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Abstract. We study rings of integral modular forms for congru-
ence subgroups as modules over the ring of integral modular forms
for SL2Z. In many cases these modules are free or decompose at least
into well-understood pieces. We apply this to characterize which rings
of modular forms are Cohen–Macaulay and to prove finite generation
results. These theorems are based on decomposition results about
vector bundles on the compactified moduli stack of elliptic curves.
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1 Introduction

Rings of modular forms for congruence subgroups are of great importance in
number theory. An example is M∗(Γ1(n);R), the ring of Γ1(n)-modular forms
over a ring R. If R is a subring of C, we can simply define it as the subspace
of Γ1(n)-modular forms with q-expansion in R. In other cases, we define it
via global sections of line bundles on the compactified modular curvesM1(n)R
(which we view as stacks for n < 5).1 We denote the corresponding ring of
weakly holomorphic modular forms by M̃∗(Γ1(n);R).
While there is a lot of information available for low n, in general these rings
are hard to understand. For example, it is an equivalent form of a famous
theorem of Mazur [Maz77] that the ring M̃0(Γ1(n);Q) of modular functions
only admits a ring homomorphism to Q if n ≤ 10 or n = 12, i.e. exactly if

1If R does not contain an n-th root of unity, the coincidence of these two definitions can
depend on the way one views sections of line bundles on M1(n)C as functions on the upper
half-plane. Apart from Appendix C, we will only use q-expansions in the presence of an n-th
root of unity.
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M1(n)C has genus 0. There has certainly been progress to understand the
rings M∗(Γ1(n);R) in general (see e.g. [Rus16] or [VZB15]), but a complete
understanding seems to be difficult to obtain.
The aim of the present article is instead the more modest goal of an additive
understanding of the ring of modular forms for congruence subgroups. More
precisely, we aim to understand M∗(Γ;R) for Γ ∈ {Γ0(n),Γ1(n),Γ(n)} as a
module over the ring MR

∗ = M∗(SL2(Z);R) of modular forms itself. Remark-
ably, these modules are free if R is a field.

Theorem 1.1. Let Γ = Γ1(n),Γ(n) or Γ0(n) and K be a field of characteristic
not dividing n. Then M∗(Γ;K) is free as graded module over MK

∗ of rank
[SL2(Z) : Γ] if charK 6= 2 and of rank 1

2 [SL2(Z) : Γ] if charK = 2 and n ≥ 2.

This will be proven as Theorem 5.4. The result has been observed for
charK = 0 already in [CF17, Proposition 6.6]. It actually has a uniform
and easy proof for charK 6= 2, 3 as in these cases the compactified moduli
stack of elliptic curves Mell,K is a weighted projective line, but the cases of
characteristic 2 or 3 are more subtle. In these cases we have the following
example application.

Corollary 1.2. Let K be a field of characteristic p = 2 or 3 and let A be the
corresponding Hasse invariant. Then M∗(Γ;K)/(A − 1) is a free module over
K[∆] if Γ is as in the preceding theorem.

This is of interest as the q-expansion of A equals 1 and thus the q-expansion
factors over this quotient M∗(Γ;K)/(1 − A). Noting that M∗(Γ1(n);Fp) ∼=
M∗(Γ1(n);Z[

1
n ])/p if n ≥ 2 (and ∗ ≥ 2), one sees that more generally

Theorem 1.1 allows to determine M∗(Γ1(n);Z[
1
n ])/(p, f1, . . . , fk) for arbitrary

SL2(Z)-modular forms f1, . . . , fk.
If we want to consider also similarly congruences for ideals of modular forms
not containing p, we should not restrict or attention to modular forms with
coefficients in a field. We obtain our cleanest results if we consider coefficients
in R = Z(l) instead and restrict to tame congruence subgroups Γ. Here, we call
Γ ∈ {Γ1(n),Γ(n),Γ0(n)} tame if either Γ = Γ1(n), Γ = Γ(n) or gcd(φ(n), 6) is
invertible in the given base ring R. Even under these restrictions, M∗(Γ;Z(l))

will not be a free M
Z(l)
∗ -module anymore unless l ≥ 5. But even if l = 2

or 3, we can often still determine its indecomposable pieces and these are well-
understood.

Theorem 1.3. Let n ≥ 2 and l be a prime not dividing n. Let furthermore
Γ = Γ1(n),Γ(n) or Γ0(n) be tame with respect to Z(l). Then

1. M∗(Γ;Z(l)) is a free graded module over M
Z(l)
∗ if and only if l ≥ 5 and

every weight-1 modular form for Γ over Fl is liftable to Z(l),

2. M∗(Γ;Z(3)) decomposes into shifted copies of M∗(Γ1(2);Z(3)) ∼=

Z(3)[b2, b4] as a graded module over M
Z(3)
∗ if and only if every weight-1

modular form for Γ over F3 is liftable to Z(3),
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3. M∗(Γ;Z(2)) decomposes into shifted copies of M∗(Γ1(3);Z(2)) ∼=

Z(2)[a1, a3] as a graded module over M
Z(2)
∗ if and only if every weight-1

modular form for Γ over F2 is liftable to Z(2).

More generally, we can often prove decomposition results if we replace Z(l) by
an l-local ring or if we demand that 6 is invertible. The more precise statements
will be given in Theorems 5.7 and 5.8 for the “if” parts and in Corollary 5.16
and Proposition 5.17 for the “only if” parts. There are explicit formulae for the
shifts in (2) in terms of dimensions of spaces of modular forms, which follow
from our results in Section 4. An example of a similar decomposition result in
a non-tame situation has been obtained in [MO20].
Regarding non-liftable modular forms, we remark that Mestre was the first
to construct an example of such, namely a mod-2 eigenform of weight 1
for Γ0(1429). (Its associated 2-dimensional Galois representation has image
SL2(F8) and as this is not a quotient of a finite subgroup of GL2(C), this
modular forms is not liftable to characteristic zero [Edi06, Wie14].) Nowadays,
there are many more known examples of non-liftable forms known; for example,
we have obtained the result that at the prime 2 the minimal level of such a
form in the tame case is 65 (see Remark 3.14 for more information).
It turns out that these subtleties become irrelevant if we are interested in
modular functions instead of modular forms:

Theorem 1.4. Let R be a commutative ring in which n ≥ 2 is invertible
and let Γ = Γ1(n),Γ(n) or Γ0(n). Then M̃0(Γ;R) is free as a module over
M̃0(SL2(Z);R) ∼= R[j].

There are several corollaries of these theorems. In all of them, let n and Γ be
as in the last theorem and R a commutative Z[ 1n ]-algebra.

Corollary 1.5. The ring M∗(Γ;R) is finitely generated as an MR
∗ -module

and likewise M̃∗(Γ;R) is finitely generated as an M̃R
∗ -module. If Γ is tame, the

generators can be chosen in degrees at most 17, and if Γ = Γ0(n) and 1
2 ∈ R

the generators can be chosen in degrees at most 21.2

Corollary 1.6. For K a field with char(K) not dividing n, the ring M∗(Γ;K)
is Cohen–Macaulay. If Γ is tame for Z[ 1n ], the ring M∗(Γ;Z[

1
n ]) is Cohen–

Macaulay if and only if every weight-1 modular form for Γ over Fl is liftable to
Z[ 1n ] for every l not dividing n.

2A different proof for the qualitative statement was sketched to me by François Brunault
on mathoverflow: It suffices to show finite generation for Γ = Γ(n) and R containing an
n-th root of unity. The ring M∗(Γ(n);R) has a SL2(Z/n)-action with fixed points MR

∗ . As
every f ∈ M∗(Γ(n);R) is a zero of the monic polynomial

∏
g∈SL2(Z/n)(x − g.f), the ring

M∗(Γ(n);R) is integral over MR
∗ . In [Sch79, Theorem 3], Scholl shows that M∗(Γ(n);R) is

a finitely generated R-algebra, which together with integrality implies the statement. On
the other hand, the bounds on the degrees of the generators obtained in this way definitely
depend on n (which is in contrast to our sharper quantitative results).
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While authors like Eichler, Freitag, Tsuyumine and Gottesman (see e.g. [Tsu86]
or [Got20]) have proven results about the Cohen–Macaulayness of (Hilbert,
Siegel and vector-valued) modular forms over the complex numbers, the au-
thor is not aware of previous work on this question over a field of different
characteristic or with integral coefficients. This result has proven useful in
[MO20] when studying moduli of cubic curves.
Let us say a few words on how we obtain our main theorems. For simplicity,
we concentrate on the case Γ = Γ1(n). Let fn : M1(n)R → Mell,R be the
projection map to the compactified moduli stack of elliptic curves. There is a
line bundle ω on Mell,R such that

Mk(Γ1(n);R) ∼= H0(Mell,R; (fn)∗(fn)
∗ω⊗k)

∼= H0(Mell,R;ω
⊗k ⊗ (fn)∗OM1(n)

).

Thus, all our splitting results above follow from corresponding splitting results
for the vector bundle (fn)∗OM1(n)R

. If 6 is invertible, these are easy to prove
since, in this case, Mell,R is a weighted projective stack, and we know a lot
about vector bundles on these. If 6 is not invertible, the arguments become
more delicate. We first obtain splitting results over a field using a Krull–
Schmidt theorem and use this to obtain our integral results.
Our results about vector bundles also have applications to the study of topo-
logical modular forms as explored in [Mei22]. This is also one reason for our
insistence on integral results and not ignoring the small primes: topological
modular forms are most interesting and have most applications precisely at the
primes 2 and 3.
The structure of the present article is as follows. Section 2 contains background
on the various moduli stacks we consider. In Section 3, we prove our decompo-
sition results for vector bundles, first in the case of a field and then over more
general rings; if you are only interested in the situation of base fields of charac-
teristic not 2 or 3 you can skip this section. In Section 4, we will give explicit
formulae for the decompositions. Section 5 will deduce from these considera-
tions the results stated in this introduction. As several of the occurring stacks
are weighted projective stacks, we devote Appendix A to them; our main result
gives a partial classification of vector bundles in the case of weighted projective
lines, which may be of independent interest. Appendix B contains a proof how
to lift the Hasse invariant to a characteristic zero modular form in the presence
of a level structure. Appendix C is about the computation of weight-1-cusp
forms over Fp, showing in particular that n = 65 in the lowest n for which
there is a level-n cusp form over F2 that does not lift to characteristic zero.
Appendix D contains tables of decompositions.
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Conventions

All rings and algebras will be assumed to be commutative and with unity
(except when clearly otherwise). The symbol / applied to a group action on
a scheme will always denote stack quotients. The dual of a module M will
be denoted by M∨ and similarly for sheaves. For an abelian group A and a
natural number n, we will denote by A[n] its n-torsion. We will sometimes use
the notation Cn for the cyclic group of order n.

2 Background on modular curves

This section collects and proves background results about modular curves. Sig-
nificant portions of its first two subsections are certainly known to experts,
basic references being [DR73] and [Con07]. In the interest of completeness, we
provide proofs here without claiming originality.

2.1 Basics and examples

Denote byMell the uncompactified moduli stack of elliptic curves and byMell

its compactification. We define the stacksM0(n), M1(n) andM(n) by

M0(n)(S) = Elliptic curves E over S with chosen cyclic subgroup scheme

of order n

M1(n)(S) = Elliptic curves E over S with chosen point P ∈ E(S)

of exact order n

M(n)(S) = Elliptic curves E over S with chosen isomorphism

(Z/n)2 ∼= E[n](S),

where we always assume n to be invertible on S and where E[n] denotes the n-
torsion points. More precisely, we demand forM1(n) that for every geometric
point s : SpecK → S the pullback s∗P spans a cyclic subgroup of order n
in E(K) or, equivalently, that P defines a closed immersion (Z/n)S → E.
Moreover, we call a group scheme over S cyclic if it is étale locally isomorphic
to (Z/n)S .
We can define the compactified versionsM0(n),M1(n) andM(n) as the nor-
malizations of Mell in M0(n), M1(n) and M(n), respectively [DR73, IV.3].
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These are all Deligne–Mumford stacks. For the corresponding modular inter-
pretations see also [Con07] and [Čes17]. These moduli interpretations are based
on the notion of a generalized elliptic curve, which we will recall only over an
algebraically closed field. By [DR73, Lemme II.1.3], a generalized elliptic curve
is in this case either a (smooth) elliptic curve or a Néron k-gon. The Néron
k-gon C over a scheme S is the scheme quotient of Z/k×P1

S where we identify
(i,∞) with (i+1, 0) for all i. Its smooth part Creg is isomorphic to Z/k×Gm,S.
With its obvious group structure, Creg acts on C. See [DR73, II.1] or [Con07,
Section 2.1] for more details.
The stackM1(n) classifies generalized elliptic curves E with a chosen point of
exact order n in the smooth part of E satisfying the following condition: Over
every geometric point of the base scheme every irreducible component of E
contains a multiple of P . For n squarefree M0(n) classifies generalized elliptic
curves E with a chosen cyclic subgroup H of order n in the smooth part of E
satisfying the analogous condition: Over every geometric point every irreducible
component of E intersects H nontrivially. By definition, such an H is étale
locally isomorphic to the constant group scheme Z/n. It follows that in the
squarefree case M0(n) is equivalent to the quotient of M1(n) by the obvious
(Z/n)×-action. In general, the (Z/n)× equivariant map M1(n) → M0(n)
induces a map

c :M0(n)
′ :=M1(n)/(Z/n)

× →M0(n),

which we will study in more detail in Proposition 2.6.
The stack M(n) classifies generalized elliptic curves E over S with a chosen
isomorphism α : (Z/n)2S → Esm[n]. If E is smooth, the Weil or en-pairing
[KM85, 2.8.5] of α(0, 1) and α(1, 0) is an n-th root of unity on S, which induces
a morphism M(n) → SpecZ[ 1n , ζn] that is easily seen to be surjective. By
[Con07, Theorem 4.1.1] this extends to a morphism M(n) → SpecZ[ 1n , ζn].
If R contains a primitive n-th root of unity, the product SpecZ[ζn] × SpecR
is canonically isomorphic to

∐
ζ∈µn(R) SpecR and thus M(n)R decomposes as∐

ζ∈µn(R)M(n)R,ζ .
Going back to the base case, Mell just classifies generalized elliptic curves,
which are over an algebraically closed field either smooth or a Néron 1-gon. A
cubic curve of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

is called a Weierstraß curve and defines a generalized elliptic curve if and only
if certain quantities ∆ and c4 are nowhere vanishing [Sil09, Prop. III.1.4].
For the universal generalized elliptic curve p : C →Mell define ω = p∗Ω

1
C/Mell

,
which is known to be a line bundle [DR73, Proposition II.1.6] and actually to
generate Pic(Mell) [FO10]. There is another interpretation: Consider the mod-
uli stackM

1

ell of generalized elliptic curves with a chosen invariant differential.
Quasi-coherent sheaves on Mell correspond to graded quasi-coherent sheaves
onM

1

ell and ω corresponds to O
M

1
ell

viewed as concentrated in degree 1.
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Examples 2.1. Denote by PR(a, b) the weighted projective stack (A2
R −

{0, 0})/Gm (as in Definition A.1). We have equivalences

Mell,Z[ 16 ]
≃ PZ[ 16 ]

(4, 6)

M1(2) ≃ PZ[ 12 ]
(2, 4)

M1(3) ≃ PZ[ 13 ]
(1, 3)

M(2) ≃ PZ[ 12 ]
(2, 2)

M1(4) ≃ PZ[ 12 ]
(1, 2),

and in each case the pullback of ω to the weighted projective line is isomor-
phic to O(1). These equivalences are classically well-known and we obtain the
corresponding uncompactified moduli by taking the non-vanishing locus of ∆.
Proofs of (most of) the second, third and fourth equivalence can be found, for
example, in [Beh06, Sec 1.3], [HM17, Prop 4.5] and [Sto12, Prop 7.1] respec-
tively. We give a sketch of the fifth one as this is probably the hardest to find
in the literature. Given an elliptic curve with a chosen invariant differential
and a point P of exact order 4, we can write it uniquely in the form

y2 + a1xy + a3y = x3 + a2x
2

such that P = (0, 0) and dx
2y+a1x+a3

is the chosen invariant differential; this is
sometimes called the homogeneous Tate normal form (see [Hus04, Section 4.4]
or [BO16, Section 1]). The condition that (0, 0) is a point of order 4 is equivalent
to a3 = a1a2. Thus, we obtain an equivalence

M1(4) ≃ (SpecZ[
1

2
][a1, a2,∆

−1])/Gm

with ∆ = a21a
4
2(a

2
1 − 16a2).

The map

(SpecZ[
1

2
][a1, a2,∆

−1])/Gm →Mell,Z[ 12 ]

extends to a map

f : (SpecZ[
1

2
][a1, a2])/Gm →Mcub,Z[ 12 ]

,

where Mcub is the stack classifying all curves defined by a cubic equation
[Mat16, Section 3.1] and f classifies the cubic curve

y2 + a1xy + a1a2y = x3 + a2x
2.

Let A be the ring Z[ 12 ][a1, a2, a3, a4, a6] and consider the fpqc morphism
SpecA→Mcub,Z[ 12 ]

classifying the universal Weierstraß curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.
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Then

SpecA×M
cub,Z[ 1

2
]
(SpecZ[

1

2
][a1, a2])/Gm ≃ Z[

1

2
][a1, a2][r, s, t]

as the morphisms of Weierstraß curves (preserving an invariant differential) are
classified by parameters r, s, t (see [Sil09, Section III.1]). Thus f is representable
and affine. Using that c4 = a41−16a21a2+16a22 it is easy to see that c4(a1, a2) =
∆(a1, a2) = 0 if and only if a1 = a2 = 0 with a1, a2 in a field of characteristic
6= 2. The pullback of f alongMell,Z[ 12 ]

→Mcub,Z[ 12 ]
is thus a map

f ′ : PZ[ 12 ]
(1, 2)→Mell,Z[ 12 ]

.

Clearly, f ′ is still affine and it is also proper by the valuative criteria [LMB00,
Section 7] because the source is proper [Mei15, Section 2] and the target sep-
arated over Z[ 12 ]. Thus, f ′ is finite. As PZ[ 12 ]

(1, 2) is normal, this implies that
M1(4) ≃ PZ[ 12 ]

(1, 2) by the uniqueness of normal compactifications (see e.g.
[HM17, Lemma 4.4]). We have an isomorphism f∗ω ∼= O(1) because f ′ is
induced by a Gm-equivariant map A2

Z[ 12 ]
− {0} →M

1

ell,Z[ 12 ]
.

We call a Deligne–Mumford stack X tame if the automorphism group of every
geometric point SpecK → X has order prime to the characteristic of K. If X
is separated, it has by the Keel–Mori theorem [Con05] a coarse moduli space X
and we denote the canonical map X → X by p. Then X is tame if and only if
the pushforward functor

p∗ : QCoh(X )→ QCoh(X)

is exact as proven in [AOV08] (note that while they work with Artin stacks,
their theory simplifies in the case of Deligne–Mumford stacks because auto-
morphism group schemes of geometric points are in this case étale and hence
constant). For example PR(w0, . . . , wn) is tame if and only if all wi are invert-
ible in R by [Mei15, Rem. 2.2]. In particular, all the examples in Examples 2.1
are tame.

