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1 Introduction

Families of automorphic forms have proven to be a great tool in number theory
in the last 30 years. Their construction dates back to Hida, [Hid86], who first
constructed families of ordinary modular forms (for the group GL2). This
construction was then improved by Coleman in the 1990’s, for overconvergent,
finite slope, modular forms and rigid spaces over Qp (whereas Hida was able
to construct his families integrally). One great and yet surprising achievement
was the construction soon after by Coleman and Mazur of one rigid space, the
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Eigencurve, which parametrizes all possible families of overconvergent, finite
slope modular forms, i.e. gluing all the families previously constructed.
Before motivating the construction of this spaces, let us say that these construc-
tions have seen many generalisations in different directions. First dealing with
level outside p and quaternion algebras by Buzzard [Buz07], or for other al-
gebraic groups, like unitary groups, compact at infinity by Chenevier [Che04],
and to more general groups by [AS08] and [Urb11] using families of (gener-
alised) modular symbols. More recently, [AIP15] have been able to construct
families and eigenvarieties for Siegel modular forms using families of automor-
phic sheaves on the Siegel moduli space. These families of sheaves live in the
rigid world, they are Banach sheaves on certain strict neighborhoods of the
ordinary locus, that interpolates (in some sense) the classical automorphic vec-
tor bundles. This strategy has been extended by [Kas04, Bra13] in the case
of Shimura curves, [ABI`16] for Hilbert modular forms, and [Bra16] for PEL
Shimura varieties for which the ordinary locus in non empty.
These spaces are particularly interesting ; through their local properties (see
for example [BC09] and [CH13] for applications to the Bloch-Kato conjecture,
and to constructing Galois representation associated to automorphic represen-
tations), but also for their global geometry (see [LWX17] and the application
to the parity conjecture), which remains completely mysterious in general.
In all cases, the construction goes by constructing huge Banach spaces M to-
gether with an action of a (commutative) Hecke algebra T containing a distin-
guished compact operator U . With this data, ifM is a projective Banach space,
we can construct following [Col97b] a rigid space E which parametrises Hecke
eigensystems for T acting on M , for which the eigenvalue for U is non-zero. In
[AS08] and [Urb11], these spaces M are the sections on Shimura varieties of
p-adic overconvergent modular symbols, which interpolate the etale cohomol-
ogy of these varieties. In [AIP15] and its generalisations, one first construct
varying Banach automorphic sheaves ωκ:, where κ is a p- adic weight, and
take the sections of these sheaves on strict neighborhoods of the ordinary lo-
cus. These spaces interpolate the coherent cohomology, but are constructed on
PEL Shimura varieties (one needs the moduli interpretation), and need the non
emptyness of the ordinary locus. Indeed, one central tool to construct ωκ: is the
theory of the canonical subgroup and its overconvergence (see [Lub79, Far11]
for example). In this article, we mainly remove the ordinariness assumption.
Let pG,Xq be a PEL Shimura datum1, and p a prime. Our main result is the
following

Theorem 1.1. Suppose that G is unramified at p, and let Kp be a level out-
side p, hyperspecial outside a finite set of primes S. Let I be a Iwahori sugbroup
at p and K “ KpI. There exists rigid spaces E and W, called respectively the
eigenvariety and the weight space, together with a locally finite map

w : E ÝÑ W ,

1We exclude factors of type D.
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and T “ HSp b Appq ÝÑ OpEq such that, for all κ P W, w´1pκq is in bijection
with the eigenvalues for the Hecke algebra T acting on weight κ, overconvergent,
locally analytic modular forms for G which are finite slope for some U P Appq.
Here Appq is a (commutative) Hecke algebra at p and HSp is the unramified
Hecke algebra for G outside Sp. E and W are equidimensional of the same
dimension. Moreover there is a Zariski dense subset Z Ă E such that all z P Z

cöıncide with a classical Hecke eigensystem in the previous identification.

Actually, we can only construct families at unramified primes, but we can
weaken a bit the assumptions on G and p, by only constructing deformations in
the directions of primes above p which are unramified for G, see remark 2.1. We
also have more information on the geometry on E over W , namely for example
there is a covering pUiqi of E such that wpUiq is an affinöıd open inW , and every
irreducible component of Ui surjects via w onto an open of W . Compared to
previous constructions of Eigenvarieties (e.g. using modular symbols), the main
interest is that we automatically have a broader class of classical points on E ,
namely those which appear in global sections of coherent automorphic sheaves
(with finite slope at p). In particular, automorphic representations which are
holomorphic at infinity (but not necessarily discrete series) and finite slope
at p can be deformed by our construction (compare with [Urb11] 5.5.1). This
is particularly interesting to deform the Arthur points (an endoscopic point)
which we study in the second part of the article in the case of Up2, 1q, and more
generally for endoscopic points (for example those which appear in [BC09]), but
also for (limit of) discrete series points, for which we would like (for example)
to associate Galois representations, as it is done in [Gol14].

We now explain how we prove this theorem. A first step in generalising the
construction of [AIP15] to the case when the ordinary locus is empty is to
find a subsitute for the ordinary locus and the canonical subgroup. A good
substitute is to consider the µ-ordinary locus (see [Wed99], [Moo04], and also
[Bij16]), and the canonical filtration, which exists on it, and overconverges on
strict neighborhoods (see [Her16]). This strategy has been followed in [Her19]
for Up2, 1q when p ą 2. Unfortunately, the results of [Her16] rely on a stronger
hypothesis on p : being big enough (always p ‰ 2 and for a general unitary
group for example the bound can be very large). In this article we choose
another strategy to avoid any hypothesis on p, and use (integral) Shimura
varieties with higher (Iwahori-like) level at p, constructed by normalisation in
[Lan16a]. On these Shimura varieties naturally live flags of finite flat subgroups,
and if we restrict to strict neighborhoods of the µ-ordinary locus (more precisely
what we call the µ-canonical locus, see definition 5.13), these groups behave as
the canonical filtration (and actually coincides with it when we know it exists,
see Theorem 5.6). In particular, we can follow the construction of [AIP15] and
[Her19] for all p with these groups, and construct automorphic banach sheaves
by introducing level at p. All of this rely on the fact that we can find a basis
of strict neighborhood Xpdeg ě N ´ εq where our subgroups have high degree,
and thus are well behaved.
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In the setting where the ordinary locus is non empty, by results of Fargues
[Far11] we can relate degree and the Hasse invariant. In our situation we also
have an Hasse invariant (by [GN17]; see also [Her18] and Definition 5.11), but
we can relate it to the degrees, using [Her16], only if p is big enough... Thus
we chose another strategy : we have a second basis of strict neighborhoods
Xpha ď vq where the (valuation of) Hasse invariant is small enough (it is
invertible on the µ-ordinary locus), and we use these two basis of neighbor-
hoods. Using the degree function, we can control our (call them canonical)
subgroups easily, and thus as it was already remarked in [Bij16], the action
of the Hecke operators. In particular, we can check that we have an op-
erator U which acts as a compact operator on sections of our sheaves over
Xpdeg ě N ´ εq. Unfortunately, we can’t prove that the global sections over
the opens Xpdeg ě N ´ εq of the automorphic Banach sheaves are projec-
tive, thus we can’t a priori use Coleman-Buzzard’s construction. On the other
basis pXpha ď vqqvą0, we can’t prove even that our expected-to-be compact
operator U (which generalise the operator Up on the modular curve) will sta-
bilise each neighborhood (and thus worse, that it acts compactly on sections
on Xpha ď vq), but using that Xpha ď vq is affinöıd in rigid fiber, we can
prove that global section of our automorphic Banach sheaves on Xpha ď vq are
projective. Here to be precise we need to work on both the toröıdal and mini-
mal compactifications of [Lan16a], the toröıdal compactification being needed
to construct the automorphic sheaves, and the minimal to get the affinöıdness
result, together with a result of vanishing of higher cohomology due to Lan,
see Appendix A. Thus we need to relate both these sections on the two basis
of neighborhoods. Fortunately we can and do in Section 9 using complexes
computing higher cohomology of our Banach sheaves, the action of the Hecke
operators on these complexes, and that we can always intertwine these opens,

Xpdeg ě N ´ εq Ą Xpha ď vq Ą Xpdeg ě N ´ ε1q Ą Xpha ď v1q Ą Xµ´can,

where ε1 and v1 are chosen small enough. Passing to finite slope parts, and
using results of [Urb11], we get that U acts as a compact operator on the finite
slope part of sections of our Banach automorphic sheaves on any of our strict
neighborhoods, and that these spaces are projective (in a specific sense). Thus
we can apply Coleman-Buzzard’s machinery and get the theorem.
As an application of these results, we can extend the result on the Bloch-Kato
conjecture we had in [Her19], and prove the following. Let E be a quadratic
imaginary number field, and

χ : Aˆ
E{Eˆ ÝÑ Cˆ,

which is polarised, meaning that χK :“ pχcq´1 “ χ|.|´1. Denote by Lpχ, sq its
L-function. If p is a prime, denote

χp : GalpE{Eq ÝÑ Qp
ˆ
,

the p-adic Galois character associated to χ, and denote H1

f pE,χpq the Bloch-
Kato-Selmer group of χp (see [BC09] chapter 5). Then we prove
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Theorem 1.2. Let p be a prime, unramified in E. If Lpχ, 0q “ 0 and
ords“0 Lpχ, sq is even, then

H1

f pE,χpq ‰ 0.

In particular we remove the hypothesis that p ‰ 2 when p is inert in E and
p ffl Condpχq that were in [Her19]. Also, a version of the previous theorem is
well-known to be due to Rubin ([Rub91]) but there it is necessary that p ‰ 2
(and p ‰ 3 if E “ Qpi

?
3q, which we unfortunately also need to assume...).

In particular, we get new cases of the Bloch-Kato conjecture when p “ 2 is
unramified in E !

Of course this result relies heavily, as in [Her19], on works of Belläıche and
Chenevier, [BC04] and [BC09]. As in this last reference, we would like to
even construct independent classes as predicted by the Bloch-Kato conjecture,
under some assumption on the geometry of the Eigenvariety E for Up2, 1q. The
idea, as in the proof of the previous theorem, would be to consider a specific
Arthur point y P E (known to exists by results of Rogawski and a calculation
of cohomology in [Her19]), see Propositon 10.21. As this point exists, we can
deduce the previous theorem. Unfortunately, in our situation the motive for this
Arthur point appears in degree 0 coherent cohomology with irregular weight
(or equivalently when a ě 2, not in middle degree Etale cohomology, contrary
to the case of [BC09]), we are not able to choose a refinement that is sufficiently
far from the ordinary one for which we can control the ramification at p (we
would need it to be anti-ordinary as in [BC04], but for us the Hodge-Tate
weights are in a different order compared to the refinement) but only a slightly
non-ordinary one, and thus the geometry of E at the Arthur point will account
for a bigger reducibility locus for the deformation of the Galois representation
than expected, and would thus not contribute only to H1

f pE,χpq. We hope to
come back on this question soon.
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2 Algebraic groups, Shimura datum and weight spaces

Let p be a prime and let D “ pB, ‹, V,ă,ą,OB,Λ, hq be an integral Shimura-
PEL-datum. Let G be the associated algebraic group over Q, i.e.,

GpRq “
tpg, cpgqq P GLBpV bRq ˆRˆ| ă gv, gw ą“ cpgq ă v, w ą @v, w P V bRu.

pG, hq defines a Shimura datum. Suppose that the datum is unramified at p
(see [Kot92] or [VW13]). This means that BbQQp is isomorphic to a product of
matrix algebras over finite extensions of Qp. We can decompose B “

śr
i“1

Bi
as a product of simple algebras and we assume that no factor is of type D
(orthogonal), see [VW13] Remark 1.1. As p is unramified in D, we can also
consider G a reductive model at p for G (over Zp).
Every interesting object in this article will decomposed accordingly to the pre-
vious decomposition of B, and we can thus make our construction for each Bi.
This simple algebras are classified into 2 types (as we excluded case D), the
type A and the type C. In case C, the construction we are interested in is al-
ready made in [Bra16] (which also do many cases of type A, but not all), and
we thus assume for now on that Bi is of type A.
As p is unramified for B (and thus Bi) we can further decompose. Let Fi be
the center of Bi, and F

`
i “ pFiq‹“1. As we are in case A, rFi : F`

i s “ 2. Write
p “ π1 . . . πsi the decomposition of p in primes of F`

i . For j P t1, . . . , siu, we
say that j (or πj or pBi, πjq) is in case AL if πj splits in F , and in case AU
otherwise (compare [VW13] Remark 1.3).

Remark 2.1. Actually we can allow a slightly larger class of Shimura datum
than the unramified ones. Suppose that we can write for all i, Bi,Qp

:“ Bi b
Qp “ Bi,1 ˆBi,2 with

Bi,1 “
siź

j“1

Mni,j
pFi,jq,

where Fi,j{Qp are finite extensions, and such that there is no factor of type D
appearing in BQp

. For all j denote again F`
i,j “ pFi,jq‹“1. Let then Sfullp be

the set of couples pi, jq such that p is not ramified in F`
i,j and does not ramifies

in Fi,j either. When p is unramified in the datum D, we can take Sfullp to be

the set of all pi, jq and Bi,Qp
“ Bi,1

2. In general, for Sp Ă Sfullp , we will be
able to construct Sp-families of automorphic forms for the datum D, i.e. we
are able to let the forms vary (only) along the unramified primes of D.

Let T be a maximal torus of G1 “ Ker c Ă G over Zp which we assume to be
the maximal torus of a Borel defined over Zp. We can decompose T (over Zp)
according to the previous decomposition,

T “
rź

i“1

siź

j“1

Ti,j ,

2In which case Fi,j “ {pFiqπj .
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(remark that if Bi is of type C, we can also decompose according to primes
over p).

Definition 2.2. The full weight space associated to the previous PEL datum
is the rigid space over Qp

W
full “ HomcontpT pZpq,Grigm q,

which associate to any Banach Qp-algebra R the set of continuous characters
HomcontpT pZpq, Rˆq. It is represented by the Banach algebra ZprrT pZpqss.
If Sp is a subset of the couples pi, jq (that we see as places over p) and if we
denote TSp

the torus over Zp;

TSp
“

ź

pi,jqPSp

Ti,j ,

we can define the (Sp-)weight space

WSp
“ HomcontpTSp

pZpq,Grigm q.

It is also represented by the Banach algebra ZprrTSp
pZpqss, and when Sp con-

tains all couples pi, jq, we have WSp
“ Wfull.

On WSp
there is a universal character κuniv : TSp

pZpq ÝÑ ZprrTSp
pZpqss. We

have the following results,

Proposition 2.3. The space WSp
is geometrically a finite disjoint union of

open balls of dimension the rank of TSp

3. Moreover there exists an admissible
covering by increasing affinoids,

WSp
“

ď

wą0

WSp
pwq,

such that κuniv|WSppwq is w-analytic.

Proof. See [Urb11] 3.4.2 and Lemma 3.4.6. See [AIP15], Section 2.2 for a
possible definition of WSp

pwq.

We can decompose WSp
“ ś

pi,jqPSp
Wi,j according to the decomposition of B.

In the following we will construct families parametrized by WSp
, as their con-

struction is not more difficult than the case of the full weight space, and fol-
lowing construction can be done on WSp

when p ramified at some places of D,
but not at other places. To my knowledge, this is useful mainly for a trick
used by Chenevier ([Che09]) to control p-adic properties of families of Galois
representations.

3This is the rank of G1 when p is unramified and Sp “ S
full
p .
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3 Classical coherent automorphic forms

Associated to pG, hq there is a tower of Shimura Varieties over the reflex field E.
If we assume that p is unramified in D, these Shimura varieties have good
reduction at p when the level at p is hyperspecial (see [Kot92]). Suppose this is
the case in this section (otherwise all we say here remains true after inverting p,
and we will explain how to extends this integrally in Section 5). We will describe
their integral models as moduli space of Abelian varieties. Let Kp Ă GpApQ,f q
be sufficiently small level outside p. Denote XKp the functor,

X
Sph
Kp : S P Sch{ SpecpOE,pq ÝÑ tpA, i, λ, ηqu{ „,

that associate the set of quadruples pA, i, λ, ηq modulo equivalence where,

• A{S is an abelian scheme

• ι : OB ÝÑ EndpAq b Zppq is a Zppq-algebra endomorphism.

• λ is a Zˆ
ppq equivalence class of OB-linear polarisation of order prime to p

which identifies Rosati involution and ‹ through i.

• η is a Kp-level structure on A (see [Kot92] Section 5, or [Lan13]4).

where ι is subject to the determinant condition and the equivalence is by prime
to p quasi-isogeny (see also [VW13] and for all details [Lan13]). As Kp is

sufficently small XSph
Kp is representible by a quasi-projective smooth scheme.

We choose ν a place of E over p, and denote OE,ν the completion of OE

through ν and denote XSph “ X
Sph
Kp,ν the base change to OE,ν .

According to the decomposition of B, we can decompose A “ śr
i“1

Ai (and the
other datums) as a product of abelian schemes (with additional structures as-
sociated to Bi). Moreover, we can further decompose the associated p-divisible
group, writing OBi

b Zp » śsi
j“1

Mni
pOFi,j

q, and using Morita-equivalence,

Airp8s “
siź

j“1

O
ni

Fi,j
bOFi,j

Airπ8
j s.5

Moreover for a pi, jq of type AL (i.e. πj “ π`
j π

´
j splits in Fi), we can further

decompose,
Airπ8

j s “ Hi,j ˆHD
i,j ,

such that λ is given by px, yq ÞÑ py, xq, with Hi,j corresponding to π`
i,j , which

we denote, by abuse of notation, Arπ`,8
i,j s, and ι preserves each factor.

4Recall that such a level structure includes a (class of) isomorphism Z{pNZ » µpN for

some N , see [Lan13] Definition 1.3.6.1.
5Arπ8

j s is a slight abuse of notation for the Morita-equivalent p-divisible group associated

to the MnpOFi,j
q-factor of Airp8s.
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Denote ω the conormal sheaf of A, it is a locally free sheaf on XSph which
decomposes as previously, and for all pi, jq we get ωi,j “ ωAirπ8

j s a locally free

sheaf of rank dimAirπ8
j s. The Shimura datum

h : ResC{R Gm ÝÑ GR,

induces µ : Gm,C ÝÑ GC (see [Del71, Section 3.7]), which is a cocharacter
whose conjugacy class is defined over the reflex (number) field E. Let P be
the parabolic in G1 over E associated to the cocharacter µ6 and M the Levi
of P . T can be seen as a torus in M and fix a Borel BM of M . For κ P X`pT q
a dominant weight for this choice, there exists a locally free sheaf ωκ on XSph.
This sheaf can be described this way. Let

T
ˆ “ IsomXSph,OB

ppΛ1 bZp
OXSphq_, ωq

» IsomXSph,OB
pΛ1 bZp

OXSph , LiepA{Y qq,

the space of trivialisations of ω, where Λ1 is a OB-invariant OE,ppq-lattice in V1
(where V “ V0 ‘V1 under the weight decomposition of µ, see [VW13] p10) and
denote π : T ˆ ÝÑ XSph. This is a M -torsor.

Definition 3.1. Let κ be a dominant (in M) algebraic character of T and κ_

its dual, i.e. ´w0pκq where w0 is the longest element of the Weyl group of M .
We see these characters as characters of BM , extending them trivially on the
unipotent. The coherent automorphic sheaf ωκ is the locally free sheaf over
XSph defined by,

ωκ “ π˚OT ˆ rκ_s,
where rκ_s means sections f : T ˆ ÝÑ A1 such that fpgbq “ κ_pbqfpgq for all
g P T ˆ and b P BM which acts on the right on T ˆ.

Let XSph,tor be a toröıdal compactification7 of XSph (see [Lan13]) and D its
boundary.

Definition 3.2. The space of (respectively cuspidal) modular (or coherent
automorphic) forms of weight κ, and level KpGpZpq is the space,

H0pXSph,tor, ωκq, prespectively H0pXSph,tor, ωκp´Dqq.

Remark 3.3. The goal of this article is to deform p-adically the previous spaces
of automorphic forms. Unfortunately, we can check that in some cases the
duality κ ÞÑ κ1 “ κ_ does not extend naturally to p-adic weights. This is the
case for Up2, 1qE{Q when p is inert in E where T “ O

ˆ
E,p ˆ O1

E,p. We can see
an algebraic weight, dominant for M » GL2 ˆGL1, as integers pk1 ě k2, k3q.

6i.e. corresponding to the parabolic P 1
C

“ tx P GC| limtÑ8 adpµptqqx existsu of GC.
7A priori the following definition depends on this choice, however by [Lan13] Lemma

7.1.1.3, this is independant of the choice of a toröıdal compactification, and in most cases
we don’t even need to specify any compactification, by Koecher’s principle, see [Lan16b]
Theorem 2.3.
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It gives a character of T pZpq via T pZpq Ă T pKq, for K a sufficiently large
p-adic field (containing E), given by px, yq ÞÑ τpxqk1τpyqk2στpxqk3 and duality
(in M) sends pk1 ě k2, k3q to p´k2,´k1,´k3q. This does not come from a
natural algebraic map on T pZpq. The reason is that the embedding T ÝÑ M

is not rational over Qp. We will overcome this issue by finding a – more or less
– natural way to directly interpolate ωκ without really using a p-adic duality.

4 Local models and Jones induction result

To construct families of automorphic forms, we will first construct families of
automorphic sheaves, i.e. we will construct automorphic sheaves ωκ: for κ not
only a dominant algebraic weight but a p-adic one, and these sheaves will inter-
polate the coherent sheaves ωκ (actually to be more precise the sheaves ωκ

_

,
see remark 3.3). This has been done previously in analogous settings (see
[AIP15, AIS14, Pil13, Bra16, Her19]), and all these works adapt geometrically
constructions that were first developed in the case of compact at infinity groups
(see [Buz07, Che04, Urb11]) using interpolations of algebraic representations
by locally analytic ones. As our sheaves will be modeled on these construction,
let us review the theory. It will be useful in analysing classicity questions in
Section 8.

4.1 Inductions

Let us fix some notations. We will be interested in representations of a p-
adic groups attached to µ. The cocharacter µ gives rise to a parabolic in G,
and denote M the Levi subgroup of this parabolic, which is defined over some
number field. The group MQp

splits over the couples pi, jq introduced before.
As explained in the previous section, pi, jq of type (C) are ordinary and thus
have been treated in [Bra16], thus we focus on type (A). In this cases, Mpi,jq

is isomorphic to a Levi of the group Res
F

`
i,j{Qp

Upni,jqFi,j{F`
i,j
.

Denote T ` “ T
`

pi,jq the set of embeddings of F`
i,j into Qp and T the corre-

sponding set for Fi,j if pi, jq is understood. Mpi,jq is up to extending scalars
isomorphic to some L “

ś
τPT ` GLpτ ˆGLqτ say over K a p-adic field. The

integers pτ , qτ are determined by µ, the co-character associated to the Shimura
Datum pG, hq, and satisfy that

pτ ` qτ “ ni,j ,@τ P T
`.

In particular let K a finite extension of Qp such that M is split, and de-
note TM its maximal (diagonal) torus. We can assume that we have a fixed

isomorphism : TK ÝÑ TM thus we have a map T pQpq ι
ãÑ TM pKq, which splits

over the couples pi, jq. For an unramified pi, jq P Sfullp , we can moreover assume

Tpi,jqpZpq ι
ãÑ TM,pi,jqpOKq8 for some integral model of Mpi,jq. For now on, we

8Beware that Zp-points of G1,pi,jq, thus Tpi,jq are naturally O “ OFi,j
valued matrices.

