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1 INTRODUCTION

Families of automorphic forms have proven to be a great tool in number theory
in the last 30 years. Their construction dates back to Hida, [Hid86], who first
constructed families of ordinary modular forms (for the group GLg). This
construction was then improved by Coleman in the 1990’s, for overconvergent,
finite slope, modular forms and rigid spaces over Q, (whereas Hida was able
to construct his families integrally). One great and yet surprising achievement
was the construction soon after by Coleman and Mazur of one rigid space, the
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FAMILIES OF COHERENT PEL AUTOMORPHIC FORMS 215

Eigencurve, which parametrizes all possible families of overconvergent, finite
slope modular forms, i.e. gluing all the families previously constructed.
Before motivating the construction of this spaces, let us say that these construc-
tions have seen many generalisations in different directions. First dealing with
level outside p and quaternion algebras by Buzzard [Buz07], or for other al-
gebraic groups, like unitary groups, compact at infinity by Chenevier [Che04],
and to more general groups by [AS08] and [Urbl1] using families of (gener-
alised) modular symbols. More recently, [ATP15] have been able to construct
families and eigenvarieties for Siegel modular forms using families of automor-
phic sheaves on the Siegel moduli space. These families of sheaves live in the
rigid world, they are Banach sheaves on certain strict neighborhoods of the
ordinary locus, that interpolates (in some sense) the classical automorphic vec-
tor bundles. This strategy has been extended by [Kas04, Bral3] in the case
of Shimura curves, [ABI"16] for Hilbert modular forms, and [Bral6] for PEL
Shimura varieties for which the ordinary locus in non empty.

These spaces are particularly interesting ; through their local properties (see
for example [BC09] and [CH13] for applications to the Bloch-Kato conjecture,
and to constructing Galois representation associated to automorphic represen-
tations), but also for their global geometry (see [LWX17] and the application
to the parity conjecture), which remains completely mysterious in general.

In all cases, the construction goes by constructing huge Banach spaces M to-
gether with an action of a (commutative) Hecke algebra T containing a distin-
guished compact operator U. With this data, if M is a projective Banach space,
we can construct following [Col97b] a rigid space €& which parametrises Hecke
eigensystems for T acting on M, for which the eigenvalue for U is non-zero. In
[ASO8] and [Urbll], these spaces M are the sections on Shimura varieties of
p-adic overconvergent modular symbols, which interpolate the etale cohomol-
ogy of these varieties. In [AIP15] and its generalisations, one first construct
varying Banach automorphic sheaves w", where x is a p- adic weight, and
take the sections of these sheaves on strict neighborhoods of the ordinary lo-
cus. These spaces interpolate the coherent cohomology, but are constructed on
PEL Shimura varieties (one needs the moduli interpretation), and need the non
emptyness of the ordinary locus. Indeed, one central tool to construct w”' is the
theory of the canonical subgroup and its overconvergence (see [Lub79, Farll]
for example). In this article, we mainly remove the ordinariness assumption.
Let (G, X) be a PEL Shimura datum', and p a prime. Our main result is the
following

THEOREM 1.1. Suppose that G is unramified at p, and let KP be a level out-
side p, hyperspecial outside a finite set of primes S. Let I be a Iwahori sugbroup
at p and K = KPI. There exists rigid spaces £ and W, called respectively the
eigenvariety and the weight space, together with a locally finite map

w:E—W,

IWe exclude factors of type D.
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216 V. HERNANDEZ

and T = H5? ® A(p) —> O(E) such that, for all k € W, w™(k) is in bijection
with the eigenvalues for the Hecke algebra T acting on weight k, overconvergent,
locally analytic modular forms for G which are finite slope for some U € A(p).
Here A(p) is a (commutative) Hecke algebra at p and H5P is the unramified
Hecke algebra for G outside Sp. £ and W are equidimensional of the same
dimension. Moreover there is a Zariski dense subset Z < £ such that all z€ Z
coincide with a classical Hecke eigensystem in the previous identification.

Actually, we can only construct families at unramified primes, but we can
weaken a bit the assumptions on G and p, by only constructing deformations in
the directions of primes above p which are unramified for G, see remark 2.1. We
also have more information on the geometry on £ over W, namely for example
there is a covering (U;); of € such that w(U;) is an affinoid open in W, and every
irreducible component of U; surjects via w onto an open of W. Compared to
previous constructions of Eigenvarieties (e.g. using modular symbols), the main
interest is that we automatically have a broader class of classical points on &,
namely those which appear in global sections of coherent automorphic sheaves
(with finite slope at p). In particular, automorphic representations which are
holomorphic at infinity (but not necessarily discrete series) and finite slope
at p can be deformed by our construction (compare with [Urb11] 5.5.1). This
is particularly interesting to deform the Arthur points (an endoscopic point)
which we study in the second part of the article in the case of U(2, 1), and more
generally for endoscopic points (for example those which appear in [BC09]), but
also for (limit of) discrete series points, for which we would like (for example)
to associate Galois representations, as it is done in [Goll4].

We now explain how we prove this theorem. A first step in generalising the
construction of [AIP15] to the case when the ordinary locus is empty is to
find a subsitute for the ordinary locus and the canonical subgroup. A good
substitute is to consider the p-ordinary locus (see [Wed99], [Moo04], and also
[Bij16]), and the canonical filtration, which exists on it, and overconverges on
strict neighborhoods (see [Her16]). This strategy has been followed in [Her19]
for U(2,1) when p > 2. Unfortunately, the results of [Her16] rely on a stronger
hypothesis on p : being big enough (always p # 2 and for a general unitary
group for example the bound can be very large). In this article we choose
another strategy to avoid any hypothesis on p, and use (integral) Shimura
varieties with higher (Iwahori-like) level at p, constructed by normalisation in
[Lanl6al. On these Shimura varieties naturally live flags of finite flat subgroups,
and if we restrict to strict neighborhoods of the p-ordinary locus (more precisely
what we call the p-canonical locus, see definition 5.13), these groups behave as
the canonical filtration (and actually coincides with it when we know it exists,
see Theorem 5.6). In particular, we can follow the construction of [AIP15] and
[Her19] for all p with these groups, and construct automorphic banach sheaves
by introducing level at p. All of this rely on the fact that we can find a basis
of strict neighborhood X (deg = N — ¢) where our subgroups have high degree,
and thus are well behaved.
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FAMILIES OF COHERENT PEL AUTOMORPHIC FORMS 217

In the setting where the ordinary locus is non empty, by results of Fargues
[Farll] we can relate degree and the Hasse invariant. In our situation we also
have an Hasse invariant (by [GN17]; see also [Her18] and Definition 5.11), but
we can relate it to the degrees, using [Her16], only if p is big enough... Thus
we chose another strategy : we have a second basis of strict neighborhoods
X(ha < wv) where the (valuation of) Hasse invariant is small enough (it is
invertible on the p-ordinary locus), and we use these two basis of neighbor-
hoods. Using the degree function, we can control our (call them canonical)
subgroups easily, and thus as it was already remarked in [Bij16], the action
of the Hecke operators. In particular, we can check that we have an op-
erator U which acts as a compact operator on sections of our sheaves over
X (deg = N — ¢). Unfortunately, we can’t prove that the global sections over
the opens X(deg = N — ¢) of the automorphic Banach sheaves are projec-
tive, thus we can’t a priori use Coleman-Buzzard’s construction. On the other
basis (X (ha < v))y>0, we can’t prove even that our expected-to-be compact
operator U (which generalise the operator U, on the modular curve) will sta-
bilise each neighborhood (and thus worse, that it acts compactly on sections
on X(ha < v)), but using that X (ha < v) is affinoid in rigid fiber, we can
prove that global section of our automorphic Banach sheaves on X (ha < v) are
projective. Here to be precise we need to work on both the toroidal and mini-
mal compactifications of [Lanl6al, the toroidal compactification being needed
to construct the automorphic sheaves, and the minimal to get the affinoidness
result, together with a result of vanishing of higher cohomology due to Lan,
see Appendix A. Thus we need to relate both these sections on the two basis
of neighborhoods. Fortunately we can and do in Section 9 using complexes
computing higher cohomology of our Banach sheaves, the action of the Hecke
operators on these complexes, and that we can always intertwine these opens,

X(deg > N —¢) > X(ha <v) > X(deg > N —¢') o X(ha <v') o Xt

where ¢/ and v’ are chosen small enough. Passing to finite slope parts, and
using results of [Urb11], we get that U acts as a compact operator on the finite
slope part of sections of our Banach automorphic sheaves on any of our strict
neighborhoods, and that these spaces are projective (in a specific sense). Thus
we can apply Coleman-Buzzard’s machinery and get the theorem.

As an application of these results, we can extend the result on the Bloch-Kato
conjecture we had in [Her19], and prove the following. Let FE be a quadratic
imaginary number field, and

x:AL/E* — C*,

which is polarised, meaning that x* := (x¢)~! = x|.|~!. Denote by L(x, s) its
L-function. If p is a prime, denote

Xp : Gal(E/E) — Q, ",

the p-adic Galois character associated to x, and denote H}(E, Xp) the Bloch-
Kato-Selmer group of x, (see [BC09] chapter 5). Then we prove
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218 V. HERNANDEZ

THEOREM 1.2. Let p be a prime, unramified in E. If L(x,0) = 0 and
ords—o L(x, s) is even, then

H}(EaXp) # 0.

In particular we remove the hypothesis that p # 2 when p is inert in £ and
p t Cond(x) that were in [Her19]. Also, a version of the previous theorem is
well-known to be due to Rubin ([Rub91]) but there it is necessary that p # 2
(and p # 3 if E = Q(iv/3), which we unfortunately also need to assume...).
In particular, we get new cases of the Bloch-Kato conjecture when p = 2 is
unramified in E' !

Of course this result relies heavily, as in [Her19], on works of Bellaiche and
Chenevier, [BC04] and [BC09]. As in this last reference, we would like to
even construct independent classes as predicted by the Bloch-Kato conjecture,
under some assumption on the geometry of the Eigenvariety £ for U(2,1). The
idea, as in the proof of the previous theorem, would be to consider a specific
Arthur point y € € (known to exists by results of Rogawski and a calculation
of cohomology in [Her19]), see Propositon 10.21. As this point exists, we can
deduce the previous theorem. Unfortunately, in our situation the motive for this
Arthur point appears in degree 0 coherent cohomology with irregular weight
(or equivalently when a > 2, not in middle degree Etale cohomology, contrary
to the case of [BC09]), we are not able to choose a refinement that is sufficiently
far from the ordinary one for which we can control the ramification at p (we
would need it to be anti-ordinary as in [BCO04], but for us the Hodge-Tate
weights are in a different order compared to the refinement) but only a slightly
non-ordinary one, and thus the geometry of £ at the Arthur point will account
for a bigger reducibility locus for the deformation of the Galois representation
than expected, and would thus not contribute only to H} (E, xp). We hope to
come back on this question soon.
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2  ALGEBRAIC GROUPS, SHIMURA DATUM AND WEIGHT SPACES

Let p be a prime and let D = (B, *,V,<,>,0p, A, h) be an integral Shimura-
PEL-datum. Let G be the associated algebraic group over Q, i.e.,

G(R) =
{(g,c¢(9)) e GL(V®R) x R*| < gv,gw >=c(g9) < v,w > Yv,w e V ® R}.

(G, h) defines a Shimura datum. Suppose that the datum is unramified at p
(see [Kot92] or [VW13]). This means that B®gQ), is isomorphic to a product of
matrix algebras over finite extensions of Q,. We can decompose B = [[/_; B;
as a product of simple algebras and we assume that no factor is of type D
(orthogonal), see [VW13] Remark 1.1. As p is unramified in D, we can also
consider G a reductive model at p for G (over Z,,).

Every interesting object in this article will decomposed accordingly to the pre-
vious decomposition of B, and we can thus make our construction for each B;.
This simple algebras are classified into 2 types (as we excluded case D), the
type A and the type C. In case C, the construction we are interested in is al-
ready made in [Bral6] (which also do many cases of type A, but not all), and
we thus assume for now on that B; is of type A.

As p is unramified for B (and thus B;) we can further decompose. Let F; be
the center of B;, and F;" = (F;)*=1. As we are in case A, [F; : F,] = 2. Write
p = m ...7s; the decomposition of p in primes of F,". For j € {1,...,s;}, we
say that j (or m; or (B;,7;)) is in case AL if 7; splits in F, and in case AU
otherwise (compare [VW13] Remark 1.3).

Remark 2.1. Actually we can allow a slightly larger class of Shimura datum
than the unramified ones. Suppose that we can write for all ¢, B; g, := B; ®
Qp = Bi,l X Bi,2 with

By = H M., ;(Fi ),
i1

where F; ;/Q, are finite extensions, and such that there is no factor of type D
appearing in Bg,. For all j denote again FZ’LJ = (F;,;)*=". Let then Sg“” be
the set of couples (4, j) such that p is not ramified in Ff] and does not ramifies
in F; ; either. When p is unramified in the datum D, we can take Sg“” to be
the set of all (i,7) and B; g, = Bi1?. In general, for S, ¢ SI“! we will be
able to construct S,-families of automorphic forms for the datum D, i.e. we
are able to let the forms vary (only) along the unramified primes of D.

Let T' be a maximal torus of G; = Kerc c G over Z, which we assume to be
the maximal torus of a Borel defined over Z,. We can decompose T (over Zp)
according to the previous decomposition,

T= nl_l[Tm'v

i=1j=1

J—

2In which case F;,; = (Fi)r; -
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220 V. HERNANDEZ

(remark that if B; is of type C, we can also decompose according to primes
over p).

DEFINITION 2.2. The full weight space associated to the previous PEL datum
is the rigid space over Q,

W — Hom ot (T(Zy), GI9),

which associate to any Banach Q,-algebra R the set of continuous characters
Homeont (T(Zy), R*). It is represented by the Banach algebra Z,[[T(Z,)]]

If S, is a subset of the couples (¢,7) (that we see as places over p) and if we
denote T, the torus over Zy;

Ts, = 1_[ T j,

(4,5)€Sp
we can define the (S,-)weight space
Ws, = Homeont(Ts, (Zy), Gi9).

It is also represented by the Banach algebra Z,[[Ts,(Zy)]], and when S, con-
tains all couples (4, j), we have Ws, = wifull,

On Wg, there is a universal character k“" : Ts (Z,) — Zp[[Ts,(Zy)]]. We
have the following results,

PROPOSITION 2.3. The space Wg, is geometrically a finite disjoint union of
open balls of dimension the rank of T5p3. Moreover there exists an admissible
covering by increasing affinoids,

Ws, = | Ws, (),
w>0
such that H,‘MJIVZUP(TU) is w-analytic.
Proof. See [Urbll] 3.4.2 and Lemma 3.4.6. See [AIP15], Section 2.2 for a
possible definition of Wg, (w). O

We can decompose Ws, = H(i,j)es W, ; according to the decomposition of B.
In the following we will construct families parametrized by Ws,, as their con-
struction is not more difficult than the case of the full weight space, and fol-
lowing construction can be done on Ws, when p ramified at some places of D,
but not at other places. To my knowledge, this is useful mainly for a trick
used by Chenevier ([Che09]) to control p-adic properties of families of Galois
representations.

3This is the rank of G1 when p is unramified and Sp = S}:u“.
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3 CLASSICAL COHERENT AUTOMORPHIC FORMS

Associated to (G, h) there is a tower of Shimura Varieties over the reflex field E.
If we assume that p is unramified in D, these Shimura varieties have good
reduction at p when the level at p is hyperspecial (see [Kot92]). Suppose this is
the case in this section (otherwise all we say here remains true after inverting p,
and we will explain how to extends this integrally in Section 5). We will describe
their integral models as moduli space of Abelian varieties. Let K? < G(Ag ;)
be sufficiently small level outside p. Denote Xg» the functor,

X"+ 8 € Sch/Spec(Op ) — {(Ai. A}/ ~,
that associate the set of quadruples (A4, ¢, A, n) modulo equivalence where,
e A/S is an abelian scheme
e 1:0Op — End(A) ® Zp) is a Zy)-algebra endomorphism.

. X
e \is aZ(p)

which identifies Rosati involution and » through 4.

equivalence class of Op-linear polarisation of order prime to p

e 1 is a KP-level structure on A (see [Kot92] Section 5, or [Lan13]%).

where ¢ is subject to the determinant condition and the equivalence is by prime
to p quasi-isogeny (see also [VW13] and for all details [Lan13]). As K? is
sufficently small Xf(’;h is representible by a quasi-projective smooth scheme.
We choose v a place of E over p, and denote Op, the completion of Op
through v and denote XSrh — XIS(’,’,}L the base change to Og,,.

According to the decomposition of B, we can decompose A = [i_; 4; (and the
other datums) as a product of abelian schemes (with additional structures as-
sociated to B;). Moreover, we can further decompose the associated p-divisible
group, writing Op, ® Z,, ~ Hj:l M, (OF, ), and using Morita-equivalence,

Ailp*] =[]0k, ®oy, , Ailr}17

J=1

Moreover for a (i, j) of type AL (i.e. 7; = 7T;-r7T; splits in F;), we can further
decompose,

Ai[r] = H;; x HP,

such that A is given by (z,y) — (y,x), with H; ; corresponding to W:j, which
we denote, by abuse of notation, A[ﬂ';,r ]Oo], and ¢ preserves each factor.

4Recall that such a level structure includes a (class of) isomorphism Z/pN7Z ~ ppn for
some N, see [Lan13] Definition 1.3.6.1.

5A[7T‘J?°] is a slight abuse of notation for the Morita-equivalent p-divisible group associated
to the Mn(OF, ;)-factor of A;[p™].
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Denote w the conormal sheaf of A, it is a locally free sheaf on X°P" which
decomposes as previously, and for all (¢, ) we get w; j = w Ai[r®] @ locally free

sheaf of rank dim A;[7%°]. The Shimura datum
h: ResC/R Gm — G]R;

induces p : Gy,c — Gc (see [Del7l, Section 3.7]), which is a cocharacter
whose conjugacy class is defined over the reflex (number) field E. Let P be
the parabolic in G over E associated to the cocharacter u® and M the Levi
of P. T can be seen as a torus in M and fix a Borel By of M. For k € X+ (T)
a dominant weight for this choice, there exists a locally free sheaf w* on X P,
This sheaf can be described this way. Let

T =Isomxsen 0, (A1 ®z, Oxsem)",w)
~ [somyxspn o, (Aq ®z, Oxsrn, Lie(A/)Y)),

the space of trivialisations of w, where A; is a Op-invariant O, (,-lattice in V3
(where V = V@ V; under the weight decomposition of p, see [VW13] p10) and
denote 7 : T* — XSP"_ This is a M-torsor.

DEFINITION 3.1. Let x be a dominant (in M) algebraic character of T' and x"
its dual, i.e. —wo(x) where wq is the longest element of the Weyl group of M.
We see these characters as characters of By, extending them trivially on the
unipotent. The coherent automorphic sheaf w” is the locally free sheaf over
X 5Pk defined by,

w" =1 Opx kY],

where [k"] means sections f : T* — Al such that f(gb) = k¥ (b)f(g) for all
g € T* and b € By; which acts on the right on 7*.

Let XSPhtor he a toroidal compactification” of X°P" (see [Lan13]) and D its
boundary.

DEFINITION 3.2. The space of (respectively cuspidal) modular (or coherent
automorphic) forms of weight «, and level K?G(Z,) is the space,

HO(XSPhitor ;%) (respectively HO(XSPh:tor = (—D)).

Remark 3.3. The goal of this article is to deform p-adically the previous spaces
of automorphic forms. Unfortunately, we can check that in some cases the
duality k — k' = k¥ does not extend naturally to p-adic weights. This is the
case for U(2,1) /g when p is inert in £/ where T = Op  x Of - We can see

an algebraic weight, dominant for M ~ GLs x GL4, as mtegers (k:1 ko, ks3).

6i.e. corresponding to the parabolic P. = {x € G¢|limi—o ad(u(t))z exists} of Ge.

7A priori the following definition depends on this choice, however by [Lan13] Lemma
7.1.1.3, this is independant of the choice of a toroidal compactification, and in most cases
we don’t even need to specify any compactification, by Koecher’s principle, see [Lanl6b]
Theorem 2.3.
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It gives a character of T'(Z,) via T(Z,) < T(K), for K a sufficiently large
p-adic field (containing E), given by (z,y) — 7(2)¥ 7(y)*207(2)* and duality
(in M) sends (k; > ko, ks) to (—ka, —k1,—k3). This does not come from a
natural algebraic map on 7'(Z,). The reason is that the embedding T — M
is not rational over Q,. We will overcome this issue by finding a — more or less
— natural way to directly interpolate w” without really using a p-adic duality.

4 LOCAL MODELS AND JONES INDUCTION RESULT

To construct families of automorphic forms, we will first construct families of
automorphic sheaves, i.e. we will construct automorphic sheaves w”! for  not
only a dominant algebraic weight but a p-adic one, and these sheaves will inter-
polate the coherent sheaves w” (actually to be more precise the sheaves Wt
see remark 3.3). This has been done previously in analogous settings (see
[ATP15, AIS14, Pill3, Bral6, Her19]), and all these works adapt geometrically
constructions that were first developed in the case of compact at infinity groups
(see [Buz07, Che04, Urb11]) using interpolations of algebraic representations
by locally analytic ones. As our sheaves will be modeled on these construction,
let us review the theory. It will be useful in analysing classicity questions in
Section 8.

