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Abstract. The universal Spencer and de Rham complexes of sheaves
over a smooth or analytical manifold are well known to play a basic
role in the theory of D-modules. In this article we consider a dou-
ble complex of sheaves generalizing both complexes for an arbitrary
supermanifold, and we use it to unify the notions of differential and
integral forms on real, complex and algebraic supermanifolds. The
associated spectral sequences give the de Rham complex of differ-
ential forms and the complex of integral forms at page one. For real
and complex supermanifolds both spectral sequences converge at page
two to the locally constant sheaf. We use this fact to show that the
cohomology of differential forms is isomorphic to the cohomology of
integral forms, and they both compute the de Rham cohomology of
the reduced manifold. Furthermore, we show that, in contrast with
the case of ordinary complex manifolds, the Hodge-to-de Rham (or
Frölicher) spectral sequence of supermanifolds with Kähler reduced
manifold does not converge in general at page one.
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1 Introduction

The mathematical theory of forms on supermanifolds, together with the related
integration theory, is one of the most peculiar and non-trivial aspect of super-
geometry [9] [12] [18]. Indeed, whereas on an ordinary manifold differential
forms anticommute, so that the de Rham complex terminates at the dimen-
sion of the manifold, in supergeometry the differentials of odd functions do
commute instead. This apparently trivial fact has far-reaching consequences,
namely it implies that the de Rham complex of a supermanifold is not bounded
from above [12] [14]. This, in turn, leads to the failure of Poincaé duality, as
there is no notion of a top differential form which yields a tensor density that
can be integrated over a supermanifold. In order to cure this pathology and
define a meaningful integration theory analogous to the ordinary integration of
differential forms in the classical setting, the notion of integral form has been
developed and introduced in supergeometry [9] [12] [14]. Integral forms fit into
a complex which, in some sense, is dual to the de Rham complex of differential
forms: whereas the de Rham complex of a supermanifold is not bounded from
above, the complex of integral forms - or Spencer complex of a supermanifold -
is not bounded from below. In particular, one of the most peculiar and defining
supergeometric construction, that of Berezinian sheaf [11] [13] - whose sections
can be integrated over the supermanifold - plays the role of the top sheaf in
the complex of integral forms, thus providing a substitute for the notion of
canonical sheaf in supergeometry.
In this view, integral forms appear in supergeometry as more useful and natu-
ral mathematical objects than differential forms. However, on the other hand,
the definitions of sheaves of differential forms, vector fields or also sheaves of
linear differential operators are easily available in supergeometry by the same
constructions as in classical geometry: consider for example the construction
of these objects due to Grothendieck, which applies to an extremely general
setting. One purpose of this paper is to give a new construction of integral
forms which is both coordinate-free and built upon the more standard notions
of differential forms and operators, with the future aim of studying possible
generalizations to other classes of “superforms”.
We stress that the syntax of such objects is known in the physics literature: this
means that there exists a formalism of integral forms expressed in terms of co-
ordinates, together with associated calculus and transformation rules [18] [20].
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This formalism has been further expanded to an extended formalism of “su-
performs”, generalization of integral forms, which have been developed and
applied, for example, in the recent [2] [3] [4] [5] [7] [8]. On the semantic side, of
course a coordinate-free construction of integral forms exists in the supergeom-
etry literature, see [12], but in a way which is unrelated to differential forms,
so that there is no obvious relations between these two concepts.
In the present paper, starting from first principles, we unify the notions of
differential and integral forms and their related complexes on real, complex
and also algebraic supermanifolds. In particular, given the natural sheaves of
differential operators DM and differential forms Ω•M ,odd on a certain supermani-
fold M , we start from the so-called universal de Rham complex Ω•M ,odd⊗OM

DM

and universal Spencer complex DM ⊗OM
(Ω•M ,odd)

∗ and we show that they can
be unified into a single double complex of sheaves supported on the triple tensor
product Ω•M ,odd ⊗OM

DM ⊗OM
(Ω•M ,odd)

∗, which we call the de Rham/Spencer
double complex. This displays a truly non-commutative behavior, rather than
just a super-commutative one, due to the presence of the sheaf DM in the piv-
otal position. The two spectral sequences associated to this double complex
yield, at page one, the complex of differential forms and the complex of integral
forms on M . Furthermore, in the case of real or complex supermanifolds, both
spectral sequences converge at page two to the sheaf of locally constant func-
tions over R or C, depending on the supermanifold being real or complex. This
is a consequence of the Poincaré lemmas for differential and integral forms.
More precisely, we prove the following Theorem, which gathers Theorems 3.6
and 4.9 from Sections 3 and 4 respectively and Theorems 5.3, 5.9 and 5.10 from
Section 5 of the paper.

Theorem 1.1 (Main Theorem). Let (M ,OM ) be a real, complex of algebraic

supermanifold. Then

1. the homology of the universal de Rham complex (Ω•M ,odd ⊗OM
DM , D) is

naturally isomorphic to the Berezinian sheaf Ber(M );

2. the homology of the universal Spencer complex (DM ⊗OM
(Ω•M ,odd)

∗, δ) is

naturally isomorphic to the structure sheaf OM .

The universal de Rham complex and the universal Spencer complex can be

unified into a double complex (DV••M , D̂, δ̂) with associated spectral sequences

(EΩ
r , d

Ω
r ) and (EΣ

r , d
Σ
r ). Then

1. (EΩ
1 , d

Ω
1 ) is isomorphic to the complex of differential forms on M and

(EΣ
1 , δ

Σ
1 ) is isomorphic to the complex of integral forms on M ;

2. Provided that M is a real or a complex supermanifold, both of the spectral

sequences converge at page 2 to the constant sheaf valued in the real or in

the complex numbers.

Whilst the proof of the Poincaré lemma for differential forms in a supergeomet-
ric context is well-known and it consists of a straightforward generalization of
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the ordinary one, the Poincaré lemma for integral forms, instead, is a hallmark
of supergeometry and we will prove it in detail in Theorem 5.16. Finally, we
enhance the above de Rham/Spencer double complex of sheaves with a triple
complex structure, by taking its Čech cochains, see Definition 5.7. In this way
one obtains two double complexes: one is the Čech-de Rham double complex

of differential forms on M and the other is the Čech-Spencer double complex of
integral forms on M . We show that the related spectral sequences both con-
verge to the de Rham cohomology of the reduced manifold, showing that the
cohomology of differential forms is isomorphic to the cohomology of integral
forms, and, in turn, that the complexes of differential and integral forms are
quasi-isomorphic. More precisely, we prove from first principles Theorem 5.11,
which we phrase here as follows.

Theorem 1.2 (Quasi-Isomorphism). Let M be a real supermanifold. The co-

homology of differential forms H•dR (M ) and the cohomology of integral forms

H•Sp(M ) are isomorphic, i.e.

H•dR (M ) ∼= Ȟ•(M ,RM ) ∼= H•Sp(M ).

In particular the complex of differential forms and of integral forms on M are

quasi-isomorphic.

Nonetheless, we remark that in the case of a complex supermanifold with
Kähler reduced manifold, something intriguing happens. Indeed, the Hodge-
to-de Rham (or Frölicher) spectral sequence, which still computes the de Rham
cohomology of the reduced manifold, does not converge at page one, as it does
in the ordinary setting. Instead, there are many more non-trivial maps, as
shown in example 5.13, thus hinting at new promising developments in the
geometry of complex supermanifolds.

Acknowledgments

The authors wish to thank Ivan Penkov for fruitful discussions and advice.

2 Setting the Stage: Main Definitions

In the following we will work over a real, complex analytic or algebraic su-
permanifold M unless otherwise stated. See the classical textbook [12] for a
thorough introduction, or the recent [6] by the authors for a short compendium
to the topic.
We let M be a supermanifold of dimension p|q and we denote its reduced
space, which is an ordinary (real, complex or algebraic) manifold of dimen-
sion p, by Mred. In particular, we will deal with the sheaf of 1-forms Ω1

M ,odd

on M . This is a locally-free sheaf on M of rank q|p. Indeed, if we let U be an
open set in the topological space underlying Mred and we set xa = zi|θα for
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i = 1, . . . , p and α = 1, . . . , q to be a system of local coordinates over U for the
supermanifold M , we have that

Ω1
M ,odd(U) = {dθ1, . . . , dθq|dz1, . . . , dzp} · OM (U), (2.1)

where OM is the structure sheaf of M . We stress that the dθ’s are even and
the dz’s are odd, as we take the differential d : OM → Ω1

M ,odd to be an odd

morphism. Also, note that we have written Ω1
M ,odd as a locally-free sheaf of

right OM -modules.
Likewise, we denote the dual of Ω1

M ,odd with (Ω1
M ,odd)

∗. This can be canonically
identified with the sheaf ΠTM , where TM is the tangent sheaf of M and Π - the
so-called parity-changing functor - is there to remind that the parity of the
sheaf is reversed, so that the rank of ΠTM is actually q|p. We will call a section
of ΠTM = (Ω1

M ,odd)
∗ a Π-vector field or vector field for short. Locally, (Ω1

M ,odd)
∗

is generated by expressions of the kind

(Ω1
M ,odd)

∗(U) = OM (U) · {π∂θ1 , . . . , π∂θq |π∂z1 , . . . , π∂zp}, (2.2)

where the π∂θ’s are even and the π∂z ’s are odd. Notice that (Ω1
M ,odd)

∗ has
been written with the structure of locally-free sheaf of left OM -modules.