Lemma 2.2. Let f : X → Y be a representable morphism into a tame Deligne–
Mumford stack. Then X is tame as well.

Proof. Let x : SpecK → X be a geometric point and y its image in Y. This
defines a geometric point in the pullback SpecK×YX whose (trivial) automor-
phism group is the kernel of Aut(x)→ Aut(y). Thus Aut(x) ⊂ Aut(y) and X
is tame.

We will mainly work with moduli stacks of elliptic curves in the tame or even
representable case and specifically with the class singled out in the following
convention.
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Definition 2.3. Let Γ = Γ0(n),Γ1(n) or Γ(n). We set M(Γ) =
M0(n),M1(n) or M(n) respectively and similarly for M(Γ). For n ≥ 2 and
R a Z[ 1n ]-algebra, we say that Γ is tame with respect to R if Γ is Γ1(n),Γ(n)
or Γ0(n) and we additionally demand in the final case that gcd(6, φ(n)) is
invertible in R.
While M(Γ)R denotesM(Γ)×SpecZ[ 1

n
] SpecR for Γ = Γ1(n) or Γ0(n), we will

always assume that R is an Z[ 1n , ζn]-algebra when we speak about M(Γ(n))R
and denote by this M(Γ) ×SpecZ[ 1

n
,ζn] SpecR; in contrast, M(n)R will mean

M(n) ×SpecZ[ 1
n
] SpecR. The reason for this choice is that we want M(Γ) to

be geometrically irreducible (see Proposition 2.13).
We will denote the projectionM(Γ)R →Mell,R by g and give the same name
to the restriction M(Γ)R →Mell,R. We will also sometimes use the notation
fn for g if Γ = Γ1(n).

Proposition 2.4. Let R be a Z[ 1n ]-algebra and Γ = Γ0(n),Γ1(n) or Γ(n).

1. The map g :M(Γ)R →Mell,R is finite, representable and flat.

2. If Γ is tame with respect to R, the stackM(Γ)R is tame. In fact,M1(n)R
(for n ≥ 5) and M(n)R (for n ≥ 3) are even representable by projective
R-schemes. In these cases, M(Γ)R is affine.

3. The mapM(Γ)R → SpecR is in the representable case smooth of relative
dimension 1.

4. If Γ is tame, we have Hi(M(Γ)R;F) = 0 for i ≥ 2 for every quasi-
coherent sheaf F on M(Γ), and Hi(M(Γ);F) = 0 for i ≥ 1 for every
quasi-coherent sheaf F on M(Γ).

Proof.

1. The map g being integral and representable follows from the definition
of normalization. By [Sta17, 03GR] it is also finite because Mell has a
smooth cover by a Nagata scheme, e.g. by the union of the non-vanishing
loci of c4 and ∆ in SpecZ[a1, a2, a3, a4, a6].

Furthermore, both M(Γ) and Mell are smooth over SpecR by Theo-
rem 3.4 of [DR73]. Every finite map between Deligne–Mumford stacks
that are smooth over SpecR is automatically flat if R is regular. By
choosing an étale cover, this follows from the affine case, which in turn
follows from [Gro65, Prop 6.1.5]. As the universal case R = Z[ 1n ] is
regular, flatness follows for all R.

2. By the examples from Examples 2.1, we see that M1(n) is tame for
2 ≤ n ≤ 4 andM(n) is tame for n = 2.

Next we will show that the automorphism groups of K-valued geometric
points for M1(n) and n ≥ 5 and for M(n) and n ≥ 3 are trivial. In the
interior, this follows from [KM85, Cor. 2.7.2]. Now consider a geometric

Documenta Mathematica 27 (2022) 427–488



436 L. Meier

point of M1(n) not in the interior. This corresponds to a Néron k-gon
with a point P = (i, x) of exact order n in the smooth part such that i is
a generator of Z/k.

For a k-th root of unity ζ, there are automorphisms τ and uζ of the Néron
k-gon; on (i, x) ∈ Z/k × Gm(K) these are defined as

τ : (i, x) 7→ (−i, x−1) and uζ : (i, x) 7→ (i, ζix).

Every automorphism of the Néron k-gon that preserves the group oper-
ation is of the form uζ or τuζ for a k-th root of unity ζ [DR73, Prop.
II.1.10]. As n ≥ 2, we have k = 1 or i 6= [0] and thus P cannot be fixed
by uζ if ζ 6= 1. If P is fixed by τuζ , then i = −i and thus k = 1 or 2,
which implies ζ2 = 1. As x = ζix−1, this shows that x4 = 1. Thus, P is
a 4-torsion point, contrary to the assumption that n ≥ 5. Thus, we see
that all automorphisms of geometric points ofM1(n) are trivial if n ≥ 5.
By the same arguments, the analogous statement follows for M(Γ(n)) if
n ≥ 3 because an isomorphism (Z/n)2 ∼= Creg[n] for a Néron k-gon C
implies that k = n.

By [Con07, Theorem 2.2.5] it follows that M(Γ)R is an algebraic space
for Γ = Γ1(n) for n ≥ 5 or Γ(n) for n ≥ 3. The coarse moduli space of
Mell,R is P1

R by [DR73, VI.1] for R = Z and [Čes17, Prop 3.3.2] in the
general case. As the map M(Γ)R → Mell,R is finite, the composition
M(Γ)R → P1

R with the map Mell,R → P1
R is proper and quasi-finite as

the map into the coarse moduli space is proper and quasi-finite [Con05].
Thus, M(Γ)R is a scheme by [Knu71, Cor 6.16] and then automatically
a projective scheme over R as a proper and quasi-finite map of schemes
is finite and hence projective.

If M(Γ)R is representable by a scheme, then M(Γ)R is as well. The
coarse moduli scheme of Mell,R is A1

R and the composition M(Γ)R →
Mell,R → A1

R is finite again. Thus,M(Γ)R is an affine scheme ifM(Γ)R
is representable.

It remains to discuss the case of M0(n)R. As this stack is representable
overMell,R and the orders of automorphism groups of elliptic curves can
only have the prime factors 2 and 3, the same is true for the automorphism
groups of points of M0(n)R. The open substack M0(n)R is thus tame
because gcd(φ(n), 6) is invertible in R andM0(n)R is the quotient of the
tame stackM1(n)R by (Z/n)×. Moreover, the cusp points of Mell have
automorphism group Z/2, and thus the automorphism groups of the cusp
points in M0(n)R can have order 2 at most as well. As φ(n) is always
even for n ≥ 2, we know that 2 is invertible in R. Thus,M0(n)R is tame.

3. By [DR73, Thm IV.3.4], M(Γ)R is smooth over SpecR and clearly of
relative dimension 1.

4. Under our assumptions, the caseM0(n)R reduces toM1(n)R as follows:
We can assume that R is p-local. If p > 3, then Mell,R ≃ PR(4, 6)
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itself has cohomological dimension 1 and M0(n)R is finite over Mell,R

and thus M0(n)R has cohomological dimension 1 as well. If p = 2 or 3,
we know that φ(n) is invertible in R. We denote by π the canonical
map M1(n)R → M0(n)

′
R (which is a (Z/n)×-Galois cover). Further-

more, let F be a quasi-coherent sheaf on M0(n)R and consider the map
c : M0(n)

′
R → M0(n)R from above. In this case, the descent spectral

sequence

Hj((Z/n)×, Hi(M1(n)R;π
∗c∗F))⇒ Hi+j(M0(n)

′
R; c

∗F)

collapses to isomorphisms

Hi(M0(n)
′
R; c

∗F) ∼= Hi(M1(n)R;π
∗c∗F)(Z/n)

×

.

We will show in Proposition 2.6 that Hi(M0(n);F) ∼= Hi(M0(n)
′
R; c

∗F).

The cases M1(n)R and M(n)R are either treated in the Examples 2.1
(where one clearly has cohomological dimension 1) or are representable.
In the latter case, our statement for X follows from the item 3 (e.g. by
reducing via [Har77, Prop 9.3] to the case of R being a field).

Similarly, we can reduce the case M0(n)R to M1(n)R and M(n)R. In
the representable case, these are affine. The Examples 2.1 can be treated
by hand again.

Example 2.5. For n = 5, . . . , 10 or n = 12, we have an equivalence M1(n) ≃
P
1
Z[ 1

n
]. Indeed, by the last proposition,M1(n) is representable by a projective

Z[ 1n ]-scheme. Over C, the scheme M1(n) is connected of genus zero (for the
genus formula see for example [DS05, Section 3.9]). As in the discussion in
[HL10, Section 3.3], this implies that M1(n) ≃ P1

Z[ 1
n
] as soon as we have ex-

hibited a Q-valued point ofM1(n). This is easily done as a Néron n-gon with
Γ1(n)-level structure already exists over Q.

As already alluded to above,M0(n) is more difficult to understand if n is not
squarefree. In many situations, we can use the following proposition though,
which follows from the results of [Čes17]. We remark that he uses the notation
X0(n) for what we call M0(n) etc.

Proposition 2.6. The map

c :M0(n)
′ =M1(n)/(Z/n)

× →M0(n)

has the following properties.

1. For every quasi-coherent sheaf F on M0(n), the canonical map F →
c∗c

∗F is an isomorphism.

2. For every quasi-coherent sheaf G on M0(n)
′, the canonical map

Hi(M0(n)
′;G)→ Hi(M0(n); c∗G)

is an isomorphism for all i ≥ 0.
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In particular, the map H0(M0(n);F)→ H0(M1(n);h
∗F)(Z/n)

×

is an isomor-
phism for every quasi-coherent sheaf F on M0(n) and h : M1(n) → M0(n)
the canonical map.

Proof. The common nonvanishing locus D of j and j − 1728 onMell is of the
form X/C2 with the C2-action on X = SpecZ[j, (j(j − 1728))−1] trivial (see
[Shi19, Lemma 3.2] for the details). We denote by

M0(n)
′
X

cX
//

��

M0(n)X

��

M0(n)
′
D

cD
//M0(n)D

the base changes of c along the open inclusion D → Mell and the map X →
Mell.
By the Leray spectral sequence it suffices to show that Ric∗G = 0 for ev-
ery quasi-coherent sheaf G on M0(n)

′ and i > 0 to obtain the second claim.
As c is an isomorphism on the preimage of M0(n), it suffices to show both
the vanishing of Ric∗G and the first claim on M0(n)X . This is a scheme as
M0(n)→Mell is representable and thus M0(n)X → X is as well.
By [Čes17, Proposition 6.9], c induces an isomorphism on coarse moduli and
thus cD does as well. The C2-actions onM0(n)X andM0(n)

′
X induced by that

of X over D ≃ X/C2 are isomorphic to the identity as the latter C2-action is
induced by the automorphism [−1] that can be lifted to M0(n)

′ and hence
also to M0(n). Thus, M0(n)X →M0(n)D induces an isomorphism on coarse
moduli spaces and similarly forM0(n)

′. Thus, cX induces an isomorphism on
coarse moduli space as well and is thus the map into the coarse moduli itself.
Let x be a geometric point ofM0(n)

′
X . If x is a cusp point, then Aut(x) = Z/d

for some divisor d of n by the explicit description of the automorphisms of Neron
k-gons recalled in the proof of Proposition 2.4.
By (the proof of) Theorem 2.12 from [Ols06], we can choose an étale neigh-
borhood W = Wx of the image of x in M0(n)X such that c∗XW ∼= U/(Z/d)
for some scheme U . We can even assume that W and U are affine and denote
the resulting map SpecR/(Z/d) → SpecS by γ, where S = RZ/d. As d is
invertible, Riγ∗G = 0 for every quasi-coherent sheaf G on SpecR/(Z/d) and
i > 0. Moreover, M → (M ⊗R S)Z/d is an isomorphism for all S-modules
M as it is one for M = S and both sides are right exact and commute with
arbitrary direct sums. In other words, F → γ∗γ

∗F is an isomorphism for all
quasi-coherent sheaves F on SpecS.
As the Wx cover the part ofM0(n)X not in the preimage ofM0(n), the result
follows.

2.2 Modular forms and cusp forms

Definition 2.7. Let Γ ∈ {Γ1(n),Γ(n),Γ0(n)} and let R be a Z[ 1n ]-algebra.
We define

Documenta Mathematica 27 (2022) 427–488



Additive Decompositions for Modular Forms 439

• Mk(Γ;R) as H0(M(Γ)R; g
∗ω⊗k) and call M∗(Γ;R) the ring of modular

forms for Γ,

• M̃∗(Γ;R) as H0(M(Γ)R; g
∗ω⊗∗), the ring of weakly holomorphic modular

forms for Γ,

• S∗(Γ;R) as H0(M(Γ)R; g
∗ω⊗∗⊗O(− cusps)), the non-unital ring of cusp

forms for Γ. Here, cusps is the closed substack of cusps (i.e. the vanish-
ing locus of the discriminant) and O(−cusps) is the corresponding line
bundle. Thus, cusp forms are sections of g∗ω⊗∗ vanishing at all cusps.

There is an alternative way to define cusp forms using sheaves of differentials.
We will also need the notion of logarithmic differentials, which we will sketch
now. Let X → S be a smooth Deligne–Mumford stack over a regular base. Let
i : D →֒ X be a smooth divisor, by which we mean a closed substack that is
étale locally cut out by one non-zerodivisor and that is smooth over S. There is
an associated log structure on X (pushed forward from the complement of D)
that we denote by (X ,D); see [Ogu06] or [HL15] for the basics of log structures.
In [Ogu06, Chapter IV], Ogus defines sheaves of differentials for log schemes
and the theory easily generalizes to Deligne–Mumford stacks. In our situation,
Ω1

(X ,D)/S coincides with the more classical sheaf of differentials with logarithmic
poles. If D is cut out by a single element f , the OX -module can be described as
the quotient of Ω1

X/S ⊕OX
df
f by the OX -module generated by f df

f − df . This
sheaf maps injectively into Ω1

X/S ⊗ O(D) by the obvious inclusions on both
summands. This comparison map is surjective if every local section of Ω1

X/S is
of the form fα+ hdf for a one-form α, i.e. if df generates i∗Ω1

X/S. By [Har77,
Proposition II.8.12], this happens if and only if Ω1

D/S = 0, which is automatic
if X is smooth of relative dimension 1 over S as D is then smooth of relative
dimension 0 over S.
We will apply this to the cusp {∞} onMell, i.e. the vanishing locus of ∆.

Lemma 2.8. There is an isomorphisms Ω1
Mell/Z

∼= ω⊗(−10). Moreover,

Ω1
(Mell,{∞})/Z

∼= ω⊗2.

Proof. After base change to Z[ 16 ] the first claim follows from Theorem A.2
as Mell,Z[ 16 ]

≃ PZ[ 16 ]
(4, 6). Because the map Pic(Mell) → Pic(Mell,Z[ 16 ]

) is
injective (even an isomorphism by [FO10]), we have shown Ω1

Mell/Z
∼= ω⊗(−10).

By using Weierstraß equations, we can write Mell as the stack quo-
tient of the complement of the common vanishing locus of ∆ and c4 on
SpecZ[a1, a2, a3, a4, a6] by an action of the algebraic group SpecZ[u±1, r, s, t].
Thus, Mell → SpecZ is smooth of relative dimension 5 − 4 = 1. By the
discussion above, we obtain

Ω1
(Mell,{∞})/Z

∼= ω⊗(−10) ⊗O({∞}).
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As∞ is exactly the vanishing locus of ∆ ∈ H0(Mell;ω
⊗12), we haveO({∞}) =

ω⊗12 and we obtain our result.

Proposition 2.9. Let X → SpecZ be a smooth Deligne–Mumford stack with
a smooth divisor D. Let g : (X ,D) → (Mell, {∞}) be a log-étale map. Then
Ω1

(X ,D)/Z
∼= g∗ω⊗2 and Ω1

X/Z
∼= g∗ω⊗2 ⊗O(−D).

Proof. By Proposition 3.1.3 and Theorem 3.2.3 of [Ogu06], we obtain

Ω1
(X ,D)/Z

∼= g∗Ω1
(Mell,{∞})/Z

∼= g∗ω⊗2.

The discussion above Lemma 2.8 moreover implies

Ω1
(X ,D)/Z

∼= Ω1
X/Z ⊗O(D),

which proves the result.

To apply this result, we have to check that (M(Γ), cusps)→ (Mell,∞) is log-
étale. We can check this after base change to an étale cover X → Mell to
reduce to the scheme case and write D = ∞ ×Mell

X . By [Ill02, 7.3b, 7.6],
we only have to check that M(Γ) ×Mell

X → X is tamely ramified at the
cusps, but this is clear as for every x ∈ D the local ring OX,x can only have
dimension 1 if its residue characteristic is zero. Thus, we obtain:

Corollary 2.10. For Γ ∈ {Γ1(n),Γ0(n),Γ(n)}, we have

Ω1
M(Γ)/Z

∼= g∗ω⊗2 ⊗O(− cusps).

For M(n), this result appears in [Kat73, Section 1.5] and is certainly well-
known to the experts in general. It implies the following proposition.

Proposition 2.11. For Γ ∈ {Γ1(n),Γ0(n),Γ(n)}, the space of Γ-cusp forms
with coefficients in R and weight i is isomorphic to

H0(M(Γ)R; Ω
1
M(Γ)R/ SpecR

⊗ g∗ω⊗(i−2)).

If M(Γ)R is representable, this in turn is isomorphic to the R-module
HomR(H

1(M(Γ)R; g
∗ω⊗(2−i)), R) by Grothendieck duality (e.g. in the formu-

lation of [Con00, 1.1.2]).

This is in accordance with the definition given in [Del71, Def 2.8].
Next, we determine the weight 0 modular forms. We will need the following
standard fact.

Lemma 2.12. Let f : X → S be a smooth proper morphism with geometrically
connected fibers and S locally noetherian. Then OS → f∗OX is an isomor-
phism.
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Proof. The case of S = Spec k for a field k is [Liu02, Cor 3.21]. We can assume
that S = SpecR is affine and noetherian. By cohomology and base change
([Mum08, Sec 5, Cor 2]), we see that

H0(X,OX)⊗R k → H0(Xk,OX,k) ∼= k

is an isomorphism for every Spec k → S. As H0(X,OX) is a finitely generated
flat R-module, this implies that the canonical map R → H0(X,OX) is an
isomorphism.

Proposition 2.13. Let Γ ∈ {Γ0(n),Γ1(n),Γ(n)} and let R be a noetherian
integral Z[ 1n ]-algebra, which contains a primitive n-th root of unity ζ if Γ =
Γ(n).

1. If k = R is a field, the stack M(Γ)k is irreducible.

2. The ring M∗(Γ;R) is an integral domain and the inclusion

R→M0(Γ;R)

of the constant functions is an isomorphism.