4.1 INDUCTIONS

Let us fix some notations. We will be interested in representations of a p-
adic groups attached to u. The cocharacter p gives rise to a parabolic in G,
and denote M the Levi subgroup of this parabolic, which is defined over some
number field. The group Mg, splits over the couples (i, j) introduced before.
As explained in the previous section, (i,7) of type (C) are ordinary and thus
have been treated in [Bral6], thus we focus on type (A). In this cases, M(; ;
is isomorphic to a Levi of the group Res i /Qp U(n; ;) Fig/F

Denote T+ = 7'(1].) the set of embeddings of Ffj into Q, and 7 the corre-
sponding set for Fj; if (i,j) is understood. M, ;) is up to extending scalars
isomorphic to some L = [] .+ GL, x GL,, say over K a p-adic field. The
integers p;, ¢, are determined by p, the co-character associated to the Shimura
Datum (G, h), and satisfy that

Pr + qr = Tliyj,VTE T+.

In particular let K a finite extension of @, such that M is split, and de-
note Ty its maximal (diagonal) torus. We can assume that we have a fixed
isomorphism : Ty —> Ty thus we have a map T/(Q,) <> T (K ), which splits
over the couples (i, 7). For an unramified (i, j) € S}{ ull e can moreover assume

1.5 (Zy) < TMy(iﬁj)(OK)g for some integral model of M; ;). For now on, we

8Beware that Z,-points of G1,(i,j), thus T(; j) are naturally O = Op, j valued matrices.
A priori O > OF, p (but there is no preferred embedding) but the inclusion is strict.
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drop the index (i,7) € Sg“” in the notations, thus set n, ; = n = h = p; + ¢,.
Still denote by L = [] .7+ GL,, x GL,, an integral model over Of. Let Ty
be the maximal (diagonal) torus of L, B the upper Borel, and for each
k€ XT(Ty) = XT(T), denote the (algebraic, non-normalized) induction,

Vi = {f: L — A" algebraic |f(gb) = wo rx(b~")f(g) for all g,be L x B}.

This is a finite dimensional K-vector space endowed with an action of L(K)
by (9.f)(2) = f(g7"2).

The algebraic induction is a local model of the automorphic sheaves w” in the
sense that etale locally the later is isomorphic to the former. We will now
describe another representation that will interpolate the previous ones and
which will be local models of the coherent Banach sheaves constructed later in
the paper.

Let I = I; be the Iwahori subgroup of L, i.e. I = red”'(B(Og/p)) where
red : L(Og) — L(Ok/p). Denote more generally I,, the level-n Iwahori, i.e.
elements that are upper triangular modulo p™. We have a Iwahori decomposi-
tion I = B(Ok) x N° and we can identify N° with

'r + T\4YrT — 1
TeT+
For any € > 0, we define N? as the subspace?,
B(NY¢) := U B(z,e) < AN,

ze(pO)N

and for k a p-adic field, denote F¢~*(NY k) the function that are restriction
to N° of analytic functions on N?. Now we can define the e-analytic induction.
Let k € W(k) be e-analytic, and assume x extends to an e-analytic weight xx
of Tk (Ok) and write k), : (t — ki (wo t  wo.r)) ; this preserves e-analytic
characters of Tk (Ok). Then set

e—an __
KK,k

{f 1 —>k: f(gh) = ric(B)f(g)¥g,be I x B(O), fo € F*~“ (N, k)}.

Denote Vloc = Ueno Vi 7 and V2 1= .o Vi 7'- This spaces won'’t
be local models of our Banach- automorphm sheaves, but they will have the
same finite slope eigenvalues for well chosen kg (in parmcular algebraic ones).
Recall that we have a fixed (i,j). Look at the map Gy ;) (Zy) —
G1,3i,5)(Ok), and recall that we have P(; ;y(Ok) < Gy ;) (Ox) with Levi
M jy(Ok) ~ L(Ok) = [ [;e7+ GLp, x GLy, (Ok). Let P&T)T be the preimage
of P; j)(Ok) in the Iwahori subgroup of G (; ;)(Z;). More concretely we can
describe it the following way. Choose an ordering, {pg c0€eT}={pr,qr : TE

YWe set B(z,r) = {z € AN | vp(2 — ) = r} with vp(p) = 1 thus 1 ¢ B(0,1) 2 pO.
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Tt} ={p1 < <pos}, and let P,y © GLy be the standard upper parabolic
with (ordered) blocks of size (p; — pi—1)i=1,...,2f+1, where pg = 0, pasi1 = n.
Choose an presentation of G (over (4, j)) such that over Z, this is the group of
matrices with values in O = O; ; such that ‘M JM = J with J the antidiagonal
matrix with 1’s. Then P&T)T = P&o) is the intersection of Gy (; j)(Zp) with

P,.)- Denote I, (Op,,) the Iwahori subgroup of P& ) with respect to the standard

upper triangular Borel, and N(Opd) the opposite unipotent in I ?pa). It contains

T(Zy). For every o € T, every matrix M € P(Opa) can be written of the form,

A, B,
M = < 0 Do. ) 5 Aa‘ € Mpaxpa (O),Dg € M(n_Pa)X(n—pa)(O)'

In particular, we get for each 7 € T+ a map,

PO

) — GLp, xGLg,,
M

— (@Dr).0(D,) W

where o, 7 are the two embeddings over 7 € T+ such that p, = p, = n—ps, ps =
q- and D, refers to the previous decomposition.

Denote I(po) the image of I(Opo) via the diagonal morphism ¢ : P&U) —

[[,GL,, x GLg, (it is injective on T(Zp)N(OpU) using that *MJM = J).
Because of the Iwahori decomposition of I?pa), we can write an element of
I, U(Ok) as n°tu with n° and ¢ in the image of N(Opo) and T'(Z,), and con-

sider, for every k € W(k) which is e-analytic,

V,ﬂf‘“” ={f : Ip \U(OK) —> k : f(gp(t)u) = k(t)f(g)Vt € T(Zy,),ue U(Ok),
fno | € FETU(NG, )0 k)Y

Everything makes sense as N(Op ) can be seen as a subset of N° and we can
define e-analytic functions on it (using B(N(, ,,1) i.e. balls in AJ, > N°

centered on points of IV, Op ). It s slightly complicated!’, but now V0 T will
be local models of our forthcoming Banach-automorphic sheaves. The point is
that on V,Ske “" we really use a (p-adic) weight for T'(Z,) and not for Tk (Ok).
Now if kK € X*(T) is an algebraic weight, by scalar extension it corresponds
canonically to an algebraic weight of Tk (O ) which we see both as a p-adic
weight « of T(Z,) and £k of Tk (Ok ) (then & is the restriction of ki to T'(Z,)).

PROPOSITION 4.1. Let ¢ < 1 and k € X*(T). The restriction map induces an
isomorphism

e—an _~ 0,e—an
VeSS Vo

I{Kk

10A]l these constructions are not arbitrary, they come from the analogous geometric sit-
uation where G/Z, acts on trivialisations of a p-divisible group G, and we want to relate
it to trivialisations of the Hodge filtration via HT, : GP — w@,r, which is modeled by
equation (1).
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Proof. First remark that the map ¢ (see equation (1)) sends T'(Z,,) in the torus
Tar of L but by t — wo pu(t)twe f as Dy = JpgtA_gflJpg, thus kY o ¢(t) =
k(t). In particular the restriction map is well defined. Moreover as NY =
B(N{, .1) the map is bijective as restriction to N7 (resp. B(N{, ,,¢)) is an iso-
morphism from V9" (resp. Vi ") to F="(N°, k) (resp. FEam (NG, 10 k)
(inverse is given by sending f to n%tu — k) (t) f(n?)). O

4.2  U,-OPERATOR
Define for all i < % an integer,

P~
d; = p_llh_gi , Epilp&g)(K).

We sometimes see d; in GL, x GL,. using the previous embedding. Denote
for each 0 € T, a, = max(p, — (h —1),0),b, = max(min(h — 2i,p, — 7),0)
and ¢, = min(i, p,) (thus ay + by + ¢, = ps). This is respectively the number
of p~2,p~!,1 appearing in D5 in the previous decomposition for d;. We can
define an operator §; on V,S’,f_a" by 6;f(j) = f(dind; 'b) where j = nb is the
Iwahori decomposition. 7

PROPOSITION 4.2. Let f € V:’;f’m that we see as a function in Fe~*(N?

(pr)7
of variable (SCZJ,y;’_—n7n)1§l<k<pﬂ_71<n<m<qﬂ_ﬂ—. Then,

k)

£ — 0 N E— 0
5i : ]: o (N(pﬂ')’ k) ]: o (]\{_(pr), k) -
f — ((x;;,la y;,n) = f(pvk'lz;c—,bPWm'ny:n,n))
where, if we denote T = 00 in F, with pr = Py,
2 ifk>a, +b, andl < a,
o7 1 if (byp +as =2k >a, andl < ay) or
ki = (bg + a5 21> a, and k > ay + by)
0 otherwise
2 if m > az + by and n < ag
W = 1 if (bg + az = m > az and n < az)
m,n or (bz + az = n > az and m > az + by)
0 otherwise

In particular, []; 6; is completely continuous.

Remark 4.3. It is not a mistake that f has ”as much variables as entries in
N9 instead of N (Opg). The reason is that f is seen as a function (even a locally
analytic one) in a neighborhood of the image of N, (Opd) (O) in the analytic space
associated to N° (and not to N(Opd)). Indeed, such f can’t be defined on N° a
priori, except if we know that it is 1-analytic (as the neighborhood of N(Opa) of

radius % in AN = (N?%)9" contains N° = (pO)™.
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Proof. This is a direct calculation on matrices of NY. O

4.3 JoONES’S BGG AND A FIBERWISE CLASSICITY RESULT

Let P our previous algebraic group T its torus and B its upper Borel that
defines A a set of positive roots. Then for every dominant weight x € X (T,
Jones’s [Jonl1] proved the exactness of the following sequence,

an d an
0— Vg — VI — DV, k (2)

AeK [,
aeA

where d is an explicit map (see for example [AIP15] for GSpg, (P = GL,) and
[Bral6] for a similar case to ours). Then the following proposition is [Bral6]
Proposition 6.5

PROPOSITION 4.4. Write k = (ko) € XT(T) according to the decomposition
P =1]l,er+ GLp, x GLy, = [[,e7 GL,, a dominant weight. Set

yia = inf{kg,i - ko’,i+1 1< pU}'

Then,
0,e—an,<v
mG (e V,{yk.
.- . . e—an,<v
(The same proposition is true with Vek ).

Proof. The first thing to check is that if f € V,_g’,f_“" is of non-zero slope,
then f e V2] (this reduces to e < 1 using Proposition 4.1). But as [];d; is
increasing the analytic radius, by Proposition 4.2 we get the claim. Now, we can
use Jones’s BGG result as in [AIP15] Proposition 2.5.1, or [Bral6] Section 6.1,
and we get the result. O

Remark 4.5. The previous calculation is made completely explicitly for G =

(GU(2,1) in [Herl9].

5 INTEGRAL MODELS

5.1 ISOGENY GRAPHS

DEFINITION 5.1. Fix h € N* and n € N*, and denote I'" the subset of M,, 4 (C)
such that M = (m; ;)1<i<n,1<j<h € Mnxn(C) satisfies,

1. For all (i,5), mi, €{0,1},
2. For all (4,7), if m; ; = 1, then m;_1,; = 1 and m; j_1 = 1 (when defined).

Let % = (I, v) be the graph whose points are M € I'?, and there is an arrow
from M = (m,; ;) to M’ = (m;’j) if

{(i,9)lmi; # m ;} = {(i0, o)} and my, 5, =0, mi ; =1
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When n = 0, define I'? as {*}, and the map w1 : T} 3 — (0,...,0) € T2
When n > 2, we have a natural map,

h Tn—1,n h
T — Ty

M = (mij)ici<hi<jsn—1  —  (mj;) € Myp(C),mj; =m; if j <n,
0 otherwise.

This map preserves vertices, it is an embedding of graphs.

Remark 5.2. If n = 1, the possible matrices are simply given by

—.

M;=(1,...,1,0,...,0).
e

i times

They parametrizes the lattices appearing in a periodic lattice chain inside
GL(Z,) as in [RZ96].

5.2 SOME INTEGRAL MODELS

Let p be a prime, and let D be an integral Shimura-PEL-datum as in Section 2.
Denote by P = {(i,v)|v place of F;*} the set of places of G, where F; is the
center of B;. Fix S, < {(3,j)|i € {1,...,7},5 € {1,...,s;}} a set of unramified
places over p as in Remark 2.1. With our assumptions on D, for all v =
(i,j) € Sp, v is unramified, and B®p+ F,f is split and isomorphic to M, (E}).
Fix S a finite set of places of P such that S n S, = &, and S contains all
places such that B doesn’t split or is ramified.

Fix then a compact K outside S Sp such that K, is maximal hyperspecial
forallvé¢ SuS,.

For all (i, ) € S, we can associate an integer h; ; = hto, ; A[7;] in case (AU)
and h; j = hto, ; A[7]] in case (AL). These integers are defined for example
by looking at the characteristic 0 moduli space as explained in Section 3 (or
could be read directly on GG, and even defined by the integral moduli space of
Kottwitz if G is unramified at p). We set L', = [; jjes, i,

Fix once and for all a compact subgroup Ks < G(Fs) and for all v € Sp,
consider K5P" the maximal hyperspecial compact open subgroup. We will
study some covering of the Shimura variety (seen as a scheme over Spec(K))

X" = Xk Ko=KS%Kg [ K™

veES),

The Shimura variety associated to X P has a good integral model X gf{ " over
Spec(Ok), for K/Q, a well chosen finite extension ([Lanl3] if K, is hyperspecial
for all v|p, and [Lanl6a] if p is unramified in D for example by normalisation
of the hyperspecial level. In general, we fix any integral model X gf{ h given by

[Lanl6al]. If K, is hyperspecial for all v|p, ng{h is smooth).
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We will define our base space, and its integral model following [Lanl6a]. Let
for all v € S, I, be a Iwahori subgroup at p of G(F,). Define first its generic
fiber,

X = Xox, K = K% Kg 1_[ I,.

veSy

This space, over some extension K of Q,, classifies quintuples (A4, ¢, A\, ns, H.)
modulo isomorphisms where (4,1, \,ng) is a point of X P and H. is a full
flag of A[v], for v € Sp. Explicitly, for every (4, j) as before, H. induces,

1. In case (AL), a filtration
0c H c ---CHT=A1'[7T;T],
by finite flat O; j-group schemes such that Hy, is of rank p*.
2. In case (AU), a filtration,
0Oc Hyc---c H, = Alnj],

by finite flat O; j-groups schemes such that Hj, is of rank p* and Hll =

H'.
This Shimura variety with Iwahori level at S, has a natural integral model
over Spec(Ok). When all the prime v|p satisfies that K, is parahoric (this
is only a condition outside S, here), then this is defined by the lattice chain
introduced in [RZ96]. See for example [Lanl3]. In general, this can be seen as
explained in [Lanl6al, example 2.4 and 13.12. The abelian scheme A and the
subgroups H,”’ gives rise to isogenies (precisely, we need to use Zarhin’s trick,
see remark 5.5),

A— AY = A/H.

In particular we get a map,

x— ] X,

vyel'y

sending (A4,:, A\, n, H.) to (AZ’j,L,T], A) (see remark 5.5). Then the integral
model X, is defined as the normalisation of || X(‘g’; "in X. This is a
scheme flat over Spec(Ok).

The same thing applies to compatible choices of toroidal compactification!,

and we get spaces, flat, proper over Spec(Of ) (see [Lanl6a] Lemma 7.9),

vel'y

tor Sph,tor
Xo, and Xgo .

HIn all the this text, we always assume the rational cone decompositions to be smooth
and projective without further comment.
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Remark 5.3. In the following, we will be interested mainly by A (as opposed
to the collection of all the A,) and the subgroups Hlkj [p*]. Thankfully, there is
a "universal semi-abelian scheme” (more precisely, a degenerating family) on
Xt and its covers extending A on X. If p is unramified in the PEL datum
and we are at hyperspecial level this is [Lan13] Theorem 6.4.1, in general this
is [Lanl6a] Theorem 11.2.

But we will need slightly more, as for a semi-abelian scheme G, G[p"] need
not to be finite flat. Fortunately, we can find an etale covering U of X S’; htor
such that G is approximated on each open of this covering by a Mumford 1-
motive M, i.e. G[p"] = M[p"™] (see [Str10] Section 2.3 (more precisely Proposi-
tion 2.3.3.1) and [Lan16a] Theorem 11.2). This etale covering is an isomorphism
on the boundary (see [Str10] Section 2.4). In particular, there is a semi-abelian
scheme of constant rank G such that G[p"] < G[p"] s finite flat, and such that

Weirpn] = Walpr]- We can thus by pullback find also an etale covering of Xéo;

on which we have the finite flat group scheme G[p"]. Thus, the (p-ordinary)
Hasse invariant or the degree function extends on this covering of X g’; htor hug
we can descend them : see in Subsection 5.5.

We have similarly for any n, a Shimura variety with ITwahori level p™, X" (p"),
over Spec(K), classifying, outside the boundary, (A, ¢, A\, ns, H.), with H. a full
flag of A[p™]. More precisely, we have for all (i, j),

1. In case (AL), a filtration
OcHc---cH,= Ai[ﬂj’"],

by finite flat O; j-group schemes such that Hj, is of O; j-rank p"™* with
cyclic graded pieces.

2. In case (AU), a filtration,
0c Hyc---cH, = Alr}],
by finite flat O; j-groups schemes such that Hy is of O, j-rank p™* with
cyclic graded pieces such that Hi = HT(i)l

Once again, by [Lanl6a] (here we are in characteristics zero, so this is easier)
there is a natural map'? (again, see remark 5.5),

t Sph,tor
Xo(p)r — [ x&mmter,
V€l

sending (A, ¢, A\, ns, H.) to (A/(Hf] [p*]), 1, A\, ns, ) away from the boundary.
There is moreover a map

Xo(p™)'or ™5 X (pn e,

12Cone decomposition must be chosen appropriately, but we suppose so, without further
comment, as it is always possible to refine the choices in order to get the compatibility.
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given by sending the flag (H[;[p‘] < Ai[r!])i<n to the flag (H(km)[pe] c

A; [Wf])gsn_l. In particular, the diagram,

Xo(pn>tor Hyer‘n Xg;;(h,tor

Tn,n—1 Tnin—1

Sph,tor

Xo(pnfl)tm’ Hwan’_l o

is commutative.

DEFINITION 5.4. Define Xo 0, (p")"" to be the normalisation of [ . Xg’;h’tm
in Xo(p™)t°r. It is a proper and flat scheme over Spec(Ok ). By normalisation,
the map 7, ,,—1 extends as a map,

tor n—1 )tor )

Tnn—1 ' X0,0k (") — Xo,0x (p

In particular (see also [FC90] Chap I Prop. 2.7), over X o, (p")!" we have
by pullback natural isogeny graphs,

(A'Y )'Yer‘n ?
such that the Kernel of A;[7] — A;Jm, is a finite flat, at least away from the
boundary, O; j-subgroup of A;[7}] of O; j-rank p*™. We denote it by H;Jm,

or, if (4, 7) is understood, Hy[p™]. This makes sense as Hy y, = Hyn[p™]. In
the rest of the text, we sometimes denotes G(; ;) (or G if (i, ) is understood)

the p-divisible group A;[7{°] (or 4; [w;’oo] in case AL).

Remark 5.5. Actually the construction is slightly more evolved as what than
been said, as the abelian varieties A, = A/Hi’fj [p"] appearing in the isogeny
graph might not be principally polarized, thus need not to give a map
Xo(p™) — X°P". But as explained in [Lanl16a] Proposition 4.12 and Propo-
sition 6.1, we have a map to an auxiliary moduli problem where A/Hz-lfj [p?] is
modified to be principally polarized by Zarhin’s trick, extends to the integral
model X o, (p™) (all this works on the compactifications), and we can then
deduce the extension of A/Hi’fj [p"] itself.

5.3 RESULTS ON THE CANONICAL FILTRATION AND THE HODGE-TATE MAP

THEOREM 5.6. Let L be a valued extension of Q,, and G be a truncated level
n p-divisible group over Spec(Oy,) with action of O and signature (pr,qr).

1. Then there exist at most one sub-O-module H; of height np, such that,

NN

deg H, > Zmin(npfr, np;) —

T

We call it the canonical subgroup of height p, if it exists.
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2. Moreover, if two sub-O-modules H,, H; of respective height np,,np, as
before exists, then,

pr <pr ifand only if Hr < Hp.

8. If moreover G is polarized, then H, is polarized, i.e.
HY = (G/H,)P — GP,
is identified with the canonical subgroup of height q, of GP.