Applying the supersymmetric power functor S• to the sheaf Ω1
M ,odd and

(Ω1
M ,odd)

∗ one gets the usual notion of (differentially graded) algebra of forms
and polyfields over a supermanifold. In particular, we call a section of the sheaf
Ωk

M ,odd
..= SkΩ1

M ,odd a differential k-superform, or a k-form for short. The dif-

ferential d : OM → Ω1
M ,odd lifts to the exterior derivative d : Ωk

M ,odd → Ωk+1
M ,odd,

which is an odd (nilpotent) superderivation of Ω•M ,odd, obeying the Leibniz rule
in the form

d(ωη) = dω η + (−1)|ω|ω dη, (2.3)

for ω ∈ Ωk
M ,odd and η ∈ Ω•M ,odd and where |ω| is the parity of ω (which equals

the degree of ω mod Z2: notice that (−1)|ω| = (−1)deg(ω)). Here and in what
follows we leave the product in the superalgebra of forms understood for the
sake of notation. The pair (Ω•M ,odd, d) defines the de Rham complex of M . Once

again, we will consider any Ωk
M ,odd with the structure of right OM -module.

Likewise, we call a section of (Ωk
M ,odd)

∗ ..= SkΠTM a Π-vector k-field, or a

polyvector field for short. Once again, any (Ωk
M ,odd)

∗ has the structure of left
OM -module.
Notice that there exists a pairing

〈 , 〉 : Ω•M ,odd ⊗OM
(Ω•M ,odd)

∗ // (Ω•M ,odd)
∗

ω ⊗ τ ✤

// 〈ω, τ〉

(2.4)

which is defined via the contractions in a way such that

〈dxa, π∂xβ
〉 = (−1)(|xa|+1)(|xb|+1)δab. (2.5)
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In particular, it can be observed that 1-forms ω ∈ Ω1
M ,odd act as superderiva-

tions of (Ω•M ,odd)
∗, i.e. they satisfy the Leibniz rule in the above form. More-

over, explicitly, for πX ∈ ΠTM and ω = df ∈ Ω1
M ,odd one easily finds that

〈df, πX〉 = (−1)(|X|+1)(|f |+1)X(f), (2.6)

where f ∈ OM and X ∈ TM .

Also, we introduce the sheaf DM of (linear) differential operators on M , which
can be abstractly defined as the subalgebra of Endk(OM ) generated by OM

and TM . This means that over an open set U one has that the set {xa, ∂xb
},

where xa ∈ OM ⌊U and ∂xa
∈ TM ⌊U for a ranging over both even and odd

coordinates, gives a local trivialization of DM over U and where the following
defining relations are satisfied

[xa, xb] = 0, [∂xa
, ∂xb

] = 0, [∂xa
, xb] = δab, (2.7)

where [ , ] is the supercommutator. It follows from equations (2.7) that DM ⌊U
is isomorphic to the Weyl superalgebra of Kp|q: the sheaf DM is thus non-
commutative rather than just supercommutative, something which will play a
major role in what follows. It is also worth stressing that DM admits a filtra-

tion by the degree of the differential operators such that D
(≤i)
M

⊆ D
(≤i+1)
M

for

any i ≥ 0 and D
(≤i)
M · D

(≤j)
M ⊆ D

(≤i+j)
M . It is not hard to see that, defining

grk(DM ) ..= D(≤k)/D
(≤k−1)
M

, one has grk(DM ) ∼= SkTM , so that in turn one
has gr•DM

∼= S•TM , which can be looked at as a sort of supercommutative
approximation of DM . Finally, notice that DM is endowed with the structure of
OM -bimodule, i.e. DM is a left and right OM -module with the operations given
respectively by multiplication to the left and to the right by elements f ∈ OM .

A peculiar construction to supergeometry is the one of Berezinian sheaf of a
supermanifold. This substitutes the notion of canonical sheaf on an ordinary
manifold, which makes no sense on a supermanifold since the de Rham complex
is not bounded from above. Notice that this sheaf does not belong to the
de Rham complex, i.e. it is not made out of ordinary differential forms in
Ω1

M ,odd.On the other hand, just like the canonical sheaf in a purely commutative
setting, the Berezinian sheaf can be defined via the Koszul complex, or better
its supersymmetric generalization - see [12] [16] and the recent dedicated paper
[13]; for a different very nice construction in the smooth category see [11]. More
precisely, given a locally-free sheaf E of rank p|q over a supermanifold M , one
defines the Berezinian sheaf Ber(E) of E to be the locally-free sheaf of rank
δ0,(p+q)mod2|δ1,(p+q)mod2 given by Ber(E) ..= ExtpS•E∗(OM , S•E∗). In particular,
one defines the Berezinian sheaf of the supermanifold M to be Ber(M ) ..=
Ber(Ω1

M ,odd)
∗, i.e. one has

Ber(M ) ..= HomOM
(ExtqS•ΠTM

(OM , S•ΠTM ),OM ) ∼=loc Π
q+pOM . (2.8)
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In the following, we will use extensively that if x = z1, . . . , zp|θ1, . . . , θq is a
system of local coordinates for M , then the Berezinian sheaf is locally-generated
by the class

ϕ(x) = [dz1 . . . dzp ⊗ ∂θ1 . . . ∂θq ] (2.9)

in the above homology (2.8), see [13]. Further, we stress that the Berezinian
sheaf will be looked at as a sheaf or right OM -modules.

The Berezinian sheaf of M enters the construction of the so-called integral

forms, see for example [12] or [14]. Given a supermanifold M , these are defined
as sections of the sheaf HomOM

(Ω•M ,odd,Ber(M )), or analogously Ber(M )⊗OM

S•ΠTM . Integral forms can be endowed with the structure of a complex by
providing a differential δ : Ber(M ) ⊗OM

SkΠTM → Ber(M ) ⊗OM
Sk−1ΠTM ,

whose definition is quite tricky: well-definedness and invariance are indeed far
from obvious (see [12], where the differential on integral forms is induced using
the notion of right connection on Ber(M )). For this reason the construction
of the differential which makes integral forms into an actual complex will be
discussed further later on in the paper. Here we limit ourselves to say that,
locally, moving functions to the left of the tensor product Ber(M )⊗OM

SkΠTM ,
the differential gets written as

δ(ϕ(x)f ⊗ π∂I) = −
∑

a

(−1)|xa||f |+|π∂
I |ϕ(x)(∂af)⊗ ∂π∂a

(π∂I), (2.10)

where ϕ(x) is the local generating section of Ber(M ) introduced above, π∂I

is a homogeneous section of SkΠTM , f is a function and where the derivative
with respect to the coordinate field π∂a is nothing but the contraction of the
polyfield with the form dual to π∂a, that is 〈dxa, π∂

I〉 = ∂π∂a
(π∂I). We will see

that this definition is related with the structure of rightDM -module of Ber(M ) -
first discovered by Penkov in [14] - and, in turn, with its Lie derivative. Finally,
we stress that given a p|q dimensional supermanifold M , it is useful to shift the
degree of the complex of integral forms, posing Σp−•

M
..= Ber(M )⊗OM

Sp−•ΠTM

and consider the complex (Σp−•
M , δ), so that an integral form of degree p, i.e. a

section of the Berezinian sheaf, can be integrated on M , in the same fashion as
an ordinary p-form can be integrated on an ordinary p-dimensional manifold.
More in general, with this convention, it can be seen that an integral form of
degree p − k on M can be integrated on a sub-supermanifold of codimension
k|0 in M , see for example [18].

3 Universal de Rham Complex and its Homology

We now introduce one of the main characters of our study, cfr. for example [15].

Definition 3.1 (Universal de Rham Sheaf of M ). Let M be a supermanifold.
We call the sheaf Ω•M ,odd ⊗OM

DM the universal de Rham sheaf of M .
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Notice that the universal de Rham sheaf is Z-graded by the gradation of Ω•M ,odd

and also Z2-graded as both of its components are. Moreover it is filtered by
the filtration by degree on DM introduced in the previous section. Clearly, the
universal de Rham sheaf Ω•M ,odd⊗OM

DM is naturally a left Ω•M ,odd-module and
a right DM -module. In particular it is a left OM -module by restriction on the
structure of Ω•M ,odd-module. On the other hand Ω•M ,odd ⊗ DM is also a right
OM -module with the structure induced by the one of right DM -module: this
structure, though, does not coincide with the one of left OM -module.