Proof. As M1(n)k → M0(n)k is closed and surjective, we have to show irre-
ducibility only for Γ = Γ(n) or Γ1(n), which we assume now.
By [Sta17, 038H], M(Γ)k is irreducible for all k if it is irreducible for k = Fp

(for all primes p) and for k = C. It suffices to show that M(Γ)k is connected
since it is then automatically irreducible because of smoothness, and it is dense
in M(Γ)k. In the case k = C, it can be uniformized by the upper half plane
and is hence connected in the complex and thus also in the Zariski topology.
By Proposition 2.4, M(Γ) is smooth and proper over its base scheme. Thus
by [DM69, Thm 4.17], it is thus also irreducible over Fp. This shows the first
item.
By Lemma 2.12, it follows that the inclusion R → H0(M(Γ)R,OM(Γ)R

) of
constant functions is an isomorphism if M(Γ)R is a scheme. The other cases
follow by Examples 2.1 and because by Proposition 2.6, the map

M∗(Γ0(n);R)→M∗(Γ1(n);R)
(Z/n)×

is an isomorphism.
By the same results it suffices to show that M∗(Γ;R) is an integral domain if
M(Γ)R is a scheme. Moreover, the field K of fractions of R is flat over R and
M∗(Γ;R) is R-torsionfree; thus M∗(Γ;R) embeds into M∗(Γ;K).
If f, g ∈ H0(M(Γ)K ; g∗ω⊗∗) are modular forms, we can consider their vanishing
loci V (f) and V (g). If fg = 0, then V (f) ∪ V (g) = V (fg) =M(Γ)K . As this
space is irreducible, we have V (f) =M(Γ)K or V (g) =M(ΓK). But M(Γ)K
is reduced as it is smooth over K and thus a section of a line bundle that
vanishes everywhere is actually zero.

Documenta Mathematica 27 (2022) 427–488



442 L. Meier

2.3 Cohomology

Let R be a Z[ 1n ]-algebra and Γ tame as in Definition 2.3. In this subsection,
we will collect some information about the cohomology of g∗ω⊗m on M(Γ)R
and of ω⊗m on Mell.

Proposition 2.14. We have

1. H0(M(Γ)R; g
∗ω⊗m) = 0 for m < 0 (i.e. there are no modular forms of

negative weight),

2. H1(M(Γ)R; g
∗ω⊗m) = 0 for m ≥ 2,

3. H1(M(Γ)R; g
∗ω⊗m) is torsionfree for all m 6= 1 if R is torsionfree.

Proof. Throughout the proof, we will write ω for g∗ω when the context is clear.

1. As H0(M0(n)R;ω
⊗m) ∼= H0(M1(n)R;ω

⊗m)(Z/n)
×

by Proposition 2.6,
we only have to deal with M1(n)R and M(n)R. The non-representable
cases from Example 2.1 can be dealt with by hand.

Assume now that M(Γ)R is representable. By [DR73, VI.4.4], the line
bundle ω on Mell has degree 1

24 . Thus, ω⊗m has negative degree on
M(Γ)k for m < 0 and every field k. Thus, H0(M(Γ)k;ω

⊗m
k ) = 0 by

[Har77, IV.1.2]. Thus, the pushforward of g∗ω⊗m to SpecR vanishes at
every point of SpecR and thus vanishes completely.

2. This is shown for M(n)R in [Kat73, Thm 1.7.1]. We will give the proof
in the case of M1(n)R to add some details.

By dealing with the cases n ≤ 4 by hand, we can assume again that
M1(n)R is representable by a projective R-scheme. By cohomology and
base change (see e.g. [Har77, Theorem 12.11]), we see that it is enough
to show the claim in the case where k = R is an algebraically closed field.
By Corollary 2.10,

ω⊗m ∼= Ω1
M1(n)k/k

⊗ ω⊗m−2 ⊗O(cusps).

Because ω has positive degree [DR73, VI.4.4] and m ≥ 2, we see that the
degree of ω⊗m is bigger than the degree of Ω1

M1(n)k/k
. By Serre duality

H1(M1(n)k;ω
⊗m) ∼= H0(M1(n)k;ω

⊗−m ⊗ Ω1
M1(n)k/k

)

and this vanishes as ω⊗−m ⊗ Ω1
M1(n)k/k

has negative degree.

It remains to prove the claim for M0(n)R if gcd(6, φ(n)) is invertible
on R. As we already know that H1(M1(n)R;ω

⊗m) = 0 for m ≥ 2,
Proposition 2.6 implies

Hi(M0(n)R;ω
⊗m) ∼= Hi((Z/n)×;H0(M1(n)R;ω

⊗m)).
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Beginning with i = 1, this is 2-periodic in i. But we know that these
cohomology groups vanish for i > 1 by Proposition 2.4. Thus, they have
to vanish for i = 1 as well.

3. Let l be a prime that does not divide n. Consider the short exact sequence

H0(M(Γ)R;ω
⊗m)/l→ H0(M(Γ)R/l;ω

⊗m)→ H1(M(Γ)R;ω
⊗m)[l].

First note that the middle group is zero for m < 0 by Item (1) and hence
also H1(M(Γ)R;ω

⊗m)[l] = 0 for m < 0.

The morphism H0(M(Γ)R;ω
⊗m)/l → H0(M(Γ)R/l;ω

⊗m) is an isomor-
phism for m = 0 by Proposition 2.13. Thus, H1(M(Γ)R;ω

⊗m) can only
have torsion for m = 1 as it vanishes for m ≥ 2.

Next, we collect some facts about the cohomology of Mell itself, which is
certainly not tame if we do not invert 6. The cohomology of the sheaves ω⊗m

onMell was computed by [Kon12], based on [Bau08]. We need essentially only
the following.

Proposition 2.15. We have isomorphisms

H1(Mell;ω) ∼= Z/2 · η,

H1(Mell;ω
⊗2) ∼= Z/12 · ν.

These classes have a rather classical description as obstructions to lifting the
Hasse invariant. Indeed, denote by

Ap ∈ H
0(Mell,Fp

;ω⊗(p−1)) ∼= H0(Mell,Z(p)
;ω⊗(p−1)/p)

the mod p Hasse invariant (see Appendix B for a definition). The short exact
sequence

0→ ω⊗(p−1) p
−→ ω⊗(p−1) → ω⊗(p−1)/p→ 0

onMell induces a long exact sequence

· · · → H0(M;ω⊗(p−1))→ H0(M;ω⊗(p−1)/p)
∂
−→ H1(M;ω⊗(p−1))→ · · ·

where we abbreviatedMell,Z(p)
toM. Because the H1-term vanishes for p > 3,

there is no obstruction to lift Ap to characteristic zero for p > 3. As the
Hasse invariant does not lift to characteristic zero for p = 2, 3 (there does not
even exist a nonzero integral modular form in these degrees), we must have
∂(A2) = η and ∂(A3) at least a nonzero multiple of ν.

Proposition 2.16. The image of η in H1(M(Γ)R; g
∗ω) is zero if Γ is tame.

Proof. It is enough to show g∗η = 0 for M(Γ)R = M1(n)Z(2)
and n odd.

Indeed, consider the composite

H1(Mell,Z(2)
;ω)→ H1(M0(n)Z(2)

; g∗ω)→ H1(M1(n)Z(2)
; g∗ω).
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The second map is actually an injection (namely the inclusion of the (Z/n)×-
fixed points by the proof of Proposition 2.4). Thus, if g∗η vanishes inM1(n)Z(2)

,
it vanishes in H1(M0(n)Z(2)

; g∗ω) and clearly also in H1(M(n)Z(2)
; g∗ω).

It is enough to show g∗η = 0 after base change to C = Z(2)[ζ] for a ζ an n-th
root of unity. Consider the commutative square

0 = H0(Mell,C ;ω) //

g∗

��

H0(Mell,C ;ω/2)
∂

//

g∗

��

H1(Mell,C ;ω)

g∗

��

H0(M1(n)C ; g
∗ω) // H0(M1(n)C ; g

∗ω/2)
∂n

// H1(M1(n)C ; g
∗ω).

As η = ∂(A2) is still true over C, it is enough to show that ∂ng∗A2 = 0, i.e. that
g∗A2 lifts to H0(M1(n)C ; g

∗ω). This is exactly the content of Proposition B.1.

We end this section with some of the basic structure of H∗(M0(n)R; g
∗ω⊗∗)

if Γ0(n) is not tame for R. For this, we will need a well-known lemma about
transfers.

Lemma 2.17. Let X be an algebraic stack and A a sheaf of OX -algebras whose
underlying OX -module is a vector bundle of rank n. Then there exists an OX -
linear transfer map TrA : A → OX with the following properties:

(a) The morphism TrA is natural in A and also in X in the following sense:
If g : U → X is a morphism, g∗ TrA corresponds to Trg∗A under the

isomorphism g∗OX

∼=
−→ OU .

(b) Precomposing TrA with the unit map e : OX → A yields the
multiplication-by-n-map on OX .

(c) If f : Y → X is a G-Galois cover for a finite group G, the transfer

Tr: f∗OY → OX corresponds under the isomorphism OX

∼=
−→ (f∗OY)

G

to the sum
∑

g∈G lg, where lg is the action of g on f∗OY .

Proof. We construct TrA as the composite

A → HomOX
(A,A)

∼=
←− HomOX

(A,OX )⊗OX
A

ev
−→ OX ,

where the middle map is an isomorphism because it is one locally. The map
TrA is natural by construction. If X = SpecR and A(X ) is isomorphic to Rn

as an R-module, the map HomOX
(A,A)→ OX corresponds to the trace map

HomR(R
n, Rn) → R. As the the trace of the unit matrix is n, the composite

TrA e equals n locally and hence also globally, which implies (b).
In the case A = f∗OY with f : Y → X a G-Galois cover, f∗OY is locally as an
algebra isomorphic to

∏
GOX and the transfer

∏
GOX → OX is the summing

map whose postcomposition with the isomorphism OX → (
∏

GOX )
G equals∑

g∈G lg. As this is true locally, it must be true globally as well and thus (c)
is true.
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Proposition 2.18. Let R be a Z[ 1n ]-algebra. For every i > 0 and m ≥ 2, the
groups Hi(M0(n)R; g

∗ω⊗m) are 3-torsion if R is 3-local and 8-torsion if R is
2-local.
Moreover if R is 3-local, all Hi(M0(n)R; g

∗ω⊗m) for i > 0 are c4-power torsion
and all Hi(M0(n)R; g

∗ω⊗m) for i > 0 are even c4- and c6-torsion for c4, c6 ∈
MZ

∗ .

Proof. Let R be a Z[ 1n ]-algebra that is 2- or 3-local. By Proposition 2.6,

Hi(M0(n)R; g
∗ω⊗m) ∼= Hi(M0(n)

′
R; g

∗ω⊗m)

and we will work throughout with the latter.
Let p be a prime that is relatively prime to 6n and such that p2 − 1 is neither
divisible by 9 nor by 16; for example, we can take p ≡ 2 mod 9 and p ≡ 3
mod 16. Conrad constructs in [Con07] a moduli stackM(Γ1(p;n)) classifying
generalized elliptic curves E with both a point P of exact order p and a cyclic
subgroup C of order n in the smooth locus such that the subgroup generated
by P and C meets all irreducible components of all geometric fibers of E. By
[Con07, Lemma 4.2.3], there is a finite “contraction map” M(Γ1(p;n))R →
M1(p)R. As the target has cohomological dimension 1 by Proposition 2.4, the
same is true for the source as well. Because H1(M1(pn)R; g

∗ω⊗m) = 0 for m ≥
2, the descent spectral sequence for the Galois coverM1(pn)R →M(Γ1(p;n))R
collapses to isomorphisms

Hi(M(Γ1(p;n))R; g
∗ω⊗m) ∼= Hi((Z/n)×;H0(M1(pn)R; g

∗ω⊗m))

for m ≥ 2. The same argument as in the second part of Proposition 2.14 shows
that these groups vanish for i = 1 as they do it for i > 1.
We claim that the contraction map c :M(Γ1(p;n))R →M0(n)

′
R (constructed

using [DR73, IV.1.2]) is finite and flat. Indeed, the contraction M1(pn)R →
M1(n)R is finite as both are finite overMell,R. Considering the diagram,

M1(pn)R //

��

M(Γ1(p;n))R

c

��

M1(n)R //M0(n)
′
R,

we see that M1(pn)R → M0(n)
′
R is finite and thus by Chevalley’s theorem

[GW10, Corollary 12.40] also c is finite; here we use that M(Γ1(p;n))R is a
scheme. By [Con07, Theorem 4.1.1], again both source and target of c are
regular, and we argue as in the first part of Proposition 2.4 to deduce that c is
flat.
On the part classifying smooth elliptic curves, one easily counts that c has
degree p2−1. Thus, for every vector bundle F with anOM0(n)

-algebra structure
onM0(n)

′
R the composite of

Hi(M0(n)
′
R;F)→ Hi(M0(n)

′
R; c∗c

∗F) ∼= Hi(M(Γ1(p;n))R; c
∗F)
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with the trace Hi(M(Γ1(p;n))R; c
∗F)

Trc∗c∗F

−−−−−→ Hi(M0(n)
′
R;F) is multiplica-

tion by p2 − 1, and the first result follows.
Let R be 3-local. The nonvanishing locus D(c4) of c4 onMell,R coincides with
the nonvanishing locus of the j-invariant. Thus, the coarse moduli space of
D(c4) is the complement of {0} in P1

R, which is isomorphic to A1
R. Moreover,

D(c4) is tame by [Sil09, Theorem III.10.1]. Thus, for every quasi-coherent
sheaf F on D(c4) the cohomology groups Hi(D(c4);F) vanish for i > 0. As
the non-vanishing locus of g∗c4 onM0(n)R is finite over D(c4), we see

Hi(D(g∗c4); g
∗ω⊗m) ∼= Hi(D(c4); g∗g

∗ω⊗m) = 0

for i > 0. But Hi(D(g∗c4);ω
⊗∗) ∼= Hi(M0(n)R;ω

⊗∗)[c−1
4 ] and we see that for

i > 0 the cohomology group Hi(M0(n)R; g
∗ω⊗m) is c4-power torsion.

It follows from Example 2.1 that M̃∗(Γ(2);R) = H0(M(2)R;ω
⊗∗) ∼=

R[x2, y2,∆
−1]. The action of S3

∼= GL2(Z/2) on M(2) induces an S3-action
on this ring of modular forms and Stojanoska computed in [Sto12, Lemma 7.3]
that there is a transposition τ ∈ S3 interchanging x2 and y2 and a 3-cycle σ
with σ(x2) = y2−x2 and σ(y2) = −x2. Using Lemma 2.17, one easily calculates
that the transfer

Trf =
∑

g∈S3

lg : M̃∗(Γ(2);R) ∼= H0(M1
ell,R; f∗OM1(2)R)→ H0(M1

ell,R;OM1
ell,R

)

sends 4x22 to c4 and −32x22y2 to c6. Here, we identify the target with M̃R
∗ ;

moreover, M1(2) is the stack classifying elliptic curves with level-2 structure
and a choice of invariant differential and f :M1(2)R →M

1
ell,R is the projection.

Consider the pullback square

P1

f ′

��

g′

//M1(2)R

f

��

M1
0(n)R

g
//M1

ell,R.

By naturality, g∗ Trf (z) = Trf ′((g′)∗z) for z ∈ H0(M1(2)R,OM1(2)R). More-
over,

Trf ′(a) · b = Trf ′(ab)

for a ∈ H0(P1;OP1) and b ∈ H∗(M1
0(n);OM1

0(n)
) by the O-linearity of the

transfer. This implies that for any such b, the classes c4b and c6b are in the
image of the transfer from P1. But as g is finite and M1(2) is affine, P1 is
affine as well and thus c4b and c6b have to vanish if the cohomological degree
of b is at least 1.
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3 The existence of decompositions

Throughout this section let R be a Z[ 1n ]-algebra in which 2 or 3 is invertible.
Set

M
′
=M

′

R =





M1(3)R if 1
3 ∈ R, but 1

2 /∈ R

M1(2)R if 1
2 ∈ R, but 1

3 /∈ R

Mell,R if 1
6 ∈ R.

Denote the projection mapM
′
→Mell,R by f and denote byM′ the preimage

ofMell,R. Sometimes we also use the notationsM
′

R and fR if we want to stress
the dependence on R. Furthermore let Γ ∈ {Γ1(n),Γ(n),Γ0(n)} throughout
this section be tame with respect to R and denote by g the projection map
M(Γ)R → Mell,R, where we assume R to contain a primitive n-th root of
unity if Γ = Γ(n). Note that g∗OM(Γ)R

is a vector bundle as g is finite and flat
by 2.4. We want to prove the following theorem.

Theorem 3.1. Let R be a field, a local ring or a Z[ 16 ]-algebra and assume R
to be normal and noetherian. The vector bundle g∗OM(Γ)R

splits into vector

bundles of the form f∗OM
′ ⊗ ω⊗k if and only if H1(M(Γ)R; g

∗ω) is a free
R-module. The latter conditions holds if H1(M(Γ); g∗ω) has no l-torsion for l
not invertible or 0 in R.

We will first prove these over a field. Afterward, we will use our results on
vector bundles on weighted projective lines to deduce it also over rings under
the given conditions.

3.1 The vector bundle f∗OM
′

R

The aim of this subsection is to show that f∗OM
′

R
is indecomposable, but

decomposes after pullback toM(Γ)R; here we use the notation from the begin-
ning of this section. We will need the following standard base change lemma
and will often use it implicitly.

Lemma 3.2. Let
X ′ v

//

q

��

X

p

��

Y ′ u
// Y

be a cartesian diagram of Deligne–Mumford stacks, where p is representable
and affine, and let F be a quasi-coherent sheaf on X. Then the natural map

u∗p∗F → q∗v
∗F

is an isomorphism.
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Proof. Note first that the lemma is true without any assumptions on p if u is
étale because on U → Y ′ étale, both source and target can be identified with
F(U ×Y X). Thus we can work étale locally and assume that Y = SpecA
and Y ′ = SpecA′ are affine schemes and hence also X = SpecB and X ′ =
SpecB⊗AA

′. If F corresponds to the B-module M , our assertion just becomes

M ⊗A A
′ ∼=M ⊗B (B ⊗A A

′).

Proposition 3.3. The vector bundle (fR)∗OM′

R
is indecomposable.

