme 1.3.6],
each s ∈ ΩG(aP1 , aP2) admits a unique representative (still denoted by s) in
ΩG such that s−1α > 0 for all α ∈ ∆P2

P0
. By [15, Lemme 1.3.7], each s ∈

ΩG(aP1 ;P2) admits a unique representative (still denoted by s) in ΩG such
that s−1α > 0 for all α ∈ ∆P2

P0
. If Q is a parabolic subgroup of G containing

P1 ∪ P2 and ΩMQ(aP1 , aP2) 6= ∅, we say that P1 and P2 are MQ-associated.
There is a bijection between ΩG(aP1 ;P2) and the disjoint union of quotients
ΩMP2 (aR, aR)\ΩG(aP1 , aR) where R runs over standard parabolic subgroups
of G contained in P2, modulo MP2-association (see [15, Lemme 1.3.7]).
From the reduction theory (see [2, p. 941]), we know that there exists a real
number t0 < 0 and a compact subset ̺B ⊆ NB(A)M0(A)1 for each minimal
semi-standard parabolic subgroup B of G such that for any semi-standard
parabolic subgroup P of G containing B, we have

G(A) = P (F )SP
B(̺B, t0).

Here the Siegel set SP
B(̺B, t0) is defined by

SP
B(̺B , t0) := ̺BA

∞
B (P, t0)K,

where

A∞
B (P, t0) := {a ∈ A∞

B : ∀α ∈ ∆P
B, α(HB(a)) > t0}.

We shall fix such t0 and ̺B. Additionally, we are authorised to assume
that ̺sB = ωs̺Bω

−1
s for s ∈ ΩG. Moreover, we require that (MP (A) ∩

̺B,MP (A) ∩ K,B ∩ MP , t0) will play the role of (̺B ,K,B, t0) for any semi-
standard parabolic subgroup P of G containing B.
Let B ⊆ P and t0 be as above. For T ∈ a0, define the truncated Siegel set

SP
B(̺B , t0, T ) := ̺BA

∞
B (P, t0, T )K,

where

A∞
B (P, t0, T ) := {a ∈ A∞

B (P, t0) : ∀̟ ∈ ∆̂P
B , ̟(HB(a)− T ) ≤ 0}.

It is known that A∞
B (P, t0, T ) ∩MP (A)1 has compact closure (see [15, Lemme

1.8.1]). Denote by FP
B (·, T ) the characteristic function of the projection of

SP
B(̺B, t0, T ) to P (F )\G(A).
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2.3 Bruhat-Schwartz functions and Haar measures

Write g for the Lie algebra of G. For an F -linear subspace s of g, denote
by S(s(A)) the Bruhat-Schwartz space of s(A), namely the C-linear space of
functions on s(A) generated by f∞ ⊗ χ∞, where f∞ is a Schwartz function on
s(F ⊗Q R) and χ∞ is the characteristic function of an open compact subset of
s(A∞), where we denote by A∞ the ring of finite adèles of F .

Let P be a semi-standard parabolic subgroup of G. For every algebraic
subgroup V of NP (resp. every subspace h of g), choose the unique Haar
measure on V (A) (resp. on h(A)) such that vol(V (F )\V (A)) = 1 (resp.
vol(h(F )\h(A)) = 1). We also take the Haar measure on K such that
vol(K) = 1.

Fix a Euclidean norm ‖ · ‖ on a0 invariant by the group ΩG and Haar measures
on all subspaces of a0 compatible with this norm. If P ⊆ Q are a pair of semi-
standard parabolic subgroups, we obtain Haar measures on A∞

P and AQ,∞
P via

the isomorphism HP .

Denote by ρP ∈ (aGP )
∗ the half of the sum of weights (with multiplicities) for

the action of AP on nP . We choose compatible Haar measures on G(A) and
its Levi subgroups by requiring that for any f ∈ L1(G(A)),

∫

G(A)

f(x)dx =

∫

NP (A)

∫

MP (A)

∫

K

f(nmk)e−2ρP (HP (m))dndmdk

=

∫

NP (A)

∫

MP (A)1

∫

A∞

P

∫

K

f(nmak)e−2ρP (HP (a))dndmdadk.

3 The symmetric pair

Let F be a number field and D a central division algebra over F . Let d
be the degree of D, i.e., dimF (D) = d2. Denote by GLn,D the reductive
group over F whose F -points are GLn(D). For x ∈ GLn(D), we write Nrd(x)
for its reduced norm, Trd(x) for its reduced trace and Prdx for its reduced
characteristic polynomial. For x ∈ GLp(D)×GLq(D), denote by x1 (resp. x2)
its projection to the first (resp. second) component. Until further notice, we
shall work in a more general setting than that of Guo-Jacquet for later use, i.e.,
we shall study the case of (GLp+q,D, GLp,D × GLq,D) and add an additional
term |Nrd(x1)|sA in the integral of the modified kernel.

3.1 Groups and linear spaces

Let G := GLp+q,D and H := GLp,D ×GLq,D its subgroup by diagonal embed-

ding. Define an involution θ on G by θ(g) = ǫgǫ−1, where ǫ =

(
1p 0
0 −1q

)
.

Thus H = Gθ, where Gθ denotes the θ-invariant subgroup of G.

Define an anti-involution ι on G by ι(g) = θ(g−1). Denote by S the ι-invariant
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subvariety of G. There is a symmetrization map

s : G → S, s(g) := gι(g),

by which one can regard the symmetric space G/H as a subvariety of S. We
see that H ×H acts on G by left and right translation and that H acts on S
by conjugation.

Let g := Lie(G) and h := Lie(H). Denote by dθ the differential of θ. Thus

h = {X ∈ g : (dθ)(X) = X}.

Let s be the tangent space of S at the neutral element. We shall always view
s as a subspace of g. Then

s = {X ∈ g : (dθ)(X) = −X},

and

s(F ) =

{(
0 A
B 0

)
: A ∈ Matp×q(D), B ∈ Matq×p(D)

}

≃ Matp×q(D)⊕Matq×p(D).

There is an H(F )-action on s(F ) by conjugation, i.e.,

(h1, h2) · (A,B) = (h1Ah
−1
2 , h2Bh−1

1 ).

3.2 Semi-simple elements

We say that an element X ∈ s is semi-simple if the orbit H ·X is Zariski closed
in s. By a regular element X ∈ s, we mean that the stabiliser HX has minimal
dimension.

Proposition 3.1. An element X of s(F ) is semi-simple if and only if it is
H(F )-conjugated to an element of the form

X(A) :=




0 0 1m 0
0 0 0 0
A 0 0 0
0 0 0 0




with A ∈ GLm(D) being semi-simple in the usual sense. More precisely, the set
of H(F )-conjugacy classes of semi-simple elements of s(F ) is bijective to the
set of pairs (m, {A}) where 0 ≤ m ≤ min{p, q} is an integer and {A} is a semi-
simple conjugacy class in GLm(D). Moreover, X(A) is regular semi-simple if
and only if m = min{p, q} and A is regular semi-simple in GLmin{p,q}(D) in
the usual sense.
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Proof. The case D = F is [14, Proposition 2.1 and Lemma 2.1] while the
case p = q is [24, Proposition 5.2]. This proposition is nothing but a slightly
more general one combining both cases, whose proofs are similar and still work
here.

Proposition 3.2. If p ≤ q, an element

(
0 A
B 0

)
∈ s is regular semi-simple

if and only if PrdAB is separable and PrdAB(0) 6= 0. If p > q, an element(
0 A
B 0

)
∈ s is regular semi-simple if and only if PrdBA is separable and

PrdBA(0) 6= 0.

Proof. We only consider the case p ≤ q since the other case can be deduced
by symmetry. We may study the proposition over an algebraic closure F of F .
For A ∈ Matdp×dq(F ) and B ∈ Matdq×dp(F ), we see that

det

(
λId(p+q) −

(
0 A
B 0

))
= λd(q−p) det(λ2Idp −AB). (3.2.1)

Let X :=

(
0 A
B 0

)
∈ s and denote by PrdX the reduced polynomial of X

viewed as an element of g. Then PrdX and PrdAB determine each other.
Suppose that PrdAB is separable and PrdAB(0) 6= 0. Let X = Xs + Xn

be the Jordan decomposition in g, where Xs is semi-simple, Xn is nilpotent
and XsXn = XnXs. By the uniqueness of the Jordan decomposition, we
see that Xs, Xn ∈ s. From Proposition 3.1, up to conjugation by H , we may

suppose that Xs =




0 1dp 0
C 0 0
0 0 0


, where C ∈ GLdp(F ) is semi-simple. Since

PrdX = PrdXs , we deduce that PrdAB = PrdC . Then PrdC is separable and
PrdC(0) 6= 0 by our assumption. By linear algebra, C is regular semi-simple in
GLdp(F ), which implies that Xs ∈ s is regular semi-simple by Proposition 3.1.
Since XsXn = XnXs, simple computation (cf. [14, Lemma 2.1]) shows that

Xn =




0 D 0
DC 0 0
0 0 0


, where D ∈ gldp(F ) and DC = CD. On the one hand,

because Xn is nilpotent and C is invertible, we see that D is nilpotent. On the
other hand, because DC = CD and C is regular semi-simple, we see that D is
semi-simple. Hence, we have D = 0 and thus Xn = 0. Therefore, X = Xs ∈ s

is regular semi-simple.
The other direction is a direct consequence of Proposition 3.1.

3.3 Invariants

Denote by c the affine space Admin{p,q}. Define a morphism π : s → c by

mapping

(
0 A
B 0

)
∈ s to the coefficients of the reduced characteristic poly-
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nomial of AB. It is constant on H-orbits. Denote by crs the subset of
(ci)0≤i≤dmin{p,q}−1 ∈ c such that the polynomial

P (λ) := λdmin{p,q} +

dmin{p,q}−1∑

i=0

ciλ
i

is separable and c0 6= 0. It is a principal Zariski open subset of c. Denote by
c× the subset of (ci)0≤i≤dmin{p,q}−1 ∈ c such that c0 6= 0. Then crs ⊆ c×.

Proposition 3.3. The pair (c, π) defines a categorical quotient of s by H
over F .

Proof. It suffices to consider the case p ≤ q since the case p > q can be obtained
by symmetry.
We first extend the base field to an algebraic closure F of F . Then HF ≃
GLdp,F ×GLdq,F and sF ≃ Matdp×dq,F ⊕Matdq×dp,F . For (ci)0≤i≤dp−1 ∈ cF ,
denote by A((ci)0≤i≤dp−1) ∈ gldp,F its companion matrix

A((ci)0≤i≤dp−1) :=




0 0 · · · 0 −c0
1 0 · · · 0 −c1

0 1
. . .

... −c2
...

. . .
. . . 0

...
0 · · · 0 1 −cdp−1




.

Define a morphism cF → sF by mapping (ci)0≤i≤dp−1 to




0 1dp 0
A((ci)0≤i≤dp−1) 0 0

0 0 0


 .

This is a section of π, so π is surjective. By Propositions 3.2 and 3.1, the fibre of
any point in the non-empty open subset cF,rs ⊆ cF contains exactly one closed
orbit. We may use Igusa’s criterion (see [18, Theorem 4.13] and Remark 3.4
below) to show that the pair (cF , π) defines a categorical quotient of sF by HF .
The morphism π : s → c defined over F factors through the categorical quotient
Spec(F [s]H) of s by H over F . This induces a dual morphism F [c] → F [s]H

of F -algebras. We have shown that after the base change to F , it is an iso-
morphism of F -algebras. By Galois descent, we deduce that the morphism
F [c] → F [s]H is an isomorphism of F -algebras, i.e., the pair (c, π) defines a
categorical quotient of s by H over F .

Remark 3.4. We notice that cF can be of dimension 1 (when D = F and
min{p, q} = 1) in the proof of Proposition 3.3 above, so the first condition in
[18, Theorem 4.13] may not be satisfied. However, as is evident from the proof
of Igusa’s criterion, this condition can be replaced with the surjectivity of π.
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The categorical quotient (c, π) defines a relation of equivalence on s(F ), where
two elements are in the same class if and only if they have the same image
under π. We denote by O the set of equivalent classes for this relation. By
Proposition 3.1, two semi-simple elements of s(F ) belong to the same class of O
if and only if they are conjugate by H(F ). Denote by Ors the subset of O with
images in crs. By Proposition 3.2, each class in Ors is a regular semi-simple
H(F )-orbit in s(F ). Denote by O× the subset of O with images in c×. Then
Ors ⊆ O×.

3.4 Relatively standard parabolic subgroups

Fix P̃0 a minimal parabolic subgroup of H defined over F and M0 a Levi factor
of P̃0 defined over F . Then M0 is also a minimal Levi subgroup of G defined
over F . For a semi-standard parabolic subgroup P of G (namely M0 ⊆ P ), we

say that P is “relatively standard” if P̃0 ⊆ P , i.e., P ∩H is a standard parabolic
subgroup of H (namely P̃0 ⊆ P ∩H). We shall suppose that ̺P̃0

⊆ ̺B for all
relatively standard minimal parabolic subgroup B of G. Denote by K the
standard maximal compact subgroup of G(A) and by KH := H(A) ∩ K the
maximal compact subgroup of H(A). Up to conjugation by G(F ), we may

assume that M0 is the subgroup of diagonal matrices in G and that P̃0 is the
product of groups of upper triangular matrices.
We can describe the embedding H →֒ G via D-bimodules. Let V := 〈e1, · ·
·, ep〉D (resp. W := 〈f1, · · ·, fq〉D) be the free D-bimodule generated by the
basis {e1, · · ·, ep} (resp. {f1, · · ·, fq}). Set GL(V ) to be the group of F -linear
automorphisms on V, which acts on V on the left. Denote by GL(V )D the
subgroup of GL(V ) which respects the right D-module structure on V . Put
G := GL(V ⊕W )D and H := GL(V )D ×GL(W )D. Then M0 is the stabiliser
in G (or in H) of the D-lines 〈ei〉D, 1 ≤ i ≤ p and 〈fi〉D, 1 ≤ i ≤ q. Suppose

that P̃0 is the direct product of the stabiliser in GL(V )D of the flag

0 ( 〈e1〉D ( 〈e1, e2〉D ( · · · ( 〈e1, · · ·, ep〉D =: V

and the stabiliser in GL(W )D of the flag

0 ( 〈f1〉D ( 〈f1, f2〉D ( · · · ( 〈f1, · · ·, fq〉D =: W.

A relative standard parabolic subgroup P of G can be interpreted as the sta-
biliser in G of the flag

0 ( 〈e1, · · ·, ep1 , f1, · · ·, fq1〉D ( 〈e1, · · ·, ep1 , f1, · · ·, fq1 , ep1+1, · · ·, ep1+p2 ,

fq1+1, · · ·, fq1+q2〉D ( · · · ( 〈e1, · · ·, ep1 , f1, · · ·, fq1 , · · ·, ep−pl+1, · · ·, ep,

fq−ql+1, · · ·, fq〉D =: V ⊕W,

where
l∑

i=1

pi = p,
l∑

i=1

qi = q and we allow pi or qi to be zero. In particular, we

have
MP ≃ GLp1+q1,D × · · · ×GLpl+ql,D
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and

MPH ≃ GLp1,D × · · · ×GLpl,D ×GLq1,D × · · · ×GLql,D.

Proposition 3.5. Let P be a relative standard parabolic subgroup of G. For
all X ∈ (mP ∩ s)(F ) and U ∈ (nP ∩ s)(F ), we have

π(X) = π(X + U).

Proof. It is a consequence of [16, Lemma 2.1]. We can also give a direct proof
as follows. Because of (3.2.1), for any X ∈ s(F ), π(X) is determined by
the coefficients of the reduced characteristic polynomial of X regarded as an
element of g(F ). The proposition follows from the easy fact: for X ∈ mP (F )
and U ∈ nP (F ), the reduced characteristic polynomial of X + U is equal to
that of X .

Corollary 3.6. Let P be a relative standard parabolic subgroup of G and
o ∈ O. For all subsets S1 ⊆ (mP ∩ s)(F ) and S2 ⊆ (nP ∩ s)(F ), we have
o ∩ (S1 ⊕ S2) = (o ∩ S1)⊕ S2.

3.5 Fourier transform

Fix a nontrivial unitary character Ψ of A/F . Let 〈·, ·〉 be the non-degenerate
H(A)-invariant bilinear form on s(A) defined by

〈X1, X2〉 := Trd(X1X2) (3.5.1)

for all X1, X2 ∈ s(A). For f ∈ S(s(A)), its Fourier transform f̂ ∈ S(s(A)) is
defined by

f̂(X̂) :=

∫

s(A)

f(X)Ψ(〈X, X̂〉)dX (3.5.2)

for all X̂ ∈ s(A).

4 Integrability of the modified kernel

Fix a minimal semi-standard parabolic subgroup P0 of G. For any semi-
standard parabolic subgroup P of G and T ∈ a0, denote by TP the projection
of sT in aP , where s is any element in ΩG such that sP0 ⊆ P . Notice that this
definition is independent of the choice of s.
For a semi-standard parabolic subgroup P of G, x ∈ G(A) and T ∈ a0, define

FP (x, T ) := FP
sP0

(x, TsP0 ),

where s is any element in ΩG such that sP0 ⊆ P .

Lemma 4.1. The above definition of FP (x, T ) is independent of the choice of s.
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Proof. For any s ∈ ΩG and any minimal semi-standard parabolic subgroup
B ⊆ P , since we choose ωs ∈ G(F ) ∩K, we have

F sP
sB (x, T ) = FP

B (ω−1
s x, s−1T ).

Let s, s′ ∈ ΩG be such that sP0, s
′P0 ⊆ P . Then s′s−1 ∈ ΩMP . By the last

equality and the left MP (F )-invariance of FP
sP0

(·, TsP0), we have

FP
s′P0

(x, Ts′P0) = FP
sP0

(ω−1
s′s−1x, ss

′−1
Ts′P0) = FP

sP0
(x, TsP0).

This completes the proof of the lemma.

Let f ∈ S(s(A)), P be a relatively standard parabolic subgroup of G and o ∈ O.
Write PH := P ∩H . For x ∈ MPH (F )NPH (A)\H(A), define

kf,P,o(x) :=
∑

X∈mP (F )∩o

∫

(nP∩s)(A)

f(x−1(X + U)x)dU.