We are interested in finding a natural differential as to make the universal de
Rham sheaf into a proper complex of sheaves. We first need the following

Definition 3.2 (OM -Definition). Let L andR be a left and a rightOM -module
respectively. Let φ : R⊗C L → H be a morphism of sheaves of C-modules into
a sheaf H. We say that φ is OM -defined if it descends to a C-linear operator
φ̂ : R⊗OM

L → H, i.e. if the identity

φ(lf ⊗ r) = φ(l ⊗ fr) (3.1)

holds true for any l ∈ L, r ∈ R and f ∈ OM .

Given this definition, we now introduce the following operator

Definition 3.3 (The Operator D). Let ω ⊗ F ∈ Ω•M ,odd ⊗OM
DM such that ω

and F are homogeneous. We let D be the operator

D : Ω•M ,odd ⊗C DM
// Ω•M ,odd ⊗OM

DM

ω ⊗ F ✤

// dω ⊗ F +
∑

a(−1)|ω||xa|dxaω ⊗ ∂xa
· F,

(3.2)

where xa = z1, . . . , zp|θ1, . . . , θq, so that the index a runs over all of the even
and odd coordinates.

Notice that the operator D is of degree +1 with respect to the Z-degree of
Ω•M ,odd, i.e. it raises the form number by one. The properties of D are charac-
terized in the following Lemma.

Lemma 3.4. The operator D has the following properties:

1. it is globally well-defined i.e. it is invariant under generic change of co-

ordinates;

2. it is OM -defined in the sense of definition 3.2, i.e. it induces an operator

D : Ω•M ,odd ⊗OM
DM ⊗OM

(Ω•M )∗ → Ω•M ,odd ⊗OM
DM ⊗OM

(Ω•M )∗;

3. it is nilpotent, i.e. D2 = 0.

Proof. We prove separately the three claims of the Lemma.

1. Obvious, since each of the two summands is invariant by itself.
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2. We prove that for any f ∈ OM , ω ∈ Ω•M ,odd, F ∈ DM we have D(ωf ⊗C

F ) = D(ω ⊗C fF ). Indeed, posing df =
∑

a dxa∂xa
f , on the one hand

one computes

D(ωf ⊗ F ) = (dω)f ⊗ F + (−1)|ω|ω(df)⊗ F+

+
∑

a

(−1)|xa|(|ω|+|f |)dxaωf ⊗ ∂xa
F

= (dω)f ⊗ F + (−1)|ω|ω
∑

a

dxα∂xa
f ⊗ F

+
∑

a

(−1)|xa|(|ω|+|f |)dxaωf ⊗ ∂xa
F. (3.3)

On the other hand, one has

D(ω ⊗ fF ) = dω ⊗ fF+

+
∑

a

(−1)|xa||ω|dxaω ⊗
(

(∂xa
f)F + (−1)|xa||f |f(∂xa

F )
)

= (dω)f ⊗ F + (−1)|ω|ω
∑

a

dxa∂xa
f ⊗ F+

+
∑

a

(−1)|xa|(|ω|+|f |)dxaωf ⊗ ∂xa
F, (3.4)

so that (3.3) is matched by (3.4).

3. We prove that D2 = 0. Writing D = D1 + D2, with D1
..= d ⊗ 1 and

D2
..=

∑

a dxa ⊗ ∂xa
one has that D2 = D2

1 + (D1D2 + D2D1) + D2
2 .

Clearly, D2
1 = 0 and D2

2 = 0 as well, for it is an odd element in the
supercommutative algebra C[dxa] ⊗C C[∂a]. It remains to prove that
[D1, D2] ..= D1D2 +D2D1 = 0.
We have

D2D1(ω ⊗ F ) =
∑

a

(−1)|xa|(|ω|+1)dxadω ⊗ ∂xa
F. (3.5)

One the other hand, one finds

D1D2(ω ⊗ F ) =
∑

a

(−1)|xa|(|ω|+1)+1dxadω ⊗ ∂xa
F, (3.6)

which cancels exactly the previous expression for D2D1.

The above Lemma justifies the following definition.

Definition 3.5 (Universal de Rham Complex of M ). Let M be a superman-
ifold. We call the pair (Ω•M ,odd ⊗OM

DM , D) the universal de Rham complex
of M .
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We now compute the homology of this complex.

Theorem 3.6 (Homology of the Universal de Rham Complex). Let M be a

supermanifold and let (Ω•M ,odd ⊗OM
DM , D) be the universal de Rham complex

of M . There exists a canonical isomorphism of sheaves

H•(Ω
•
M ,odd ⊗OM

DM , D) ∼= Ber(M ), (3.7)

where Ber(M ) is the Berezinian sheaf of M .

Proof. The proof can be done by constructing a homotopy for the operator D.
Clearly, the first part of D, namely D1 = d⊗ 1 has the usual homotopy of the
de Rham complex. By the way elements of the form c ⊗ F , for c a constant
and F a generic element in DM are not in the kernel of D.
Let us now look at the second summand, D2(ω ⊗ F ) =

∑

a(−1)|ω||xa|dxaω ⊗
∂aF . We work in a chart (U, xa) such that the sheaf Ω•M ,odd ⊗OM

DM can be
represented as the sheaf of vector spaces generated by the monomials of the
form ω ⊗ F with ω = dxI , F = ∂Jf for some multi-indices I and J and some
f ∈ OM ⌊U . We define the following operator on Ω•M ,odd ⊗DM ⌊U

H(ω ⊗ F ) ..=
∑

a

(−1)|xa|(|ω|+|∂
J |+1)∂dxa

dxI ⊗ [∂J , xa]f, (3.8)

where the derivation ∂dxa
can be seen as the contraction with respect to the

coordinate vector field ∂a (up to a sign). We claim that H is a homotopy. By
explicit computation, one has

D2H(ω ⊗ F ) =
∑

a,b

(−1)|xa|(|xb|+1+|ω|)+|xb|(|ω|+|∂
J |+1)dxa∂dxb

ω ⊗ ∂a[∂
J , xb]f,

(3.9)

HD2(ω ⊗ F ) =
∑

a,b

(−1)|xb|(|ω|+|∂
J |)+|xa||ω|∂dxb

(dxaω)⊗ [∂b∂
J , xa]f. (3.10)

Expanding the above equation (3.10), one finds

HD2(ω ⊗ F ) = −D2H(ω ⊗ F ) +
∑

a,b

(−1)|ω|(|xa|+|xb|)δabω ⊗ ∂Jf+

+
∑

a

(−1)|xa||∂
J |ω ⊗ ∂a[∂

J , xa]f

+
∑

a

(−1)|xa|+1dxa(∂dxa
ω)⊗ ∂Jf. (3.11)

We now analyze the summands in (3.11). If xa = z1, . . . , zp|θ1, . . . , θq, recalling
that ω = dxI , we define deg0(ω) to be the degree of ω with respect to the even
generators (dθ’s) and deg1(ω) to be the degree of ω with respect to the odd
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generators (dz’s) and likewise we pose deg0(∂
J) to be the degree of ∂J with

respect to the even generators (∂z’s) and deg1(∂
J ) to be the degree of ∂J with

respect to the odd generators (∂θ’s). With these definitions, one can observe
that

∑

ab

(−1)|ω|(|xa|+|xb|)δabω ⊗ ∂Jf = (p+ q)(ω ⊗ F ),

∑

a

(−1)|xa||∂
J |ω ⊗ ∂a[∂

J , xa]f = (deg0(∂
J )− deg1(∂

J))(ω ⊗ F ),

∑

a

(−1)|xa|+1dxa(∂dxa
ω)⊗ ∂Jf = (deg0(ω)− deg1(ω))(ω ⊗ F ). (3.12)

This yields

(HD2 +D2H)(ω ⊗ F ) =

=
(

p+ q + deg0(ω) + deg0(∂
J)− deg1(ω)− deg1(∂

J)
)

(ω ⊗ F ). (3.13)

It follows that (HD2 + D2H)(ω ⊗ F ) = c · (ω ⊗ F ) for c a constant, which
proves the claim that H defines a homotopy if c 6= 0. The homotopy fails in
the case c = 0. In particular, note that, by anticommutativity, deg1(ω) ≤ p
and deg1(∂

J ) ≤ q, since there can only be p odd forms dz1 · . . . · dzp and q odd
derivation ∂θ1 · . . . · ∂θq , hence c = 0 if and only if







deg0(ω) = deg0(∂
J ) = 0

deg1(ω) = p
deg1(∂

J) = q.
(3.14)

In this case the monomial ω ⊗ F is of the form dz1 . . . dzp ⊗ ∂θ1 . . . ∂θq · f
for f ∈ OM ⌊U : this element generates the Berezinian sheaf Ber(M ) and it is
non-zero in the homology H•(Ω

•
M ,odd⊗DM , D), thus concluding the proof.

Remark 3.7. We observe that the previous Theorem holds true in any “geomet-
ric” category: M might be a real smooth or a complex analytic supermanifold,
but also an algebraic supermanifold.