Proof. If 1
6 ∈ R, the result is clear. Assume 1

2 /∈ R so thatM′
R =M1(3)R and

let R → k be a morphism to an algebraically closed field of characteristic 2.
Consider the elliptic curve E : y2+y = x3 over k. This has, according to [Sil09],
III.10.1, automorphism group G of order 24. By [KM85, 2.7.2], the morphism
G→ GL2(F3) (given by the operation of G on E[3]) is injective. Using elemen-
tary group theory, GL2(F3) has a unique subgroup of order 24, namely SL2(F3);
thus G embeds onto SL2(F3). This induces a map e : Spec k/SL2(F3)→Mell.
Pulling (fR)∗OM′

R
back along this map gives an 8-dimensional k-vector space V

with SL2(F3)-action; e.g. using Lemma 3.2 this can be identified with the
permutation representation defined by the action of SL2(F3) on the eight points
of exact order 3 in F2

3. The quaternion subgroup Q ⊂ SL2(F3) acts freely and
transitively on these points; thus, V restricted to Q is isomorphic to the regular
representation of Q.
The regular representation K[P ] of a finite p-group P over a field K of char-
acteristic p is always indecomposable. Indeed, K[P ]P ∼= K, but every K-
representation of P has a nonzero P -fixed vector by [Ser77, Prop 26]. Thus
every nontrivial decomposition of K[P ] would yield that dimK[P ]P ≥ 2.
This means that e∗(fR)∗OM′

R
is indecomposable and hence (fR)∗OM′

R
as well

if 1
2 /∈ R. If 1

3 /∈ R, we can either do an analogous argument or cite [Mei15,
Cor 4.8].

Proposition 3.4. For g :M(Γ)R →Mell,R, the vector bundle g∗f∗OM
′

R
is a

direct summand of a sum of line bundles of the form g∗ω⊗n. If 1
2 ∈ R, then

g∗f∗OM
′ is the sum of such line bundles itself.

Proof. The case 1
6 ∈ R is clear. Assume 1

3 /∈ R with M
′
=M1(2)R. We will

leave the base change to R implicit in the following to simplify notation. By
[Mat16, Prop 4.14], there are extensions

0→ OMell
→ f∗OM1(2)

→ Eν ⊗ ω
⊗(−2) → 0

and
0→ OMell

→ Eν → ω⊗(−2) → 0

classified by ν̃ ∈ Ext1(Eν ⊗ ω
⊗(−2),OMell

) and ν ∈ Ext1(ω⊗(−2),OMell
) re-

spectively, where ν is as in Proposition 2.15 and ν̃ is a lift of ν. The classes g∗ν
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and g∗ν̃ are zero by Proposition 2.14. Thus g∗f∗OM1(2)
splits into line bundles

of the form g∗ω⊗n.
The same argument – only more complicated – works if 1

2 /∈ R and M
′
=

M1(3)R. Again, we will leave the base change to R implicit. In [Mat16,
Section 4.1], Mathew constructs a vector bundle F(Q) on Mell, which arises
via two short exact sequences

0→ Eη → F(Q)→ ω⊗(−3) → 0

and
0→ OMell

→ Eη → ω⊗(−1) → 0.

The latter extension is classified by η ∈ H1(Mell;ω) ∼= Ext1(ω⊗(−1),OMell
),

while the former is classified by a lift ν̃ ∈ Ext1(ω⊗(−3), Eη) of ν. By Propo-
sition 2.16, we know that g∗η = 0 so that g∗Eη

∼= OM(Γ) ⊕ g∗ω⊗(−1).
The other extension splits as well because by Proposition 2.14 we see that
Ext1(g∗ω⊗(−3), g∗Eη) = 0. Thus,

g∗F(Q) ∼= OM(Γ) ⊕ g
∗ω⊗(−1) ⊕ g∗ω⊗(−3).

By [Mat16, Prop 4.7, Cor 4.11], the cokernel of the coevaluation map

q : OMell
→ F(Q)⊗F(Q)∨

is isomorphic to f∗OM1(3)
. The composition of q with the evaluation map

F(Q) ⊗ F(Q)∨ → OMell
equals multiplication by 3 = rk(F(Q)), which is

invertible. Hence, f∗OM1(3)
splits off from F(Q)⊗F(Q)∨ as a direct summand.

Thus, g∗f∗OM1(3)
is a direct summand of a sum of line bundles of the form

g∗ω⊗i.

3.2 Decompositions over a field

In this section, we let R = k be a field andM
′
andM(Γ) =M(Γ)k for Γ tame

as before. Our goal is to show the following proposition.

Proposition 3.5. Let E be a vector bundle on M(Γ). Then g∗E decomposes
into a direct sum of vector bundles of the form f∗OM

′ ⊗ ω⊗i.

If char(k) is not 2 or 3, the proof is easy. In this case, we have an equivalence
Mell,k ≃ Pk(4, 6) with ω corresponding to O(1). By Proposition A.4, every
vector bundle on Pk(4, 6) decomposes into a sum of the line bundles O(i).
Thus, we will assume that k has characteristic l = 2 or 3 in the following.
Our strategy will be to analyze the consequences of Lemma 3.2 in the case of
the pullback square

Y =M(Γ)×Mell,k
M

′

k

g′

//

f ′

��

M
′

k

f

��

M(Γ)
g

//Mell,k
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using a Krull–Schmidt theorem.

Proposition 3.6 (Krull–Schmidt). Let X be a proper Artin stack over a field k.
Then the Krull–Schmidt theorem holds for coherent sheaves on X . This means
that every coherent sheaf on X decomposes into finitely many indecomposables
and that this decomposition is unique up to permutation of the summands.

Proof. As shown by Atiyah in [Ati56], a k-linear abelian category has a Krull–
Schmidt theorem if all Hom-vector spaces are finite-dimensional. By a theorem
of Faltings [Fal03], the global sections of any coherent sheaf on X form a finite-
dimensional k-vector space. We can apply this to the Hom-sheafHomOX

(F ,G)
for two coherent OX -modules, which is coherent itself.

Example 3.7. We give a counterexample to the Krull–Schmidt theorem if we
do not assume properness. It follows from [Mat16, Prop 4.14] that f∗OM1(2)

splits as OMell
⊕ ω⊗2 ⊕ ω⊗4 after rationalization, where we denote in this

example by f the projection M1(2)→Mell. By [Beh06, Sec 1.3], there is an
equivalence

M1(2) ≃ SpecZ[ 12 ][b2, b4][∆
−1]/Gm,

where ∆ = 1
4b

2
4(b

2
2 − 32b4). As ∆ is divisible by b4, the ring Z[ 12 ][b2, b4][∆

−1] is
4-periodic and we deduce that f∗ω⊗4 ∼= OM1(2). In particular, it follows that

OMell
⊕ ω⊗2 ⊕ ω⊗4 ∼= f∗OM1(2)

∼= f∗OM1(2) ⊗ ω
⊗4 ∼= ω⊗4 ⊕ ω⊗6 ⊕ ω⊗8

onMell,Q, contradicting a possible Krull–Schmidt theorem in the uncompacti-
fied case. With some extra work one can remove the summand ω⊗4 from both
sides.

Proof of Proposition 3.5: Consider again the pullback diagram

Y =M(Γ)k ×Mell,k
M

′

k

g′

//

f ′

��

M
′

k

f

��

M(Γ)k
g

//Mell,k.

We have an isomorphism

g∗f
′
∗(f

′)∗E ∼= f∗g
′
∗(f

′)∗E .

Every vector bundle onM
′

k decomposes into line bundles of the form f∗ω⊗m by
the Examples 2.1 and Proposition A.4. By the projection formula, f∗g′∗(f

′)∗E
is thus a sum of vector bundles of the form f∗OM

′

k
⊗ ω⊗m. As these are

indecomposable by Proposition 3.3, this is also the decomposition of g∗f ′
∗(f

′)∗E
into indecomposables. By the Krull–Schmidt theorem 3.6 it is thus enough to
show that g∗E ⊗ ω⊗n is a summand of g∗f ′

∗(f
′)∗E for some n ∈ Z.
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Note first that by Proposition 3.4 and Lemma 3.2, we can write g∗f∗OM
′

k

∼=

f ′
∗OY as a direct summand of a vector bundle of the form

⊕
i g

∗ω⊗ni . By the
Krull–Schmidt theorem, f ′

∗OY is actually itself of this form. The projection
formula implies a chain of isomorphisms

g∗(f
′)∗(f

′)∗E ∼= g∗((f
′)∗OY ⊗ E)

∼= g∗(
⊕

i

g∗ω⊗ni ⊗ E)

∼=
⊕

i

(g∗E)⊗ ω
⊗ni .

The result follows.

Remark 3.8. The explicit decomposition (i.e. the powers of ω) can be worked
out by comparing dimensions of spaces of modular forms, as we will do later
in Section 4.

3.3 Integral decompositions

Let n ≥ 2 and R be again a Z[ 1n ]-algebra in which 2 or 3 is invertible, and
assume that Γ ∈ {Γ1(n),Γ0(n),Γ(n)} is tame as in Definition 2.3.

Lemma 3.9. The R-modules Hi(M(Γ)R; g
∗ω⊗m) are free for i = 0, 1 unless

m = 1. Moreover Hi(M(Γ)R; g
∗ω) is free for i = 0 and i = 1 if and only if we

can write the torsion part of H1(M(Γ); g∗ω) as a sum of cyclic groups of the
form Z/k, where k is invertible in R or k = 0 in R.

Proof. We will abbreviate g∗ω to ω. As Hi(M(Γ);ω⊗m) vanishes for i > 1 by
Proposition 2.4, the Künneth spectral sequence Lemma A.6 implies

H1(M(Γ)R;ω
⊗m) ∼= H1(M(Γ);ω⊗m)⊗R (3.10)

and a short exact sequence

H0(M(Γ);ω⊗m)⊗R→ H0(M(Γ)R;ω
⊗m)→ TorZ(H

1(M(Γ);ω⊗m), R).
(3.11)

By Proposition 2.14, we know that H1(M(Γ);ω⊗m) is torsionfree for m 6= 1
and hence a free Z[ 1n ]-module and clearly the same is true for H0(M(Γ);ω⊗m)

for all m. Hence, Hi(M(Γ)R;ω
⊗m) is a free R-module for i = 0, 1 and m 6= 1.

If we can write the torsion part of the finitely generated Z[ 1n ]-module A :=

H1(M(Γ);ω) as a sum of cyclic groups of the form Z/k, where k is invertible
in R or k = 0 in R, then clearly Hi(M(Γ)R, ω) is R-free for i = 0, 1 by
Equations (3.10) and (3.11). On the other hand, if A ⊗ R is R-free, then we
can write the torsion part of A as a sum of cyclic groups of the form Z/k, where
k is invertible in R or k = 0 in R. This follows from [Kap49, Theorem 9.3]; for
a direct proof see [Guy].
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Consider the projection g :M(Γ)R →Mell,R as above and again the diagram

Y =M(Γ)R ×Mell,R
M

′

R

f ′

��

g′

//M
′

R

f

��

M(Γ)R
g

//Mell,R,

whereM
′

R is still as at the beginning of this section.

Theorem 3.12. Assume that R is a normal noetherian local Z[ 1n ]-algebra with
residue field k of characteristic l ≥ 0. Then g∗OM(Γ)R

decomposes into a sum
of vector bundles of the form f∗OM

′

R
⊗ ω⊗m if and only

• l = 0, or

• l > 0 and H1(M(Γ); g∗ω) does not contain l-torsion, or

• l > 0 and R is an Fl-algebra.

Proof. If g∗OM(Γ)R
decomposes in the prescribed manner, Hi(M(Γ)R, g

∗ω) is
free for i = 0, 1 and we can apply the lemma above. Note here that l = 0 in R
if lk = 0 in R because R is normal and in particular reduced.
For the opposite direction, we obtain from Proposition 3.5 an isomorphism

h : g∗OM(Γ)k
→ f∗Fk

for some F =
⊕

i∈Z

⊕
mi
f∗ω⊗i. By adjunction, this corresponds to a mor-

phism
ϕ : (g′)∗OYk

∼= f∗g∗OM(Γ)k
→ Fk,

where we use Lemma 3.2 again. By Proposition 2.4, g and hence g′ is finite and
flat and thus (g′)∗OY is a vector bundle. We want to show that it decomposes

as a sum G =
⊕

i∈Z

⊕
ni
f∗ω⊗i for some ni. As M

′

R is a weighted projective
line by Examples 2.1, Proposition A.8 implies that it is enough to show that
Hi(M

′

R; (g
′)∗OY ⊗ f

∗ω⊗j) is a free R-module for i = 0, 1 and all j ∈ Z. We
have the following chain of isomorphisms:

Hi(M
′
; (g′)∗OY ⊗ f

∗ω⊗j) ∼= Hi(Mell,R; f∗(g
′)∗(g

′)∗f∗ω⊗j)

∼= Hi(Mell,R; g∗(f
′)∗(g

′)∗f∗ω⊗j)

∼= Hi(Mell,R; g∗g
∗f∗f

∗ω⊗j)

∼= Hi(M(Γ)R; g
∗f∗f

∗ω⊗j)

∼= Hi(M(Γ)R; (g
∗f∗OM

′

R
)⊗ g∗ω⊗j).

By Proposition 3.4, this R-module is a direct summand of a sum of terms of the
form Hi(M(Γ)R; g

∗ω⊗n). By Lemma 3.9, these R-modules are free and thus
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Hi(M
′
; (g′)∗OY ⊗ f

∗ω⊗j) is a free R-module as well since R is local. Thus,
(g′)∗OY is of the form G.
We claim that the morphism

HomO
M

′
R

(G,F)→ HomO
M

′
k

(Gk,Fk)

is surjective. This surjectivity follows from

H0(M
′

R; f
∗ω⊗i)→ H0(M

′

R; f
∗ω⊗i)⊗R k ∼= H0(M

′

k; f
∗ω⊗i

k )

being surjective, which in turn is true as H1(M
′

R; f
∗ω⊗i) is R-free.

Thus, we can choose a map (g′)∗OY → F , which reduces to ϕ over k. By tracing
through the adjunctions, this corresponds to a map h : g∗OM(Γ)R

→ f∗F whose
restriction toMell,k agrees with h. We want to show that h is an isomorphism
and it suffices to check this after pullback to an fpqc cover, e.g. toM1(5)R or
M1(6)R, which are isomorphic to P1

R (see Example 2.5). Thus, h is a morphism
between vector bundles on P1

R whose restriction to P1
k is an isomorphism. We

know that h is an isomorphism on an open subset of P1
R that contains the special

fiber; its complement is a closed subset A. The image of A under P1
R → SpecR

is closed and thus empty as it cannot contain the closed point. Thus, A is
empty as well and h is an isomorphism.

Remark 3.13. This theorem is also true if R is not local but a normal noethe-
rian Z[ 16 ]-algebra, where we assume instead that we can write the torsion part
of H1(M(Γ); g∗ω) as a sum of cyclic groups of the form Z/a such that a is
invertible or zero in R. Indeed, Mell,R ≃ PR(4, 6) in this case and we can
directly apply Theorem A.8 using Lemma 3.9. Note further that if the conclu-
sion of the theorem above is true for some Z[ 1n ]-algebra R, then it is also true
for every algebra over R by base change. The crucial cases are quotients and
localizations of the integers.

Remark 3.14. Consider the short exact sequence

0→ H0(M(Γ); g∗ω⊗i)/l→ H0(M(Γ)Fl
; g∗ω⊗i)→ H1(M(Γ); g∗ω⊗i)[l]→ 0

(3.15)

associated with
0→ ω⊗i l

−→ ω⊗i → ω⊗i/l→ 0.

We see that H1(M(Γ); g∗ω) is l-torsionfree if and only if the map

M1(Γ;Z(l))→M1(Γ;Fl)

is surjective, i.e. if every mod-l modular form of weight 1 for Γ can be lifted to
a characteristic zero form of the same kind. If there are non-liftable modular
forms of this kind, there are indeed also mod-l cusp forms of weight 1 non-
liftable to characteristic zero cusp forms (of the same level), at least if Γ is tame.
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Indeed by the Semicontinuity Theorem (see [Mum08, Section 5] or [Bro12,
Appendix A.1] for tame stacks), H1(M(Γ); g∗ω) having l-torsion implies that
the rank of H1(M(Γ)Fl

; g∗ω) is bigger than that of H1(M(Γ)C; g
∗ω) and these

ranks agree with those of Fl-valued and C-valued cusp forms of weight 1 by
Corollary 2.11.
As in [Buz14, Lemma 2], it is easy to show by hand that non-liftable mod-l
weight 1 cusp forms do not exist for M(Γ) = M1(n) and n ≤ 28. Further
explorations benefit from computer help and were done in [Edi06], [Buz14],
[Sch12] and [Sch14]. Some small examples from these sources where l-torsion
occurs in H1(M1(n); g

∗ω) are

(l, n) = (2, 1429), (3, 74), (3, 133), (5, 141) and (199, 82).

In Appendix C, we will show that the smallest (odd) n with 2-torsion
in H1(M1(n); g

∗ω) is 65. More precisely, a SAGE-computation will show
that S1(Γ1(n);F2) is 2-dimensional, while a MAGMA-computation shows that
S1(Γ1(n);Q) = 0.
There is evidence [Sch14] that the torsion in H1(M1(n); g

∗ω) grows at least
exponentially in n.

4 Computing the decompositions

In this section, we will be more concrete and actually give formulas how to
decompose vector bundles. As we will mostly work over a field of characteristic
not 2 or 3, the hard work of the last section is almost entirely unnecessary
for this section. But the results of this section have strong implications for
the integral decompositions from the last section. We will start with some
recollections and results about dimensions of spaces of modular forms.

4.1 Dimensions of spaces of modular forms

Let K be a field of characteristic not dividing n and Γ be one of the congruence
subgroups Γ0(n), Γ1(n) or Γ(n). Denote by mK

i the dimension of the space of
weight i modular forms for Γ and by sKi the dimension of the space of cusp
forms for the same weight and group. Note mK

i = mL
i and sKi = sLi if K ⊂ L

is a field extension.

Lemma 4.1. We have the inequalities mK
i ≥ mC

i (with equality for i ≥ 2 if Γ
is tame).

Proof. As mK
i = mC

i if K has characteristic zero, we can assume that K has
characteristic l > 0 and actually that K = Fl. Set

M =Mi(Γ;Z[
1

n
]) = H0(M(Γ); g∗ω⊗i).

By definition, mC
i equals dimCM ⊗ C. Note further that M is torsionfree so

that dimCM⊗C = dimFl
M/l. The exact sequence (3.15) reads in our notation
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as
0→M/l→Mi(Γ;Fl)→ H1(M(Γ); g∗ω⊗i)[l]→ 0.

Thus,
mFl

i ≥ dimFl
M/l = mC

i

with equality for i ≥ 2 and Γ tame as then H1(M(Γ); g∗ω⊗i) = 0 by Proposi-
tion 2.14.

From now on we will just write mi = mK
i and si = sKi .

We will need the following standard fact, which follows directly from Riemann–
Roch, Proposition 2.14 and Corollary 2.11.

Proposition 4.2. Assume that M(Γ)K is representable. Let g(Γ) = s2 be the
genus of M(Γ)K . Then

deg(g∗ω)i+ 1− g(Γ) =

{
m1 − s1 if i = 1

mi if i ≥ 2.
.

Let us be more explicit about deg(f∗
nω) for Γ = Γ1(n).

Lemma 4.3. The degree deg(fn)
∗ω equals 1

24dn for dn the degree of the map
fn :M1(n)K →Mell,K . We have

dn =
∑

d|n

dφ(d)φ(n/d)

= n2
∏

p|n

(1−
1

p2
).