For T ∈ a0 and x ∈ H(F )\H(A), define

kTf,o(x) :=
∑

{P :P̃0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH (F )\H(F )

τ̂GP (HP (δx)− TP ) · kf,P,o(δx).

(4.0.1)
We know that the sum over δ ∈ PH(F )\H(F ) is finite from the following
lemma.

Lemma 4.2. Let P be a semi-standard parabolic subgroup of G. For all x ∈
G(A) and T ∈ aP , the sum

∑

δ∈P (F )\G(F )

τ̂GP (HP (δx) − T )

is finite.

Proof. This is a particular case of [2, Lemma 5.1].

4.1 Reduction theory

Lemma 4.3. There exists a point T+ ∈ a+P0
such that for any semi-standard

parabolic subgroup Q of G, any minimal semi-standard parabolic subgroup B
of G contained in Q, any T ∈ T+ + a+P0

and any x ∈ G(A), we have

∑

{P :B⊆P⊆Q}

∑

δ∈P (F )\Q(F )

FP (δx, T )τQP (HP (δx) − TP ) = 1.

Proof. This is [2, Lemma 6.4] in our case.

We shall fix such a T+. If T ∈ T+ + a+P0
, we shall say that T is sufficiently

regular.
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Lemma 4.4. For any relatively standard parabolic subgroup Q of G, any suffi-
ciently regular T and any x ∈ H(A), we have

∑

{P :P̃0⊆P⊆Q}

∑

δ∈PH (F )\QH(F )

FP (δx, T )τQP (HP (δx)− TP ) = 1.

This is an analogue of [26, Proposition 2.3] whose proof relies on [12, (2.5) in
p. 674] (cf. Lemma 4.11 below). It is essentially a restricted form to x ∈ H(A)
from Lemma 4.3 for x ∈ G(A). We can give a proof close to the steps in an
early version of [26], which reflects that a main complexity of the truncation
here arises from the fact that none of the Siegel sets of H is contained in any
Siegel set of G, as mentioned in [12]. However, we shall adopt alternatively the
point of view in [6] to give a more conceptual proof here, which might be useful
in other relative trace formulae as well.
First we introduce a variant (see [6, §1.5]) of some concepts and results in [6, §2]
without reproducing proofs. We say that a semi-standard parabolic subgroup Q
of G is standard if P0 ⊆ Q. For P ⊆ Q a pair of standard parabolic subgroups
of G, denote by ρQP the half of the sum of weights (with multiplicities) for the

action of AP on nP ∩mQ. We denote by a+P0
the closure of a+P0

in a0.

Definition 4.5. For g ∈ G(A), Q a standard parabolic subgroup of G and

T ∈ a+P0
, we define the degree of T -instability of g with respect to Q by the

following formula
degQT (g) := max

(P,δ)
〈ρQP , HP (δg)− T 〉

where (P, δ) runs over the pairs of a standard parabolic subgroup P ⊆ Q and
an element δ ∈ P (F )\Q(F ).

By Lemma 4.2, we know that the supremum of 〈ρQP , HP (δg) − T 〉 in the defi-
nition is finite and attainable.

Lemma 4.6 (cf. [6, Lemme 2.2.1]). Let g ∈ G(A), Q be a standard parabolic

subgroup of G and T ∈ a+P0
. The following two conditions are equivalent:

(1) degQT (g) ≤ 0;

(2) for all parabolic subgroup P ⊆ Q, all δ ∈ P (F )\Q(F ) and all ̟ ∈ ∆̂Q
P , we

have 〈̟,HP (δg)− T 〉 ≤ 0.

Definition 4.7. Let g ∈ G(A) and T ∈ a+P0
. We say that a pair (P, δ) of

a standard parabolic subgroup P ⊆ G and an element δ ∈ P (F )\G(F ) is T -
canonical for g if it satisfies the following two conditions:

(1) 〈ρGP , HP (δg)− T 〉 = degGT (g);

(2) for any parabolic subgroup Q ⊇ P such that 〈ρGQ, HQ(δg)− T 〉 = degGT (g),
we have Q = P .
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Lemma 4.8 (cf. [6, Lemme 2.3.2]). Let g ∈ G(A) and T ∈ a+P0
. Then (P, δ) is

a T -canonical pair for g if and only if it satisfies the following two conditions:

(1) degPT (δg) ≤ 0;

(2) for any α ∈ ∆G
P , we have 〈α,HP (δg)− T 〉 > 0.

Proposition 4.9 (cf. [6, Proposition 2.4.1]). Let g ∈ G(A) and T ∈ a+P0
. Then

there exists a unique T -canonical pair for g.

Let T ∈ a0 and Q be a standard parabolic subgroup of G. Define F̃Q(·, T ) as

the characteristic function of g ∈ G(A) such that degQT (g) ≤ 0.

Proposition 4.10 (cf. [6, Proposition 2.5.1]). For g ∈ G(A), Q a standard

parabolic subgroup of G and T ∈ a+P0
, we have

(1) ∑

{P :P0⊆P⊆Q}

∑

δ∈P (F )\Q(F )

F̃P (δg, T )τQP (HP (δg)− TP ) = 1;

(2)

F̃Q(g, T ) =
∑

{P :P0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈P (F )\Q(F )

τ̂QP (HP (δg)− TP ).

Since we have similar formulae for FQ(·, T ) for sufficiently regular T (see

Lemma 4.3), we know that F̃Q(·, T ) = FQ
P0
(·, T ) for such T . Now we can

return to the proof of Lemma 4.4.

Proof of Lemma 4.4. It is noticeable that the identity is reduced to its ana-
logues for semi-standard Levi factors of Q, which is a product of GLpi+qi,D

whose intersection with H is GLpi,D ×GLqi,D. By induction on the rank of G,
it suffices to prove the identity for Q = G.
For a standard parabolic subgroup P of G, fix a set of representatives ΩP,G in

{s ∈ ΩG|P̃0 ⊆ s−1P} for the relation s1 ∼ s2 if and only if s2s
−1
1 ∈ ΩMP . We

can rewrite the equality in the lemma as

∑

{P :P0⊆P}

∑

s∈ΩP,G

∑

δ∈(s−1P )H(F )\H(F )

FP
P0
(ωsδx, TP0)τ

G
P (HP (ωsδx)− TP ) = 1.

In fact, this follows from

F s−1P (δx, T ) = F s−1P
s−1P0

(δx, Ts−1P0
) = FP

P0
(ωsδx, TP0)

and

τGs−1P (Hs−1P (δx)− Ts−1P ) = τGP (HP (ωsδx) − TP ).
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Combining the double sums over s and δ, we claim that the equality above is
equivalent to

∑

{P :P0⊆P}

∑

δ∈P (F )\P (F )ΩGH(F )

FP
P0
(δx, TP0)τ

G
P (HP (δx) − TP ) = 1.

In fact, for any s ∈ ΩP,G, consider the map

(s−1P )H(F )\H(F ) → P (F )\P (F )ΩGH(F ), δ 7→ ωsδ.

Firstly, it is well-defined: if δ1 = ω−1
s pωsδ2 with p ∈ P (F ), then ωsδ1 = pωsδ2.

Secondly, it is injective: if ωsδ1 = pωsδ2 with p ∈ P (F ), then δ1 = ω−1
s pωsδ2

with ω−1
s pωs = δ1δ

−1
2 ∈ (s−1P )H(F ). Thirdly, for s1 6= s2 in ΩP,G, we have

ωs1δ1 6= pωs2δ2 with p ∈ P (F ): otherwise, s−1
1 P = (δ2δ

−1
1 )−1(s−1

2 P )(δ2δ
−1
1 )

with δ2δ
−1
1 ∈ H(F ), so (s−1

1 P )H = (δ2δ
−1
1 )−1(s−1

2 P )H(δ2δ
−1
1 ), and then

δ2δ
−1
1 ∈ (s−1

1 P )H(F ) = (s−1
2 P )H(F ) for both of (s−1

1 P )H and (s−1
2 P )H are

standard parabolic subgroups of H , which implies s−1
1 P = s−1

2 P contradicting
s1 6= s2. Fourthly, any s̃ ∈ ΩG appears in the image of the map for some s ∈
ΩP,G: since (s̃−1P )H is a semi-standard parabolic subgroup of H , there exists

an s0 ∈ ΩH such that P̃0 ⊆ s−1
0 ((s̃−1P )H) = (s−1

0 (s̃−1P ))H = ((s̃s0)
−1P )H ,

i.e., s̃s0 ∈ ΩP,G. To sum up, we finish the argument of the claim.

It suffices to prove an analogue of the last equality by replacing FP
P0

with F̃P

for T ∈ a+P0
, as they are identical for sufficiently regular T . That is to say, for

x ∈ H(A) = Gθ(A), if (P, δ) is the unique T -canonical pair for x, we need to
prove that δ ∈ P (F )\P (F )ΩGH(F ). Recall that θ(g) = ǫgǫ−1 for g ∈ G(A),

where ǫ =

(
1p 0
0 −1q

)
. Since ǫ ∈ M0(F ) ∩K, from Lemma 4.8, we deduce

that (P, δ) is the unique T -canonical pair for g ∈ G(A) if and only if (P, θ(δ))
is the unique T -canonical pair for θ(g). In particular, if (P, δ) is the unique
T -canonical pair for x ∈ H(A), we have δ = θ(δ). Denote by δ0 a representative
of δ ∈ P (F )\G(F ). Then δ0ǫδ

−1
0 ∈ P (F ).

Suppose that δ0ǫδ
−1
0 = mu, where m ∈ MP (F ) and u ∈ NP (F ). Both of mu

and m are semi-simple in G(F ) (in the classical sense) for (mu)2 = m2 = 1.
Applying [2, Lemma 2.1] to the characteristic function of the singleton {u},
one obtains that mu is NP (F )-conjugated to mu′ for some u′ ∈ NP (F ) such
that mu′ = u′m. Since both of mu′ and m are semi-simple in G(F ), by the
uniqueness of Jordan decomposition, we have u′ = 1, i.e., δ0ǫδ

−1
0 is NP (F )-

conjugated to m. By linear algebra, m is MP (F )-conjugated to a diagonal
matrix with entries {±1} with expected multiplicities p and q respectively. In
sum, δ0ǫδ

−1
0 is P (F )-conjugated to ωsǫω

−1
s for some s ∈ ΩG. Suppose that

p0 ∈ P (F ) satisfies δ0ǫδ
−1
0 = p0(ωsǫω

−1
s )p−1

0 . Then ω−1
s p−1

0 δ0 ∈ Gθ(F ) =
H(F ), i.e., δ = P (F )δ0 ∈ P (F )\P (F )ΩGH(F ).

Lemma 4.11. Let P be a relatively standard parabolic subgroup of G. For any
a ∈ A∞

P̃0
(PH , t0), there exists a relatively standard minimal parabolic subgroup

B ⊆ P such that a ∈ A∞
B (P, t0).
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Proof. This is an analogue of [12, (2.5) in p. 674]. To begin with, we re-
duce ourselves to proving the case P = G. For this purpose, suppose that
the assertion is true in this case, and consider the case P 6= G. Since
A∞

P̃0
(PH , t0) = A∞

P̃0∩MP
(MPH , t0), by our assumption, there exists a minimal

parabolic subgroup B∗ of MP containing P̃0 ∩MP such that a ∈ A∞
B∗

(MP , t0).
Let B := B∗NP . Then B is a relatively standard minimal parabolic subgroup
of G contained in P , and A∞

B∗
(MP , t0) = A∞

B (P, t0). Thus a ∈ A∞
B (P, t0),

which implies the lemma. Therefore, we may and shall only consider the case
P = G in the rest of the proof.
Let a ∈ A∞

P̃0
(H, t0). Then a = diag(a1, · · ·, ap+q), where ai

ai+1
> et0 for 1 ≤ i ≤

p − 1 and p + 1 ≤ i ≤ p + q − 1. In the definition of Siegel sets, we suppose
that t0 < 0, so 0 < et0 < 1. Note that A∞

P0
(G, t0) = {diag(b1, · · ·, bp+q)|

bi
bi+1

>

et0 , ∀1 ≤ i ≤ p+ q− 1}. Thus we need to show that there exists a permutation
s ∈ ΩG such that s · a = diag(as−1(1), · · ·, as−1(p+q)) satisfies the following two
conditions:

(1) s(i) < s(i+ 1) for 1 ≤ i ≤ p− 1 and p+ 1 ≤ i ≤ p+ q − 1;

(2)
as−1(i)

as−1(i+1)
> et0 for 1 ≤ i ≤ p+ q − 1.

Firstly, we show that one can move ap+1 to its left hand side in (a1, · · ·, ap+q)
such that both the first p+1 elements and the last q−1 ones in the new sequence
are in “good” order (which means that the quotient of any consecutive pairs is
> et0), while keeping the original relative orders among (a1, · · ·, ap) and among
(ap+1, · · ·, ap+q). If

ap

ap+1
> et0 , we are already done (one can take s = 1). In

general, write

i1 := max

{
0,max

{
1 ≤ i ≤ p

∣∣∣∣
ai

ap+1
> et0

}}
.

When 1 ≤ i1 ≤ p− 1, since et0 < 1,
ai1+1

ap+1
≤ et0 implies

ap+1

ai1+1
≥ e−t0 > 1; there

is an s ∈ ΩG such that s ·a = diag(a1, · · ·, ai1 , ap+1, ai1+1, · · ·, ap, ap+2, · · ·, ap+q).
When i1 = 0, which implies ap+1 > a1, there is an s ∈ ΩG such that s · a =
diag(ap+1, a1, · · ·, ap, ap+2, · · ·, ap+q).
Secondly, we consider moving ap+2 as before. One should check that ap+2 will
not exceed the new place of ap+1, which results from the fact that

ap+1

ap+2
> et0 .

Thus one can move ap+1 and ap+2 to their left hand side in (a1, · · ·, ap+q)
such that both the first p + 2 elements and the last q − 2 ones in the new
sequence are in "good" order, while still keeping the original relative orders
among (a1, · · ·, ap) and among (ap+1, · · ·, ap+q).
To finish the argument of our claim, it suffices to move ap+3, · · ·, ap+q one by
one as above. After moving ai to its left hand side, where p + 3 ≤ i ≤ p + q,
one requires that both the first i elements and the last p + q − i ones in the
new sequence are in "good" order, while the original relative orders among
(a1, · · ·, ap) and among (ap+1, · · ·, ap+q) are kept. As in the second step above,
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this is possible since ai−1

ai
> et0 . After one moves the last element ap+q, the

sequence satisfies the desired two conditions.

Proposition 4.12. Let B be an arbitrary minimal semi-standard parabolic
subgroup of G. Let P be a parabolic subgroup of G containing B. Suppose that T
is sufficiently regular. If m ∈ ̺B ∩MP (A), a ∈ A∞

B (P, t0) and k ∈ K ∩MP (A)
satisfy FP

B (mak, TB) = 1, then a ∈ A∞
B (P, t0, TB).

Proof. It results from Lemma 4.6, since F̃P
B (·, T ) = FP

B (·, T ) for sufficiently

regular T . Here we write F̃P
B (·, T ) for F̃P (·, T ) when B plays the role of P0.

For a relatively standard parabolic subgroup P of G, denote by P(P̃0, P ) the
set of relatively standard minimal parabolic subgroups of G contained in P .
For B ∈ P(P̃0, P ), write

AG,∞
B (P, t0) := A∞

B (P, t0) ∩G(A)1

and for all T ∈ a0,

AG,∞
B (P, t0, T ) := A∞

B (P, t0, T ) ∩G(A)1.

Corollary 4.13. Let P be a relatively standard parabolic subgroup of G. For
sufficiently regular T , the following subset of MPH (A) ∩G(A)1

⋃

B∈P(P̃0,P )

(̺P̃0
∩MPH (A)) · (A∞

P̃0
(PH , t0) ∩ AG,∞

B (P, t0, TB)) · (KH ∩MPH (A))

projects surjectively on {m ∈ MPH (F )\MPH (A) ∩G(A)1|FP (m,T ) = 1}.

Proof. This is an analogue of [26, Corollaire 2.5]. By Lemma 4.11, the following
subset of MPH (A) ∩G(A)1

⋃

B∈P(P̃0,P )

(̺P̃0
∩MPH (A)) · (A

∞
P̃0
(PH , t0) ∩ AG,∞

B (P, t0)) · (KH ∩MPH (A))

projects surjectively on MPH (F )\MPH (A) ∩ G(A)1. Recall that ̺P̃0
⊆ ̺B for

all B ∈ P(P̃0, P ) and that KH ⊆ K by our choices (see Section 3.4). Therefore,
the statement to be proved follows from Proposition 4.12.

4.2 Integrability

Theorem 4.14. For all sufficiently regular T and all s ∈ R,

∑

o∈O

∫

H(F )\H(A)∩G(A)1
|kTf,o(x)||Nrd(x1)|

s
Adx < ∞,

where we write x = (x1, x2) ∈ GLp,D(A)×GLq,D(A).
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Proof. Let P1 ⊆ P2 be a pair of relatively standard parabolic subgroups of G.
Following [2, §6], for T1 ∈ aP1 , we define the characteristic function

σP2

P1
(T1) :=

∑

{Q:P2⊆Q}

(−1)dim(AP2/AQ)τQP1
(T1)τ̂

G
Q (T1).

Recall that for P ⊇ P1 a relatively standard parabolic subgroup of G, we have
(see [2, p. 943])

τPP1
(T1)τ̂

G
P (T1) =

∑

{P2:P⊆P2}

σP2

P1
(T1).

Denote P1,H := P1 ∩H . For x ∈ P1,H(F )\H(A), we put

χT
P1,P2

(x) := FP1(x, T )σP2

P1
(HP1(x)− TP1),

and
kP1,P2,o(x) :=

∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)kf,P,o(x).

Using Lemma 4.4 and the left invariance of HP and kf,P,o by PH(F ), we have

kTf,o(x) =
∑

{P1,P2:P̃0⊆P1⊆P2}

∑

δ∈P1,H (F )\H(F )

χT
P1,P2

(δx)kP1,P2,o(δx) (4.2.1)

for x ∈ H(F )\H(A). Thus

∑

o∈O

∫

H(F )\H(A)∩G(A)1
|kTf,o(x)||Nrd(x1)|

s
Adx

≤
∑

o∈O

∑

{P1,P2:P̃0⊆P1⊆P2}

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)|kP1,P2,o(x)||Nrd(x1)|
s
Adx.