A priori OK Ą OFi,j
(but there is no preferred embedding) but the inclusion is strict.
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drop the index pi, jq P Sfullp in the notations, thus set ni,j “ n “ h “ pτ ` qτ .
Still denote by L “

ś
τPT ` GLpτ ˆGLqτ an integral model over OK . Let TM

be the maximal (diagonal) torus of L, B the upper Borel, and for each
κ P X`pTM q “ X`pT q, denote the (algebraic, non-normalized) induction,

Vκ “ tf : L ÝÑ A1 algebraic |fpgbq “ w0,Lκpb´1qfpgq for all g, b P LˆBu.

This is a finite dimensional K-vector space endowed with an action of LpKq
by pg.fqpzq “ fpg´1zq.
The algebraic induction is a local model of the automorphic sheaves ωκ in the
sense that etale locally the later is isomorphic to the former. We will now
describe another representation that will interpolate the previous ones and
which will be local models of the coherent Banach sheaves constructed later in
the paper.
Let I “ I1 be the Iwahori subgroup of L, i.e. I “ red´1pBpOK{pqq where
red : LpOKq ÝÑ LpOK{pq. Denote more generally In the level-n Iwahori, i.e.
elements that are upper triangular modulo pn. We have a Iwahori decomposi-
tion I “ BpOKq ˆN0, and we can identify N0 with

ppOKqN Ă ANan, N “
ÿ

τPT `

pτ ppτ ´ 1q ` qτ pqτ ´ 1q
2

.

For any ε ě 0, we define N0
ε as the subspace9,

BpN0, εq :“
ď

xPppOqN

Bpx, εq Ă ANan

and for k a p-adic field, denote Fε´anpN0, kq the function that are restriction
to N0 of analytic functions on N0

ε . Now we can define the ε-analytic induction.
Let κ P Wpkq be ε-analytic, and assume κ extends to an ε-analytic weight κK
of TKpOKq and write κ_

K : pt ÞÑ κKpw0,Lt
´1w0,Lqq ; this preserves ε-analytic

characters of TKpOKq. Then set

V ε´an
κK ,k

“
tf : I ÝÑ k : fpgbq “ κ_

Kpbqfpgq@g, b P I ˆBpOq, fN0 P F
ε´anpN0, kqu.

Denote V loc´an
κK ,L

“ Ť
εą0

V ε´an
κK ,L

and V anκK ,L
“ Ş

εě0
V ε´an
κK ,L

. This spaces won’t
be local models of our Banach-automorphic sheaves, but they will have the
same finite slope eigenvalues for well chosen κK (in particular algebraic ones).
Recall that we have a fixed pi, jq. Look at the map G1,pi,jqpZpq ÝÑ
G1,pi,jqpOKq, and recall that we have Ppi,jqpOKq Ă G1,pi,jqpOKq with Levi
Mpi,jqpOKq » LpOKq “ ś

τPT ` GLpτ ˆGLqτ pOKq. Let P 0

ppτ qτ
be the preimage

of Ppi,jqpOKq in the Iwahori subgroup of G1,pi,jqpZpq. More concretely we can
describe it the following way. Choose an ordering, tpσ : σ P T u “ tpτ , qτ : τ P

9We set Bpx, rq “ tz P AN
an| vppz ´ xq ě ru with vpppq “ 1 thus 1 R Bp0, 1q Ą pOK .
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T `u “ tp1 ď ¨ ¨ ¨ ď p2fu, and let Pppσq Ă GLn be the standard upper parabolic
with (ordered) blocks of size ppi ´ pi´1qi“1,...,2f`1, where p0 “ 0, p2f`1 “ n.
Choose an presentation of G1 (over pi, jq) such that over Zp this is the group of
matrices with values in O “ Oi,j such that tMJM “ J with J the antidiagonal
matrix with 1’s. Then P 0

ppτ qτ
“ P 0

ppσq is the intersection of G1,pi,jqpZpq with

Pppσq. Denote I0ppσq the Iwahori subgroup of P 0

ppσq with respect to the standard

upper triangular Borel, and N0

ppσq the opposite unipotent in I0ppσq. It contains

T pZpq. For every σ P T , every matrix M P P 0

ppσq can be written of the form,

M “
ˆ
Aσ Bσ
0 Dσ

˙
, Aσ P Mpσˆpσ pOq, Dσ P Mpn´pσqˆpn´pσqpOq.

In particular, we get for each τ P T ` a map,

P 0

ppσq ÝÑ GLpτ ˆGLqτ ,

M ÞÝÑ pσpDσq, σpDσqq , (1)

where σ, σ are the two embeddings over τ P T ` such that pσ “ pτ “ n´pσ, pσ “
qτ and Dσ refers to the previous decomposition.
Denote Ippσq the image of I0ppσq via the diagonal morphism φ : P 0

ppσq ÝÑś
τ GLpτ ˆGLqτ (it is injective on T pZpqN0

ppσq using that tMJM “ J).

Because of the Iwahori decomposition of I0ppσq, we can write an element of

IppσqUpOKq as n0tu with n0 and t in the image of N0

ppσq and T pZpq, and con-

sider, for every κ P Wpkq which is ε-analytic,

V
0,ε´an
κ,k “ tf : IppσqUpOKq ÝÑ k : fpgφptquq “ κptqfpgq @t P T pZpq, u P UpOKq,

fN0
ppσq

P Fε´anpN0

ppσq, kqu.

Everything makes sense as N0

ppσq can be seen as a subset of N0 and we can

define ε-analytic functions on it (using BpN0

ppσq, 1q i.e. balls in ANan Ą N0

centered on points of N0

ppσq). It is slightly complicated10, but now V
0,ε´an
κ,k will

be local models of our forthcoming Banach-automorphic sheaves. The point is
that on V 0,ε´an

κ,k we really use a (p-adic) weight for T pZpq and not for TKpOKq.
Now if κ P X˚pT q is an algebraic weight, by scalar extension it corresponds
canonically to an algebraic weight of TKpOKq which we see both as a p-adic
weight κ of T pZpq and κK of TKpOKq (then κ is the restriction of κK to T pZpq).

Proposition 4.1. Let ε ď 1 and κ P X˚pT q. The restriction map induces an
isomorphism

V ε´an
κK ,k

„ÝÑ V
0,ε´an
κ,k .

10All these constructions are not arbitrary, they come from the analogous geometric sit-
uation where G{Zp acts on trivialisations of a p-divisible group G, and we want to relate
it to trivialisations of the Hodge filtration via HTτ : GD ÝÑ ωG,τ , which is modeled by
equation (1).
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Proof. First remark that the map φ (see equation (1)) sends T pZpq in the torus

TM of L but by t ÞÑ w0,Lιptq´1w0,L as Dσ “ Jpσ
tAσ

´1
Jpσ , thus κ

_
K ˝ φptq “

κptq. In particular the restriction map is well defined. Moreover as N0
1 “

BpN0

ppσq, 1q the map is bijective as restriction toN0
ε (resp. BpN0

ppσq, εq) is an iso-

morphism from V ε´an
κK ,k

(resp. V 0´an
κ,k ) to Fε´anpN0, kq (resp. Fε´anpN0

ppσq, kq)
(inverse is given by sending f to n0tu ÞÑ κ_

Kptqfpn0q).

4.2 Up-operator

Define for all i ď h
2
an integer,

di “

¨
˝

p´2Ii
p´1Ih´2i

Ii

˛
‚P p´1P 0

ppσqpKq.

We sometimes see di in GLpτ ˆGLqτ using the previous embedding. Denote
for each σ P T , aσ “ maxppσ ´ ph ´ iq, 0q, bσ “ maxpminph ´ 2i, pσ ´ iq, 0q
and cσ “ minpi, pσq (thus aσ ` bσ ` cσ “ pσ). This is respectively the number
of p´2, p´1, 1 appearing in Dσ in the previous decomposition for di. We can
define an operator δi on V

0,ε´an
κ,k by δifpjq “ fpdind´1

i bq where j “ nb is the
Iwahori decomposition.

Proposition 4.2. Let f P V 0,ε´an
κ,k that we see as a function in Fε´anpN0

ppτ q, kq
of variable pxτk,l, yτm,nq1ďlăkďpτ ,1ďnămďqτ ,τ . Then,

δi :
Fε´anpN0

ppτ q, kq ÝÑ Fε´anpN0

ppτ q, kq
f ÞÝÑ ppxτk,l, yτm,nq ÞÑ fppvτk,lxτk,l, p

wτ
m,nyτm,nqq

where, if we denote τ “ σσ in F , with pτ “ pσ,

vτk,l “

$
’’&
’’%

2 if k ą aσ ` bσ and l ď aσ
1 if pbσ ` aσ ě k ą aσ and l ď aσq or

pbσ ` aσ ě l ą aσ and k ą aσ ` bσq
0 otherwise

wτm,n “

$
’’&
’’%

2 if m ą aσ ` bσ and n ď aσ
1 if pbσ ` aσ ě m ą aσ and n ď aσq

or pbσ ` aσ ě n ą aσ and m ą aσ ` bσq
0 otherwise

In particular,
ś
i δi is completely continuous.

Remark 4.3. It is not a mistake that f has ”as much variables as entries in
N0” instead of N0

ppσq. The reason is that f is seen as a function (even a locally

analytic one) in a neighborhood of the image of N0

ppσqpOq in the analytic space

associated to N0 (and not to N0

ppσq). Indeed, such f can’t be defined on N0 a

priori, except if we know that it is 1-analytic (as the neighborhood of N0

ppσq of

radius 1

p
in AN “ pN0qan contains N0 “ ppOqN .
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Proof. This is a direct calculation on matrices of N0.

4.3 Jones’s BGG and a fiberwise classicity result

Let P our previous algebraic group T its torus and B its upper Borel that
defines ∆ a set of positive roots. Then for every dominant weight κ P X`pT q,
Jones’s [Jon11] proved the exactness of the following sequence,

0 ÝÑ VκK ,k ÝÑ V anκK ,k
dÝÑ

à
αP∆

V anα‚κK ,k
(2)

where d is an explicit map (see for example [AIP15] for GSp2g (P “ GLg) and
[Bra16] for a similar case to ours). Then the following proposition is [Bra16]
Proposition 6.5

Proposition 4.4. Write κ “ pkσ,iq P X`pT q according to the decomposition
P “ ś

τPT ` GLpτ ˆGLqτ “ ś
σPT GLpσ a dominant weight. Set

νσi “ inftkσ,i ´ kσ,i`1 : i ă pσu.

Then,
V

0,ε´an,ăν
κ,k Ă Vκ,k.

(The same proposition is true with V
ε´an,ăν
κ,k ).

Proof. The first thing to check is that if f P V
0,ε´an
κ,k is of non-zero slope,

then f P V anκ,k (this reduces to ε ď 1 using Proposition 4.1). But as
ś
i δi is

increasing the analytic radius, by Proposition 4.2 we get the claim. Now, we can
use Jones’s BGG result as in [AIP15] Proposition 2.5.1, or [Bra16] Section 6.1,
and we get the result.

Remark 4.5. The previous calculation is made completely explicitly for G “
pGqUp2, 1q in [Her19].

5 Integral models

5.1 Isogeny Graphs

Definition 5.1. Fix h P N˚ and n P N˚, and denote Γhn the subset ofMnˆhpCq
such that M “ pmi,jq1ďiďn,1ďjďh P MnˆhpCq satisfies,

1. For all pi, jq, mi,j P t0, 1u,

2. For all pi, jq, if mi,j “ 1, then mi´1,j “ 1 and mi,j´1 “ 1 (when defined).

Let Γhn “ pΓhn, vq be the graph whose points are M P Γhn, and there is an arrow

from M “ pmi,jq to M 1 “ pm1
i,jq if

tpi, jq|mi,j ‰ m1
i,ju “ tpi0, j0qu and mi0,j0 “ 0, m1

i0,j0
“ 1.
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When n “ 0, define Γh0 as t‹u, and the map π0,1 : Γh0 Q ‹ ÞÑ p0, . . . , 0q P Γh1 .
When n ě 2, we have a natural map,

Γhn´1

πn´1,nÝÑ Γhn
M “ pmi,jq1ďiďh,1ďjďn´1 ÞÝÑ pm1

i,jq P MnpCq,m1
i,j “ mi,j if j ă n,

0 otherwise.

This map preserves vertices, it is an embedding of graphs.

Remark 5.2. If n “ 1, the possible matrices are simply given by

Mi “ p1, . . . , 1loomoon
i times

, 0, . . . , 0q.

They parametrizes the lattices appearing in a periodic lattice chain inside
GLhpZpq as in [RZ96].

5.2 Some integral models

Let p be a prime, and let D be an integral Shimura-PEL-datum as in Section 2.
Denote by P “ tpi, vq|v place of F`

i u the set of places of G, where Fi is the
center of Bi. Fix Sp Ă tpi, jq|i P t1, . . . , ru, j P t1, . . . , siuu a set of unramified
places over p as in Remark 2.1. With our assumptions on D, for all v “
pi, jq P Sp, v is unramified, and B bF` F`

v is split and isomorphic to MnpFvq.
Fix S a finite set of places of P such that S X Sp “ H, and S contains all
places such that B doesn’t split or is ramified.
Fix then a compact KS,Sp outside SSp such that Kv is maximal hyperspecial
for all v R S Y Sp.
For all pi, jq P Sp we can associate an integer hi,j “ htOi,j

Arπjs in case (AU)
and hi,j “ htOi,j

Arπ`
j s in case (AL). These integers are defined for example

by looking at the characteristic 0 moduli space as explained in Section 3 (or
could be read directly on G, and even defined by the integral moduli space of
Kottwitz if G is unramified at p). We set Γn “ ś

pi,jqPSp
Γhi,j

n .

Fix once and for all a compact subgroup KS Ă GpFSq and for all v P Sp,
consider KSph

v the maximal hyperspecial compact open subgroup. We will
study some covering of the Shimura variety (seen as a scheme over SpecpKq)

XSph “ XG,K0
, K0 “ KS,SpKS

ź

vPSp

KSph
v .

The Shimura variety associated to XSph has a good integral model XSph
OK

over
SpecpOKq, forK{Qp a well chosen finite extension ([Lan13] ifKv is hyperspecial
for all v|p, and [Lan16a] if p is unramified in D for example by normalisation

of the hyperspecial level. In general, we fix any integral model XSph
OK

given by

[Lan16a]. If Kv is hyperspecial for all v|p, XSph
OK

is smooth).
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We will define our base space, and its integral model following [Lan16a]. Let
for all v P Sp, Iv be a Iwahori subgroup at p of GpFvq. Define first its generic
fiber,

X “ XG,K ,K “ KS,SpKS

ź

vPSp

Iv.

This space, over some extension K of Qp, classifies quintuples pA, ι, λ, ηS , H¨q
modulo isomorphisms where pA, ι, λ, ηSq is a point of XSph, and H¨ is a full
flag of Arvs, for v P Sp. Explicitly, for every pi, jq as before, H¨ induces,

1. In case pALq, a filtration

0 Ă H1 Ă ¨ ¨ ¨ Ă Hr “ Airπ`
j s,

by finite flat Oi,j-group schemes such that Hk is of rank pk.

2. In case pAUq, a filtration,

0 Ă H1 Ă ¨ ¨ ¨ Ă Hr “ Arπjs,

by finite flat Oi,j-groups schemes such that Hk is of rank pk and HK
i “

H
pσq
r´i.

This Shimura variety with Iwahori level at Sp has a natural integral model
over SpecpOKq. When all the prime v|p satisfies that Kv is parahoric (this
is only a condition outside Sp here), then this is defined by the lattice chain
introduced in [RZ96]. See for example [Lan13]. In general, this can be seen as
explained in [Lan16a], example 2.4 and 13.12. The abelian scheme A and the
subgroups Hi,j

k gives rise to isogenies (precisely, we need to use Zarhin’s trick,
see remark 5.5),

A ÝÑ A
i,j
k “ A{Hi,j

k .

In particular we get a map,

X ÝÑ
ź

γPΓ1

X
Sph
OK

,

sending pA, ι, λ, η,H¨q to pAi,jk , ι, η, λq (see remark 5.5). Then the integral

model XOK
is defined as the normalisation of

ś
γPΓ1

X
Sph
OK

in X . This is a
scheme flat over SpecpOKq.
The same thing applies to compatible choices of toröıdal compactification11,
and we get spaces, flat, proper over SpecpOKq (see [Lan16a] Lemma 7.9),

Xtor
OK

and X
Sph,tor
OK

.

11In all the this text, we always assume the rational cone decompositions to be smooth
and projective without further comment.
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Remark 5.3. In the following, we will be interested mainly by A (as opposed
to the collection of all the Aγ) and the subgroups Hk

i,jrpℓs. Thankfully, there is
a ”universal semi-abelian scheme” (more precisely, a degenerating family) on
Xtor and its covers extending A on X . If p is unramified in the PEL datum
and we are at hyperspecial level this is [Lan13] Theorem 6.4.1, in general this
is [Lan16a] Theorem 11.2.
But we will need slightly more, as for a semi-abelian scheme G, Grpns need

not to be finite flat. Fortunately, we can find an etale covering U of XSph,tor
OK

such that G is approximated on each open of this covering by a Mumford 1-
motiveM , i.e. Grpns “ M rpns (see [Str10] Section 2.3 (more precisely Proposi-
tion 2.3.3.1) and [Lan16a] Theorem 11.2). This etale covering is an isomorphism
on the boundary (see [Str10] Section 2.4). In particular, there is a semi-abelian

scheme of constant rank rG such that rGrpns Ă Grpns is finite flat, and such that
ω rGrpns “ ωGrpns. We can thus by pullback find also an etale covering of Xtor

OK

on which we have the finite flat group scheme rGrpns. Thus, the (µ-ordinary)

Hasse invariant or the degree function extends on this covering of XSph,tor
OK

, but
we can descend them : see in Subsection 5.5.

We have similarly for any n, a Shimura variety with Iwahori level pn, Xtor
0 ppnq,

over SpecpKq, classifying, outside the boundary, pA, ι, λ, ηS , H¨q, with H¨ a full
flag of Arpns. More precisely, we have for all pi, jq,

1. In case pALq, a filtration

0 Ă H1 Ă ¨ ¨ ¨ Ă Hr “ Airπ`,n
j s,

by finite flat Oi,j-group schemes such that Hk is of Oi,j-rank p
nk with

cyclic graded pieces.

2. In case pAUq, a filtration,

0 Ă H1 Ă ¨ ¨ ¨ Ă Hr “ Arπnj s,

by finite flat Oi,j-groups schemes such that Hk is of Oi,j -rank p
nk with

cyclic graded pieces such that HK
i “ H

pσq
r´i.

Once again, by [Lan16a] (here we are in characteristics zero, so this is easier)
there is a natural map12 (again, see remark 5.5),

X0ppnqtor ÝÑ
ź

γPΓn

X
Sph,tor
OK

,

sending pA, ι, λ, ηS , H¨q to pA{pHk
i,j rpℓsq, ι, λ, ηS , q away from the boundary.

There is moreover a map

X0ppnqtor πn,n´1ÝÑ X0ppn´1qtor,
12Cone decomposition must be chosen appropriately, but we suppose so, without further

comment, as it is always possible to refine the choices in order to get the compatibility.
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given by sending the flag pHk
i,jrpℓs Ă Airπℓjsqℓďn to the flag pHk

pi,jqrpℓs Ă
Airπℓjsqℓďn´1. In particular, the diagram,

X0ppnqtor
ś
γPΓn

X
Sph,tor
OK

X0ppn´1qtor
ś
γPΓn´1

X
Sph,tor
OK

πn,n´1 Γn,n´1

is commutative.

Definition 5.4. Define X0,OK
ppnqtor to be the normalisation of

ś
Γn
X
Sph,tor
OK

in X0ppnqtor. It is a proper and flat scheme over SpecpOKq. By normalisation,
the map πn,n´1 extends as a map,

πn,n´1 : X0,OK
ppnqtor ÝÑ X0,OK

ppn´1qtor.

In particular (see also [FC90] Chap I Prop. 2.7), over X0,OK
ppnqtor we have

by pullback natural isogeny graphs,

pAγqγPΓn
,

such that the Kernel of Airπ8
j s ÝÑ A

i,j
k,m, is a finite flat, at least away from the

boundary, Oi,j-subgroup of Airπnj s of Oi,j-rank p
km. We denote it by Hi,j

k,m,
or, if pi, jq is understood, Hkrpms. This makes sense as Hk,m “ Hk,nrpms. In
the rest of the text, we sometimes denotes Gpi,jq (or G if pi, jq is understood)

the p-divisible group Airπ8
j s (or Airπ`,8

j s in case AL).

Remark 5.5. Actually the construction is slightly more evolved as what than
been said, as the abelian varieties Aγ “ A{Hk

i,jrpℓs appearing in the isogeny
graph might not be principally polarized, thus need not to give a map
X0ppnq ÝÑ XSph. But as explained in [Lan16a] Proposition 4.12 and Propo-
sition 6.1, we have a map to an auxiliary moduli problem where A{Hk

i,jrpℓs is
modified to be principally polarized by Zarhin’s trick, extends to the integral
model X0,OK

ppnq (all this works on the compactifications), and we can then
deduce the extension of A{Hk

i,jrpℓs itself.

5.3 Results on the canonical filtration and the Hodge-Tate map

Theorem 5.6. Let L be a valued extension of Qp, and G be a truncated level
n p-divisible group over SpecpOLq with action of O and signature ppτ , qτ q.

1. Then there exist at most one sub-O-module Hτ of height npτ such that,

degHτ ą
ÿ

τ 1

minpnp1
τ , npτ q ´ 1

2
.

We call it the canonical subgroup of height pτ if it exists.
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2. Moreover, if two sub-O-modules Hτ , Hτ 1 of respective height npτ , npτ 1 as
before exists, then,

pτ ď pτ 1 if and only if Hτ Ă Hτ 1 .

3. If moreover G is polarized, then Hτ is polarized, i.e.

HK
τ :“ pG{Hτ qD ãÑ GD,

is identified with the canonical subgroup of height qτ of GD.

4. The group Hτ verifying the previous hypothesis is a step of the Harder-
Narasihman filtration of G, it also coincide with the kernel of the Hodge-
Tate map,

αG,τ,n´ε : GpOLq ÝÑ ωGD,τ,n´ε,

where ε “ degτ pG{Hτ q.

5. Suppose that Hτ as in 1. exists. The cokernel of the Hodge-Tate map,

αG,τ b 1 : GpOLq b OL ÝÑ ωGD,τ ,

is of degree p
Degτ pGrps{Hτ rpsq

pf ´1 . In particular, write ετ 1 “ nminppτ 1 , pτ q ´
degτ 1 Hτ , then the cokernel of the Hodge-Tate map is killed by

p
Kτ pp‚q`Sτ pε‚q

pf ´1 , where

Kτ pp‚q “
fÿ

i“1

pf´imaxppσiτ ´ pτ , 0q and Sτ pε‚q “
fÿ

i“1

pf´iεσiτ .