Proof. By [DR73, VI.4.4], the line bundle ω has degree 1
24 . As deg(fn)

∗ω =
deg(fn) degω, the first result follows. For the formulas for dn see [DS05, Sec
3.8+3.9]; note that the map of stacks has twice the degree of the map of coarse
moduli spaces as the generic point ofMell has automorphism group of order 2
and that the formulas from [DS05] are actually valid in all characteristics as
M1(n)→Mell,Z[ 1

n
] is finite and flat.

It is not quite obvious from Proposition 4.2 how to obtain even a good lower
bound on m1. We have the following simple observation.

Lemma 4.4. Let Γ be Γ1(n) for n ≥ 5 or Γ(n) for n ≥ 3. Then m1 ≥ 2.

Proof. By Theorem 3.6.1 from [DS05] the quantity 2mC
1 is at least the number

of regular cusps for Γ and p. 103 of loc. cit. shows that in our cases all cusps
are regular. By [DS05, Figure 3.3] the number of cusps is at least 4 for our
choices of Γ and thus mC

1 ≥ 2. Lemma 4.1 implies our result.

We need the following (probably standard) lemma, which was proven jointly
with Viktoriya Ozornova.
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Lemma 4.5. Let K be an algebraically closed field and A a Z≥0-graded integral
domain over K. Set mi = dimK Ai and assume that m0 = 1. Then m2 ≥
2m1 − 1.3

Proof. We will work throughout this proof over the field K and set n = m1.
Let P = K[x1, . . . , xn] with the xi of degree 1. Without loss of generality we
can assume that A is generated in degree 1 and can thus be written as P/I
with I a homogeneous ideal generated in degrees ≥ 2. An element in P2 can
be written as

∑
i≤j aijxixj and thus we can view it as an upper triangular

matrix (aij). Let R be the space of upper triangular matrices associated with
the elements of P2 ∩ I. For an arbitrary matrix (aij) we set U((aij)) = (mij)
with

mij =





aii if i = j

aij + aji if i < j

0 else.

Thus, U defines a linear map Matn×n → UpT from all n × n-matrices to the
upper triangular ones. If we view linear homogeneous polynomials in the xi as
column vectors v,w in P1 = A1, then their product corresponds to the upper
triangular matrix U(vwT ). As A is an integral domain, no nonzero element
in R is of this form.
We can reformulate this in terms of the Segre embedding. Recall that this
is the map ι : Pn−1 × Pn−1 → P(Matn×n) sending ([v], [w]) to [vwT ]. Let
V = P(Matn×n) \ P(ker(U)). As P is an integral domain, ι factors through V .
Furthermore, U defines an algebraic map V → P(UpT). The composite map
κ : Pn−1 × Pn−1 → P(UpT) is proper as the source is proper over K. Fur-
thermore, κ is quasifinite because P is a unique factorization domain and thus
every point in P(UpT) has at most two preimages in Pn−1 × Pn−1. Thus, κ
defines a finite map Pn−1×Pn−1 → im(κ) and thus im(κ) is a projective variety
of dimension 2n − 2. As im(κ) ∩ P(R) = ∅, it follows by [Har77, Thm I.7.2]
that R has dimension at most dimK UpT−(2n− 1) and thus that

m2 = dimK UpT− dimK R ≥ 2n− 1.

Together with Proposition 2.13, this directly implies the following proposition.

Proposition 4.6. We always have m2 ≥ 2m1 − 1. �

4.2 Decompositions into powers of ω

In this section, we will work (implicitly) over a field K of characteristic not 2
or 3 until further notice. Let Γ be again one of the congruence subgroups
Γ0(n), Γ1(n) or Γ(n). Let g : M(Γ) → Mell be the projection. Recall that

3We allow ourselves the abuse of the notation mi as we will take A to be a ring of modular
forms later.
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Mell ≃ P(4, 6) with O(1) ∼= ω. By Proposition 2.4, the OMell
-module g∗OM(Γ)

is locally free of finite rank. Thus it decomposes by Proposition A.4 as

g∗OM(Γ)
∼=

⊕

i∈Z

⊕

li

ω⊗(−i). (4.7)

Our aim is to determine the sequence of li (which is well-defined by the Krull–
Schmidt Theorem 3.6). We will sometimes call it the decomposition sequence
of g∗OM(Γ).

Proposition 4.8. We have

1. li = 0 for i < 0 and i > 11,

2. li = mi − mi−4 − mi−6 + mi−10 for i ≤ 11; in particular, li = mi for
i ≤ 3,

3. l12−i = si for i ≤ 4,

4. l10 is the genus of M(Γ), i.e. dimK H0(M(Γ); Ω1
M(Γ)/K

).

Proof. The number mk is by definition the dimension of

H0(M(Γ); g∗ω⊗k) ∼= H0(Mell; g∗OM(Γ) ⊗ ω
⊗k).

Denote by di = dimK H0(Mell;ω
⊗i) the dimension of the space of holomorphic

modular forms of weight i for SL2Z. Then (4.7) implies that

mk =
∑

i∈Z

lidk−i. (4.9)

In particular, li = 0 for i < 0 because mi ≥ li = lidi−i and there are no
modular forms of negative weight (Proposition 2.14).
To get more precise results, we want to use Serre duality onMell andM(Γ). By
Theorem A.2, the stack Mell ≃ PK(4, 6) has dualizing sheaf ω⊗(−10). Using
this and that g is affine and thus g∗ is exact, we get the following chain of
isomorphisms:

H0(Mell; (g∗OM(Γ))
∨ ⊗ ω⊗−10−k) ∼= H0(Mell; (g∗OM(Γ) ⊗ ω

⊗k)∨ ⊗ ω⊗−10)

∼= H1(Mell; g∗OM(Γ) ⊗ ω
⊗k)∨

∼= H1(Mell; g∗(OM(Γ) ⊗ g
∗ω⊗k))∨

∼= H1(M(Γ); g∗ω⊗k)∨

∼= H0(M(Γ); Ω1
M(Γ)/K

⊗ g∗ω⊗−k).

By Proposition 2.14, this vanishes for k ≥ 2.
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Since the rank of g∗OM(Γ) is finite, only finitely many li can be nonzero. Let j
be the largest index such that lj 6= 0. Then H0(Mell; (g∗OM(Γ))

∨ ⊗ ω⊗−j)
has dimension lj. In particular, we see by the computation above that j ≤ 11,
proving part (1) of our proposition. Using that the ring of holomorphic modular
forms for SL2Z is isomorphic to K[c4, c6] and thus d0 = d4 = d6 = d8 = d10 = 1
and di = 0 for all other i ≤ 11, we obtain the recursive equation

li = mi − li−4 − li−6 − li−8 − li−10

from Equation (4.9). Part (2) of our proposition follows by a straightforward
computation.
The equality dimK H0(Mell; (g∗OM(Γ))

∨ ⊗ ω⊗−i) = li holds even for all i ≥
j − 3 (and in particular for i ≥ 8) as dk = 0 for 0 < k < 4. Part (3) follows
then from Corollary 2.11. Part (4) follows from the previous computations and
the definition of the genus.

Example 4.10. Let us consider the case n = 2. By Example 2.1, the ring of
modular forms for Γ1(2) is isomorphic to K[b2, b4]. Furthermore, we know that
the rank of (f2)∗OM1(2)

is 3. Thus, there can be at most three nonzero li and
these are l0 = l2 = l4 = 1. In other words: (f2)∗OM1(2)

∼= OMell
⊕ ω⊗−2 ⊕

ω⊗−4.

Example 4.11. Now consider the case n = 3. By Example 2.1, the ring of
modular forms for Γ1(3) is isomorphic to K[a1, a3]. By the last proposition, it
follows easily that in this case

l0 = 1, l1 = 1, l2 = 1, l3 = 2, l4 = 1, l5 = 1, l6 = 1

and all the other li are zero.

4.3 Refined decompositions

We will use the notation of the last subsection and start with the following
corollary to Proposition 4.8.

Corollary 4.12. Let Γ be Γ1(n) for n ≥ 5 or Γ(n) for n ≥ 3. We have a
decomposition

g∗OM(Γ)
∼=

⊕

i∈Z

⊕

ki

(f3)∗OM1(3)
⊗ ω⊗−i.

The ki are uniquely determined and satisfy

1. ki = 0 for i < 0 and i > 5,

2. ki = mi −mi−1 −mi−3 +mi−4,

3. k5 = s1 and k4 = s2 − s1,

4. k0 + k3 = k1 + k4 = k2 + k5.
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Proof. First we want to show the existence of a decomposition of the form

g∗OM(Γ)
∼=

⊕

i∈Z

⊕

ki

(f3)∗OM1(3)
⊗ ω⊗−i. (4.13)

To that purpose set ki = mi−mi−1−mi−3 +mi−4. We start by showing that
ki ≥ 0. The two essential properties of the sequence mi we need is that there
are constants a > 0 and b such that mi = ai+ b for all i ≥ 2 by Proposition 4.2
and that m1 6= 0 by Lemma 4.4.
We see directly that ki = 0 for i > 5 or for i < 0. As the ring of modular
forms has no zero divisors, we also see that mi ≥ mi−1 and likewise si ≥ si−1

by multiplying with a nonzero modular form of weight 1. This implies ki ≥ 0
for i ≤ 2. We have

k3 = m3 −m2 −m0 = a− 1 ≥ 0

using that a ∈ Z. From Proposition 4.2, we can compute k5 = s1 and k4 =
s2 − s1, which are also clearly at least 0. By Example 4.11, we just have to
check now that

li = ki + ki−1 + ki−2 + 2ki−3 + ki−4 + ki−5 + ki−6,

with the li as in the last section, which is a straightforward computation from
Proposition 4.8. Thus, we obtain the existence of a decomposition into sum-
mands of the form (f3)∗OM1(3)

⊗ ω⊗−i.
Next we show that the formula from item 2 has to hold for every decomposition
as in Equation (4.13). This follows by a straightforward computation from
ki = 0 for i > 5 or for i < 0 (as follows from Proposition 4.8 and Example 4.10)
and from the equation

ki = mi − ki−1 − ki−2 − 2ki−3 − 2ki−4 − 2ki−5,

which we obtain from the dimension of the space of modular forms for Γ1(3)
being 1, 1, 1, 2, 2 and 2 in weights 0 to 5, respectively. Item 2 implies the
following equations:

k0 + k3 = m3 −m2

k1 + k4 = m4 −m3

k2 + k5 = m5 −m4.

As the function i 7→ mi is affine linear in i for i ≥ 2, this implies item 4.

Using item (4) of the last corollary, we can actually prove a stronger result.

Corollary 4.14. Let Γ be Γ1(n) for n ≥ 5 or Γ(n) for n ≥ 3. We have a
decomposition

g∗OM(Γ)
∼=

⊕

i∈Z

⊕

κi

(fq)∗OM1(q)
⊗ ω⊗−i,
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for q = 4, 5 and 6, where we assume char(K) 6= 5 if q = 5. In the case of q = 5
or 6, we have the formulae

κ0 = 1, κ1 = m1 − 2, κ2 = m2 − 2m1 + 1, κ3 = s1, κi = 0 for i ≥ 4.

Proof. From the formulae in Proposition 4.8, it is straightforward to see that
(f5)∗OM1(5)

∼= (f6)∗OM1(6)
and that this decomposes as

(f4)∗OM1(4)
⊕ (f4)∗OM1(4)

⊗ ω⊗(−1).

Thus it suffices to consider the case q = 5. By the last corollary, we have a
decomposition of the form

g∗OM(Γ)
∼=

⊕

i∈Z

⊕

ki

(f3)∗OM1(3)
⊗ ω⊗−i.

For example, if Γ = Γ1(5), we get k0 = k1 = k2 = 1 and all other ki = 0. In the
general case, we set κ0 = k0 = 1, κ1 = k1 − k0, κ2 = k2 − k1 and κ3 = k5. We
have to check that ki = κi+κi−1+κi−2, which is a straightforward computation
from item 4 of Corollary 4.12. The inequalities κi ≥ 0 are clear for i = 0 and
i = 3. For i = 1 and i = 2, it translates to m1 ≥ 2 and m2 ≥ 2m1 − 1. These
are exactly the statements of Lemma 4.4 and Proposition 4.6.

The vector bundle (f4)∗OM1(4)
decomposes as

(f2)∗OM1(2)
⊗ (OMell

⊕ ω⊗(−1) ⊕ ω⊗(−2)).

Maybe the easiest way to see this is by noting that for h : M1(4) → M1(2)
the projection, Examples 2.1 and Proposition A.4 imply that h∗OM1(4)

splits
into a sum of line bundles of the form (f2)

∗ω⊗m. A simple dimension count for
spaces of modular forms implies that (h∗)OM1(4)

∼= OM1(2)
⊕ (f2)

∗ω⊗(−1) ⊕

(f2)
∗ω⊗(−2). Thus, the last corollary implies:

Corollary 4.15. Let Γ be Γ1(n) for n ≥ 4 or Γ(n) for n ≥ 3. Then we have
a decomposition

g∗OM(Γ)
∼=

⊕

i∈Z

⊕

ki

(f2)∗OM1(2)
⊗ ω⊗−i.

The ki are uniquely determined and satisfy

1. ki = 0 for i < 0 and i > 7,

2. ki = mi −mi−2 −mi−4 +mi−6; in particular, ki = mi for i ≤ 1,

3. k7 = s1 and k6 = s2 is the genus of M(Γ),
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Proof. The only things not straightforward to deduce from the last corollary are
the uniqueness of the ki and k6 = s2. The uniqueness follows as the existence
of the decomposition directly implies ki = 0 for i < 0 and from the equation

ki = mi − ki−2 − 2ki−4 − 2ki−6,

which we obtain from the dimension of the space of modular forms for Γ1(2)
being 1, 1, 2 and 2 in weights 0, 2, 4 and 6 respectively and zero else in this range.
Moreover, we see k6 = l11 by Example 4.10 and l11 = s2 by Proposition 4.8.

We have obtained results for decompositions into (fq)∗OM1(q)
for all q ≤ 6.

For larger q such decomposition results are impossible in general.

Corollary 4.16. For every q > 6, there is an arbitrarily large n such that
(fn)∗OM(Γ1(n))

does not decompose as

⊕

i∈Z

⊕

κi

(fq)∗OM1(q)
⊗ ω⊗−i.

Proof. Let dm be the degree of the mapM1(m)→Mell, which is also the rank
of (fm)∗OM1(m). By Lemma 4.3, the function dm = d(Γ1(m)) is multiplicative
and for primes p, we have dpk = p2k−2(p2 − 1); for example d5 = d6 = 24,
d7 = d8 = 48, d9 = 72 and d12 = 96. Moreover, dp > 24 for primes p > 5.
These facts imply that dq > 24 for every q > 6.
For a decomposition as in the statement of the corollary, it is necessary that dq
divides dn. Thus, we only need to show that for every D > 24, there are
infinitely many p with dp not divisible by D. Every D > 24 has a divisor of the
form d = 16, d = 9 or d a prime that is at least 5. Pick an a that is coprime
to d and not congruent to ±1 mod d; for d = 16 we take a = 3 and for d = 9
we take a = 2. By Dirichlet’s prime number theorem, there are infinitely many
primes p such that p ≡ a mod d. If d is prime, this implies that d does not
divide dp = (p − 1)(p + 1). If d = 16, this implies that dp ≡ 8 mod d, and
for d = 9, this implies dp ≡ 3 mod d. In any case, d does not divide dp for
infinitely many primes p and thus D does not as well.

Remark 4.17. The only obstruction presented in the last proof for decompos-
ing (fn)∗OM1(n)

into copies of (fm)∗OM1(m) ⊗ ω
⊗k was that dm|dn. But in

general it is not true that dm|dn implies the possibility of such a decomposi-
tion. For example d7|d31, but (f31)∗OM1(n)

does not decompose into copies of
(f7)∗OM1(7)

⊗ ω⊗k.

So far, we only worked over a field. Now we demonstrate the implication for
our integral decomposition results.

Theorem 4.18. Let l be a prime not dividing n and Γ either Γ1(n) for n ≥ 5
or Γ(n) for n ≥ 3. Assume that H1(M(Γ); g∗ω) contains no l-torsion. Then
for every q of the form
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• 1 ≤ q ≤ 6 if l > 3,

• q = 2, 4, 5 if l = 3, and

• q = 3, 5 if l = 2,

the vector bundle g∗OM(Γ)(l)
decomposes into summands of the form

(fq)∗OM1(q)(l)
.

Proof. We do the proof in the case l = 3, the other cases being similar. By
Theorem 3.12, g∗OM(Γ)(l)

decomposes as

⊕

i∈Z

⊕

ki

(f2)∗OM1(2)
⊗ ω⊗−i.

By Corollary 4.14, the result holds for q = 4, 5 after base change to Q. As
the ki are uniquely determined as noted in Corollary 4.15, this implies that
g∗OM(Γ)(l)

decomposes indeed into summands of the form

(f2)∗OM1(2)
⊗ (OMell

⊕ ω⊗(−1) ⊕ ω⊗(−2))⊗ ω⊗i ∼= (f4)∗OM1(4)
⊗ ω⊗i

and similarly for q = 5.

Recall from Example 2.5 that M1(5) ∼= P1
Z[ 15 ]

. Thus, ω becomes trivial on

M1(5) ⊂ A1
Z[ 15 ]

. This implies for l and Γ as in the last theorem that g∗OM(Γ)

is isomorphic to (f5)∗O
⊕ d

24

M1(5)
for d being the degree of g :M(Γ)→Mell.

5 Consequences for rings of modular forms

The aim of this section is to apply the splittings of vector bundles proved in
the last sections to rings of modular forms and thus complete our proofs of
the claims in the introduction. As before, we will write sometimes M(Γ1(n))
for M1(n) etc. and denote the map M(Γ)R → Mell,R by g for any Z[ 1n ]-
algebra R. Let Γ = Γ1(n),Γ(n) or Γ0(n). Recall that we define the space of
weight-k-modular forms for Γ by

Mk(Γ;R) = H0(M(Γ)R; g
∗ω⊗k).

Likewise, we define the space of weight-k weakly holomorphic modular forms
for Γ by

M̃k(Γ;R) = H0(M(Γ)R; g
∗ω⊗k).

As before, we will write just MR
k and M̃R

k if Γ = SL2(Z). For example, we
have

MZ
∗
∼= Z[c4, c6,∆]/(c34 − c

2
6 = 1728∆)

as shown in [Del75].
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5.1 Results over a field

We will need Proposition 6.2 from [Del75]:

Proposition 5.1. We have MF2
∗ = F2[a1,∆] and MF3

∗ = F3[b2,∆]. The classes
a1 and b2 have the usual definitions in terms of the Weierstraß forms and can
be identified (up to sign) with the respective Hasse invariants.

Note in particular that MF2
∗ is a finitely generated MZ

∗ -module with generating
system {1, a1, a21, a

3
1} as c4 goes to a41. Likewise MF3

∗ is a finitely generated
MZ

∗ -module with generating system {1, b2} as c4 goes to b22. Note further that
M

Fp

∗
∼=MZ

∗ /p
∼= Fp[c4, c6] for p ≥ 5 as H1(Mell, ω

⊗∗)(p) = 0 for p ≥ 5.