It suffices to prove that for any pair of relatively standard parabolic subgroups
P1 ⊆ P2 of G,

∑

o∈O

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)|kP1,P2,o(x)||Nrd(x1)|
s
Adx < ∞.

If P1 = P2 6= G, by [2, Lemma 6.1], we have σP2

P1
= 0 and then χT

P1,P2
= 0,

so the integration is zero. If P1 = P2 = G, by Corollary 4.13, every x ∈
H(F )\H(A) ∩ G(A)1 with FG(x, T ) = 1 has a representative in the compact
subset ⋃

B∈P(P̃0,G)

̺P̃0
· AG,∞

B (G, t0, TB) ·KH ,

so the integral is bounded by an integral of a continuous function over a compact
subset and thus convergent. Therefore, we reduce ourselves to proving the
following proposition.
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Proposition 4.15. Let f ∈ S(s(A)), s ∈ R and P1 ( P2 be two relatively
standard parabolic subgroups of G. Fix any two positive real numbers ǫ0 and N .
Then there exists a constant C such that

∑

o∈O

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)|kP1,P2,o(x)||Nrd(x1)|
s
Adx ≤ Ce−N‖T‖

for all sufficiently regular T satisfying α(T ) ≥ ǫ0 ‖ T ‖ for any α ∈ ∆G
P0

.

For x ∈ H(F )\H(A), define

kf,G(x) :=
∑

o∈O

kf,G,o(x) =
∑

X∈s(F )

f(x−1Xx)

and
kTf (x) :=

∑

o∈O

kTf,o(x). (4.2.2)

Corollary 4.16. Let f ∈ S(s(A)) and s ∈ R. Fix any two positive real
numbers ǫ0 and N . Then there exists a constant C such that

∫

H(F )\H(A)∩G(A)1
|kTf (x) − FG(x, T )kf,G(x)||Nrd(x1)|

s
Adx ≤ Ce−N‖T‖

for all sufficiently regular T satisfying α(T ) ≥ ǫ0 ‖ T ‖ for any α ∈ ∆G
P0

.

Proof. For x ∈ H(F )\H(A), we have

kTf (x)− FG(x, T )kf,G(x) =
∑

o∈O

kTf,o(x) − FG(x, T )
∑

o∈O

kf,G,o(x)

=
∑

o∈O

(kTf,o(x)− FG(x, T )kf,G,o(x)).

By (4.2.1), since χT
P1,P2

= 0 for P1 = P2 6= G, we have

kTf,o(x) − FG(x, T )kf,G,o(x)

=
∑

{P1,P2:P̃0⊆P1(P2}

∑

δ∈P1,H (F )\H(F )

χT
P1,P2

(δx)kP1,P2,o(δx).

Therefore,
∫

H(F )\H(A)∩G(A)1
|kTf (x) − FG(x, T )kf,G(x)||Nrd(x1)|

s
Adx

≤
∑

o∈O

∫

H(F )\H(A)∩G(A)1
|kTf,o(x)− FG(x, T )kf,G,o(x)||Nrd(x1)|

s
Adx

≤
∑

o∈O

∑

{P1,P2:P̃0⊆P1(P2}

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)|kP1,P2,o(x)||Nrd(x1)|
s
Adx.

We now conclude by applying Proposition 4.15 to the last expression.
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Proof of Proposition 4.15. Let P be a relatively standard parabolic subgroup
of G such that P1 ⊆ P ⊆ P2. For any X ∈ mP (F ) ∩ o, there exists a unique
relatively standard parabolic subgroup R of G such that P1 ⊆ R ⊆ P and

X ∈ (mP (F ) ∩ r(F ) ∩ o)−

(
⋃

P1⊆Q(R

mP (F ) ∩ q(F ) ∩ o

)
. Write

m̃R
P1

:= mR −


 ⋃

{Q:P1⊆Q(R}

mR ∩ q




and
nPR := nR ∩mP .

By Corollary 3.6, we have

(mP (F ) ∩ r(F ) ∩ o)−


 ⋃

P1⊆Q(R

mP (F ) ∩ q(F ) ∩ o




=(m̃R
P1
(F ) ∩ o)⊕ ((nPR ∩ s)(F )).

Hence

kf,P,o(x) =
∑

X∈mP (F )∩o

∫

nP∩s(A)

f(x−1(X + U)x)dU

=
∑

{R:P1⊆R⊆P}

∑

ξ∈m̃
R
P1

(F )∩o

∑

X∈(nP
R∩s)(F )

∫

(nP∩s)(A)

f(x−1(ξ +X + U)x)dU.

Denote by P the semi-standard parabolic subgroup of G opposite to P and
write

nPR := nR ∩mP .

Note that the restriction of 〈·, ·〉 (defined in (3.5.1)) to ((nPR ∩ s)(A)) × ((nPR ∩
s)(A)) is also non-degenerate. For any ξ ∈ (mR ∩ s)(A), applying the Poisson
summation formula to the Bruhat-Schwartz function

∫
(nP∩s)(A) f(x

−1(ξ + · +

U)x)dU , we get

∑

X∈(nP
R∩s)(F )

∫

(nP∩s)(A)

f(x−1(ξ +X + U)x)dU =
∑

X̂∈(nP
R∩s)(F )

Φx,R
ξ (X̂),

where the partial Fourier transform Φx,R
ξ of

∫
(nP∩s)(A) f(x

−1(ξ+ ·+U)x)dU is

defined by (recall the notation Ψ in Section 3.5)

Φx,R
ξ (X̂) :=

∫

(nP
R∩s)(A)

(∫

(nP∩s)(A)

f(x−1(ξ +X + U)x)dU

)
Ψ(〈X, X̂〉)dX
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for all X̂ ∈ (nPR ∩ s)(A). Since 〈U, X̂〉 = 0 for U ∈ (nP ∩ s)(A) and X̂ ∈
(nPR ∩ s)(A), as well as nR ∩ s = (nP ∩ s)⊕ (nPR ∩ s), we have

Φx,R
ξ (X̂) =

∫

(nR∩s)(A)

f(x−1(ξ + U)x)Ψ(〈U, X̂〉)dU

for all X̂ ∈ (nPR ∩ s)(A), whose expression is actually independent of P .
To sum up,

kf,P,o(x) =
∑

{R:P1⊆R⊆P}

∑

ξ∈m̃
R
P1

(F )∩o

∑

X̂∈(nP
R∩s)(F )

Φx,R
ξ (X̂).

Hence

kP1,P2,o(x) =
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)kf,P,o(x)

=
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)




∑

{R:P1⊆R⊆P}

∑

ξ∈m̃
R
P1

(F )∩o

∑

X̂∈(nP
R∩s)(F )

Φx,R
ξ (X̂)




=
∑

{R:P1⊆R⊆P2}

∑

ξ∈m̃
R
P1

(F )∩o




∑

{P :R⊆P⊆P2}

(−1)dim(AP /AG)
∑

X̂∈(nP
R∩s)(F )

Φx,R
ξ (X̂)




For a relatively standard parabolic subgroup P3 of G containing R, we write

(nP3

R )′ := nP3

R −


 ⋃

{Q:R⊆Q(P3}

n
Q
R


 .

Then
∑

X̂∈(nP
R∩s)(F )

Φx,R
ξ (X̂) =

∑

{P3:R⊆P3⊆P}

∑

X̂∈((n
P3
R )′∩s)(F )

Φx,R
ξ (X̂).

We have
∑

{P :R⊆P⊆P2}

(−1)dim(AP /AG)
∑

X̂∈(nP
R∩s)(F )

Φx,R
ξ (X̂)

=
∑

{P :R⊆P⊆P2}

(−1)dim(AP /AG)
∑

{P3:R⊆P3⊆P}

∑

X̂∈((n
P3
R )′∩s)(F )

Φx,R
ξ (X̂)

=(−1)dim(AP2/AG)
∑

{P3:R⊆P3⊆P2}

∑

X̂∈((n
P3
R )′∩s)(F )

Φx,R
ξ (X̂)

·
∑

{P :P3⊆P⊆P2}

(−1)dim(AP /AP2 ).
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From [2, Proposition 1.1], we know that

∑

{P :P3⊆P⊆P2}

(−1)dim(AP /AP2 ) =

{
1, if P3 = P2;
0, otherwise.

We obtain
∑

{P :R⊆P⊆P2}

(−1)dim(AP /AG)
∑

X̂∈(nP
R∩s)(F )

Φx,R
ξ (X̂)

=(−1)dim(AP2/AG)
∑

X̂∈((n
P2
R )′∩s)(F )

Φx,R
ξ (X̂).

Thus

kP1,P2,o(x) = (−1)dim(AP2/AG)
∑

{R:P1⊆R⊆P2}

∑

ξ∈m̃
R
P1

(F )∩o

∑

X̂∈((n
P2
R )′∩s)(F )

Φx,R
ξ (X̂).

Now

∑

o∈O

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)|kP1,P2,o(x)||Nrd(x1)|
s
Adx

≤
∑

o∈O

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)

·




∑

{R:P1⊆R⊆P2}

∑

ξ∈m̃
R
P1

(F )∩o

∑

X̂∈((n
P2
R )′∩s)(F )

|Φx,R
ξ (X̂)|


 |Nrd(x1)|

s
Adx

=
∑

{R:P1⊆R⊆P2}

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)

·
∑

ξ∈(m̃R
P1

∩s)(F )

∑

X̂∈((n
P2
R )′∩s)(F )

|Φx,R
ξ (X̂)||Nrd(x1)|

s
Adx.

We reduce ourselves to bounding
∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)

·
∑

ξ∈(m̃R
P1

∩s)(F )

∑

X̂∈((n
P2
R )′∩s)(F )

|Φx,R
ξ (X̂)||Nrd(x1)|

s
Adx

(4.2.3)

for any fixed relatively standard parabolic subgroup R of G such that P1 ⊆
R ⊆ P2.
By Iwasawa decomposition and our choices of measures, the integral over
P1,H(F )\H(A) ∩G(A)1 can be decomposed as integrals over

(n1,m1, k) ∈ NP1,H (F )\NP1,H (A)×MP1,H (F )\MP1,H (A) ∩G(A)1 ×KH .

Documenta Mathematica 27 (2022) 315–381



340 H. Li

Then

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)

·
∑

ξ∈(m̃R
P1

∩s)(F )

∑

X̂∈((n
P2
R )′∩s)(F )

|Φx,R
ξ (X̂)||Nrd(x1)|

s
Adx

=

∫

KH

∫

MP1,H
(F )\MP1,H

(A)∩G(A)1

∫

NP1,H
(F )\NP1,H

(A)

FP1(m1, T )

·σP2

P1
(HP1(m1)− TP1)

∑

ξ∈(m̃R
P1

∩s)(F )

∑

X̂∈((n
P2
R )′∩s)(F )

|Φn1m1k,R
ξ (X̂)|

·e−2ρP1,H
(HP1,H

(m1))|Nrd(m1,1)|
s
Adn1dm1dk,

where we write m1 = (m1,1,m1,2) ∈ GLp,D(A)×GLq,D(A).
By Corollary 4.13, the following subset of MP1,H (A) ∩G(A)1

⋃

B∈P(P̃0,P1)

(̺P̃0
∩MP1,H (A))·(A∞

P̃0
(P1,H , t0)∩A

G,∞
B (P1, t0, TB))·(KH∩MP1,H (A))

projects surjectively on {m1 ∈ MP1,H (F )\MP1,H (A)∩G(A)1|FP1(m1, T ) = 1}.

Let Γ1 ⊆ NP1,H (A) be a compact subset which projects surjectively on
NP1,H (F )\NP1,H (A). Then Γ1 ·(̺P̃0

∩MP1,H (A)) is a compact subset of NP̃0
(A).

Let Γ2 ⊆ NP2,H (A), Γ3 ⊆ N
P2,H

P̃0
(A) and Γ4 ⊆ MP̃0

(A)1 be compact subsets

(independent of T ) such that Γ1 · (̺P̃0
∩MP1,H (A)) ⊆ Γ2Γ3Γ4. We have

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)

·
∑

ξ∈(m̃R
P1

∩s)(F )

∑

X̂∈((n
P2
R )′∩s)(F )

|Φx,R
ξ (X̂)||Nrd(x1)|

s
Adx

≤ c1
∑

B∈P(P̃0,P1)

∫

KH

∫

Γ4

∫

AG,∞
B (P1,t0,TB)

∫

Γ3

∫

Γ2

σP2

P1
(HP1(a)− TP1)

∑

ξ∈(m̃R
P1

∩s)(F )

∑

X̂∈((n
P2
R )′∩s)(F )

|Φn2namk,R
ξ (X̂)|e−2ρP̃0

(HB(a))|Nrd(a1)|
s
Adn2dndadmdk,

where c1 = vol(KH ∩MP1,H (A)) is a constant independent of T .

Lemma 4.17. Let x ∈ H(A), ξ ∈ (mR∩s)(A) and X̂ ∈ (nR∩s)(A). Let R ⊆ P2

be a pair of relatively standard parabolic subgroups of G. For n2 ∈ NP2,H (A),
we have

Φn2x,R
ξ (X̂) = Φx,R

ξ (X̂).
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Proof of Lemma 4.17. Let U2 := n−1
2 ξn2 − ξ. Then

Φn2x,R
ξ (X̂) =

∫

(nR∩s)(A)

f(x−1n−1
2 (ξ + U)n2x)Ψ(〈U, X̂〉)dU

=

∫

(nR∩s)(A)

f(x−1(ξ + U2 + n−1
2 Un2)x)Ψ(〈U, X̂〉)dU.

Since both U2 and n−1
2 Un2 − U belong to (nP2 ∩ s)(A), we have

〈U2 + n−1
2 Un2 − U, X̂〉 = 0,

so

Φn2x,R
ξ (X̂) =

∫

(nR∩s)(A)

f(x−1(ξ + U2 + n−1
2 Un2)x)Ψ(〈U2 + n−1

2 Un2, X̂〉)dU.

Because the change of variables U2 + n−1
2 Un2 7→ U does not change the Haar

measure, we obtain
Φn2x,R

ξ (X̂) = Φx,R
ξ (X̂).

Using Lemma 4.17, we get

Φn2namk,R
ξ (X̂) = Φnamk,R

ξ (X̂) = Φaa−1namk,R
ξ (X̂).

By change of variables a−1Ua 7→ U , using the fact that

〈U, X̂〉 = 〈a−1Ua, a−1X̂a〉,

we have
Φn2namk,R

ξ (X̂) = e2ρR,+(HB(a))Φa−1namk,R
a−1ξa (a−1X̂a),

where we denote by ρR,+ the half of the sum of weights (with multiplicities)
for the action of A0 on nR ∩ s. From the reduction theory (see [2, p. 944]), we
know that for a satisfying σP2

P1
(HP1(a)−TP1) 6= 0, a−1na belongs to a compact

subset independent of T . In sum,
∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)

·
∑

ξ∈(m̃R
P1

∩s)(F )

∑

X̂∈((n
P2
R )′∩s)(F )

|Φx,R
ξ (X̂)||Nrd(x1)|

s
Adx

≤ c2
∑

B∈P(P̃0,P1)

sup
y∈Γ

∫

AG,∞
B (P1,t0,TB)

e
(2ρR,+−2ρP̃0

)(HB(a))
σP2

P1
(HP1(a)− TP1)

·
∑

ξ∈(m̃R
P1

∩s)(F )

∑

X̂∈((n
P2
R )′∩s)(F )

|Φy,R
a−1ξa(a

−1X̂a)||Nrd(a1)|
s
Ada,
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where c2 is a constant independent of T , and Γ is a compact subset of H(A)∩
G(A)1 independent of T .
Denote by OF the ring of integers of F . Fix an F -basis for each weight space
for the action of A0(F ) on s(F ). Since the function f ∈ S(s(A)) is compactly
supported at finite places, there exists an OF -scheme structure on such weight
spaces independent of T such that the sums over ξ ∈ (m̃R

P1
∩ s)(F ) and X̂ ∈

((nP2

R )′ ∩ s)(F ) can be restricted to ξ ∈ m̃R
P1
(F ) ∩ s(OF ) and X̂ ∈ (nP2

R )′(F ) ∩
s(OF ) respectively. To see this, one may consult [5, §1.9 and p. 363] for
details, and one needs to replace mR and nR in loc. cit. by mR ∩ s and nR ∩ s

respectively.
Fix an R-basis {e1, · · · , eℓ} of the R-linear space s(F ⊗Q R), whose dimension
is denoted by ℓ, consisting of eigenvectors for the action of A∞

B . Let ‖ · ‖ be
the standard Euclidean norm with respect to this basis. Consider a sufficiently
large integer k > 0 to be described precisely at the end of the proof. There
exists an even integer m ≥ 0, a real number kα ≥ 0 for each α ∈ ∆P2

B , and a
real number c3 > 0 satisfying the following conditions (cf. [5, (4.10) in p. 372]
or [2, p. 946-947]):

(1) if R = P2, m = 0;

(2) for all α ∈ ∆P2

B −∆R
B , kα ≥ k;

(3) for all a0 ∈ A∞
B (P2, t0),

∑

X̂∈(n
P2
R )′(F )∩s(OF )

‖a−1
0 X̂a0‖

−m ≤ c3
∏

α∈∆
P2
B

e−kαα(HB(a0)). (4.2.4)

We fix such data.
We extend any differential operator ∂ on s(F ⊗QR) to s(A) by defining ∂(f∞⊗
χ∞) := (∂f∞)⊗ χ∞ (see Section 2.3 for the notation). We also write

Φx,R,∂
ξ (X̂) :=

∫

(nR∩s)(A)

(∂f)(x−1(ξ + U)x)Ψ(〈U, X̂〉)dU.

For a multi-index
−→
i = (i1, · · · , iℓ) ∈ Zℓ

≥0, denote by ∂
−→
i := ( ∂

∂e1
)i1 · · · ( ∂

∂eℓ
)iℓ

the corresponding differential operator on s(F ⊗Q R). Since m is even, the

function X̂ 7→ ‖X̂‖m is a polynomial with Z-coefficients on (nP2

R ∩ s)(F ⊗Q R).
Invoking integration by parts (see [7, Theorem 3.3.1.(f)] for example), we see
that there exists a differential operator ∂(m) on s(F ⊗Q R) satisfying the fol-
lowing two conditions.

