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Abstract. We build, using the notion of zinbiel algebra, some com-
mutative sub-algebras Cu,v inside an algebra of formal iterated inte-
grals. There is a quotient map from this algebra of formal iterated
integrals to the algebra of motivic multiple zeta values. Restricting
this quotient map to the sub-algebras Cu,v gives a morphism of graded
commutative algebras with the same graded dimension. This is con-
jectured to be generically an isomorphism. When u+v = 0, the image
is instead a sub-algebra of the algebra of motivic multiple zeta values.
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1 Introduction

Multiple zeta values are the convergent iterated integrals from 0 to 1 of the
differential forms ω0 = dt/t and ω1 = dt/(1− t). They span an algebra over Q,
which has many interesting connections with different domains, including knot
theory and perturbative quantum field theory [21, 11]. This algebra is expected
to be graded by the weight, and a famous conjecture of Zagier [22] states that
the dimensions of homogeneous components are given by the Padovan numbers.
The algebra AMZV of motivic multiple zeta values is a more subtle construction,
in the setting of periods and mixed motives [5, 6, 11]. It can be defined as the
quotient of the commutative algebra A1,0, whose elements are seen as formal
iterated integrals of ω0 and ω1 from 0 to 1, by the non-explicit ideal of all
relations that can be proved using algebraic geometry. This algebra is known to
be graded by the weight and its dimensions are given by the Padovan sequence,
by results of Brown [5].
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There is a surjective morphism, called the period map, from the motivic alge-
bra AMZV to the usual algebra of multiple zeta values, defined by taking the
numerical value of a formal iterated integral. This period map is expected to
be injective, hence an isomorphism.

The aim of this article is to propose an algebraic construction, using the al-
gebraic structures known as zinbiel algebras or dual Leibniz algebras, of some
commutative sub-algebras Cu,v of A1,0, depending on the choice of two rational
numbers u and v.
The notion of zinbiel algebras was introduced under this name around 1995
by Loday in relationship with Leibniz algebras [14]. Their name is the re-
versal of Leibniz, a play of words justified by the Koszul duality of the two
corresponding operads. They have in fact appeared much earlier in 1958 in an
article of Schũtzenberger [20, §IV]. Maybe a better name would be “half-shuffle
algebras”, as they are very closely related to shuffle algebras on words.
The algebras Cu,v, depending algebraically on the parameters u, v, have the
same graded dimensions as the motivic algebra AMZV. Our main conjecture is
then that the restricted quotient map from Cu,v to the motivic algebra AMZV

is generically an isomorphism. In this statement, genericity can be given two
distinct meanings: the map is invertible either over the field Q(u, v) or for an
open set of choices of (u, v) in Q2. In the special case when u + v = 0, the
image of Cu,−u is instead an interesting strict sub-algebra of AMZV.
One interest of this construction is that it would provide new bases of the
algebra AMZV indexed by words in 2 and 3. One known basis of AMZV is the
Hoffman basis [5, 12], given by iterated integrals with at most two consecutive
ω0 and therefore also indexed by words in 2 and 3. Unlike the Hoffman basis,
the shuffle product in any of the new candidate bases can be expressed easily
in the same basis, as the shuffle product of words. On the negative side, the
description of the motivic coaction in these bases is not clear, and the reduction
of standard multiple zeta values as a linear combination of the basis is not
simple either.
The motivic coaction on the algebra AMZV is a very important structure, playing
a key rôle in our current understanding of this algebra. If Cu,v is isomorphic to
AMZV as commutative algebras, one can define a coaction on Cu,v by transport
of structure. What does this look like in the basis of Cu,v ? This interesting
question, not obvious at all, is not considered in this article. In relation to
the next paragraph, it may be useful for this purpose to understand first the
motivic coaction on arborified multiple zeta values.
The two special cases with parameters u, v being (1, 0) or (0, 1) are specially
interesting, as the conjectural bases obtained are then made of some arborified
multiple zeta values, as studied in [16, 7, 19]. Another interesting value could
be (1, 1), in relation with the multiple zeta-star values as defined and studied
in [18, 13]. Indeed, in this case, the conjectural basis in weight 3 consists of
the element ζ(1, 2) + ζ(3), which is the multiple zeta-star value ζ∗(1, 2).
The construction of the sub-algebras Cu,v is rather simple, as the zinbiel sub-
algebras generated inside A1,0 by two chosen elements z2 and z3 in degrees 2
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and 3. To show that they have the correct dimensions, one just needs to prove
that they are free as zinbiel algebras. Similar results about freeness of zinbiel
sub-algebras of free zinbiel algebras have been obtained in [17].