4. The group H. verifying the previous hypothesis is a step of the Harder-
Narasthman filtration of G, it also coincide with the kernel of the Hodge-
Tate map,

QG rn—e * G(OL) — WGP rn—es

where ¢ = deg (G/H;).
5. Suppose that H: as in 1. exists. The cokernel of the Hodge-Tate map,

aqg,r ®1 : G(OL)®OL —> W@gDb

is of degree p pl—1 . In particular, write e, = nmin(p,;/,p;) —

deg. H;, then the cokernel of the Hodge-Tate map 1is killed by

Kr(pe)+Sr(ce)

p -1 , where
f . f '
K, (p.) = Z p/ “'max(pyi; — pr,0) and  S;(e,) = Z plTlegin.
i—1 i—1

Proof. The first three assertions are Bijakowski’s result, [Bij16] Propositions
1.24, 1.25, 1.30 (see for example [Her16] Proposition A.2 for something written
for the p"-torsion). Assertion 4. is Proposition 7.8 and 7.7 of [Her16] (appliy-
ing 7.8 we get a step H. and by 7.7 H, and H. coincide with the Kernel of
the Hodge-Tate map). It it sufficient to prove 5. for n = 1. Remark that
our hypothesis for H, c G implies the same for H,[p] € G[p]. Indeed denote
deg. H. = nmin(p,/,p;) — €/, and write the sequence,

0— H.[p] — H, — pH, —0

which is exact in generic fibre, where pH, is the schematic adherence of
pH.(O¢) in H,. Then pH, = G[p"~!], and we have,

deg., H; < deg, H.[p]+ deg, pH,

and because pH is of height (n — 1)p, and inside G[p"~'], deg,. pH, < (n —
1) min(p,, pr/). Thus,

deg,, H-[p] = min(p,, p;) — €’. (3)
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Then denote E = G[p]/H-[p]. The hypothesis on the degree of H,, and thus
of H.[p] implies
WHD re = 0

for all e < 1—deg, (HP), in particular, e < 1/2. Using the same devissage of E
as in [Her16], proof of Theorem 6.1 implies that

D E
deg COker(aE,T,s ® 1) = deg COkGI‘(OzGKF“€ () 1) = 7efg7—( 7 ) .
p J—

Using the properties of various deg,,, and equation (3) we get the result. O

Remark 5.7. 1. The principal difference of the previous theorem with
[Her16] is that we don’t a priori have the existence of such groups H..
In [Her16], up to taking p big enough to relate the (p-ordinary) Hasse
invariant to the Hodge-Tate map, we have a condition for the existence
in terms of the Hasse invariant. In this article, we assure the existence
by increasing the level at p in the integral model.

2. The bound given in 5 is interesting in general only when p is big enough
compared to (pr). If p is small and (p;) is too big, then it is more
interesting to use the bound given by Fargues ([Far11]) which states that
(in full generality) the cokernel of the Hodge-Tate map is killed by pﬁ.
Note that this is because the definition of the degree which involve taking
some determinant.

5.4 DEGREE FUNCTION, p-ORDINARY LOCUS AND HASSE INVARIANTS

NOTATIONS 5.8. In the Subsection 5.2, we fixed a sufficiently big p-adic field K
and we have defined, for = € {(F, tor}, X*, X5Ph-* X (p")* which are schemes
over Spec(K), together with X& ng(h’*, Xo,0, (p™)* which are integral mod-
els over Spec(Ok). In the following we will need to leave the world of schemes,
and we thus define X*, X5P"* X,(p™)* as the completion of the previous in-
tegral models along their special fibers (we suppress K from the notations).
These are thus formal schemes over Spf(Oy). We define X*, X5Ph-* X, (pn)*
as the rigid fibers of the integral models. These are rigid analytic spaces over
Spm(K), and when * = tor, they coincide with the analytification of the anal-
ogous Spec(K)-schemes.

As usual, fix a couple (4, ) € Sy, and suppress it from the notation. Denote
by o a Frobenius (at (4,7)), thus 7 is principal homogeneous for the action
of 0. For each T € T is associated an integer p,, and thus a subgroup of height
np, over Xo(p"), Hr = G = A[n¥] or A[ﬁ;“oo], which is finite flat and killed
by p"™. We can thus, following [Bij16], define for each 7 a real-valued function,

. Xo(pn) - [0’ n ZT' min(p‘rap‘r')]
deg(Hr) (05 N H) — deg(H,)
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and consider [ [ _deg(H,). Then we have the following result of Bijakowski
[Bij16] Proposition 1.34,

PROPOSITION 5.9. The locus where the previous function is maximal in Xo(p™),
i.€.

f—1
1_[ deg(HajT)_l({nZmin(p‘rapT’)} XKoo X {nzmin(pafflrapr’)})a
j=0 T’ T/

is included in Xo(p™) "=r=ord the p-ordinary locus of Xo(p™) .

Remark 5.10. To be precise, as we have fixed the prime (i,j) € Sp, the u-
ordinary locus above, and in the rest of the text (until the conclusion at the
end of Section 9) if not stated otherwise, is with respect to the prime (i, 7).

DEFINITION 5.11. On X5 we can define a y-ordinary Hasse invariant # Ha (cf.

[Her18], see also [GN17, KW14]) which is a section of the sheaf det wg(pffl)
(mod p). This defines a function

v(* Ha) : 97" — [0,1],

which sends a Og-point to the (truncated by 1) valuation of the p-ordinary
Hasse invariant of the reduction of the corresponding point of X°P". In partic-
ular we can define by pullback an analogous function on Xy(p™), and define

Xo(p™)TH (v) = v(* Ha) ([0, ).

Remark 5.12. 1. In the previous definition, the valuation is normalized by
v(p) = 1, and Xo(p™) ™=#(0) = Xp(p™)T*—+=0rd the p-ordinary locus
of XO (pn)

2. Actually by construction we have many maps from Xp(p™) to X*P" (and
as much for their integral model), namely one for each v € I',,. The one

we consider above is the canonical one corresponding to the zero-matrix
(which sends A to A, or (A,), to Ap).

DEFINITION 5.13. Define Xy(p™)(v) as the (union of) connected components
of Xo(p™)f“!=+(v)) which contains a point of maximal degree for the previous
function (equivalently, the components where the subfiltration of H. of height
np, coincides with the canonical filtration in sense of Theorem 5.6). We will
call Xy(p™)(0) =: XL~ (pn) the p-ordinary-canonical locus of Xy(p™). Tt
is an open and closed subset of Xy(p™)7“"~#(0) and coincides with the locus
of maximal degree of Proposition 5.9.

Remark 5.14. X,(p™)(v) is the analogue of the strict neighborhoods of the
ordinary-multiplicative part of the modular curves of level I'y(p).
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DEFINITION 5.15. For ¢ = (e;),, define the rigid analytic open,
Xo(p™)((er)r) =

f-1 -1

[ [ deg(Hos )™ ([ [0 Y, min(posr, prr) = €gsrsn Y min(pes -, prr)])-
=0 j=0 7 T

This is a strict neighborhood of the p-ordinary-canonical locus Xp(p™)(0) in

Xo(p").

Remark 5.16. The map 7, ,—1 sends Xo(p™)(g) into Xo(p™~1)(g). Indeed, if

deg Hr > n ), , min(p;,ps) — €, then because of the generic exact sequence,
0— H,[p" '] — H, — K — 0,

and the fact that K is killed by p, thus deg K’ < > min(p,,p,/) we have that
deg H;[p"~'] = (n — 1) 3, min(p;, p-) — €.

5.5 EXTENSION TO THE BOUNDARY

We want to extend the previous opens to all Xy(p™)!", thus we will need to
extends the functions deg and * Ha. The function * Ha can be extended to
all Xo(p™)™" (as a section of some det(we)® ® (Ox,(pnyror/p)) by [Lanl7]
Theorem 8.7. For the functions deg, we can also extend it. The group H,_ is
the Kernel of an isogeny of semi-abelian schemes

T A— A,

on Xo(p™)t°". Thus, looking at the corresponding map on conormal sheaves we
get

. WA, —> W4,

and taking determinants gives det 7* € HO(Xo(p™)!", det wa ® det wzi). Over
Xo(p™), the valuation at every point of det 7*, which can be seen as an element
of Ry, coincides with the degree of H,_. Thus, we have extended the degree
map to,

deg(H,) : Xo(p")"" — Ry
To check that this map is actually bounded by n )], min(p-,p.) as on the
open Shimura variety Xp(p™), we can do the following. Let z € Xy(p™)*"(K),
and let é/(’)K be the constant toric rank semi-abelian scheme such that A,
is a quotient by some etale sheaf Y of G by Mumford’s construction. Then
by [FC90] Corollary 3.5.11, we have an exact sequence, and taking schematic
adherence H,, of G[n]® K in A,[n], we have that H,, is isomorphic to G[n]
and whose quotient in Ag[n] is etale. Decompose accordingly A, , together
with the isogeny 7 (see for example [FC90] Corollary I11.7.2), and decompose
my as Ty along G. Then the degree of my is the same as Ty as its quotient
is etale. But ker Ty (which is now finite flat) is of signature smaller than
(nmin(p,,p.)),, thus the assertion on its degree.
In particular we can define Xy (p™)*"((e-),) and Xo(p™)!°" (v) as before.
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5.6 TWwWO COLLECTIONS OF STRICT NEIGHBORHOODS

Recall that in a quasi-compact rigid space X, if U ¢ V < X are quasi-compact
opens, we say that V' is a strict neighborhood of U if (V, X\U) is an admissible
covering of X. This is in particular the case when U is relatively compact in V
over X ([KLO05, Definition 2.1.1] which is denoted often U €x V'), see [KL05,
Lemma 2.3.3].

The previous opens Xy (p™)""((e,)-) and Xy (p™)°" (v) both define stricts neigh-
borhoods of the g-ordinary-canonical locus Xo(p™)*°"(0). Thus we get the fol-
lowing proposition,

PROPOSITION 5.17. For all v > 0 there exists (e;); > 0 such that,

Xo(p")* " ((er)7) = Xo(p™)*" (v),

and for all (e;)r > 0 there exists v > 0 such that,
Xo(pn)tor(v) c Xo(pn)tw((&)r)-

Proof. Fix V a strict neighborhood of XS~ #or bt (pny — Xy (p™)tr(0). As
(V, Xo(p™) 1"\ Xy (p™)t°"(0)) is an admissible covering, V contains X, (p™)%" (v))
for some v > 0. The same applies for Xo(p™)™"((e7)r). O

DEFINITION 5.18. We say that € = (¢,) and v are n-compatible, or we say that
(e,v,n) is satisfied, if,

Xo(p")'" (v) = Xo(p™)"" (e).

Let us explain quickly why we chose this two collections of strict neighborhoods.
Classically, we use the stricts neighborhoods X (v) given by the Hasse invariant
to construct eigenvarieties because this is the classical definition of Katz, and
as the Hasse invariant is a section of an ample line bundle on the minimal
compactification, we get that the ordinary (or p-ordinary) locus and its strict
neighborhoods in the minimal compactification are affinoids. This is a crucial
part of the construction described in [AIP15]. In many case (see [Bral6] or
[Her19] in the Picard case, and using [Her16] in all PEL unramified case when p
is big enough), we manage to construct on the opens X'(v) a canonical filtration
and control the degree of the subgroups of this filtration explicitly in terms
of v. Thus the choice of the strict neighborhoods X (v) is enough to do all the
constructions in these cases. But the classicity results as in [Buz07, Kas06,
Pilll, PS12, BPS16] and in the p-ordinary case [Bijl6] relies on the stricts
neighborhoods in terms of the degree. So in the unramified PEL case when p
is not big enough, it is not clear a priori how to relate the degrees in terms of
the Hasse invariant. Nevertheless, the previous proposition will allow us to use
the best of both worlds.

We will need to understand the behavior of the strict neighborhoods along
finite etale maps.
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LEMMA 5.19. Let m: X — Y a finite etale map of quasi-compact rigid spaces.
Let U < X be a quasi-compact open subset and V' = w(U) the corresponding
open in'Y. Let U, X be a strict neighborhood of U, then w(U,,) is a strict
neighborhood of V.

Proof. This is [BPS16] Proposition 4.1.7. O

6 CANONICAL FILTRATION, HODGE-TATE MAP AND OVERCONVERGENT
MODULAR FORMS

As before, fix a couple (4, j) € S, that will be understood until the rest of this
section. Let v € v(Ok). In the previous section we defined a rigid open denoted
Xo(p™)t°" (v). We first need an integral (formal) model.

DEFINITION 6.1. Let Blr(v) be the blow-up of Xo(p")™" along the ideal I =
(p¥,#Ha). Let Xo(p™)!"(v)? be the open of Bl;(v) where I is generated by
# Ha, and we denote by Xo(p™)!"/“!=#(v) the normalisation of Xo(p™)*" (v)°.
As this scheme is normal; it has the same connected components than its
rigid fiber, and we thus denote Xo(p™)*"(v) the one whose generic fiber is
Xo(p™)"" (v).

1

From now on, fix ¢ < 5. Recall that over X (p™)t" we have subgroups H)"

for m < n (which are finite flat on X, (p™) of O-rank mp,), but a priori only
quasi-finite flat over the boundary.

PROPOSITION 6.2. Ife < %, for every v > 0 such that
Xo(p")"" (v) = X (p")"" (e),
the groups H™ are finite flat over Xo(p™)" (v).
Proof. Over Xo(p™)!°" there is a isogeny
A— A,

of semi-abelian schemes whose Kernel is the group H? (a priori only quasi-
finite flat), and this group is finite flat over Xo(p™). Moreover, by a classical
construction, there is an etale covering " of X (p™)*" over which the semi
abelian schemes A and A, can be approximated by a 1-motive of Mumford M
and M., (concretely these U7, exists for X5P! by construction, see e.g. [Str10]
Section 3, and we can moreover assure that M[p™] and M,[p™] are isomorphic
to A[p"] and A,[p™], by the arguments of [Str10] Section 2.3, and take the
pull-back via Xo(p™)"" — [], X5P™*"). We only need to check that H;" is
finite flat over L' (v) := U™ X ¢ (pnyror Xo(p™)*" (v). But there is an isogeny
over U4 (v)
T A— A,

such that Kerr is H}?. Thus for every Og-point of ytor (v), H)" is of high
degree (in the sense of Theorem 5.6). But over 4*°"(v), A and A, are associated
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to Mumford 1-motives M and M, by Mumford construction. Thus there exists
semi abelian schemes G' and G, of constant toric ranks, in the datum of M
and M., such that the isogeny 7 reduces to

G — G,.

Call H = kern’. It is finite flat as G and G, have constant toric ranks.
As wg ~ wy and wg, =~ wa,, the degree of H' is the same as the one of
H" = Kerm. Thus, away from the boundary, over {(v) := 4" (v) X x, (pn)tor (v)
Xo(p™)(v), by unicity in A[p™] of Theorem 5.6, we have H' = H™ (it is true for
every Ok-point, thus on $(v) by normality). In particular, the semi-abelian
schemes

A/H" and A/H'

are isomorphic over (v). But by [FC90] Prop. 1.2.7, this implies by normality
of Xo(p™)™"(v), and thus of U'"(v), that they are isomorphic over {4°"(v).
Thus Hp? is finite flat. O

6.1 THE SHEAVES F AND INTEGRAL AUTOMORPHIC SHEAVES

We denote
{p‘r| TET}U{O,h}= {0=2p0<p1 <p2 < < Pp < Pry1i= h}

We define for every v > 0 such that Ap(p")(v) < Ab(p™)(g), a cover of
Xo(p™)(v). In case (AL) or if p, = h in case (AU) (in which case p; = 0
by duality and thus on X the universal p-divisible group A;[73°] has no multi-
plicative nor etale part), we set

r+1

X (pn)tor (’U) = 1_[ IsomXo(P”)tOT(U)aPOZaO(Hpk/Hpk71 ) O/pnopk _pk71)7
k=1

where'? the condition pol is trivial in case (AL), and in case (AU) means that
we are also given an isomorphism,

vV (0/p"0)P ~ (0/p"0)7,

ie.
X1 (p")" " (v) <
r+1
H Isom y, (pnytor (v),0 (Hpy /Hpy_,» O/ OPF~PE=1)xIsom(O /p" O) P, (O /p" 0)?),
k=1

satisfying the following. There are fixed isomorphisms,

¢k : (Hpk/HpkaD = (HpT7k+2/HpT7k‘71)(a-)5

13We now write Hp, instead of H?. Thus Hp, = H} if pr = p;, and of O-height npy.
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induced by H;; ~ H,S‘j}k +1, itself induced by the prime-to-p polarisation on
xtor.lél

We require that for all k, the two isomorphisms,
U (OfpmO)P T — (Hy, [Hy, )7,

and
¢Tfk+2 : (Hprk‘+‘2/Hp7‘—k+1) — O/pnopk*}’kfl,

satisfies f = 1/17{(:)];112, after identifying source and target via v/ and ¢y.
In this definition we have extended slightly the definitions of the (canonical)
subgroups Hy, : for k = 0 we set Hy = {0} and for k = r + 1 we set H,411 =
G[p"™]. If p, < h in case (AU) (in which case p; > 0 and on X the universal

p-divisible group A;[73°] has a non-zero multiplicative and etale part), we set

4 (pn)tor(v) = IsomXO(P")t”(v)ypol,O(Hpk/Hpkflo/pnopk_pkfl)
k=2
X ISOmXO(pn)tw(v) (I{p17 (O/p”@)}’l )

Remark 6.3. 1. The difference in definition in case (AU) is because if p, = h,
the group A;[7}"] is finite flat and polarised on the all toroidal compact-
ification, but not if p, < h, because A;[77"]/Hp,, which is generically

finite etale, is only quasi-finite on the boundary.

I

2. The point is that X;(p™)*"(v) is a rigid open in (a toroidal compactifi-
cation of) the Shimura variety for G of some level (which we could make
explicit). Indeed, if we use the definition of [Lan13] Definition 1.3.7.4. at
our prime (4,75), we see that it amounts to the previous definition : the
morphism

VITIE s i,

there induces a perfect pairing,

n n o) tr(<, n v
O/p"0 x (0/p"0) "= 2T s iy,

where tr(< a,b >) := tr(ab) is a perfect pairing, and thus induces an
isomorphism of O-group schemes

vV (Ofp"0)P = (0/p0) ).

Let 9, and ¥,_g4+2 be the isomorphism induced by a Level structure in
the sense of [Lanl3], then let Ay = py — pr—1,

14To be precise, we have on Xo(p™)'*"(e) a semi-abelian scheme A and H} inside its

p-torsion. The group homorphism A : A — AV:(9)_is a polarisation on Xo(p™), and this
(:), k)
(Hprka/Hprk)(") everywhere. Indeed, it is enough to check it locally and introduce the
formal-etale covering U*°"(v) of Subsection 5.5. Over 4t°"(v), the polarization extend as A
an isogeny of l-motives, thus induces an isogeny A%® of their abelian parts on which the
asserted isomorphism follows from Theorem 5.6 and normality of U*°"(v).

polarisation, which identifies Hka with Hz(v induces an isomorphism (Hp, /Hp, )P =~
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Weil
(Hpk/Hpka) x (Hp7~7k+2/Hpr7k+1)(g) " Hpn
e x 7, vt

tr(<,>)r

(O/prO)2k x (O/p"O)~ Z/p"Z

must be commutative, and by compatibility between the polarisations on
A[p™] and L, the two pairings tr(<,>)r, o (¢ X 1/)50_),”2) and tr(<,>)r
oY x (V' o(yP) tog; 1)) must coincide, thus wffi)kﬂ =vo(yP) tog, !
by [Lanl13] Corollary 1.1.4.2.

DEFINITION 6.4. Let X;(p")'"(v) be the normalisation of X(p™)'"(v) in
X1 (p™)t°" (v). Tt is flat, proper and normal over Spec(Ok), and moreover we
have maps

Tnn—1 xl(pn)tor(v) _ xl(pn—l)tor(v),
by normalisation of the map sending (1) to (v¥x[p"~1]).

PROPOSITION 6.5. Assume (,v,m). For every T, there is on X1(p)*"(v) a
locally free Ox, (pytor-module of rank pr Fr < wa,r, (respectively in case (AL)
also a sheaf F* < wgp ;) containing

Kr(qe)+57(cs) ' Kz (pe)+57(ce)
p 1w, (respectivelyp  rT-1 wep ).

For all n, it induces by pullback by 7, = m,1 a sheaf F, (resp. and F*)
on X1(p™)t°"(v), endowed with a compatible map for all w, < n — &, for all
Spec(R) < X1(p™)t" (v),

. D
HT: . : H, ,(R) — Fr ® Ry,
(resp.
HT: . : (Hy, )" (R) = (G[p"]/Hp, n)(R) — Fr © Ru,,
which induces an isomorphism,

D
Hp,,n(R) ®qu— — F® Rw,,

(resp. HT#wT ®R.,. is also an isomorphism,).

Proof. Indeed, we can work locally over S = Spec(R). We have isomor-
phisms (Hp, /Hy, )P (R) =~ (O/p"O)Px~Pr-1 but as HP (R) is a O/p"O-
module killed by p™ and of finite presentation, there exists an isomorphism
HP (R) ~ (O/p"O)P~. We can thus work as in [ATP15] Proposition 4.3.1 (see
[Her19] Proposition 6.1), where the analogs of the proposition are assured by
Theorem 5.6, and the construction of X (p™)*" (v). O
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PROPOSITION 6.6. Suppose we are given an isogeny on X1(p)t"(v), ¢
G' — G where G' is a p-divisible group, together with subgroups H, < G'[p]
satisfying the properties of Theorem 5.6. We can thus define F' for G' simi-
larly. Then the induced map,

P* : wer — wa,
sends F' in F.

Proof. As the groups in Theorem 5.6 are steps of some Harder-Narasihman
filtration, and this filtration is functorial, ¢ induces a map

(b : H}’%— - HpT'

The rest follows easily (see e.g. [AIP15] Proposition 4.4.1). O

6.2 CONSTRUCTING BANACH SHEAVES

Out of the universal isomorphisms
7/11? S (Ofpm Oy —s (Hpk/Hpk—l)Dv

on Xi(p")!"(v), we get a (full) flag of (H,,/Hp, ,)P, and thus (induc-
tively) of HP for all s* by writing for all 4, ef,..., ek~ the natural ba-
sis of (O/p"O)Pr=Pr—1_ and we thus denote z¥ the corresponding images in

(Hp, /Hp, )P through ¢;. Choose a lift of this basis,

(1,...,2p,)

of Hp’z, and denote Fil:i the subgroup of H£ generated by x1,...,x,. These
subgroups do not depend on the lifts. From now on, fix v > 0 such that
Xo(p™)tor (v) < Xo(p™)t"(g) (i.e. such that (g,v,n) is satisfied). In particular,
we have the sheaves F, on Xo(p")"" (v) and the compatibilities with HT of the
Proposition 6.5. For simplicity, in case (AL) we call T the set of embeddings
of O together with their conjugate, and represent its elements by 7,7. For all T,
we mean by ws the sheaf wgp ., for 7= the sheaf FL and HT= = HTi. We

-
hope it will not lead to any confusion.