(1) ∂(m) is a finite Z-linear combination of ∂
−→
i ’s with the properties:

• the sum of components of
−→
i is m;

• all components of
−→
i are even integers;
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• all non-zero components of
−→
i correspond to eigenvectors lying in

(nP2

R ∩ s)(F ⊗Q R).

(2) For X̂ 6= 0, we have

|Φy,R
ξ (X̂)| = ‖X̂‖−m|Φ

y,R,Ad(y−1)∂(m)

ξ (X̂)|.

We fix such a ∂(m). Suppose that ∂(m) =
∑

−→
i ∈I

r−→
i
∂
−→
i , where I is a finite set of

multi-indices and r−→
i
∈ Z. Then for X̂ 6= 0, we have

|Φy,R
a−1ξa(a

−1X̂a)| ≤ c4(y)‖a
−1X̂a‖−m

∑

−→
i ∈I

|Φy,R,∂
−→
i

a−1ξa (a−1X̂a)|,

where c4(y) is a continuous function of y.
Denote by Φ(AB ,mR ∩ s) the set of weights of AB in mR ∩ s. For any µ ∈
Φ(AB ,mR ∩ s), let mµ be the corresponding weight space. From [21, §41], we
know that there exists a function φµ ∈ S(mµ(A)) for each µ ∈ Φ(AB ,mR ∩ s)
and a function φnR∩s ∈ S((nR ∩ s)(A)) such that for all ξ+U ∈ (mR ∩ s)(A)⊕
(nR ∩ s)(A) and y ∈ Γ,

∑

−→
i ∈I

|(∂
−→
i f)(y−1(ξ + U)y)| ≤




∏

µ∈Φ(AB ,mR∩s)

φµ(ξµ)


φnR∩s(U),

where ξµ denotes the projection of ξ to mµ(A).
Let a ∈ AG,∞

B (P1, t0, TB) be such that σP2

P1
(HP1(a) − TP1) 6= 0. It is shown in

[5, p. 375] that α(HB(a)) > t0 for all α ∈ ∆P2

B . Now we have
∑

ξ∈(m̃R
P1

∩s)(F )

∑

X̂∈((n
P2
R )′∩s)(F )

|Φy,R
a−1ξa(a

−1X̂a)|

=
∑

ξ∈m̃
R
P1

(F )∩s(OF )

∑

X̂∈(n
P2
R )′(F )∩s(OF )

|Φy,R
a−1ξa(a

−1X̂a)|

≤
∑

ξ∈m̃
R
P1

(F )∩s(OF )

∑

X̂∈(n
P2
R )′(F )∩s(OF )

c4(y)‖a
−1X̂a‖−m

∑

−→
i ∈I

|Φy,R,
−→
i

a−1ξa (a
−1X̂a)|

≤c5
∑

ξ∈m̃
R
P1

(F )∩s(OF )




∏

µ∈Φ(AB ,mR∩s)

φµ(µ(a)
−1ξµ)




·
∑

X̂∈(n
P2
R )′(F )∩s(OF )

‖a−1X̂a‖−m

≤c5c3
∑

ξ∈m̃
R
P1

(F )∩s(OF )


 ∏

µ∈Φ(AB ,mR∩s)

φµ(µ(a)
−1ξµ)


 ·

∏

α∈∆
P2
B

e−kαα(HB(a)),
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where c5 := sup
y∈Γ

c4(y)
∫
(nR∩s)(A)

φnR∩s(U)dU , and we have applied (4.2.4) to

a0 = a in the last inequality. Thus
∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)

·
∑

ξ∈(m̃R
P1

∩s)(F )

∑

X̂∈((n
P2
R )′∩s)(F )

|Φx,R
ξ (X̂)||Nrd(x1)|

s
Adx

≤ c2c5c3
∑

B∈P(P̃0,P1)

∫

AG,∞
B (P1,t0,TB)

e
(2ρR,+−2ρP̃0

)(HB(a))
σP2

P1
(HP1(a)− TP1)

·
∑

ξ∈m̃
R
P1

(F )∩s(OF )




∏

µ∈Φ(AB ,mR∩s)

φµ(µ(a)
−1ξµ)




·



∏

α∈∆
P2
B

e−kαα(HB(a))


 |Nrd(a1)|

s
Ada.

Denote by ΣmR∩s

B the positive weights of mR ∩ s under the action of AB. Con-

sider the subsets S of ΣmR∩s

B with the following property: for all α ∈ ∆R
B−∆P1

B ,
there exists µ ∈ S such that its α-coordinate is > 0. Then

∑

ξ∈m̃
R
P1

(F )∩s(OF )




∏

µ∈Φ(AB ,mR∩s)

φµ(µ(a)
−1ξµ)




≤
∑

S


∏

µ∈S


 ∑

ξ−∈m−µ(OF )−{0}

φ−µ(µ(a)ξ−)






·


 ∏

µ∈Σ
mR∩s

B


 ∑

ξ+∈mµ(OF )

φµ(µ(a
−1)ξ+)




 .

The rest of the proof is analogous to that of [5, Proposition 4.4], and we shall
only sketch main steps and point out additional ingredients. By the argument
in [5, p. 373], for a ∈ A∞

B (P2, t0), we have bounds for two factors

∏

µ∈S




∑

ξ−∈m−µ(OF )−{0}

φ−µ(µ(a)ξ−)


 ≤ c6

∏

α∈∆R
B−∆

P1
B

e−kα(HB(a))

and

∏

µ∈Σ
mR∩s

B




∑

ξ+∈mµ(OF )

φµ(µ(a
−1)ξ+)


 ≤ c7e

(2ρB,+−2ρR,+)(HB(a)),
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where c6 and c7 are constants independent of T . We deduce that

e
(2ρR,+−2ρP̃0

)(HB(a)) ·
∑

ξ∈m̃
R
P1

(F )∩s(OF )


 ∏

µ∈Φ(AB ,mR∩s)

φµ(µ(a)
−1ξµ)




·



∏

α∈∆
P2
B

e−kαα(HB(a))


 |Nrd(a1)|

s
A

≤c8e
(2ρR,+−2ρP̃0

)(HB(a)) ·




∏

α∈∆R
B−∆

P1
B

e−kα(HB(a))


 e(2ρB,+−2ρR,+)(HB(a))

·



∏

α∈∆
P2
B

e−kαα(HB(a))


 |Nrd(a1)|

s
A

=c8e
(2ρB,+−2ρP̃0

)(HB(a))|Nrd(a1)|
s
A ·




∏

α∈∆R
B−∆

P1
B

e−kα(HB(a))




·



∏

α∈∆
P2
B

e−kαα(HB(a))


 ,

where c8 is a constant independent of T . The last expression only differs from
[5, (4.17) in p. 375] by a factor

e(2ρB,+−2ρP̃0
)(HB(a))|Nrd(a1)|

s
A = e(2ρB,+−2ρP̃0

)(HB(a))

(
|Nrd(a1)|

1/p
A

|Nrd(a2)|
1/q
A

) pq
p+q s

in the form of eλ(HB(a)), where λ ∈ (aGB)
∗. We shall see that this discrepancy

will be unimportant when we follow the end of the proof of [5, Proposition 4.4]
(cf. [26, end of §3.2]). Write

λ =



∑

α∈∆
P2
B

cαα


 + λ′,

where cα ∈ R and λ′ ∈ (aGP2
)∗. By [4, Lemma 8.3.(b)], there exists a constant

c9 > 0 such that for all T1 ∈ aGP1
satisfying σP2

P1
(T1) = 1, we have

λ′(T2) ≤ c9



∑

β∈∆
P2
P1

β(T 2
1 )


 ,
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where we write T1 = T 2
1 + T2 with T 2

1 ∈ aP2

P1
and T2 ∈ aGP2

. Hence, when

a ∈ AG,∞
B (P1, t0, TB) satisfies σP2

P1
(HP1(a)− TP1) 6= 0, we have

eλ(HB(a)) =



∏

α∈∆
P2
B

ecαα(HB(a))


 · eλ

′(HP2 (a))

=



∏

α∈∆
P2
B

ecαα(HB(a))


 · eλ

′(HP2 (a)−TG
P2

)eλ
′(TG

P2
)

≤



∏

α∈∆
P2
B

ecαα(HB(a))


 ·



∏

β∈∆
P2
P1

ec9tβ


 ec10‖T‖,

where TG
P2

is the projection of TP2 to aGP2
via the decomposition aP2 = aGP2

⊕aG,

we let
∑

β∈∆
P2
P1

tβ̟
∨
β with tβ ∈ R be the projection of HP1(a) − TP1 to aP2

P1
via

the decomposition aP1 = aP2

P1
⊕ aP2 , and c10 is a constant independent of T .

To bound (4.2.3), it suffices to plug this extra factor into [5, (4.18) in p. 375].
More precisely, set

k′α :=

{
kα + cα, for all α ∈ ∆P2

B −∆R
B ;

kα + k + cα, for all α ∈ ∆R
B −∆P1

B .

Then there exists a constant c11 > 0 independent of T such that

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)

·
∑

ξ∈(m̃R
P1

∩s)(F )

∑

X̂∈((n
P2
R )′∩s)(F )

|Φx,R
ξ (X̂)||Nrd(x1)|

s
Adx

≤ c11vol(A
P1,∞
B (t0, TB))e

c10‖T‖

·
∏

α∈∆
P2
B −∆

P1
B

(
e−k′

αα(TB)

∫ ∞

0

(1 + t)nαe(c9−k′

α)tdt

)
,

where AP1,∞
B (t0, TB) := A∞

B (P1, t0, TB) ∩ MP1(A)
1, and nα’s are positive in-

tegers independent of T . We know that vol(AP1,∞
B (t0, TB)) is of polynomial

growth in T and that kα ≥ k + cα for all α ∈ ∆P2

B −∆P1

B 6= ∅. For sufficiently
regular T satisfying α(TB) ≥ ǫ0‖T ‖ for all α ∈ ∆G

B , if we choose sufficiently
large k, then the last expression is bounded by Ce−N‖T‖ with a constant C
independent of T .
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5 Exponential polynomial distributions

Let T be sufficiently regular, o ∈ O and η be the quadratic character of A×/F×

attached to a quadratic field extension E/F . For f ∈ S(s(A)) and s ∈ C, define

JG,T
o

(η, s, f) :=

∫

H(F )\H(A)∩G(A)1
kTf,o(x)η(Nrd(x))|Nrd(x1)|

s
Adx (5.0.1)

and

JG,T (η, s, f) :=

∫

H(F )\H(A)∩G(A)1
kTf (x)η(Nrd(x))|Nrd(x1)|

s
Adx,

where kTf,o(x) and kTf (x) are defined by (4.0.1) and (4.2.2) respectively, and we
write x = (x1, x2) ∈ GLp,D(A)×GLq,D(A). From Theorem 4.14, we know that

JG,T
o (η, s, ·) and JG,T (η, s, ·) are well-defined distributions on S(s(A)) and that

JG,T (η, s, f) =
∑

o∈O

JG,T
o

(η, s, f),

which is an analogue of the geometric side of Arthur’s trace formula.

5.1 A generalised case in the product form

Let Q be a relatively standard parabolic subgroup of G. Then

MQ ≃ GLp1+q1,D × · · · ×GLpl+ql,D

and

MQH ≃ GLp1,D × · · · ×GLpl,D ×GLq1,D × · · · ×GLql,D,

where
l∑

i=1

pi = p,
l∑

i=1

qi = q and we allow pi or qi to be zero. The tangent space

of MQ/MQH at the neutral element is

mQ ∩ s ≃
⊕

{1≤i≤l|piqi 6=0}

(
0 Matpi×qi,D

Matqi×pi,D 0

)
.

The conjugate action of MQH (F ) on (mQ ∩ s)(F ) can be described as follows:

(1) if piqi 6= 0,

(
GLpi(D)

GLqi(D)

)
acts on

(
0 Matpi×qi(D)

Matqi×pi(D) 0

)

by conjugation;

(2) if piqi = 0,

(
GLpi(D)

GLqi(D)

)
acts on 0 (viewed as a 0-dimensional

vector space) trivially.
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We may generalise integrability in last section to the product setting here whose
proof is similar.
Define a relation of equivalence on (mQ ∩ s)(F ) which is similar to that on
s(F ) on each component. We denote by OmQ∩s the set of equivalent classes
for this relation. For o ∈ O, the intersection o ∩ mQ(F ) is a finite (perhaps
empty) union of classes o1, ···, ot ∈ OmQ∩s. Fix the minimal parabolic subgroup

P̃ ′
0 := P̃0 ∩ MQH = P̃0 ∩MQ of MQH and its Levi factor M0. We say that a

parabolic subgroup P ′ of MQ is semi-standard (resp. relatively standard) if

M0 ⊆ P ′ (resp. P̃ ′
0 ⊆ P ′). Notice that there exists a bijection from the set of

semi-standard (resp. relatively standard) parabolic subgroups of G contained
in Q to the set of semi-standard (resp. relatively standard) parabolic subgroups
of MQ given by P 7→ P ∩MQ, whose inverse is given by P ′ 7→ P ′NQ.
Choose ςQ ∈ ΩG (not unique) such that ςQP0 ⊆ Q. Fix the minimal semi-
standard parabolic subgroup P ′

0 := (ςQP0) ∩ MQ of MQ depending on the
choice of ςQ. For any semi-standard parabolic subgroup P ′ of MQ and T ∈ a0,
denote by TP ′ the projection of sT in aP ′ , where s ∈ ΩMQ such that sP ′

0 ⊆ P ′.
For s ∈ ΩMQ and a semi-standard parabolic subgroup P ⊆ Q of G, we see that
sP ′

0 ⊆ P ∩ MQ if and only if sςQP0 ⊆ P . Then (ςQT )P∩MQ = TP which is

independent of the choice of ςQ. If T ∈ a+P0
is sufficiently regular with respect

to P0 ⊆ G, then ςQT ∈ a+P ′

0
is sufficiently regular with respect to P ′

0 ⊆ MQ.

Let f ′ ∈ S((mQ ∩ s)(A)), P ′ be a relatively standard parabolic subgroup
of MQ and 1 ≤ j ≤ t. Write P ′

H := P ′ ∩ MQH = P ′ ∩ H . For
x ∈ MP ′

H
(F )NP ′

H
(A)\MQH (A), define

k
MQ

f ′,P ′,oj
(x) :=

∑

X∈mP ′ (F )∩oj

∫

(nP ′∩s)(A)

f ′(x−1(X + U)x)dU. (5.1.1)

For T ∈ a0 and x ∈ MQH (F )\MQH (A), define

kQ,T
f ′,oj

(x) :=
∑

{P ′:P̃ ′

0⊆P ′}

(−1)dim(AP ′/AMQ
)

·
∑

δ∈P ′

H (F )\MQH
(F )

τ̂
MQ

P ′ (HP ′ (δx)− TP ′) · k
MQ

f ′,P ′,oj
(δx).

For sufficiently regular T ∈ a+P0
and {si}1≤i≤l ∈ Cl, define

JQ,T
oj

(η, {si}, f
′) :=

∫

MQH
(F )\MQH

(A)∩MQ(A)1
k
Q,ςQT
f ′,oj

(x)η(Nrd(x))

·
∏

1≤i≤l

|Nrd(xi,1)|
si
A dx,

where we write x = (x1, ..., xl) ∈ GLp1+q1,D(A)× · · · ×GLpl+ql,D(A) and xi =

(xi,1, xi,2) ∈ GLpi,D(A) × GLqi,D(A). As explained above, k
Q,ςQT
f ′,oj

and JQ,T
oj
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are independent of the choice of ςQ. Then we have well-defined distributions

JQ,T
oj (η, {si}, ·) on S((mQ ∩ s)(A)). It only depends on the projection of ςQT

to a
Q
ςQP0

and does not depend on TQ. Now we define

JQ,T
o

:=
t∑

j=1

JQ,T
oj

(5.1.2)

and
JQ,T :=

∑

o∈O

JQ,T
o

.

For f ∈ S(s(A)), define fη
Q ∈ S((mQ ∩ s)(A)) by

fη
Q(X) :=

∫

KH

∫

(nQ∩s)(A)

f(k−1(X + V )k)η(Nrd(k))dV dk (5.1.3)

for all X ∈ (mQ ∩ s)(A).

5.2 ω-stable parabolic subgroups

In our case, we can embed G into g in the standard way. For any linear subspace
v of g, we denote by v× the intersection of v and G in g. Assume that p = q.
Let us denote n := p = q. Then s×(F ) is the union of classes in O×. Let

ω :=

(
0 1n
1n 0

)
∈ G(F ). In this section, we shall freely use the notation in

Section 3.4. Then ω is the element in G exchanging ei and fi for all 1 ≤ i ≤ n.
We see that ωP̃0ω

−1 = P̃0. We say that a semi-standard parabolic subgroup Q
of G is “ω-stable” if ωQω−1 = Q. By Chevalley’s theorem, this condition is
equivalent to ω ∈ Q. Recall that a relatively standard parabolic subgroup Q
of G is understood as the stabiliser in G of the flag

0 ( 〈e1, · · ·, ep1 , f1, · · ·, fq1〉D ( 〈e1, · · ·, ep1+p2 , f1, · · ·, fq1+q2〉D

( · · · ( 〈e1, · · ·, ep1+···+pl
, f1, · · ·, fq1+···+ql〉D,

where
l∑

i=1

pi =
l∑

i=1

qi = n and we allow pi or qi to be zero.

Proposition 5.1. Assume that p = q = n. Let Q be a relatively standard
parabolic subgroup of G. Then Q is ω-stable if and only if pi = qi for all
1 ≤ i ≤ l.

Proof. Since ω ∈ G exchanges ei and fi for all 1 ≤ i ≤ n, the parabolic
subgroup ωQω−1 of G is the stabiliser in G of the flag

0 ( 〈f1, · · ·, fp1 , e1, · · ·, eq1〉D ( 〈f1, · · ·, fp1+p2 , e1, · · ·, eq1+q2〉D

( · · · ( 〈f1, · · ·, fp1+···+pl
, e1, · · ·, eq1+···+ql〉D.

Then ωQω−1 = Q if and only if the flags associated to ωQω−1 and Q are the
same, which is equivalent to pi = qi for all 1 ≤ i ≤ l.
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An illustrating example of ω-stable relatively standard parabolic subgroups
of G looks like (when l = 2)

Q =




∗ ∗ ∗ ∗
0 ∗ 0 ∗
∗ ∗ ∗ ∗
0 ∗ 0 ∗




×

.