Lemma 5.2. The ring M∗(Γ1(3);F2) = F2[a1, a3] is free of rank 4 as a graded
MF2

∗ -module. The ring M∗(Γ1(2);F3) = F3[b2, b4] is free of rank 3 as a graded
MF3

∗ -module.

Proof. Consider first the case of M∗(Γ1(3);F2). The map MF2
∗ →

M∗(Γ1(3);F2) sends a1 to a1 and ∆ to a43+a
3
1a

3
3. Thus, we obtain {1, a3, a23, a

3
3}

as a basis. The map MF3
∗ → M∗(Γ1(2);F3) sends b2 to b2 and ∆ to b22b

2
4 − b

3
4.

We obtain {1, b4, b24} as a basis.

We will need the following linear algebra lemma to transfer later our results
from Γ1(n) to Γ0(n).

Lemma 5.3. Let K be a field and R a graded K-algebra that is connected (i.e.
R0 = K and Ri = 0 for i < 0). Let F be a graded free module of finite rank with
basis elements in degrees ≤ k. Let f : F → F be an R-linear grading-preserving
endomorphism. Then ker(f) is a graded free R-module with basis elements in
degrees ≤ k again.

Proof. Order the basis element bi ascendingly by degree and represent f by a
matrix M = (mij). Note that |bi| = |bj| implies mij ∈ R0 = K and |bi| <
|bj | implies mij = 0. Thus we can use elementary row transformations to
transform M into an upper triangular matrix M ′ whose diagonal entries still
lie in R0 = K. The standard procedure to compute the kernel of an upper
triangular matrix implies the result.

From now on we will fix an integer n ≥ 2 and a group Γ, which is Γ1(n), Γ(n)
or Γ0(n).

Theorem 5.4. Let K be a field of characteristic l ≥ 0 not dividing n. Then
M∗(Γ;K) is free as a graded MK

∗ -module of rank [SL2(Z) : Γ] if l 6= 2 and of
rank 1

2 [SL2(Z) : Γ] if l = 2. The basis elements are in degrees at most Bl with

Bl =





14 if l = 2

15 if l = 3

11 if l > 3.
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Proof. Assume first that Γ is tame. By Proposition 3.5, the vector bundle
g∗OM(Γ)K

splits as
⊕

i ω
⊗ki if l 6= 2, 3. Thus,

M∗(Γ;K) = H0(M(Γ)K ; g∗ω⊗∗)

= H0(Mell,K ; g∗g
∗ω⊗∗)

= H0(Mell,K ;ω⊗∗ ⊗O
Mell,K

g∗OM(Γ)K
)

=
⊕

i

H0(Mell,K ;ω⊗ki+∗)

=
⊕

i

MK
ki+∗.

In the case l = 3, we obtain similarly a splitting of the form M∗(Γ;K) ∼=⊕
iMki+∗(Γ1(2);K) and for l = 2 a splitting of the form M∗(Γ;K) ∼=⊕
iMki+∗(Γ1(3);K). The MK

∗ -module M∗(Γ;K) is free of the claimed rank
by combining Lemma 5.2 with the following three observations:

• The canonical map M∗(Γ;Fl) ⊗Fl
K → M∗(Γ;K) is an isomorphism (as

K is flat over Fl),

• deg(g) = [SL2(Z) : Γ],

• [SL2(Z) : Γ1(2)] = 3 and [SL2(Z) : Γ1(3)] = 8.

For the estimate of the degrees of the basis elements, we will just treat the case
l = 2, the others being similar. By Proposition 2.14, H1(Mell,K ; g∗OM(Γ) ⊗

ω⊗i) = 0 for i > 1. On the other hand,

H1(Mell,K , (f3)∗OM1(3)K
⊗ ω⊗(−4)) ∼= H1(PK(1, 3);O(−4)) ∼= K

by Example 2.1 and Theorem A.2. Thus, ki ≥ −5 in the decomposition
g∗OM(Γ)K

∼=
⊕

(f3)∗OM1(3)K
⊗ ω⊗ki . As the elements in an (MK

∗ )-basis of
M∗(Γ1(3);K) have degrees at most |a33| = 9, the degree of the basis elements
for M∗(Γ;K) is bounded by 9 + 5 = 14.
It remains to treat the case Γ = Γ0(n) if it is not tame. We have
M∗(Γ0(n);K) ∼= M∗(Γ1(n);K)(Z/n)

×

by Proposition 2.6. If we decompose
(Z/n)× as a sum of cyclic groups Z1 ⊕ · · · ⊕ Zm, we can inductively apply
Lemma 5.3 to conclude that M∗(Γ1(n);K)Z1⊕···⊕Zj is free with generators in
degrees at most Bl for all 1 ≤ j ≤ m and in particular this is true for

M∗(Γ1(n);K)Z1⊕···⊕Zm =M∗(Γ0(n);K).

Remark 5.5. We remark that the result of the theorem above is sharp. For
example, if Γ = Γ1(23), we have by Theorem 3.12 a decomposition of the form

g∗OM1(23)
∼=

7⊕

i=0

⊕

ki

(f2)∗OM1(2)
⊗ ω⊗(−i)
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after localizing at 3. As there are weight 1 cusp forms for Γ1(23) (see e.g.
[Buz14]), the number k7 is not zero. As the degrees of the elements in a
basis B for the free MF3

∗ -module M∗(Γ1(23);F3) are unique, it follows easily by
considering the basis is Lemma 5.2 that we need basis elements in degree 15
in B. The arguments for l = 2 and l > 3 are similar.

Remark 5.6. An analogous proof to Theorem 5.4 also shows that the MK
∗ -

module of cusp forms S∗(Γ;K) is free. Indeed, Proposition 2.11 implies that
S∗(Γ;K) are the global sections of Ω1

M(Γ)K/K
⊗ ω⊗(∗−2) and Proposition 3.5

applies to all vector bundles onM(Γ)K .

5.2 Integral results

The proof of the following two theorems is very similar to that of Theorem 5.4,
using Theorem 3.12 and Remarks 3.13 and 3.14. We just give some sample
criteria; other criteria can be deduced from the referenced theorem and remarks.

Theorem 5.7. Let R be a Z[ 1
m ]-algebra with 6|m and let Γ be tame. Then

M∗(Γ;R) is a free graded MR
∗ -module if every weight-1 modular form for Γ

over Fl is liftable to Z(l) for every prime l 6 |m.

Theorem 5.8. Let R be a Z(l)-algebra and Γ tame.

1. Let l = 3. Then M∗(Γ;R) decomposes as a graded MR
∗ -module into shifted

copies of M∗(Γ1(2);R) if every weight-1 modular form for Γ over F3 is
liftable to Z(3),

2. Let l = 2. Then M∗(Γ;R) decomposes as a graded MR
∗ -module into shifted

copies of M∗(Γ1(3);R) if every weight-1 modular form for Γ over F2 is
liftable to Z(2).

By the same method, we also obtain the following result from Theorem 4.18.

Corollary 5.9. Let Γ = Γ1(n) for n ≥ 5 or Γ = Γ(n) for n ≥ 3 and let q =
4, 5 or 6. Let l be a prime not dividing n and q. Then M∗(Γ;Z(l)) decomposes

into shifted copies of M∗(Γ1(q);Z(l)) as a graded M
Z(l)
∗ -module.

For each q > 6, there is an arbitrarily large n such that M∗(Γ1(n);Z(l)) does

not decompose into shifted copies of M∗(Γ1(q);Z(l)) as a graded M
Z(l)
∗ -module.

Proof. The first part follows directly. For the second part it suffices to show
the corresponding rational statement, for which we use Corollary 4.16 and the
following: Every vector bundle F onMell,Q is determined by the graded vector
space H0(Mell,Q;F ⊗ ω

⊗∗) as it decomposes by Proposition A.4 into a sum of
powers of ω.

Next, we want to prove that rings of modular forms with level structure are
finitely generated as modules over the ring of modular forms without level and
to give bounds on the degrees of the generators. For the case of Γ0(n) we need
the following lemma.
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Lemma 5.10. The map Hi(M0(n)Z(3)
;ω⊗m)→ Hi(M0(n)Z(3)

;ω⊗m) is an iso-
morphism for i > 1, a surjection for i = 1 and an injection for i = 1 if m ≥ 2.

Proof. We will work implicitly 3-locally throughout this proof and use the
abbreviations Γ = Γ0(n) and M∗(Γ) for M∗(Γ;Z(3)). We consider the Mayer–
Vietoris sequence for the cover D(g∗c4) ∪M0(n) =M0(n). Using that

Hi(D(g∗c4); g
∗ω⊗m) = Hi(D(g∗c4) ∩M0(n); g

∗ω⊗m) = 0

for i > 0 by Proposition 2.18, it reduces to isomorphisms

Hi(M0(n); g
∗ω⊗∗)

∼=
−→ Hi(M0(n); g

∗ω⊗∗)

for i > 1 and to an exact sequence

M∗(Γ)[c
−1
4 ] ⊕ M∗(Γ)[∆

−1]M∗(Γ) M∗(Γ)[(c4∆)−1]

H1(M0(n); g
∗ω⊗∗)H1(M0(n); g

∗ω⊗∗) 0.

α∗ ψ∗

φ∗

It remains to show that φ∗ is injective for ∗ ≥ 2 or equivalently that ψ∗ is
surjective for ∗ ≥ 2. From now on, we will always assume ∗ ≥ 2. By Propo-
sition 2.18, H1(M0(n); g

∗ω⊗∗) is 3-torsion and thus it suffices to show that
coker(ψ∗)/3 is zero. Clearly, ψ∗/3 factors through coker(α∗/3). This motivates
the following diagram with exact rows:

0 // M∗(Γ)/3 //

α∗/3

��

M∗(Γ;F3) //

α
F3
∗

��

H1(M0(n);ω
⊗∗) //

Φ∗

��

0

0 // M∗(Γ)[c
−1
4 ]/3⊕M∗(Γ)[∆

−1]/3 //

��

M∗(Γ;F3)[c
−1
4 ]⊕M∗(Γ;F3)[∆

−1] //

��

H1(M0(n);ω
⊗∗)

��

// 0

coker(α∗)/3 // coker(αF3
∗ ) // coker(α1

∗).

As Φ∗ is surjective, we can use the snake lemma to deduce that coker(α∗)/3→
coker(αF3

∗ ) is surjective as well. Thus, ψ∗/3 is surjective if and only if

ψF3
∗ : M∗(Γ;F3)[c

−1
4 ] ⊕ M∗(Γ;F3)[∆

−1]→M∗(Γ;F3)[(c4∆)−1]

is surjective. By Theorem 5.4, we know that M∗(Γ;F3) is free as a gradedMF3
∗ -

module with basis elements in degrees at most 15. Recall that MF3
∗
∼= F3[b2,∆]

and c4 corresponds to b22. The map

ψ̃ : MF3
∗ [c−1

4 ] ⊕ MF3
∗ [∆−1]→MF3

∗ [(c4∆)−1]

is surjective in degrees ∗ ≥ −13 as the first monomial not in the image is
b−1
2 ∆−1 of degree −14. As the map ψF3 decomposes into shifted copies of ψ̃,

we see that ψF3
∗ is surjective for ∗ ≥ 15− 13 = 2.
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Theorem 5.11. For every noetherian Z[ 1n ]-algebra R, the ring M∗(Γ;R) is
finitely generated as a graded MR

∗ -module; if Γ is tame it is generated in degrees
≤ 17 and if Γ = Γ0(n) and 1

2 ∈ R, it is generated in degree ≤ 21. Moreover,

M̃∗(Γ;R) is also finitely generated as a graded M̃R
∗ -module.

Proof. First note that

M̃∗(Γ;R) ∼=M∗(Γ;R)[∆
−1] ∼=M∗(Γ;R)⊗MR

∗
M̃R

∗

so that the last statement follows from the first.
To show that M∗(Γ;R) is a finitely generated graded MR

∗ -module (generated
below a fixed degree), we can assume that R is l-local for a prime l. It is enough
to show that M∗(Γ;R)/l is a finitely generated MR

∗ /l-module (generated below
a fixed degree) by the graded Nakayama lemma as every degree is a finitely
generated R-module. Consider the short exact sequence

0→M∗(Γ;R)/l→M∗(Γ;R/l)
∂
−→ H1(M(Γ)R;ω

⊗∗)[l]→ 0

as in (3.15). As R/l is a flat Fl-algebra, M∗(Γ;R/l) ∼= M∗(Γ;Fl) ⊗Fl
R/l and

thus M∗(Γ;R/l) is free over MR/l
∗ with basis elements in degrees at most 15

by Theorem 5.4. The MZ
∗ -module MFl

∗ is a generated in degrees ≤ 3 if l = 2,
degrees ≤ 2 if l = 3 and in degree 0 else by the remarks after Proposition 5.1.
As the (MZ

∗ ⊗ R)-action on MR/l
∗ factors through MR

∗ , we see that MR/l
∗ is a

finitely generated MR
∗ -module with generators in degrees at most 17 if l = 2, 3

and at most 11 else. In particular, M∗(Γ;R)/l is a finitely generated MR
∗ -

module.
It remains to provide bounds on the degrees of the generators. Assume first that
Γ is tame and let x ∈ ker(∂) ∼=M∗(Γ;R)/l of degree more than 17. Write x =∑

i λigi with λi ∈ MR
∗ and |gi| ≤ 17 in M∗(Γ;R/l). As H1(M(Γ)R;ω

⊗m) = 0
for m ≥ 2 by Proposition 2.14, gi ∈ ker(∂) if |gi| ≥ 2. If |gi| ≤ 1, then
|λi| ≥ 17 and λi decomposes into

∑
j µjνj with |νj | and |µj | at least 2 and thus

∂(µjgi) = 0. We see that x is a MR
∗ -linear combination of elements of ker(∂)

of lower degree. Thus, ker(∂) is generated in degrees at most 17.
Next, assume that Γ = Γ0(n) and l = 3. Let x ∈ ker(∂) be of degree more
than 21 and write x =

∑
i λigi, where the λi are monomials in c4, c6 and ∆.

Note that we can choose gi to be in degree at most 15 or of the form b2b for
some b ∈M∗(Γ0(n);R/3).
For degree reasons, every λi must be divisible by ∆, c24 or c6. By Proposi-
tion 2.18 and Lemma 5.10, ∂(y) = 0 if y is divisible by c4 or c6. Thus, if
λi = c24z, then c4z is an element in ker(∂) of smaller degree than x. Assume
that λi is divisible by c6, but not by ∆. Then either |gi| = 17 (and thus gi = b2b
so that c6gi = c24b) or λi is actually divisible by c24, c4c6 or c26 and in each case
we can argue as in the last sentence. Thus, we can write x = g + ∆h with
g a MR

∗ -linear combination of elements of ker(∂) of lower degree than x. But
Lemma 5.10 implies that h ∈ ker(∆) as well, which implies the result.
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We turn to modular functions, treating the cases of Γ1(2) and Γ1(3) first.

Lemma 5.12. The module M̃∗(Γ1(2);Z[
1
2 ]) is free over M̃

Z[ 12 ]
0 . Likewise,

M̃∗(Γ1(3);Z[
1
3 ]) is free over M̃

Z[ 13 ]
0 .

Proof. We claim that M∗(Γ1(2);Z[
1
2 ])
∼= Z[ 12 ][b2, b4] is free over Z[ 12 ][c4,∆] of

rank 6. Counting ranks shows that it is enough to produce a generating system
with generators in degrees 0, 2, 4, 6, 8 and 10. The images of c4 and ∆ in
Z[ 12 ][b2, b4] are b22 − 24b4 and 1

4 (b
2
2b

2
4 − 32b34). Thus, Z[b2, b4] is free over Z[c4]

with basis elements bi2b
j
4 with i ∈ {0, 1}. As 4∆− b24c4 = −8b34, we see that if x

and b24x are in a Z[ 12 ][c4,∆]-submodule of Z[ 12 ][b2, b4] that also b34x is in it. Thus,
{1, b2, b4, b2b4, b

2
4, b2b

2
4} is a generating set. We see that M∗(Γ1(2);Z[

1
2 ])
∼=

Z[ 12 ][b2, b4] is free over Z[ 12 ][c4,∆]. This implies that M̃∗(Γ1(2);Z[
1
2 ]) is a free

module over Z[ 12 , c4,∆
±1] and the latter is free over Z[ 12 ][j] = Z[ 12 ][

c34
∆ ].

Similarly, we claim that {ai1a
j
3}0≤i≤3,0≤j≤3 is a basis of M∗(Γ1(3);Z[

1
3 ])
∼=

Z[ 13 ][a1, a3] as a Z[ 13 ][c4,∆]-module. This implies that M̃∗(Γ1(3);Z[
1
3 ]) is a free

module over Z[ 13 ][j].

Proposition 5.13. The morphism j :Mell → A1 is flat.

Proof. By the last lemma, the compositions

Spec M̃∗(Γ1(2);Z[
1

2
]) ≃M1

1(2)→Mell
j
−→ A1

and
Spec M̃∗(Γ1(3);Z[

1

2
]) ≃M1

1(3)→Mell
j
−→ A1

are flat. Here, M1
1(n) classifies elliptic curves with Γ1(n)-level structure and

chosen invariant differential. This suffices to show flatness asM1(2)⊔M1(3)→
Mell is an étale cover and henceM1

1(2)⊔M
1
1(3)→Mell is a smooth cover.

Corollary 5.14. Let Γ = Γ1(n), Γ(n) or Γ0(n) and R a Z[ 1n ]-algebra. Then

M̃0(Γ;R) is a finitely generated free module over M̃R
0
∼= R[j].

Proof. By [Čes17, Proposition 6.4], the base change

M̃0(Γ;Z[
1
n ])⊗R→ M̃0(Γ;R)

is an isomorphism. Thus we can reduce to R = Z[ 1n ].
By the last proposition and (the proof of) Proposition 2.4, the composition

M(Γ)→Mell,Z[ 1
n
]

j
−→ A1

Z[ 1
n
]

is flat and furthermore finite ifM(Γ) is representable. Choose Γ′ ⊂ Γ such that
M(Γ′) is representable and the resulting map h :M(Γ′)→M(Γ) is surjective;
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it is also automatically finite and flat as both source and target are finite
over Mell,Z[ 1

n
] and smooth over Z[ 1n ] by Proposition 2.4. Denoting the map

M(Γ) → A1
Z[ 1

n
]
by jΓ, the sheaf (jΓh)∗OM(Γ′) is coherent. It suffices to show

that (jΓ)∗OM(Γ) → (jΓh)∗OM(Γ′) is injective to deduce that (jΓ)∗OM(Γ) is
coherent as well and thus a vector bundle. As (jΓ)∗ is exact and the map
OM(Γ) → h∗OM(Γ′) is the inclusion of a direct summand after applying the
faithfully flat map h, this injectivity follows.
Hence,

M̃0(Γ;Z[
1

n
]) ∼= H0(M(Γ);OM(Γ))

is a projective Z[ 1n ][j]-module of finite rank. As every projective Z[ 1n ][j]-module
is free by Seshadri’s theorem [Lam06, Theorem II.6.1], the result follows.