Remark 3.8. It is proved in [14] that the Berezinian sheaf of a supermanifold
carries a structure of rightDM -module. This is constructed via the action of the
Lie derivative on sections of Ber(M ), which somehow parallels the analogous
result on the canonical sheaf KM of an ordinary manifold M . Indeed, it is an
easy application of Cartan calculus to see that if ω is a section of the canonical
sheaf of M , with local trivialization given by ω(x)f ..= dx1 ∧ . . . dxpf , for
f ∈ OM , then LX(ω) = ω(x)

∑

a ∂a(fX
i) for any vector field X =

∑

iX
i∂i.

It is then not difficult to show that defining a right action KM ⊗ TM → KM

on vector fields as ω ⊗X 7→ ω ·X ..= −LX(ω) endows KM with the structure
of right DM -module - indeed the former action defines a flat right connection
on KM , see [12]. The same holds true in the case of the Berezinian sheaf on
a supermanifold, but the construction of the action of the Lie derivative is not
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as straightforward as in the ordinary case, since the Berezinian is not a sheaf
of forms and therefore there is no obvious generalization of the Cartan calculus
on it. Nonetheless, it can be shown - for example via an analytic computation
using the flow along a vector field (see also [14]) - that

LX(ϕ) = (−1)|ϕ(x)||X|ϕ(x)
∑

a

(−1)|X
a|(|xa|+|f |)

∑

a

∂a(fX
a), (3.15)

where ϕ is a section of the Berezinian sheaf with local trivialization given
by ϕ = ϕ(x)f , where f ∈ OM and where ϕ(x) is the generating section
of Ber(M ). Notice that this can be re-written, more simply, as LX(ϕ) =

(−1)|ϕ||X|ϕ(x)
∑

a(fX
a)
←

∂a if one lets the derivative acts from the right, bor-
rowing the notation from physics. The right action of vector fields making
Ber(M ) into a sheaf of right DM -modules is then defined as [14]

Ber(M )⊗ TM
// Ber(M )

ϕ⊗X
✤

// ϕ ·X ..= −(−1)|ϕ||X|LX(ϕ).

(3.16)

It follows that, taking into account the action (3.15) of the Lie derivative, one
gets:

ϕ ·X = −ϕ(x)
∑

a

(−1)|xa|(|X
a|+|f |)∂a(fX

a). (3.17)

It is worth noticing that the above construction, which might look somewhat
artificial at first sight, comes for free from the homology of the universal de
Rham complex as in Theorem 3.6. The action of the Lie derivative on sections
of the Berezianian emerges naturally and effortlessly as a consequence of the
fact that we are working ab initio with a complex of DM -modules. Indeed, the
previous Theorem 3.6 has the following easy Corollary.

Corollary 3.1 (Ber(M ) is a Right DM -Module / Lie Derivative). Let M be

a supermanifold. The right action

H•(Ω
•
M ,odd ⊗OM

DM , D)⊗OM
DM −→ H•(Ω

•
M ,odd ⊗OM

DM , D) (3.18)

is uniquely characterized by ϕ(x) · ∂a .

.= [dz1 . . . dzp ⊗ ∂θ1 ⊗ . . . ∂θq ] · ∂a = 0 for

any a, and it is given by the Lie derivative on Ber(M ).

Proof. One easily checks that in the homology of D one has [dz1 . . . dzp ⊗
∂θ1 ⊗ . . . ∂θq∂a] = 0 for any a, which characterizes the right action of DM on
H•(Ω

•
M ,odd ⊗OM

DM , D) ∼= Ber(M ).
Explicitly, for a section ϕ = dz1 . . . dzp ⊗ ∂θ1 ⊗ . . . ∂θqf of the Berezinian, and
a generic vector fields X =

∑

a X
a∂a, one computes using the DM -module

structure

ϕ ·X = ϕ(x)
∑

a

(−1)|xa|(|X
a|+|f |) (−∂a(fX

a) + ∂a · fX
a)

= −ϕ(x)
∑

a

(−1)|xa|(|X
a|+|f |)∂a(fX

a), (3.19)
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where we have used that the second summand is zero in the homology, so
that 3.19 matches the previous (3.17).

Before we pass to the next section, let us stress that [12] offers a different
but related point of view, closer to the one given in [14], where the notion of
DM -module, and in particular the construction of the DM -module structure
on Ber(M ) is left understood, but implied by the exposition. To retrive the
DM -module structure from [12] one would further need to prove that the right
connection defined on Ber(M ) is flat: this actually coincide with the (3.15).

4 Universal Spencer Complex and its Homology

We now repeat the above construction by using the dual (Ω•M ,odd)
∗ of the de

Rham complex instead. We start with the following definition, cfr. [15]

Definition 4.1 (Universal Spencer Sheaf of M ). Given a supermanifold M ,
we call the sheaf DM ⊗OM

(Ω•M ,odd)
∗ the universal Spencer sheaf of M .

Just like above, we would like to make the universal Spencer sheaf into an actual
complex, by introducing a nilpotent differential on it and then computing its
homology. We will see that this differential is more complicated with respect
to the previous operator D for the universal de Rham complex.
In order to get such a differential, we first need to study the Lie derivative on
the polyfields (Ω•M ,odd)

∗. These can be defined recursively as follows.

Definition 4.2 (Lie Derivate on (Ω•M ,odd)
∗). Let X ∈ TM be a vector field.

The Lie derivative LX : (Ω•M ,odd)
∗ → (Ω•M ,odd)

∗ are defined recursively via the
following relations

1. LX(f) = X(f) = LX(f) for any f ∈ OM where LX is the usual Lie
derivative;

2. Having already defined LX : (Ωh
M ,odd)

∗ → (Ωh
M ,odd)

∗ for h < k, one

uniquely defines LX on (Ωk
M ,odd)

∗ via the relation

LX(〈ω, τ〉) = 〈LX(ω), τ〉+ (−1)|ω||X|〈ω,LX(τ)〉 ∀ω ∈ Ω•>0
M ,odd. (4.1)

The following Lemma characterizes the properties of the Lie derivative on
(Ω•M ,odd)

∗. For the sake of the exposition, we have deferred its proof to the
Appendix.

Lemma 4.3. The Lie derivative LX : (Ω•M ,odd)
∗ → (Ω•M ,odd)

∗ has the following

properties:

1. LX(τ) = π[X, πτ ] for any τ ∈ ΠTM ;
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2. LX is a superderivation of (Ω•M ,odd)
∗, i.e. the super Leibniz rule holds

true:

LX(τ1τ2) = LX(τ1)τ2 + (−1)|X||τ1|τ1LX(τ2) (4.2)

for any τ1, τ2 ∈ (Ω•M ,odd)
∗ and X ∈ TM ;

3. LfX(τ) = fLX(τ) + (−1)|X||f |πX〈df, τ〉 for any f ∈ OM , τ ∈ (Ω•M ,odd)
∗.

Now, using the Lie derivative on (Ω•M ,odd)
∗ we introduce the following local

operator.

Definition 4.4 (The Operator ex). Let τ ∈ (Ω•M ,odd)
∗. We let the operator ex

be defined as

ex : (Ω•M ,odd)
∗ // (Ω•M ,odd)

∗

τ
✤

// ex(τ) ..=
∑

a〈dxa,L∂a
(τ)〉.

(4.3)

Remark 4.5. We observe that ex is not invariant under general change of co-
ordinates. Also, it is not a derivation. On the other hand, it has the following
property

ex(fτ) = (−1)|f |fex(τ) +
∑

a

(−1)|f |(|xa|+1)(∂af)〈dxa, τ〉, (4.4)

which follows from a direct computation. We now introduce the following
fundamental operator.

Definition 4.6 (The Operator δ). Let F ⊗τ ∈ DM ⊗OM
(Ω•M ,odd)

∗ such that F
and τ are homogeneous. We let δ be the operator

δ : DM ⊗C (Ω•M ,odd)
∗ // DM ⊗OM

(Ω•M ,odd)
∗

F ⊗ τ ✤

// (−1)|τ |F
∑

a ∂a ⊗ 〈dxa, τ〉 − (−1)|τ |F ⊗ ex(τ),

(4.5)

where the index a runs over all of the even and odd coordinates.

Notice that, differently from the operatorD on the universal de Rham complex,
it is not at all apparent whether the operator δ is well-defined globally on M or
it is just a local operator. In the following Lemma, which is the analogous of
Lemma 3.4 for D, we prove the properties of δ. In particular, we prove that δ
is invariant: this happens because of a “magical” cancellation between the two
transformed summands that appear in the definition of δ, which are clearly not
invariant when taken alone.

Lemma 4.7. The operator δ has the following properties:

1. it is globally well-defined, i.e. it is invariant under generic change of co-

ordinates;
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2. it is OM -defined in the sense of definition 3.2, i.e. it induces an operator

δ : DM ⊗OM
(Ω•M )∗ → DM ⊗OM

(Ω•M )∗;

3. it is nilpotent, i.e. δ2 = 0.

Proof. We prove separately the three claims of the Lemma.