DEFINITION 6.7. For all 7 let Gr, be the Grassmanian parametrizing all com-
plete Flags of F,, and Gr} which parametrizes same flags, together with a
basis of the graded pieces.

Let w < m—e,;. For all R in R — Adm, an element Fil, 7, of Gr,(R')
(respectively (File Fr,w,) of Gri(R')) is said to be w-compatible with
if Fil, F, = HT.(FilY) (mod p“R’) (respectively if moreover w; = 1(x;)
(mod p“ R’ + Fil,_; F.)). This definition does not depends on the choice of
the lifts ().

15By first taking the full flag of (HPS/HPS—I)D given previously, and then lifting the one
of (Hps/Hp572)D/(Hps/Hpsfl)D = (Hp571/Hp572)D and so on...
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Of course Fil, F- and Fili/’ are not always defined for the same index set for e.
It is understood that we restrict e to the smallest of the two index sets. Let
M = [],ey GLp, /Ok the linear group with upper triangular Borel B such that
M/B = Gr = ]]. Gr; is a flag variety for M. Denote also U < B the unipotent
radical and Gr* =[] Grf = M/U. Denote M/ Spf(O ) the completion along
the special fiber, ¥ = [ [, ¥, its diagonal torus and for w; > 0, 7r,.,, the open
which represent the functor ¥, ., (R) = ker(T,(R) — T,(R/p*"R)). We
denote T,, = [[, T and analogously B,, and i, (which acts trivially).

PROPOSITION 6.8. For each 7 € T and w, < n — €., there exists formal

86h6m687 ~ + T1L A~ T2 n\tor
JQnT,w,— - Jm‘ﬂwr - xl (p ) (’U),

where w1 is a T, . -torsor, and my s affine.

Proof. We set, following [ATP15],

90 - R— Adm — Sets
e R —> {w — compatible Fil, F, € Gr (R')}
3wi7w : R—Adm — Sets

R’ — {w — compatible (Fils Fr,wl) € Gri(R')}

These are representable by affine formal schemes (some admissible open in an
admissible formal blow-up of the previous Grassmanians). O

Fix w <n — e, for all 7. We denote by,

sy, = [ [owi, =5 0w, = [ [ 9,0,

and IW:T,W,IWT,WIW:;,IWW the corresponding generic fibers. Recall

that W is the space of weights, i.e. continuous characters of T'(Z,). Up to
pass to some (4, j), we can assume that

T(Zp) = ,a; € Ox,aianJrl,i =1
an

is (a part of) the maximal torus of G; = kerc ¢ G. We fix the following
embedding

T(Zy) —  M(Ok) =1]], GLy, (Ok)
ai T(a;DT)71

an m(a1)™t /.

The order is reversed for the following reason. T'(Z,) acts naturally on & (p™)
by acting on the left on (O/p"O)P+~Pk-1 — (Hp, /Hpk-1) in such a way that
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ai,...,ap, actson the trivialisation of H,, etc.. But when relating trivialisation
of the canonical subgroups by the Hodge-Tate map to the sheaf w, we need to
take a dual, and this reverse the order (it sends a trivialisation M to J'M~1J
with J the matrix of the hermitian form, we see it as antidiagonal with 1’s). In
particular, the natural action of T'(Z,) both on X;(p") and M thus Gr* now
are compatible in the sense of definition 6.7.

We haven’t really defined X;(p™)'" (but see remark 6.3), and it will not be
useful for us, but in general X (p)*" — Xy (p)t" = X*" would be a torsor
over the group!®

I(p"):=
A1 *
Ay xox A; € I,(0/p"0O)
GOy . =D U
* © ( /p) CGLPi*piﬂ(O/pn) o i
pO/p" Ary1

where we chose an ordering {p-, ¢, | 7€ T(= T ;) v {0,h} = {0 <p1 <p2 <
- < pr < pry1 = h}, and h = hj) is the O j)-height of A;[7°], I, denote
the standard Iwahori subgroup, and Up is the standard upper-block-diagonal
unipotent associated to p1 < pa-+- < pry1 = h (remember that we fixed a
couple (i, j) at this point so here everything is related to the group G = G, j
at the place (4,7)). Of course, here we chose a specific pairing so that this
parabolic is upper-triangular.
The group I(p") does not preserve X (p™)'"(v) : the reason is that the condi-
tion on Xj (p™)t"(v) to be "close to the p-ordinary canonical locus” (i.e. that
the group of height p, have big enough degree) fixes the group of height np, to
be equal to the canonical (and thus unique) corresponding one. In particular
X1 (p™)tor (v) — Xp(p)tor(v) is a torsor over,

(") =
A 0 0
- Az . Ai € 1(0/p"0) € GLy,p, ,(O/p")
-0 tAiJPi—Pi—lAfﬂli)i+2 = Jpi—pis
0 A,

— G(2/p"Z)/Up(Z/p"2))

with Js the antidiagonal matrix with entries 1 of size s.

0
(P~

I%(p™) is the group of Z/p"™-points of a natural group I° defined over Z,, which
contains T'(Z,)'", and denote B® > T its upper Borel, and U the unipotent.
There is a natural action of I° on JW, — X, (p™)*" with U acting trivially

Remark 6.9. The group I°(p") is related to the group I ) of Section 4

16This is for p, = h, there is an analogous description when p, < h.
17 Again we have restricted the situation to some (i, j) here.
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and the action on X (p™)*°" factors through I°(p™). Given a character of T'(Z,)
we see it as a character of B%(Z,) trivial on U%(Z,). A character x is said to
be w-analytic if it extends to a (w-analytic) character of T'(Z,)%,,, and we see
it as a character of B%(Z,)%B,, where U°(Z,)il,, acts trivially.

Denote by 7 : I, — Xo(p™)!" (v).

DEFINITION 6.10. Let x be a w-analytic character in W. The formal sheaf,

it = 7, Oy 5],

is a small formal Banach sheaf on X (p™)"" (v).

Here we take s-variant sections for the action of B°(Z,)®B,, acting on 320
above Xo(p™)"" (v) via the previous explanation. We fix the following notation.
If K € W(w) < W, in particular it is locally analytic, then we denote x° its
(analytic) restriction to T,,.

Proof. Denote x° the restriction to T,, of x. The map
Ty e jﬂﬁg — 720,
is a torsor over T, thus (m1)xO5qy+ [#°] is invertible, and
Ty IWy — X1 (™) (v),

is affine, thus (m2 o m1)xO5py+ [£Y] is a small formal Banach sheaf. As
Xo(p™)t" (v) is quasi-excellent (formally of finite-type over Ok ), thus Nagata,
the map X1(p™)"" (v) — Xo(p™)'"(v) is finite, and we can use [AIP15] with
the action of B%(Z/p"Z). Thus,

B°(Z/p"Z)
il = (72 0 1) O[] 1)) ,

is a small Banach sheaf on Xo(p™)*" (v). O

We would like to descend further to X7 (v), i.e. at Iwahori level, unfortunately
the map Xo(p™)"°"(v) — X' (v) is not finite in general...

Let w? be the associated rigid sheaf ([AIP15] appendice) on Xy(p™)*" (v)
Xo(pn)tor(é).

6.3 DESCENT TO IWAHORI LEVEL

In order to get an action of Hecke operators at p, which are defined at Iwahori
level, we will need to descend our construction at this level. Fortunately, this
is possible in rigid fiber.

Denote by U%(p™) the (diagonal, not just block-diagonal) subgroup,
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< I°(p™)
*

1

Define X, (p™)*"(v) as the quotient of &X;(p™)!"(v) by U°(p™), which doesn’t
parametrizes trivialisations of the groups (H,,/Hp, ,)” but only full flags of
subgroups of this quotients, together with a basis of the graded pieces. Actually
we can also define the same way F, over Xo(p™)*(v)®" (i.e. the sheaves F,
descend). As the action of U%(p™) on &;(p™)t°" (v) lifts to ZW,., denote also
by ZW2 the quotient of by U(p"). As F, ~ w, over X (p")!" (v) (i.e. after
inverting p), we thus have an injection,

Wt < (’T/U)XJ(pn)m(U).
ProproOSITION 6.11. Ifn —e; > w > n — 1, then the composite,
IW?};JF [ (T/U)Xﬁ(p")f”(v) — (T/U)Xtor(,u),
1S an open 1mmersion.
Proof. Denote by V < X7 (v) = Xy(p)°" (v) the image by 7, of X, (p™)*" (v).

Up to reducing to a suitable affinoid U < X, (p™)*" (v), the previous composite
map h is given by,

1+ p*B(0,1)
p“B(0,1)  1+p“B(0,1)
[T - ’ y

T y€ES
1+ p¥B(0,1)
h
- L[(GLPT /U)Tl'n(U))

where S is a set of representative of I°(p™)/U%(p") in I(O) < GL,_(O), and M,
is the matrix relating the basis of HIJZ to the fixed one of w;,, which is thus
related to the Hodge-Tate map (or equivalently relating a fixed basis of F, to
a fixed one of w;). In particular there exists M* such that, M*M, = p°Id,_
for some ¢ (which we could bound in terms of the Hasse invariant or ﬁ, but
it is not even necessary). From this, we deduce that M* o h is injective, thus

the same thing for h. O

Thus we have a map g, : ZW%+ — X" (v), and recall that X" (v) is a strict
neighborhood of the p-ordinary canonical locus at Iwahori level. It is not clear
that the map,

T XO+ (pn)tor(v) . Xtor(v),
is surjective. But still, having n fixed, m, (X" (p™)!"(v)) describe a basis of
strict neighborhoods of X*°™#=¢a" by Lemma 5.19.
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DEFINITION 6.12. Assume (g,n,v) is satisfied. The open m, (X, (p")""(v))
is a strict neighborhood of the (u-canonical) ordinary locus X" (0)
xter(0)ean—r—ord jncluded in X" (g). On 7, (Xy (p™)t" (v)), if w €]ln—1,n—e,[
for all 7, for all k w-analytic, we define the following sheaf,

wif = ((gn)*ozw?ﬁ)[’i]-

It is called the sheaf of overconvergent, w-analytic modular forms of weight .
For every v’ > 0 small enough such that X" (v') < m, (X (p™)t°" (v)), the
module

MST (U/) = HO(XtOT ('U,)’ wZ)T)’
(respectively MET  (v') = HO(X!*"(v'),ws(—D))) is called the module of v'-

cusp,w
overconvergent, w-analytic (respectively cuspidal) modular forms of weight .

Remark 6.13. In the previous compatibilities, if (¢, n,v) is satisfied, (¢, n,v’) is
for all v/ < v. Also, because of the compatibility between w and n, n is uniquely
defined (and is thus suppressed form the notation of w’). Thus, we can choose
v arbitrarily close to 0 in the previous definition. Also, for every w and k, there
exists ng such that for all n > ng, there is w’ > w, and k is w’-analytic with
n—1<w <n—e, for all 7. In particular, there exists constants vg, wo such
that M/ (v) is defined for all v < vy and w > wp such that w €]n — 1,n — ¢
(for some integer n large enough).

Suppose n' — e, > w' > w with w €]n — 1,n — e[ and n < n'. As a flag with
graded basis which is (n/, w’)-compatible is also (n,w)-compatible, there is an
injective map,

IV = IV 4 Xy (prytor (v) X1 (™))" (v).

In particular, we have a natural map, for every w’-analytic &,
Wit Wil

over (X5 ()17 (0) & 7 (A (p")" ().

DEFINITION 6.14. For w > 0, the module,

M =l Mg(v) (respectively M, = lim M (0)
v—0,w—00 v—0,w—00

is the module of overconvergent locally analytic (respectively cuspidal) modular
forms of weight k.

Remark 6.15. In the previous definition, it is understood that the limit is taken
on v, w such that w €]n—1,n—¢[ for some n = n,,, (¢,n,v0) is satisfied for some
v and X" (v) < 7, (X (p™)!" (vo)) < X7 (g). Thus in particular (g,n,vo) is
satisfied and v < vyg.
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Let k be a classical weight of WW. This means that if M denote the Levi
associated to p as in Section 3, we can embed T'(Z,) in T the torus of M
and x is the composition of this embedding with a dominant algebraic character
of Th. If we write M = HTeT GL,, and we choose B the upper Borel, then a
dominant algebraic character of Ths can be seen as integers (k1 = -+ = kp_ ).
We then define the associated character of T(Z,) as —wo am(k) ot with the
embedding ¢ given in (6.2).

PROPOSITION 6.16. Suppose that k € W is a dominant algebraic character, and
choose w, and n,v and any v such that w €ln—1,n—¢[, (g,n,vy) is satisfied,
and X" (v) < T (X (p™)"(v0)). Then we have the following inclusion as
sheaves over X*°T (v),
W < Wil

Proof. Indeed, sections of w” are by definition section of Orx which are
are k¥ = —wo(k)-equivariant for the action of the Borel B < [[ GL,,
(with U acting trivially), thus we have by Proposition 6.11 a restriction map
77+ O1x ju — (gn)xOppyo.+ over X7 (v) which is injective by analytic con-
tinuation. But because of the previous definition of « as a character of T(Z))
and the construction both of w” (as —wg(k) variant function for Ths) and w!f
(as k-variant functions on T'(Z,)) the previous restriction map factors as an
injective map w” — w/l. o

Remark 6.17. In the previous definition, it can seem a bit arbitrary the use
of the map ¢ from T'(Z,) to T, but it is the natural one from the point of
view of the Hodge-Tate map (which relate a trivialisation of G, ordered by
the canonical filtration, and a trivialisation of wg) : it is what assures the
compatibility between the action of T'(Z,) on trivialisations of G[p"]-points,
and T, on W, .'®. In particular, we have that in case AL — i.e. when
primes above p splits in F'/F+— so that we can identify T'(Z,) with (product
of) O% for some p-adic field K (choosing a CM type above p in F'), dominant
algebraic weights of Ty corresponds to dominant integers (¢ = --- = £7),
for all embeddings 7: K —> @p for sufficiently generic classical points on the
FEigenvariety.

6.4 SOME COMPLEXES

For compatibilities reasons with Hecke operators and to control the structure on
the previous modules, we will need to define complexes overconvergent sections.
Recall that on X" = Xy(p)t°", our rigid toroidal Shimura variety with fixed
Iwahori level, we have defined two basis of strict neighborhoods of X*°"(0) (the
canonical p-ordinary locus whose points have maximal degree), one given by

Xtor (§)7

8Thus there is a mistake in [Her19] in the way we chose the embedding of T(Z,) in
Thr in Section 7.1 which implies that classical sheaves are not associated to p-adic characters
(k1 = k2, k3) but to (—k1, —k2, k3) € W with k1 = k2 which is unfortunate... The embedding
should be given by «¢.
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for € = (e;), (of points with degrees bigger than the maximal one minus ,),
and
X (v),

for v € (0,1] (describing the connected components containing X*°"(0) of points
with Hasse invariant of valuation smaller than v). Because we will need to let
the neighborhood described in terms of the degree vary, we from now on call
gy a number fixed to be able to define the sheaves Wit and we will always
consider small enough opens X (v) and X (g) so that there exists the sheaves
wft on them. In particular, once w is fixed this just implies that v or e are
small enough (depending on w).

Ultimately we are interested by (finite slope) overconvergent cuspidal modular

forms, that is, (finite slope) elements of

lim  HOX*(v),wil(=D)) = lim  H(X""(g),wy(~D)).
v—>0,w—>00 e—0,w —0

We temporarily introduce the following complexes,

DEFINITION 6.18. Let w > 0, i = Spm(A) < W an affinoid such that ry is
w-analytic, and define for v, e small enough 7,

Ceusp(v,w, k) = R (X' (v) x Z/l,wﬁ)“T(fD)),

and
Crusp(g,w, k) = RT(X7 (g) x U, wruT (—D)).

We can analogously define the non-cuspidal versions of these complexes.
We also define

ngsp,f(“lx[) = v—>%i,£un—>oo Hi()(tor(v) v U,WZMT(*D)),
and 3 _
Hipi(ky) = lim  HY(X""(e) x U, wikT(=D)).

e—0,w—>0

In particular Ht(:)usp,T(H) = HS;SpyT(m) is simply the space of overconvergent
locally analytic cuspidal modular forms of weight x, and we will see that the
higher cohomology groups vanishes (their finite slope part at least).

PROPOSITION 6.19. The previous complexes are represented by bounded com-
plexes of projective A[1/p]-modules (i.e. perfect complexes in the sense of
[Urb11]).

Proof. This is the same proof as [Pil18] Proposition 12.8.2.1. We have maps,

IWE Xxoy U =5 IWoy X 0y U — X1 (p")"" (v) x U,

19guch that the sheaves wi ¥ is defined on Xt°"(v) x U resp. xtor(e) x U.
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and sheaves L = (m*OIW;)[ng] (for the action of 7y,), this is a line bundle

0
on ZW,, X X (v) U), and w@”T = o LU . Moreover

RD(X (0)xU, i (= D)) = RD(1° (n), RD(: (5™)'" (0)x U, it (= D)) (~r))
— RI(I°(n), RD(IW., x U, L(~D))(~r)).

The last equality is because ZW,, —> X1 (p")'"(v) is locally affinoid. Now
if you choose 4 a covering of ZW,, x U by affinoids which is I°(n)-stable (by
adding all translates by IY(n) if necessary), then the Cech complex of this
covering is perfect and calculates RT'(ZW,, x U, L"“(—D)), and twisting the
action of I°(n), and looking at the direct factor of invariants by I°(n) (we are in
characteristic 0), this is still perfect and calculates RT(X°" (v) xU, wruT (—D)).
The same remains true with X*°"(¢) (for € small enough) instead of X*°"(v). O

7 HECKE OPERATORS

In this section we will construct Hecke operators, both at p and outside p.
As noted in [AIP15, Bral6], it is not true that the Hecke correspondences
will extend to a fixed choice of a toroidal compactification, nevertheless we
can adapt the choice of toroidal compactifications and use results of Harris
([Har90a] Proposition 2.2).

LEMMA 7.1 (Harris). Let X,%' be two smooth projective polyhedral cone de-
compositions, and Xi(p™)&", X1 (p™)i" the associated toroidal compactifica-
tions. Then there is a canonical isomorphism H*(X)(p™)¥" (v), Opp+) ~

H* (X (Pn)tzofr(v)a Ozp+)-

Proof. To simplify notation, denote Xy = X; (p")%". Up to choosing a common
refinement of ¥ and X/, we can suppose that X/ refines ¥ and look at the map

7T:XZ/ —>X§;.

By results of Harris we have 7*wg = wg,. Moreover, we can take ¥’ small

enough (which we do) such that it corresponds to a refinement of the auxiliary

datum we chose in Section 5.2. In particular, on the integral model X;(p™)%",

tor

the groups Hy, are given by pullback of those on X1 (p™)%" and thus we have
7 X (p™) (v) — X1 (p™)¥"(v). Thus we have a cartesian square,

v
2

IW+/ XE/ (?))
W ! X5 (v)
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Also, by results of Harris ([Har90b] (2.4.3)-(2.4.6)), we have quasi-isomorphisms
T+ Ox,, = RmyOx,, = Ox,. As IWT — X (v) is flat and 7 is proper, we
have thus by base change (see e.g. [Stal8, 30.5.2, Tag 02KH])

/
RW*OIW;, ot OIW; O

7.1 HECKE OPERATOR OUTSIDE p

Let A be a place where our fixed level K? is hyperspecial, and fix v € G(F}}).
Denote C,, the (analytic space associated to the) moduli space classifiying tuples
(A, Lk, Ay Mk ), k = 1,2, of the type G, together with an isogeny f: Ay — As
of type v which respects the additional structure. It is endowed with two maps,

C, 2 X(),
p2
where pi(f : A1 — Az) = Ag. Denote C,(p") = Cy Xy X1(p")(v). But
we can find choices of smooth projective polyhedral cone decompositions (see
[Lan13] Proposition 6.4.3.4) ¥ and X’ and associated toroidal compactifications
X Cy 5, X8 and maps p1 @ Cy sy — XE¥ . py : Cyx — X" which
extends the previous ones. As v is away from p, this correspondence preserves
Xt (v), and the universal isogeny induces an isomorphism,

I* 3 Faomyter (v) — PTFaaomyier (v
and we can thus construct,

*

*
n or n f
HO (X1 (p™)87 (v), Oppys ) = HO(Cy s (™), 05 Oppp+) “—
Ty p¥
HO(Cy (™), pEOppye) —3 HO (X1 (p™)E" (), Oppp)
As by the previous lemma,

HO(Xl (Pn)tg(v)a Ozp+) = HO(Xl (P")tz?T (v), Ogyp+),

we get an operator 7., on H?(X;(p™)¥"(v), Ozyy+). Similarly T, acts on
Ceusp(v,w, ki) and Ceysp(e, w, kyr) (as the isogeny is outside p) and their non-
cuspidal analogues. We can thus forget about the choice of ¥ in the notations.

Remark 7.2. Here we made the slight but usual abuse, as we used the notations
with a fixed (4,7). Of course, taking tensor products over the (i,7) of the
correspondings ZW™* (which depends of the choice of (i,7)) solves this abuse
of notation.