Proof. The first three assertions are Bijakowski’s result, [Bij16] Propositions
1.24, 1.25, 1.30 (see for example [Her16] Proposition A.2 for something written
for the pn-torsion). Assertion 4. is Proposition 7.8 and 7.7 of [Her16] (appliy-
ing 7.8 we get a step H 1

τ and by 7.7 Hτ and H 1
τ coincide with the Kernel of

the Hodge-Tate map). It it sufficient to prove 5. for n “ 1. Remark that
our hypothesis for Hτ Ă G implies the same for Hτ rps Ă Grps. Indeed denote
degτ 1 Hτ “ nminppτ 1 , pτ q ´ ετ 1 , and write the sequence,

0 ÝÑ Hτ rps ÝÑ Hτ ÝÑ pHτ ÝÑ 0

which is exact in generic fibre, where pHτ is the schematic adherence of
pHτ pOCq in Hτ . Then pHτ Ă Grpn´1s, and we have,

degτ 1 Hτ ď degτ 1 Hτ rps ` degτ 1 pHτ ,

and because pHτ is of height pn ´ 1qpτ and inside Grpn´1s, degτ 1 pHτ ď pn ´
1qminppτ , pτ 1q. Thus,

degτ 1 Hτ rps ě minppτ 1 , pτ q ´ ε1
τ . (3)
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Then denote E “ Grps{Hτ rps. The hypothesis on the degree of Hτ , and thus
of Hτ rps implies

ωHD
τ ,τ,ε

“ 0

for all ε ă 1´degτ pHD
τ q, in particular, ε ă 1{2. Using the same devissage of E

as in [Her16], proof of Theorem 6.1 implies that

degCokerpαE,τ,ε b 1q “ degCokerpαG,τ,ε b 1q “ Degτ pEq
pf ´ 1

.

Using the properties of various degτ 1 , and equation (3) we get the result.

Remark 5.7. 1. The principal difference of the previous theorem with
[Her16] is that we don’t a priori have the existence of such groups Hτ .
In [Her16], up to taking p big enough to relate the (µ-ordinary) Hasse
invariant to the Hodge-Tate map, we have a condition for the existence
in terms of the Hasse invariant. In this article, we assure the existence
by increasing the level at p in the integral model.

2. The bound given in 5 is interesting in general only when p is big enough
compared to ppτ q. If p is small and ppτ q is too big, then it is more
interesting to use the bound given by Fargues ([Far11]) which states that

(in full generality) the cokernel of the Hodge-Tate map is killed by p
1

p´1 .
Note that this is because the definition of the degree which involve taking
some determinant.

5.4 Degree function, µ-ordinary locus and Hasse invariants

Notations 5.8. In the Subsection 5.2, we fixed a sufficiently big p-adic field K
and we have defined, for ˚ P tH, toru, X˚, XSph,˚, X0ppnq˚ which are schemes

over SpecpKq, together with X˚
OK

, X
Sph,˚
OK

, X0,OK
ppnq˚ which are integral mod-

els over SpecpOKq. In the following we will need to leave the world of schemes,
and we thus define X˚,XSph,˚,X0ppnq˚ as the completion of the previous in-
tegral models along their special fibers (we suppress K from the notations).
These are thus formal schemes over SpfpOKq. We define X˚,XSph,˚,X0ppnq˚

as the rigid fibers of the integral models. These are rigid analytic spaces over
SpmpKq, and when ˚ “ tor, they coincide with the analytification of the anal-
ogous SpecpKq-schemes.

As usual, fix a couple pi, jq P Sp, and suppress it from the notation. Denote
by σ a Frobenius (at pi, jq), thus T is principal homogeneous for the action
of σ. For each τ P T is associated an integer pτ , and thus a subgroup of height
npτ over X0ppnq, Hτ Ă G “ Arπ8

j s or Arπ`,8
j s, which is finite flat and killed

by pn. We can thus, following [Bij16], define for each τ a real-valued function,

degpHτ q : X0ppnq ÝÑ r0, nř
τ 1 minppτ , pτ 1 qs

pA, i, λ, η,H¨q ÞÝÑ degpHτ q
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and consider
ś
τ degpHτ q. Then we have the following result of Bijakowski

[Bij16] Proposition 1.34,

Proposition 5.9. The locus where the previous function is maximal in X0ppnq,
i.e.

f´1ź

j“0

degpHσjτ q´1ptn
ÿ

τ 1

minppτ , pτ 1qu ˆ ¨ ¨ ¨ ˆ tn
ÿ

τ 1

minppσf´1τ , pτ 1 quq,

is included in X0ppnqfull´µ´ord, the µ-ordinary locus of X0ppnq .

Remark 5.10. To be precise, as we have fixed the prime pi, jq P Sp, the µ-
ordinary locus above, and in the rest of the text (until the conclusion at the
end of Section 9) if not stated otherwise, is with respect to the prime pi, jq.

Definition 5.11. On XSph we can define a µ-ordinary Hasse invariant µHa (cf.

[Her18], see also [GN17, KW14]) which is a section of the sheaf detω
bppf ´1q
G

pmod pq. This defines a function

vpµHaq : XSph ÝÑ r0, 1s,

which sends a OK-point to the (truncated by 1) valuation of the µ-ordinary
Hasse invariant of the reduction of the corresponding point of XSph. In partic-
ular we can define by pullback an analogous function on X0ppnq, and define

X0ppnqfull´µpvq “ vpµHaq´1pr0, vsq.

Remark 5.12. 1. In the previous definition, the valuation is normalized by
vppq “ 1, and X0ppnqfull´µp0q “ X0ppnqfull´µ´ord, the µ-ordinary locus
of X0ppnq.

2. Actually by construction we have many maps from X0ppnq to XSph (and
as much for their integral model), namely one for each γ P Γn. The one
we consider above is the canonical one corresponding to the zero-matrix γ
(which sends A to A, or pAγqγ to A0).

Definition 5.13. Define X0ppnqpvq as the (union of) connected components
of X0ppnqfull´µpvqq which contains a point of maximal degree for the previous
function (equivalently, the components where the subfiltration of H¨ of height
npτ coincides with the canonical filtration in sense of Theorem 5.6). We will

call X0ppnqp0q “: Xµ´ord´can
0

ppnq the µ-ordinary-canonical locus of X0ppnq. It
is an open and closed subset of X0ppnqfull´µp0q and coincides with the locus
of maximal degree of Proposition 5.9.

Remark 5.14. X0ppnqpvq is the analogue of the strict neighborhoods of the
ordinary-multiplicative part of the modular curves of level Γ0ppq.
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Definition 5.15. For ε “ pετ qτ , define the rigid analytic open,

X0ppnqppετ qτ q “
f´1ź

j“0

degpHσjτ q´1p
f´1ź

j“0

rn
ÿ

τ 1

minppσjτ , pτ 1 q ´ εσjτ , n
ÿ

τ 1

minppσjτ , pτ 1 qsq.

This is a strict neighborhood of the µ-ordinary-canonical locus X0ppnqp0q in
X0ppnq.
Remark 5.16. The map πn,n´1 sends X0ppnqpεq into X0ppn´1qpεq. Indeed, if
degHτ ą n

ř
τ 1 minppτ , pτ 1q ´ ετ , then because of the generic exact sequence,

0 ÝÑ Hτ rpn´1s ÝÑ Hτ ÝÑ K ÝÑ 0,

and the fact that K is killed by p, thus degK ď ř
minppτ , pτ 1q we have that

degHτ rpn´1s ě pn ´ 1q
ř
τ 1 minppτ , pτ 1 q ´ ε.

5.5 Extension to the boundary

We want to extend the previous opens to all X0ppnqtor, thus we will need to
extends the functions deg and µHa. The function µHa can be extended to
all X0ppnqtor (as a section of some detpωGqbN b pOX0ppnqtor {pq) by [Lan17]
Theorem 8.7. For the functions deg, we can also extend it. The group Hpτ is
the Kernel of an isogeny of semi-abelian schemes

π : A ÝÑ Aγ ,

on X0ppnqtor. Thus, looking at the corresponding map on conormal sheaves we
get

π˚ : ωAγ
ÝÑ ωA,

and taking determinants gives det π˚ P H0pX0ppnqtor, detωA b detω´1

Aγ
q. Over

X0ppnq, the valuation at every point of detπ˚, which can be seen as an element
of R`, coincides with the degree of Hpτ . Thus, we have extended the degree
map to,

degpHτ q : X0ppnqtor ÝÑ R`.

To check that this map is actually bounded by n
ř
τ 1 minppτ , p1

τ q as on the
open Shimura variety X0ppnq, we can do the following. Let x P X0ppnqtorpKq,
and let rG{OK be the constant toric rank semi-abelian scheme such that Ax
is a quotient by some etale sheaf Y of rG by Mumford’s construction. Then
by [FC90] Corollary 3.5.11, we have an exact sequence, and taking schematic

adherence Hn of rGrns b K in Axrns, we have that Hn is isomorphic to rGrns
and whose quotient in Axrns is etale. Decompose accordingly Aγ,x together
with the isogeny π (see for example [FC90] Corollary III.7.2), and decompose

πH as rπH along rG. Then the degree of πH is the same as rπH as its quotient
is etale. But ker rπH (which is now finite flat) is of signature smaller than
pnminppτ , p1

τ qqτ 1 , thus the assertion on its degree.
In particular we can define X0ppnqtorppετ qτ q and X0ppnqtorpvq as before.
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5.6 Two collections of strict neighborhoods

Recall that in a quasi-compact rigid space X , if U Ă V Ă X are quasi-compact
opens, we say that V is a strict neighborhood of U if pV,XzUq is an admissible
covering of X . This is in particular the case when U is relatively compact in V
over X ([KL05, Definition 2.1.1] which is denoted often U ŤX V ), see [KL05,
Lemma 2.3.3].
The previous opens X0ppnqtorppετ qτ q and X0ppnqtorpvq both define stricts neigh-
borhoods of the µ-ordinary-canonical locus X0ppnqtorp0q. Thus we get the fol-
lowing proposition,

Proposition 5.17. For all v ą 0 there exists pετ qτ ą 0 such that,

X0ppnqtorppετ qτ q Ă X0ppnqtorpvq,

and for all pετ qτ ą 0 there exists v ą 0 such that,

X0ppnqtorpvq Ă X0ppnqtorppετ qτ q.

Proof. Fix V a strict neighborhood of X can´µ´ord,tor
0

ppnq “ X0ppnqtorp0q. As
pV ,X0ppnqtorzX0ppnqtorp0qq is an admissible covering, V contains X0ppnqtorpvqq
for some v ą 0. The same applies for X0ppnqtorppετ qτ q.

Definition 5.18. We say that ε “ pετ q and v are n-compatible, or we say that
pε, v, nq is satisfied, if,

X0ppnqtorpvq Ă X0ppnqtorpεq.

Let us explain quickly why we chose this two collections of strict neighborhoods.
Classically, we use the stricts neighborhoods X pvq given by the Hasse invariant
to construct eigenvarieties because this is the classical definition of Katz, and
as the Hasse invariant is a section of an ample line bundle on the minimal
compactification, we get that the ordinary (or µ-ordinary) locus and its strict
neighborhoods in the minimal compactification are affinoids. This is a crucial
part of the construction described in [AIP15]. In many case (see [Bra16] or
[Her19] in the Picard case, and using [Her16] in all PEL unramified case when p
is big enough), we manage to construct on the opens X pvq a canonical filtration
and control the degree of the subgroups of this filtration explicitly in terms
of v. Thus the choice of the strict neighborhoods X pvq is enough to do all the
constructions in these cases. But the classicity results as in [Buz07, Kas06,
Pil11, PS12, BPS16] and in the µ-ordinary case [Bij16] relies on the stricts
neighborhoods in terms of the degree. So in the unramified PEL case when p
is not big enough, it is not clear a priori how to relate the degrees in terms of
the Hasse invariant. Nevertheless, the previous proposition will allow us to use
the best of both worlds.
We will need to understand the behavior of the strict neighborhoods along
finite etale maps.
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Lemma 5.19. Let π : X ÝÑ Y a finite etale map of quasi-compact rigid spaces.
Let U Ă X be a quasi-compact open subset and V “ πpUq the corresponding
open in Y . Let Uw Ă X be a strict neighborhood of U , then πpUwq is a strict
neighborhood of V .

Proof. This is [BPS16] Proposition 4.1.7.

6 Canonical filtration, Hodge-Tate map and overconvergent
modular forms

As before, fix a couple pi, jq P Sp that will be understood until the rest of this
section. Let v P vpOKq. In the previous section we defined a rigid open denoted
X0ppnqtorpvq. We first need an integral (formal) model.

Definition 6.1. Let BlIpvq be the blow-up of X0ppnqtor along the ideal I “
ppv, µHaq. Let X0ppnqtorpvq0 be the open of BlIpvq where I is generated by
µHa, and we denote by X0ppnqtor,full´µpvq the normalisation of X0ppnqtorpvq0.
As this scheme is normal; it has the same connected components than its
rigid fiber, and we thus denote X0ppnqtorpvq the one whose generic fiber is
X0ppnqtorpvq.
From now on, fix ε ă 1

2
. Recall that over X0ppnqtor we have subgroups Hm

pτ

for m ď n (which are finite flat on X0ppnq of O-rank mpτ ), but a priori only
quasi-finite flat over the boundary.

Proposition 6.2. If ε ă 1

2
, for every v ą 0 such that

X0ppnqtorpvq Ă X0ppnqtorpεq,

the groups Hm
τ are finite flat over X0ppnqtorpvq.

Proof. Over X0ppnqtor there is a isogeny

A ÝÑ Aγ ,

of semi-abelian schemes whose Kernel is the group Hm
τ (a priori only quasi-

finite flat), and this group is finite flat over X0ppnq. Moreover, by a classical
construction, there is an etale covering Utor of X0ppnqtor over which the semi
abelian schemes A and Aγ can be approximated by a 1-motive of Mumford M
and Mγ (concretely these UtorSph exists for XSph by construction, see e.g. [Str10]
Section 3, and we can moreover assure that M rpns and Mγrpns are isomorphic
to Arpns and Aγrpns, by the arguments of [Str10] Section 2.3, and take the
pull-back via X0ppnqtor ÝÑ ś

γ X
Sph,tor). We only need to check that Hm

pτ
is

finite flat over Utorpvq :“ Utor ˆX0ppnqtor X0ppnqtorpvq. But there is an isogeny
over Utorpvq

π : A ÝÑ Aγ ,

such that Kerπ is Hm
pτ
. Thus for every OK-point of Utorpvq, Hm

pτ
is of high

degree (in the sense of Theorem 5.6). But over Utorpvq, A and Aγ are associated
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to Mumford 1-motivesM andMγ by Mumford construction. Thus there exists
semi abelian schemes G and Gγ , of constant toric ranks, in the datum of M
and Mγ , such that the isogeny π reduces to

π1 : G ÝÑ Gγ .

Call H 1 “ kerπ1. It is finite flat as G and Gγ have constant toric ranks.
As ωG » ωA and ωGγ

» ωAγ
, the degree of H 1 is the same as the one of

Hm
τ “ Kerπ. Thus, away from the boundary, over Upvq :“ UtorpvqˆX0ppnqtorpvq

X0ppnqpvq, by unicity in Arpns of Theorem 5.6, we have H 1 “ Hm
τ (it is true for

every OK-point, thus on Upvq by normality). In particular, the semi-abelian
schemes

A{Hn
τ and A{H 1,

are isomorphic over Upvq. But by [FC90] Prop. I.2.7, this implies by normality
of X0ppnqtorpvq, and thus of Utorpvq, that they are isomorphic over Utorpvq.
Thus Hm

pτ
is finite flat.

6.1 The sheaves F and integral automorphic sheaves

We denote

tpτ | τ P T u Y t0, hu “ t0 “: p0 ď p1 ă p2 ă ¨ ¨ ¨ ă pr ď pr`1 :“ hu.

We define for every v ą 0 such that X0ppnqpvq Ă X0ppnqpεq, a cover of
X0ppnqpvq. In case (AL) or if pr “ h in case (AU) (in which case p1 “ 0
by duality and thus on X the universal p-divisible group Airπ8

j s has no multi-
plicative nor etale part), we set

X1ppnqtorpvq :“
r`1ź

k“1

IsomX0ppnqtorpvq,pol,OpHpk{Hpk´1
,O{pnOpk´pk´1q,

where13 the condition pol is trivial in case (AL), and in case (AU) means that
we are also given an isomorphism,

ν1 : pO{pnOqD » pO{pnOqσ ,

i.e.

X1ppnqtorpvq Ă
r`1ź

k“1

IsomX0ppnqtorpvq,OpHpk{Hpk´1
,O{pnOpk´pk´1 q̂ IsompO{pnOqD,pO{pnOqσq,

satisfying the following. There are fixed isomorphisms,

φk : pHpk{Hpk´1
qD » pHpr´k`2

{Hpr´k´1
qpσq,

13We now write Hpτ instead of Hn
τ . Thus Hpk “ Hn

τ if pτ “ pk and of O-height npk.
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induced by HK
pk

» H
pσq
pr´k`1

, itself induced by the prime-to-p polarisation on
Xtor.14

We require that for all k, the two isomorphisms,

ψDk : pO{pnOqD,pk´pk´1 ÝÑ pHpk{Hpk´1
qD,

and
ψr´k`2 : pHpr´k`2

{Hpr´k`1
q ÝÑ O{pnOpk´pk´1 ,

satisfies ψDk “ ψ
pσq,´1

r´k`2
, after identifying source and target via ν1 and φk.

In this definition we have extended slightly the definitions of the (canonical)
subgroups Hk : for k “ 0 we set H0 “ t0u and for k “ r ` 1 we set Hr`1 “
Grpns. If pr ă h in case (AU) (in which case p1 ą 0 and on X the universal
p-divisible group Airπ8

j s has a non-zero multiplicative and etale part), we set

X1ppnqtorpvq :“
rź

k“2

IsomX0ppnqtorpvq,pol,OpHpk{Hpk´1
O{pnOpk´pk´1q

ˆ IsomX0ppnqtorpvqpHp1 , pO{pnOqp1 q.

Remark 6.3. 1. The difference in definition in case (AU) is because if pr “ h,
the group Airπmj s is finite flat and polarised on the all toröıdal compact-
ification, but not if pr ă h, because Airπmj s{Hpr , which is generically
finite etale, is only quasi-finite on the boundary.

2. The point is that X1ppnqtorpvq is a rigid open in (a toröıdal compactifi-
cation of) the Shimura variety for G of some level (which we could make
explicit). Indeed, if we use the definition of [Lan13] Definition 1.3.7.4. at
our prime pi, jq, we see that it amounts to the previous definition : the
morphism

ν : Z{pnZ „ÝÑ µpn ,

there induces a perfect pairing,

O{pnO ˆ pO{pnOqpσq trpă,ąqÝÑ Z{pnZ νÝÑ µpn ,

where trpă a, b ąq :“ trpabq is a perfect pairing, and thus induces an
isomorphism of O-group schemes

ν1 : pO{pnOqD „ÝÑ pO{pnOqpσq.

Let ψk and ψr´k`2 be the isomorphism induced by a Level structure in
the sense of [Lan13], then let ∆k “ pk ´ pk´1,

14To be precise, we have on X0ppnqtorpεq a semi-abelian scheme A and Hm
pτ

inside its

p-torsion. The group homorphism λ : A ÝÑ A_,pσq, is a polarisation on X0ppnq, and this

polarisation, which identifies HK
pk

with H
pσq
pr´k

, induces an isomorphism pHpk {Hpk´1
qD »

pHpr´k`1
{Hpr´k

qpσq everywhere. Indeed, it is enough to check it locally and introduce the

formal-etale covering Utorpvq of Subsection 5.5. Over Utorpvq, the polarization extend as λ

an isogeny of 1-motives, thus induces an isogeny λab of their abelian parts on which the
asserted isomorphism follows from Theorem 5.6 and normality of Utorpvq.
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pHpk{Hpk´1
q ˆ pHpr´k`2

{Hpr´k`1
qpσq µpn

pO{pnOq∆k ˆ pO{pnOq∆k Z{pnZ

Weil

ψk ˆ ψ
pσq
r´k`2

trpă,ąqL

ν´1

must be commutative, and by compatibility between the polarisations on

Arpns and L, the two pairings trpă,ąqL ˝ pψk ˆ ψ
pσq
r´k`2

q and trpă,ąqL
˝pψkˆpν1 ˝pψDk q´1˝φ´1

k qq must coincide, thus ψ
pσq
r´k`2

“ ν1 ˝pψDk q´1˝φ´1

k

by [Lan13] Corollary 1.1.4.2.

Definition 6.4. Let X1ppnqtorpvq be the normalisation of X0ppnqtorpvq in
X1ppnqtorpvq. It is flat, proper and normal over SpecpOKq, and moreover we
have maps

πn,n´1 : X1ppnqtorpvq ÝÑ X1ppn´1qtorpvq,
by normalisation of the map sending pψkq to pψkrpn´1sq.

Proposition 6.5. Assume pε, v, nq. For every τ , there is on X1ppqtorpvq a
locally free OX1ppqtor -module of rank pτ Fτ Ă ωG,τ , (respectively in case (AL)

also a sheaf FK
τ Ă ωGD,τ ) containing

p
Kτ pq‚q`Sτ pε‚q

pf ´1 ωτ prespectively p
Kτ pp‚q`Sτ pε‚q

pf ´1 ωGD,τ q.

For all n, it induces by pullback by πn “ πn,1 a sheaf Fτ (resp. and FK
τ )

on X1ppnqtorpvq, endowed with a compatible map for all wτ ă n ´ ετ , for all
SpecpRq Ă X1ppnqtorpvq,

HTτ,wτ
: HD

pτ ,n
pRq ÝÑ Fτ bRwτ

,

(resp.

HTK
τ,wτ

: pHK
pτ ,n

qDpRq “ pGrpns{Hpτ ,nqpRq ÝÑ F
K
τ bRwτ

,

which induces an isomorphism,

HD
pτ ,n

pRq bRwτ
ÝÑ Fτ bRwτ

,

(resp. HTK
τ,wτ

bRwτ
is also an isomorphism).

Proof. Indeed, we can work locally over S “ SpecpRq. We have isomor-
phisms pHpk{Hpk´1

qDpRq » pO{pnOqpk´pk´1 but as HD
pτ

pRq is a O{pnO-
module killed by pn and of finite presentation, there exists an isomorphism
HD
pτ

pRq » pO{pnOqpτ . We can thus work as in [AIP15] Proposition 4.3.1 (see
[Her19] Proposition 6.1), where the analogs of the proposition are assured by
Theorem 5.6, and the construction of X0ppnqtorpvq.
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Proposition 6.6. Suppose we are given an isogeny on X1ppqtorpvq, φ :
G1 ÝÑ G where G1 is a p-divisible group, together with subgroups H 1

pτ
Ă G1rps

satisfying the properties of Theorem 5.6. We can thus define F 1 for G1 simi-
larly. Then the induced map,

φ˚ : ωG1 ÝÑ ωG,

sends F 1 in F .

Proof. As the groups in Theorem 5.6 are steps of some Harder-Narasihman
filtration, and this filtration is functorial, φ induces a map

φ : H 1
pτ

ÝÑ Hpτ .

The rest follows easily (see e.g. [AIP15] Proposition 4.4.1).

6.2 Constructing Banach sheaves

Out of the universal isomorphisms

ψDk : pO{pnOqpk´pk´1 ÝÑ pHpk{Hpk´1
qD,

on X1ppnqtorpvq, we get a (full) flag of pHpk{Hpk´1
qD, and thus (induc-

tively) of HD
ps

for all s15 by writing for all i, ek1 , . . . , e
k
pk´pk´1

the natural ba-

sis of pO{pnOqpk´pk´1 , and we thus denote xki the corresponding images in
pHpk{Hpk´1

qD through ψk. Choose a lift of this basis,

px1, . . . , xpsq

of HD
ps
, and denote Filψm the subgroup of HD

ps
generated by x1, . . . , xm. These

subgroups do not depend on the lifts. From now on, fix v ą 0 such that
X0ppnqtorpvq Ă X0ppnqtorpεq (i.e. such that pε, v, nq is satisfied). In particular,
we have the sheaves Fτ on X0ppnqtorpvq and the compatibilities with HTτ of the
Proposition 6.5. For simplicity, in case (AL) we call T the set of embeddings
of O together with their conjugate, and represent its elements by τ, τ . For all τ ,
we mean by ωτ the sheaf ωGD,τ , for Fτ the sheaf FK

τ and HTτ “ HTK
τ . We

hope it will not lead to any confusion.