Proposition 5.2. Assume that p = q = n. The map Pn 7→

(
pn pn
pn pn

)×

in-

duces a bijection from the set of standard parabolic subgroups in GLn,D (namely
containing the group of upper triangular matrices) to the set of ω-stable rela-
tively standard parabolic subgroups in G.

Proof. It is known that there is a bijection between the set of standard parabolic
subgroups in GLn,D and the set of partitions of n. By Proposition 5.1, the
latter set is in bijection with the set of ω-stable relatively standard parabolic
subgroups in G. The composition of these bijection is exactly given by the map

Pn 7→

(
pn pn
pn pn

)×

.

Proposition 5.3. Assume that p = q = n. Let Q ⊆ R be a pair of relatively
standard parabolic subgroups of G. If Q is ω-stable, then R is ω-stable.

Proof. Suppose that R is the stabiliser in G of the flag

0 ( 〈e1, · · ·, er1 , f1, · · ·, ft1〉D ( 〈e1, · · ·, er1+r2 , f1, · · ·, ft1+t2〉D

( · · · ( 〈e1, · · ·, er1+···+rl′ , f1, · · ·, ft1+···+tl′ 〉D.

The condition Q ⊆ R tells us that the partition (p1, · · ·, pl) (resp. (q1, · · ·, ql))
is a refinement of the partition (r1, · · ·, rl′ ) (resp. (t1, · · ·, tl′)) of n, and that
for all 1 ≤ j ≤ l′, rj and tj are divided into the same number of segments in
these two refinements. Hence, if pi = qi for all 1 ≤ i ≤ l, then rj = tj for all
1 ≤ j ≤ l′. Thus this proposition results from Proposition 5.1.

For any relative standard parabolic subgroup Q of G, define

Q
ω-st

:=
⋂

{R:Q⊆R,ωRω−1=R}

R,

which is the minimal ω-stable parabolic subgroup of G containing Q.

Proposition 5.4. Assume that p = q = n. Let o ∈ O. The following three
conditions are equivalent:

(1) o ∈ O×;

(2) for all relatively standard parabolic subgroup Q of G, if o ∩ q(F ) 6= ∅, then
Q is ω-stable;
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(3) for all relatively standard parabolic subgroup Q of G, if o ∩ mQ(F ) 6= ∅,
then Q is ω-stable.

Proof. The direction (2)⇒(3) is trivial. We actually have (2)⇔(3) from Propo-
sition 3.5.
Next, we prove the direction (1)⇒(2). We assume that o ∈ O× and that
o ∩ q(F ) 6= ∅ for some relatively standard parabolic subgroup Q of G. If Q is
not ω-stable, let k be the minimal integer such that 1 ≤ k ≤ l − 1 and that

∑

1≤i≤k

pi −
∑

1≤i≤k

qi 6= 0.

Without loss of generality, we may assume that

∑

1≤i≤k

pi −
∑

1≤i≤k

qi < 0.

Let

(
0 A
B 0

)
∈ o∩q(F ). Then A ∈ gln(D) is in the form of

(
∗ ∗
0 ∗

)
, where the

size of the zero matrix in the lower left corner is at least

( ∑
k+1≤i≤l

pi

)
×

(
1 +

∑
k+1≤i≤l

pi

)
. Therefore, A is not invertible, which contradicts with o ∈ O×.

This establishes (1)⇒(2).
Finally, we prove the direction (3)⇒(1). We assume (3). Suppose that o /∈ O×.

Let P (λ) := PrdAB(λ), where

(
0 A
B 0

)
is any element in o. By [23, Proposition

5], there exists 1 ≤ m ≤ n such that P (λ) = λdmR(λ), where R(λ) = PrdC(λ)
for some C ∈ GLn−m(D). Let Q be the relative standard parabolic subgroup of

G with l = 2, p1 = q1 = n−m and p2 = q2 = m. Then




0 0 1n−m 0
0 0 0 0
C 0 0 0
0 0 0 0


 ∈

o ∩mQ(F ), which contradicts with (3). This shows (3)⇒(1).

Denote by ρQ,+ the half of the sum of weights (with multiplicities) for the
action of A0 on nQ ∩ s. We see that ρQ,+ = ρQ − ρQH and that for Q ⊆
R a pair of relatively standard parabolic subgroup of G, the restriction of
(2ρQ,+ − 2ρQH )

∣∣
aQ

to aR equals (2ρR,+ − 2ρRH )
∣∣
aR

.

Lemma 5.5. Assume that p = q = n. Let Q be a relatively standard parabolic
subgroup of G. For all ̟∨ ∈ ∆̂∨

Q, we have (2ρQ,+−2ρQH )(̟
∨) ≥ 0. Moreover,

2ρQ,+−2ρQH viewed as an element of (aGQ)
∗ is zero if and only if Q is ω-stable.

Proof. Put e∗i ∈ a∗0 (resp. f∗
i ∈ a∗0) to be the character of the action of A0

on ei (resp. fi). Write e∨i ∈ a0 (resp. f∨
i ∈ a0) to be the dual basis, i.e.,

Documenta Mathematica 27 (2022) 315–381



352 H. Li

e∗i (e
∨
j ) = δij (resp. f∗

i (f
∨
j ) = δij) for 1 ≤ i, j ≤ n. A basis of aQ is given

by h∨
i := e∨p1+···+pi−1+1 + · · ·+ e∨p1+···+pi

+ f∨
q1+···+qi−1+1 + · · · + f∨

q1+···+qi for
1 ≤ i ≤ l. Write h∗

i ∈ (aQ)
∗ to be the dual basis. Denote

̟∨
k :=

l∑
i=k+1

(pi + qi)

2n
(h∨

1 + · · ·+ h∨
k )−

k∑
i=1

(pi + qi)

2n
(h∨

k+1 + · · ·+ h∨
l ).

Recall that

(∆̂G
Q)

∨ = {̟∨
k |1 ≤ k ≤ l− 1}

is a basis of aGQ. We can also see that

2ρQ,+

∣∣
aQ

= dimF (D)
∑

1≤i<j≤l

(piqj + qipj)(h
∗
i − h∗

j )

and that

2ρQH

∣∣
aQ

= dimF (D)
∑

1≤i<j≤l

(pipj + qiqj)(h
∗
i − h∗

j ),

so

(2ρQ,+ − 2ρQH )
∣∣
aQ

= dimF (D)
∑

1≤i<j≤l

(pi − qi)(qj − pj)(h
∗
i − h∗

j ).

Since
l∑

i=1

pi =
l∑

i=1

qi = n, we have

(h∗
i − h∗

j )(̟
∨
k ) =

{
0, if k + 1 ≤ i < j ≤ l or 1 ≤ i < j ≤ k;

1, if 1 ≤ i ≤ k and k + 1 ≤ j ≤ l.

Then

(2ρQ,+ − 2ρQH )(̟
∨
k ) = dimF (D)

∑

1≤i≤k
k+1≤j≤l

(pi − qi)(qj − pj)

= dimF (D)


 ∑

1≤i≤k

pi −
∑

1≤i≤k

qi




 ∑

k+1≤j≤l

qj −
∑

k+1≤j≤l

pj




=dimF (D)


 ∑

1≤i≤k

pi −
∑

1≤i≤k

qi




2

≥ 0.

It is clear that (2ρQ,+ − 2ρQH )(̟
∨
k ) = 0 for all 1 ≤ k ≤ l − 1 if and only if

pi = qi for all 1 ≤ i ≤ l.
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5.3 Exponential polynomials

Let T1, T2 ∈ a0. Following [3, §2], define ΓP (T1, T2) ∈ R inductively on
dim(AP /AG) by setting

τ̂GP (T1 − T2) =
∑

{Q:P⊆Q}

(−1)dim(AQ/AG)τ̂QP (T1)ΓQ(T1, T2)

for any relatively standard parabolic subgroup P of G. This definition can be
explicitly given by [3, (2.1) in p. 13] and only depends on the projections of
T1, T2 onto aGP . For T = (t1, ..., tp+q) ∈ a0, we denote Σ1(T ) := t1 + · · · + tp.
If we use the notation in Section 3.4 and put e∗i ∈ a∗0 (resp. f∗

i ∈ a∗0) to be
the character of the action of A0 on ei (resp. fi), it is equivalent to say that
Σ1 =

∑
1≤i≤p e

∗
i . For T2 ∈ aQ and s ∈ C, write

pQ,s(T2) :=

∫

a
G
Q

e(2ρQ,+−2ρQH
+sΣ1)(T1)ΓQ(T1, T2)dT1. (5.3.1)

When p = q = n, s = 0 and Q is ω-stable, it is reduced to

pQ,0(T2) =

∫

a
G
Q

ΓQ(T1, T2)dT1

by Lemma 5.5.
For Q ⊆ R a pair of relatively standard parabolic subgroups of G, denote
by Z(∆̂R

Q)
∨ the lattice generated by (∆̂R

Q)
∨ in aRQ and by Z(∆G

R)
∨ the lattice

generated by (∆G
R)

∨ in aGR. Following [3, §2], for λ ∈ a∗Q,C := a∗Q ⊗R C, define

θ̂RQ(λ) := vol(aRQ
/
Z(∆̂R

Q)
∨)−1

∏

̟∨∈(∆̂R
Q)∨

λ(̟∨)

and
θGR(λ) := vol(aGR

/
Z(∆G

R)
∨)−1

∏

α∨∈(∆G
R)∨

λ(α∨).

Proposition 5.6. Let Q be a relatively standard parabolic subgroup of G, T2 ∈
aQ and s ∈ C. The function T1 7→ ΓQ(T1, T2) is compactly supported on aGQ.
Moreover, the function T2 7→ pQ,s(T2) is an exponential polynomial in T2;
more precisely, there exists a polynomial pQ,R,s (not necessarily unique) on aGR
of degree ≤ dim(AQ/AG) for each relatively standard parabolic subgroup R
containing Q such that

pQ,s(T2) =
∑

{R:Q⊆R}

e(2ρR,+−2ρRH
+sΣ1)(T

G
2,R)pQ,R,s(T

G
2,R),

where we write TG
2,R for the projection of T2 ∈ aQ in aGR via the decomposition

aQ = aRQ ⊕ aGR ⊕ aG. When p = q = n and s = 0, the purely polynomial term of
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pQ,0(T2) is given by

∑

{R:Q⊆R,ωRω−1=R}

pQ,R,0(T
G
2,R),

which is a homogeneous polynomial in T2 of degree dim(A
Q

ω-st/AG); in par-
ticular, if Q is ω-stable, then pQ,0(T2) is a homogeneous polynomial in T2 of
degree dim(AQ/AG).

Proof. The first statement is [3, Lemmas 2.1]. First let us prove the second
one.
From [3, Lemma 2.2], we know that the integral

∫

a
G
Q

eλ(T1)ΓQ(T1, T2)dT1

is an entire function in λ ∈ a∗Q,C, and its value is given by

∑

{R:Q⊆R}

(−1)dim(AQ/AR)eλ(T
G
2,R)θ̂RQ(λ)

−1θGR(λ)
−1

when the latter expression makes sense.
Fix ε ∈ a∗Q,C such that θ̂RQ(ε) 6= 0 and θGR(ε) 6= 0 for all relatively stan-

dard parabolic subgroups R containing Q. Then for t ∈ R× whose absolute
value is small enough, we also have θ̂RQ(2ρQ,+ − 2ρQH + sΣ1 + tε) 6= 0 and

θGR(2ρQ,+ − 2ρQH + sΣ1 + tε) 6= 0 for all relatively standard parabolic sub-
groups R containing Q. Let λ = 2ρQ,+−2ρQH +sΣ1+ tε in the formula above,
and we obtain

pQ,s(T2) = lim
t7→0

∑

{R:Q⊆R}

(−1)dim(AQ/AR)e(2ρQ,+−2ρQH
+sΣ1+tε)(TG

2,R)

· θ̂RQ(2ρQ,+ − 2ρQH + sΣ1 + tε)−1θGR(2ρQ,+ − 2ρQH + sΣ1 + tε)−1.

Since the restriction of 2ρQ,+ − 2ρQH + sΣ1 to aR equals 2ρR,+ − 2ρRH + sΣ1,
we get

e(2ρQ,+−2ρQH
+sΣ1)(T

G
2,R) = e(2ρR,+−2ρRH

+sΣ1)(T
G
2,R).

We can put pQ,R,s(T
G
2,R) to be the constant term of the Laurent series devel-

opment around t = 0 of

t 7→ (−1)dim(AQ/AR)e(tε)(T
G
2,R)θ̂RQ(2ρQ,+ − 2ρQH + sΣ1 + tε)−1

·θGR(2ρQ,+ − 2ρQH + sΣ1 + tε)−1.

Then pQ,R,s(T
G
2,R) is a polynomial in TG

2,R of degree ≤ dim(AQ/AG). Hence we
prove the existence in the second statement.
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Now let p = q = n and s = 0. From Lemma 5.5, we know that the purely
polynomial term of pQ,0(T2) is given by

∑

{R:Q⊆R,ωRω−1=R}

pQ,R,0(T
G
2,R).

Next we compute the degree of pQ,R,0 that we chose above for each ω-stable
parabolic subgroup R containing Q. Denote

N1 := ♯{̟∨ ∈ (∆̂R
Q)

∨ : (2ρQ,+ − 2ρQH )(̟∨) = 0}

and
N2 := ♯{α∨ ∈ (∆G

R)
∨ : (2ρQ,+ − 2ρQH )(α

∨) = 0},

where ♯ means the cardinality of a finite set. Then

deg(pQ,R,0) = N1 +N2.

Recall that both of (∆̂G
R)

∨ and (∆G
R)

∨ are bases of aGR. Since R is relatively
standard and ω-stable, by Lemma 5.5, we have

N2 = dim(AR/AG).

Keep the notation as in the proof of Lemma 5.5 for Q. Since R is relatively
standard and ω-stable, by Proposition 5.1, we may suppose that R is the sta-
biliser in G of the flag

0 ( 〈e1, · · ·, er1 , f1, · · ·, fr1〉D ( 〈e1, · · ·, er1+r2 , f1, · · ·, fr1+r2〉D

( · · · ( 〈e1, · · ·, er1+···+rl′ , f1, · · ·, fr1+···+rl′ 〉D.

The fact that Q ⊆ R tells us that both of the partitions (p1, ···, pl) and (q1, ···, ql)
are refinements of the partition (r1, · · ·, rl′) of n, and that every ri is divided
into the same number of segments in these two refinements. Then

(∆̂R
Q)

∨ =

{
projection of ̟∨

k ∈ (∆̂G
Q)

∨ to aRQ

∣∣∣∣1 ≤ k ≤ l − 1,

k∑

i=1

(pi + qi) 6=

j∑

i=1

2ri∀1 ≤ j ≤ l′ − 1

}

=

{
projection of ̟∨

k ∈ (∆̂G
Q)

∨ to aRQ

∣∣∣∣1 ≤ k ≤ l − 1,

∄1 ≤ j ≤ l′ − 1s.t.

k∑

i=1

pi =

k∑

i=1

qi =

j∑

i=1

ri

}
.

Because the restriction of 2ρQ,+ − 2ρQH to aR equals 2ρR,+ − 2ρRH and R is
relatively standard and ω-stable, by Lemma 5.5, we do not need the projection,
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i.e.,

(2ρQ,+ − 2ρQH )
(
projection of ̟∨

k ∈ (∆̂G
Q)

∨ to aRQ

)

=(2ρQ,+ − 2ρQH )
(
̟∨

k ∈ (∆̂G
Q)

∨
)
.

From the proof of Lemma 5.5, for any 1 ≤ k ≤ l, we have (2ρQ,+−2ρQH )(̟
∨
k ) =

0 if and only if
k∑

i=1

pi =
k∑

i=1

qi. We can also see that Q
ω-st

is the ω-stable

parabolic subgroup R containing Q with maximal l′ := dim(AR). To sum up,
we have

N1 = dim(A
Q

ω-st/AR).

Hence for each ω-stable parabolic subgroup R containing Q,

deg(pQ,R,0) = N1 +N2 = dim(A
Q

ω-st/AR) + dim(AR/AG) = dim(A
Q

ω-st/AG).

The assertion about the particular case where Q is ω-stable is [3, Lemma 2.2]
combined with Lemma 5.5; it can also be read from the results above that we
have proved.

5.4 Qualitative behaviour in T

For a relatively standard parabolic subgroup Q of G, let {sQi }1≤i≤l ∈ Zl be the
explicit constants determined by

∏

1≤i≤l

|Nrd(xi,1)|
sQi
A = e(2ρQ,+−2ρQH

)(HQH
(x)) (5.4.1)

for all x ∈ MQH (A)∩MQ(A)1, where we write x = (x1, ..., xl) ∈ GLp1+q1,D(A)×
· · · ×GLpl+ql,D(A) and xi = (xi,1, xi,2) ∈ GLpi,D(A)×GLqi,D(A). If piqi = 0

for some 1 ≤ i ≤ l, we shall take |Nrd(xi,1)|
sQi
A = 1 and sQi = 0 by convention.

Then such constants are unique.

Proposition 5.7. Let Q be a relatively standard parabolic subgroup of G. If
piqi 6= 0 for some 1 ≤ i ≤ l, then

sQi = 2d

(
∑

k<i

(pk − qk) +
∑

k>i

(qk − pk)

)
.

When p = q = n, if Q is ω-stable, then sQi = 0 for all 1 ≤ i ≤ l.

Proof. Assume that piqi 6= 0 for some 1 ≤ i ≤ l. Let x ∈ MQH (A). We have

(1) the contribution of xi,1 to e2ρQ,+(HQH
(x)) is the d

( ∑
k>i

qk−
∑
k<i

qk

)
-th power

of |Nrd(xi,1)|A;
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(2) the contribution of xi,1 to e2ρQH
(HQH

(x)) is the d
( ∑

k>i

pk−
∑
k<i

pk

)
-th power

of |Nrd(xi,1)|A;

(3) the contribution of xi,2 to e2ρQ,+(HQH
(x)) is the d

( ∑
k>i

pk−
∑
k<i

pk

)
-th power

of |Nrd(xi,2)|A;

(4) the contribution of xi,2 to e2ρQH
(HQH

(x)) is the d
( ∑

k>i

qk−
∑
k<i

qk

)
-th power

of |Nrd(xi,2)|A.