DEFINITION 7.3. Let k € W(w)(L) with w €]n — 1,n — ,[. Restricting the
previous operator to homogenous functions on X (v) for x, we get the Hecke

operator,
T, : M — MET

DOCUMENTA MATHEMATICA 27 (2022) 213-294



FAMILIES OF COHERENT PEL AUTOMORPHIC FORMS 251

univ

Working over X'(v) x W(w), considering x = k"™, we get an operator

univT univT

univ K K
T M —

which is  O)y(,)-linear, and an operator on Ceysp(v, w, Kyy(,y) and
Ccusp (§a w, ﬁW(w))'

Denote by HP*® the spherical Hecke algebra of level K PS5 the previous con-
struction endow for each w the modules M""""T (vespectively the module M/t
with x € W(w)) with an action of HPS.

7.2 HECKE OPERATORS AT p

At p, the construction of Hecke Operators is much more subtle than outside p,
and even more subtle than in the ordinary case, as already remarked in [Her19].
Indeed, when the ordinary locus is non empty, only one operator, U, , in
[ATP15], is compact on classical forms (it improves the ”Hasse”-radius, i.e.
the Hasse invariant), but does not improves the analycity radius for overcon-
vergent forms, whereas the other operators, U, ;,i < g in [AIP15], improves
(a priori) only the analycity radius. Already for U(2,1) with p inert in the
quadratic imaginary field the situation is different. Indeed, there is only one
interesting operator, U,, that improves at the same time both the Hasse-radius
and the analycity radius.

Following [Bij16], we define operators at p.

7.2.1 LINEAR CASE

This is actually easier than the unitary case, and can be adapted from [Bij16]
on w® to wl (in particular there is no p~2 appearing in the normalisation
corresponding to equation 4, see Remark 8.3). But as this case can be recovered
from the general Unitary case (considering G x G with canonical polarisation
instead of G), we just write the details in the unitary case.

7.2.2 UNITARY CASE

Fix as before (i,7) a prime, that we supress from now on from the notations,
and we can thus use i as a variable. Let G be the associated p-divisible group.
Let 0 < 7 < % an integer, and define C; the moduli space (A,t, \,n, He, L)
where (A,t,\,n, H,) € X(v) and L < G[p?] be a totally isotropic subgroup
such that H; @ L[p] = G[p] and H;* ® pL = G[p], and denote the two maps,

C; B X (v),

P2

where p1(A, L) = A and p2(A, L) = A/L. Denote C;(p") = C; X x () X1(p") (v),
and denote f : A —> A/L the universal isogeny. As we are in characteristic
zero, we can find smooth projective polyhedral cone decompositions %, ¥/, ¥/
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such that the previous correspondence extends to p; : Ciy —> X&" py :
Cis — X&' In [Bij16] Proposition 2.11, Bijakowski verifies that the previ-
ous correspondence stabilizes the open X(g). More precisely, he verifies that
the Hecke correspondence U; = ps o pfl satisfies deg H J’ > deg H; with equality
for i = j if and only if deg H; is an integer. Its proof extend to the case of a
1-motive in case of bad reduction, and thus extend to the boundary.

In particular, if e, < 1, by quasi-compacity of

X(V1,deg(H;) € [Ar,vr]),

with
Zmin(pT/,pT) —l< X <v, < Zmin(pT/,pT),)\T, v, €Q,

T T

we can thus prove the following,

PROPOSITION 7.4. For all w > 0, for all ¢ > 0 sufficiently small, there exists
¢’ < g such that the Hecke correspondence | [(U;) sends X7 () into X7 (€]).

Also, for all e > 0, and all 0 < £’ < g, there exists N > 0 such that [ [, UYN
sends X7 (g) in XEI ().

The universal isogeny f induces a map,
f* 03 Tan — PiTan,

which is an isomorphism, and denote f* =@, f;" (using the decomposition

w =@, wa,s) such that fX sends a basis w},...,w, of wa/r . to
—2 e,/ —2 e/ —1 g, 7 —1 e, 7
p f Wy P f wpachri?p f wpgchriJrla"'vp f wpgfia
%,/ %,/
f wp,,—i+15"'5f wp(,;

(being understood that the terms on the left with p=2 only appears if p, >

h — i and terms with p~! only if p, > i). Another way to write it is to set,
a, = max(p, — (h—1),0),b, = max(min(h — 2i,p, —4),0) and ¢, = min(i, py)
(thus a, + by + ¢o = py). Then fF sends wi, ..., w,  to,

p72f*w/15 e 7p72f*w¢/107p71f*w¢/10+15 e 7p71f*w¢/zg+bgv

*, ./ *, ./
f Way+by+17 " '7f Wy, s

(4)

Remark 7.5. This normalisation is made in order to make the operator U; vary
in a family (it corrects the multiplication by p that appears on w if we do the
quotient by L). It is related with normalisation of [Bij16] for classical sheaves,
but it is not exactly the same, see 8.3.

Fix € = g9 = (¢+)r < 3 small enough and assume (¢, v,n) is satisfied.

DEFINITION 7.6. Let w = (w] ), such that for all (4,7, 7), w]; €]0;n — ;[
and define IVV&Jr to be the open subspace of T*/U over m, (X, (p™)t" (v))
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such that its L-points, for all L over K, is the datum of a Op-point of
7 (X ()27 (0))(OL,), thus in particular an abelian scheme A/ Spec(Op,) for
which G[p"] has (canonical by Theorem 5.6) filtration by subgroups H,, to-
gether with a flag Fil, - for all 7 with graded pieces w], such that there exists
a (polarized) trivialization ¢ (as in Section 6.1), such that

w[ (mod Fil,_1 F, + pwng) = Z aj; HTT,wO (ej),

j=i

where wj = n — &, and with a;; € Op such that, v(a;;) > w}, if j > i
and v(a;; — 1) > w];. We then define as before wi on m, (X (p")*"(v)) for
min; r w; ;-analytic s.

Remark 7.7. In the previous definition, if we take n’ > n, w]; €]0,n — e, [ and
we make the previous construction over m, (X; (p™)(v)) for wy = n—e, or wy =
n' —&,, we get the same space. Thus, up to reducing the strict neighborhood,
we suppress n from the notation. When w is parallel and n — 1 < w <n — e,
then wfl = wrl,

Suppose w satisfies

0 <wp; <wo—2 ifa, #0
O<wg7l<w0—1 ifar =0and b, #0
0 <wi; <wo otherwise

PROPOSITION 7.8. Let f be the universal isogeny over C;. Then

(F)prowdt < izt

with
wy; +2 ifk>a,+bs andl < a,
WO = wy, +1 if (b +as =k >a, andl < ay),
=k, or (bg +ax 21> a, and k > a, + by)
wy otherwise

)

Proof. This is similar to 4.2 and [ATP15] Proposition 6.2.2.2. Indeed, in the
basis given by the "trivialisation” of (Hp, /Hp, ,)P on X (p™)t" (€), the dual
of the morphism H, — H,_induced by f,
D . (gt \D D
f : (HPT ) - HPT ’
is given by Diag(p?,...,p% p,...,p,1,...1), where p? appears a,-times, p ap-
pears b,-times and 1 ¢,-times. The rest follows exactly as in [AIP15] Proposi-
tion 6.2.2.2, as 7 F. o pF, is ar = 0 and b, # 0, 7*F. > p>F, if a, # 0 and
Fr = m*F. otherwise. O
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We can thus define the operator Uy,

—= Tryp,

5 fox e or K
[ﬂ@%@%g%wﬂ)fﬁ»HOKZJﬁw$)£—>HDK%pﬁ%j)p—a HO(XY" (g), wih)

w

and also

univT univT

) L RO(C) x W(w), pFut

) %
Ccusp(§; wlv H%(Zqz)) &) RF(CZ X W(w)apgwq’jﬂ

)
Pn;'i Trpy tor KUV Univ
—  RI(A"(e) x W(w), wy, ) = Ceusp(g; w, ’iw(w))a
where n; is an integer defined in [Bij16] Section 2.3 for example®®. It is related
to the inseparability degree of the projection pj.

Remark 7.9. 1. Unfortunately it is not clear how to define the Hecke op-
erator U on the neighborhoods X (v) as we don’t know how the Hasse
invariants behaves with quotients... But we will solve this in the end of
the paper.

2. Thus we can use the different operators U? to improve the radius of
convergence in all directions wy ; with k > [.

7.3 A COMPACT OPERATOR

Using the previous construction, we can define a compact operator. Fix w > 0
and n sufficiently big such that n —2 —¢ > w. Fix also v sufficiently small such
that (g,n,v) is satisfied.

Define w’ = (w;gz)a,bl by,

e[ w k=1
kL7 w41 otherwise

Remark 7.10. We could be more precise about the precise values of w’ we can
choose for what follows (summing over all ¢’s the previous proposition), but
the previous will be sufficient.

Denote by ¢’ < g the tuple given by Proposition 7.4. Then we have for each
k € W(w), the following operator,

w

HUzO . HO(XtOT(Ql),w;T) N HO(Xtor(g)’wﬁT),

i>1
and thus the operator,

0
1_[ U, : HO(XtOT(g),w;T) N HO(XtOT(g/),wa) ]_[Z_U: HO(Xtor(g),wnT),

w
i =1

20For us, this integer will not be important as it is used to normalize the Hecke operators
and is a constant of the weight. As our Hecke eigensystems are constructed on spaces where p
is inverted, this normalisation could be changed (we should change Theorem 8.4 accordingly).
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is compact, as the first map is. Indeed, for some ¢ let 7 : IW%’:; — IVV%,6 be
the rigid open in, respectively, (7/U)xtorcy x W and (T/B)xtor(c) x W as in
Proposition 6.11, and denote Fy, = m4xOgyy0.+ [£%*"*], which is an invertible

sheaf on ZW? _, and HO(X“”(Q,ME) is a direct factor of HO(ZW? _ F.).

w,e) w,e?
Clearly, as w’ > w, and ¢’ < ¢ we have a map

res : HO(ZW?

w,e?

Fu) — HY(IWy, o, Fur),

and it is enough to show it is compact. By [KL05] Proposition 2.4.1, it is enough
to show that IW%/,‘E, Cw IW?ME. But now, e.g. [KL05] Proposition 2.3.1, this
is reduced to show ZW,, . €w (T/B)xtor x W, which is true as T/B x X" is
proper.

Similarly, denote U; by precomposing U by the map H°(X*"(g),ws) <

HO(Xx tw(g),wﬂ) of the previous subsection. The same construction works

also over X" (g) x W(w) with x“n.

DEFINITION 7.11. We define A(p)* as the commutative Q,-algebra generated
by indeterminates U!. Then A(p)* acts on HO(X*°"(¢),w”l) for all x and &,
and also on HO(X®"(¢) x W(w),w;zw(“’ﬁ), C(e, w, Ky(w)), and their cuspidal
variants, by letting U/ acts as U;. Denote A(p) the Q,-algebra generated by U/
and their inverses. Similarly define H°? the (spherical) Hecke algebra outside S,
the set of places of K of bad reduction, and p. Then the previous sections
induces an action of H°? on all these spaces.

Remark 7.12. In the linear case, we can see A(p)t as the (commutative !)
Qp-algebra generated by

a1

p

pa n

where we use a choice w|v| p in F; to identify G(Z,) with GL,((F;"),). See
[BCO9] Section 6.4 (but our A(p)* is A(p)~ there). Here we like to see the
Iwahori level using the upper triangular Borel. Then U; corresponds to

1

where 1 appears i times and p~! appears n—i times. We can also see this A(p) "

algebra as acting on 7!, where 7 is a G(Q,)-representation and the action of
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the previous diagonal matrix d is by [IdI] in the classical Hecke algebra for I
(which is commutative). There is a similar description in the unitary case. As
A(p) is constructed by adding inverses to U/, this will act on the finite slope
part in the coherent cohomology, but careful that inverses of elements of A(p)™
does not acts as the corresponding double class in the classical Hecke algebra !

8 CLASSICITY RESULTS

Let w and g such that 0 < w < 1 —¢g. Up to reduce ¢ this is always possible for
some w < 1. Then the map IW?U — X" (g) has connected fibers. Denote
Kkt Krt

Wy = hmw,<w W+

PRrROPOSITION 8.1. Let k be a classical weight. We have an exact sequences of
sheaves over X7 (g),

K kt d1 a-KkT
0— W' —w,' — @ W,
aeA

which etale locally is isomorphic to the exact sequence (2).

Proof. We construct the map d; as in [ATP15] (we don’t need the hypothesis
on w here). Then we have a sequence,

S w—an & diy w —an &
0— VK;®OXtOT(§) — V::L ®0Xtor(§) — @ VO’ ®0Xtor(§),

a-k,L
aeA

which is exact by hypothesis on w by Jones result (hypothesis implies that Ny ~
B as in [Jonl1] Section 8). Then as this sequence is etale locally isomorphic to
the one of the proposition, we get the result. o

PROPOSITION 8.2. Let k = (ko,j)o,1<j<p, be a classical weight. The submodule
of MET(XtT (g)) on which each U; acts with slope strictly less than inf{ky; —
Koiv1:1 < po} is contained in HO(X'"(g),w").

Proof. By the previous proposition, and Proposition 7.4 and Proposition 7.8,
the proof is identical to [AIP15] Proposition 7.3.1. Indeed, let f € M=T(Xtr(g))
on which the U; acts with the said slope. Using Proposition 7.8, and that f is
finite slope for U;, we can assume that w < 1 — . Thus, by Proposition 8.1,
because of the slope, we calculate as in [AIP15] that dif = 0. Thus f €
HO(XtOT(§)7wK). O

Remark 8.3. Let us make explicit the normalisation of our Hecke operators,
in particular the effect of the operation in equation (4). In case (AL), for
i€{0,...,h}, we choose Ly  G[p] such that Lo ® H; = G[p] and we have an
isogeny

f:GxGP — G/Ly x GP /L.

This induces a map
f* : p;ﬁn - PTIma
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sending, for 7€ T a basis (wf,...,w] ) of wg/r, ' to its image via
WG/, @wWgp Lt — WG @wanp-
We then denote f* which sends a basis (w],..., wy ) to
(p~rf*wl,...,pt *w;%,w;le, Ce Wy )

Seeing f * as a morphism on functions on trivialisation of w, this means that
f* sends a trivialisation ¢ of pfw to 7* o ¢(-d;), where d; is in entry 7 the
matrix of size p,

p

1
with max(p, —4,0) times p~' appearing. If k = (kr;)reT 1<i<p, is a classical
weight, this induces a normalisation by a factor

p- Direr krpr too ki
)

with the obvious abuse of notation. In case (AU) this is slightly more compli-
cated but f* sends a trivialisation ¢ to 7* o ¢)(-d;), where d; is the matrix with
T-entry (of size p,) given by

p

1

2 1

with p~ appearing b,-times. Remark that if p=2
appears for 7, no p~ nor p~* appears for 7. In particular for a classical
weight £ we get a normalisation by the power of p

appearing a,.-times, p~
2 1

= Y 2k, + A krnig1) + (Brpei -+ Brag),
TeT

21Recall that in case AL we have chosen a section 7+ < T, i.e. a CM type induced by the

choice of a place, and if 7 € T+ we denote wg 7 := wgp . thus here wg/r, 7 = weD /L
’ ’ [
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with the same obvious abuse of notation. In both case we also normalise by
p~™ with n; independent of the weight (along the trace map).

The second result we need for classicity is Bijakowski’s result, [Bij16]. For each
7€ TT, denote A, = min(p,,q,) in case (AU) and A, = p,,7 € T" in case
(AL).

THEOREM 8.4 (Bijakowski). Let & = (krj, Ar1)reT+ 1<j<p, 1<i<q. b€ @ classi-
cal weight and let f € HO(X"(g),w"). Suppose that f is an eigenvector for
the Hecke operators Ua_ of eigenvalue o such that,

na, +v(or) <inf(krp. + Arg, ),
T

for each T € T werifying Ay # 0. Then f is classical.

Proof. This is almost exactly Bijakowski’s Theorem [Bij16, Theorem 4.2], ex-
cept that his normalisation for the Hecke operators is slightly different (see loc.
cit. Section 2.3). I claim that still with our stronger hypothesis the classicity
remains true. The reason is that in Proposition 3.9 and 3.15 of [Bij16] we can
strengthen bound on the norm of the morphism

K K
wA/L—) WA

0 k_,
K =TP

WA ®W, 7 with

. K
This can be done for each 7/ € T, and remark that w,",
0
Rpr = (kr/,l_kr/,pT/; EREE) kT/,pT/—l _k‘r’,p,_/ ) 0) and ET/J)T, = (K‘T',pﬂ_/a SERE) "i‘r’,p,_/)'

By loc. cit. we have a bound on the morphism on wif;,p ™ related to the degrees
of L, so let’s give a bound (which will be independént of the degree) for the
other part and we even assume that we have any x = (k1,...,kp) (we don’t
need the last entry of k to be zero). Denote i = p, and 7’ such that p =.,> p,,
and denote (A, \,¢,n, H.) as in loc. cit. an Og-point of X, and Ly < G[n]
(in case AL) such that H; ® Lo = G[n]. Then Lg is of 7/-degree bigger than
pl. — pr. But looking at
WaG/ Lo, ﬂ) waG,r,

which is a resolution of wr,, » we have that choosing carefully a basis of both
term we can assume that M is given by a p = p/-square matrix

ai

ap

and v(a1)+---+v(ap) = deg,(Lo) = p—1, but v(a;) <1 (as Lo < G[r]). But

wr is a submodule of

2 p—1
Sym* 72w, @ Sym* (A wr) @+ @ Sym*r R (A wr) @ detru,
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thus it is enough to prove the result for this vector bundle. But on each term,
we have for r > i = p,, for each i1 <iy < --- < i,

v(ag, ...a;) =1 —1.

Indeed otherwise reduce to i; = j, then as v(ax) < 1, v(ai...ap) =
v(ar...ar) +v(ars1) + -+ v(ap) <7 —7i+p—1r =p—i, which is absurd.
Thus the norm induced by wg/r,, — wg is less than

p- TP (ke —krg1) (r—i) —kyp (p—1) kit1—kio—-—kp

:p7

0
This is completely analogous for GP with Lg. In particular using this on wx;,

we get that the valuation of the non normalized (U?)"*? on weight # is bigger
than

Z (kr’,i+1 - kT’,pT/) + -+ (kr’,pT/—l - kT’,pT/) + Nl — Ny — Ba

TP >t

using the notations of [Bij16, Proposition3.9], but remark that

2 (kr/,i+1*kr/,p,_/)+' ! '+(k'r’,p,_/71*k'r/,p,/)+Ni = 2 k'r/,i+1+' ' '+k'r’,p7./7

T/ ppr>i T/ par>i
which is exactly our normalization of U;. Thus we have

||a;1UZ_bad || < pv(ozi)-k—ni—(l—a—Qfa infaeSQ(kg-}—Aa),

with our normalisation for U;. This is identical in case (AU), and the rest of
[Bij16] is identical with this modification. O

9 PROJECTIVENESS OF THE MODULES OF OVERCONVERGENT FORMS

Recall that we work over X*°", our Shimura variety with Iwahori level at p, and
as explained in Section 6.3 we have defined for all n and w €jn — 1,n —eo [
(where g, was small enough), a sheaf w;ﬂ for all w-analytic k € W, and a
universal one wq’fjmwT, both defined on sufficiently small strict neighborhoods of
Xtr(0) = X" (e = 0), the p-ordinary canonical locus. We have two families of
strict neighborhoods of this locus, each having their advantages. In this section,
we prove that essentially we have all the advantages (action and compactness
of U = Uy = [[;5, Ui, the operator of Section 7, and vanishing of higher
cohomology) on the finite slope part on both kind of strict neighborhoods. In
this section, we assume that on the strict neighborhoods we consider we have
the sheaves wi’fjuan, which means concretely that ¢ and v are small enough
(smaller than a constant which depends on w). Let Y < W(w) < W an open
affinoid such that the universal character ks is w-analytic.
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PROPOSITION 9.1. Let w < w' and ¢ = &’'. Then the restriction maps,
Ccusp (§; w, KU) I Ccusp (§,7 ’LU/, KU))

are isomorphisms on the finite slope part for U = [[,U;. In particular, the
finite slope part for U of Ceysp(v, w, k) and Ceysp(e, w, k) are the same, and
thus are their cohomology groups.

As explained in Section 7, it is not clear that Ceysp(v, w, Ky) or any of its coho-
mology group is preserved by U. But by Proposition 7.4, there exists N > 0 an
integer (which depends on v & priori) such that U™ preserves Ceysp(v, w, k).
We can see that when U acts on a module M, the finite slope part for U of UYN
are the same (see for example proof of Proposition 9.3). We thus define the
finite slope part of Ceysp (v, w, kizs) for U as the one for UY. Tt is then a conse-
quence of the previous equality that the finite slope part of Ceysp(v, w, ki) is
actually stable by U.

Proof. Indeed, it is enough to do it for &’ given by Proposition 7.4, w' = w — 1.
We have the factorisation,

Hi(ccusp(gla ’LU,, HU)) L’ Hi(Ccusp(éa w, fiu)) E’ Hi(Ccusp(é/; w,a fiu))

Now for a finite slope section f € H®(Ceysp(e’,w', ky)), by definition there
exists a non zero polynomial P with P(0) = 0 and P(U)f = f. We can extend
f 1o H{(Ceysp(e, w, k) by P(U)f. In particular, we can find for all v, an e
and ¢’ < € such that,

Xtor(gl) c Xtor(v) c )(15()7"({_:)7
and the composed restriction map,
Cle,w, ky) — C(v,w, ky) — C(e',w, ky),

is an isomorphism on the finite slope part, in particular, C(v,w,ry)’* =
C(g,w, ky)'* and thus these spaces are stable by U. O

In particular, we get

PROPOSITION 9.2. Clysp(v, w, Kyy) has cohomology concentrated in degree zero,
and the finite slope part of the cohomology of Ceysp(e,w, ki) is concentrated in
degree zero.