It is possible that the same kind of ideas could be applied to some variants of
multiple zeta values, in particular to the alternating multiple zeta values.
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2 Zinbiel algebras

Some references on zinbiel algebras are [14, 8, 15].

A zinbiel algebra over a commutative ring R is a module L over R endowed
with a bilinear product ≺ : L⊗R L → L such that

(x ≺ y) ≺ z = x ≺ (y ≺ z) + x ≺ (z ≺ y) (1)

for all x, y, z in L. This implies the symmetry

(x ≺ y) ≺ z = (x ≺ z) ≺ y.

It is then convenient to introduce the symmetrized product defined by

x y = x ≺ y + y ≺ x, (2)

for x, y in L. It can be deduced from (1) that is always a commutative and
associative product on L.

We will always denote by ≺ the zinbiel product in a zinbiel algebra.

By general algebraic arguments, one can define abstractly the free zinbiel alge-
bra Zin(S) over a set S by its universal property: any morphism of sets from S
to a zinbiel algebra L can be uniquely extended to a morphism of zinbiel alge-
bras from Zin(S) to L.

The free zinbiel algebra on a finite set S over a field k has a very neat and
simple explicit description. The underlying vector space has a basis indexed by
non-empty words with letters in S. The zinbiel product of two words w and w′

is the sum of words in the standard shuffle product of w and w′ in which the
first letter comes from the first letter of w. Here is one way to remember this
rule: the symbol ≺ is pointing towards the word whose first letter remains the
first letter.

For example, for s ∈ S and w a word, s ≺ w is just the word sw. For s, t, u ∈ S,
one finds that st ≺ u = stu+ sut.
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Let us introduce a notation for the right-parenthesized zinbiel product. Let
a1, . . . , an be elements of a zinbiel algebra. If n = 1, let K(a1) = a1. Otherwise,
define by induction

K(a1, . . . , an) = a1 ≺ K(a2, . . . , an). (3)

In the free zinbiel algebra over a finite set S, the basis element indexed by a
word (s1, . . . , sn) with letters in S is exactly K(s1, . . . , sn).
When using the commutative algebra (Z, ) associated with a free zinbiel
algebra (Z,≺), one has to be cautious about units, as the empty word ε is
not in the basis of Z. We will abuse notation and assume implicitly that,
whenever required, one uses instead of (Z, ) the unital commutative algebra
(Z ⊕Qε, ) where the empty word ε is the added unit.

3 Algebra of convergent words in 0, 1

Let A be the free zinbiel algebra on two generators 0 and 1.
By the general description of free zinbiel algebras recalled above, A has a basis
indexed by non-empty words in 0, 1. In this basis, the product ≺ is one-half of
the shuffle product. For example,

(10) ≺ (10) = (1010) + 2(1100),

where we have emphasized the letter that remains the first letter. The associ-
ated commutative product is the standard shuffle product.
The algebra A is bigraded, by the number of 0’s and the number of 1’s in a
word.
Let A1,0 be the set of words starting with 1 and ending with 0. Let A1,0 be
the sub-space of A spanned by these words. Then clearly A1,0 is a zinbiel
sub-algebra of A.
The algebra A1,0 is not a free zinbiel algebra, because of the following relations.
For every pair of words x and y in A1,0, there holds

(1x) ≺ y = (1y) ≺ x. (4)

Indeed, when seen in A, this equality becomes

(1 ≺ x) ≺ y = (1 ≺ y) ≺ x,

which is a consequence of the zinbiel axiom (1).