1. We start proving the invariance of the operator under general change
of coordinates. Adopting Einstein’s convention on repeated indices, one
computes

ez(τ) = 〈dzb,L ∂
∂zb

(τ)〉 = 〈dxa

∂zb
∂xa

,L ∂xc
∂zb

∂
∂xc

(τ)〉

= ex(τ)− (−1)|xa||zc|+|xa|〈
∂

∂xa

(

∂xa

∂zc

)

dzc, τ〉. (4.6)

On the other hand one has ∂
∂zb

⊗ 〈dzb, τ〉 = ∂xa

∂zb

∂
∂xa

⊗ 〈dxc
∂zb
∂xc

, τ〉.

Upon using the DM -module relation one has that ∂xa

∂zb

∂
∂xa

=

(−1)|xa|+|xa||zb|
(

∂
∂xa

∂xa

∂zb
− ∂

∂xa

(

∂xa

∂zb

))

. Using this, one can compute

that

∂

∂zb
⊗ 〈dzb, τ〉 =

∂

∂xa

⊗ 〈dxa, τ〉 − (−1)|xa|+|xa||zb|〈
∂

∂xa

(

∂xa

∂zb

)

dzb, τ〉.

(4.7)

Putting together equations (4.6) and (4.7) one finds

δz(ω ⊗ F ⊗ τ) = (−1)|τ |ω ⊗ F∂a ⊗ 〈dxa, τ〉+

− (−1)|τ |(−1)|xa|+|xa||zb|〈
∂

∂xa

(

∂xa

∂zb

)

dzb, τ〉

= −(−1)|τ |ω ⊗ F ⊗ ex(τ)+

+ (−1)|τ |(−1)|xa|+|xa||zb|〈
∂

∂xa

(

∂xa

∂zb

)

dzb, τ〉

= δx(ω ⊗ F ⊗ τ), (4.8)

thus completing the proof of invariance.

2. We now prove the OM -definedness. We once again adopt Einstein con-
vention on repeated indices. On the one hand one has

δ(Ff ⊗ τ) = (−1)|τ | (Ff∂a ⊗ 〈dxa, τ〉 − Ff ⊗ ex(τ))

= (−1)|τ |
(

(−1)|f ||xa|F∂a ⊗ f〈dxa, τ〉+

− (−1)|f ||xa|F ⊗ ∂af〈dxa, τ〉 − F ⊗ fex(τ)
)

. (4.9)
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On the other hand, one computes

δ(F ⊗ fτ) = (−1)|f |+|τ | (F∂a ⊗ 〈dxa, fτ〉 − F ⊗ ex(fτ))

= (−1)|τ |
(

(−1)|f ||xa|F∂a ⊗ f〈dxa, τ〉+

− (−1)|f ||xa|F ⊗ ∂af〈dxa, τ〉 − F ⊗ fex(τ)
)

, (4.10)

where we have used the property (4.4) above.

3. We prove that δ2 = 0. In particular, writing again δ = δ1 + δ2, posing
δ1(F⊗τ) ..= (−1)|τ |F

∑

a ∂a⊗〈dxa, τ〉 and δ2(F⊗τ) ..= −(−1)|τ |F⊗ex(τ),
it is easy to see that both δ21 = 0 and δ22 = 0. A direct computation shows
that the commutator [δ1, δ2] = δ1δ2 + δ2δ1 vanishes as well, indeed

δ1δ2(F ⊗ τ) = F
∑

a

∂a ⊗ 〈dxa, ex(τ)〉 = −δ2δ1(F ⊗ τ), (4.11)

The previous Lemma justifies the following definition.

Definition 4.8 (Universal Spencer Complex of M ). Let M be a supermanifold.
We call the pair (DM ⊗OM

(Ω•M ,odd)
∗, δ) the universal Spencer complex of M .

We now compute the homology of the universal Spencer complex.

Theorem 4.9 (Homology of Universal Spencer Complex). Let M be a super-

manifold and let (DM ⊗OM
(Ω•M ,odd)

∗, δ) be the universal Spencer complex of M .

There exists a canonical isomorphism of sheaves

H•(DM ⊗OM
(Ω•)∗M ,odd, δ)

∼= OM . (4.12)

Proof. We construct a homotopy for δ. In particular, we claim that the homo-
topy is given by

K(F ⊗ τ) = (−1)|τ |
∑

a

ω ⊗ [F, xa]⊗ π∂a · τ (4.13)

for F ∈ DM and τ ∈ (Ω•M ,odd)
∗. First we show that it is OM -defined, indeed

one has

K(F ⊗ fτ) = (−1)|τ |+|f |
∑

a

[F, xa]⊗ π∂a · fτ

= (−1)|τ |+|f |
∑

a

(−1)|f ||xa|+|f |+|f ||xa|[Ff, xa]⊗ π∂a · τ

= K(Ff ⊗ τ) (4.14)

for any f ∈ OM . Now, we observe that in general an element of the form
Ff ∈ DM is not homogeneous and, as such, it does not have a well-defined
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degree. On the other hand, one has that Ff =
∑

j Fj with Fj homogeneous,
so without loss of generality we restrict to elements having a well-defined degree
inside DM . Relying on these considerations, we work locally, putting τ = f∂I

for some multi-index I. Using (4.14) we can write

K(F ⊗ f∂I) = K(Ff ⊗ ∂I) =
∑

j

K(Fj ⊗ ∂I) (4.15)

and we consider a single term of the sum above. Again, since also δ is OM -
defined, one easily verifies that

(Kδ + δK)(Fj ⊗ ∂I) =
∑

a

(−1)|xa|+1Fj ⊗ π∂a〈dxa, ∂
I〉+

∑

a

[Fj , xa]∂a ⊗ ∂I

= (deg(Fj) + deg(∂J))(ω ⊗ Fj ⊗ ∂J). (4.16)

The homotopy fails in the case deg(Fj) + deg(∂J) = 0, i.e. when F and τ are
sections of the structure sheaf OM , which completes the proof.

5 The de Rham/Spencer Double Complex of a
Supermanifold

We now aim at getting the previous two sections on the universal de Rham and
Spencer complexes together, so that these fit in a unified framework. We start
introducing the following definition, which relates the universal de Rham and
Spencer complexes.

Definition 5.1 (Sheaf of Virtual Superforms). Let M be a supermanifold, we
call

Ω•M ,odd ⊗OM
DM ⊗OM

(Ω•M ,odd)
∗

the sheaf of virtual superforms, or virtual forms for short.

It is easy to see that the differential D and δ of the universal de Rham complex
and of the universal Spencer complex can be lifted to the whole sheaf of virtual
superforms simply by suitably tensoring them by the identity, in particular we
will consider D ⊗ 1 and 1 ⊗ δ. These nilpotent operators commute with each
other, as the following Corollary shows.

Corollary 5.1. Let M be a supermanifold and let D⊗ 1 and 1⊗ δ act on the

sheaf of virtual superforms as defined in 5.1. Then D ⊗ 1 and 1 ⊗ δ commute

with each other, i.e.

[1⊗ δ,D ⊗ 1] ..= (1 ⊗ δ) ◦ (D ⊗ 1)− (D ⊗ 1) ◦ (1 ⊗ δ) = 0. (5.1)
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Proof. Let ω ⊗ F ⊗ τ be a virtual superform. Then one easily verifies that

(1⊗ δ)◦(D ⊗ 1)(ω ⊗ F ⊗ τ) =

= (−1)|τ |
(

dω ⊗ F∂a ⊗ 〈dxa, τ〉 − dω ⊗ F ⊗ e(τ)+

+ (−1)|xa||ω|dxaω ⊗ ∂aF∂b ⊗ 〈dxb, τ〉 − dxaω ⊗ ∂aF ⊗ e(τ)
)

= (D ⊗ 1) ◦ (1⊗ δ)(ω ⊗ F ⊗ τ), (5.2)

where we have adopted Einstein convention on repeated indices.

Now, for the sake of readability and convenience, we redefine these differentials
as to get the following.

Definition 5.2 (The Operators d̂ and δ̂). Let ω⊗F⊗τ ∈ Ω•M ,odd⊗OM
DM ⊗OM

(Ω•M ,odd)
∗ be a virtual superform. We define the operators d̂ and δ̂ as

d̂ : Ω•M ,odd ⊗OM
DM ⊗OM

(Ω•M ,odd)
∗ // Ω•M ,odd ⊗OM

DM ⊗OM
(Ω•M ,odd)

∗

ω ⊗ F ⊗ τ
✤

// (D ⊗ 1)(ω ⊗ F ⊗ τ),

(5.3)

δ̂ : Ω•M ,odd ⊗OM
DM ⊗OM

Ω•M ,odd
// Ω•M ,odd ⊗OM

DM ⊗OM
(Ω•M ,odd)

∗

ω ⊗ F ⊗ τ
✤

// (−1)|ω|+|F |+|τ |(1⊗ δ)(ω ⊗ F ⊗ τ).

(5.4)

With these definitions one has the following obvious Theorem.

Theorem 5.3. The triple (Ω•M ,odd⊗OM
DM ⊗OM

(Ω•M ,odd)
∗, d̂, δ̂) defines a double

complex with total differential given by the sum D .

.= d̂+ δ̂.