Proof. The first part is appendix Theorem A.6. Fix i, then we have restriction
maps

Hi(ccusp(§; w, KU)) - Hi(ccusp(v; w, KU)) - Hi(ccusp(ilv w, HZ/[)))

(for well chosen g,¢’,v) whose composite is an isomorphism on finite slope
parts, and the middle module vanishes for i > 0. o
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According to [Urbl11] Section 2.3.10, we can form the alternated Fredholm
determinant,

det(1 — XU|C(e, w, ky)).

But, because of the results of the previous section, this alternated determinant
should actually only be the one in degree 0. Moreover, we will be able to
restrict (locally) to the classical construction on an eigenvariety as in [Col97b,
Buz07, AIP15].

For this, fix e,v,w and U accordingly. By Proposition 6.19, recall that
Cleusp(&,w, k) and Ceysp (v, w, Kyy) are perfect complexes (in the sense of Ur-
ban [Urbll]), and the latter one can be represented by the projective (in
the sense of Buzzard [Buz07] or [Urb11]) module in degree 0 H®(X®"(v) x

univt
U,wy?  (—=D)). The compact operator U acts on Ceysp(€, w, Ky¢), but not a
priori on Coeysp(v, w, ki), but by Proposition 5.17 and Proposition 7.4, there
exists ¢/ < ¢ and an integer N, which we fix, such that we have inclusions,

XtOT(E) c Xtor(v) c Xtor(&_/)’

and UN (Xt (¢)) < Xtor(¢"). In particular UN (X7 (v)) < Xt (e') < X" (v).
Thus, UV is an operator on both Cpysp(e, w, ky) and Crysp(v,w, k). We
now need to explain how to construct the Eigenvariety. First, we have three
Fredholm series over Oy Iy, and Fy~ . of U and UV acting on Ceusp(&,w, Ky),
and Fyn ,, of UN acting on Ceuysp (v, w, ki) = HO(X'7 (v) x U, wyH T(fD)).
First, we need, as in the classical construction, to do things on a specific cover,
so choose a slope covering covering for U and Fy ., (V, h) in the sense of defini-
tion 2.3.1. of [JN19] (this exist, see [JN19] Theorem 2.3.2 for example). Over
(V,h), we can thus decompose the Fredholm series,

Fy. =GS,
where G € Oy[T] is a slope < h polynomial and S € 1 + TOyT is an entire

series of slopes > h. Accordingly, by [Col97b] Theorem A4.3/5 (or [JN19]
Theorem 2.2.2), we have slope decompositions for U of complexes,

Ccusp(57 w, HZ/{) = Ccusp(ga w, KU)U,Sh @ Ccusp(ga w, KU)U,>h-

LEMMA 9.3. This decomposition is a slope Nh decomposition for UN acting on
this module, and it induces a slope Nh factorisation of

FUN,E = G’Sl.

Proof. We can work on a single module, say M and denote the associated
decompositions associated to the slope decomposition of Fy;. = GS,

M = My <n ® My,>hn.
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As if Q(T) is a slope > Nh polynomial, the polynomial Q(T%) is of slope > h,
we get that UV is invertible on My ~p. Now let

P ={me M| 3Q of slopes < Nh, such that Q*(U")m = 0}.

This is clearly a submodule of M, and has if Q(T) has slopes < Nh, Q(T)
has slopes < h, we have P < My, <n. We claim that P = My <. Denote the
Oy -module

R = MU,éh/P-

Fix z a point of V, and let v € (My,<n)e = (My)u,<n (which is easily seen
to be true, or see e.g. [JN19] Theorem 2.2.13), thus if we denote N(v) the
sub-k(x)-vector space generated by v and its images by U and its powers, N (v)
is finite dimensional (say of dimension r). Denote uy, and Xy, the minimal
and characteristic polynomials of U on N(v). As there exists @ of slopes < h
such that Q*(U) kills U, 1> and thus x7;, have < h slopes. Up to extending
scalars, there is a basis of N(v) such that the matrix of U on N(v) is given by

Al *
A2
0 Ar

and we can thus calculate characteristic polynomial of UY : it is of slope
< Nh. By the theorem of Cayley-Hamilton v € P. Thus R@k(m) is zero, and
by Nakayama, R = 0. In particular we have that My <, @ My~ is a slope
Nh decomposition for U, which is functorial with respect to localisations
Spm(k(z)) — V as it comes from the slope decomposition of Fy p, thus by
[JN19] Theorem 2.2.13 it induces a slope Nh decomposition

FUN7€ = G/S,. I:‘
LEMMA 9.4. The restriction map
Tes : Ccusp(€7 w, HZ/{) - Ccusp(vv w, Hu)a

induces an equality
Fyn . = Fyn .

In particular, over (V,h) we have a decomposition
Coousp(V,w, kyy) = Cousp(V, 0, Kt )un <nh @ Ceusp(V, W, Ky))U,> N,
such that, res induces an isomorphism over V
CCHSP(Ea w, KU)U,Sh = Ccusp(“, w, HU)UN,éNh'

Proof. The first part is because we have a diagram
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Ccusp (5) i’ cusp (U)

o

Ceusp(€) — cusp (V)

Where the shortened notations speak for themselves, and thus U™
Ceusp(v) —> Ceysp(€) is a link in the sense of [Buz07]. Thus the two power
series are equal. The rest follows by Lemma 9.3 O

In particular, for each (w,¢g), for w big enough and ¢ small enough such that
for all 7, w €]n — 1,n — e[ (which determines a unique integer n), (v doesn’t
play a role and can always be chosen so that X*"(g) > X" (v), which we do
here), we can construct an Eigenvariety for the tuple

(OW(w)aCcusp(gawa'%W(w))a,HN @»A(P)a 1_[ Uv,i)a

veESy,i=>1

as if Ceusp(e, W, Ky (w)) Were one projective module. Indeed, locally this can
Ky (w) T

be replaced by m(v)way (—D) where
m(v) : X" (v) x W(w) — W(w),

and this Oyy(,)-module is indeed projective, its finite slope part inherits the
action of U = [[_,Uxr;, and these constructions glue together. Moreover,
we have natural maﬁps between them when (w,¢g), (v, ') satisfies w’ > w and
g<e

This is the main ingredient in all the constructions of Eigenvarieties. In par-
ticular, we get,

THEOREM 9.5. Let p be a prime. Fix S, a set of primes over p (see Section 2)
unramified in D and (K j,J) a type** outside S,, K < Ker J, and SP the set of
places away from S, where K is not mazimal. There exists an equidimensional
rigid analytic space Eg,, together with a locally finite map,

w
Es, — Ws,,

and a Zariski dense subset Z, such that for any x € W(L), w™ (k) is in
bijection with the eigensystems for HP ® A(p) acting on the space of overcon-
vergent, locally analytic, modular forms of weight k, type (Kj,J), and finite
slope for A(p). Moreover, w(Z) consists of classical weights and z € Z is an
Hecke eigensystem for a classical modular form of weight w(z).

22Here by type we only mean, as in [Herl9], a compact open subgroup K of G’(A?)
together with a finite dimensional representation.
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Proof. The construction is classical as soon as we have the previous datum,
see [Col97b] and [Buz07]. Just remark that cutting in the datum the piece of
type (K, J) is possible as we are in characteristic zero (see [Her19], Proposi-
tion 9.13). The equidimensionality results follows from the fact that we locally
reduce to a single projective module H(X(g),wsV(—D))y~ <p, and [Che04]
Lemme 6.2.10. The set Z is the set of points of £ which map to a point in W
satisfiying the hypotheses of Proposition 8.2 and Theorem 8.4. This is (Zariski)
dense by [Che04] Corollaire 6.4.4. and using that every open of W contains a
point satisfying the previous hypothesis. o

Remark 9.6. We will always consider the space &g, with its reduced structure
(see [Che05] Section 3.6). But in turns out that g, is almost always auto-
matically reduced with the structure given by H ® A(p). For the eigencurve
this is [CM98], Proposition 7.4.5., in the quaternionic case see [Che05] Propo-
sition 4.8, and [BC09], Section 7.3.6 for a unitary group, compact at infinity.
In the next section, we will prove that in the case of U(2, 1) this is also true.

10 SOME COMPLEMENTS FOR PICARD MODULAR FORMS (ESPECIALLY WHEN
p=2)

In a previous article (see [Herl19]), we constructed the Eigenvariety £ for
U(2,1)g/qg where E is a quadratic imaginary field, under the hypothesis that p
was inert (if p splits see [Bral6]) so that the ordinary locus is empty, but
also that p # 2, so that we can apply the main theorem of [Herl6] on the
canonical filtration. Theorem 9.5 extends this construction also for p = 2,
and for E/F a general CM-extension (but we only consider F = Q in this
section). To fix ideas, we set 7,7 (or v,7 if p splits) the places above p, and
Pr = Py = 2,p7 = py = 1. Classical points on £ correspond to classical forms
for (G)U(2,1) with classical weights given by x = (k; > ko, k3) € Z3. The cor-
responding character in W is given, as explained just before Proposition 6.16,
by
(z,y) € 0% x O — 1(2)"1 7(y)k2 07 (2)k2

Recall that £ comes with a map A(p) — O(£)*, and we set?®
= UU;!

Fy = U,Uy Y, if p is inert Fy= p 'UU  if p splits,
Fy = pUsU;!

these are the respective (up to a normalisation factor related to the Hodge-Tate
weights) images of

P p 1 1
1 ) p ) 1 )

p 1 v 1 v p v

23U, is the compact operator, equal to U; here, and Uy was denoted Sp in [Her19].
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in the Atkin-Lehner algebra A(p) (which we can see in the Iwahori-Hecke alge-

p
bra), for some presentation of G(Z,). When we write 1 we really

1

—1

mean
1 p- 1

and not the corresponding double class in the Iwahori Hecke algebra ! Pre-
cisely when p splits, if G = A[v*] with dimG = 2, then U,,; the oper-
ator defined in Section 7.2 with L a subgroup of the form L; & Lf‘, and
L; < G[p] complementary to H; the i-th canonical subgroup, such that
{0} = Ho < Hi < Hy & Hs = G[p].

ProprosITION 10.1. The space & is reduced. This remains true if we had fized
the second weight to ko € Z on the weight space.

Proof. We will use [Che05] Proposition 3.9, and we only need to check assump-
tion (SSG) there. Thus, we need to find sufficiently many classical points k € W
for which the module Mgless A M,I’ga is semi-simple as an H¥ ® A(p)-module.
We know already that the space of cuspidal forms for a group G is semi-simple
for the action of H” (spherical Hecke operators being auto-adjoint). Thus, we
need to treat the action of A(p). But the action on an automorphic form =
of A(p) determines its refinements. Thus, we only need to prove that we can
assure that these refinements are distincts, leading that the action of A(p) on
7} will be semi-simple (I is an Iwahori subgroup). Let k = (k1, ka2, k3) € W be a
classical weight. Fix a € R, and consider £ the eigenvariety constructed with
slopes < « locally around k. It is locally (on the base) finite over W. As the
space H(X,w*(—D)) is finite dimensional, there is a finite number of classical
points f in £S* mapping to k (and for varying k these are strongly Zariski-
dense in £5%). But the slopes of Hecke operators at p are locally constant, thus
for each of these points we can find an open Uy (intersecting every component
of £5% at f) on which the slope is actually constant. As £S¢ is finite above
some affinoid U with x € U < W, taking the intersection of the image of Uy
by 7 in W, we can find an open V' 3 k in W and for which every classical point
k' € V and every classical f’ in the fiber of k&’ in £<% has slopes equal the same
as the one of some classical f in the fiber of k. But the refinements are given
(up to twists) in terms of eigenvalues of Frobenius by (see Section 7.2 and see
also [Her19] Section 10.6 but normalisations are slightly different)

(p~*rtks) py 1, pFrtks p=1)if p s inert,
with F} = U,S, ' € O(£)* and
(p_kl Flapl_kzFQap_l_kSF?)) lfp SplitS,
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where F; € O(€)*are defined above. In particular U, ; corresponds up to
normalisation by p~*2 to the double class

p! , 1 e GU(2,1)(Qp) < GL3(E,) x GL3(Ex).
p_l v 1 v

The normalisation by the weight in both cases arise because of definition of f *
in equation (4). In particular, as the slopes of F; are constant on V' 3 k, for
any k' € V with sufficiently regular weights, the three Frobenius eigenvalues are
distincts, thus as are the possible refinements. In particular for those &’ (which
are Zariski dense in W) the action of X ® .A(p) is semi-simple on classical forms
in M ,S,l‘”s. The same proof works if k5 is fixed. O

Remark 10.2. 1. In particular, by [Che05] this proves that for a classical
ko € Z, £’ given by the full eigenvariety £, base changed over

Wox =W,  (ki,ks) — (k1, k2, k3),

and the surface constructed as in the previous section, over Wpx with a
fixed value for ko coincide and are reduced.

2. Obviously, the same result where we would suppose k1 = k3 would not be
true anymore as it could be that there isn’t enough classical semi-simple
points.

In [Her19] (Theorem 1.3), we proved the following theorem,

THEOREM 10.3. Let E/Q be a quadratic extension, and
x:AL/E* — C*,
an algebraic Hecke character. We suppose x polarized (i.e. x+ := (xoc)™! =

x||7t where ¢ is the complex conjugation on E). Let p be a prime such that p
is unramified in E and p f Cond(x), and p # 2 if p is inert in E. Let

—Xx
X;D:GE—)Q;D )

be its p-adic realisation. Then, if ords—o L(x,s) is even and non-zero, the
Bloch-Kato Selmer group H}(E,Xp) 8 nom-zero.

This result (actually a more general version of it) was almost entirely already
proved by Rubin ([Rub91]) at least for CM elliptic curves when p # 2 (and
p # 3 for E = Q(iv/3)). In particular as 2 is inert in Q(iv/3) (and 3 is ramified
in this case), it does not prove anything new for inert primes (only for the split
ones above 2 in other quadratic extensions).

Fortunately, with Theorem 9.5, we will be able to remove the hypothesis p # 2
if inert. Moreover, we can also remove the hypothesis p } Cond(x) (as long
as p stays unramified in E).
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To do this we focus from now on to the case of U(2,1)g/q, and let
x:AL/E* — C*,

be an algebraic Hecke character, that we assume to be polarised. We often iden-
tify it with its p-adic realisation and let X := x°. Denote xo(2) = 7(2)*7(2)?,

then b = 1 — a € Z. Moreover (up to change x by x¢) we assume a > 1.

10.1 A REMARK ON p = 2

To construct an integral model for the Picard modular surface, it is needed to
choose a lattice for the group (G)U(2,1), as it appeared in D in Section 3. We
do as we did in [Her19] and choose the lattice L = O%, < E3, stable for the
form of matrix (used to define (G)U(2,1)) in the canonical basis given by,

1
Y= 1
1

There is another natural choice, which would be the same lattice but the form

These two forms are isomorphic over Z[1/2] but not modulo 2. Moreover, see
[Bel06] Section 3.1, any abelian scheme of type (2,1) A/S will have a polarized
Tate module (T¢(A), q), together with the Weil pairing induced by the polari-
sation isomorphic either to (O3, J) or (03, J'). Any of these form would give
an integral model for the Picard modular surface, not isomorphic modulo 2,
and we choose 1, the first one, to define U(2, 1)E/Q7¢ over 7Z as in section 3.
Apart to construct the Eigenvariety, this choice (for which the construction of
the Eigenvariety can be checked to be independant afterwards, even if we don’t
need this result) will not appear in this section as we work in characteristic
Zero.

10.2 REMOVING THE HYPOTHESIS p / Cond(x).

Recall that in [Herl9] Section 10, following [BC04], we introduced a type
(Ky,J) for J = Cond(x). Fix an auxiliary level K? < (KerJ)P, and con-
sider Xp(p™)t°"/Spm(K) the (rigid and compactified) Picard variety of Iwahori
level p™, over some p-adic field K and fix 7 : E — K. It is the analytic space
of Xo(p™)t°" which away from the boundary its S-points parametrizes

(A, 1, \,n, Hy < Hy),

where
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e A — S is an abelian scheme of genus 3
e 1: 0O — Endg(A) is a CM-structure of signature (2,1), i.e
WA =WArDwaz, waes={wewsl(r)w=r"1(x)w,

with wa,, and wa 7 are respectivelly locally free of rank 2 and 1, and
where 7 : E — S is the canonical morphism and 7 its conjugate.

A: A —> 'Ais a polarisation for which the Rosati involution on ¢(z)
coincides with ¢(T)

n is a level- KP-structure,

H, c Hy < A[p™] is a filtration by cyclic Og ® Z,/p"Z,-modules such
that Hy- = H;.

This is exactly the rigid space introduced in Section 5.

The subgroups Hi, Hy extends to Xy(p™)!°", and we can also extend the polar-
isation of Hy/H; to the boundary. We will distinguish the cases p inert (AU)
and p split (AL) in E.

In case (AL), i.e. p = v is split, then A[p"] ~ Gt x G~ (with G~ = (G*)P
and A exchange the two factors), and we can suppose that G = G, say, is of
dimension 2 and height p®>". Under this decomposition, H; = H;" x H;” and H;"
is a cyclic rank p™-subgroup of G* and H; = (Hy)* = (G*/H )P <« G~. In
this case

XH(p™) = Isom(H, Z/p"Z) x Isom(Hy /H{, Z/p"Z) x Isom(G™" /Hy ,Z./p"Z).

It is a T,, = ((Z/p"Z)*)>-etale torsor. Remark that Hy is the canonical sub-
group in this case. In case (AL) we can also introduce a second space. Using the
previous notation, denote by X" the analytic space associated to a toroidal
compactification of the followmg moduli space X};"T over Spec(K). A S-point
of Xp" is, away from the boundary, a tuple (A,:, A\, n, HY, Hy, H) such that
(A, e, )\ n,Hf,Hp) is a S-point of X (p) (Iwahori level, i.e. HY < HY < G*[p])
together with a subgroup H < G[p"] locally isomorphic to (Z/p"Z)2 and
H[p] = HY. It is the Shimura variety of level P, n I(p) where I(p) is the
Iwahori subgroup of GL3(Z,) and P, is the subgroup of matrices of the form

*x k% (mod p").
*

In particular we have a map Xp(p"™) — Xp,.
In case (AU), i.e. p inert, denote

XO+ (p™) = Isom(Hy, O/p"O) x Isomype (Ha/H1, O/p"O).

This is a T, = (O/p"0)* x (O/p™O)'-etale torsor.
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In both cases, if 7 : Xy (p™)!" — Xo(p")!°" and ¢ : T,, — K * is a character,
we can consider Oy, (pnytor (¢) to be the subsheaf of 7y OXJ (pn)tor of sections

which vary like . This is an invertible sheaf on Xy (p™)".
DEFINITION 10.4. For all classical weight k, we can consider the sheaf,

wn(cp) = w"” ®(’)X0(pn)tor OXO(pn)tor ((p),

which is a locally free sheaf on Xy(p™)!", whose global sections are (classical)

Picard modular form of weight x and nebentypus . Similarly,
HO (X ()", w" () (= D)),
is the set of cuspidal ones.
ProrosiTION 10.5. There is a natural injection
W' () = wit',
for allw €ln—1,n—e,[ and Ky the product of the character k with the character
T(Zy) — T, 2 KX,
which we still denote .

Proof. Indeed, a section f of w"(yp) is a law which associate to (A, x,w) where
A€ X" (K), z is a level X (p")-structure and w an isomorphism

StOE ® OK =~ WA,
an element f(A,z,w) € A'(K), which moreover satisfies,

fAjtz, zw) = p(t)rY (2) f(A, z,w).

In particular, this defines by restriction a section g of IVV%’Jr which satisfies,
for the induced action of T'(Z,) on ZW2* (using ¢ !) which sends (4, z,w) to
(A, Tz, (t)w), such that g(ti) = ©(f)x(t)g(i). Thus g is a section of w*¢t. O

Over X" we also have a Igr,(p)(Z/p"Z) x (Z/p"Z)*-torsor (where Iy, (p)
is the Iwahori subgroup of GL2(Z,)), given by

Isomyeap(H, (Z/p"Z)?) x Isom(G*/H,Z/p"Z),

where modp means that an isomorphism ¢ induces an isomorphism of H; inside
p"1Z/p"Zei. Thus, for ¢ a character of Igr,(p)(Z/p"Z) x (Z/p"Z)*, i.e. of
the form (g1 o det, ¢3), we have an invertible sheaf O(¢’) on X" and thus
a sheaf w"(¢’). The sheaf w"(¢) on Xy(p™)*" descend to X" if and only if
© = (p1,¢1, p3) and coincides with w” (') with ¢’ = (¢1 o det, 3).
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ProprosITION 10.6. In the split case, if v < 2’71,1, the canonical subgroup
induces an isomorphism,

Xo(p)"" (v) — XE (v).
Here we really mean the p-canonical locus (and not the full p-ordinary locus).

Remark 10.7. If p > 2, is inert, the results of [Herl6] give, for v < 41-7‘;*1’ an
isomorphism X (v) — Xy (p™)(v).

Recall the following result of Rogawski (see [BC09] Section 6.9.6 and [Bell0]
Section 2.7). Fix first a Hecke character p as in [BC09] Lemma 6.9.2(iii).

THEOREM 10.8 (Rogawski). Suppose ords—o L(x, s) is even and non zero. Then
there exists a representation ™, automorphic for U(2,1) and cuspidal such that
for every prime x split in E,

L) = pl| 2 (LxDLID].)).