Definition 6.7. For all τ let Grτ be the Grassmanian parametrizing all com-
plete Flags of Fτ , and Gr`

τ which parametrizes same flags, together with a
basis of the graded pieces.
Let w ď n ´ ετ . For all R1 in R ´ Adm, an element Fil‚ Fτ of Grτ pR1q
(respectively pFil‚ Fτ , w‚q of Gr`

τ pR1q) is said to be w-compatible with ψ

if Fil‚ Fτ ” HTτ pFilψ‚ q pmod pwR1q (respectively if moreover wi ” ψpxiq
pmod pwR1 ` Fili´1 Fτ q). This definition does not depends on the choice of
the lifts pxiq.

15By first taking the full flag of pHps{Hps´1
qD given previously, and then lifting the one

of pHps{Hps´2
qD{pHps{Hps´1

qD » pHps´1
{Hps´2

qD and so on...
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Of course Fil‚ Fτ and Filψ‚ are not always defined for the same index set for ‚.
It is understood that we restrict ‚ to the smallest of the two index sets. Let
M “ ś

τPT GLpτ {OK the linear group with upper triangular Borel B such that
M{B “ Gr “ ś

τ Grτ is a flag variety forM . Denote also U Ă B the unipotent
radical and Gr` “

ś
τ Gr

`
τ “ M{U . Denote M{ SpfpOKq the completion along

the special fiber, T “ ś
τ Tτ its diagonal torus and for ωτ ą 0, Tτ,wτ

the open
which represent the functor Tτ,wτ

pRq “ kerpTτ pRq ÝÑ Tτ pR{pwτRqq. We
denote Tw “ ś

τ Tτ,w and analogously Bw and Uw (which acts trivially).

Proposition 6.8. For each τ P T and wτ ă n ´ ετ , there exists formal
schemes,

IW`
τ,wτ

π1ÝÑ IWτ,wτ

π2ÝÑ X1ppnqtorpvq,
where π1 is a Tτ,wτ

-torsor, and π2 is affine.

Proof. We set, following [AIP15],

IWτ,w :
R ´Adm ÝÑ Sets

R1 ÝÑ tw ´ compatible Fil‚ Fτ P Grτ pR1qu

IW`
τ,w :

R ´Adm ÝÑ Sets

R1 ÝÑ tw ´ compatible pFil‚ Fτ , w
τ
‚ q P Gr`

τ pR1qu
These are representable by affine formal schemes (some admissible open in an
admissible formal blow-up of the previous Grassmanians).

Fix w ă n ´ ετ for all τ . We denote by,

IW`
w “

ź

τ

IW`
τ,w

π1ÝÑ IWw “
ź

τ

IWτ,w,

and IW
`
τ,w, IWτ,w, IW

`
w , IWw the corresponding generic fibers. Recall

that W is the space of weights, i.e. continuous characters of T pZpq. Up to
pass to some pi, jq, we can assume that

T pZpq “

$
’&
’%

¨
˚̋

a1
. . .

an

˛
‹‚, ai P Oˆ, aian`1´i “ 1

,
/.
/-

is (a part of) the maximal torus of G1 “ ker c Ă G. We fix the following
embedding

ι :

T pZpq ÝÑ MpOKq “ ś
τ GLpτ pOKq¨

˚̋
a1

. . .

an

˛
‹‚ ÞÝÑ

¨
˚̋

τpapτ q´1

. . .

τpa1q´1

˛
‹‚
τ

The order is reversed for the following reason. T pZpq acts naturally on X1ppnq
by acting on the left on pO{pnOqpk´pk´1 ÝÑ pHpk{Hpk´1q in such a way that
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a1, . . . , ap1 acts on the trivialisation ofHp1 etc.. But when relating trivialisation
of the canonical subgroups by the Hodge-Tate map to the sheaf ω, we need to
take a dual, and this reverse the order (it sends a trivialisation M to J tM´1J

with J the matrix of the hermitian form, we see it as antidiagonal with 1’s). In
particular, the natural action of T pZpq both on X1ppnq and M thus Gr` now
are compatible in the sense of definition 6.7.
We haven’t really defined X1ppnqtor (but see remark 6.3), and it will not be
useful for us, but in general X1ppnqtor ÝÑ X0ppqtor “ X tor would be a torsor
over the group16

Ippnq :“
$
’’’&
’’’%

¨
˚̊
˚̋

A1 ‹ ‹ ‹
A2 ‹ ‹

. . . ‹
pO{pn Ar`1

˛
‹‹‹‚P GpO{pnq : Ai P IppO{pnOq

Ă GLpi´pi´1
pO{pnq

,
///.
///-

mod UP ,

where we chose an ordering tpτ , qτ | τ P T p“ Tpi,jqquY t0, hu “ t0 ď p1 ă p2 ă
¨ ¨ ¨ ă pr ď pr`1 “ hu, and h “ hpi,jq is the Opi,jq-height of Airπ8

j s, Ip denote
the standard Iwahori subgroup, and UP is the standard upper-block-diagonal
unipotent associated to p1 ď p2 ¨ ¨ ¨ ď pr`1 “ h (remember that we fixed a
couple pi, jq at this point so here everything is related to the group G “ Gpi,jq

at the place pi, jq). Of course, here we chose a specific pairing so that this
parabolic is upper-triangular.
The group Ippnq does not preserve X1ppnqtorpvq : the reason is that the condi-
tion on X1ppnqtorpvq to be ”close to the µ-ordinary canonical locus” (i.e. that
the group of height pτ have big enough degree) fixes the group of height npτ to
be equal to the canonical (and thus unique) corresponding one. In particular
X1ppnqtorpvq ÝÑ X0ppqtorpvq is a torsor over,

I0ppnq :“

Im

¨
˚̊
˚̋

$
’’’&
’’’%

¨
˚̊
˚̋

A1 0 0
A2

. . . 0
0 Ar

˛
‹‹‹‚:

Ai P IppO{pnOq Ă GLpi´pi´1
pO{pnq

tAiJpi´pi´1
A

pσq
r´i`2

“ Jpi´pi´1

,
///.
///-

ÝÑ GpZ{pnZq{UP pZ{pnZqq ,

with Js the antidiagonal matrix with entries 1 of size s.

Remark 6.9. The group I0ppnq is related to the group I0ppτ q of Section 4

I0ppnq is the group of Z{pn-points of a natural group I0 defined over Zp, which
contains T pZpq17, and denote B0 Ą T its upper Borel, and U0 the unipotent.
There is a natural action of I0 on IW`

w ÝÑ X0ppnqtor with U0 acting trivially

16This is for pr “ h, there is an analogous description when pr ă h.
17Again we have restricted the situation to some pi, jq here.
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and the action on X1ppnqtor factors through I0ppnq. Given a character of T pZpq
we see it as a character of B0pZpq trivial on U0pZpq. A character κ is said to
be w-analytic if it extends to a (w-analytic) character of T pZpqTw, and we see
it as a character of B0pZpqBw where U0pZpqUw acts trivially.

Denote by π : IW`
w ÝÑ X0ppnqtorpvq.

Definition 6.10. Let κ be a w-analytic character in W . The formal sheaf,

wκ:
w :“ π˚OIW

`
w

rκs,

is a small formal Banach sheaf on X0ppnqtorpvq.

Here we take κ-variant sections for the action of B0pZpqBw acting on IW`
w

above X0ppnqtorpvq via the previous explanation. We fix the following notation.
If κ P Wpwq Ă W , in particular it is locally analytic, then we denote κ0 its
(analytic) restriction to Tw.

Proof. Denote κ0 the restriction to Tw of κ. The map

π1 : IW`
w ÝÑ IWw,

is a torsor over Tw, thus pπ1q˚OIW
`
w

rκ0s is invertible, and

π2 : IWw ÝÑ X1ppnqtorpvq,

is affine, thus pπ2 ˝ π1q˚OIW
`
w

rκ0s is a small formal Banach sheaf. As

X0ppnqtorpvq is quasi-excellent (formally of finite-type over OK), thus Nagata,
the map X1ppnqtorpvq ÝÑ X0ppnqtorpvq is finite, and we can use [AIP15] with
the action of B0pZ{pnZq. Thus,

wκ:
w “

´
pπ2 ˝ π1q˚OIW

`
w

rκ0spκ´1q
¯B0pZ{pnZq

,

is a small Banach sheaf on X0ppnqtorpvq.

We would like to descend further to Xtorpvq, i.e. at Iwahori level, unfortunately
the map X0ppnqtorpvq ÝÑ Xtorpvq is not finite in general...

Let ωκ:
w be the associated rigid sheaf ([AIP15] appendice) on X0ppnqtorpvq Ă

X0ppnqtorpεq.

6.3 Descent to Iwahori level

In order to get an action of Hecke operators at p, which are defined at Iwahori
level, we will need to descend our construction at this level. Fortunately, this
is possible in rigid fiber.
Denote by U0ppnq the (diagonal, not just block-diagonal) subgroup,
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¨
˚̊
˚̊
˝

1 ‹ ‹
1

...
. . . ‹

1

˛
‹‹‹‹‚

Ă I0ppnq

Define X
`
0

ppnqtorpvq as the quotient of X1ppnqtorpvq by U0ppnq, which doesn’t
parametrizes trivialisations of the groups pHpk{Hpk´1

qD but only full flags of
subgroups of this quotients, together with a basis of the graded pieces. Actually
we can also define the same way Fτ over X0ppnq`pvqtor (i.e. the sheaves Fτ

descend). As the action of U0ppnq on X1ppnqtorpvq lifts to IW
`
w , denote also

by IW
0,`
w the quotient of by U0ppnq. As Fτ » ωτ over X`

0
ppnqtorpvq (i.e. after

inverting p), we thus have an injection,

IW
0,`
w Ă pT {Uq

X
`
0 ppnqtorpvq.

Proposition 6.11. If n´ ετ ą w ą n ´ 1, then the composite,

IW
0,`
w ãÑ pT {Uq

X
`
0 ppnqtorpvq ÝÑ pT {UqX torpvq,

is an open immersion.

Proof. Denote by V Ă X torpvq “ X0ppqtorpvq the image by πn of X`
0

ppnqtorpvq.
Up to reducing to a suitable affinoid U Ă X

`
0

ppnqtorpvq, the previous composite
map h is given by,

ž

τ

ž

γPS

Mτ

¨
˚̊
˚̋

1 ` pwBp0, 1q
pwBp0, 1q 1 ` pwBp0, 1q

. . .

1 ` pwBp0, 1q

˛
‹‹‹‚γ

hÝÑ
ž

τ

pGLpτ {UqπnpUq,

where S is a set of representative of I0ppnq{U0ppnq in IpOq Ă GLpτ pOq, andMτ

is the matrix relating the basis of HD
pτ

to the fixed one of ωτ , which is thus
related to the Hodge-Tate map (or equivalently relating a fixed basis of Fτ to
a fixed one of ωτ ). In particular there exists M˚

τ such that, M˚
τMτ “ pcIdpτ

for some c (which we could bound in terms of the Hasse invariant or 1

p´1
, but

it is not even necessary). From this, we deduce that M˚ ˝ h is injective, thus
the same thing for h.

Thus we have a map gn : IW0,`
w ÝÑ X torpvq, and recall that X torpvq is a strict

neighborhood of the µ-ordinary canonical locus at Iwahori level. It is not clear
that the map,

πn : X`
0

ppnqtorpvq ÝÑ X torpvq,
is surjective. But still, having n fixed, πnpX`

0
ppnqtorpvqq describe a basis of

strict neighborhoods of X tor,µ´can by Lemma 5.19.
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Definition 6.12. Assume pε, n, vq is satisfied. The open πnpX`
0

ppnqtorpvqq
is a strict neighborhood of the (µ-canonical) ordinary locus X torp0q “
X torp0qcan´µ´ord included in X torpεq. On πnpX`

0
ppnqtorpvqq, if w Psn´1, n´ετr

for all τ , for all κ w-analytic, we define the following sheaf,

ωκ:
w “ ppgnq˚OIW

0,`
w

qrκs.

It is called the sheaf of overconvergent, w-analytic modular forms of weight κ.
For every v1 ą 0 small enough such that X torpv1q Ă πnpX`

0
ppnqtorpvqq, the

module

Mκ:
w pv1q “ H0pX torpv1q, ωκ:

w q,

(respectively Mκ:
cusp,wpv1q “ H0pX torpv1q, ωκ:

w p´Dqq) is called the module of v1-
overconvergent, w-analytic (respectively cuspidal) modular forms of weight κ.

Remark 6.13. In the previous compatibilities, if pε, n, vq is satisfied, pε, n, v1q is
for all v1 ă v. Also, because of the compatibility between w and n, n is uniquely
defined (and is thus suppressed form the notation of ωκ:

w ). Thus, we can choose
v arbitrarily close to 0 in the previous definition. Also, for every w and κ, there
exists n0 such that for all n ě n0, there is w1 ą w, and κ is w1-analytic with
n ´ 1 ă w1 ă n´ ετ for all τ . In particular, there exists constants v0, w0 such
that Mκ:

w pvq is defined for all v ă v0 and w ą w0 such that w Psn ´ 1, n ´ εr
(for some integer n large enough).

Suppose n1 ´ ετ ą w1 ą w with w Psn ´ 1, n ´ εr and n ď n1. As a flag with
graded basis which is pn1, w1q-compatible is also pn,wq-compatible, there is an
injective map,

IW
`
n1,w1 ãÑ IW

`
n,w ˆX1ppnqtorpvq X1ppn1 qtorpvq.

In particular, we have a natural map, for every w1-analytic κ,

ωκ:
w ãÑ ω

κ:
w1 ,

over πn1 pX`
0

ppn1 qtorpvqq Ă πnpX`
0

ppnqtorpvqq.

Definition 6.14. For w ą 0, the module,

Mκ: “ limÝÑ
vÑ0,wÑ8

Mκ:
w pvq prespectively Mκ:

cusp “ limÝÑ
vÑ0,wÑ8

Mκ:
cusp,wpvqq

is the module of overconvergent locally analytic (respectively cuspidal) modular
forms of weight κ.

Remark 6.15. In the previous definition, it is understood that the limit is taken
on v, w such that w Psn´1, n´εr for some n “ nw, pε, n, v0q is satisfied for some
v0 and X torpvq Ă πnpX`

0
ppnqtorpv0qq Ă X torpεq. Thus in particular pε, n, v0q is

satisfied and v ď v0.
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Let κ be a classical weight of W . This means that if M denote the Levi
associated to µ as in Section 3, we can embed T pZpq in TM the torus of M
and κ is the composition of this embedding with a dominant algebraic character
of TM . If we write M “ ś

τPT GLτ , and we choose B the upper Borel, then a
dominant algebraic character of TM can be seen as integers pk1 ě ¨ ¨ ¨ ě kpτ qτ .
We then define the associated character of T pZpq as ´w0,M pκq ˝ ι with the
embedding ι given in (6.2).

Proposition 6.16. Suppose that κ P W is a dominant algebraic character, and
choose w, and n, v and any v0 such that w Psn´ 1, n´ εr, pε, n, v0q is satisfied,
and X torpvq Ă πnpX`

0
ppnqtorpv0qq. Then we have the following inclusion as

sheaves over X torpvq,
ωκ Ă ωκ:

w .

Proof. Indeed, sections of ωκ are by definition section of OT ˆ which are
are κ_ “ ´w0pκq-equivariant for the action of the Borel B Ă ś

τ GLpτ
(with U acting trivially), thus we have by Proposition 6.11 a restriction map
πT ˚OT ˆ{U ÝÑ pgnq˚OIW

0,`
w

over Xtorpvq which is injective by analytic con-
tinuation. But because of the previous definition of κ as a character of T pZpq
and the construction both of ωκ (as ´w0pκq variant function for TM ) and ωκ:

w

(as κ-variant functions on T pZpq) the previous restriction map factors as an
injective map ωκ ÝÑ ωκ:

w .

Remark 6.17. In the previous definition, it can seem a bit arbitrary the use
of the map ι from T pZpq to TM , but it is the natural one from the point of
view of the Hodge-Tate map (which relate a trivialisation of GD, ordered by
the canonical filtration, and a trivialisation of ωG) : it is what assures the
compatibility between the action of T pZpq on trivialisations of Grpns-points,
and Tw on IW

`
w .

18. In particular, we have that in case AL – i.e. when
primes above p splits in F {F`– so that we can identify T pZpq with (product
of) On

K for some p-adic field K (choosing a CM type above p in F ), dominant
algebraic weights of TM corresponds to dominant integers pℓτ1 ě ¨ ¨ ¨ ě ℓτnqτ
for all embeddings τ : K ÝÑ Qp for sufficiently generic classical points on the
Eigenvariety.

6.4 Some complexes

For compatibilities reasons with Hecke operators and to control the structure on
the previous modules, we will need to define complexes overconvergent sections.
Recall that on X tor “ X0ppqtor, our rigid toröıdal Shimura variety with fixed
Iwahori level, we have defined two basis of strict neighborhoods of X torp0q (the
canonical µ-ordinary locus whose points have maximal degree), one given by

X torpεq,
18Thus there is a mistake in [Her19] in the way we chose the embedding of T pZpq in

TM in Section 7.1 which implies that classical sheaves are not associated to p-adic characters
pk1 ě k2, k3q but to p´k1,´k2, k3q P W with k1 ě k2 which is unfortunate... The embedding
should be given by ι.
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for ε “ pετ qτ (of points with degrees bigger than the maximal one minus ετ ),
and

X torpvq,
for v P p0, 1s (describing the connected components containing X torp0q of points
with Hasse invariant of valuation smaller than v). Because we will need to let
the neighborhood described in terms of the degree vary, we from now on call
ε0 a number fixed to be able to define the sheaves ωκ:

w , and we will always
consider small enough opens X pvq and X pεq so that there exists the sheaves
ωκ:
w on them. In particular, once w is fixed this just implies that v or ε are

small enough (depending on w).
Ultimately we are interested by (finite slope) overconvergent cuspidal modular
forms, that is, (finite slope) elements of

limÝÑ
vÝÑ0,wÝÑ8

H0pX torpvq, ωκ:
w p´Dqq “ limÝÑ

εÝÑ0,w ÝÑ8

H0pX torpεq, ωκ:
w p´Dqq.

We temporarily introduce the following complexes,

Definition 6.18. Let w ą 0, U “ SpmpAq Ă W an affinoid such that κU is
w-analytic, and define for v, ε small enough 19,

Ccusppv, w, κU q “ RΓpX torpvq ˆ U , ωκU:
w p´Dqq,

and
Ccusppε, w, κU q “ RΓpX torpεq ˆ U , ωκU:

w p´Dqq.
We can analogously define the non-cuspidal versions of these complexes.
We also define

Hi
cusp,:pκU q “ lim

vÝÑ0,wÝÑ8
HipX torpvq ˆ U , ωκU:

w p´Dqq,

and
Hi1

cusp,:pκU q “ lim
εÝÑ0,wÝÑ8

HipX torpεq ˆ U , ωκU:
w p´Dqq.

In particular H0
cusp,:pκq “ H0

1

cusp,:pκq is simply the space of overconvergent
locally analytic cuspidal modular forms of weight κ, and we will see that the
higher cohomology groups vanishes (their finite slope part at least).

Proposition 6.19. The previous complexes are represented by bounded com-
plexes of projective Ar1{ps-modules (i.e. perfect complexes in the sense of
[Urb11]).

Proof. This is the same proof as [Pil18] Proposition 12.8.2.1. We have maps,

IW
`
w ˆX pvq U

π1ÝÑ IWw ˆX pvq U ÝÑ X1ppnqtorpvq ˆ U ,

19such that the sheaves ω
κU :
w is defined on X torpvq ˆ U resp. X torpεq ˆ U .

Documenta Mathematica 27 (2022) 213–294



Families of Coherent PEL Automorphic Forms 249

and sheaves LκU “ pπ1˚OIW
`
w

qrκ0
U

s (for the action of Tw), this is a line bundle

on IWw ˆX pvq U), and ω
κ0
U

:
w “ π2˚L

κU . Moreover

RΓpX torpvq̂ U , ωκU:
w p´Dqq“RΓpI0pnq, RΓpX1ppnqtorpvq̂ U , ω

κ0
U

:
w p´Dqqp´κqq

“ RΓpI0pnq, RΓpIWw ˆ U ,LκU p´Dqqp´κqq.

The last equality is because IWw ÝÑ X1ppnqtorpvq is locally affinoid. Now
if you choose U a covering of IWw ˆ U by affinoids which is I0pnq-stable (by
adding all translates by I0pnq if necessary), then the Cech complex of this
covering is perfect and calculates RΓpIWw ˆ U ,LκU p´Dqq, and twisting the
action of I0pnq, and looking at the direct factor of invariants by I0pnq (we are in
characteristic 0), this is still perfect and calculates RΓpX torpvqˆU , ωκU:

w p´Dqq.
The same remains true with X torpεq (for ε small enough) instead of X torpvq.

7 Hecke Operators

In this section we will construct Hecke operators, both at p and outside p.
As noted in [AIP15, Bra16], it is not true that the Hecke correspondences
will extend to a fixed choice of a toroidal compactification, nevertheless we
can adapt the choice of toröıdal compactifications and use results of Harris
([Har90a] Proposition 2.2).

Lemma 7.1 (Harris). Let Σ,Σ1 be two smooth projective polyhedral cone de-
compositions, and X1ppnqtor

Σ
,X1ppnqtor

Σ1 the associated toröıdal compactifica-
tions. Then there is a canonical isomorphism H˚pX1ppnqtor

Σ
pvq,OIW` q »

H˚pX1ppnqtor
Σ1 pvq,OIW` q.

Proof. To simplify notation, denoteXΣ “ X1ppnqtor
Σ

. Up to choosing a common
refinement of Σ and Σ1, we can suppose that Σ1 refines Σ and look at the map

π : XΣ1 ÝÑ XΣ.

By results of Harris we have π˚ωG “ ω1
G. Moreover, we can take Σ1 small

enough (which we do) such that it corresponds to a refinement of the auxiliary
datum we chose in Section 5.2. In particular, on the integral model X1ppnqtor

Σ1 ,
the groups Hk are given by pullback of those on X1ppnqtor

Σ
and thus we have

π : X1ppnqtor
Σ1 pvq ÝÑ X1ppnqtor

Σ
pvq. Thus we have a cartesian square,

IW
`
Σ1 XΣ1 pvq

IW
`
Σ

XΣpvq

i1

i

π1 π
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Also, by results of Harris ([Har90b] (2.4.3)-(2.4.6)), we have quasi-isomorphisms
π˚OXΣ1

„ÝÑ Rπ˚OXΣ1 “ OXΣ
. As IW` ÝÑ Xpvq is flat and π is proper, we

have thus by base change (see e.g. [Sta18, 30.5.2, Tag 02KH])

Rπ1
˚OIW

`

Σ1
» O

IW
`
Σ
.

7.1 Hecke Operator outside p

Let λ be a place where our fixed level Kp is hyperspecial, and fix γ P GpF`
λ q.