This finishes the proof of all theorems claimed in the introduction except for
Corollary 1.6 and the necessity parts in Part (2) of Theorem 1.3, which will
both be achieved in the next subsection.

5.3 Cohen-Macaulay properties

In this subsection, we treat the question under which conditions the graded
ring M∗(Γ;R) is Cohen–Maucaulay. Here and in the following, all terms from
commutative algebra are meant to be the ones suitable for graded rings, i.e.
all ideals are assumed to be homogeneous etc. For simplicity, we only consider
the cases where R is a field or Z(l).

Theorem 5.15. For K a field with char(K) not dividing n and Γ =
Γ0(n),Γ1(n) or Γ(n), the ring M∗(Γ;K) is Cohen–Macaulay. If Γ is addi-
tionally tame for Z(l), the ring M∗(Γ;Z(l)) is Cohen–Macaulay if and only if
every weight-1 modular form for Γ over Fl is liftable to Z(l).

Proof. Consider first the case of a field. The ring M∗(Γ;K) is graded local.
Furthermore, it is free of finite rank as a module over MK

∗ by Theorem 5.4 and
thus of Krull dimension 2 as MK

∗ has Krull dimension 2 by Proposition 5.1.
Moreover, the sequence (c4,∆) is regular as (c4,∆) is a regular sequence on
M∗(Γ;K).
Now consider the case of Z(l) and Γ tame. The ring M∗(Γ;Z(l)) is graded
local of Krull dimension 3. Indeed, the inclusion M∗(Γ;Z(l))/l ⊂ M∗(Γ;Fl)
induces a bijection on the set of prime ideals and thus this ring has Krull
dimension 2 as well; as l is a non-zero divisor, this implies that M∗(Γ;Z(l)) has
Krull dimension 3. Assume that every weight-1 modular form for Γ over Fl is
liftable to Z(l). We claim that (l, c4,∆) is a regular sequence. By an analogous
argument to the above and Theorems 5.7 and 5.8, we have to check for this
only the cases of Γ = Γ1(3) (for l = 2), Γ = Γ1(2) (for l = 3) and Γ = SL2(Z)
(for l > 3). For the first, note that we have c4 ≡ a41 and ∆ ≡ a43+a

3
1a

3
3 mod 2;

this clearly forms a regular sequence in F2[a1, a3]. For the second case, note
that we have c4 ≡ b22 and ∆ ≡ b22b

2
4 − b

3
4 mod 3; this forms a regular sequence
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in F3[b2, b4]. The last case is the sequence (c4,
1

1728 (c
3
4 − c

2
6)) in Fl[c4, c6] for

l > 3. Thus, M∗(Γ;Z(l)) is Cohen–Macaulay if every weight-1 modular form
for Γ over Fl is liftable to Z(l)

Assume now that there is a weight-1 modular form f for Γ over Fl that is not
liftable to Z(l). We know that M∗(Γ;Z(l))/l injects into M∗(Γ;Fl) (and is an
isomorphism for ∗ 6= 1). The latter is an integral domain by Proposition 2.13
and thus so is the former. Thus, (l, c4) forms a regular sequence on M∗(Γ;Z(l)).
By [Eis95, Section 17.2] all maximal regular sequence in the augmentation ideal
of M∗(Γ;Z(l)) have the same length. Thus, M∗(Γ;Z(l)) can only be Cohen–
Macaulay if we can extend the regular sequence (l, c4) by another element x
of positive degree. The element c4f has a preimage f̃ in M∗(Γ;Z(l))/l. This
is nonzero in M∗(Γ;Z(l))/(l, c4). Indeed, if f̃ = c4y, then y would be a lift
of f as c4 operates injectively on M∗(Γ;Fl). On the other hand, xf̃ is zero in
M∗(Γ;Z(l))/(l, c4) for every element x of positive degree. Indeed, xf has a lift
z ∈ M∗(Γ;Z(l))/l and c4z = xf̃ in M∗(Γ;Z(l))/l because both elements have
the same image in M∗(Γ;Fl). Thus, (l, c4, x) is not a regular sequence and
M∗(Γ;Z(l)) is not Cohen–Macaulay.

The last proof also shows that M∗(Γ;Z(l)) must be Cohen–Maucaulay if

M∗(Γ;Z(l)) splits into shifted copies ofM∗(Γ1(3);Z(l)), M∗(Γ1(2);Z(l)) orM
Z(l)
∗

(the latter rests on (l, c4,∆) also being a regular sequence on M
Z(l)
∗ if l = 2

or 3). This gives the following corollary:

Corollary 5.16. Assume that Γ is tame for Z(l) and there is a weight-1
modular form for Γ over Fl not liftable to Z(l). Then M∗(Γ;Z(l)) does not split

into shifted copies of M∗(Γ1(3);Z(l)), M∗(Γ1(2);Z(l)) or M
Z(l)
∗ .

To finish the proof of Theorem 1.3 (more precisely of the last remaining part,
namely the statement that M∗(Γ;Z(l)) can only be free over M

Z(l)
∗ if l ≥ 5),

the following suffices.

Proposition 5.17. A direct sum of shifted copies of M∗(Γ1(3);Z(2)) cannot be

free over M
Z(2)
∗ and a direct sum of shifted copies of M∗(Γ1(2);Z(3)) cannot be

free over M
Z(3)
∗ .

Proof. By [Ati56], graded M
Z(l)
∗ /l-modules satisfy the Krull–Schmidt theorem

(i.e. finitely generated graded modules decompose uniquely into indecompos-
ables). Thus it is enough to show that M∗(Γ1(3);Z(2))/2 is not a free M

Z(2)
∗ /2-

module and similarly that M∗(Γ1(2);Z(3))/3 is not a free M
Z(3)
∗ /3-module.

We begin with the former case. The elements c4 and c6 in MZ
∗ go to a41 and

a61 in M∗(Γ1(3);Z(2))/2. As 1 and a21 would have to be parts of any basis of

M∗(Γ1(3);Z(2))/2 over M
Z(2)
∗ /2, the former cannot be free over the latter.

In the other case, we have c4 = b22 + 216b4 and c6 = b32 − 576b2b4 and thus we
get c4 ≡ b22 and c6 ≡ b32 modulo 3. A possible basis of M∗(Γ1(2);Z(3))/3 as a
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module over M
Z(3)
∗ /3 must involve (up to scalar) the elements 1 and b2. But

this cannot be as c4 · b2 = c6 · 1.

A Vector bundles on weighted projective lines

The aim of this section is to generalize some well-known facts about coherent
sheaves and vector bundles on projective spaces to weighted projective stacks.
This is relevant for our purposes because several compactified moduli stacks of
elliptic curves (with level structure) are weighted projective stacks (see Exam-
ple 2.1).

Definition A.1. For w0, . . . , wn positive integers and a commutative ring R,
the weighted projective stack PR(w0, . . . , wn) is the (stack) quotient of An+1

R −
{0} by the multiplicative group Gm under the action which is the restriction
of the map

φ : Gm × An+1
R → An+1

R ,

which is induced by the ring map

Z[t, t−1]⊗R[t0, . . . , tn]← R[t0, . . . , tn]

twi ⊗ ti ←[ ti,

to Gm × (An+1
R − {0}). Here, An+1

R − {0} denotes the complement of the
zero point, i.e. of the common vanishing locus of all ti. On geometric points,
the action corresponds to the map (t, t0, . . . , tn) 7→ (tw0t0, . . . , t

wntn). In the
special case of n = 1 we speak of a weighted projective line.

As explained in [Mei15, Section 2], this is a smooth and proper Artin stack
over SpecR, Deligne–Mumford if all wi are invertible on R.
Recall that a grading on a commutative ring A is equivalent to a Gm-action
on SpecA. Moreover, there is an equivalence between graded A-modules and
quasi-coherent sheaves on SpecA/Gm given by pullback to SpecA and this
equivalence is compatible with ⊗. The map φ above gives a Gm-action on An+1

R

and this corresponds to the grading |ti| = wi. The category of quasi-coherent
sheaves on An+1

R /Gm is thus equivalent to graded R[t0, . . . , tn]-modules.
For M a graded module, denote by M [m] the graded module with M [m]k =
Mm+k. Then R[t0, . . . , tn][m] is a graded R[t0, . . . , tn]-module, which corre-
sponds to a line bundle on An+1

R /Gm whose restriction to PR(w0, . . . , wn)
we denote by O(m). As usual, we set F(m) = F ⊗ O(m). It is easy to
see that for a quasi-coherent sheaf F on PR(w0, . . . , wn), the graded global
sections Γ∗(F) = H0(PR(w0, . . . , wn);

⊕
m∈ZF(m)) are exactly the graded

R[t0, . . . , tn]-module corresponding to F .
The following theorem summarizes some of the fundamental properties of
O(m):

Theorem A.2. Let X = PR(w0, . . . , wn).
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1. The sheaf O(1) is ample in the sense that for every coherent sheaf F on
X, there is a surjection from a sum of sheaves of the form O(m) with
m ≥ 1 to F .

2. For any coherent sheaf F , there exist an m ≥ 1 such that Hi(X ;F(m)) =
0 for all i > 0.

3. The sheaf O(−
∑n

i=0 wi) is dualizing in the sense that there are natural
isomorphisms

HomOX
(F ,O(−

n∑

i=0

wi))
∼=
−→ HomR(H

n(X ;F), R)

for all coherent sheaves F on X. Moreover, O(−
∑n

i=0 wi) agrees with
ΛnΩ1

X/R.

Proof. The proofs are analogous to the classical proofs for projective spaces.
In some more detail:
Let F be a coherent sheaf on PR(w0, . . . , wn) and set M = Γ∗(F). The stack
X is covered by the non-vanishing loci D(ti), where ti ∈ H0(X ;O(wi)). Fur-
thermore,

D(ti) ≃ SpecR[t0, . . . , tn][t
−1
i ]/Gm.

The restriction of F to D(ti) corresponds to the graded R[t0, . . . , tn][t
−1
i ]-

module M [t−1
i ]. Choose generators sij of M [t−1

i ]. By multiplying with a power
of ti we can assume that all sij are actually in M and of positive degree and
thus define elements in HomX(O(m),F) for some m ≥ 1. Taking the sum of
all these maps defines a surjection, proving (1).
For (2), we can argue by downward induction on i as in [Har77, Thm III.5.2],
once we know that X has cohomological dimension ≤ n. This is clear as X can
be covered by the (n + 1) open substacks D(ti), on which the global sections
functor is exact on quasi-coherent sheaves (because it corresponds to taking
the degree-0 piece of a graded module).
That O(−

∑n
i=0 wi) acts as a dualizing sheaf for all line bundles of the form

O(m) was shown in [Mei15, Prop 2.5]. The general case follows as in [Har77,
Thm III.7.1] because O(1) is ample. To identify ΛnΩ1

X/R, consider its pullback
to An+1

R −{0}, which is free of rank one with basis dt0∧· · ·∧dtn. The Gm-action
on this form identifies ΛnΩ1

X/R with O(−
∑n

i=0 wi).

We also want to recall the cohomology of O(m) on PR(a, b) from [Mei15,
Prop 2.5].

Proposition A.3. Let B(m) be the set of pairs (λ, µ) of negative integers with
λa+µb = m. Then H1(PR(a, b);O(m)) is isomorphic to the free R-module on
B(m).

I learned the following result from Angelo Vistoli [Mei15, Prop 3.4].
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Proposition A.4. Let K be an arbitrary field, w0, w1 ∈ N. Then every vector
bundle F on PK(w0, w1) is a direct sum of line bundles of the form O(m).

We want to prove a generalization to weighted projective lines over more general
rings, which is in the spirit of [HS99, Theorem 1.4]. First we need three lemmas.

Lemma A.5. Let k be an algebraically closed field and let s be a section of a
vector bundle E on X = Pk(a, b). Assume that s vanishes at some geometric
point of X. Then s is the image of a section of E(−j) along the map E(−j)→ E
for some j > 0.

Proof. This would easily follow from a suitable formalism of divisors on Artin
stacks. We will argue in a more elementary way.
Let M be the global sections of the pullback of E to A2

k − {0}. This pullback
can be extended to a vector bundle F on A2

k with the same global sections.
The module M is a (finite rank free) graded module over the polynomial ring
k[x, y] with |x| = a and |y| = b. Assume that s vanishes at a geometric point
that is the image of (u, v) ∈ A2

k − {0}. Then (the pullback of) s also vanishes
on f(Gm,k) for f : A1

k → A2
k the map described by the formula λ 7→ (λau, λbv)

for λ ∈ k. We claim that f(Gm,k) is closed in A2
k − {0}.

First assume that u = 0 or v = 0, say v = 0. Then f can on Gm,k be written
as the composition

Gm,k → Gm,k
∼= Gm,k × {0} → A2

k − {0},

where the first map is the surjection λ 7→ λau and the last map is obviously a
closed immersion.
If u and v are nonzero, let g be gcd(a, b). Because

Gm,k → Gm,k, λ 7→ λg

is surjective, we can assume that a and b are coprime. Thus, f defines closed
immersions Gm,k → Spec k[x±1, y] and Gm,k → Spec k[x, y±1]. Hence f(Gm,k)
is closed in A2

k − {0}.
It follows that A = f(A1

k) is closed and irreducible in A2
k and thus must be

the closure of f(Gm,k). Thus, s vanishes on A. The set A corresponds to a
prime ideal p ⊂ k[x, y] of height 1. As k[x, y] is factorial, p contains a prime
element q and thus p = (q). As q = q(x, y) and q(λax, λby) for λ ∈ k×

have both the zero set A, they must be unit multiple of each other and it
follows that q is homogeneous of some positive degree j. Thus, the element
m ∈ M corresponding to s must be of the form qm′ for m′ ∈ M , where
|m′| = |m| − j.

Lemma A.6. Let E be a quasi-coherent sheaf on a quasi-compact Artin stack X
with affine diagonal and assume that E is flat over R. Let R→ S be a morphism
of commutative rings and denote by f the projection

Y = X ×SpecR SpecS
f
−→ X.
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If Hi(X ; E) is a flat R-module for i > p, then

Hp(Y ; f∗E) ∼= Hp(X ; E)⊗R S.

More generally, there is a spectral sequence

TorRs (H
t(X ; E), S)⇒ Ht−s(Y ; f∗E).

Proof. Let {Ui → X}0≤i≤n be an fpqc covering by affine schemes and let Č(E)
be the corresponding Čech complex, whose cohomology is H∗(X ; E). We can
compute H∗(Y, f∗E) as the cohomology of Č(E)⊗R S. The resulting Künneth
spectral sequence

TorRs (H
t(X ; E), S)⇒ Ht−s(Y ; f∗E)

implies the result.

Lemma A.7. Let X be a normal noetherian Artin stack and F a coherent sheaf
on X . Assume that there is an integer n such that for every point x : Spec k →
X , the pullback x∗F is free of rank n. Then F is a vector bundle.

Proof. By taking a smooth cover, we reduce to the case of a noetherian normal
scheme X . As a coherent sheaf over a noetherian scheme is a vector bundle
if and only if its stalks are free over the stalks of the structure sheaf, we can
assume that X = SpecA for a noetherian local domain A. Here, the statement
is part of [Mil80, Thm 2.9].

Theorem A.8. Let E be a vector bundle on X = PR(w0, w1) for R a noetherian
and normal ring. Then the following conditions are equivalent.

1. Both H0(X ; E(m)) and H1(X ; E(m)) are free R-modules for all m ∈ Z.

2. The vector bundle E decomposes into a sum of line bundles of the form
O(m).

Proof. By Proposition A.3, the part (2) implies (1) because the cohomology of
O(m) is a free R-module.
Now we assume (1) and want to prove (2). The proof will be similar to one
of the standard proofs for an unweighted projective line over a field. We will
argue by induction on the rank of E and assume that the theorem has been
proven for all ranks ≤ r and that E has rank r + 1.
Denote by E∨ the OX -dual of E . By Theorem A.2, there is a maximal m such
that H1(X ; E∨(m)) 6= 0. Setting m0 = −m − w0 − w1, we claim that m0

is the smallest index such that H0(X ; E(m0)) 6= 0. Indeed: By Lemma A.6,
we have for j : Spec k → SpecR (for k a field) and every i ∈ Z an isomor-
phism H1(X ; E∨(i)) ⊗R k ∼= H1(Xk; j

∗E∨(i)). Thus, for every i > m, the
group H1(Xk; j

∗E∨(i)) vanishes and there exists a point j of SpecR such that
H1(Xk; j

∗E∨(m)) is nonzero. Serre duality implies that H0(Xk; j
∗E(m0)) 6= 0
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for this j and H0(Xk; j
∗E(i)) = 0 for every j : Spec k → SpecR if i < m0. By

Lemma A.6 again,

H0(Xk; j
∗E(i)) ∼= H0(X ; E(i))⊗R k

because H1(X ; E(i)) is a free R-module, which shows the claim that m0 is
minimal with H0(X ; E(m0)) 6= 0.
By possibly tensoring E with O(−m0), we can assume that m0 = 0. Choose
now an element s ∈ H0(X ; E) that is part of an R-basis. Then we consider the
sequence

OX
s
−→ E → F → 0. (A.9)

We want to show that s defines an injection and that its cokernel F is a vector
bundle. By Lemma A.6, we see that s is still nonzero after base change to
an arbitrary geometric point j : Spec k → SpecR. We claim that s does not
vanish at any geometric point of Xk. Indeed, if s had a zero on Xk, then s
would by Lemma A.5 define a nonzero section of j∗E(i) for some i < 0. But
by Lemma A.6,

H0(Xk; j
∗E(i)) ∼= H0(X ; E(i))⊗R k = 0

for i < 0.
Thus, OX

s
−→ E is an injection and F has rank r over every geometric point and

is thus a vector bundle again by Lemma A.7. Thus F ∼= O(b1) ⊕ · · · ⊕ O(br)
by induction. By shifting the sequence (A.9) by (−i), it is easy to see that
H0(X ;F(−i)) = 0 for 0 < i < w0 + w1. Furthermore, for every b > 0, take
i with 0 < i ≤ w0 and i ≡ b mod w0; then H0(X ;O(b − i)) 6= 0 because
H0(X ;O(∗)) ∼= R[t0, t1] with |tj | = wj . Thus, we see that bj ≤ 0 for all
1 ≤ j ≤ r.
Therefore we get

Ext1X(F ,OX) ∼=

r⊕

j=1

H1(X ;O(−bj)) = 0

by Proposition A.3. Hence, (A.9) is a split short exact sequence.