Proof. It is enough to observe that for a section η ∈ Ω•M ,odd ⊗OM
DM ⊗OM

(Ω•M ,odd)
∗ one has that

D
2(η) = (d̂2 + δ̂2 + d̂δ̂ + δ̂d̂)(η)

= (−1)|η|
(

(D ⊗ 1) (1⊗ δ)− (1⊗ δ) (D ⊗ 1)
)

(η)

= (−1)|η|[D ⊗ 1, 1⊗ δ](η) = 0, (5.5)

thanks to the Corollary 5 and to the fact that D and δ are nilpotent.

The previous Theorem allows us to give the following Definition

Definition 5.4 (de Rham/Spencer Double Complex of a Supermanifold).
Let M be a supermanifold. We call the double complex of sheaves DV

••
M

..=

(Ω•M ,odd ⊗OM
DM ⊗OM

(Ω•M ,odd)
∗, d̂, δ̂) the de Rham/Spencer double complex

or also the virtual superforms double complex. We define the bi-degrees of
the double complex so that the differential d̂ moves vertically and δ̂ moves
horizontally.
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Remark 5.5. This can be visualized as a second quadrant double complex, as δ̂
lowers the degree in (Ω•M ,odd)

∗ by one.

Remark 5.6. Actually, we not only have a double complex but a triple complex

instead, by taking the Čech cochains of the above double complex of virtual
superforms. Obviously, given any sheaf F and any open cover U = {U}i∈I
of M , the Čech differential δ̌ : Č•(U ,F) → Č•+1(U ,F) is independent from D̂

and δ̂, and therefore it commutes with both of them, justifying the following
Definition.

Definition 5.7 (Čech-Virtual Superforms Triple Complex). Let M be a su-
permanifold and U an open cover of M . We call the triple complex T V•••M

..=

(Č•(U ,Ω•M ,odd ⊗OM
DM ⊗OM

(Ω•M ,odd)
∗), δ̌, d̂, δ̂) the Čech-virtual superforms

triple complex or Čech-virtual superforms complex for short.

We now study these double and triple complexes. Clearly, to any double com-
plex are attached two spectral sequences.

Definition 5.8 (Spectral Sequences EΩ
r and EΣ

r ). Let DV••M be the virtual
superform double complex of M . We call

1. (EΩ
r , d

Ω
r ) the spectral sequence of the virtual superforms double complex

with respect to its vertical filtration, i.e. by first computing homology
with respect to the differential δ̂;

2. (EΣ
r , d

Σ
r ) the spectral sequence of the double complex of virtual super-

forms with respect to its horizontal filtration, i.e. by first computing
homology with respect to the differential d̂.

Now, using ordinary spectral sequences machinery, we extract information from
the double and triple complex. In particular, we start looking at EΩ

r : in the
next Theorem we show that differential forms arise at page one.

Theorem 5.9 (Differential Forms from DV••M ). Let M be a supermanifold and

let (EΩ
r , d

Ω
r ) be the spectral sequence of the double complex DV••M defined as

above. Then

1. EΩ
1
∼= Ω•M ,odd;

2. provided that M is a real or complex supermanifold, EΩ
2 = EΩ

∞
∼= KM ,

where KM is the constant sheaf valued in the field R or C depending on M being

real or complex.

Proof. Everything follows easily from previous results. We prove separately
the assertions.

1. By definition EΩ
1 = Hδ̂(DV

••
M ), so it follows from Theorem 4.9 that EΩ

1
∼=

Ω•M ,odd.
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2. Once again, by definition EΩ
2 = Hd̂Hδ̂(DV••M ), i.e. the cohomology of

the de Rham complex (Ω•M , d). By the generalization of the Poincaré
Lemma for supermanifolds, see for example [9] or [12], this is isomorphic
to KM . Also, the homology is concentrated in degree zero, so the spectral
sequence converges at page two and EΩ

∞ = EΩ
2 .

These conclude the proof.

Likewise, we can find integral forms from page one of the other spectral se-
quence EΣ

r , as shown in the following Theorem, mirroring the previous one
for EΩ

r .

Theorem 5.10 (Integral Forms from DV
••
M ). Let M be a supermanifold and let

(EΣ
r , d

Σ
r ) be the spectral sequence of the double complex DV••M defined as above.

Then

1. EΣ
1
∼= Ber(M )⊗OM

(Ω•M ,odd)
∗;

2. provided that M is a real or complex supermanifold, EΣ
2 = EΣ

∞
∼= KM ,

where KM is the constant sheaf valued in the field R or C depending on M being

real or complex.

Proof. Just like above, we prove separately the statements.

1. By definition EΣ
1 = Hd̂(DV••M ), so it follows from Theorem 3.6 that EΣ

1
∼=

Ber(M )⊗OM
(Ω•M ,odd)

∗.

2. Again, by definition EΣ
2 = Hδ̂Hd̂(DV••M ), i.e. the cohomology of the com-

plex of integral forms (Σ•M , δ). There is an analogous Poincaré Lemma
for integral forms on supermanifolds (see Theorem 3 in chapter 4, para-
graph 8 of [12] for the statement, or Theorem 5.16 next in this section).
Once again, this guarantees that, by assigning the degree as explained
early on after equation (2.10), the homology is isomorphic to KM and
concentrated in a single degree, so that the spectral sequence converges
at page two and EΣ

∞ = EΣ
2 .

These conclude the proof.

Finally, using the Čech-virtual superforms complex, one can prove that differ-
ential forms and integral forms compute exactly the same topological invariants
related to M , namely the (co)homology Ȟ•(M ,KM ), which is actually the co-
homology of the total complex.
For convenience, for a real supermanifold we define

H•dR (M ) ..= Hd(Ω
•
M ,odd(M )) and H•Sp(M ) ..= Hδ(Σ

•
M (M )), (5.6)

where Ω•M ,odd(M ) are the global sections of Ω•M ,odd. The following Theorem

provides the analogous of the Čech-de Rham isomorphism in the context of real
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supermanifolds and proves the coincidence of the cohomologies of differential
and integral forms (for a categorial construction, see Proposition 1.6.1 and the
subsequent remark in [14]).

Theorem 5.11 (Equivalence of Cohomology of Differential and Integral
Forms). Let M be a real supermanifold. The cohomology of differential forms

H•dR (M ) and the cohomology of integral forms H•Sp(M ) are isomorphic. In par-

ticular, one has

H•dR (M ) ∼= Ȟ•(M ,RM ) ∼= H•Sp(M ). (5.7)

Proof. Let us consider the Čech-de Rham complex T V•••M . Taking the ho-

mology with respect to δ̂, as done above, one reduces to the usual Čech-
de Rham double complex Č•(U ,Ω•M ,odd), where U is a good cover of M .
We see that the related spectral sequences converge at page two. Indeed,
on one hand Hd̂Hδ̌(Č

•(U ,Ω•M ,odd))
∼= H•dR (M ), by the generalized Mayer-

Vietoris sequence, having used a partition of unity of M . On the other hand
Hδ̌Hd̂(C

•(U ,Ω•M ,odd))
∼= Ȟ•(M ,RM ), by the Poincaré lemma. The same argu-

ment holds true for integral forms with the obvious modifications.

Remark 5.12 (Supermanifolds with Kähler Reduced Manifold and Hodge-to-de
Rham Degeneration). In the above Theorem 5.11 we have restricted ourselves
to the case of real supermanifolds. It is quite natural to ask what happens in
the case of complex supermanifolds.
Let us now once again work with differential forms Ω•M ,odd - which are now
to be seen as holomorphic differential forms -, i.e. computing the cohomology
first with respect to δ̂ on the triple complex T V

•••
M . Now, the cohomology of the

total complex related to the double complex Č•(U ,Ω•M ,odd) is just Ȟ
•(M ,CM ).

Indeed, by the holomorphic Poincaré Lemma, taking the cohomology with re-
spect to d̂ yields Č•(U ,CM ), so that the spectral sequence converges at page
two and the total cohomology is given by Ȟ•(M ,CM ).
On the other hand, there is no holomorphic partition of unity, so that the ex-
actness of the generalized Mayer-Vietoris sequence fails in the complex setting.
In this regard, it is a fundamental result in ordinary complex geometry that,
for a compact Kähler manifold, the Hodge-to-de Rham (or Frölicher) spectral
sequence converges at page one, thus giving the decomposition of the de Rham
cohomology with complex coefficients Ȟ(X,CM ) into vector spaces of the kind
Ȟq(X,Ωp

X), i.e.