4 Free sub-algebras

Our aim is to build, inside the algebra A1,0, free zinbiel sub-algebras on two
generators.
More precisely, let u and v be two parameters, not both zero and define

z2 = (1, 0) and z3 = u(1, 0, 0) + v(1, 1, 0) (5)
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in A1,0.
Let Cu,v be the zinbiel sub-algebra of A1,0 generated by z2 and z3. Note that
it only depends on the class of (u, v) in the projective line P1.
As both z2 and z3 are homogeneous with respect to the total grading of A1,0

by the length of words, Cu,v inherits a grading where z2 has degree 2 and z3
has degree 3.
For a word w = (w1, . . . , wn) in the alphabet {2, 3}, let us denote

Ku,v(w) = K(zw1
, . . . , zwn

). (6)

The degree of Ku,v(w) is the sum of the letters of w.

Theorem 1. For all (u, v) not both zero, the sub-algebra Cu,v is a free zinbiel
algebra on the two generators z2, z3 over Q.

Proof. Using the grading of Cu,v, it is enough to fix a degree d and prove
that the elements Ku,v(w) for all words w in 2 and 3 of sum d are linearly
independent in A1,0. By using the bigrading of A1,0, one can instead prove
the linear independence of the leading terms of these elements Ku,v(w) with
respect to either grading. By leading term, one means here and below the
homogeneous component of highest degree.
If u 6= 0, the leading term of Ku,v(w) with respect to the number of 0’s is a
non-zero multiple of the element K1,0(w).
If v 6= 0, the leading term of Ku,v(w) with respect to the number of 1 is a
non-zero multiple of the element K0,1(w).
It is therefore enough to prove the statement in the cases (u, v) = (1, 0) and
(u, v) = (0, 1). This is done in the next two sections, using a rather standard
strategy.

Note that these two cases are really distinct, as there is no zinbiel automorphism
of A1,0 that would exchange them.

Lemma 1. Let w1, w2, . . . , wn be words in A1,0. Then K(w1, . . . , wn) is the
sum over all shuffles of the words wi such that the first letters remain in the
same order.

In this statement, shuffles are permutations of the positions of letters in the
concatenation of w1, w2, . . . , wn. The statement is easily proved by induction,
starting from the definition of ≺.
These shuffles will be called good-shuffles. The identity shuffle, correspond-
ing to the concatenation of words, is always a good-shuffle.

4.1 Words 10 and 100

Let C10,100 be the zinbiel sub-algebra of A1,0 generated by the words 10 and 100.
Let us denote in this section the word 10 by 2 and the word 100 by 3. The
algebra C10,100 is bigraded by the number of 2 and the number of 3, as 10
and 100 are homogeneous in A1,0 with linearly independent bidegrees.
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For a word w in the alphabet {2, 3}, let catw be the word in A1,0 obtained
from w by the substitution 2 7→ 10 and 3 7→ 100.
By Lemma 1, for a word w = w1 . . . wn in {2, 3}, the expansion of K(w) =
K(w1, . . . , wn) is a sum of words in {0, 1} with the following property: the
letters 1 (one in each wi) remain in the same order. Moreover, every letter 0
coming from wi is placed somewhere on the right of the letter 1 coming from wi.
In this case, we will say that these 0’s are associated with this 1.

Theorem 2. The zinbiel algebra C10,100 is free over Z.

Proof. Because C10,100 is generated by 2 and 3, its dimensions are bounded
above by the dimensions of the free zinbiel algebra in two generators.
It is therefore enough to prove that the dimension of the homogeneous compo-
nent of any given bidegree (k, ℓ) with respect to 2 and 3 is at least the number
of words with k letters 2 and ℓ letters 3.
Let us fix (k, ℓ) and consider the set S of words with k letters 2 and ℓ letters 3.
Let us endow S with the lexicographic order induced by the ordering of letters
2 < 3.
Let M be the square matrix with rows and columns indexed by S with co-
efficient Mw,w′ being the number of occurrences of the word catw′ in the
expansion of K(w) as a sum of words in {0, 1}.
Let us prove that M is upper triangular with 1 on the diagonal.

Lemma 2. Let w,w′ ∈ S such that Mw,w′ 6= 0 and w shares a prefix with w′.
Then the restriction to the common prefix of any good-shuffle that maps catw
to catw′ is the identity.