In sum, the contribution of xi to e(2ρQ,+−2ρQH
)(HQH

(x)) is the product of the

d
( ∑

k<i

(pk − qk) +
∑
k>i

(qk − pk)
)
-th power of |Nrd(xi,1)|A and the d

( ∑
k<i

(qk −

pk) +
∑
k>i

(pk − qk)
)
-th power of |Nrd(xi,2)|A.

Now let x ∈ MQH (A)∩MQ(A)1. Then |Nrd(xi,1)Nrd(xi,2)|A = |Nrd(xi)|A = 1.

Therefore, the contribution of xi to e(2ρQ,+−2ρQH
)(HQH

(x)) is the 2d
( ∑

k<i

(pk −

qk)+
∑
k>i

(qk−pk)
)
-th power of |Nrd(xi,1)|A. We have proved the first statement.

The second statement is nothing but a special case of the first one, since we
have pk = qk for 1 ≤ k ≤ l in this case.

Theorem 5.8. Let T ′ be sufficiently regular, o ∈ O and f ∈ S(s(A)). Then
for all sufficiently regular T and s ∈ C, we have

JG,T
o

(η, s, f) =
∑

{Q:P̃0⊆Q}

pQ,s(TQ − T ′
Q)e

(2ρQ,+−2ρQH
+sΣ1)((T

′)GQ)

·JQ,T ′

o
(η, {sQi + s}, fη

Q),

where we write (T ′)GQ for the projection of T ′
Q ∈ aQ in aGQ via the decomposition

aQ = aGQ ⊕ aG, the distributions JG,T
o and JQ,T ′

o are defined by the formulae
(5.0.1) and (5.1.2) respectively, and fη

Q and pQ,s are defined by the formulae
(5.1.3) and (5.3.1) respectively.

Corollary 5.9. Let o ∈ O, f ∈ S(s(A)) and s ∈ C. Then the functions
T 7→ JG,T

o (η, s, f) and T 7→ JG,T (η, s, f) are the restriction of exponential
polynomials in T , so we can extend them to all T ∈ a0. When p = q = n
and s = 0, their purely polynomial terms have degree ≤ n− 1; in particular, if
o ∈ O× (e.g., o ∈ Ors), T 7→ JG,T

o (η, 0, f) is the restriction of a polynomial in
T of degree ≤ n− 1.

Proof of Corollary 5.9. It results from Theorem 5.8, Propositions 5.6 and 5.4.
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Remark 5.10. We may extend our result to the product form in Section 5.1
by similar argument. Let Q be a relatively standard parabolic subgroup of G.
Let o ∈ O, f ′ ∈ S((mQ ∩ s)(A)) and {si}1≤i≤l ∈ Cl. Then the functions

JQ,T
o (η, {si}, f ′) and JQ,T (η, {si}, f ′) are the restriction of exponential poly-

nomials in T independent of TQ, so we can extend them to all T ∈ a0.

Proof of Theorem 5.8. Let P be a relatively standard parabolic subgroup of G,
δ ∈ PH(F )\H(F ) and x ∈ H(A)∩G(A)1. Substituting T1 = HP (δx)−T ′

P and
T2 = TP − T ′

P in the definition of ΓP (T1, T2), we get

τ̂GP (HP (δx)− TP ) =
∑

{Q:P⊆Q}

(−1)dim(AQ/AG)τ̂QP (HP (δx)− T ′
P )

·ΓQ(HP (δx)− T ′
P , TP − T ′

P ).

Then

JG,T
o

(η, s, f)

=

∫

H(F )\H(A)∩G(A)1

( ∑

{P :P̃0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH(F )\H(F )

τ̂GP (HP (δx)− TP )

· kf,P,o(δx)

)
η(Nrd(x))|Nrd(x1)|

s
Adx

=

∫

H(F )\H(A)∩G(A)1

∑

{P :P̃0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH(F )\H(F )

( ∑

{Q:P⊆Q}

(−1)dim(AQ/AG)τ̂QP (HP (δx) − T ′
P )ΓQ(HP (δx)− T ′

P , TP − T ′
P )

)
kf,P,o(δx)

· η(Nrd(x))|Nrd(x1)|
s
Adx.

Exchanging the order of two sums over P and Q, and decomposing the sum
over PH(F )\H(F ) into two sums over PH(F )\QH(F ) and QH(F )\H(F ), we
have

JG,T
o

(η, s, f) =
∑

{Q:P̃0⊆Q}

∫

H(F )\H(A)∩G(A)1

∑

{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)

·
∑

δ′∈QH(F )\H(F )

∑

δ∈PH (F )\QH(F )

τ̂QP (HP (δδ
′x)− T ′

P )

·ΓQ(HP (δδ
′x)− T ′

P , TP − T ′
P )kf,P,o(δδ

′x)η(Nrd(x))|Nrd(x1)|
s
Adx.

Combining the integral over H(F )\H(A) ∩ G(A)1 and the sum over
QH(F )\H(F ) into an integral over QH(F )\H(A) ∩ G(A)1, and using the
fact that

PH(F )\QH(F ) ≃ (PH(F ) ∩MQH (F ))\MQH (F ),
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we obtain

JG,T
o

(η, s, f) =
∑

{Q:P̃0⊆Q}

∫

QH(F )\H(A)∩G(A)1

∑

{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)

·
∑

δ∈(PH(F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δx)− T ′
P )ΓQ(HP (δx) − T ′

P , TP − T ′
P )

·kf,P,o(δx)η(Nrd(x))|Nrd(x1)|
s
Adx.

By Iwasawa decomposition and our choices of measures, the integral over
QH(F )\H(A) ∩G(A)1 can be decomposed as integrals over

(n, a,m, k) ∈ NQH (F )\NQH (A)×AG,∞
Q ×MQH (F )\MQH (A)∩MQ(A)

1 ×KH .

Then

JG,T
o

(η, s, f) =
∑

{Q:P̃0⊆Q}

∫

KH

∫

MQH
(F )\MQH

(A)∩MQ(A)1

∫

AG,∞
Q

∫

NQH
(F )\NQH

(A)

∑

{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(PH (F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δnamk)− T ′
P )

·ΓQ(HP (δnamk)− T ′
P , TP − T ′

P )kf,P,o(δnamk)η(Nrd(mk))|Nrd(a1m1)|
s
A

·e−2ρQH
(HQH

(am))dndadmdk.

Notice that

τ̂QP (HP (δnamk)− T ′
P ) = τ̂QP (HP (δm) +HP (a)− T ′

P ) = τ̂QP (HP (δm)− T ′
P ),

and that

ΓQ(HP (δnamk)− T ′
P , TP − T ′

P ) = ΓQ(HQ(δnamk)− T ′
Q, TQ − T ′

Q)

= ΓQ(HQ(a)− T ′
Q, TQ − T ′

Q).

In addition, by change of variables, we see that

kf,P,o(δnamk) =
∑

X∈mP (F )∩o

∫

(nP∩s)(A)

f((δnamk)−1(X + U)δnamk)dU

=
∑

X∈mP (F )∩o

∫

(nP∩s)(A)

f((δa−1namk)−1(X + a−1Ua)δa−1namk)dU

=
∑

X∈mP (F )∩o

∫

(nP∩s)(A)

f((δa−1namk)−1(X + U)δa−1namk)e2ρQ,+(HQ(a))dU

=e2ρQ,+(HQ(a))kf,P,o(δa
−1namk).

Since δa−1naδ−1 ∈ NQH (A) ⊆ NPH (A) and kf,P,o is left invariant by NPH (A),
we deduce that

kf,P,o(δnamk) = e2ρQ,+(HQ(a))kf,P,o(δmk).
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In sum, the integrand for the term indexed by Q in the above formula for
JG,T
o (η, s, f) is independent of n ∈ NQH (F )\NQH (A). We can choose the Haar

measure such that vol(NQH (F )\NQH (A)) = 1. Then

JG,T
o

(η, s, f) =
∑

{Q:P̃0⊆Q}

(∫

AG,∞
Q

|Nrd(a1)|
s
Ae

(2ρQ,+−2ρQH
)(HQ(a))

·ΓQ(HQ(a)− T ′
Q, TQ − T ′

Q)da

)∫

MQH
(F )\MQH

(A)∩MQ(A)1

∑

{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(PH (F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δm)− T ′
P )

·

(∫

KH

kf,P,o(δmk)η(Nrd(k))dk

)
η(Nrd(m))|Nrd(m1)|

s
Ae

−2ρQH
(HQH

(m))dm.

By the definition of the Haar measure on AG,∞
Q , we have

∫

AG,∞
Q

|Nrd(a1)|
s
Ae

(2ρQ,+−2ρQH
)(HQ(a))ΓQ(HQ(a)− T ′

Q, TQ − T ′
Q)da

:=

∫

a
G
Q

e(2ρQ,+−2ρQH
+sΣ1)(T1)ΓQ(T1 − T ′

Q, TQ − T ′
Q)dT1

=e(2ρQ,+−2ρQH
+sΣ1)((T

′)GQ)

∫

a
G
Q

e(2ρQ,+−2ρQH
+sΣ1)(T1)ΓQ(T1, TQ − T ′

Q)dT1

=e(2ρQ,+−2ρQH
+sΣ1)((T

′)GQ)pQ,s(TQ − T ′
Q).

Since nP = n
Q
P ⊕ nQ, by change of variables, we see that

kf,P,o(δmk)

=
∑

X∈mP (F )∩o

∫

(nQ
P ∩s)(A)

dU

∫

(nQ∩s)(A)

f((δmk)−1(X + U + V )δmk)dV

=e2ρQ,+(HQH
(m))

∑

X∈mP (F )∩o

∫

(nQ
P ∩s)(A)

dU

∫

(nQ∩s)(A)

f(k−1((δm)−1(X + U)δm+ V )k)dV,

so we can write∫

KH

kf,P,o(δmk)η(Nrd(k))dk

=e2ρQ,+(HQH
(m))

∑

X∈mP (F )∩o

∫

(nQ
P ∩s)(A)

fη
Q((δm)−1(X + U)δm)dU

=e2ρQ,+(HQH
(m))

t∑

j=1

k
MQ

fη
Q,P∩MQ,oj

(δm)
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by (5.1.1). Now we can draw our conclusion by noting that

JQ,T ′

o
(η, {sQi + s}, fη

Q)

=

t∑

j=1

∫

MQH
(F )\MQH

(A)∩MQ(A)1

∑

{P :P̃0⊆P⊆Q}

(−1)dim(AP∩MQ
/AMQ

)

·
∑

δ∈((P∩MQ)(F )∩MQH
(F ))\MQH

(F )

τ̂
MQ

P∩MQ
(HP∩MQ(δm)− (ςQT

′)P∩MQ)

· k
MQ

fη
Q,P∩MQ,oj

(δm)η(Nrd(m))|Nrd(m1)|
s
Ae

(2ρQ,+−2ρQH
)(HQH

(m))dm

=

∫

MQH
(F )\MQH

(A)∩MQ(A)1

∑

{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)

·
∑

δ∈(PH (F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δm)− T ′
P )




t∑

j=1

k
MQ

fη
Q,P∩MQ,oj

(δm)




· η(Nrd(m))|Nrd(m1)|
s
Ae

(2ρQ,+−2ρQH
)(HQH

(m))dm.

5.5 Independence of constant terms

Let JG
o
(η, s, f) and JG(η, s, f) be the constant terms of JG,T

o (η, s, f) and
JG,T (η, s, f) respectively. We fix a common minimal Levi subgroup M0 of H
and G.

Firstly, the distributions JG
o
(η, s, f) and JG(η, s, f) are independent of the

choice of the relatively standard minimal parabolic subgroup P0 of G at the
very beginning of last section. In fact, let P ′

0 be another relatively standard
minimal parabolic subgroup of G and σ ∈ ΩG such that P ′

0 = σP0. Denote

by JG,T
P ′

0,o
(η, s, f) and JG

P ′

0,o
(η, s, f) the distributions obtained starting from P ′

0.

Then if T ∈ aP ′

0
, we have JG,T

P ′

0,o
(η, s, f) = JG,σ−1T

o (η, s, f), so JG
P ′

0,o
(η, s, f) =

JG
o
(η, s, f).

Secondly, the distributions JG
o
(η, s, f) and JG(η, s, f) are independent of the

choice of the minimal parabolic subgroup P̃0 of H . In fact, let P̃ ′
0 be another

minimal parabolic subgroup of H and σ ∈ ΩH such that P̃ ′
0 = σ−1P̃0. Put P ′

0 :=

σ−1P0. Denote by JG,T

P̃ ′

0,o
(η, s, f) and JG

P̃ ′

0,o
(η, s, f) the distributions obtained

starting from P̃ ′
0 and P ′

0. We can apply the argument of [5, Proposition 4.6] after

some minor modifications here to prove that JG,T
o (η, s, f) = JG,σ−1T

P̃ ′

0,o
(η, s, f),

so JG
o
(η, s, f) = JG

P̃ ′

0,o
(η, s, f).
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6 Non-equivariance

Let Q be a relatively standard parabolic subgroup of G, s ∈ R and y ∈ H(A)∩
G(A)1. For f ∈ S(s(A)), define fη

Q,s,y ∈ S((mQ ∩ s)(A)) by

fη
Q,s,y(X) :=

∫

KH

∫

(nQ∩s)(A)

f(k−1(X + V )k)η(Nrd(k))pQ,s(−HQ(ky))dV dk

(6.0.1)
for all X ∈ (mQ ∩ s)(A), where pQ,s is defined by the formula (5.3.1).

Proposition 6.1. For f ∈ S(s(A)) and y ∈ H(A)∩G(A)1, we denote fy(x) :=
f(yxy−1). Then for all sufficiently regular T , o ∈ O and s ∈ R, we have

JG,T
o

(η, s, fy) = η(Nrd(y))|Nrd(y1)|
s
A

·
∑

{Q:P̃0⊆Q}

e(2ρQ,+−2ρQH
+sΣ1)(T

G
Q )JQ,T

o
(η, {sQi + s}, fη

Q,s,y),

where JG,T
o and JQ,T

o are defined by the formulae (5.0.1) and (5.1.2) re-
spectively, {sQi }1≤i≤l ∈ Zl are the explicit constants determined by (5.4.1),
and we write TG

Q for the projection of TQ ∈ aQ in aGQ via the decomposition
aQ = aGQ ⊕ aG.

For o ∈ O and f ∈ S(s(A)) (resp. f ′ ∈ S((mQ∩s)(A))), thanks to Corollary 5.9

(resp. Remark 5.10), we may take the constant term JG
o
(η, s, f) of JG,T

o (η, s, f)

(resp. JQ
o (η, {si}, f

′) of JQ,T
o (η, {si}, f

′)) for s ∈ C (resp. {si}1≤i≤l ∈ Cl).
When s = 0 (resp. si = 0 for all 1 ≤ i ≤ l), denote JG

o
(η, f) := JG

o
(η, 0, f)

(resp. JQ
o (η, f ′) := JQ

o (η, {0}, f ′)).

Corollary 6.2. Assume that p = q = n. Let f ∈ S(s(A)), y ∈ H(A) ∩G(A)1

and o ∈ O. We have

JG
o
(η, fy) = η(Nrd(y))

∑

{Q:P̃0⊆Q,ωQω−1=Q}

JQ
o
(η, fη

Q,0,y).

Proof of Corollary 6.2. We apply Proposition 6.1 to the case s = 0 and consider
the constant terms of both sides. Because JQ,T

o is independent of TQ, by
Lemma 5.5, only ω-stable Q contribute to the purely polynomial term. Then
we apply Proposition 5.7 to the case p = q = n to conclude.

Proof of Proposition 6.1. By definition,

JG,T
o

(η, s, fy) =

∫

H(F )\H(A)∩G(A)1

( ∑

{P :P̃0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH (F )\H(F )

τ̂GP (HP (δx)− TP ) · kfy ,P,o(δx)

)
η(Nrd(x))|Nrd(x1)|

s
Adx,
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where

kfy,P,o(δx)

=
∑

X∈mP (F )∩o

∫

(nP∩s)(A)

f(y(δx)−1(X + U)δxy−1)dU = kf,P,o(δxy
−1).

By change of variables, we have

JG,T
o

(η, s, fy) =

∫

H(F )\H(A)∩G(A)1

( ∑

{P :P̃0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH (F )\H(F )

τ̂GP (HP (δxy)− TP ) · kf,P,o(δx)

)
η(Nrd(xy))|Nrd(x1y1)|

s
Adx.

For x ∈ H(A) and P a relatively standard parabolic subgroup of G, let kP (x)
be an element in KH such that xkP (x)

−1 ∈ PH(A). Then

τ̂GP (HP (δxy)− TP ) = τ̂GP (HP (δx)− TP +HP (kP (δx)y)).

Substituting T1 = HP (δx) − TP and T2 = −HP (kP (δx)y) in the definition of
ΓP (T1, T2), we get

τ̂GP (HP (δxy)− TP ) =
∑

{Q:P⊆Q}

(−1)dim(AQ/AG)τ̂QP (HP (δx)− TP )

·ΓQ(HP (δx)− TP ,−HP (kP (δx)y)).

Thus

JG,T
o

(η, s, fy) =

∫

H(F )\H(A)∩G(A)1

∑

{P :P̃0⊆P}

(−1)dim(AP /AG)

·
∑

δ∈PH(F )\H(F )

( ∑

{Q:P⊆Q}

(−1)dim(AQ/AG)τ̂QP (HP (δx)− TP )

·ΓQ(HP (δx)− TP ,−HP (kP (δx)y))

)
kf,P,o(δx)η(Nrd(xy))|Nrd(x1y1)|

s
Adx,

Exchanging the order of two sums over P and Q, and decomposing the sum
over PH(F )\H(F ) into two sums over PH(F )\QH(F ) and QH(F )\H(F ), we
obtain

JG,T
o

(η, s, fy) =
∑

{Q:P̃0⊆Q}

∫

H(F )\H(A)∩G(A)1

∑

{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)

·
∑

δ′∈QH(F )\H(F )

∑

δ∈PH (F )\QH(F )

τ̂QP (HP (δδ
′x)− TP )

·ΓQ(HP (δδ
′x)− TP ,−HP (kP (δδ

′x)y))kf,P,o(δδ
′x)η(Nrd(xy))|Nrd(x1y1)|

s
Adx.
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Combining the integral over H(F )\H(A) ∩ G(A)1 and the sum over
QH(F )\H(F ) into the integral over QH(F )\H(A)∩G(A)1, and using the fact
that

PH(F )\QH(F ) ≃ (PH(F ) ∩MQH (F ))\MQH (F ),

we have

JG,T
o

(η, s, fy) =
∑

{Q:P̃0⊆Q}

∫

QH (F )\H(A)∩G(A)1

∑

{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)

·
∑

δ∈(PH (F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δx) − TP )

·ΓQ(HP (δx)− TP ,−HP (kP (δx)y))kf,P,o(δx)η(Nrd(xy))|Nrd(x1y1)|
s
Adx.