Ȟn(X,CX) ∼=
⊕

p+q=n

Ȟq(X,Ωp
X), (5.8)

where X is a generic complex manifold, see for example [17]. Remarkably,
in complex supergeometry the Hodge-to-de Rham spectral sequence does not
converge at page one. Quite the opposite with respect to the commutative case,
there are many non-zero maps at page one of the spectral sequence. We shall
see this by means of an example.
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Example 5.13. Let (E,OE ) be an elliptic curve over the complex numbers.
We consider a supermanifold SE of dimension 1|1 constructed over the elliptic
curve E, whose structure sheaf is given by the direct sum of invertible sheaves
OSE

..= OE ⊕ ΠΘE , where ΘE is a theta characteristic of E, i.e. Θ⊗2E
∼= KE ,

for KE the canonical sheaf of E. We recall that since E is an elliptic curve
we have KE

∼= OE . The supermanifold constructed this way is a genus g = 1
super Riemann surface, also said N = 1 SUSY curve (of genus 1) [10] [19].
Over an elliptic curve E there are four different possible choices for a theta
characteristic, three of them are such that h0(E,ΘE ) = 0, i.e. they are even
theta characteristics, and the remaining one is such that h0(E,ΘE ) = 1, i.e.
there is a unique odd theta characteristic (and it can be identified by ΘE

∼= OE).
Here we have denoted with hi the dimension of the related cohomology group.
Let in particular SE be the genus g = 1 super Riemann surface with the choice of
the odd theta characteristic. We are interested in study the Hodge-to-de Rham
spectral sequence related to Č(U ,Ω•SE,odd). Computing the cohomology with

respect to the Čech differential, one gets at page one that Ep,q
1 = Ȟq(Ωp

SE,odd).

So one is left to study the maps Ȟi(Ωk
SE,odd) → Ȟi(Ωk+1

SE ,odd) for i = 0, 1 and

k ≥ 0, induced by the de Rham differential on the C-vector spaces Ȟi(Ωk
SE,odd).

In order to do this, we note that SE is split and one has a decomposition of
Ωk

SE,odd as sheaf of OE -modules. It is not hard to see that

Ωk≥1
SE,odd

∼= Θ⊗kE ⊕Θ⊗k+2
E ⊕

(

ΠΘ⊗k+1
E

)⊕2 ∼= O⊕2E ⊕ΠO⊕2E , (5.9)

where we have used that ΘE
∼= OE and that ΘE

∼= (Ω1
SE,odd/(ΠΘE)Ω

1
SE,odd)0, see

[12]. This decomposition allows one to easily compute the cohomology, which
for both q = 0 and q = 1 reads:

Ȟq(OSE ) ∼= C
1|1, Ȟq(Ωk≥1

SE,odd)
∼= C

2|2. (5.10)

Looking at the Hodge-to-de Rham spectral sequence, one is led to study the
cohomology of the following sequence of maps of C-vector spaces induced by
the de Rham differential:

Ȟq(OSE ) ∼= C1|1 d0

// Ȟq(Ω1
SE ,odd)

∼= C2|2 d1

// Ȟq(Ω2
SE,odd)

∼= C2|2 d2

// . . . , (5.11)

where q = 0, 1. Recalling that the maps d in the sequence above are odd, we
separately study the two cases.

q = 0 : this case corresponds to the map induced by the de Rham differential
d on the global sections, which is nothing by d itself. In general, one finds that

Ȟ0(OSE ) ∼= C ·
{

1 | θ
}

, Ȟ0(Ωi
SE,odd)

∼= C ·
{

dθi, θdzdθi−1 | dzdθi−1, θdθi
}

,

(5.12)

where θ is a global section of ΘE
∼= OE and i ≥ 1.

Now, acting with the de Rham differential on the generators one finds that
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the first map d0 : Ȟ0(OSE ) → Ȟ0(Ω1
SE,odd) is easily identified to be such that

ker d0 ∼= C · 1 and im d0 ∼= C · dθ ⊂ Ȟ0(Ω1
SE ,odd). The higher maps are such

that ker di ∼= C · {dθi | dzdθi−1} ⊂ Ȟ0(Ωi
SE ,odd) and im di ∼= C · {dθi+1 |dzdθi} ⊂

Ȟ0(Ωi+1
SE,odd). In other words the maps are non-zero on the global sections

having a θ, for only in this case there is a non-vanishing derivative coming
from d. Using these, one finds that the only non-trivial cohomology groups
contributing to Ei≥0,0

2 are given by

E0,0
2

∼= C · 1 ∼= C, E1,0
2

∼= C · dz ∼= ΠC. (5.13)

Notice that these match the non-vanishing cohomology groups for an ordinary
elliptic curve, the difference being that those are found at page one, while in
the complex supergeometric setting there is an infinite number of non-zero
differentials at page one.

q = 1 : this case is similar to q = 0, upon using the Dolbeault identification
Hp,q

∂̄
(E) ∼= Ȟq(Ωp

E ), so that under this isomorphism one can systematically

multiply the above global sections for q = 0 by dz̄ ∈ H0,1

∂̄
(E) to obtain those

for q = 1. Doing this, one finds that the non-trivial cohomology groups con-
tributing to Ei≥0,1

2 are given by

E0,1
2

∼= C · dz̄ ∼= ΠC, E1,1
2

∼= C · dzdz̄ ∼= C, (5.14)

and once again one finds an infinite number of non-zero differentials at page
one.

Since the differentials at page two read d : Ep,q
2 → Ep+2,q−1

2 , then they are all
zero by the above result in cohomology. It follows that the Hodge-to-de Rham
spectral sequence for SE converges at page two, i.e. E2 = E∞, giving the usual
Hodge decomposition of the de Rham cohomology groups.

The above example can be generalized to any super Riemann surface of genus
g ≥ 2: once again one finds that the Hodge-to-de Rham spectral sequence does
not converge at page one, but it converge at page two instead. Nonetheless,
studying the (infinite non-trivial) differentials at page one is not as easy as in
the case g = 1 above. In this case, the dimensions of the cohomology groups
that appear at page one have been computed by one of the authors in [5]. In
any case, the above discussion suggests the following

Problem 5.14. Given a complex supermanifold with Kähler associated reduced

manifold, does its Hodge-to-de Rham spectral sequence always converge at page

two?

Finally, notice that in the previous example the case of differential forms can
be related to the case of integral forms by the supergeometric analog of Serre
duality, which indeed involves the Berezinian sheaf in the role of the dualizing
sheaf, see for example [14]. From this point of view, using differential forms is
again equivalent to use integral forms.
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Remark 5.15 (On Poincaré Lemmas in Supergeometry). The previous results
rely heavily on the supergeometric generalization of the Poincaré Lemma, both
for differential forms and integral forms. In the case of differential forms such
a generalization is completely straightforward and the literature offers various
proofs with different level of abstraction of the fact that Ω•

Rp|q,odd
is a right

resolution of the constant sheaf R, see for example [1] [9] [12].
The story is quite different in the case of integral forms: indeed - to the best
knowledge of the authors - a Poincaré Lemma for integral forms is stated in
[12] (as Theorem 3 in chapter 4, paragraph 8) but no proof is provided. As it
turns out, the proof of such a theorem is by no means obvious. We fill this gap
in the literature by providing a detailed proof.

Theorem 5.16 (Poincaré Lemma for Integral Forms). Let M be a real or

complex supermanifold of dimension p|q and let (Σp−•
M

, δ) be the complex of

integral forms associated to M . One has

Hi
δ(Σ

p−•
M ) ∼=

{

KM i = 0
0 i 6= 0.

(5.15)

In particular, H0
δ (Σ

p−•
M ) is generated by the section s0 = ϕθ1 . . . θq ⊗

π∂x1
. . . π∂xp

, where ϕ is a generating section of the Berezinian sheaf.

Proof. We need to construct a homotopy for the complex. In particular,
working locally, we show that for any k 6= 0 there exists an homotopy
hk : Ber(M ) ⊗ Sp−kΠTM → Ber(M ) ⊗ Sp−1−k for the differential δ, that is
a map such that hk+1 ◦ δk + δk−1 ◦ hk = idBer(M )⊗Sp−kΠTM

.
Given a set of local coordinates for M , we call it xa

..= z1, . . . , zp|θ1, . . . , θq,

and t ∈ [0, 1], we consider the map (t, xa)
G
7−→ txa. This induces a map on

sections of the structure sheaf via pull-back, f(xa)
G∗

7−→ f(txa). We write G as
a family of maps parametrized by t ∈ [0, 1], that is Gt : M → M , so that we
can rewrite the above as a family of pull-back maps G∗t : OM → OM . We define
the homotopy operator as

hk(ϕf ⊗ F ) ..=

= (−1)|f |+|F |ϕ
∑

b

(−1)|f |(|xb|+1)

(
∫ 1

0

dt tQsxbG
∗
t f

)

⊗ π∂bF, (5.16)

where ϕ is a section of the Berezinian, f is a section of the structure sheaf and F
is a polyfield of the form F = π∂I for some multi-index such that |I| = p − k
and Qs is a constant, dependent on the integral form s = ϕf ⊗ F and to be
determined later on.
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We now start computing Hδ(ϕf ⊗ F ). We have

Hδ(ϕf ⊗ F ) =

= ϕ
∑

a,b

(−1)(|xa|+|xb|)(|f |+|xa|)

(
∫ 1

0

dt tQδsxbG
∗
t (∂af)

)

⊗ π∂b · ∂π∂a
F.