B Lifting the Hasse invariant

This appendix does not contain an original contribution by the author. Besides
a short introduction to the Hasse invariant it proves that the Hasse invariant
is liftable to characteristic zero once we have chosen a Γ1(k)-level structure for
k ≥ 2. This proof is (essentially) taken from [Pen] and the credit belongs to
the mathoverflow user Electric Penguin.
We begin by recalling the definition of the Hasse invariant from [Kat73, Section
2.0]. Let f : E → SpecR be an elliptic curve. By the proof of [DR73, II.1.6],
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R1f∗OE is locally free and thus Grothendieck duality implies a canonical iso-
morphism R1f∗OE

∼= ω
⊗(−1)
E/R of line bundles. Choosing a trivialization of ωE/R

thus induces a dual R-basis x of H1(E;OE). If R is an Fp-algebra, the absolute
Frobenius Fabs acts on H1(E;OE) so that F ∗

abs(x) = λx with λ ∈ R. Asso-
ciating to each elliptic curve E → SpecR over an Fp-algebra R with chosen
trivialization of ωE/R the element λ ∈ R defines an Fp-valued (holomorphic)
modular form Ap of weight p − 1, as explained in [Kat73]. This is the Hasse
invariant. Katz shows that the q-expansion of Ap in FpJqK is identically 1.
We want to prove that the Hasse invariant is liftable to characteristic 0 in the
presence of a level structure. More precisely, we have the following:

Proposition B.1. For every odd k ≥ 2, there is a modular form F of weight 1
and level Γ1(k) over a cyclotomic ring Z(2)[ζk] such that F ≡ A2 mod 2.4

Proof. The proof we present is based on the mathoverflow post [Pen] by the user
Electric Penguin and uses the theory of Eisenstein series. Let χ : (Z/k)× → C×

be an odd character, i.e. we require χ(−1) = −1. Following [DS05, Section 4.8],
we define its associated weight 1 Eisenstein series by

Eχ
1 (τ) =

1

2
L(0, χ) +

∞∑

n=1

cnq
n,

where cn =
∑

d|n χ(n) (this is half of the normalization chosen in [DS05]). Here
L(s, χ) denotes the Dirichlet L-series associated to χ. Let a be the conductor
of χ, i.e. the smallest a|k such that χ factors through (Z/a)×. Then we have

L(0, χ) = −
1

a

a−1∑

n=1

nχ(n).

It is proven in [DS05] that Eχ
1 is a Γ1(k)-modular form of weight 1 over the

ring C with character χ (although the latter fact will not be relevant for us).
In general, if K/Q is a finite extension of degree n, we can extend the 2-adic
valuation from Q to K by setting v2(x) = 1

nv2(NK/Q(x)) for x ∈ K. For
example, let K/Q be the cyclotomic extension Q(ζ) with ζ = ζ2m a primitive
root of unity. Then NK/Q(x− ζ) = x2

m−1

+1 (for x fixed by the Galois group)
as both have the same zeros. In particular, v2(1−ζ) = 1

2m−2 . As 1−ζ generates
the maximal ideal of Z(2)[ζ], we see that 1

2m−2 is the minimal positive 2-adic
valuation in Q(ζ) and thus every 2-adic valuation is a multiple of 1

2m−2 .
For the proof of the proposition, we may assume k to be an odd prime p (as
every Γ1(p)-modular form is also a Γ1(k)-modular form for p|k), which we will
do in the following. Thus consider an odd character χ : (Z/p)× → C× and
the associated Eisenstein series Eχ

1 . We will assume that χ has order 2m for
p− 1 = 2ml with l odd. This implies that χ is surjective onto the 2m-th roots
of unity and that ker(χ) ⊂ (Z/p)× has order l. Note χ(−1) = −1.

4It follows from Proposition 2.16 that adjoining ζk is not necessary here, but is rather an
artifact of the version of the q-expansion principle we are using.
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Claim B.2. We have

v2(L(0, χ)) = 1−
1

2m−2
,

where the valuation is taken in Q(ζ2m).

Proof. Choose b0, . . . , b2m−1−1 with χ(bj) = ζj , where we still use the notation
ζ = ζ2m . We furthermore use the notation x to denote for an integer x the
integer 0 ≤ x ≤ p− 1 it is congruent to mod p.
We have

L(0, χ) = −
1

p

p−1∑

n=1

nχ(n)

= −
1

p

2m−1−1∑

j=0

∑

[i]∈ker(χ)

(
ibjχ(ibj) + (p− ibj)χ(p− ibj)

)

= −
1

p

2m−1−1∑

j=0

∑

[i]∈ker(χ)

(
ibjχ(bj) + (p− ibj)(−χ(bj))

)

= −
1

p

2m−1−1∑

j=0

(−pl+ 2
∑

[i]∈ker(χ)

ibj)ζ
j

≡

2m−1−1∑

j=0

ζj mod 2

in Z(2)[ζ]. As this is not congruent to 0 mod 2, this implies in particular that
v2(L(0, χ)) < 1. Moreover,

L(0, χ)(1− ζ) ≡ (1 + ζ + · · ·+ ζ2
m−1−1)(1 − ζ) ≡ 1 + 1 ≡ 0 mod 2

and thus v2(L(0, χ)(1−ζ)) = v2(L(0, χ))+
1

2m−2 ≥ 1. As every 2-adic valuation
Z(2)[ζ] is a multiple of 1

2m−2 , this implies the result.

We see that E = (1 − ζ)Eχ
1 is a level p, weight 1 modular form for Γ1(p) with

q-expansion in the ring Z(2)[ζ]. Furthermore, we know that E ≡ 1 mod (1−ζ)
in Z(2)[ζ]JqK.
Write

E =

2m−1−1∑

i=0

ζifi ∈ Z(2)[ζ]JqK

with fi ∈ Z(2)JqK.

Claim B.3. Each fi is a Γ1(p)-modular form.

Proof. The Galois group (Z/2m)× = Gal(Q(ζ)/Q) acts on Q(ζ)-valued mod-
ular forms. In particular,

∑
g∈Gal(Q(ζ)/Q) g(ζ

−iE) is a modular form, namely
2m−1fi.
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Thus, also

F =
2m−1−1∑

i=0

fi ∈ Z(2)JqK

is a Γ1(p)-modular form. By the q-expansion principle from [Kat73, Thm 1.6.1],
F is thus a modular form for Γ1(p) over the ring Z(2)[ζp] for a p-th root of unity
ζp. Furthermore,

F ≡ E ≡ 1 mod (1− ζ).

As (1− ζ)Z(2)[ζ]JqK ∩ Z(2)JqK = (2)Z(2)JqK, we also get F ≡ 1 mod 2.
This proves the proposition.

C Computation of weight 1 cusp forms over F2

Throughout this appendix, a modular forms of level n over a field K will
always mean a modular form for Γ1(n) over K (we will always assume that
the characteristic of K does not divide the level and n ≥ 5).5 As before,
we denote the space of such modular forms of weight k by Mk(Γ1(n);K) and
the corresponding space of cusp forms by Sk(Γ1(n);K). The dimension of the
spaces only depends on the characteristic of K, and

dimQMk(Γ1(n);Q) ≤ dimFp
Mk(Γ1(n);Fp)

with equality for k ≥ 2 and similarly for cusp forms (see Lemma 4.1).
For k ≥ 2, the dimensions of these spaces are easily computable using Riemann–
Roch (see Proposition 4.2). It is much more tricky to compute the dimensions
of S1(Γ1(n);K). For K of characteristic zero, a fast algorithm was found and
implemented by Buzzard and Lauder [BL17]. The associated webpage http://
people.maths.ox.ac.uk/lauder/weight1/displays tables up to level 1500, con-
taining not only the dimensions, but bases, associated Galois extensions etc.
In [Buz14] Buzzard also considers the case of K of finite odd characteristic.
The smallest level, where he shows that the dimension of S1(Γ1(n);Fp) is bigger
than that of S1(Γ1(n);Q) is level 74 (with p = 3). Buzzard restricts to modular
forms where the (Z/n)× action is via a fixed Dirichlet character. As over Fp not
every representation of (Z/n)× is 1-dimensional, this is potentially a non-trivial
restriction. Apart from this restriction, his search appears to be exhaustive,
i.e. there is no smaller level with non-liftable forms in odd characteristic.
Gabor Wiese also wrote a MAGMA package computing weight 1 cusp forms in
characteristic 2, but only for Γ0(n). Schaeffer [Sch14] has a fast algorithm as
well, but requires again a Dirichlet character.
Our modest aim in this appendix to complement these results for K = F2

without imposing any Dirichlet character. We do not propose a new algorithm,
5If K does not contain an n-th root of unity, Γ1(n)-level structures should be understood

to provide an embedding of µn instead of Z/n, or else one has to use a non-standard notion
of q-expansions. See [Kat76, Section 2] or [MO20, Appendix A] for more information about
the distinction between “naive” and “arithmetic” level structures.

Documenta Mathematica 27 (2022) 427–488

http://people.maths.ox.ac.uk/lauder/weight1/
http://people.maths.ox.ac.uk/lauder/weight1/


Additive Decompositions for Modular Forms 479

but rather give implementations of two variants of an algorithm proposed by
Edixhoven in [Edi06] (which was already the basis of Wiese’s work).

Proposition C.1 ([Edi06], Prop 4.2). Let g =
∑∞

i=1 aiq
i be a weight 2 cusp

form of level n over F2. Let B = n2

6

∏
l|n(1−

1
l2 ), where the product runs over

all primes dividing n (the so-called Sturm bound). Assume that ai = 0 for all
odd i ≤ B. Then g = f2 for a weight-1 cusp form f of level n over F2.

As the space of weight 2 cusp forms is computable in SAGE, this leads easily
to an algorithm that gives us even the q-expansions of a basis of the space of
weight 1 cusp forms over F2. A sample implementation is the following:6

def deg(n): #index of Gamma_1(n) in SL_2(Z)

d = n^2

for p in list(factor(n)):

d = d*(1-1/(p[0]^2))

return d

def fill(L, length): #fill list with zeros

n = length - len(L)

return L + ([0]*n)

def CuspF2q(n, speed=12):

#gives a basis of the space weight 1 cusp forms for Gamma1(n)

#over F_2 in vector notation

M = CuspForms(Gamma1(n),2, GF(2))

Prec =2*(floor(deg(n)/speed))+2

#for speed =12 this is the Sturm bound

V = VectorSpace(GF(2), Prec)

L = [fill(list(f.qexp(Prec)),Prec) for f in M.basis()]

LV = [V(l) for l in L]

W = V.subspace(LV)

def square(Listje): return list(reduce(lambda s, t: s} + t,

zip(Listje,[0]*Prec), ()))[:Prec]

Lsquare = map(square, L)

LVsquare = [V(l) for l in Lsquare]

Wsquare = V.subspace(LVsquare)

Meet = W.intersection(Wsquare)

Base = [B[0::2] for B in Meet.basis()]

#Odd entries deleted = taking preimage of Frobenius

6Little effort was spent to make this SAGE implementations optimal, but they sufficient
for the small levels we are considering.
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# to obtain weight 1 cusp form

return Base

def CuspF2qexp(n, speed=12):

#transforming vector notation into power series

C = CuspF2q(n, speed)

L = [[b[i] for i in range(b.length())] for b in C]

R.<q> = PowerSeriesRing(GF(2))

qexps = [R(l) for l in L]

return qexps

This can be sped up by ignoring q-expansions and computing directly with
Hecke algebras (as this can be done via modular symbols). The proposition
above becomes in this language:

Proposition C.2 ([Edi06], Prop 4.10). Let again B = n2

6

∏
l|n(1 −

1
l2 ). Set

V = S2(Γ1(n);F2). Let Todd be the sub vector space of EndF2(V ) generated by
the Hecke operators Ti with i ≤ B odd and T be the full Hecke algebra, i.e. the
subspace of EndF2(V ) generated by all Hecke operators. Then

dimF2 S1(Γ1(n);F2) = dimF2 T− dimF2 Todd.

Note that dimF2 T agrees with dimF2 S2(Γ1(n);F2), which is half the dimension
of that of cuspdial symbols.
A sample implementation of the resulting algorithm is the following (using the
same function deg(n) as above):

def vect(A, dim):

#transforms a matrix into a list of n^2 elements

v = [ ]

for i in range(dim):

v.extend(list(A.row(i)))

return v

def CuspF2(n):

M = ModularSymbols(Gamma1(n),2,

base_ring=GF(2)).cuspidal_subspace()

Prec =floor(deg(n)/12)+1 #Half the Sturm bound

T = M.hecke_algebra()

dim = T.module().dimension()

Lodd = [T.hecke_matrix(2*n+1) for n in range(Prec)]

V = VectorSpace(GF(2), dim^2)

LoddV = [V(vect(l, dim)) for l in Lodd]
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Vodd = V.subspace(LoddV)

dimodd = Vodd.dimension()

return dim/2- dimodd

Remark C.3. There is a number of other approaches possible to compute
weight 1 cusp forms, but some of these involve weight k cusp forms for k > 2
and these spaces of cusp forms grow very fast in dimension and are thus ex-
pensive to compute.

Running the second algorithm shows that

dimF2 S1(Γ1(n);F2) = dimQ S1(Γ1(n);Q)

for all odd n < 70 except for n = 65, where we have dimF2 S1(Γ1(65);F2) = 2
while S1(Γ1(65);Q) = 0 (which be obtain by MAGMA or the tables by Buzzard
and Lauder).
Running the first algorithm for n = 65, gives us the q-expansions of a basis of
S1(Γ1(n);F2).

f1 = q2 + q10 + q12 + q14 + q16 + q26 + q28 + q34 + q38 + q42 + q44 + q50 + q54

+ q60 + q66 + q68 + q70 + q76 + q80 + q86 + q92 + q96 + q102 + q112

+ q114 + q116 + q118 + q122 + q128 + q130 + q132 + q138 + q140 + · · ·

f2 = q4 + q6 + q12 + q14 + q20 + q22 + q30 + q32 + q34 + q38 + q44 + q46 + q48

+ q52 + q58 + q60 + q66 + q70 + q74 + q78 + q82 + q84 + q86 + q92 + q96

+ q100 + q108 + q110 + q112 + q116 + q118 + q122 + q134 + q138 + · · ·
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D Tables of decomposition numbers

Let fn :M1(n)C →Mell,C be the projection and

(fn)∗OM1(n)C
∼=

⊕

i∈Z

⊕

li

ω⊗−i.

n genus l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

2 0 1 0 1 0 1 0 0 0 0 0 0 0
3 0 1 1 1 2 1 1 1 0 0 0 0 0
4 0 1 1 2 2 2 2 1 1 0 0 0 0
5 0 1 2 3 4 4 4 3 2 1 0 0 0
6 0 1 2 3 4 4 4 3 2 1 0 0 0
7 0 1 3 5 7 8 8 7 5 3 1 0 0
8 0 1 3 5 7 8 8 7 5 3 1 0 0
9 0 1 4 7 10 12 12 11 8 5 2 0 0
10 0 1 4 7 10 12 12 11 8 5 2 0 0
11 1 1 5 10 15 19 20 19 15 10 5 1 0
12 0 1 5 9 13 16 16 15 11 7 3 0 0
13 2 1 6 13 20 26 28 27 22 15 8 2 0
14 1 1 6 12 18 23 24 23 18 12 6 1 0
15 1 1 8 16 24 31 32 31 24 16 8 1 0
16 2 1 7 15 23 30 32 31 25 17 9 2 0
17 5 1 8 20 32 43 48 47 40 28 16 5 0
18 2 1 8 17 26 34 36 35 28 19 10 2 0
19 7 1 9 24 39 53 60 59 51 36 21 7 0
20 3 1 10 22 34 45 48 47 38 26 14 3 0
21 5 1 12 28 44 59 64 63 52 36 20 5 0
22 6 1 10 25 40 54 60 59 50 35 20 6 0
23 12 1 12 33 55 76 87 87 76 55 33 12 1
24 5 1 12 28 44 59 64 63 52 36 20 5 0
25 12 1 14 39 64 88 100 99 86 61 36 12 0
26 10 1 12 33 54 74 84 83 72 51 30 10 0
27 13 1 15 42 69 95 108 107 93 66 39 13 0
28 10 1 15 39 63 86 96 95 81 57 33 10 0
29 22 1 14 49 84 118 140 139 126 91 56 22 0
30 9 1 16 40 64 87 96 95 80 56 32 9 0
31 26 1 16 55 95 134 159 159 144 105 65 26 1
32 17 1 16 48 80 111 128 127 112 80 48 17 0
33 21 1 20 60 100 139 160 159 140 100 60 21 0
34 21 1 16 52 88 123 144 143 128 92 56 21 0
35 25 1 24 72 120 167 192 191 168 120 72 25 0
36 17 1 20 56 92 127 144 143 124 88 52 17 0
37 40 1 18 75 132 188 228 227 210 153 96 40 0
38 28 1 18 63 108 152 180 179 162 117 72 28 0
39 33 1 25 80 136 191 223 223 199 144 88 33 1
40 25 1 24 72 120 167 192 191 168 120 72 25 0
41 51 1 20 90 160 229 280 279 260 190 120 51 0
42 25 1 24 72 120 167 192 191 168 120 72 25 0
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The following two tables gives decomposition numbers for (fn)∗OM1(n)(3)
into

ki copies of (f2)∗OM1(2)(3)
⊗ ω⊗−i and for (fn)∗OM1(n)(2)

into ki copies of
(f3)∗OM1(3)(2)

⊗ ω⊗−i, respectively.

n k0 k1 k2 k3 k4 k5 k6 k7
4 1 1 1 1 0 0 0 0
5 1 2 2 2 1 0 0 0
6 1 2 2 2 1 0 0 0
7 1 3 4 4 3 1 0 0
8 1 3 4 4 3 1 0 0
9 1 4 6 6 5 2 0 0
10 1 4 6 6 5 2 0 0
11 1 5 9 10 9 5 1 0
12 1 5 8 8 7 3 0 0
13 1 6 12 14 13 8 2 0
14 1 6 11 12 11 6 1 0
15 1 8 15 16 15 8 1 0
16 1 7 14 16 15 9 2 0
17 1 8 19 24 23 16 5 0
18 1 8 16 18 17 10 2 0
19 1 9 23 30 29 21 7 0
20 1 10 21 24 23 14 3 0
21 1 12 27 32 31 20 5 0
22 1 10 24 30 29 20 6 0
23 1 12 32 43 43 32 12 1

n k0 k1 k2 k3 k4 k5
5 1 1 1 0 0 0
6 1 1 1 0 0 0
7 1 2 2 1 0 0
8 1 2 2 1 0 0
9 1 3 3 2 0 0
10 1 3 3 2 0 0
11 1 4 5 4 1 0
12 1 4 4 3 0 0
13 1 5 7 6 2 0
14 1 5 6 5 1 0
15 1 7 8 7 1 0
16 1 6 8 7 2 0
17 1 7 12 11 5 0
18 1 7 9 8 2 0
19 1 8 15 14 7 0
20 1 9 12 11 3 0
21 1 11 16 15 5 0
22 1 9 15 14 6 0
23 1 11 21 21 11 1

For an explanation of the visible symmetry for the entries n =
5, 6, 7, 8, 11, 14, 15 and 23 see [Mei22, Section 5.2].
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