Proof. This is proved by induction on the length i of the common prefix, start-
ing from the empty prefix. Let us assume the induction hypothesis before wi

and that moreover wi = w′

i. The 1 in w′

i must come from the 1 in wi because
the 1’s remain in the same order. Then the 0’s (one or two) in w′

i must be to
the right of their associated 1, which must therefore be the 1 coming from wi,
as the previous 1’s are already followed immediately by all their associated 0’s.
The only possible way is that the 0’s in w′

i are not shuffled and remain at their
initial positions in wi.

In the case w = w′, this lemma implies that the diagonal of M is made of 1’s.
Now consider w 6= w′ ∈ S such that Mw,w′ 6= 0 and the first different letter
happens at position i, where wi 6= w′

i. One has to prove that w′ is before w
in the lexicographic order. Assume by contradiction that wi = 2 and w′

i = 3.
By the lemma 2, any good-shuffle that maps catw to catw′ is the identity on
the common prefix of w and w′. Therefore the letter 1 in w′

i comes from the
letter 1 in wi and has only one associated 0. But then the two 0’s in w′

i need
to have their associated 1 on their left, which is not possible. Indeed, the 1’s in
the common prefix are already followed immediately by all their associated 0’s,
and the 1 in w′

i has only one associated 0.
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To illustrate the proof, here is the case of words w with one 2 and two 3:

K(2, 3, 3) = (10100100)+ . . . ,

K(3, 2, 3) = 2(10100100)+ (10010100)+ . . . ,

K(3, 3, 2) = 6(10100100)+ 2(10010100)+ (10010010)+ . . . ,

where on the right only words of the form catw′ have been displayed.

4.2 Words 10 and 110

Let us now turn to the other case, slightly more complicated.

Let C10,110 be the zinbiel sub-algebra of A1,0 generated by the words 10 and 110.
Let us denote in this section the word 10 by 2 and the word 110 by 3. The
algebra C10,110 is bigraded by the number of 2 and the number of 3, as 10
and 110 are homogeneous in A1,0 with linearly independent bidegrees.

For a word w in the alphabet {2, 3}, let catw be the word in A1,0 obtained
from w by the substitution 2 7→ 10 and 3 7→ 110.

Theorem 3. The zinbiel algebra C10,110 is free over Q.

Proof. Because C10,110 is generated by 2 and 3, its dimensions are bounded
above by the dimensions of the free zinbiel algebra in two generators.

It is therefore enough to prove that the dimension of the homogeneous compo-
nent of any given bidegree (k, ℓ) with respect to 2 and 3 is at least the number
of words with k letters 2 and ℓ letters 3.
Let us fix (k, ℓ) and consider the set S of words with k letters 2 and ℓ letters 3.
Let us endow S with the lexicographic order induced by the ordering of letters
2 < 3.

Let M be the square matrix with rows and columns indexed by S with co-
efficient Mw,w′ being the number of occurrences of the word catw′ in the
expansion of K(w) as a sum of words in {0, 1}.
Let us prove that M is lower triangular with no zero on the diagonal.
Let us first remark that the diagonal coefficient for a word w in S counts the
number of good-shuffles that preserves catw. But this set always contains the
identity shuffle, hence every diagonal coefficient of M is a non-zero integer.

Lemma 3. Let w,w′ ∈ S such that Mw,w′ 6= 0 and w shares a prefix w1 . . . wi

with w′. Let σ be any good-shuffle that maps catw to catw′. Then

(i) either σ stabilizes the common prefix,

(ii) or the following statements hold:

- There exists a letter 3 in the prefix. Let wk be the rightmost such letter.
The shuffle σ stabilizes the prefix before wk.

- The letter wi+1 is 2.
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- Between wk and wi+1, the shuffle σ acts in the following way:

. . . wk = 3 2 . . . wi = 2 wi+1 = 2
w . . . 110 10 . . . 10 10
w′ . . . 110 10 . . . 10

The first letter 1 of wk is sent to the first letter 1 of w′

k. Each block 10
(from a letter 2) displayed in the line w above is sent leftwards to the
block 10 (from wk or a letter 2) in the previous term of the line w′.
The block 10 inside wk is sent rightwards somewhere in the suffix of w′

after w′

i.