By Iwasawa decomposition and our choices of measures, the integral over
QH(F )\H(A) ∩G(A)1 can be decomposed as integrals over

(n, a,m, k) ∈ NQH (F )\NQH (A)×AG,∞
Q ×MQH (F )\MQH (A)∩MQ(A)

1 ×KH .

Then

JG,T
o

(η, s, fy) =
∑

{Q:P̃0⊆Q}

∫

KH

∫

MQH
(F )\MQH

(A)∩MQ(A)1

∫

AG,∞
Q

∫

NQH
(F )\NQH

(A)

∑

{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(PH (F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δnamk)− TP )ΓQ(HP (δnamk)− TP ,−HP (kP (δnamk)y))

·kf,P,o(δnamk)η(Nrd(mky))|Nrd(a1m1y1)|
s
Ae

−2ρQH
(HQH

(am))dndadmdk.

As in the proof of Theorem 5.8, we see that

τ̂QP (HP (δnamk)− TP ) = τ̂QP (HP (δm)− TP ),

and that

kf,P,o(δnamk) = e2ρQ,+(HQ(a))kf,P,o(δmk).

In addition,

ΓQ(HP (δnamk)− TP ,−HP (kP (δnamk)y))

=ΓQ(HQ(δnamk)− TQ,−HQ(kP (δnamk)y))

=ΓQ(HQ(a)− TQ,−HQ(kQ(δnamk)y))

=ΓQ(HQ(a)− TQ,−HQ(ky)).

To sum up, the integrand for the term indexed by Q in the above formula
for JG,T

o (η, s, fy) is independent of n ∈ NQH (F )\NQH (A). We can choose the
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Haar measure such that vol(NQH (F )\NQH (A)) = 1. Then

JG,T
o

(η, s, fy) =
∑

{Q:P̃0⊆Q}

∫

KH

∫

MQH
(F )\MQH

(A)∩MQ(A)1

∫

AG,∞
Q

∑

{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(PH (F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δm)− TP )

·ΓQ(HQ(a)− TQ,−HQ(ky))e
2ρQ,+(HQ(a))kf,P,o(δmk)η(Nrd(mky))

·|Nrd(a1m1y1)|
s
Ae

−2ρQH
(HQH

(am))dadmdk.

First, let us compute the integral on AG,∞
Q , which is

∫

AG,∞
Q

|Nrd(a1)|
s
Ae

(2ρQ,+−2ρQH
)(HQ(a))ΓQ(HQ(a)− TQ,−HQ(ky))da

:=

∫

a
G
Q

e(2ρQ,+−2ρQH
+sΣ1)(T1)ΓQ(T1 − TQ,−HQ(ky))dT1

=e(2ρQ,+−2ρQH
+sΣ1)(T

G
Q )

∫

a
G
Q

e(2ρQ,+−2ρQH
+sΣ1)(T1)ΓQ(T1,−HQ(ky))dT1

=e(2ρQ,+−2ρQH
+sΣ1)(T

G
Q )pQ,s(−HQ(ky)).

Next, we consider the integral on KH , which is

∫

KH

kf,P,o(δmk)η(Nrd(k))pQ,s(−HQ(ky))dk.

As in the proof of Theorem 5.8, we see that

kf,P,o(δmk) = e2ρQ,+(HQH
(m))

∑

X∈mP (F )∩o

∫

(nQ
P ∩s)(A)

dU

∫

(nQ∩s)(A)

f(k−1((δm)−1(X + U)δm+ V )k)dV,

so we can write

∫

KH

kf,P,o(δmk)η(Nrd(k))pQ,s(−HQ(ky))dk

=e2ρQ,+(HQH
(m))

∑

X∈mP (F )∩o

∫

(nQ
P ∩s)(A)

fη
Q,s,y((δm)−1(X + U)δm)dU

=e2ρQ,+(HQH
(m))

t∑

j=1

k
MQ

fη
Q,s,y,P∩MQ,oj

(δm)
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by (5.1.1). Hence

JG,T
o

(η, s, fy) = η(Nrd(y))|Nrd(y1)|
s
A

∑

{Q:P̃0⊆Q}

e(2ρQ,+−2ρQH
+sΣ1)(T

G
Q )

∫

MQH
(F )\MQH

(A)∩MQ(A)1

∑

{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)

·
∑

δ∈(PH (F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δm)− TP )

( t∑

j=1

k
MQ

fη
Q,s,y,P∩MQ,oj

(δm)

)

·η(Nrd(m))|Nrd(m1)|
s
Ae

(2ρQ,+−2ρQH
)(HQH

(m))dm.

As in the proof of Theorem 5.8, we notice that

JQ,T
o

(η, {sQi + s}, fη
Q,s,y) =

∫

MQH
(F )\MQH

(A)∩MQ(A)1

∑

{P :P̃0⊆P⊆Q}

(−1)dim(AP /AQ)
∑

δ∈(PH (F )∩MQH
(F ))\MQH

(F )

τ̂QP (HP (δm)− TP )

·

( t∑

j=1

k
MQ

fη
Q,s,y,P∩MQ,oj

(δm)

)
η(Nrd(m))|Nrd(m1)|

s
Ae

(2ρQ,+−2ρQH
)(HQH

(m))dm.

Then we finish the proof.

7 An infinitesimal trace formula for Matp×q,D⊕Matq×p,D//GLp,D×
GLq,D

Theorem 7.1. For f ∈ S(s(A)) and s ∈ R,
∑

o∈O

JG
o
(η, s, f) =

∑

o∈O

JG
o
(η, s, f̂),

where f̂ is the Fourier transform of f defined by (3.5.2), and JG
o
(η, s, ·) denotes

the constant term of JG,T
o (η, s, ·).

Proof. From the Poisson summation formula, we know that for any x ∈ H(A),
∑

X∈s(F )

f(x−1Xx) =
∑

X∈s(F )

f̂(x−1Xx),

i.e.,
kf,G(x) = kf̂ ,G(x).

Using Corollary 4.16, for all sufficiently regular T satisfying α(T ) ≥ ǫ0 ‖ T ‖
for any α ∈ ∆P0 , we have
∣∣∣∣∣J

G,T (η, s, f)−

∫

H(F )\H(A)∩G(A)1
FG(x, T )kf,G(x)η(Nrd(x))|Nrd(x1)|

s
Adx

∣∣∣∣∣

≤C1e
−N‖T‖
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and
∣∣∣∣∣J

G,T (η, s, f̂)−

∫

H(F )\H(A)∩G(A)1
FG(x, T )kf̂ ,G(x)η(Nrd(x))|Nrd(x1)|

s
Adx

∣∣∣∣∣

≤C2e
−N‖T‖.

Thus
|JG,T (η, s, f)− JG,T (η, s, f̂)| ≤ (C1 + C2)e

−N‖T‖.

By Corollary 5.9, we know that both of JG,T (η, s, f) and JG,T (η, s, f̂) are
exponential polynomials in T . Because we can choose N to be large enough,
we deduce that

JG,T (η, s, f) = JG,T (η, s, f̂).

Since
JG,T (η, s, f) =

∑

o∈O

JG,T
o

(η, s, f)

and
JG,T (η, s, f̂) =

∑

o∈O

JG,T
o

(η, s, f̂),

we obtain ∑

o∈O

JG,T
o

(η, s, f) =
∑

o∈O

JG,T
o

(η, s, f̂).

We may conclude by taking the constant terms of both sides.

8 The second modified kernel

In this section and the next, we shall focus on the case where p = q = n
in order to get better description for distributions associated to regular semi-
simple orbits. We shall change our notation by denoting G := GL2n,D and
H := GLn,D ×GLn,D without further mention.
Let f ∈ S(s(A)), P be a relatively standard parabolic subgroup of G and
o ∈ Ors (see Section 3.3). For x ∈ PH(F )\H(A), define

jf,P,o(x) :=
∑

X∈mP (F )∩o

∑

n∈NPH
(F )

f((nx)−1Xnx).

Let T ∈ a0. For x ∈ H(F )\H(A), define

jTf,o(x) :=
∑

{P :P̃0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH(F )\H(F )

τ̂GP (HP (δx) − TP ) · jf,P,o(δx).

By Lemma 4.2, we know that the sum over δ ∈ PH(F )\H(F ) is finite. Re-
call that since o ∈ Ors ⊆ O×, if mP (F ) ∩ o 6= ∅, then P is ω-stable by
Proposition 5.4. Thus the above definitions only involve the relatively stan-
dard parabolic subgroups that are ω-stable.
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Lemma 8.1. Let P be a relatively standard parabolic subgroup of G and o ∈ Ors.
For X ∈ mP (F ) ∩ o, the map

NPH → nP ∩ s, n 7→ n−1Xn−X

is an F -isomorphism of algebraic varieties and preserves the Haar measures on
A-points.

Proof. Since P is relatively standard and ω-stable, we can suppose

P =

(
pn,D pn,D
pn,D pn,D

)×

,

where

Pn,D =




GLn1,D Matn1×n2,D · · · Matn1×nl,D

GLn2,D · · · Matn2×nl,D

. . .
...

GLnl,D


 .

Then we have

mP ∩ s =

(
mPn,D

mPn,D

)
, NPH =

(
NPn,D

NPn,D

)

and

nP ∩ s =

(
nPn,D

nPn,D

)
.

Let

X =




A1

. . .

Al

B1

. . .

Bl




∈ mP (F ) ∩ o,

where Ai, Bi ∈ GLni(D) for 1 ≤ i ≤ l, and

n =




1 C12 · · · C1l

1 · · · C2l

. . .
...
1

1 D12 · · · D1l

1 · · · D2l

. . .
...
1




∈ NPH ,
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where Cij , Dij ∈ Matni×nj ,D for 1 ≤ i < j ≤ l. Then

Xn− nX =

(
U

V

)
∈ nP ∩ s,

where we denote

U :=




0 A1D12 − C12A2 · · · A1D1l − C1lAl

0 · · · A2D2l − C2lAl

. . .
...
0


 ∈ nPn,D

and

V :=




0 B1C12 −D12B2 · · · B1C1l −D1lBl

0 · · · B2C2l −D2lBl

. . .
...
0


 ∈ nPn,D .

We claim that the morphism of F -affine spaces

Matni×nj ,D ⊕Matni×nj ,D → Matni×nj ,D ⊕Matni×nj ,D

(Cij , Dij) 7→ (AiDij − CijAj , BiCij −DijBj)

induces an F -linear isomorphism on F -points. In fact, since it gives an F -
linear map between finite dimensional linear spaces of the same dimension,
we only need to prove that this map is injective under base change to an
algebraic closure of F . Then without loss of generality, it suffices to con-
sider the case where D = F . If AiDij − CijAj = BiCij − DijBj = 0, then
CijAjBj = AiDijBj = AiBiCij and DijBjAj = BiCijAj = BiAiDij . Since X
is regular semi-simple, AiBi and AjBj (resp. BiAi and BjAj) have no com-
mon eigenvalue. By the classical theory of Sylvester equation [19], we know
that Cij = Dij = 0 and conclude.
From this claim, we know that the map

NPH → nP ∩ s, n 7→ Xn− nX

is an F -isomorphism of algebraic varieties and preserves the Haar measures on
A-points. Notice that n−1Xn−X = n−1(Xn− nX). It is not hard to check
that here n−1 functions as some translation AiDij −CijAj 7→ AiDij −CijAj +
(a polynomial of Ci′j′and Di′j′ , i

′ > i, j′ ≤ j or i′ ≥ i, j′ < j), so an analogous
assertion still holds for the map n 7→ n−1Xn−X .

Theorem 8.2. For all sufficiently regular T , all s ∈ R and o ∈ Ors,
∫

H(F )\H(A)∩G(A)1
|jTf,o(x)||Nrd(x1)|

s
Adx < ∞,
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where we write x = (x1, x2) ∈ GLn,D(A)×GLn,D(A). Moreover, for s ∈ C,

JG,T
o

(η, s, f) =

∫

H(F )\H(A)∩G(A)1
jTf,o(x)η(Nrd(x))|Nrd(x1)|

s
Adx.

Proof. As in the proof of Theorem 4.14, using the left invariance of jf,P,o by
PH(F ), we reduce ourselves to proving

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)|jP1,P2,o(x)||Nrd(x1)|
s
Adx < ∞,

where P1 ( P2 are a pair of relatively standard parabolic subgroups of G and
for x ∈ P1,H(F )\H(A), we put

jP1,P2,o(x) :=
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)jf,P,o(x).

In addition,

jf,P,o(x) =
∑

{R:P1⊆R⊆P}

∑

ξ∈m̃
R
P1

(F )∩o

∑

X∈(nP
R∩s)(F )

∑

n∈NPH
(F )

f((nx)−1(ξ +X)nx),

where we use the notations m̃R
P1

and nPR in the proof of Proposition 4.15.
Applying Lemma 8.1, we get

jf,P,o(x) =
∑

{R:P1⊆R⊆P}

∑

ξ∈m̃
R
P1

(F )∩o

∑

X∈(nP
R∩s)(F )

∑

u∈(nP∩s)(F )

f(x−1(ξ +X + u)x)

=
∑

{R:P1⊆R⊆P}

∑

ξ∈m̃
R
P1

(F )∩o

∑

X∈(nR∩s)(F )

f(x−1(ξ +X)x).

Hence

jP1,P2,o(x) =
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)

·

( ∑

{R:P1⊆R⊆P}

∑

ξ∈m̃
R
P1

(F )∩o

∑

X∈(nR∩s)(F )

f(x−1(ξ +X)x)

)

=
∑

{R:P1⊆R⊆P2}

∑

ξ∈m̃
R
P1

(F )∩o

( ∑

{P :R⊆P⊆P2}

(−1)dim(AP /AG)

)

·
∑

X∈(nR∩s)(F )

f(x−1(ξ +X)x).

By [2, Proposition 1.1], we have

jP1,P2,o(x) = (−1)dim(AP2/AG)
∑

ξ∈m̃
P2
P1

(F )∩o

∑

X∈(nP2∩s)(F )

f(x−1(ξ +X)x).
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Applying Lemma 8.1 again, we obtain

jP1,P2,o(x) = (−1)dim(AP2/AG)
∑

ξ∈m̃
P2
P1

(F )∩o

∑

n2∈NP2,H
(F )

f((n2x)
−1ξn2x),

where we denote P2,H := P2 ∩H .

Decomposing the integral over x ∈ P1,H(F )\H(A)∩G(A)1 into double integrals
n1 ∈ NP1,H (F )\NP1,H (A) and y ∈ MP1,H (F )NP1,H (A)\H(A)∩G(A)1, and using
the fact that χT

P1,P2
(x) is left invariant under NP1,H (A), we have

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)|jP1,P2,o(x)||Nrd(x1)|
s
Adx

=

∫

MP1,H
(F )NP1,H

(A)\H(A)∩G(A)1

∫

NP1,H
(F )\NP1,H

(A)

χT
P1,P2

(n1y)

·

∣∣∣∣∣∣∣

∑

ξ∈m̃
P2
P1

(F )∩o

∑

n2∈NP2,H
(F )

f((n2n1y)
−1ξn2n1y)

∣∣∣∣∣∣∣
|Nrd(y1)|

s
Adn1dy

≤

∫

MP1,H
(F )NP1,H

(A)\H(A)∩G(A)1
χT
P1,P2

(y)
∑

ξ∈m̃
P2
P1

(F )∩o



∫

NP1,H
(F )\NP1,H

(A)

∑

n2∈NP2,H
(F )

|f((n2n1y)
−1ξn2n1y)|dn1


 |Nrd(y1)|

s
Ady.

Since P1,H ⊆ P2,H and vol(NP2,H (F )\NP2,H (A)) = 1, we see that

∫

NP1,H
(F )\NP1,H

(A)

∑

n2∈NP2,H
(F )

|f((n2n1y)
−1ξn2n1y)|dn1

=

∫

NP1,H
(F )\NP1,H

(A)

∫

NP2,H
(F )\NP2,H

(A)
∑

n2∈NP2,H
(F )

|f((n2nn1y)
−1ξn2nn1y)|dndn1

=

∫

NP1,H
(F )\NP1,H

(A)

∫

NP2,H
(A)

|f((nn1y)
−1ξnn1y)|dndn1

=

∫

NP1,H
(F )\NP1,H

(A)

∫

(nP2∩s)(A)

|f((n1y)
−1(ξ + U)n1y)|dUdn1,
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where we have applied Lemma 8.1 in the last equality. Therefore

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)|jP1,P2,o(x)||Nrd(x1)|
s
Adx

≤

∫

MP1,H
(F )NP1,H

(A)\H(A)∩G(A)1
χT
P1,P2

(y)
∑

ξ∈m̃
P2
P1

(F )∩o

(∫

NP1,H
(F )\NP1,H

(A)

∫

(nP2∩s)(A)

|f((n1y)
−1(ξ + U)n1y)|dUdn1

)
|Nrd(y1)|

s
Ady

=

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)
∑

ξ∈m̃
P2
P1

(F )∩o

(∫

(nP2∩s)(A)

|f(x−1(ξ + U)x)|dU

)

· |Nrd(x1)|
s
Adx,

whose convergence results from that of the formula (4.2.3) when R = P2.

Now we begin to prove the second statement. From the first statement, now
we have the right to write

∫

H(F )\H(A)∩G(A)1
jTf,o(x)η(Nrd(x))|Nrd(x1)|

s
Adx

=
∑

{P1,P2:P̃0⊆P1⊆P2}

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)jP1,P2,o(x)η(Nrd(x))

· |Nrd(x1)|
s
Adx,

where

jP1,P2,o(x) =
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)jf,P,o(x)

=
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)




∑

X∈mP (F )∩o

∑

n∈NPH
(F )

f((nx)−1Xnx)


 .