Remark 10.9. This representation 7" is slightly different from the one of [BC04]
or [Her19], it is a twist of the latter by L(x)u|.|~2.

Recall that x : A /E”* — C* is a Hecke character, to which is associated its
p-adic representation

—X
X=Xp:Ge —Qp .
We hope that the context is sufficiently clear to know which we refer to when

writing x. To avoid confusion, we denote x;™ the (smooth) component at p of
the adelic x.

PROPOSITION 10.10. Suppose ords—o L(x, s) is even and non zero. Denote
ng = vp(Cond(x)). Denote by ¢ if p is split the character (1,1, (x3™)™") and
if p is inert the character (x3™) ™", (x5™)™") of (O/p™O)* x(O/p"O)'. Denote
also K the classical weight corresponding to
(1,2 —a,1) € Zp,
Then the Hecke eigensystem (away from pCond(x)) of 7" appears in
HO(X(e),wr?t(=D)) for all n = ng and w €ln — 1,n — [ for e small enough.

Proof. Indeed we checked that 7™ contributes to the coherent first cohomology
group in [Her19] Proposition D.2. More precisely we checked that its restriction
to SU(2,1) appears with K-type corresponding to x restricted to SU(2,1).
As 7" is a twist of the representation denoted 7™ (x) in [Her19] by xu|.|=*/2,
which is algebraic, we can calculate its algebraic weight x and check that x =
(1,2 — a,1)**. Moreover Bellaiche-Chenevier ([BC04] Proposition 4.2) proved

24We could also argue directly as in [Her19] relating & to the Hodge-Tate weights of prn
on the FEigenvariety £. Remark that for the 7-Hodge-Tate weight of ™ there is a twist by
1 — a compared to those of 7™(x). This is compatible with the twist by (a —1,a — 1,1 — a)
on the coherent weight s given in formula before Proposition 10.20.
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that 7" (x) ® xgl was of a certain type (K, J) at ramified primes for y. As
X = xol-]z = x51|.|% and both |.| and p are unramified at p, we deduce that
the twist 7™ is of the same type as 7" (x) ® xp ' (which is obviously trivial if x
is unramified at p). Thus 7™ is of nebentype ¢, and we deduce the previous
result from Proposition 10.5. O

We need to take care of the action at p of the Iwahori algebra A(p). This is well
known in the case of GLy (see [Col97a]). Denote the higher-Iwahori subgroup

1+ p"0O * *
It = O 1+pnO * N G(Qy),
p"O p"O 1+p"0O

where G(Q,) = GL3(Qy) if p is split, and U(2,1)(Q,) = U(3)(Qp) otherwise.
We could do everything for GU(2,1) or GL3 x GL; (if p splits) but it doesn’t
change anything for us. I;% has a natural Iwahori decomposition I} = N, x
T,F x N, (and N,, = N), and thus if we denote X the elements of the form

with a1 > as > ag,
p*e
if p splits, and
p
p*2 with a1 = as,
p
if p is inert. Denote by ¥ the group generated by X and their inverse.

PROPOSITION 10.11. Denote by A}°(p) the sub-algebra of H(G(Qy)//1,}) gen-
erated by the double class characteristic functions

1 aeXt.

Ltallb>

AFO(p) is commutative. Denote by A (p) the algebra generated over Q, by
A0(p) and the inverse of the elements Ly, It is canonically isomorphic
to X and thus to A(p).

Proof. Al (p) is commutative by [Cas95] Lemma 4.1.5. O

Remark 10.12. The canonical isomorphism ¥ — A (p) sends a € % to the
corresponding double class, but this is not true for all a € X, just like the case
of A(p). The double class are not invertible in general (if n > 1 at least, see
[Ogg69] Lemma 2 for (new) modular forms, but this is true if n = 1, [Vigl6]).
There is thus an Hecke operator acting on XO+ (p™) corresponding to the double
class 1;+,,+ where in the inert case

p

p—l
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and in the split case,

F’n

v,1

We call respectively F}'y,
erators can be defined on the moduli problem X" (p™)*" and commutes with
their counterparts on Xy (p)t" =: X" (see for example [PS17] Section 8.2),
in the sense that for one of these operators, say g, if we denote the correspon-
dence C and C,, = C x x X, (p"), with m,; and 7, the universal isogeny on Cy,

and C, we thus have commutatives diagrams,

Fj'1 Fy'5 the corresponding operators. These op-
tor

CTL

I

Xy (") “ Xy (")

and a commutative diagram,

+ +
IWxJ(TL)XC” IWxJ(TL)XC”
IWY x C i IWY x C

The normalisation of the maps 77 and 7, can be done the same way, and
we thus deduce that the operators U . in level X and U}, in level X (p™)
commutes with the pullback by 7 (i.e. Uy, (7*f) = 7*(Up«f)). Thus, these
operators defined on wx! for any k € W w-analytic (with w €]n —1,n — &[)
are the same once we identify (invariant by T),) sections on some small neigh-
borhood X, (p™)(v) of wi’j%(fan) with sections of W’ on some small neigh-
borhood X (v).

In particular to understand the action of A(p) on the forms corresponding to 7"
which appears in HO(X*°" (v),w?") for v small enough, we need to understand
the action of A} (p) on ).

DOCUMENTA MATHEMATICA 27 (2022) 213-294



FAMILIES OF COHERENT PEL AUTOMORPHIC FORMS 273

DEFINITION 10.13. If 7 is a representation of G(Q,), denote by

I+

(mln)fs .= 11;a1$(7rﬁ

TL),

where a is the diagonal element corresponding to F'y if p is inert, and
(FJ)2F}y if p is split (in other words a is the double class corresponding
to the compact operator Up, in the text, up to twits by a central element). This
coincides with the space V0 of [(las95], Proposition 4.1.6.

By [Cas95] Lemma 4.1.7, this space (71']; )¢ is endowed with an action of A} (p).

PROPOSITION 10.14. Let 7 be a representation of G(Qp). Write I; =
N, T}N, its Iwahori decomposition. Then, as ¥ = A} (p)-module,

(xT)f* = (an,) T @051,

Proof. As in [BC09] Proposition 6.4.3, this is due to [Cas95] Proposition 4.1.4.
using the Iwahori decomposition. O

Remark 10.15. We could also extends a bit the previous isomorphism by adding
the action of (the split part of) T'/T.F as in [Cas95].

Moreover, as 7™ is a quotient of an induction (or the induction from a parabolic
subgroup in the split case), we will use the same geometric lemma as [BC09]
Proposition 6.4.4. In particular we only need to calculate the admissible refine-
ment using this lemma, and as this does not assume x to be unramified, we find

exactly the same (automorphic) refinements as if p } Cond(x) in (((Wg)lrf)fs)ss.

DEFINITION 10.16. Let o be the refinement corresponding to the one when p f
Cond(x) used in [Her19] when p is inert (in which case it is unique, see [Her19)
Proposition 10.7), and to (u|.|~*/2)(1,X(p), p~ 1), see [BC0O9] Lemma 8.2.1 when
p is split 2°. More precisely, it corresponds to

—1/2\(1 = oy Ty — ¢
(ul-1775) (1, x(p)p™ ) (a,b,¢) —>  (u].|7Y2)(abe)x(c)[b]

in the case where p splits, and to

—1/2\(1 = oy, T/ — c
WHTDWXELPT) 0 0y s (ul772) @ e)x(e)lal

when p is inert. Recall that T' ~ (O[1/p])* x (O[1/p])* in this case.

25This refinement is not ordinary, in the sense that the normalised Hecke operators F; won’t
have slope zero at the corresponding point. In the split case, the other two accessible refine-
ments are also non-ordinary (one of which being even anti-ordinary in the sense of [BC04],
but unfortunately we can’t check crystallinity (i.e. Theorem B.5) at those refinements.
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10.3 REFINEMENTS OF DE RHAM REPRESENTATIONS

In this subsection, we slightly generalise the well-known notion of refinements
(see e.g. [BCO9] Section 2.4) to non-necessarily crystalline representations.
This is especially useful for us when p| Cond(x).

DEFINITION 10.17. Let V' a n-dimensional, continuous L-representation of G,
where K is a p-adic field. Assume that V' is De Rham, and denote W D(V') the
Weil-Deligne representation associated to V' (see [Fon94, BGGT14]). Assume
that L is big enough so that all eigenvalues of the Frobenius ¢ on WD(V) are
defined on L. A Refinement of V' is the datum (F;);=1,...» of a filtration

0CFIG S F=WD(V),

by Weil-Deligne representations.
Just as in the crystalline case, the previous definition more generally applies to
a general De Rham (p,T')-module D, to WD(D) (see [Ber08]).

Remark 10.18. Obviously when V is crystalline, this definition coincides with
the one of [BC09].

Let D be a De Rham (¢,I')-module. Let (F;) be a refinement of D, i.e. a
filtration of W D(D). Then we can associate to (F;) a filtration of D by

Fil;(D) = (R[1/t]F;) n D.

This filtration is saturated, and thus defines a triangulation of D (see [BC09],
Section 2.3).

PROPOSITION 10.19. The previous map (F;) — (Fil; D) induces a bijection
between the set of refinements of D and the set of triangulations of D.

Proof. This is [Ber08] Théoreme A and Corollaire I11.2.5. O

In the particular case of an automorphic representation 7 of our unitary
group G, with associated Galois representation p, (for example p = 1@ Xp®De
associated to the automorphic representation 7™ of the previous subsection),
we have distinguished — we call them accessible, (galois) refinements for p ,
which correspond to the (automorphic) refinements for the action of A (p)
on 7 (for v|p). Such refinements exist only if (ﬂ'v)I: # 0 for some n. The
association is explained in [BC09] (when G is split at v) for unramified repre-
sentations, and for U(3)(Qp) (when v is inert) in [Her19] Section 10.5. This
can be generalized for non-necessarily unramified 7, verbatim when there is no
monodromy. For example, to the refinement o of definition 10.16, is associated
the following refinement of p = 1@ xj, ¢ :

0< LL(1) € LL(1)® LL(x;) < WD(pg,) when p is inert. (5)
0& LL(x;) & LL(1)® LL(x;) € WD(pg,) when p is split.

Here 1 is the trivial representation of £, and LL denotes the Local-Langlands
correspondence.
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10.4 CONSTRUCTING THE EXTENSION

We thus take a prime p unramified in E, which can be 2 or not, and which
can divide Cond(x) or not. Let £ be the eigenvariety of level N = Cond(x)?P
(the prime-to-p-part of the conductor) associated to (G)U(2,1)r and p by
Theorem 9.5. It is equipped with a map w : &€ — W, and there is a point
y € £ which coincides with the representation 7" together with its refinement o
by definition 10.16 and Proposition 10.10. For all Z < &£, we have associated
to the automorphic form corresponding to z a Galois representation

p:: Gg — GL3(Qy),

which is moreover polarised in the following way :

Pi_ > pz(_l) = ngila

where ¢ denote the cyclotomic character. Let us be more precise : we will
change a bit the convention used in [Her19] to stick with the one of [BC09]
(this will make things easier to treat the case p|Cond(x)). Denote for an
automorphic representation 7 of U(2, 1) of regular weight p!. the associated p-
adic Galois representation by [BC09] Conjecture 6.8.1, which is know to exists,
see Remark 6.8.3, (vi) of [BC09]. For z € Z associated to a modular form f,,
denote by IT any irreducible constituent of the representation of (the restriction
to) U(2,1)(A) generated by f,. Then we set

Pz = p;_y,
where v is defined in [BC09] Lemma 8.2.3, and is associated by class field
theory to p~'[.|*226. In particular it satisfies v+ = v(—3). Thus pL = p.(—1).
Moreover for z € Z of classical (automorphic) weight (k1 = ke, k3), the Hodge-

Tate weights of p, are given by?’

(HT,,HT=)(p.) if pis inert
(HT,,HT%)(p.) if p splits

((_kla 1 _k2) k?)_ 1)) (_k3a k2 _23 kl - 1)) = {
PROPOSITION 10.20. There exists a pseudo character on &,
T:Gg— O(&),
such that for all z € Z, T, is the trace of p,. Moreover, T+ = T(—1).
Proof. This is [Che04] Proposition 7.1. O

We need a particular point on £.

26 Careful to the normalisation of the Local Langlands correspondence in [BC09)].
27We choose the normalisation of the Hodge-Tate weight such that the cyclotomic character
has Hodge-Tate weight —1, as in [BC09].
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PROPOSITION 10.21. Suppose ords—o L(x, s) is even and L(x,0) = 0. There
exists a pointy € £ corresponding to a (non-tempered) automorphic representa-
tion ©. The point y is non-classical if p| Cond(x)*® but is classical otherwise.
Moreover its p-adic weight w(x) is of the form w(x)®w(x)*™ where w(x)*™
is the smooth (finite order) character of Proposition 10.10, and w(x)*9 is the
algebraic character

0 x 0! — Qp

(x,y) - 7(x)7(y) if p is inert

3 —X
Ly - Q;{ if p is split
(x,y,2) —> xy" %2

At the point y, the evaluation Ty is given by the trace of 1 ®e @ x© and the
refinement is given by o of definition 10.16, i.e. it is the refinement (5).

Proof. This is a translation of Proposition 10.10 with the normalisation of T
O

We freely use the notation of [KPX14] concerning ¢, I'-modules. Denote ¢; for
i =1, 2,3 the character,
0; : KX — O(&)™,

such that §;(p) = F;?° and, in the inert case, recall that we have on W two
universal morphisms,

Ki:xe O — ki(x) e OWV)*, and ko :ye O — ka(y) e OW)*,

such that at classical points x = (ki, k2, k3) € Z3, we have

Frje(r) = 7(2) T (@) and  Rop(y) = T(y)".

We set
Syjox = (K122,

Sy 1y € O — ka(y/PT(y) ",

) et

1$Tl_;1 _ ((56

Ig10z = (K1)” 1o)

In particular we have d3 = E_lx. In the split case, we set
0; @; — O0(&)*,
with §;(p) = F; and as we have universal characters on W,

Rg : Z; e O(W)X,

28 More precisely, it is non classical without level at p as its system of Hecke eigenvalues
doesn’t appear in HO(X,w"), but appears in HO(XJ' (p™), w"(p)).

29These F; € O(£)* already appeared in proof of Proposition 10.1. These are the functions
given by a basis of the Hecke operator in A(p).
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such that for classical weights (k1, k2, k3) € Z3,

ki(z) = 2™, ko(z) = 2™, ka(z) = 22,
We set
-1 —1
(51|Z; = K1, (52'2; = Kox ", (53|Z; = TH3 .
In particular, we can define wt; := —wt(5;) € O(W)* the opposite of the

derivative at 1 of §; (see [KPX14] Definition 6.1.6). In particular £, Z and the
functions 0; satisfies the hypothesis of Corollary 6.3.10 of [KPX14] (excepts
possibly the irreducibility condition).

Denote by A = O, the rigid analytic local ring of £ at y, and K its total fraction
ring. The pseudo character T on £ induces one on A, and denote by I, < A
its total reducibility ideal (see [BC09] Proposition 1.5.1, Definition 1.5.2.) In
particular for any J o I, on A/J we can write

T®A/J =T +Tx+T..

PROPOSITION 10.22. The reducibilty locus Spec(A/I1ot) s a proper closed sub-
scheme of Spec(A), i.e. Iior # {0}. More precisely, if p is inert we have that

wtr(01) — Wt (03) = wt-(01)(y) — wt-(d3)(y) (mod Iipt),

and

wtw(01) — wt=(03) = wt=(01)(y) — wt=(d3)(y) (mod Iipt),
and similarly (with 7,7 changed by v,v) is p splits.

Proof. Let I > I;, a finite length ideal of O,, = A. We thus have for j =

{L.x¢},
Tj : GE,S —_— A/I,

a (continuous) character, such that T; (mod ma) = j.
As T} is a character, by [KPX14] Theorem 6.2.14, there exists a character

8 K — (A/D),

such that the ¢,I-module associated to T}, D,;(T;) is isomorphic to
Ra/r(7x)(0%). From now on we just write this last space R(d}). We will
determine 07. Recall that j € {1,x,¢} and i € {1,2,3}. We choose the bijection
between these two spaces, which corresponds to the refinement 10.16, more
precisely,

Thus T3 := Ty and T3 := T, for example. By Lemma B.3, we have in particular
a map

R(8;) = Dirig(T;) ~ R(6)).

DOCUMENTA MATHEMATICA 27 (2022) 213-294



278 V. HERNANDEZ

To determine ¢, the character of T;, we still need to know the weight of T;. We
know by Lemma B.2 that T; has its Sen operator killed by

3
[ [(T —wt;) e A/T[T]”.
i=1
Moreover, at y € £, we have, if p splits,
wty, wty, wts) = (—1,a — 1, an Wtf,wtf,wti = (—1, —a,
1, wty, wtg 1 1,0 d 1, wty, wtg 1 0
and if p is inert,

(wt],wt,wt) = (=1,a —1,0) and (wt],wtl,wt) = (-1, —a,0).

Thus, if a > 2 these weights are distincts at y. Thus we can calculate the
Hodge-Tate-Sen weight of T; : T7 has weight wts, 15 has weight wto and 77 has
weight wt;. Similarly at v and v if p splits. If @ = 1, we can’t a priori distinguish
the two weights wt3, wt$ at v and wt}, wt) at ¥ (similarly at 7 and 7), but we
know that T. = T3 has weight wt(d1) at v, and that 77 has weight wt(d3) at T.
Suppose p is split, using Lemma B.3 and Lemma B.4 for T, we have (evaluating
at y to have the value of t,, k,),

Wty (01) = Wty (d3) — (Wt (01)(y) — wto (83)(y)) € 1.

Using that d3 = Eilx (or using Lemma B.4 for Ty at T), we get the result
for v. This is identical if p is inert. O

We also need the following result, which is a corollary of Theorem B.5.
COROLLARY 10.23. Extr(1,i) ¢ H}(E,i), fori =X ore.

Proof. Indeed, the Theorem B.5 gives that any extension in Extr(1,4) is crys-
talline at all place above p (as the Frobenius eigenvalues of i are different
from 1). At v a place dividing ¢ # p, if v ¥ Cond(x), by hypothesis on the level
of £, the dense set of classical points Z are unramified at v, thus 7'(,) = 1
on &£ (as & is reduced) and thus Extr(1,4) consists of unramified extensions
at v.

Now suppose v| Cond(y). If ¢ = ¢, any extension is automatically unramified.
Suppose i = X. By choice of the type J outside p on &, we know ([BC04]
Proposition 4.2 or [Her19] Proposition 10.21) that for all z € Z, there exists
a subgroup I’ < I, such that p,(I’) = {1}. Thus, T(I’) = 1 and for all
x €&, py(I') =1. Thus, Ty, is locally constant, and the same for p,;, (as it is
semi-simple as I’ acts trivially). Up to extending scalars, evaluating at p,, we
get

T, =(1®@1®X),) ®Ou,

for some neighborhood U of z. But as we have a morphism
M /IMy®T;, — p. — 0,

we have that p.(I") = 1, thus p. is semi-simple, thus p.|¢, € H}(Gv,y). O
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We have the following improvement of Theorem 10.3 :

THEOREM 10.24. Let x be a polarized algebraic Hecke character as in Theo-
rem 10.3. Suppose that L(x, s) vanishes with even (non-zero) order at s = 0.
Let p be unramified in E. Then

H{(E,xp) # {0}.

Proof. Let e1, ex, e- be the indempotents as in Appendix B, and denote A; ;, for
i,7 € {1,X, e} the corresponding A-modules. Then as in [BC09] Lemma 8.3.2,
we get

Lot = A1 xAx1-

But if Extr(1,X) = 0, then Ay 1 = Ag A1 ([BCO9], Theorem 1.5.5). Thus
Ax1Aiy = AxcAc1 A1y Butas Hi(E, ) = {0}, we get by the same reasoning

Aer = Acx Az
Thus,
Itot = AY@‘A&YAYJALY (e mAY,lALY = mItot.
Thus I, = 0, contradicting Proposition 10.22. O

A COHOMOLOGY OF CUSPIDAL AUTOMORPHIC SHEAVES

PROPOSITION A.1. (Lan, [Lan17] Theorem 6.1) Let X1(p™)* the minimal com-
pactification of X1(p™), defined by normalisation of the minimal compactifica-
tion with our fixed auxiliary level, as in [Lanl6a], Proposition 6.1. There is a
proper surjection p: X1(p")t" — X1 (p™)*.

DEFINITION A.2. The (p-ordinary) Hasse invariant # Ha descends to X (p™)*
(modulo p), and we can thus define X; (p™)*~/%*(v) to be the normalisation in
its generic fiber of the greatest open in the blow up of (*Ha, p¥) where this ideal
is generated by # Ha. Its generic fiber is &y (p™)*~f%!* (v), a strict neighborhood
of the (full) p-ordinary locus. Denote X;(p™)*(v) the (union of) connected
components which contains a point of maximal degree, and as X (p™)+—/ull*
is normal in its generic fiber, there is an associated open X1 (p™)*(v). We thus
have a map,

m(v) s X1 (p")" " (v) — X1 (p")* (v).

For all this section, except the last two results (Corollary A.5, Theorem A.6),
we forgot the notation concerning the level at p, and denote X1 (p™)*"(v) by
Xtr(v), and similarly for X(v), X*(v), X", X, X*. We thus have the previous
map,

m(v) : X7 (v) — X*(v).

Assume that our fan X is smooth and projective. We have the following van-
ishing result.
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PROPOSITION A.3. Denote by D(v) the boundary in X°"(v). Then, for all
q>0,
Rin(v)xO(—D(v)) = 0.