Denote Cγ the (analytic space associated to the) moduli space classifiying tuples
pAk, ιk, λk, ηkq, k “ 1, 2, of the type G, together with an isogeny f : A1 ÝÑ A2

of type γ which respects the additional structure. It is endowed with two maps,

Cγ
p1
Ñ
p2

X pvq,

where pkpf : A1 ÝÑ A2q “ Ak. Denote Cγppnq “ Cγ ˆX pvq X1ppnqpvq. But
we can find choices of smooth projective polyhedral cone decompositions (see
[Lan13] Proposition 6.4.3.4) Σ and Σ1 and associated toröıdal compactifications
Xtor

Σ
, Cγ,Σ, X

tor
Σ1 and maps p1 : Cγ,Σ ÝÑ Xtor

Σ
, p2 : Cγ,Σ ÝÑ Xtor

Σ1 which
extends the previous ones. As v is away from p, this correspondence preserves
X torpvq, and the universal isogeny induces an isomorphism,

f˚ : p˚
2FX1ppnqtor

Σ1 pvq
„ÝÑ p˚

1FX1ppnqtor
Σ

pvq,

and we can thus construct,

H0pX1ppnqtorΣ1 pvq,OIW` q p˚
2ÝÑ H0pCγ,Σppnq, p˚

2OIW`q f˚

ÝÑ

H0pCγ,Σppnq, p˚
1OIW` q Tr p˚

1ÝÑ H0pX1ppnqtorΣ pvq,OIW` q

As by the previous lemma

H0pX1ppnqtorΣ1 pvq,OIW` q “ H0pX1ppnqtorΣ pvq,OIW` q,

we get an operator Tγ on H0pX1ppnqtor
Σ

pvq,OIW` q. Similarly Tγ acts on
Ccusppv, w, κU q and Ccusppε, w, κU q (as the isogeny is outside p) and their non-
cuspidal analogues. We can thus forget about the choice of Σ in the notations.

Remark 7.2. Here we made the slight but usual abuse, as we used the notations
with a fixed pi, jq. Of course, taking tensor products over the pi, jq of the
correspondings IW

` (which depends of the choice of pi, jq) solves this abuse
of notation.

Definition 7.3. Let κ P WpwqpLq with w Psn ´ 1, n ´ ετ r. Restricting the
previous operator to homogenous functions on X pvq for κ, we get the Hecke
operator,

Tγ :Mκ:
w ÝÑ Mκ:

w .
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Working over X pvq ˆ Wpwq, considering κ “ κuniv, we get an operator

T univγ : Mκuniv:
w ÝÑ Mκuniv:

w ,

which is OWpwq-linear, and an operator on Ccusppv, w, κWpwqq and
Ccusppε, w, κWpwqq.

Denote by Hp,S the spherical Hecke algebra of level Kp,S , the previous con-
struction endow for each w the modules Mκuniv:

w (respectively the module Mκ:
w

with κ P Wpwq) with an action of Hp,S .

7.2 Hecke operators at p

At p, the construction of Hecke Operators is much more subtle than outside p,
and even more subtle than in the ordinary case, as already remarked in [Her19].
Indeed, when the ordinary locus is non empty, only one operator, Up,g in
[AIP15], is compact on classical forms (it improves the ”Hasse”-radius, i.e.
the Hasse invariant), but does not improves the analycity radius for overcon-
vergent forms, whereas the other operators, Up,i, i ă g in [AIP15], improves
(a priori) only the analycity radius. Already for Up2, 1q with p inert in the
quadratic imaginary field the situation is different. Indeed, there is only one
interesting operator, Up, that improves at the same time both the Hasse-radius
and the analycity radius.
Following [Bij16], we define operators at p.

7.2.1 Linear case

This is actually easier than the unitary case, and can be adapted from [Bij16]
on ωκ to ωκ:

w (in particular there is no p´2 appearing in the normalisation
corresponding to equation 4, see Remark 8.3). But as this case can be recovered
from the general Unitary case (considering GˆGD with canonical polarisation
instead of G), we just write the details in the unitary case.

7.2.2 Unitary case

Fix as before pi, jq a prime, that we supress from now on from the notations,
and we can thus use i as a variable. Let G be the associated p-divisible group.
Let 0 ď i ď h

2
an integer, and define Ci the moduli space pA, ι, λ, η,H‚, Lq

where pA, ι, λ, η,H‚q P X pvq and L Ă Grp2s be a totally isotropic subgroup
such that Hi ‘ Lrps “ Grps and HK

i ‘ pL “ Grps, and denote the two maps,

Ci
p1
Ñ
p2

X pvq,

where p1pA,Lq “ A and p2pA,Lq “ A{L. Denote Cippnq “ CiˆX pvqX1ppnqpvq,
and denote f : A ÝÑ A{L the universal isogeny. As we are in characteristic
zero, we can find smooth projective polyhedral cone decompositions Σ,Σ1,Σ2
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such that the previous correspondence extends to p1 : Ci,Σ1 ÝÑ X tor
Σ
, p2 :

Ci,Σ1 ÝÑ X tor
Σ2 . In [Bij16] Proposition 2.11, Bijakowski verifies that the previ-

ous correspondence stabilizes the open X pεq. More precisely, he verifies that
the Hecke correspondence Ui “ p2 ˝p´1

1
satisfies degH 1

j ě degHj with equality
for i “ j if and only if degHi is an integer. Its proof extend to the case of a
1-motive in case of bad reduction, and thus extend to the boundary.
In particular, if ετ ă 1, by quasi-compacity of

Xp@τ, degpHτ q P rλτ , ντ sq,

with ÿ

τ 1

minppτ 1 , pτ q ´ 1 ă λτ ă ντ ă
ÿ

τ 1

minppτ 1 , pτ q, λτ , ντ P Q,

we can thus prove the following,

Proposition 7.4. For all w ą 0, for all ε ą 0 sufficiently small, there exists
ε1 ă ε such that the Hecke correspondence

ś
pUiq sends X tor

Σ
pεq into X tor

Σ2 pε1q.
Also, for all ε ą 0, and all 0 ă ε1 ă ε, there exists N ą 0 such that

ś
i U

N
i

sends X tor
Σ

pεq in X tor
Σ2 pε1q.

The universal isogeny f induces a map,

f˚ : p˚
2Tan ÝÑ p˚

1Tan,

which is an isomorphism, and denote rf˚ “
À

σ
rf˚
σ (using the decomposition

ω “
À

σ ωG,σ) such that rf˚
σ sends a basis w1

1, . . . , w
1
pσ

of ωA{L,σ to

p´2f˚w1
1, . . . , p

´2f˚w1
pσ´h`i, p

´1f˚w1
pσ´h`i`1, . . . , p

´1f˚w1
pσ´i,

f˚w1
pσ´i`1, . . . , f

˚w1
pσ
,

(being understood that the terms on the left with p´2 only appears if pσ ą
h ´ i and terms with p´1 only if pσ ą i). Another way to write it is to set,
aσ “ maxppσ ´ ph´ iq, 0q, bσ “ maxpminph´ 2i, pσ ´ iq, 0q and cσ “ minpi, pσq
(thus aσ ` bσ ` cσ “ pσ). Then rf˚

σ sends w1
1, . . . , w

1
pσ

to,

p´2f˚w1
1, . . . , p

´2f˚w1
aσ
, p´1f˚w1

aσ`1, . . . , p
´1f˚w1

aσ`bσ ,

f˚w1
aσ`bσ`1, . . . , f

˚w1
pσ
,

(4)

Remark 7.5. This normalisation is made in order to make the operator Ui vary
in a family (it corrects the multiplication by p that appears on ω if we do the
quotient by L). It is related with normalisation of [Bij16] for classical sheaves,
but it is not exactly the same, see 8.3.

Fix ε “ ε0 “ pετ qτ ă 1

2
small enough and assume pε, v, nq is satisfied.

Definition 7.6. Let w “ pwτi,jqτ , such that for all pi, j, τq, wτi,j Ps0;n ´ ετ r
and define IW

0,`
w to be the open subspace of T ˆ{U over πnpX`

0
ppnqtorpvqq
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such that its L-points, for all L over K, is the datum of a OL-point of
πnpX`

0
ppnqtorpvqqpOLq, thus in particular an abelian scheme A{ SpecpOLq for

which Grpns has (canonical by Theorem 5.6) filtration by subgroups Hτ , to-
gether with a flag Fil‚ Fτ for all τ with graded pieces wτ‚ , such that there exists
a (polarized) trivialization ψ (as in Section 6.1), such that

ωτi pmod Fili´1 Fτ ` pw
τ
0Fτ q “

ÿ

jěi

aj,iHTτ,w0
pejq,

where wτ0 “ n ´ ετ and with aj,i P OL such that, vpaj,iq ě wτj,i if j ą i

and vpai,i ´ 1q ě wτi,i. We then define as before ωκ:
w on πnpX`

0
ppnqtorpvqq for

mini,τ w
τ
i,i-analytic κ.

Remark 7.7. In the previous definition, if we take n1 ě n, wτi,j Ps0, n´ ετ r and
we make the previous construction over πn1 pX`

0
ppnqpvqq for w0 “ n´ετ or w0 “

n1 ´ ετ , we get the same space. Thus, up to reducing the strict neighborhood,
we suppress n from the notation. When w is parallel and n´ 1 ă w ă n´ ετ ,
then ωκ:

w “ ωκ:
w .

Suppose w satisfies

$
&
%

0 ă wτk,l ă w0 ´ 2 if aτ ‰ 0

0 ă wτk,l ă w0 ´ 1 if aτ “ 0 and bτ ‰ 0

0 ă wτk,l ă w0 otherwise

Proposition 7.8. Let f be the universal isogeny over Ci. Then

p rf˚q´1p˚
1IW

0,`
w Ă p˚

2IW
0,`
w1 ,

with

w
1σ
k,l “

$
’’&
’’%

wσk,l ` 2 if k ą aσ ` bσ and l ď aσ
wσk,l ` 1 if pbσ ` aσ ě k ą aσ and l ď aσq,

or pbσ ` aσ ě l ą aσ and k ą aσ ` bσq
wσk,l otherwise

Proof. This is similar to 4.2 and [AIP15] Proposition 6.2.2.2. Indeed, in the
basis given by the ”trivialisation” of pHpk{Hpk´1

qD on X
`
0

ppnqtorpεq, the dual
of the morphism Hpτ ÝÑ H 1

pτ
induced by f ,

fD : pH 1
pτ

qD ÝÑ HD
pτ
,

is given by Diagpp2, . . . , p2, p, . . . , p, 1, . . . 1q, where p2 appears aτ -times, p ap-
pears bτ -times and 1 cτ -times. The rest follows exactly as in [AIP15] Proposi-
tion 6.2.2.2, as π˚F 1

τ Ą pFτ is aτ “ 0 and bτ ‰ 0, π˚F 1
τ Ą p2Fτ if aτ ‰ 0 and

Fτ “ π˚F 1
τ otherwise.
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We can thus define the operator U0
i ,

H0pX tor
Σ2 pεq, ωκ:

w1 q
p˚
2ÝÑ H0pCi, p˚

2ω
κ:
w1 q

rf´1˚

ÝÑ H0pCi, p˚
1ω

κ:
w q

1

pni
Trp1ÝÑ H0pX tor

Σ pεq, ωκ:
w q

and also

Ccusppε, w1, κuniv
Wpwqq

p˚
2ÝÑ RΓpCi ˆ Wpwq, p˚

2ω
κuniv:
w1 q

rf´1˚

ÝÑ RΓpCi ˆ Wpwq, p˚
1ω

κuniv:
w q

1

pni
Trp1ÝÑ RΓpX tor

Σ pεq ˆ Wpwq, ωκuniv:
w q “ Ccusppε, w, κuniv

Wpwqq,

where ni is an integer defined in [Bij16] Section 2.3 for example20. It is related
to the inseparability degree of the projection p1.

Remark 7.9. 1. Unfortunately it is not clear how to define the Hecke op-
erator U0

i on the neighborhoods X pvq as we don’t know how the Hasse
invariants behaves with quotients... But we will solve this in the end of
the paper.

2. Thus we can use the different operators U0
i to improve the radius of

convergence in all directions wτk,l with k ą l.

7.3 A compact operator

Using the previous construction, we can define a compact operator. Fix w ą 0
and n sufficiently big such that n´2´ε ą w. Fix also v sufficiently small such
that pε, n, vq is satisfied.
Define w1 “ pw1σ

k,lqσ,kąl by,

w
1σ
k,l “

"
w if k “ l

w ` 1 otherwise

Remark 7.10. We could be more precise about the precise values of w1 we can
choose for what follows (summing over all i’s the previous proposition), but
the previous will be sufficient.

Denote by ε1 ă ε the tuple given by Proposition 7.4. Then we have for each
κ P Wpwq, the following operator,

ź

iě1

U0

i : H0pX torpε1q, ωκ:
w1 q ÝÑ H0pX torpεq, ωκ:

w q,

and thus the operator,

ź

i ě1

Ui : H
0pX torpεq, ωκ:

w q ÝÑ H0pX torpε1q, ωκ:
w1 q

ś
i U

0
iÝÑ H0pX torpεq, ωκ:

w q,

20For us, this integer will not be important as it is used to normalize the Hecke operators
and is a constant of the weight. As our Hecke eigensystems are constructed on spaces where p

is inverted, this normalisation could be changed (we should change Theorem 8.4 accordingly).
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is compact, as the first map is. Indeed, for some ε let π : IW0,`
w,ε ÝÑ IW

0

w,ε be
the rigid open in, respectively, pT {UqX torpεq ˆ W and pT {BqX torpεq ˆ W as in
Proposition 6.11, and denote Fw “ π˚OIW

0,`
w,ε

rκ0,univs, which is an invertible

sheaf on IW
0

w,ε, and H0pX torpεq, ωκ:
w q is a direct factor of H0pIW0

w,ε,Fwq.
Clearly, as w1 ą w, and ε1 ă ε we have a map

res : H0pIW0

w,ε,Fwq ÝÑ H0pIW0

w1,ε1 ,Fw1 q,

and it is enough to show it is compact. By [KL05] Proposition 2.4.1, it is enough
to show that IW0

w1,ε1 ŤW IW
0

w,ε. But now, e.g. [KL05] Proposition 2.3.1, this
is reduced to show IWw,ε ŤW pT {BqX tor ˆW , which is true as T {BˆX tor is
proper.
Similarly, denote Ui by precomposing U0

i by the map H0pX torpεq, ωκ:
w q Ă

H0pX torpεq, ωκ:
w1 q of the previous subsection. The same construction works

also over X torpεq ˆ Wpwq with κuniv.

Definition 7.11. We define Appq` as the commutative Qp-algebra generated
by indeterminates U 1

i . Then Appq` acts on H0pX torpεq, ωκ:
w q for all κ and ε,

and also on H0pX torpεq ˆ Wpwq, ωκWpwq:
w q, Cpε, w, κWpwqq, and their cuspidal

variants, by letting U 1
i acts as Ui. Denote Appq the Qp-algebra generated by U 1

i

and their inverses. Similarly defineHSp the (spherical) Hecke algebra outside S,
the set of places of K of bad reduction, and p. Then the previous sections
induces an action of HSp on all these spaces.

Remark 7.12. In the linear case, we can see Appq` as the (commutative !)
Qp-algebra generated by

¨
˚̋

pa1

. . .

pan

˛
‹‚, a1 ě ¨ ¨ ¨ ě an,

where we use a choice w|v| p in Fi to identify GpZpq with GLnppF`
i qvq. See

[BC09] Section 6.4 (but our Appq` is Appq´ there). Here we like to see the
Iwahori level using the upper triangular Borel. Then Ui corresponds to

¨
˚̊
˚̊
˚̊
˚̊
˝

1
. . .

1
p´1

. . .

p´1

˛
‹‹‹‹‹‹‹‹‚

,

where 1 appears i times and p´1 appears n´i times. We can also see this Appq`

algebra as acting on πI , where π is a GpQpq-representation and the action of
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the previous diagonal matrix d is by rIdIs in the classical Hecke algebra for I
(which is commutative). There is a similar description in the unitary case. As
Appq is constructed by adding inverses to U 1

i , this will act on the finite slope
part in the coherent cohomology, but careful that inverses of elements of Appq`

does not acts as the corresponding double class in the classical Hecke algebra !

8 Classicity results

Let w and ε such that 0 ă w ă 1´ ε. Up to reduce ε this is always possible for
some w ă 1. Then the map IW

0

w ÝÑ X torpεq has connected fibers. Denote

ω
κ:
w´ :“ limÝÑw1ăw

ω
κ:
w1 .

Proposition 8.1. Let κ be a classical weight. We have an exact sequences of
sheaves over X torpεq,

0 ÝÑ ωκ ÝÑ ωκ:
w

d1ÝÑ
à
αP∆

ω
α¨κ:
w´

which etale locally is isomorphic to the exact sequence (2).

Proof. We construct the map d1 as in [AIP15] (we don’t need the hypothesis
on w here). Then we have a sequence,

0 ÝÑ Vκb̂OX torpεq ÝÑ V
0,w´an
κ,L b̂OX torpεq

d1ÝÑ
à
αP∆

V
0,w´´an
α¨κ,L b̂OX torpεq,

which is exact by hypothesis on w by Jones result (hypothesis implies thatN1 »
B as in [Jon11] Section 8). Then as this sequence is etale locally isomorphic to
the one of the proposition, we get the result.

Proposition 8.2. Let κ “ pkσ,jqσ,1ďjďpσ be a classical weight. The submodule
of Mκ:

w pX torpεqq on which each Ui acts with slope strictly less than inftkσ,i ´
kσ,i`1 : i ă pσu is contained in H0pX torpεq, ωκq.
Proof. By the previous proposition, and Proposition 7.4 and Proposition 7.8,
the proof is identical to [AIP15] Proposition 7.3.1. Indeed, let f P Mκ:

w pX torpεqq
on which the Ui acts with the said slope. Using Proposition 7.8, and that f is
finite slope for Ui, we can assume that w ă 1 ´ ε. Thus, by Proposition 8.1,
because of the slope, we calculate as in [AIP15] that d1f “ 0. Thus f P
H0pX torpεq, ωκq.

Remark 8.3. Let us make explicit the normalisation of our Hecke operators,
in particular the effect of the operation in equation (4). In case (AL), for
i P t0, . . . , hu, we choose L0 Ă Grps such that L0 ‘Hi “ Grps and we have an
isogeny

f : G ˆGD ÝÑ G{L0 ˆGD{LK
0 .

This induces a map
f˚ : p˚

2Tan ÝÑ p˚
1Tan,
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sending, for τ P T a basis pwτ1 , . . . , wτpτ q of ωG{L0,τ
21 to its image via

ωG{L0
‘ ωGD{LK

0
ÝÑ ωG ‘ ωGD .

We then denote f̃˚ which sends a basis pwτ1 , . . . , wτpτ q to

pp´1f˚ωτ1 , . . . , p
´1f˚ωτpτ´i, ω

τ
pτ´i`1, . . . , ω

τ
pτ

q.

Seeing f̃˚ as a morphism on functions on trivialisation of ω, this means that
f˚ sends a trivialisation ψ of p˚

2
ω to π˚ ˝ ψp¨diq, where di is in entry τ the

matrix of size pτ ¨
˚̊
˚̊
˚̊
˚̊
˝

p´1

. . .

p´1

1
. . .

1

˛
‹‹‹‹‹‹‹‹‚

with maxppτ ´ i, 0q times p´1 appearing. If κ “ pkτ,iqτPT ,1ďiďpτ is a classical
weight, this induces a normalisation by a factor

p´
ř

τPT
kτ,pτ `¨¨¨`kτ,i`1 ,

with the obvious abuse of notation. In case (AU) this is slightly more compli-
cated but f̃˚ sends a trivialisation ψ to π˚ ˝ψp¨diq, where di is the matrix with
τ -entry (of size pτ ) given by

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̋

p´2

. . .

p´2

p´1

. . .

p´1

1
. . .

1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

with p´2 appearing aτ -times, p´1 appearing bτ -times. Remark that if p´2

appears for τ , no p´2 nor p´1 appears for τ . In particular for a classical
weight κ we get a normalisation by the power of p

´
ÿ

τPT

2pkτ,pτ ` ¨ ¨ ¨ ` kτ,h´i`1q ` pkτ,h´i ` ¨ ¨ ¨ ` kτ,i`1q,

21Recall that in case AL we have chosen a section T ` Ă T , i.e. a CM type induced by the
choice of a place, and if τ P T ` we denote ωG,τ :“ ωGD ,τ thus here ωG{L0,τ

“ ωGD{LK
0
,τ .
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with the same obvious abuse of notation. In both case we also normalise by
p´ni with ni independent of the weight (along the trace map).

The second result we need for classicity is Bijakowski’s result, [Bij16]. For each
τ P T `, denote Aτ “ minppτ , qτ q in case (AU) and Aτ “ pτ , τ P T ` in case
(AL).

Theorem 8.4 (Bijakowski). Let κ “ pkτ,j , λτ,lqτPT `,1ďjďpτ ,1ďlďqτ be a classi-
cal weight and let f P H0pX torpεq, ωκq. Suppose that f is an eigenvector for
the Hecke operators UAτ

of eigenvalue ατ such that,

nAτ
` vpατ q ă inf

τ
pkτ,pτ ` λτ,qτ q,

for each τ P T ` verifying Aτ ‰ 0. Then f is classical.

Proof. This is almost exactly Bijakowski’s Theorem [Bij16, Theorem 4.2], ex-
cept that his normalisation for the Hecke operators is slightly different (see loc.
cit. Section 2.3). I claim that still with our stronger hypothesis the classicity
remains true. The reason is that in Proposition 3.9 and 3.15 of [Bij16] we can
strengthen bound on the norm of the morphism

ωκA{L ÝÑ ωκA.

This can be done for each τ 1 P T , and remark that ω
κτ1

A,τ 1 “ ω
κ0
τ1

A,τ 1 bω
kτ1,p

τ1

A,τ 1 with

κ0τ 1 “ pkτ 1,1´kτ 1,pτ1 , . . . , kτ 1,pτ1 ´1´kτ 1,pτ1 , 0q and kτ 1,pτ1
“ pκτ 1,pτ1 , . . . , κτ 1,pτ1 q.

By loc. cit. we have a bound on the morphism on ω
kτ1,p

τ1

A,τ 1 related to the degrees
of L, so let’s give a bound (which will be independent of the degree) for the
other part and we even assume that we have any κ “ pk1, . . . , kpq (we don’t
need the last entry of κ to be zero). Denote i “ pτ and τ 1 such that p “τ 1ą pτ ,
and denote pA, λ, ι, η,H¨q as in loc. cit. an OK-point of X , and L0 Ă Grπs
(in case AL) such that Hi ‘ L0 “ Grπs. Then L0 is of τ 1-degree bigger than
p1
τ ´ pτ . But looking at

ωG{L0,τ 1
MÝÑ ωG,τ 1 ,

which is a resolution of ωL0,τ 1 we have that choosing carefully a basis of both
term we can assume that M is given by a p “ p1

τ -square matrix
¨
˚̋

a1
. . .

ap

˛
‹‚

and vpa1q ` ¨ ¨ ¨ ` vpapq “ degτ 1pL0q ě p´ i, but vpaiq ď 1 (as L0 Ă Grπs). But
ωκτ is a submodule of

Symk1´k2 ωτ b Symk2´k3p
2ľ
ωτ q b ¨ ¨ ¨ b Symkp´1´kpp

p´1ľ
ωτ q b detkpωτ ,

Documenta Mathematica 27 (2022) 213–294



Families of Coherent PEL Automorphic Forms 259

thus it is enough to prove the result for this vector bundle. But on each term,
we have for r ą i “ pτ , for each i1 ă i2 ă ¨ ¨ ¨ ă ir,

vpai1 . . . air q ě r ´ i.