Proof. This is proved by induction on the length of the common prefix, starting
with the empty prefix.
Assume first the induction hypothesis with condition (i) before wi and moreover
wi = w′

i. Necessarily, the first 1 in w′

i must come from the first 1 in wi, as the
order is preserved on the first letters.
If wi is 2, the 0 in w′

i must come from the 0 in wi, as the only available 1 to
its left is that of w′

i. So condition (i) holds for the extended prefix.
If wi is 3, and if the second 1 in w′

i comes from wi too, one finds that condition
(i) holds for the extended prefix, for the same reason as in the previous case.
Otherwise, the second 1 in w′

i must come from wi+1. And the 0 in w′

i must be
preceded by all the associated 1’s. This implies that this 0 comes from wi+1

and that wi+1 = 2. All this gives condition (ii) for the extended prefix, in the
special situation where k = i.
Assume now the induction hypothesis with condition (ii) before wi and more-
over wi = w′

i. Then wi is a 2.
Assume first that σ sends the second 1 of wk to the 1 in w′

i. Then the 0 in wk

must be sent to the 0 in w′

i. Therefore in this case, one obtains condition (i)
for the extended prefix.
Otherwise, σ sends the second 1 of wk somewhere in the suffix of w′ after w′

i.
Then the first 1 of wi+1 must be sent to the first one of w′

i. And the 0 in w′

i

must be preceded by all the associated 1’s. This implies that this 0 comes from
wi+1 and that wi+1 = 2.
The first statement of condition (ii) holds by induction. We just proved the
two other statements, so condition (ii) holds for the extended prefix.

Now consider w 6= w′ ∈ S such that Mw,w′ 6= 0 and the first different letter
happens at position i where wi 6= w′

i. One has to prove that w′ is after w in the
lexicographic order. Assume by contradiction that wi = 3 and w′

i = 2. Let σ
be any good-shuffle that maps catw to catw′.
By the lemma 3, either condition (i) or condition (ii) holds for σ.
Condition (ii) cannot hold because wi = 3.
Therefore condition (i) holds. The unique letter 1 in w′

i comes from the first
letter 1 in wi. But then the 0 in w′

i either comes from wi = 3 or from some wj

with j > i. In both cases, this 0 has not enough 1’s on its left.
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To illustrate the proof, here is the case of words w with one 2 and two 3:

K(2, 3, 3) = 3(11011010)+ (11010110)+ (10110110)+ . . . ,

K(3, 2, 3) = 4(11011010)+ 2(11010110)+ . . . ,

K(3, 3, 2) = 2(11011010)+ . . . ,

where on the right only words of the form catw′ have been displayed.

Remark: One can deduce from the proof of lemma 3 a more precise description
of the diagonal coefficients of the matrix M . The coefficient of a word w in 2
and 3 is the product of the lengths of the blocks in the unique factorization of w
into blocks 322 . . .2, omitting the possible initial sequence of 2. For example,
for (2, 3, 3, 2, 3, 2), one gets 4 = 1× 2× 2.

4.3 Remarks and questions

One could ask the same question of freeness about several larger zinbiel sub-
algebras of A1,0.
Sometimes the answer is clearly negative, for the same reasons as for A1,0. This
is for instance the case of the sub-algebra generated by the words 10, 110, 1110
in which the relation 110 ≺ 110 = 1110 ≺ 10 holds, as a special case of (4).
The following cases may be free, as these algebras do not contain any obvious
relation of this kind. Let U be the set of words of the shape 10 . . .0, with just
one letter 1.

(A) the sub-algebra generated by words 10, 100, 110,

(B) the sub-algebra generated by words in U ,

(C) the sub-algebra generated by 110 and words in U ,

(D) the sub-algebra generated by words not starting with 11,

(E) the sub-algebra generated by 110 and words not starting with 11.

Some closely related questions have been answered in [17, §4].