(5.17)

Now let us consider δH(ϕf ⊗ F ). We have

δH(ϕf ⊗ F ) =

+ ϕ
∑

a

∫ 1

0

dt tQsG∗t f ⊗ F (5.18)

+ ϕ
∑

a

(−1)|xa|

∫ 1

0

dt tQsxb∂aG
∗
t f ⊗ F (5.19)

+ ϕ
∑

a

(−1)|xa|+1

∫ 1

0

dt tQsG∗t f ⊗ π∂a · ∂π∂a
F (5.20)

− ϕ
∑

a,b

(−1)(|f |+|xa|)(|xa|+|xb|)

∫ 1

0

dt tQsxb∂a(G
∗
t f)⊗ π∂b · ∂π∂a

F. (5.21)

We see that for the last line (5.21) to cancel the term Hδ(ϕf ⊗ F ) we need
Qδs = Qs + 1, by chain-rule. Let us now study separately the first three lines
in the previous expression. Clearly, the first line (5.18) yields

ϕ
∑

a

∫ 1

0

dt tQsG∗t f ⊗ F = (p+ q)ϕ

(
∫ 1

0

dt tQsG∗t f

)

⊗ F. (5.22)

Let us now look at the second line (5.19). Without loss of generality we can
assume that f is homogeneous of degree degθ(f) in the theta’s, so that we can
rewrite

∑

a

(−1)|xa|xa∂a(G
∗
t f) =

p
∑

i=1

zi∂zif(tz|tθ)−

q
∑

α=1

θα∂θαf(tz|tθ)

= t
d

dt
f(tx)− 2 degθ(f)f(tx). (5.23)

It follows that the equation (5.19) can be computed as

ϕ
∑

a

(−1)|xa|

∫ 1

0

dt tQsxb∂aG
∗
t f ⊗ F =

= ϕ

∫ 1

0

dt tQs

(

t
d

dt
f(tx)− 2 degθ(f)f(tx)

)

⊗ F

= ϕf ⊗ F − δQs+1+degθ(f),0
(ϕf(0)⊗ F )+

− (Qs + 1 + 2 degθ(f))ϕ

(
∫ 1

0

dt tQsG∗t f

)

⊗ F, (5.24)
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by integration by parts. Finally, denoting degπ∂θ
(F ) and degπ∂z

(F ) the degree
of F in the even (π∂θ) and odd (π∂z) monomials of the polyfield F respectively,
it can be observed that

∑

a

(−1)|xa|+1π∂a∂π∂a
F =

(

degπ∂θ
(F )− degπ∂z

(F )
)

F, (5.25)

so that the third line (5.20) can be rewritten as

ϕ
∑

a

(−1)|xa|+1

∫ 1

0

dt tQsG∗t f ⊗ π∂a · ∂π∂a
=

=
(

degπ∂θ
(F )− degπ∂z

(F )
)

ϕ

(
∫ 1

0

dt tQsG∗t f

)

⊗ F. (5.26)

Gathering together all the contributions one has

(δH +Hδ)(ϕf ⊗ F ) = ϕf ⊗ F − δQs+1+degθ(f),0
ϕf(0)⊗ F+

+
(

p+ q + degπ∂θ
(F )− degπ∂z

(F )− 2 degθ(f)−Qs − 1
)

ϕ

∫ 1

0

dt tQG∗t f ⊗ F.

(5.27)

Let us now look at the condition on Qs in order to have an homotopy. We have
to require that

Qs = p+ q + degπ∂θ
(F )− degπ∂z

(F )− 2 degθ(f)− 1. (5.28)

This in turn leads to

(δH +Hδ)(ϕf ⊗ F ) =

= ϕf ⊗ F − δ(p+q+degπ∂θ
(F )−degπ∂z

(F )−degθ(f)),0
ϕf(0|θ)⊗ F. (5.29)

We now note that degπ∂θ
(F ) ≥ 0, 0 ≤ degπ∂z

(F ) ≤ p and 0 ≤ degθ(f) ≤ q,
therefore the only instance in which the above fails to be a homotopy corre-
sponds to the choices







degπ∂θ
(F ) = 0

degπ∂z
(F ) = p

degθ(f) = q,
(5.30)

which in turn lead to the following generator for the only non-trivial cohomol-
ogy group

H0
δ (Σ

p−•) = k ·
(

ϕθ1 . . . θq ⊗ π∂z1 . . . π∂zp
)

, (5.31)

for k ∈ K. Note that by the very definition of δ this element is indeed closed
and not exact, since it has the maximal amount of both theta’s and odd sections
π∂z ’s, thus concluding the proof.
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Remark 5.17 (On Algebraic Versus Real or Complex Supermanifolds). With
reference to the spectral sequences EΩ

r and EΣ
r related to the double complex

DV••M , it is worth to remark that both the homotopy operators of the universal
de Rham and Spencer complex are algebraic, as no integral is involved. It
follows that at page one the results for EΩ

r and EΣ
r hold true also for algebraic

supermanifolds and, more in general, for superschemes, so that one can indeed
recover differential and integral forms from the virtual forms double complex
also when working in the algebraic category.
This is no longer true already at page two: indeed both the homotopy op-
erators appearing in the Poincaré Lemmas for differential and integral forms
require an integration - for the case of integral forms, see above in the proof of
Theorem 5.16. It follows that the related results holds true only in the smooth
and analytic category, but break down in the algebraic category. Notice by the
way that such a difficulty also exists in the ordinary commutative setting.

A Lie Derivative on (Ω•M ,odd)
∗

We prove the properties of the Lie derivative on (Ω•M ,odd)
∗ defined in 4.2, as

stated in Lemma 4.3 which we repeat here for the sake of readability.

Lemma A.1. The Lie derivative LX : (Ω•M ,odd)
∗ → (Ω•M ,odd)

∗ has the following

properties:

1. LX(τ) = π[X, πτ ] for any τ ∈ ΠTM ;

2. LX is a superderivation of (Ω•M ,odd)
∗, i.e. the super Leibniz rule holds

true:

LX(τ1τ2) = LX(τ1)τ2 + (−1)|X||τ1|τ1LX(τ2) (A.1)

for any τ1, τ2 ∈ (Ω•M ,odd)
∗ and X ∈ TM ;

3. LfX(τ) = fLX(τ) + (−1)|X||f |πX〈df, τ〉 for any f ∈ OM , τ ∈ (Ω•M ,odd)
∗.

Proof. We prove the claims separately.

1. We write τ =
∑

a gaπ∂a andX =
∑

b fb∂b and we set LX(τ) ..=
∑

c hcπ∂c.
Now, noticing that 〈τ, dxa〉 = ga(−1)(|xa|+1)(|xb|+1)〈dxa, π∂b〉 = ga, we
compute

LX(ga) = LX(〈τ, dxa〉) = 〈LX(τ), dxa〉+ (−1)|τ ||X|〈τ,LX(dxa)〉

= ha + (−1)|X|(|τ |+1)
∑

b

gb(∂bfa). (A.2)

It follows that ha =
∑

b fb(∂bga)−(−1)|X||πτ |
∑

b gb(∂bfa), hence LX(τ) =
π([X, πτ ]).
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2. We now prove that LX is a superderivation, showing that the (A.1) holds
true by double induction on the degrees (deg(τ1), deg(τ2)) in Sym•ΠTM .
Clearly, the cases (0, 1) and (1, 0) are guaranteed by the previous point
in the proof. Next, since for a 1-form ω ∈ Ω1

M ,odd one has

〈τ1τ2, ω〉 = τ1〈τ2, ω〉+ (−1)|ω||τ2|〈τ1, ω〉τ2, (A.3)

then

LX(〈τ1τ2, ω〉) = LX(τ1〈τ2, ω〉) + (−1)|ω||τ2|LX(〈τ1, ω〉τ2), (A.4)

which, by inductive hypothesis is equal to

LX(〈τ1τ2, ω〉) = 〈LX(τ1)τ2, ω〉+

+ (−1)|X|(|τ1|+|τ2|)〈τ1τ2,LX(ω)〉+ (−1)|X||τ1|〈τ1LX(τ2), ω〉. (A.5)

On the other hand one has

LX(〈τ1τ2, ω〉) = 〈LX(τ1τ2), ω〉+ (−1)|X|(|τ1|+|τ2|)〈τ1τ2,LX(ω)〉, (A.6)

so that comparing (A.5) with (A.6) one get the super Leibniz rule.

3. Let us first prove the case τ ∈ ΠTM , using the first point of the lemma.
One has

LfX(τ) = π[fX, πτ ] = fLX(τ) + (−1)|X||f |πX〈df, τ〉. (A.7)

In order to conclude the proof, one can observe that LfX and fLX are
both left derivations of Sym•ΠTM for X and f fixed. The same holds
true for πX〈df, · 〉, indeed

πX〈df, τ1τ2〉 = πX〈df, τ1〉τ2 + (−1)|τ1|(|πX|+|df |)τ1πX〈df, τ2〉. (A.8)

Then, thanks to the super Leibniz rule, the property proved above for
τ ∈ ΠTM holds true for any τ ∈ Sym•ΠTM .
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Università degli Studi dell’Insubria
Via Valleggio 11
22100, Como
Italy
riccardo.re@uninsubria.it

Documenta Mathematica 27 (2022) 489–518