Indeed otherwise reduce to ij “ j, then as vpakq ď 1, vpa1 . . . apq “
vpa1 . . . arq ` vpar`1q ` ¨ ¨ ¨ ` vpapq ă r ´ i ` p ´ r “ p ´ i, which is absurd.
Thus the norm induced by ωG{L0

ÝÑ ωG is less than

p´
řp´1

rąi pkr´kr`1qpr´iq´kppp´iq “ p´ki`1´ki`2´¨¨¨´kp .

This is completely analogous for GD with LK
0 . In particular using this on ω

κ0
τ1

A,τ 1

we get that the valuation of the non normalized pU0
i qbad on weight κ is bigger

than

ÿ

τ 1|pτ1 ąi

pkτ 1,i`1 ´ kτ 1,pτ1 q ` ¨ ¨ ¨ ` pkτ 1,pτ1 ´1 ´ kτ 1,pτ1 q `Ni ´ ni ´B,

using the notations of [Bij16, Proposition3.9], but remark that

ÿ

τ 1|pτ1 ąi

pkτ 1,i`1´kτ 1,pτ1 q`¨ ¨ ¨`pkτ 1,pτ1 ´1´kτ 1,pτ1 q`Ni“
ÿ

τ 1|pτ1 ąi

kτ 1,i`1`¨ ¨ ¨`kτ 1,pτ1 ,

which is exactly our normalization of Ui. Thus we have

||α´1

i U badi || ď pvpαiq`ni´p1´α´2fε infσPS2
pkσ`λσq,

with our normalisation for Ui. This is identical in case (AU), and the rest of
[Bij16] is identical with this modification.

9 Projectiveness of the modules of overconvergent forms

Recall that we work over X tor, our Shimura variety with Iwahori level at p, and
as explained in Section 6.3 we have defined for all n and w Psn ´ 1, n ´ ε0,τ r
(where ε0 was small enough), a sheaf ωκ:

w for all w-analytic κ P W , and a

universal one ωκ
univ:
w , both defined on sufficiently small strict neighborhoods of

X torp0q “ X torpε “ 0q, the µ-ordinary canonical locus. We have two families of
strict neighborhoods of this locus, each having their advantages. In this section,
we prove that essentially we have all the advantages (action and compactness
of U “ Up “ ś

iě1
Ui, the operator of Section 7, and vanishing of higher

cohomology) on the finite slope part on both kind of strict neighborhoods. In
this section, we assume that on the strict neighborhoods we consider we have
the sheaves ωκ

univ:
w , which means concretely that ε and v are small enough

(smaller than a constant which depends on w). Let U Ă Wpwq Ă W an open
affinöıd such that the universal character κU is w-analytic.
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Proposition 9.1. Let w ď w1 and ε ě ε1. Then the restriction maps,

Ccusppε, w, κU q ÝÑ Ccusppε1, w1, κUq,

are isomorphisms on the finite slope part for U “ ś
i Ui. In particular, the

finite slope part for U of Ccusppv, w, κU q and Ccusppε, w, κU q are the same, and
thus are their cohomology groups.

As explained in Section 7, it is not clear that Ccusppv, w, κU q or any of its coho-
mology group is preserved by U . But by Proposition 7.4, there exists N ą 0 an
integer (which depends on v à priori) such that UN preserves Ccusppv, w, κU q.
We can see that when U acts on a module M , the finite slope part for U of UN

are the same (see for example proof of Proposition 9.3). We thus define the
finite slope part of Ccusppv, w, κU q for U as the one for UN . It is then a conse-
quence of the previous equality that the finite slope part of Ccusppv, w, κU q is
actually stable by U .

Proof. Indeed, it is enough to do it for ε1 given by Proposition 7.4, w1 “ w´ 1.
We have the factorisation,

HipCcusppε1, w1, κUqq rUÝÑ HipCcusppε, w, κU qq resÝÑ HipCcusppε1, w1, κUqq

Now for a finite slope section f P HipCcusppε1, w1, κUqq, by definition there
exists a non zero polynomial P with P p0q “ 0 and P pUqf “ f . We can extend

f to HipCcusppε, w, κU qq by P p rUqf . In particular, we can find for all v, an ε
and ε1 ď ε such that,

X torpε1q Ă X torpvq Ă X torpεq,

and the composed restriction map,

Cpε, w, κU q ÝÑ Cpv, w, κU q ÝÑ Cpε1, w, κU q,

is an isomorphism on the finite slope part, in particular, Cpv, w, κU qfs “
Cpε, w, κU qfs and thus these spaces are stable by U .

In particular, we get

Proposition 9.2. Ccusppv, w, κU q has cohomology concentrated in degree zero,
and the finite slope part of the cohomology of Ccusppε, w, κU q is concentrated in
degree zero.

Proof. The first part is appendix Theorem A.6. Fix i, then we have restriction
maps

HipCcusppε, w, κU qq ÝÑ HipCcusppv, w, κU qq ÝÑ HipCcusppε1, w, κU qq,

(for well chosen ε, ε1, v) whose composite is an isomorphism on finite slope
parts, and the middle module vanishes for i ą 0.
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According to [Urb11] Section 2.3.10, we can form the alternated Fredholm
determinant,

detp1 ´XU |Cpε, w, κU qq.

But, because of the results of the previous section, this alternated determinant
should actually only be the one in degree 0. Moreover, we will be able to
restrict (locally) to the classical construction on an eigenvariety as in [Col97b,
Buz07, AIP15].

For this, fix ε, v, w and U accordingly. By Proposition 6.19, recall that
Ccusppε, w, κU q and Ccusppv, w, κU q are perfect complexes (in the sense of Ur-
ban [Urb11]), and the latter one can be represented by the projective (in
the sense of Buzzard [Buz07] or [Urb11]) module in degree 0 H0pX torpvq ˆ
U , ω

κ
univ:
U
w p´Dqq. The compact operator U acts on Ccusppε, w, κU q, but not a

priori on Ccusppv, w, κU q, but by Proposition 5.17 and Proposition 7.4, there
exists ε1 ă ε and an integer N , which we fix, such that we have inclusions,

X torpεq Ă X torpvq Ă X torpε1q,

and UN pX torpεqq Ă X torpε1q. In particular UN pX torpvqq Ă X torpε1q Ă X torpvq.
Thus, UN is an operator on both Ccusppε, w, κU q and Ccusppv, w, κU q. We
now need to explain how to construct the Eigenvariety. First, we have three
Fredholm series overOU FU,ε and FUN ,ε of U and UN acting on Ccusppε, w, κU q,
and FUN ,v of UN acting on Ccusppv, w, κU q “ H0pX torpvq ˆ U , ω

κ
univ:
U
w p´Dqq.

First, we need, as in the classical construction, to do things on a specific cover,
so choose a slope covering covering for U and FU,ε, pV, hq in the sense of defini-
tion 2.3.1. of [JN19] (this exist, see [JN19] Theorem 2.3.2 for example). Over
pV, hq, we can thus decompose the Fredholm series,

FU,ε “ GS,

where G P OV rT s is a slope ď h polynomial and S P 1 ` TOV T is an entire
series of slopes ą h. Accordingly, by [Col97b] Theorem A4.3/5 (or [JN19]
Theorem 2.2.2), we have slope decompositions for U of complexes,

Ccusppε, w, κU q “ Ccusppε, w, κU qU,ďh ‘ Ccusppε, w, κU qU,ąh.

Lemma 9.3. This decomposition is a slope Nh decomposition for UN acting on
this module, and it induces a slope Nh factorisation of

FUN ,ε “ G1S1.

Proof. We can work on a single module, say M and denote the associated
decompositions associated to the slope decomposition of FU,ε “ GS,

M “ MU,ďh ‘MU,ąh.
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As if QpT q is a slope ą Nh polynomial, the polynomial QpTNq is of slope ą h,
we get that UN is invertible on MU,ąh. Now let

P “ tm P M | DQ of slopes ď Nh, such that Q˚pUN qm “ 0u.

This is clearly a submodule of M , and has if QpT q has slopes ď Nh, QpTNq
has slopes ď h, we have P Ă MU,ďh. We claim that P “ MU,ďh. Denote the
OV -module

R “ MU,ďh{P.
Fix x a point of V , and let v P pMU,ďhqx “ pMxqU,ďh (which is easily seen
to be true, or see e.g. [JN19] Theorem 2.2.13), thus if we denote Npvq the
sub-kpxq-vector space generated by v and its images by U and its powers, Npvq
is finite dimensional (say of dimension r). Denote µU,v and χU,v the minimal
and characteristic polynomials of U on Npvq. As there exists Q of slopes ď h

such that Q˚pUq kills U , µ˚
U,v, and thus χ˚

U,v have ď h slopes. Up to extending
scalars, there is a basis of Npvq such that the matrix of U on Npvq is given by

¨
˚̊
˚̋

λ1 ‹
λ2

. . .

0 λr

˛
‹‹‹‚,

and we can thus calculate characteristic polynomial of UN : it is of slope
ď Nh. By the theorem of Cayley-Hamilton v P P . Thus Rpbkpxq is zero, and
by Nakayama, R “ 0. In particular we have that MU,ďh ‘ MU,ąh is a slope
Nh decomposition for UN , which is functorial with respect to localisations
Spmpkpxqq ÝÑ V as it comes from the slope decomposition of FU,h, thus by
[JN19] Theorem 2.2.13 it induces a slope Nh decomposition

FUN ,ε “ G1S1.

Lemma 9.4. The restriction map

res : Ccusppε, w, κU q ÝÑ Ccusppv, w, κU q,

induces an equality
FUN ,ε “ FUN ,v.

In particular, over pV, hq we have a decomposition

Ccusppv, w, κU q “ Ccusppv, w, κU qUN ,ďNh ‘ Ccusppv, w, κU qqU,ąNh,

such that, res induces an isomorphism over V ,

Ccusppε, w, κU qU,ďh “ Ccusppv, w, κU qUN ,ďNh.

Proof. The first part is because we have a diagram
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Ccusppεq Ccusppvq

Ccusppεq Ccusppvq

res

res

UN UN

UNUN

Where the shortened notations speak for themselves, and thus UN :
Ccusppvq ÝÑ Ccusppεq is a link in the sense of [Buz07]. Thus the two power
series are equal. The rest follows by Lemma 9.3

In particular, for each pw, εq, for w big enough and ε small enough such that
for all τ , w Psn ´ 1, n ´ ετ r (which determines a unique integer n), (v doesn’t
play a role and can always be chosen so that X torpεq Ą X torpvq, which we do
here), we can construct an Eigenvariety for the tuple

pOWpwq, Ccusppε, w, κWpwqq,HN b Appq,
ź

vPSp,iě1

Uv,iq,

as if Ccusppε, w, κWpwqq were one projective module. Indeed, locally this can

be replaced by πpvq˚ω
κWpwq:
w p´Dq where

πpvq : X torpvq ˆ Wpwq ÝÑ Wpwq,

and this OWpwq-module is indeed projective, its finite slope part inherits the
action of U “ ś

π,i Uπ,i, and these constructions glue together. Moreover,
we have natural maps between them when pw, εq, pw1, ε1q satisfies w1 ě w and
ε1 ď ε.

This is the main ingredient in all the constructions of Eigenvarieties. In par-
ticular, we get,

Theorem 9.5. Let p be a prime. Fix Sp a set of primes over p (see Section 2)
unramified in D and pKJ , Jq a type22 outside Sp, K Ă KerJ , and Sp the set of
places away from Sp where K is not maximal. There exists an equidimensional
rigid analytic space ESp

, together with a locally finite map,

ESp

wÝÑ WSp
,

and a Zariski dense subset Z, such that for any κ P WpLq, w´1pκq is in
bijection with the eigensystems for HSp bAppq acting on the space of overcon-
vergent, locally analytic, modular forms of weight κ, type pKJ , Jq, and finite
slope for Appq. Moreover, wpZq consists of classical weights and z P Z is an
Hecke eigensystem for a classical modular form of weight wpzq.

22Here by type we only mean, as in [Her19], a compact open subgroup KJ of GpAp
f

q

together with a finite dimensional representation.
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Proof. The construction is classical as soon as we have the previous datum,
see [Col97b] and [Buz07]. Just remark that cutting in the datum the piece of
type pKJ , Jq is possible as we are in characteristic zero (see [Her19], Proposi-
tion 9.13). The equidimensionality results follows from the fact that we locally
reduce to a single projective module H0pX pεq, ωκU:

w p´DqqUN ,ďh and [Che04]
Lemme 6.2.10. The set Z is the set of points of E which map to a point in W

satisfiying the hypotheses of Proposition 8.2 and Theorem 8.4. This is (Zariski)
dense by [Che04] Corollaire 6.4.4. and using that every open of W contains a
point satisfying the previous hypothesis.

Remark 9.6. We will always consider the space ESp
with its reduced structure

(see [Che05] Section 3.6). But in turns out that ESp
is almost always auto-

matically reduced with the structure given by H b Appq. For the eigencurve
this is [CM98], Proposition 7.4.5., in the quaternionic case see [Che05] Propo-
sition 4.8, and [BC09], Section 7.3.6 for a unitary group, compact at infinity.
In the next section, we will prove that in the case of Up2, 1q this is also true.

10 Some complements for Picard modular forms (especially when
p “ 2)

In a previous article (see [Her19]), we constructed the Eigenvariety E for
Up2, 1qE{Q where E is a quadratic imaginary field, under the hypothesis that p
was inert (if p splits see [Bra16]) so that the ordinary locus is empty, but
also that p ‰ 2, so that we can apply the main theorem of [Her16] on the
canonical filtration. Theorem 9.5 extends this construction also for p “ 2,
and for E{F a general CM-extension (but we only consider F “ Q in this
section). To fix ideas, we set τ, τ (or v, v if p splits) the places above p, and
pτ “ pv “ 2, pτ “ pv “ 1. Classical points on E correspond to classical forms
for pGqUp2, 1q with classical weights given by κ “ pk1 ě k2, k3q P Z3. The cor-
responding character in W is given, as explained just before Proposition 6.16,
by

px, yq P Oˆ ˆ O1 ÞÝÑ τpxqk1τpyqk2στpxqk3 .
Recall that E comes with a map Appq ÝÑ OpEqˆ, and we set23

F1 “ UpU
´1

0
, if p is inert

$
&
%

F1 “ U1U
´1

0

F2 “ p´1U2U
´1

1

F3 “ pU3U
´1

2

if p splits,

these are the respective (up to a normalisation factor related to the Hodge-Tate
weights) images of

¨
˝

p

1
p´1

˛
‚,

¨
˝

p

1
1

˛
‚
v

,

¨
˝

1
p

1

˛
‚
v

,

¨
˝

1
1

p

˛
‚
v

,

23Up is the compact operator, equal to U1 here, and U0 was denoted Sp in [Her19].
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in the Atkin-Lehner algebra Appq (which we can see in the Iwahori-Hecke alge-

bra), for some presentation of GpZpq. When we write

¨
˝

p

1
1

˛
‚we really

mean »
–I

¨
˝

1
p´1

p´1

˛
‚I

fi
fl

»
–I

¨
˝

p´1

p´1

p´1

˛
‚I

fi
fl

´1

and not the corresponding double class in the Iwahori Hecke algebra ! Pre-
cisely when p splits, if G “ Arv8s with dimG “ 2, then Uv,i the oper-
ator defined in Section 7.2 with L a subgroup of the form Li ‘ LK

i , and
Li Ă Grps complementary to Hi the i-th canonical subgroup, such that
t0u “ H0 Ĺ H1 Ĺ H2 Ĺ H3 “ Grps.

Proposition 10.1. The space E is reduced. This remains true if we had fixed
the second weight to k2 P Z on the weight space.

Proof. We will use [Che05] Proposition 3.9, and we only need to check assump-
tion (SSG) there. Thus, we need to find sufficiently many classical points k P W

for which the module M class
k XM

:,ďα
k is semi-simple as an HN bAppq-module.

We know already that the space of cuspidal forms for a group G is semi-simple
for the action of HN (spherical Hecke operators being auto-adjoint). Thus, we
need to treat the action of Appq. But the action on an automorphic form π

of Appq determines its refinements. Thus, we only need to prove that we can
assure that these refinements are distincts, leading that the action of Appq on
πIp will be semi-simple (I is an Iwahori subgroup). Let k “ pk1, k2, k3q P W be a
classical weight. Fix α P R, and consider Eďα the eigenvariety constructed with
slopes ď α locally around k. It is locally (on the base) finite over W . As the
space H0pX,ωkp´Dqq is finite dimensional, there is a finite number of classical
points f in Eďα mapping to k (and for varying k these are strongly Zariski-
dense in Eďα). But the slopes of Hecke operators at p are locally constant, thus
for each of these points we can find an open Uf (intersecting every component
of Eďα at f) on which the slope is actually constant. As Eďα is finite above
some affinoid U with x P U Ă W , taking the intersection of the image of Uf
by π in W , we can find an open V Q k in W and for which every classical point
k1 P V and every classical f 1 in the fiber of k1 in Eďα has slopes equal the same
as the one of some classical f in the fiber of k. But the refinements are given
(up to twists) in terms of eigenvalues of Frobenius by (see Section 7.2 and see
also [Her19] Section 10.6 but normalisations are slightly different)

pp´pk1`k3qF1, 1, p
k1`k3F´1

1
q if p is inert,

with F1 “ UpS
´1
p P OpEqˆ and

pp´k1F1, p
1´k2F2, p

´1´k3F3q if p splits,
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where Fi P OpEqˆare defined above. In particular Uv,1 corresponds up to
normalisation by p´k2 to the double class
¨
˝

1
p´1

p´1

˛
‚
v

,

¨
˝

p´1

1
1

˛
‚
v

P GUp2, 1qpQpq Ă GL3pEvq ˆGL3pEvq.

The normalisation by the weight in both cases arise because of definition of f̃˚

in equation (4). In particular, as the slopes of Fi are constant on V Q k, for
any k1 P V with sufficiently regular weights, the three Frobenius eigenvalues are
distincts, thus as are the possible refinements. In particular for those k1 (which
are Zariski dense in W) the action of HbAppq is semi-simple on classical forms
in M class

k1 . The same proof works if k2 is fixed.

Remark 10.2. 1. In particular, by [Che05] this proves that for a classical
k2 P Z, E 1 given by the full eigenvariety E , base changed over

WOˆ ãÑ W , pk1, k3q ÞÑ pk1, k2, k3q,

and the surface constructed as in the previous section, over WOˆ with a
fixed value for k2 coincide and are reduced.

2. Obviously, the same result where we would suppose k1 “ k3 would not be
true anymore as it could be that there isn’t enough classical semi-simple
points.

In [Her19] (Theorem 1.3), we proved the following theorem,

Theorem 10.3. Let E{Q be a quadratic extension, and

χ : Aˆ
E{Eˆ ÝÑ Cˆ,

an algebraic Hecke character. We suppose χ polarized (i.e. χK :“ pχ ˝ cq´1 “
χ|.|´1 where c is the complex conjugation on E). Let p be a prime such that p
is unramified in E and p ffl Condpχq, and p ‰ 2 if p is inert in E. Let

χp : GE ÝÑ Qp
ˆ
,

be its p-adic realisation. Then, if ords“0 Lpχ, sq is even and non-zero, the
Bloch-Kato Selmer group H1

f pE,χpq is non-zero.

This result (actually a more general version of it) was almost entirely already
proved by Rubin ([Rub91]) at least for CM elliptic curves when p ‰ 2 (and
p ‰ 3 for E “ Qpi

?
3q). In particular as 2 is inert in Qpi

?
3q (and 3 is ramified

in this case), it does not prove anything new for inert primes (only for the split
ones above 2 in other quadratic extensions).
Fortunately, with Theorem 9.5, we will be able to remove the hypothesis p ‰ 2
if inert. Moreover, we can also remove the hypothesis p ffl Condpχq (as long
as p stays unramified in E).
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To do this we focus from now on to the case of Up2, 1qE{Q, and let

χ : Aˆ
E{Eˆ ÝÑ Cˆ,

be an algebraic Hecke character, that we assume to be polarised. We often iden-
tify it with its p-adic realisation and let χ :“ χc. Denote χ8pzq “ τpzqaτ pzqb,
then b “ 1 ´ a P Z. Moreover (up to change χ by χc) we assume a ě 1.

10.1 A remark on p “ 2

To construct an integral model for the Picard modular surface, it is needed to
choose a lattice for the group pGqUp2, 1q, as it appeared in D in Section 3. We
do as we did in [Her19] and choose the lattice L “ O3

E Ă E3, stable for the
form of matrix (used to define pGqUp2, 1q) in the canonical basis given by,

ψ “

¨
˝

1
1

1

˛
‚.

There is another natural choice, which would be the same lattice but the form

ψ1 “

¨
˝

1
1

´1

˛
‚.

These two forms are isomorphic over Zr1{2s but not modulo 2. Moreover, see
[Bel06] Section 3.1, any abelian scheme of type (2,1) A{S will have a polarized
Tate module pTℓpAq, qq, together with the Weil pairing induced by the polari-
sation isomorphic either to pO3, Jq or pO3, J 1q. Any of these form would give
an integral model for the Picard modular surface, not isomorphic modulo 2,
and we choose ψ, the first one, to define Up2, 1qE{Q,ψ over Z as in section 3.
Apart to construct the Eigenvariety, this choice (for which the construction of
the Eigenvariety can be checked to be independant afterwards, even if we don’t
need this result) will not appear in this section as we work in characteristic
zero.

10.2 Removing the hypothesis p ffl Condpχq.
Recall that in [Her19] Section 10, following [BC04], we introduced a type
pKJ , Jq for J “ Condpχq. Fix an auxiliary level Kp Ă pKerJqp, and con-
sider X0ppnqtor{ SpmpKq the (rigid and compactified) Picard variety of Iwahori
level pn, over some p-adic field K and fix τ : E ÝÑ K. It is the analytic space
of X0ppnqtor which away from the boundary its S-points parametrizes

pA, ι, λ, η,H1 Ă H2q,

where
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• A ÝÑ S is an abelian scheme of genus 3

• ι : OE ãÑ EndSpAq is a CM-structure of signature (2,1), i.e.

ωA “ ωA,τ ‘ ωA,τ , ωA,σ “ tw P ωA|ιpxqw “ τpxqw,

with ωA,τ and ωA,τ are respectivelly locally free of rank 2 and 1, and
where τ : E ÝÑ S is the canonical morphism and τ its conjugate.

• λ : A ÝÑ tA is a polarisation for which the Rosati involution on ιpxq
coincides with ιpxq

• η is a level-Kp-structure,

• H1 Ă H2 Ă Arpns is a filtration by cyclic OE b Zp{pnZp-modules such
that HK

2 “ H1.

This is exactly the rigid space introduced in Section 5.
The subgroups H1, H2 extends to X0ppnqtor, and we can also extend the polar-
isation of H2{H1 to the boundary. We will distinguish the cases p inert (AU)
and p split (AL) in E.
In case (AL), i.e. p “ vv is split, then Arpns » G` ˆ G´ (with G´ “ pG`qD
and λ exchange the two factors), and we can suppose that G “ G`, say, is of
dimension 2 and height p3n. Under this decomposition, Hi “ H`

i ˆH´
i andH`

i

is a cyclic rank pin-subgroup of G` and H´
1

“ pH`
2

qK “ pG`{H`
2

qD Ă G´. In
this case

X
`
0

ppnq “ IsompH`
1
,Z{pnZq ˆ IsompH`

2
{H`

1
,Z{pnZq ˆ IsompG`{H`

2
,Z{pnZq.