5 Quotient map to motivic multiple zeta values

We will use the following convention for formal iterated integrals:

I(ε1, . . . , εk) =

∫
· · ·

∫

0<t1<···<tk<1

ωε1(t1) · · ·ωεk(tk), (7)

where each εi is either 0 or 1, with ε1 = 1 and εk = 0.
We will denote motivic multiple zeta values ζ(n1, . . . , nk), with the convention

ζ(k1, . . . , kr) = I(1, 0k1−1, 1, 0k2−1, . . . , 1, 0kr−1) (8)
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for r ≥ 1. Here a power of 0 means a repeated 0.
Let us denote by Π the surjective quotient morphism of commutative algebras
from A1,0 to AMZV, whose kernel is the ideal of motivic relations between formal
iterated integrals. The shuffle product on A1,0 is sent by Π to the product
of motivic multiple zeta values.
For (u, v) not both zero, the space Cu,v is a zinbiel sub-algebra of A1,0, hence
also a commutative sub-algebra of A1,0 for the symmetrized product, which is
just the shuffle product.
For every choice of parameters (u, v) not both zero, one can therefore restrict
Π to this commutative sub-algebra Cu,v of A1,0. This gives a morphism of
commutative graded algebras Π from Cu,v to AMZV. Note that these two graded
algebras have the same generating series F = 1/(1− x2 − x3).
One can therefore wonder if the morphism Π could be an isomorphism, under
some conditions on (u, v). As the algebra Cu,v itself, this property only depends
on the projective class of (u, v) in P1.
Let us consider first the very special case where u + v = 0. In this case, the
image of the word z3 in Cu,v is given by Π(z3) = uζ(3) + vζ(1, 2). But it
is known that ζ(3) = ζ(1, 2) in AMZV, hence Π(z3) = 0. Therefore Π is not
surjective in this case.
Using a computer, one can compute the first few graded dimensions of the
image.

Conjecture 1. When u + v = 0, the image of Cu,v by Π is a sub-algebra of
AMZV with generating series 1 + x2F .

This is the generating series of the quotient algebra of AMZV by ζ(3), because

1 + x2F = (1− x3)F. (9)

One can wonder what could be, for this sub-algebra, an analog of the famous
conjecture of Broadhurst-Kreimer describing the dimensions of AMZV according
to both weight and depth.
Note also the similarity with the quotient algebra of AMZV by ζ(2), which has
generating series

1 + x3F = (1− x2)F (10)

and appears in the motivic coaction and in the study of p-adic multiple zeta
values [9, 10].

Excluding from now on the special case u+v = 0, one can assume without loss
of generality that u+ v = 1 and set v = 1− u. Then Π(z3) = ζ(3).
When using u as a formal parameter, one expects the following statement.

Conjecture 2. The morphism Π from Cu,1−u to AMZV is generically an iso-
morphism of commutative algebras.

In this statement, the word “generic” means over the field Q(u). One could
instead ask for the statement to hold for u in some open subset of Q with
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respect to the complex topology. One probably cannot expect an open set for
the Zariski topology on Q, because the following explanations tend to exclude
an infinite set.

Let us say that a value of u is non-singular if this statement holds at u, and
singular otherwise. If there exists at least one non-singular value, then the
generic conjecture 2 also holds.

For every non-singular u, the isomorphism Π defines a bigrading of the algebra
AMZV. Moreover, one gets a basis in AMZV from the basis of Cu,1−u made of
words in z2 and z3.

More and more singular values appear when considering the restriction of Π
at increasing weights. In each weight, a new polynomial determinant appears,
with some irreducible factors coming from determinants in lower weights. One
observes new irreducible factors of increasing degrees, that give more singular
values, so that one should expect an infinite number of singular values. One
could still hope that some specific values of u are non-singular, for example
u = 0 and u = 1. So far, no non-singular value of u is known.

Let us describe the first few polynomials whose zeroes are singular values, in
their order of apparition, where n is the weight.

n pn
5 5u− 6
7 14u+ 51
8 27u2 − 26u+ 10
9 865u− 4164
10 2011u2 − 3381u+ 1581
11 461516u4 − 3721029u3 + 7046644u2 − 6169912u+ 2357966
12 207786u4 − 185687u3 − 1076020u2 + 1483088u− 562680

One can check that 0 and 1 are not roots of any of these polynomials.