Proof. This is essentially Lan’s result (see [Lanl7] Proposition 8.6), slightly
modified because of the neighborhood we chose. First, note that we can prove
it for Xr—Full(y)ter and X#—Full(y)* and then localise (as the schemes are nor-
mal and thus have same connected component as their rigid fiber) to X" (v)
and X*(v). From now on and until the end of this proof, we denote X’(v)
the neighborhood of the full p-ordinary locus in X°. By the formal functions
theorem we can work on formal completions of geometric points T € X*(v),
and we need to prove that H4(X!"(v)2,O(—=D(v))) = 0 for all ¢ > 0. Let us
describe the completions at T of X(v)!". Let 3 be a stratum of X* ([Lanl6a]
Theorem 12.1, it depends on a choice of a cusp datum), and denote 3*(v) be
the base change of 3 to X*(v), then 3*(v) is locally closed in X*(v). In [Lanl6a,
Theorem 10.13] (see also notations of [Lanl6b, Sect. 4], and [Lanl17, Theorem
6.1]), local charts for X*" over X* are constructed using normalization of local
charts in an auxiliary Shimura datum. They have the following shape

with 4 : 2 < E(0) an affine torus embedding, and if i, denote the completion
of Z(o) along its closed strata, {il,} glue together to a formal scheme X = Xy,
and (X'°")4 ~ X/T with T acting on X freely and

X X0~ (X7)3 (©)

is a local isomorphism. All the maps described before are flat. Denote 3(v) be
the normalisation in its rigid fiber of the open 3(v)? in the blow-up of the ideal
I = (" Ha,p") in 3 where [ is generated by # Ha. It is not a priori equal to 3*(v)
(which is defined by base change). Let C — 3 be the proper scheme, normal
over O ([Lanl6a] Proposition 8.4), but as it is constructed using normalisation
of Couz —> Aauz for an auxiliary datum, where Cyyr —> 3quz is an abelian
scheme torsor over a finite etale formal scheme above 3,44., thus is smooth,
and as normalisation commutes with smooth base change ([Stal8, Tag 03GV])
we have C' = Cyyz X30ue 3, and C —> 3 is smooth again. Then we define
C(v) as the normalisation in its rigid fiber of C'(v)?, the open in the Blow-up of
I = (*Ha,p") where I is generated by # Ha. Then, as the Blow-up commutes
with flat base change, we have C(v)? = C x3 3(v)? and C(v)? — 3(v)? is
smooth thus again C(v) = C x 3 3(v). Define analogoulsy the local models (see
[Lan16b] Section 4.) #,(v) and X(v) (as the fan ¥ is smooth, normalisation
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commutes with base change). As all operations commutes, we have shown that
X(v)/T ~ (X*7)5 (v).

We can describe locally X*" over X* by X (by equation 6, see [Lanl6a] The-
orem 10.3, [Lan17] Theorem 6.1 (4)) and also for X*"(v) over X*(v), i.e. in
rigid fiber, as this is just localisation over an open subset. Denote by X*(v)°
denote the open of the blow-up where the ideal is generated by # Ha (i.e. before
taking the normalisation in its rigid fiber), and similarly for X*"(v)°. Then
Xtor — X* is not flat & priori, but as (*Ha,p") is in both cases a regular
sequence, this implies that the admissible formal blow-up in both cases is given
by the closed subset of equation (X*Ha—Yp") in Proj(Ox:[X,Y]) (see e.g.
[Bos14], Proposition 7. (iii)). Thus this admissible blow-up commutes with the
base change X" — X*. In particular, X" (v)? = X" x xx X*(v)°. Thus
X®"(v) is the normalisation of X" x xx X*(v)" in its rigid fiber and we have
a map

xtr (1) — X*(v).

Denote 3%°"(v) = 3 x xtor X" (v), this is a locally closed (formal-)subscheme
of X" (v) and coincides with the pullback of 3*(v) through the previous map.
We claim that

(X7 (0)) 3% () = (X7 (0))Fe0r (1) = (X7)3 (v) > X(v)/T,

so that X% (v) over X*(v) is correctly described by X(v). We only need to
prove the first isomorphism. Denote (abusively) I = (* Ha,p") the ideal on
the various formal schemes, and ()5 the completion along 3 or its pullback in
those schemes (in particular this is the completion along 3" (v) for X" (v)).
As X'" is noetherian, (X%")§ — X" is flat, and as blow-up commutes with
flat base change, we have

(Bl (X7))5 = BL((X"7)3),

and (%EOT’A)(U) is an open in the normalisation of Bl;((X%")3) =
(Blr(x'7))5. But X7, and thus Bl;(X'°")) is quasi-excellent, normal-

isation and 3-adic completion commutes.** Thus X" (v) is the 3-adic
completion of the open in the normalization of Bl (X)), i.e. of X*"(v), thus
this is %tor(v)gm(v). The etale, local isomorphism

X — (@3,
can thus be seen over X*(v), and we get that

(%t"’”(v))g*(w ~ X(v)/T.

308ee [EGA, TV 7.8.3(v), and proof of 7.6.1].

DOCUMENTA MATHEMATICA 27 (2022) 213-294



282 V. HERNANDEZ

Now if T is a geometric point of X*(v), lying over 3*(v), we deduce that
X (v)g = X3 /T,

Then according to [Lan16b] Theorem 3.9 (and especially Section 7), and [Lan17]
Theorem 8.6 it is sufficient to prove the analog of Proposition 8.3 (of [Lan17])
for p(v) : C(v) — 3(v). But p(v) is also proper (it is a base change), and the
pullback of the sheaf W¥(¢) is relatively ample over 3(v), thus the same proof
applies. O

In the following, we denote for a object X over Spec(O) or Spf(O) and n € N*,
X,, the base change to Spec(O/p"™). We also denote, as in [AIP15], 2W(w)°
the analogous weight space, but forgetting the torsion part when constructing
QW(w). This can be seen for example as characters in 20(w) being trivial on
the torsion part of T'(Z,), but we don’t fix such an identification.

ProproSITION A.4. Consider the following diagram, for m = n,

%tor (/U)m 41) xtor (U)n

We have the equality,
i’*ﬂn*mﬁm(—D) = Wm,*i*mfu(jjn(_D)'

In particular, 740" T(—D) is a small formal Banach sheaf on X*(v) =
X1(p™)*(v). Similarly for (mx1)s0% "1 (=D) on X*(v) x2W(w)°. Moreover
Hi(X*(v), w0 T (= D))[1/p] vanishes fori =1 (similarly for the higher direct
image of (m x 1)sw® """T(=D) on W(w)).

Proof. The proof is the same as in [ATP15] or [Bral6], except that we stay at
level X1(p™)(v) (which is easier), as the map X1 (p")(v) — X(v) is not finite
in our situation. We can prove as in [AIP15] that W T(—D) is a direct limit of
sheaves whose cokernel is a successive extension of the sheaf Ox (pnytor () (=D).
Thus, it is enough to show that

Rlﬂ-*oxl(pn)tor(,u) (7D) = 07

but this is the previous proposition. This implies also that Rim meOT(—D) =0
for i > 0. Moreover, as W*mZOT(*D) is small on X4 (p™)* (v) which is generically
affinoid, Theorem A.1.2.2 of [AIP15] implies its higher cohomology vanishes
after inverting p. O
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Exactly as in [AIP15], Section 8.2, we deduce the following two results. Now we
go back to the notation X;(p™)'"(v) to denote the (integral toroidal compact-
ification of the) Shimura variety with level "T'y(p™)” at p, and X*°"(v) denote
the rigid analog, with Iwahori level at p, as in the rest of the text.

COROLLARY A.5. The module

Ouny

MO = HO (%, (p™)! (v) x W(w)°, wt (= D))[1/p]

v,w,cusp *

is a projective Ogqy(y)o[1/p]-module, and for all k € W(w)°, the specialisation

MO, — HO (X1 (p")* (v), w5 (—D))[1/p],

v.w,cusp
18 surjective.
THEOREM A.6. For all v,w the module M}, —:= H(X" (v) x
W(w),wt " 1(=D)) is a projective Oy (w)-module, and for all k € W(w),
the specialisation map

wncusp > Moy cusps

un

is surjective. Moreover H' (X" (v) x W(w),w? " 1(—=D)) vanishes for i > 0.

B FAMILIES AND TRIANGULATIONS

In this appendix we generalise the tools used in [BC09] to prove the theorem
in Section 10. Fortunately, this is mainly a matter of reformulation, as most of
the work is done in [KPX14]. From now on, we take £ to be the eigenvariety
for (G)U(2,1)g/g and p a prime unramified in F, constructed in Section 9 (see
also [Bral6] for p split in £ and [Her19] for p inert not equal to 2), which is
3-dimensional or its variant with weight ko € Z fixed, which coincide with the
base change by
W@x — W,

which is 2-dimensional. Automorphically, the second construction ”fixes the
central character” (which can ”move” in the three dimensional eigenvariety, but
keeping its polarisation ; in particular even in the 3-dimensional eigenvariety,
we can’t twist automorphic forms by a power of the norm character). In any
case we always have Z < £ a strongly Zariski-dense subset consisting of classical
automorphic forms of integral (= algebraic) weight. This space is not dense
for the analytic topology, as it is already the case in WW. We can define Z'®
the subset of £ of classical automorphic forms possibly with level at p, and
locally algebraic weight-character x € W. Z doesn’t accumulate at Z'*, and
as if p| Cond(x), we will only have a point y € Z'® corresponding to the
automorphic representation 7" () of Section 10, we first need to enlarge a
bit Z 31

31We could actually prove directly the following result on all Z!¢, and even the crysta-
bellianity of these representations, by extending results of [BPS16, Bijl16] for all classical

modular forms with Nebentypus, as it is done in [PS17]. But the following will be enough
for us.
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PROPOSITION B.1. There exists Z' < Z', which accumulates at every point of
Z' such that for all z € Z', we have that the Sen polynomial of p. is killed by

3
[ J(T = wti(2)).

1=1

Proof. Let z € Z'. 1In particular, there exists w,e such that z € Ew,e in
the notations before Theorem 9.5. This &, . is affinoid. Thus, by [BC09]
Lemma 7.8.11, there exists g : &, . —> Ew,e such that we have an actual
representation of G = G, s on a coherent torsion free sheave over &/, .. We can
then apply [KPX14] Definition 6.2.11 or [BC09] p125 to have a Sen operator
in family over 5;115. But Z is Zariski dense in &, thus as is its pullback

Z'™9 in &y e Moreover, there is Y < &, . Zariski open and dense, on which
Zy =Y n Z'49 is Zariski dense, with Pz = py(z) for all z € Y. Thus for all
zeYn Z/“lg, we have that the Sen operator is killed by

3
H(T — wt; (2)).

By density, this is true for all z € &, .. Thus, forally € Z3, = g Y (Z") Y, the
Sen operator of p, = py(y) is killed by the same polynomial. Using Z" = g(Z3)
we get the result. O

By Proposition 10.21 there exists a point y € £, whose (semi-simplified) Galois
representation is 1 @Y @ e and its refinement is o (see definition 10.16). Let
A = Og¢ 4 be the rigid analytic local ring at y. We want to study this ring and
the pseudo-character T at A. By [BC09] Theorem 1.4.4 and Lemma 1.8.3 for
S = A[G]/KerT, we choose idempotents e, ey, e1 that are compatible with
the involution 7 given by i + i (1). We thus have a generalized matrix algebra
(GMA) of the form
A A.x Aca
Ay A Aga
A Aix A

This defines Exty (4, ) and h; ; = dim Extp (4, j) for all ¢ # j € {1,¢,x}. In the
end, we want to study I, the total reducibility locus and this GMA.
On A/I o, we have pseudo-characters of dimension 1 (i.e. actual characters)

Tj ZGZGEﬁsl’A/Itot; jE{E,l,X},

such that T; ® A/ma = T; ® k(y) = j. From now on fix I D I, a cofinite
length ideal.

LEMMA B.2. The Sen operator of T; is killed by the polynomial

[ [(T —wt;) e A/T[T].

i=1
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Proof. Let y € £. As remarked, the set Z’ of B.1 accumulates at y. Fix
j e {1,x,e} and denote S = A[G]/KerT. There exists M a S-module, of
finite type as A-module such that MK = K3 and with an exact sequence

0— K — M/IM — T; — 0,

such that K as a Jordan-Holder sequence with all subquotient isomorphic to T;
for i # j (see [BC09] Theorem 1.5.6 and Lemma 4.3.9). Thus, it suffices to
prove that M /TM as its Sen operator killed by the previous polynomial. But
by [BC09] Lemma 4.3.7 (and because Z’ accumulates at y) we can find U c £
an affinoid open containing z, in which Z’ is Zariski dense, together with M
a coherent torsion-free Opy-module endowed with an action of G such that
MU)® A ~ M as A[G]-module, and M ®q vy Frac(O(U)) is free of rank 3,
semisimple as G-module and trace T'®o(x) O(U). By generic semi-simplicity
and generic flatness, there exists F < U a Zariski closed subspace such that
for all x € U \F, M, = M;® = p,. We can change Z' by Z' n (U\F),
which is still Zariski dense in U. Denote by ¢ the Sen operator of Dgepn (M)
(or B = Endp)(M(U)) see [KPX14] Definition 6.2.11 or [BCO9] proof of
Lemma 4.3.3). For all z € Z’, ¢, is killed by

3
P =\ |(T - wt;i(2)),

%

by Proposition B.1, and as Z’ is Zariski dense, and O(U) is reduced we get
that P kills ¢ on U, and reducing to A/I we get the result. o

Fix the bijection between {1,2,3} and {1,%,e} corresponding to the refine-
ment 10.16, i.e.

W N =
11
oM x| =

Thus it makes sense to speak about T;, € {1, 2, 3}.
LEMMA B.3. For all i, the A/I-module

HY 1 (Dyig(T3)(57 1))
1s free of rank 1.

Proof. We will consider inductively the pseudocharacters T, A?T and detT
whose reduction is respectively 1® X Pe, X De @ ey and €. In particular
they are multiplicity free. Recall that for I o Iy, T splits, thus also A2T, we
denote T} = Ty ...T; for i = 1,2,3. By induction on 4, it is enough to prove
the result for T7/. In particular for all i, we can find M a S-module, finite type
over A, of generic rank 3 (if ¢ = 1,2, rank 1 and M = T4 if ¢ = 3) such that
([BC09] Theorem 1.5.6 and Lemma 4.3.9).

0— K —> M/I — T/ —0,
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with K*° reducing to a direct sum of szl Tj;, # T} As §;(p) = F; and at y
these values are

(Lx(p),p™"),

which are distincts (|x(p)| = p~/?), the slope of d;...d; is distinct from the one
appearing in K. In particular

HJ r(Dyrig(K(81...6;) ")) = {0}.

Thus, it suffices to show that H 1(Dyig(M(d1...0;)7"))) is free of rank 1 for
every cofinite ideal J of A = ©O,. But this is assured by [KPX14] Theo-
rem 6.3.9 and [BC09] Theorem 3.3.3 and Lemma 3.3.9. Indeed, first, by [BC09]
Lemma 4.3.7 we can find U < £ containing y an affinoid together with a co-
herent torsion free module M with an action of G = Gg s reducing to M on
A = Oy, which is generically free of rank 3 (or 1), and such that the trace of G
on M coincides with 7! ®o, O(U). Denote 6.” = 61 ...4;, and H) 1(Drig(—))
is a functor as in [BC09] Section 3.2.2. Moreover, by [BC09] Lemma 3.4.2
and [KPX14] Theorem 6.3.9 (applied to M’ and § = 5@’71) there exists a
birational morphism (see [BC09] Section 3.2.3)

m:U — U,

such that the strict transform M’ of M on U’ is locally free, and moreover we
have a map

Dyig(M"™) — Ru(0" @ L,
whose kernel is a ¢, '-module of rank 2 (is trivial if ¢ = 3) and which is gener-
ically surjective. Moreover it is proven in the course of the proof of [KPX14]
Theorem 6.3.9 that HgﬁF(DTig((M’V)V)((Sfl)) is locally free of rank 1. In par-
ticular, as these sheaves are coherent, for all y' € 7~!(y), and all cofinite length
ideal J' of O,

i),—1
HY o (Drig (M (377 @ 0y /7)),

®>

is free of rank 1. Indeed, we have the commuting diagram

HY r(Drig(M')(671)) ® Oy /T’

@,

HY 1(Drig(M')(071) @ Oy /T')
f red
Hg,F(Drig(M/)(éfl)) ® Oy /my — Hg,F(Drig(M/)(éfl) ® Oy /my)

where the map i is injective ([KPX14] eq 6.3.9.1). As the map f is non-zero,
the map red is also non-zero. Thus by [BC09] Lemma 3.3.9,

Hg,F(Drig(M/)((sfl) ® Oy’/l/)
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is free of rank one over O, /I’ Thus by [BC09] Proposition 3.2.3 and
Lemma 3.3.9, for all cofinite length ideal J of O, = A, we have that

HY p(Drig (M) @ 0,/7)),
is free of rank 1 over A/.J. O

LEMMA B.4. Suppose that D is a o, '-module of rank 1 on an artinian ring A,
and with Hodge-Tate weight k = (ko )gex € Z>. Fiz

§: K* — A%,
and denote (t,)ses € Z* its Hodge- Tate weights. Suppose that
Hy p(D(671)),
is free of rank 1 over A. Then D = Ra(0") with &' = 6], ako~te.

Proof. Let D = R4(0") and by hypothesis we have a injective morphism of
R a-modules
R(8) — D = Ra(&").

Let v be the image of a basis of R(J), and denote by e a basis of D. Thus,
D’ = Ryv is a sub-p, -module of D, isomorphic to R4(d). Reducing modulo
my, by [KPX14] Corollary 6.2.9 we have that D’ = []_ tis D for some I, € Z.
But T" acts on v as (). Moreover, using the previous equality, it also acts

on v by - L
v = [ [ LT, ()8 (7).

Thus, g|p =1, 1'0-3/)‘1", which by hypothesis gives

Consider M = []_t;'"Rav. Then M is saturated in D', thus D’ = M. But as
Rav ~ Ra(8), M ~ R([], z'6), thus, by [KPX14] Lemma 6.2.13,

o =6 [akot

Recall ([BC09] Lemma 8.27, that we have an injective map
i1 Extr(i, §) — Extiap (4, 7)-

THEOREM B.5. Let p : G —> GLg,1a;(A/I) an extension of Ty by T; inside
the image of vr ;1. Then, if p splits, for x = v,V

Derys»(p(87 1)~

DOCUMENTA MATHEMATICA 27 (2022) 213-294



288 V. HERNANDEZ
is free of rank 1 over A/I. If p is inert,
_ 2_p
Dcrys,‘r(p((sljp))w E

is free of rank 1 over A/I.

Proof. Let’s do the proof at v when p splits. Recall that 1 is the only con-
stituent of p, which has 1 = p“¥" F} as eigenvalue for its Frobenius. By [BC09]
Theorem 1.5.6 (2), there is an exact sequence,

0— K — (My/IM, ®p;) — p— 0,
with K*° being a direct sum of Ty, k # 1. Thus, Dens(K(075))9~F =

i
Deyys(T; (6;‘1{))9”:}71 = {0}. In particular, it is enough to prove that

Derys(My(851)) ¢~

is free of rank 1 over A. We will use the same devissage as in B.3. By [BC09]
Lemma 4.3.9, there exists M = M; @ N; such that MK = K3 a sub-A[G]
module of K3 of finite type over A. Extending this module to an affinoid
U < &£ containing y, and using the accumulation of Z’ at y (Proposition B.1),
we can find a birational morphism 7 : U’ — U and M’ the strict transform
of M, locally free on U’, for which the conclusion of [KPX14] Theorem 6.3.9
for (M’)¥ and 67" applies. In particular

HJ 1 (Drig(M')(67))

is locally free of rank one on U’.
As in Lemma B.3 we can specialize at O, for every y’ above y € U. But we
have the commuting diagram

HY 1(Dyig(M')(571)) @ Oy /T’

@

HY 1 (Drig(M')(671) ® Oy /I')

P

f red
Hg,F(Drig(M/)(éfl)) ® Oy /my — Hg,F(Drig(M/)(éfl) ® Oy /my)

where the map 7 is injective ([KPX14] eq 6.3.9.1), the map f is non-zero, thus
the map red is also non-zero. By [BC09] Lemma 3.3.9,

Hg,F(Drig(M/)((sfl) ® Oy’/ll)

is free of rank one over O, /I’ for all ¥’ € 7=!(y) and I’ of cofinite length.
Thus the hypothesis of [BC09] Proposition 3.2.3 are satisfied, and by [BC09]
Lemma 3.3.9 again,

Hy p(Drig(M @ A/1)(57))
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is free of rank 1. In particular we have an injection of R 4,;-modules,
0 — Ry — Dyyg(M®@A/D(57") — Q@ — 0.

Moreover, as the reduction to A/m4 of Depys(M(071))?=1 is of rank 1, us-
ing the functor D.,;s, we have that D..s(1) < Dc”'s(M((Sfl))@”:1 and thus
Derys(Q)9=1 = {0}. In particular Depys(M(071))?=1 = Depys(1) is free of
rank 1 over A, and thus

Derys (M (b1r) 717~

is free of rank 1 over A. The same proof remains valid in the case where p
is inert, as 1 = p“" F} is also the first and only constituent of p,, and by
duality in the inert case, as py s = pvae:*l, whose refinement at y is given by
e(p)™1(1, xu(p),e(p)) = (1, x5(p), e(p)), thus starts by 1, thus the same proof
as for v also applies for T. O
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