It is a Tn “ ppZ{pnZqˆq3-etale torsor. Remark that H`
2

is the canonical sub-
group in this case. In case (AL) we can also introduce a second space. Using the
previous notation, denote by X tor

Pn
the analytic space associated to a toröıdal

compactification of the following moduli space Xtor
Pn

over SpecpKq. A S-point
of Xtor

Pn
is, away from the boundary, a tuple pA, ι, λ, η,Hp

1
, H

p
2
, Hq such that

pA, ι, λ, η,Hp
1
, H

p
2

q is a S-point of X0ppq (Iwahori level, i.e. Hp
1

Ă H
p
2

Ă G`rps)
together with a subgroup H Ă Grpns locally isomorphic to pZ{pnZq2 and
Hrps “ H

p
2
. It is the Shimura variety of level Pn X Ippq where Ippq is the

Iwahori subgroup of GL3pZvq and Pn is the subgroup of matrices of the form

¨
˝

‹ ‹ ‹
‹ ‹ ‹

‹

˛
‚ pmod pnq.

In particular we have a map X0ppnq ÝÑ XPn
.

In case (AU), i.e. p inert, denote

X
`
0

ppnq “ IsompH1,O{pnOq ˆ IsompolpH2{H1,O{pnOq.

This is a Tn “ pO{pnOqˆ ˆ pO{pnOq1-etale torsor.
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In both cases, if π : X`
0

ppnqtor ÝÑ X0ppnqtor and ϕ : Tn ÝÑ Kˆ is a character,
we can consider OX0ppnqtor pϕq to be the subsheaf of π˚OX

`
0 ppnqtor of sections

which vary like ϕ. This is an invertible sheaf on X0ppnqtor.

Definition 10.4. For all classical weight κ, we can consider the sheaf,

ωκpϕq :“ ωκ bO
X0ppnqtor

OX0ppnqtor pϕq,

which is a locally free sheaf on X0ppnqtor, whose global sections are (classical)
Picard modular form of weight κ and nebentypus ϕ. Similarly,

H0pX0ppnqtor, ωκpϕqp´Dqq,

is the set of cuspidal ones.

Proposition 10.5. There is a natural injection

ωκpϕq ãÑ ωκϕ:
w ,

for all w Psn´1, n´ετ r and κϕ the product of the character κ with the character

T pZpq ÝÑ Tn
ϕÝÑ Kˆ,

which we still denote ϕ.

Proof. Indeed, a section f of ωκpϕq is a law which associate to pA, x,wq where
A P X torpKq, x is a level X`

0
ppnq-structure and w an isomorphism

StOE
b OK » ωA,

an element fpA, x,wq P A1pKq, which moreover satisfies,

fpA, tx, zwq “ ϕptqκ_pzqfpA, x,wq.

In particular, this defines by restriction a section g of IW0,`
w which satisfies,

for the induced action of T pZpq on IW
0,`
w (using ι !) which sends pA, x,wq to

pA, tx, ιptqwq, such that gptiq “ ϕptqκptqgpiq. Thus g is a section of ωκϕ:.

Over X tor
Pn

we also have a IGL2
ppqpZ{pnZq ˆ pZ{pnZqˆ-torsor (where IGL2

ppq
is the Iwahori subgroup of GL2pZpq), given by

IsommodppH, pZ{pnZq2q ˆ IsompG`{H,Z{pnZq,

wheremodp means that an isomorphism φ induces an isomorphism ofH1
p inside

pn´1Z{pnZe1. Thus, for ϕ1 a character of IGL2
ppqpZ{pnZq ˆ pZ{pnZqˆ, i.e. of

the form pϕ1 ˝ det, ϕ3q, we have an invertible sheaf Opϕ1q on X tor
Pn

and thus
a sheaf ωκpϕ1q. The sheaf ωκpϕq on X0ppnqtor descend to X tor

Pn
if and only if

ϕ “ pϕ1, ϕ1, ϕ3q and coincides with ωκpϕ1q with ϕ1 “ pϕ1 ˝ det, ϕ3q.
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Proposition 10.6. In the split case, if v ă 1

2pn´1 , the canonical subgroup
induces an isomorphism,

X0ppqtorpvq ÝÑ X
tor
Pn

pvq.

Here we really mean the µ-canonical locus (and not the full µ-ordinary locus).

Remark 10.7. If p ą 2, is inert, the results of [Her16] give, for v ă 1

4pn´1 , an

isomorphism X pvq ÝÑ X0ppnqpvq.
Recall the following result of Rogawski (see [BC09] Section 6.9.6 and [Bel10]
Section 2.7). Fix first a Hecke character µ as in [BC09] Lemma 6.9.2(iii).

Theorem 10.8 (Rogawski). Suppose ords“0 Lpχ, sq is even and non zero. Then
there exists a representation πn, automorphic for Up2, 1q and cuspidal such that
for every prime x split in E,

Lpπnx q “ µ|.|´ 1
2 pLpχ ‘ 1 ‘ |.|q.

Remark 10.9. This representation πn is slightly different from the one of [BC04]

or [Her19], it is a twist of the latter by Lpχqµ|.|´ 1
2 .

Recall that χ : Aˆ
E{Eˆ ÝÑ Cˆ is a Hecke character, to which is associated its

p-adic representation

χ “ χp : GE ÝÑ Qp
ˆ
.

We hope that the context is sufficiently clear to know which we refer to when
writing χ. To avoid confusion, we denote χsmp the (smooth) component at p of
the adelic χ.

Proposition 10.10. Suppose ords“0 Lpχ, sq is even and non zero. Denote
n0 “ vppCondpχqq. Denote by ϕ if p is split the character p1, 1, pχsmp q´1q and
if p is inert the character ppχsmp q´1, pχsmp q´1q of pO{pnOqˆˆpO{pnOq1. Denote
also κ the classical weight corresponding to

p1, 2 ´ a, 1q P Z3

dom.

Then the Hecke eigensystem (away from pCondpχq) of πn appears in
H0pX pεq, ωκϕ:

w p´Dqq for all n ě n0 and w Psn´ 1, n´ εr for ε small enough.

Proof. Indeed we checked that πn contributes to the coherent first cohomology
group in [Her19] Proposition D.2. More precisely we checked that its restriction
to SUp2, 1q appears with K-type corresponding to κ restricted to SUp2, 1q.
As πn is a twist of the representation denoted πnpχq in [Her19] by χµ|.|´1{2,
which is algebraic, we can calculate its algebraic weight κ and check that κ “
p1, 2 ´ a, 1q24. Moreover Bellaiche-Chenevier ([BC04] Proposition 4.2) proved

24We could also argue directly as in [Her19] relating κ to the Hodge-Tate weights of ρπn

on the Eigenvariety E. Remark that for the τ -Hodge-Tate weight of πn there is a twist by
1 ´ a compared to those of πnpχq. This is compatible with the twist by pa ´ 1, a ´ 1, 1 ´ aq
on the coherent weight κ given in formula before Proposition 10.20.
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that πnpχq b χ´1

0
was of a certain type pKJ , Jq at ramified primes for χ. As

χ “ χ0|.| 1
2 “ χ´1

0
|.| 1

2 and both |.| and µ are unramified at p, we deduce that
the twist πn is of the same type as πnpχq bχ´1

0
(which is obviously trivial if χ

is unramified at p). Thus πn is of nebentype ϕ, and we deduce the previous
result from Proposition 10.5.

We need to take care of the action at p of the Iwahori algebra Appq. This is well
known in the case of GL2 (see [Col97a]). Denote the higher-Iwahori subgroup

I`
n “

¨
˝

1 ` pnO ‹ ‹
pnO 1 ` pnO ‹
pnO pnO 1 ` pnO

˛
‚XGpQpq,

where GpQpq “ GL3pQpq if p is split, and Up2, 1qpQpq “ Up3qpQpq otherwise.
We could do everything for GUp2, 1q or GL3 ˆGL1 (if p splits) but it doesn’t
change anything for us. I`

n has a natural Iwahori decomposition I`
n “ Nn ˆ

T`
n ˆNn (and Nn “ N), and thus if we denote Σ` the elements of the form

¨
˝

pa1

pa2

pa3

˛
‚ with a1 ě a2 ě a3,

if p splits, and ¨
˝

pa1

pa2

p´a1

˛
‚ with a1 ě a2,

if p is inert. Denote by Σ the group generated by Σ` and their inverse.

Proposition 10.11. Denote by A`,0
n ppq the sub-algebra of HpGpQpq{{I`

n q gen-
erated by the double class characteristic functions

1
I

`
n aI

`
n
, a P Σ`.

A`,0
n ppq is commutative. Denote by A`

n ppq the algebra generated over Qp by
A`,0
n ppq and the inverse of the elements 1I`

n aI
`
n
. It is canonically isomorphic

to Σ and thus to Appq.
Proof. A`

n ppq is commutative by [Cas95] Lemma 4.1.5.

Remark 10.12. The canonical isomorphism Σ ÝÑ A`
n ppq sends a P Σ` to the

corresponding double class, but this is not true for all a P Σ, just like the case
of Appq. The double class are not invertible in general (if n ą 1 at least, see
[Ogg69] Lemma 2 for (new) modular forms, but this is true if n “ 1, [Vig16]).

There is thus an Hecke operator acting on X
`
0

ppnq corresponding to the double
class 1I`

n aI
`
n

where in the inert case

a “

¨
˝

p

1
p´1

˛
‚
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and in the split case,

a “

¨
˝

p

1
1

˛
‚ or a “

¨
˝

p

p

1

˛
‚.

We call respectively Fnp,1, F
n
v,1, F

n
v,1F

n
v,2 the corresponding operators. These op-

erators can be defined on the moduli problem X
`
0

ppnqtor and commutes with
their counterparts on X0ppqtor “: X tor (see for example [PS17] Section 8.2),
in the sense that for one of these operators, say g, if we denote the correspon-
dence C and Cn “ C ˆX X

`
0

ppnq, with πng and πg the universal isogeny on Cn
and C, we thus have commutatives diagrams,

Cn

X
`
0

ppnq X
`
0

ppnq

C

X X

p2

p1

π

p1

p2

π π

and a commutative diagram,

IW`

X
`
0 ppnq

ˆ Cn IW`

X
`
0 ppnq

ˆ Cn

IW`
X

ˆ C IW`
X

ˆ C

πn
g

πg

p p

The normalisation of the maps πng and πg can be done the same way, and

we thus deduce that the operators Up,‹ in level X and Unp,‹ in level X`
0

ppnq
commutes with the pullback by π (i.e. Unp,‹pπ˚fq “ π˚pUp,‹fq). Thus, these

operators defined on ωκ:
w for any κ P W w-analytic (with w Psn´ 1, n´ ε0r)

are the same once we identify (invariant by Tn) sections on some small neigh-

borhood X
`
0

ppnqpvq of ωκ
0:
w p´κ|Tn

q with sections of ωκ:
w on some small neigh-

borhood X pvq.
In particular to understand the action of Appq on the forms corresponding to πn

which appears in H0pX torpvq, ωκϕ:
w q for v small enough, we need to understand

the action of A`
n ppq on πnp .
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Definition 10.13. If π is a representation of GpQpq, denote by

pπI`
n qfs :“ 1

I
`
n aI

`
n

pπI`
n q,

where a is the diagonal element corresponding to Fnp,1 if p is inert, and
pFnv,1q2Fnv,2 if p is split (in other words a is the double class corresponding
to the compact operator Up in the text, up to twits by a central element). This

coincides with the space V K0

A´ of [Cas95], Proposition 4.1.6.

By [Cas95] Lemma 4.1.7, this space pπI`
n qfs is endowed with an action ofA`

n ppq.

Proposition 10.14. Let π be a representation of GpQpq. Write I`
n “

NnT
`
n Nn its Iwahori decomposition. Then, as Σ “ A`

n ppq-module,

pπI`
n qfs “ pπNn

qT`
n b δ´1

B ,

Proof. As in [BC09] Proposition 6.4.3, this is due to [Cas95] Proposition 4.1.4.
using the Iwahori decomposition.

Remark 10.15. We could also extends a bit the previous isomorphism by adding
the action of (the split part of) T {T`

n as in [Cas95].

Moreover, as πn is a quotient of an induction (or the induction from a parabolic
subgroup in the split case), we will use the same geometric lemma as [BC09]
Proposition 6.4.4. In particular we only need to calculate the admissible refine-
ment using this lemma, and as this does not assume χ to be unramified, we find
exactly the same (automorphic) refinements as if p ffl Condpχq in pppπnp qI`

n qfsqss.

Definition 10.16. Let σ be the refinement corresponding to the one when p ffl
Condpχq used in [Her19] when p is inert (in which case it is unique, see [Her19]
Proposition 10.7), and to pµ|.|´1{2qp1, χppq, p´1q, see [BC09] Lemma 8.2.1 when
p is split 25. More precisely, it corresponds to

pµ|.|´1{2qp1, χppq, p´1q : T {T`
n ÝÑ Cˆ

pa, b, cq ÞÝÑ pµ|.|´1{2qpabcqχpcq|b|

in the case where p splits, and to

pµ|.|´1{2qp1, χppq, p´1q : T {T`
n ÝÑ Cˆ

pa, eq ÞÝÑ pµ|.|´1{2qpaa´1eqχpeq|a|

when p is inert. Recall that T » pOr1{psqˆ ˆ pOr1{psq1 in this case.

25This refinement is not ordinary, in the sense that the normalised Hecke operators Fi won’t
have slope zero at the corresponding point. In the split case, the other two accessible refine-
ments are also non-ordinary (one of which being even anti-ordinary in the sense of [BC04],
but unfortunately we can’t check crystallinity (i.e. Theorem B.5) at those refinements.
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10.3 Refinements of De Rham representations

In this subsection, we slightly generalise the well-known notion of refinements
(see e.g. [BC09] Section 2.4) to non-necessarily crystalline representations.
This is especially useful for us when p|Condpχq.
Definition 10.17. Let V a n-dimensional, continuous L-representation of GK ,
where K is a p-adic field. Assume that V is De Rham, and denote WDpV q the
Weil-Deligne representation associated to V (see [Fon94, BGGT14]). Assume
that L is big enough so that all eigenvalues of the Frobenius ϕ on WDpV q are
defined on L. A Refinement of V is the datum pFiqi“1,...,n of a filtration

0 Ĺ F1 Ĺ ¨ ¨ ¨ Ĺ Fn “ WDpV q,

by Weil-Deligne representations.
Just as in the crystalline case, the previous definition more generally applies to
a general De Rham pϕ,Γq-module D, to WDpDq (see [Ber08]).

Remark 10.18. Obviously when V is crystalline, this definition cöıncides with
the one of [BC09].

Let D be a De Rham pϕ,Γq-module. Let pFiq be a refinement of D, i.e. a
filtration of WDpDq. Then we can associate to pFiq a filtration of D by

FilipDq “ pRr1{tsFiq XD.

This filtration is saturated, and thus defines a triangulation of D (see [BC09],
Section 2.3).

Proposition 10.19. The previous map pFiq ÞÑ pFiliDq induces a bijection
between the set of refinements of D and the set of triangulations of D.

Proof. This is [Ber08] Théorème A and Corollaire III.2.5.

In the particular case of an automorphic representation π of our unitary
group G, with associated Galois representation ρπ (for example ρ “ 1‘χcp ‘ ε

associated to the automorphic representation πn of the previous subsection),
we have distinguished – we call them accessible, (galois) refinements for ρπ,v
which correspond to the (automorphic) refinements for the action of A`

n ppq
on πnv (for v|p). Such refinements exist only if pπvqI`

n ‰ 0 for some n. The
association is explained in [BC09] (when G is split at v) for unramified repre-
sentations, and for Up3qpQpq (when v is inert) in [Her19] Section 10.5. This
can be generalized for non-necessarily unramified πv, verbatim when there is no
monodromy. For example, to the refinement σ of definition 10.16, is associated
the following refinement of ρ “ 1 ‘ χcp ‘ ε :

"
0 Ĺ LLp1q Ĺ LLp1q ‘ LLpχcpq Ĺ WDpρGp

q when p is inert.
0 Ĺ LLpχcvq Ĺ LLp1q ‘ LLpχcvq Ĺ WDpρGv

q when p is split.
(5)

Here 1 is the trivial representation of Eˆ
v , and LL denotes the Local-Langlands

correspondence.
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10.4 Constructing the extension

We thus take a prime p unramified in E, which can be 2 or not, and which
can divide Condpχq or not. Let E be the eigenvariety of level N “ Condpχqp
(the prime-to-p-part of the conductor) associated to pGqUp2, 1qE and p by
Theorem 9.5. It is equipped with a map w : E ÝÑ W , and there is a point
y P E which coincides with the representation πn together with its refinement σ
by definition 10.16 and Proposition 10.10. For all Z Ă E , we have associated
to the automorphic form corresponding to z a Galois representation

ρz : GE ÝÑ GL3pQpq,

which is moreover polarised in the following way :

ρK
z » ρzp´1q :“ ρzε

´1,

where ε denote the cyclotomic character. Let us be more precise : we will
change a bit the convention used in [Her19] to stick with the one of [BC09]
(this will make things easier to treat the case p|Condpχq). Denote for an
automorphic representation π of Up2, 1q of regular weight ρ1

π the associated p-
adic Galois representation by [BC09] Conjecture 6.8.1, which is know to exists,
see Remark 6.8.3, (vi) of [BC09]. For z P Z associated to a modular form fz,
denote by Π any irreducible constituent of the representation of (the restriction
to) Up2, 1qpAq generated by fz. Then we set

ρz “ ρ1
πν,

where ν is defined in [BC09] Lemma 8.2.3, and is associated by class field
theory to µ´1|.|3{226. In particular it satisfies νK “ νp´3q. Thus ρK

z “ ρzp´1q.
Moreover for z P Z of classical (automorphic) weight pk1 ě k2, k3q, the Hodge-
Tate weights of ρz are given by27

pp´k1, 1´k2, k3´1q, p´k3, k2´2, k1´1qq “
"

pHTτ ,HTτ qpρzq if p is inert
pHTv,HTvqpρzq if p splits

Proposition 10.20. There exists a pseudo character on E,

T : GE ÝÑ OpEq,

such that for all z P Z, Tz is the trace of ρz. Moreover, TK “ T p´1q.

Proof. This is [Che04] Proposition 7.1.

We need a particular point on E .

26Careful to the normalisation of the Local Langlands correspondence in [BC09].
27We choose the normalisation of the Hodge-Tate weight such that the cyclotomic character

has Hodge-Tate weight ´1, as in [BC09].
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Proposition 10.21. Suppose ords“0 Lpχ, sq is even and Lpχ, 0q “ 0. There
exists a point y P E corresponding to a (non-tempered) automorphic representa-
tion πn. The point y is non-classical if p|Condpχq28 but is classical otherwise.
Moreover its p-adic weight wpχq is of the form wpχqalgwpχqsm where wpχqsm
is the smooth (finite order) character of Proposition 10.10, and wpχqalg is the
algebraic character

Oˆ ˆ O1 ÝÑ Qp
ˆ

px, yq ÞÑ τpxqτpyq2´aστpxq if p is inert

Z3
p ÝÑ Qp

ˆ

px, y, zq ÞÝÑ xy2´az
if p is split

At the point y, the evaluation Ty is given by the trace of 1 ‘ ε ‘ χc and the
refinement is given by σ of definition 10.16, i.e. it is the refinement (5).

Proof. This is a translation of Proposition 10.10 with the normalisation of T .

We freely use the notation of [KPX14] concerning ϕ,Γ-modules. Denote δi for
i “ 1, 2, 3 the character,

δi : K
ˆ ÝÑ OpEqˆ,

such that δippq “ Fi
29 and, in the inert case, recall that we have on W two

universal morphisms,

κ1 : x P Oˆ ÞÝÑ κ1pxq P OpWqˆ, and κ2 : y P O1 ÞÝÑ κ2pyq P OpWqˆ,

such that at classical points κ “ pk1, k2, k3q P Z3, we have

κ1|κpxq “ τpxqk1τ pxqk3 and κ2|κpyq “ τpyqk2 .

We set
δ
1|Oˆ

K
“ pκ1qx´2

τ ,

δ
2|Oˆ

K
: y P O

ˆ
K ÞÝÑ κ2py{yqτpyq´1,

δ
3|Oˆ

K
“ pκc1q´1xτx

´1

τ “ pδc
1|Oˆ

K

q´1x´1

τ x´1

τ .

In particular we have δ3 “ δ1
´1

x. In the split case, we set

δi : Q
ˆ
p ÝÑ OpEqˆ,

with δippq “ Fi and as we have universal characters on W ,

κi : Zˆ
p ÝÑ OpWqˆ,

28More precisely, it is non classical without level at p as its system of Hecke eigenvalues
doesn’t appear in H0pX , ωκq, but appears in H0pX`

0
ppnq, ωκpϕqq.

29These Fi P OpEqˆ already appeared in proof of Proposition 10.1. These are the functions
given by a basis of the Hecke operator in Appq.
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such that for classical weights pk1, k2, k3q P Z3,

κ1pxq “ xk1 , κ2pxq “ xk2 , κ3pxq “ xk3 ,

We set
δ
1|Zˆ

p
“ κ1, δ

2|Zˆ
p

“ κ2x
´1, δ

3|Zˆ
p

“ xκ´1

3
.

In particular, we can define wti :“ ´wtpδiq P OpWqΣ the opposite of the
derivative at 1 of δi (see [KPX14] Definition 6.1.6). In particular E ,Z and the
functions δi satisfies the hypothesis of Corollary 6.3.10 of [KPX14] (excepts
possibly the irreducibility condition).
Denote by A “ Oy the rigid analytic local ring of E at y, andK its total fraction
ring. The pseudo character T on E induces one on A, and denote by Itot Ă A

its total reducibility ideal (see [BC09] Proposition 1.5.1, Definition 1.5.2.) In
particular for any J Ą Itot on A{J we can write

T bA{J “ T1 ` Tχ ` Tε.

Proposition 10.22. The reducibilty locus SpecpA{Itotq is a proper closed sub-
scheme of SpecpAq, i.e. Itot ‰ t0u. More precisely, if p is inert we have that

wtτ pδ1q ´ wtτ pδ3q ” wtτ pδ1qpyq ´ wtτ pδ3qpyq pmod Itotq,

and
wtτ pδ1q ´ wtτ pδ3q ” wtτ pδ1qpyq ´ wtτ pδ3qpyq pmod Itotq,

and similarly (with τ, τ changed by v, v) is p splits.

Proof. Let I Ą Itot a finite length ideal of Oy0 “ A. We thus have for j “
t1, χ, εu,

Tj : GE,S ÝÑ A{I,
a (continuous) character, such that Tj pmod mAq “ j.
As Tj is a character, by [KPX14] Theorem 6.2.14, there exists a character

δ1
j : K

ˆ ÝÑ pA{Iqˆ,

such that the ϕ,Γ-module associated to Tj, DrigpTjq is isomorphic to
RA{IpπKqpδ1

jq. From now on we just write this last space Rpδ1
jq. We will

determine δ1
j . Recall that j P t1, χ, εu and i P t1, 2, 3u. We choose the bijection

between these two spaces, which corresponds to the refinement 10.16, more
precisely,

1 ÞÑ 1
2 ÞÑ χ

3 ÞÑ ε

Thus T2 :“ Tχ and T3 :“ Tε, for example. By Lemma B.3, we have in particular
a map

Rpδiq ãÑ DrigpTiq » Rpδ1
iq.
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To determine δ1
i the character of Ti, we still need to know the weight of Ti. We

know by Lemma B.2 that Ti has its Sen operator killed by

3ź

i“1

pT ´ wtiq P A{IrT sΣ.