Decompose the integral over x ∈ P1,H(F )\H(A) ∩G(A)1 into double integrals
over n1 ∈ NP1,H (F )\NP1,H (A) and y ∈ MP1,H (F )NP1,H (A)\H(A) ∩ G(A)1.
Since NP1,H (F )\NP1,H (A) is compact, by Lemma 8.1 and [21, §41],

∑

X∈mP (F )∩o

∑

n∈NPH
(F )

|f((nn1y)
−1Xnn1y)|

=
∑

X∈mP (F )∩o

∑

u∈(nP ∩s)(F )

|f((n1y)
−1(X + u)n1y)|

is bounded independently of n1 ∈ NP1,H (F )\NP1,H (A). Then using the fact
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that χT
P1,P2

(x) is left invariant under NP1,H (A), we have

∫

H(F )\H(A)∩G(A)1
jTf,o(x)η(Nrd(x))|Nrd(x1)|

s
Adx

=
∑

{P1,P2:P̃0⊆P1⊆P2}

∫

MP1,H
(F )NP1,H

(A)\H(A)∩G(A)1
χT
P1,P2

(y)
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)
∑

X∈mP (F )∩o

(∫

NP1,H
(F )\NP1,H

(A)

∑

n∈NPH
(F )

f((nn1y)
−1Xnn1y)dn1

)
η(Nrd(y))|Nrd(y1)|

s
Ady.

Since P1,H ⊆ PH and vol(NPH (F )\NPH (A)) = 1, we see that

∫

NP1,H
(F )\NP1,H

(A)

∑

n∈NPH
(F )

f((nn1y)
−1Xnn1y)dn1

=

∫

NP1,H
(F )\NP1,H

(A)

∫

NPH
(F )\NPH

(A)
∑

n∈NPH
(F )

f((nn2n1y)
−1Xnn2n1y)dn2dn1

=

∫

NP1,H
(F )\NP1,H

(A)

∫

NPH
(A)

f((nn1y)
−1Xnn1y)dndn1

=

∫

NP1,H
(F )\NP1,H

(A)

∫

(nP∩s)(A)

f((n1y)
−1(X + U)n1y)dUdn1,

Documenta Mathematica 27 (2022) 315–381



374 H. Li

where we have applied Lemma 8.1 in the last equality. Therefore

∫

H(F )\H(A)∩G(A)1
jTf,o(x)η(Nrd(x))|Nrd(x1)|

s
Adx

=
∑

{P1,P2:P̃0⊆P1⊆P2}

∫

MP1,H
(F )NP1,H

(A)\H(A)∩G(A)1
χT
P1,P2

(y)
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)
∑

X∈mP (F )∩o

(∫

NP1,H
(F )\NP1,H

(A)

∫

(nP∩s)(A)

f((n1y)
−1(X + U)n1y)dUdn1

)
η(Nrd(y))|Nrd(y1)|

s
Ady

=
∑

{P1,P2:P̃0⊆P1⊆P2}

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)
∑

{P :P1⊆P⊆P2}

(−1)dim(AP /AG)

·




∑

X∈mP (F )∩o

∫

(nP∩s)(A)

f(x−1(X + U)x)dU


 η(Nrd(x))|Nrd(x1)|

s
Adx

=
∑

{P1,P2:P̃0⊆P1⊆P2}

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)kP1,P2,o(x)η(Nrd(x))

· |Nrd(x1)|
s
Adx.

From the proof of Theorem 4.14, we are authorised to write

JG,T
o

(η, s, f) =

∫

H(F )\H(A)∩G(A)1
kTf,o(x)η(Nrd(x))|Nrd(x1)|

s
Adx

=
∑

{P1,P2:P̃0⊆P1⊆P2}

∫

P1,H (F )\H(A)∩G(A)1
χT
P1,P2

(x)kP1,P2,o(x)

· η(Nrd(x))|Nrd(x1)|
s
Adx,

which completes the proof.

9 Weighted orbital integrals

As in the last section, we shall assume that p = q = n in the following dis-
cussion. Moreover, we shall suppose that s = 0 in the orbital integral for
convenience, since |Nrd(x1)|sA is not invariant under the translation by A∞

G .
Recall that for o ∈ O and f ∈ S(s(A)), we denote by JG

o
(η, f) the constant

term of JG,T
o (η, 0, f).
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9.1 Weyl groups

From Section 5.5, we may choose P0 to be the stabiliser in G of the flag

0 ( 〈e1〉D ( 〈e1, f1〉D ( 〈e1, f1, e2〉D ( 〈e1, f1, e2, f2〉D

( · · · ( 〈e1, f1 · ··, en, fn〉D = V ⊕W

by the notation in Section 3.4. Then all ω-stable relatively standard parabolic
subgroups of G contain P0. Denote by P0 the stabiliser in G of the flag

0 ( 〈e1, f1〉D ( 〈e1, f1, e2, f2〉D ( · · · ( 〈e1, f1 · ··, en, fn〉D = V ⊕W.

It is the minimal ω-stable relatively standard parabolic subgroup of G. A
parabolic subgroup P of G is relatively standard and ω-stable if and only if
P0 ⊆ P . Let P0,n be the group of upper triangular matrices in GLn,D. We

can talk about positive roots for G,H and GLn,D with respect to P0, P̃0 and
P0,n respectively.

Lemma 9.1. Let P1 =

(
p1,n p1,n
p1,n p1,n

)×

and P2 =

(
p2,n p2,n
p2,n p2,n

)×

be a pair of

ω-stable relatively standard parabolic subgroups of G, where P1,n and P2,n are
standard parabolic subgroups of GLn,D.

1) The map sn 7→ s =

(
sn

sn

)
induces a bijection from

a) the set of representatives sn of ΩGLn,D(aP1,n , aP2,n) in ΩGLn,D such that

s−1
n α > 0 for all α ∈ ∆

P2,n

P0,n

to

b) the set of representatives s of ΩG(aP1 , aP2) in ΩG such that s−1α > 0 for
all α ∈ ∆P2

P0
.

2) The map sn 7→ s =

(
sn

sn

)
induces a bijection from

a) the set of representatives sn of ΩGLn,D(aP1,n ;P2,n) in ΩGLn,D such that

sn(aP1,n) ⊇ aP2,n and s−1
n α > 0 for all α ∈ ∆

P2,n

P0,n

to

b) the set of representatives s of ΩG(aP1 ;P2) in ΩG such that s(aP1) ⊇ aP2 and
s−1α > 0 for all α ∈ ∆P2

P0
.

Proof. Suppose that P1,n and P2,n correspond to the partitions (n1, · · ·, nl) and
(n′

1, · · ·, n
′
l′) respectively of n. Then P1 and P2 correspond to the partitions

(2n1, · · ·, 2nl) and (2n′
1, · · ·, 2n

′
l′) respectively of 2n. For an integer m > 0,

denote by Sm the symmetric group of degree m.
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1) From [4, p. 33], the set ΩGLn,D(aP1,n , aP2,n) is empty unless l = l′, in which
case

ΩGLn,D(aP1,n , aP2,n) ≃ {sn ∈ Sl : ∀1 ≤ i ≤ l, n′
i = nsn(i)}. (9.1.1)

Similarly, the set ΩG(aP1 , aP2) is empty unless l = l′, in which case

ΩG(aP1 , aP2) ≃ {s ∈ Sl : ∀1 ≤ i ≤ l, 2n′
i = 2ns(i)}. (9.1.2)

The map in the lemma is induced by the obvious bijection between the right
hand sides of (9.1.1) and (9.1.2).
2) From [4, p. 59], the set a) is identified with the set of sn ∈ Sl ⊆ Sn such that
(nsn(1), · · ·, nsn(l)) is finer than (n′

1, · · ·, n
′
l′), and such that s−1

n (i) < s−1
n (i+ 1)

for any 1 ≤ i ≤ n− 1 that is not of the form n′
1 + · · ·+ n′

k for some 1 ≤ k ≤ l′.
Similarly, the set b) is identified with the set of s ∈ Sl ⊆ S2n such that
(2ns(1), · · ·, 2ns(l)) is finer than (2n′

1, · · ·, 2n
′
l′), and such that s−1(i) < s−1(i+1)

for any 1 ≤ i ≤ 2n−1 that is not of the form 2n′
1+ · · ·+2n′

k for some 1 ≤ k ≤ l′.
The map in the lemma is induced by the obvious bijection between these two
sets.

For P1 and P2 a pair of ω-stable relatively standard parabolic subgroups
of G, denote by ΩH(aP1 , aP2) the (perhaps empty) set of distinct isomorphisms
from aP1 to aP2 obtained by restriction of elements in ΩH . It is a subset of
ΩG(aP1 , aP2) a priori. However, since the image of the map in Lemma 9.1.1)
is contained in ΩH , we actually have ΩH(aP1 , aP2) = ΩG(aP1 , aP2) (cf. [15,
Lemme 2.8.1]). Denote by ΩH(aP1 ;P2) the set of s ∈

⋃
aQ

ΩH(aP1 , aQ) such that

s(aP1) ⊇ aP2 and s−1α > 0 for each α ∈ ∆P2∩H
QH

, where the union takes over all
aQ associated to some ω-stable relatively standard parabolic subgroup Q of G.
Then ΩH(aP1 ;P2) = ΩG(aP1 ;P2) by Lemma 9.1.2).

9.2 Regular semi-simple terms

Let o ∈ Ors (see Section 3.3). It is possible to choose an element X1 ∈ o

and a relatively standard parabolic subgroup P1 of G such that X1 ∈ mP1(F )
(thus P1 is ω-stable by Proposition 5.4) but X1 cannot be H(F )-conjugated
to an element in the Lie algebra of any relatively standard parabolic subgroup
R ( P1. We call such X1 an elliptic element in (mP1 ∩ s)(F ).

Let P1 =

(
p1,n p1,n
p1,n p1,n

)×

be an ω-stable relatively standard parabolic sub-

group of G, where P1,n is a standard parabolic subgroup of GLn,D. Let

X1 =

(
0 A1

B1 0

)
∈ (mP1 ∩ s)(F ) be a regular semi-simple element in s. Then

X1 is elliptic in (mP1 ∩ s)(F ) if and only if A1B1 is elliptic in mP1,n(F ) in the
usual sense, i.e., the component of A1B1 in each block of mP1,n(F) has irre-
ducible reduced characteristic polynomial (see [23, Proposition 5] for example).
Let HX1 be the centraliser of X1 in H . Then X1 is elliptic in (mP1 ∩ s)(F ) if
and only if the maximal F -split torus in HX1 is AP1 .
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Theorem 9.2. Let o ∈ Ors, P1 be a relatively standard parabolic subgroup of G
and X1 ∈ o be an elliptic element in (mP1 ∩ s)(F ). For f ∈ S(s(A)), we have

JG
o
(η, f) = vol(A∞

P1
HX1(F )\HX1(A))

·

∫

HX1 (A)\H(A)

f(x−1X1x)vP1 (x)η(Nrd(x))dx,

where vP1(x) is left-invariant under HX1(A) and equals the volume of the pro-
jection onto aGP1

of the convex hull of {−HQ(x)}, where Q runs over all semi-
standard parabolic subgroups of G with MQ = MP1 .

Proof. Consider a relatively standard parabolic subgroup P of G and X ∈
mP (F ) ∩ o (thus P is ω-stable by Proposition 5.4). There exists an ω-stable
relatively standard parabolic subgroup P2 ⊆ P and X2 ∈ (mP2 ∩ s)(F ) such
that X2 is conjugate to X via an element in MPH (F ) and the maximal F -split
torus in HX2 is AP2 . Then any element in H(F ) which conjugates X1 and X2

will conjugate AP1 and AP2 . It follows that there exists s ∈ ΩH(aP1 , aP2) and
m ∈ MPH (F ) such that

X = mωsX1ω
−1
s m−1.

Suppose that P3 ⊆ P is another relatively standard parabolic subgroup, s′ ∈
ΩH(aP1 , aP3) and m′ ∈ MPH (F ) such that

X = m′ωs′X1ω
−1
s′ m′−1

.

Then there is ζ ∈ HX(F ) such that

m′ωs′ = ζmωs.

Since HX ⊆ MPH , we see that

ωs′ = ξωs

for some ξ ∈ MPH (F ). In sum, for any given P a relatively standard parabolic
subgroup of G and X ∈ mP (F )∩ o, there is a unique s ∈ ΩH(aP1 ;P ) such that
X = mωsX1ω

−1
s m−1 for some m ∈ MPH (F ).

For x ∈ PH(F )\H(A), we obtain

jf,P,o(x) =
∑

X∈mP (F )∩o

∑

n∈NPH
(F )

f((nx)−1Xnx)

=
∑

s∈ΩH(aP1 ;P )

∑

m∈M
PH,ωsX1ω

−1
s

(F )
∖
MPH

(F )

∑

n∈NPH
(F )

f((mnx)−1ωsX1ω
−1
s mnx)

=
∑

s∈ΩH(aP1 ;P )

∑

m∈M
PH,ωsX1ω

−1
s

(F )
∖
PH(F )

f((mx)−1ωsX1ω
−1
s mx),
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where MPH ,ωsX1ω
−1
s

denotes the centraliser of ωsX1ω
−1
s in MPH . For T ∈ a0

and x ∈ H(F )\H(A), we have

jTf,o(x) =
∑

{P :P0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH (F )\H(F )

τ̂GP (HP (δx) − TP ) · jf,P,o(δx)

=
∑

{P :P0⊆P}

(−1)dim(AP /AG)
∑

δ∈PH (F )\H(F )

τ̂GP (HP (δx) − TP )

·

( ∑

s∈ΩH(aP1 ;P )

∑

m∈M
PH,ωsX1ω

−1
s

(F )
∖
PH(F )

f((mδx)−1ωsX1ω
−1
s mδx)

)

=
∑

{P :P0⊆P}

(−1)dim(AP /AG)
∑

s∈ΩH (aP1 ;P )

∑

δ∈M
PH,ωsX1ω

−1
s

(F )
∖
H(F )

τ̂GP (HP (δx)− TP ) · f((δx)
−1ωsX1ω

−1
s δx).

Notice that the centraliser of ωsX1ω
−1
s in H is actually contained in MPH . We

deduce that

jTf,o(x) =
∑

{P :P0⊆P}

(−1)dim(AP /AG)
∑

s∈ΩH(aP1 ;P )

∑

δ∈H
ωsX1ω

−1
s

(F )
∖
H(F )

τ̂GP (HP (δx) − TP ) · f((δx)
−1ωsX1ω

−1
s δx)

=
∑

{P :P0⊆P}

(−1)dim(AP /AG)
∑

s∈ΩH(aP1 ;P )

∑

δ∈HX1 (F )\H(F )

τ̂GP (HP (ωsδx)− TP ) · f((δx)
−1X1δx).

For y ∈ H(A), write

χT (y) :=
∑

{P :P0⊆P}

(−1)dim(AP /AG)
∑

s∈ΩH(aP1 ;P )

τ̂GP (HP (ωsy)− TP ).

Then

jTf,o(x) =
∑

δ∈HX1 (F )\H(F )

f((δx)−1X1δx) · χT (δx).

For sufficiently regular T , using Theorem 8.2 and the fact that jTf,o(x)η(Nrd(x))
is left invariant by A∞

G , we have

JG,T
o

(η, 0, f) =

∫

H(F )\H(A)∩G(A)1
jTf,o(x)η(Nrd(x))dx

=

∫

A∞

G H(F )\H(A)


 ∑

δ∈HX1 (F )\H(F )

f((δx)−1X1δx) · χT (δx)


 η(Nrd(x))dx.
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Hence,

JG,T
o

(η, 0, f) = vol(A∞
P1
HX1(F )\HX1(A))

·

∫

HX1 (A)\H(A)

f(x−1X1x)vP1 (x, T )η(Nrd(x))dx,
(9.2.1)

where

vP1(x, T ) :=

∫

A∞

G \A∞

P1

χT (ax)da.

Here we have cheated by assuming that vP1(x, T ) is well-defined and left-
invariant under HX1(A) in the last equality, which is explained below along
with its geometric interpretation.

Let Q be a parabolic subgroup of G containing P0. Since P0 ⊆ P1, by the
charaterisation in [4, p. 59], ΩG(aP1 ;Q) is empty unless P0 ⊆ Q, in which case
we have ΩG(aP1 ;Q) = ΩH(aP1 ;Q) by Lemma 9.1.2). Therefore, we have

χT (y) =
∑

{Q:P0⊆Q}

(−1)dim(AQ/AG)
∑

s∈ΩG(aP1 ;Q)

τ̂GQ (HQ(ωsy)− TQ).

Compared to [2, p. 951], vP1(x, T ) is nothing but the restriction to H(A) of
Arthur’s weight for G(A). It is shown in [1, Corollary 3.3] that the integral
over a can be taken over a compact subset. From [1, Corollary 3.5], vP1(x, T )
equals the volume of the projection onto aGP1

of the convex hull of {TQ−HQ(x)},
where Q takes over all semi-standard parabolic subgroups of G with MQ =
MP1 . For y ∈ HX1(A) ⊆ MP1∩H(A), the convex hull associated to vP1(yx, T )
is a translation of that associated to vP1(x, T ), so they have the same volume,
i.e., vP1(yx, T ) = vP1(x, T ). By taking constant terms of both sides of (9.2.1),
we obtain the theorem.

Remark 9.3. As mentioned in the proof of Theorem 9.2, the weights we get
for regular semi-simple orbits are the restriction to H(A) of Arthur’s weights
(see [2, p. 951]) for G(A). They are also the same as those (see [15, p. 131])
appearing in the twisted trace formula for (GLn,D ×GLn,D)⋊ σ, where σ acts
on GLn,D ×GLn,D by σ(x, y) := (y, x). For Pn a standard parabolic subgroup

of GLn,D and P =

(
pn pn
pn pn

)×

an ω-stable relatively standard parabolic sub-

group of G, we may identify aP with the σ-invariant subspace of aPn×Pn . The
ω-stable relatively standard parabolic subgroups of G here play the role of the
σ-stable standard parabolic subgroups of GLn,D × GLn,D, which correspond
to the standard parabolic subsets of (GLn,D ×GLn,D)⋊ σ in the sense of [15,
§2.7]. However, we need more (namely relatively standard) parabolic subgroups
in our truncation to deal with o /∈ O×.
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