Let us comment briefly on how these polynomials were computed. The idea is
to compute, for a fixed weight d, the determinant of a square matrix that is
invertible if and only if Π is an isomorphism. One first computes the images by
Π of all words in z2 and z3 of weight d in AMZV. Then, instead of computing
their coefficients in some known basis of AMZV, one uses the isomorphism1,
introduced by F. Brown [6], from the algebra AMZV to the shuffle algebra F
in infinitely many generators f3, f5, f7, f9, . . . over the polynomial ring Q[f2].
This algebra F has a natural basis, and we use this basis to form the desired
matrix. An example is given below.

Let us give the first few images by the morphism Π from Cu,1−u to AMZV of
short words in z2 and z3.

1This useful isomorphism is not unique and depends on some auxiliary choices.
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Figure 1: Singular values of u in weight at most 12. The point near 1 is the
root 0.98188 . . . of p11 and the point near 2 is the root 2.03611 . . . of p12.

B(2) = ζ(2), (11)

B(3) = ζ(3), (12)

B(2, 2) = 2ζ(1, 3) + ζ(2, 2), (13)

B(2, 3) = (u+ 2) ζ(1, 4) + ζ(2, 3) + (−u+ 1) ζ(3, 2), (14)

B(3, 2) = (−u+ 4) ζ(1, 4) + 2ζ(2, 3) + uζ(3, 2). (15)

One can then check that B(2)B(3) = B(2, 3)+B(3, 2), as a simple example of
the general rule that the product in the conjectural bases is given by the shuffle
product.
The motivic coaction ∆ (modulo ζ(2) on the left side of ⊗) is given on these
elements by

∆B(2) = 1⊗B(2),

∆B(3) = 1⊗B(3) +B(3)⊗ 1,

∆B(2, 2) = 1⊗B(2, 2),

∆B(2, 3) = 1⊗B(2, 3) + (u− 1)B(3)⊗B(2) +B(2, 3)⊗ 1,

∆B(3, 2) = 1⊗B(3, 2) + (−u+ 2)B(3)⊗B(2) +B(3, 2)⊗ 1.

In weight 5, the images of B(2, 3) and B(3, 2) in the algebra F are

(u− 1)f2f3 − (5/2u− 3)f5 and (−u+ 2)f2f3 + (5/2u− 3)f5,

from which one builds a square matrix with determinant proportional to 5u−6.

6 Variants of multiple zeta values

There are some other situations where one could try to apply the same ideas.
A first example is given by the algebra of alternating multiple zeta values,
defined as the iterated integrals of the following three 1-forms:

ω0 =
dt

t
, ω−1 =

dt

t− 1
, ω1 =

dt

t+ 1
. (16)
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A conjecture due to Broadhurst (see [1, 2]) states that the graded dimensions
of this algebra are given by the Fibonacci numbers, with generating series
1/(1− x− x2).
One could therefore consider the zinbiel sub-algebra of the free zinbiel algebra
on {−1, 0, 1} generated by the abstract iterated integrals I(−1) and I(1, 0). Is
this a free zinbiel algebra on these generators ?

A similar case is the algebra of multiple Landen values, defined in [3] as iterated
integrals of the following 1-forms: A = dx/x, B = dx/(1−x), F = dx/(1−ρ2x)
and G = dx/(1− ρ) where ρ is the golden ratio.
Broadhurst conjectured in [3] that the generating series for this algebra is 1/(1−
x−x2−x3), whose coefficients are tribonacci numbers. The exact same formula
is also expected to give the graded dimensions of the sub-algebra of iterated
integrals of A and G.
The first few terms are

1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, . . .

and the expected bases, as words in A and G are {G} in degree 1; {AG,GG}
in degree 2 and {AGG,AAG,GAG,GGG} in degree 3.
In this setting, one could look for a free zinbiel sub-algebra on three generators
of degrees 1, 2 and 3 inside the free zinbiel algebra on A and G.
Another interesting case to consider would be multiple Watson values [4].
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