Moreover, at y P E , we have, if p splits,

pwtv1,wtv2 ,wtv3q “ p´1, a´ 1, 0q and pwtv1,wtv2,wtv3q “ p´1,´a, 0q

and if p is inert,

pwtτ1 ,wtτ2 ,wtτ3q “ p´1, a´ 1, 0q and pwtτ1 ,wtτ2 ,wtτ3q “ p´1,´a, 0q.

Thus, if a ě 2 these weights are distincts at y. Thus we can calculate the
Hodge-Tate-Sen weight of Ti : T1 has weight wt3, Tχ has weight wt2 and Tε has
weight wt1. Similarly at v and v if p splits. If a “ 1, we can’t a priori distinguish
the two weights wtv2,wt

v
3 at v and wtv1,wt

v
2 at v (similarly at τ and τ ), but we

know that Tε “ T3 has weight wtpδ1q at v, and that T1 has weight wtpδ3q at v.
Suppose p is split, using Lemma B.3 and Lemma B.4 for Tε, we have (evaluating
at y to have the value of tσ, kσ),

wtvpδ1q ´ wtvpδ3q ´ pwtvpδ1qpyq ´ wtvpδ3qpyqq P I.

Using that δ3 “ δ1
´1
x (or using Lemma B.4 for T1 at v), we get the result

for v. This is identical if p is inert.

We also need the following result, which is a corollary of Theorem B.5.

Corollary 10.23. ExtT p1, iq Ă H1

f pE, iq, for i “ χ or ε.

Proof. Indeed, the Theorem B.5 gives that any extension in ExtT p1, iq is crys-
talline at all place above p (as the Frobenius eigenvalues of i are different
from 1). At v a place dividing ℓ ‰ p, if v ffl Condpχq, by hypothesis on the level
of E , the dense set of classical points Z are unramified at v, thus T pIvq “ 1
on E (as E is reduced) and thus ExtT p1, iq consists of unramified extensions
at v.
Now suppose v|Condpχq. If i “ ε, any extension is automatically unramified.
Suppose i “ χ. By choice of the type J outside p on E , we know ([BC04]
Proposition 4.2 or [Her19] Proposition 10.21) that for all z P Z, there exists
a subgroup I 1 Ă Iv such that ρzpI 1q “ t1u. Thus, T pI 1q “ 1 and for all
x P E , ρxpI 1q “ 1. Thus, TIv is locally constant, and the same for ρx|Iv (as it is
semi-simple as I 1 acts trivially). Up to extending scalars, evaluating at ρy, we
get

T|Iv “ p1 ‘ 1 ‘ χ|Iv q b OU ,

for some neighborhood U of x. But as we have a morphism

M1{IM1 ‘ Ti ÝÑ ρc ÝÑ 0,

we have that ρcpI 1q “ 1, thus ρc is semi-simple, thus ρc|Gv
P H1

f pGv, χq.
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We have the following improvement of Theorem 10.3 :

Theorem 10.24. Let χ be a polarized algebraic Hecke character as in Theo-
rem 10.3. Suppose that Lpχ, sq vanishes with even (non-zero) order at s “ 0.
Let p be unramified in E. Then

H1

f pE,χpq ‰ t0u.

Proof. Let e1, eχ, eε be the indempotents as in Appendix B, and denote Ai,j , for
i, j P t1, χ, εu the corresponding A-modules. Then as in [BC09] Lemma 8.3.2,
we get

Itot “ A1,χAχ,1.

But if ExtT p1, χq “ 0, then Aχ,1 “ Aχ,εAε,1 ([BC09], Theorem 1.5.5). Thus
Aχ,1A1,χ “ Aχ,εAε,1A1,χ. But asH

1

f pE, εq “ t0u, we get by the same reasoning

Aε,1 “ Aε,χAχ,1.

Thus,
Itot “ Aχ,εAε,χAχ,1A1,χ Ă mAχ,1A1,χ “ mItot.

Thus Itot “ 0, contradicting Proposition 10.22.

A Cohomology of cuspidal automorphic sheaves

Proposition A.1. (Lan, [Lan17] Theorem 6.1) Let X1ppnq˚ the minimal com-
pactification of X1ppnq, defined by normalisation of the minimal compactifica-
tion with our fixed auxiliary level, as in [Lan16a], Proposition 6.1. There is a
proper surjection p : X1ppnqtor ÝÑ X1ppnq˚.

Definition A.2. The (µ-ordinary) Hasse invariant µHa descends to X1ppnq˚

(modulo p), and we can thus define X1ppnqµ´full˚pvq to be the normalisation in
its generic fiber of the greatest open in the blow up of pµHa, pvq where this ideal
is generated by µHa. Its generic fiber is X1ppnqµ´full˚pvq, a strict neighborhood
of the (full) µ-ordinary locus. Denote X1ppnq˚pvq the (union of) connected
components which contains a point of maximal degree, and as X1ppnqµ´full˚

is normal in its generic fiber, there is an associated open X1ppnq˚pvq. We thus
have a map,

πpvq : X1ppnqtorpvq ÝÑ X1ppnq˚pvq.

For all this section, except the last two results (Corollary A.5, Theorem A.6),
we forgot the notation concerning the level at p, and denote X1ppnqtorpvq by
Xtorpvq, and similarly for Xpvq,X˚pvq,Xtor,X,X˚. We thus have the previous
map,

πpvq : Xtorpvq ÝÑ X˚pvq.
Assume that our fan Σ is smooth and projective. We have the following van-
ishing result.
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Proposition A.3. Denote by Dpvq the boundary in Xtorpvq. Then, for all
q ą 0,

Rqπpvq˚Op´Dpvqq “ 0.

Proof. This is essentially Lan’s result (see [Lan17] Proposition 8.6), slightly
modified because of the neighborhood we chose. First, note that we can prove
it for Xµ´fullpvqtor and Xµ´fullpvq˚ and then localise (as the schemes are nor-
mal and thus have same connected component as their rigid fiber) to Xtorpvq
and X˚pvq. From now on and until the end of this proof, we denote X?pvq
the neighborhood of the full µ-ordinary locus in X?. By the formal functions
theorem we can work on formal completions of geometric points x P X˚pvq,
and we need to prove that HqpXtorpvq^

x ,Op´Dpvqqq “ 0 for all q ą 0. Let us
describe the completions at x of Xpvqtor. Let Z be a stratum of X˚ ([Lan16a]
Theorem 12.1, it depends on a choice of a cusp datum), and denote Z˚pvq be
the base change of Z to X˚pvq, then Z˚pvq is locally closed in X˚pvq. In [Lan16a,
Theorem 10.13] (see also notations of [Lan16b, Sect. 4], and [Lan17, Theorem
6.1]), local charts for Xtor over X˚ are constructed using normalization of local
charts in an auxiliary Shimura datum. They have the following shape

Ξ

Z C

Ξpσq

i

with i : Ξ ãÑ Ξpσq an affine torus embedding, and if Uσ denote the completion
of Ξpσq along its closed strata, tUσu glue together to a formal scheme X “ XΣ,
and pXtorq^

Z » X{Γ with Γ acting on X freely and

X ÝÑ X{Γ » pXtorq^
Z (6)

is a local isomorphism. All the maps described before are flat. Denote Zpvq be
the normalisation in its rigid fiber of the open Zpvq0 in the blow-up of the ideal
I “ pµHa, pvq in Z where I is generated by µHa. It is not a priori equal to Z˚pvq
(which is defined by base change). Let C ÝÑ Z be the proper scheme, normal
over O ([Lan16a] Proposition 8.4), but as it is constructed using normalisation
of Caux ÝÑ Zaux for an auxiliary datum, where Caux ÝÑ Zaux is an abelian
scheme torsor over a finite etale formal scheme above Zaux, thus is smooth,
and as normalisation commutes with smooth base change ([Sta18, Tag 03GV])
we have C “ Caux ˆZaux Z, and C ÝÑ Z is smooth again. Then we define
Cpvq as the normalisation in its rigid fiber of Cpvq0, the open in the Blow-up of
I “ pµHa, pvq where I is generated by µHa. Then, as the Blow-up commutes
with flat base change, we have Cpvq0 “ C ˆZ Zpvq0 and Cpvq0 ÝÑ Zpvq0 is
smooth thus again Cpvq “ CˆZ Zpvq. Define analogoulsy the local models (see
[Lan16b] Section 4.) Uσpvq and Xpvq (as the fan Σ is smooth, normalisation
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commutes with base change). As all operations commutes, we have shown that

Xpvq{Γ » pXtorq^
Z pvq.

We can describe locally Xtor over X˚ by X (by equation 6, see [Lan16a] The-
orem 10.3, [Lan17] Theorem 6.1 (4)) and also for X torpvq over X˚pvq, i.e. in
rigid fiber, as this is just localisation over an open subset. Denote by X˚pvq0
denote the open of the blow-up where the ideal is generated by µHa (i.e. before
taking the normalisation in its rigid fiber), and similarly for Xtorpvq0. Then
Xtor ÝÑ X˚ is not flat à priori, but as pµHa, pvq is in both cases a regular
sequence, this implies that the admissible formal blow-up in both cases is given
by the closed subset of equation pXµHa´Y pvq in ProjpOX? rX,Y sq (see e.g.
[Bos14], Proposition 7. (iii)). Thus this admissible blow-up commutes with the
base change Xtor ÝÑ X˚. In particular, Xtorpvq0 “ Xtor ˆX˚ X˚pvq0. Thus
Xtorpvq is the normalisation of Xtor ˆX˚ X˚pvq0 in its rigid fiber and we have
a map

Xtorpvq ÝÑ X˚pvq.

Denote Ztorpvq “ Z ˆXtor Xtorpvq, this is a locally closed (formal-)subscheme
of Xtorpvq and cöıncides with the pullback of Z˚pvq through the previous map.
We claim that

pXtorpvqq^
Z˚pvq “ pXtorpvqq^

Ztorpvq » pXtorq^
Z pvq » Xpvq{Γ,

so that Xtorpvq over X˚pvq is correctly described by Xpvq. We only need to
prove the first isomorphism. Denote (abusively) I “ pµHa, pvq the ideal on
the various formal schemes, and p¨q^

Z the completion along Z or its pullback in
those schemes (in particular this is the completion along Ztorpvq for Xtorpvq).
As Xtor is noetherian, pXtorq^

Z ÝÑ Xtor is flat, and as blow-up commutes with
flat base change, we have

pBlIpXtorqq^
Z “ BlIppXtorq^

Z q,

and pXtor,^Z qpvq is an open in the normalisation of BlIppXtorq^
Z q “

pBlIpXtorqq^
Z . But Xtor, and thus BlIpXtorqq is quasi-excellent, normal-

isation and Z-adic completion commutes.30 Thus X
tor,^
Z pvq is the Z-adic

completion of the open in the normalization of BlIpXtorqq, i.e. of Xtorpvq, thus
this is Xtorpvq^

Ztorpvq. The etale, local isomorphism

X ÝÑ pXtorq^
Z ,

can thus be seen over X˚pvq, and we get that

pXtorpvqq^
Z˚pvq » Xpvq{Γ.

30See [EGA, IV2 7.8.3(v), and proof of 7.6.1].
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Now if x is a geometric point of X˚pvq, lying over Z˚pvq, we deduce that

Xtorpvq^
x » X^

x {Γ,

Then according to [Lan16b] Theorem 3.9 (and especially Section 7), and [Lan17]
Theorem 8.6 it is sufficient to prove the analog of Proposition 8.3 (of [Lan17])
for ppvq : Cpvq ÝÑ Zpvq. But ppvq is also proper (it is a base change), and the
pullback of the sheaf Ψpℓq is relatively ample over Zpvq, thus the same proof
applies.

In the following, we denote for a object X over SpecpOq or SpfpOq and n P N˚,
Xn the base change to SpecpO{pnq. We also denote, as in [AIP15], Wpwq0
the analogous weight space, but forgetting the torsion part when constructing
Wpwq. This can be seen for example as characters in Wpwq being trivial on
the torsion part of T pZpq, but we don’t fix such an identification.

Proposition A.4. Consider the following diagram, for m ě n,

Xtorpvqm Xtorpvqn

X˚pvqm X˚pvqn

i

i1

πm πn

We have the equality,

i1˚πn˚w
κ0:
w,np´Dq “ πm,˚i

˚wκ
0:
w,mp´Dq.

In particular, π˚w
κ0:
w p´Dq is a small formal Banach sheaf on X˚pvq “

X1ppnq˚pvq. Similarly for pπˆ1q˚w
κ0,univ:
w p´Dq on X˚pvq ˆWpwq0. Moreover

HipX˚pvq, π˚w
κ0:
w p´Dqqr1{ps vanishes for i ě 1 (similarly for the higher direct

image of pπ ˆ 1q˚ω
κ0,univ:
w p´Dq on Wpwq).

Proof. The proof is the same as in [AIP15] or [Bra16], except that we stay at
level X1ppnqpvq (which is easier), as the map X1ppnqpvq ÝÑ Xpvq is not finite

in our situation. We can prove as in [AIP15] that wκ
0:
w p´Dq is a direct limit of

sheaves whose cokernel is a successive extension of the sheaf OX1ppnqtorpvqp´Dq.
Thus, it is enough to show that

R1π˚OX1ppnqtorpvqp´Dq “ 0,

but this is the previous proposition. This implies also that Riπ˚w
κ0:
w p´Dq “ 0

for i ą 0. Moreover, as π˚w
κ0:
w p´Dq is small on X1ppnq˚pvq which is generically

affinoid, Theorem A.1.2.2 of [AIP15] implies its higher cohomology vanishes
after inverting p.
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Exactly as in [AIP15], Section 8.2, we deduce the following two results. Now we
go back to the notation X1ppnqtorpvq to denote the (integral toröıdal compact-
ification of the) Shimura variety with level ”Γ1ppnq” at p, and X torpvq denote
the rigid analog, with Iwahori level at p, as in the rest of the text.

Corollary A.5. The module

M0,un
v,w,cusp :“ H0pX1ppnqtorpvq ˆ Wpwq0,wκ0,un:

w p´Dqqr1{ps
is a projective OWpwq0r1{ps-module, and for all κ P Wpwq0, the specialisation

M0,un
v,w,cusp ÝÑ H0pX1ppnq˚pvq,wκ0:

w p´Dqqr1{ps,
is surjective.

Theorem A.6. For all v, w the module Mun
v,w :“ H0pX torpvq ˆ

Wpwq, ωκun:
w p´Dqq is a projective OWpwq-module, and for all κ P Wpwq,

the specialisation map

Mun
v,w,cusp ÝÑ Mκ

v,w,cusp,

is surjective. Moreover HipX torpvq ˆ Wpwq, ωκun:
w p´Dqq vanishes for i ą 0.

B Families and triangulations

In this appendix we generalise the tools used in [BC09] to prove the theorem
in Section 10. Fortunately, this is mainly a matter of reformulation, as most of
the work is done in [KPX14]. From now on, we take E to be the eigenvariety
for pGqUp2, 1qE{Q and p a prime unramified in E, constructed in Section 9 (see
also [Bra16] for p split in E and [Her19] for p inert not equal to 2), which is
3-dimensional or its variant with weight k2 P Z fixed, which coincide with the
base change by

WOˆ ãÑ W ,

which is 2-dimensional. Automorphically, the second construction ”fixes the
central character” (which can ”move” in the three dimensional eigenvariety, but
keeping its polarisation ; in particular even in the 3-dimensional eigenvariety,
we can’t twist automorphic forms by a power of the norm character). In any
case we always have Z Ă E a strongly Zariski-dense subset consisting of classical
automorphic forms of integral (= algebraic) weight. This space is not dense
for the analytic topology, as it is already the case in W . We can define Z la

the subset of E of classical automorphic forms possibly with level at p, and
locally algebraic weight-character κ P W . Z doesn’t accumulate at Z la, and
as if p| Condpχq, we will only have a point y P Z la corresponding to the
automorphic representation πnpχq of Section 10, we first need to enlarge a
bit Z 31.

31We could actually prove directly the following result on all Zla, and even the crysta-
bellianity of these representations, by extending results of [BPS16, Bij16] for all classical
modular forms with Nebentypus, as it is done in [PS17]. But the following will be enough
for us.
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Proposition B.1. There exists Z 1 Ă Z la, which accumulates at every point of
Z la, such that for all z P Z 1, we have that the Sen polynomial of ρz is killed by

3ź

i“1

pT ´ wtipzqq.

Proof. Let z P Z la. In particular, there exists w, ε such that z P Ew,ε in
the notations before Theorem 9.5. This Ew,ε is affinoid. Thus, by [BC09]
Lemma 7.8.11, there exists g : E 1

w,ε ÝÑ Ew,ε such that we have an actual
representation of G “ GE,S on a coherent torsion free sheave over E 1

w,ε. We can
then apply [KPX14] Definition 6.2.11 or [BC09] p125 to have a Sen operator
in family over E 1

w,ε. But Z is Zariski dense in Ew,ε thus as is its pullback

Z
1alg in E 1

w,ε. Moreover, there is Y Ă E 1
w,ε Zariski open and dense, on which

Z 1
Y “ Y X Z

1alg is Zariski dense, with ρz “ ρgpzq for all z P Y . Thus for all

z P Y X Z
1alg, we have that the Sen operator is killed by

3ź

i“1

pT ´ wtipzqq.

By density, this is true for all x P E 1
w,ε. Thus, for all y P Z 1

Y “ g´1pZ laqXY , the
Sen operator of ρy “ ρgpyq is killed by the same polynomial. Using Z 1 “ gpZ 1

Y q
we get the result.

By Proposition 10.21 there exists a point y P E , whose (semi-simplified) Galois
representation is 1 ‘ χ ‘ ε and its refinement is σ (see definition 10.16). Let
A “ OE,y be the rigid analytic local ring at y. We want to study this ring and
the pseudo-character T at A. By [BC09] Theorem 1.4.4 and Lemma 1.8.3 for
S “ ArGs{KerT , we choose idempotents eε, eχ, e1 that are compatible with
the involution τ given by i ÞÑ iKp1q. We thus have a generalized matrix algebra
(GMA) of the form ¨

˝
A Aε,χ Aε,1
Aχ,ε A Aχ,1
A1,ε A1,χ A

˛
‚

This defines ExtT pi, jq and hi,j “ dimExtT pi, jq for all i ‰ j P t1, ε, χu. In the
end, we want to study Itot the total reducibility locus and this GMA.
On A{Itot, we have pseudo-characters of dimension 1 (i.e. actual characters)

Tj : G “ GE,S ÝÑ A{Itot, j P tε, 1, χu,

such that Tj b A{mA “ Tj b kpyq “ j. From now on fix I Ą Itot a cofinite
length ideal.

Lemma B.2. The Sen operator of Tj is killed by the polynomial

3ź

i“1

pT ´ wtiq P A{IrT sΣ.
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Proof. Let y P E . As remarked, the set Z 1 of B.1 accumulates at y. Fix
j P t1, χ, εu and denote S “ ArGs{KerT . There exists M a S-module, of
finite type as A-module such that MK “ K3 and with an exact sequence

0 ÝÑ K ÝÑ M{IM ÝÑ Tj ÝÑ 0,

such that K as a Jordan-Holder sequence with all subquotient isomorphic to Ti
for i ‰ j (see [BC09] Theorem 1.5.6 and Lemma 4.3.9). Thus, it suffices to
prove that M{IM as its Sen operator killed by the previous polynomial. But
by [BC09] Lemma 4.3.7 (and because Z 1 accumulates at y) we can find U Ă E

an affinöıd open containing z, in which Z 1 is Zariski dense, together with M

a coherent torsion-free OU -module endowed with an action of G such that
MpUq b A » M as ArGs-module, and M bOpUq FracpOpUqq is free of rank 3,
semisimple as G-module and trace T bOpXq OpUq. By generic semi-simplicity
and generic flatness, there exists F Ă U a Zariski closed subspace such that
for all x P U zF , My “ Mss

y “ ρy. We can change Z 1 by Z 1 X pUzF q,
which is still Zariski dense in U . Denote by ϕ the Sen operator of DSenpMq
(or B “ EndOpUqpMpUqq see [KPX14] Definition 6.2.11 or [BC09] proof of
Lemma 4.3.3). For all z P Z 1, ϕz is killed by

P “
3ź

i“1

pT ´ wtipzqq,

by Proposition B.1, and as Z 1 is Zariski dense, and OpUq is reduced we get
that P kills ϕ on U , and reducing to A{I we get the result.

Fix the bijection between t1, 2, 3u and t1, χ, εu corresponding to the refine-
ment 10.16, i.e.

1 ÞÑ 1
2 ÞÑ χ

3 ÞÑ ε

Thus it makes sense to speak about Ti, i P t1, 2, 3u.
Lemma B.3. For all i, the A{I-module

H0

ϕ,ΓpDrigpTiqpδ´1

i qq

is free of rank 1.

Proof. We will consider inductively the pseudocharacters T , Λ2T and detT
whose reduction is respectively 1 ‘ χ ‘ ε, χ ‘ ε ‘ εχ and εχ. In particular
they are multiplicity free. Recall that for I Ą Itot, T splits, thus also Λ2T , we
denote T 1

i “ T1 . . . Ti for i “ 1, 2, 3. By induction on i, it is enough to prove
the result for T 1

i . In particular for all i, we can find M a S-module, finite type
over A, of generic rank 3 (if i “ 1, 2, rank 1 and M “ T 1

3 if i “ 3) such that
([BC09] Theorem 1.5.6 and Lemma 4.3.9).

0 ÝÑ K ÝÑ M{I ÝÑ T 1
i ÝÑ 0,
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with Kss reducing to a direct sum of
śi
k“1

Tjk ‰ T 1
i . As δippq “ Fi and at y

these values are

p1, χppq, p´1q,

which are distincts (|χppq| “ p´1{2), the slope of δ1...δi is distinct from the one
appearing in K. In particular

H0

ϕ,ΓpDrigpKpδ1...δiq´1qq “ t0u.

Thus, it suffices to show that H0
ϕ,ΓpDrigpMpδ1...δiq´1qqq is free of rank 1 for

every cofinite ideal J of A “ Oy. But this is assured by [KPX14] Theo-
rem 6.3.9 and [BC09] Theorem 3.3.3 and Lemma 3.3.9. Indeed, first, by [BC09]
Lemma 4.3.7 we can find U Ă E containing y an affinoid together with a co-
herent torsion free module M with an action of G “ GE,S reducing to M on
A “ Oy, which is generically free of rank 3 (or 1), and such that the trace of G

on M coincides with T 1
i bOE

OpUq. Denote δ
piq
1

“ δ1 . . . δi, and H
0
ϕ,ΓpDrigp´qq

is a functor as in [BC09] Section 3.2.2. Moreover, by [BC09] Lemma 3.4.2

and [KPX14] Theorem 6.3.9 (applied to M1_ and δ “ δ
piq,´1

1
) there exists a

birational morphism (see [BC09] Section 3.2.3)

π : U 1 ÝÑ U,

such that the strict transform M1 of M on U 1 is locally free, and moreover we
have a map

DrigpM1_q ÝÑ RU 1 pδpiq,´1

1
q b L,

whose kernel is a ϕ,Γ-module of rank 2 (is trivial if i “ 3) and which is gener-
ically surjective. Moreover it is proven in the course of the proof of [KPX14]
Theorem 6.3.9 that H0

ϕ,ΓpDrigppM1_q_qpδ´1

1
qq is locally free of rank 1. In par-

ticular, as these sheaves are coherent, for all y1 P π´1pyq, and all cofinite length
ideal J 1 of Oy1 ,

H0

ϕ,ΓpDrigpM1pδpiq,´1

1
q b Oy1 {J 1qq,

is free of rank 1. Indeed, we have the commuting diagram

H0
ϕ,ΓpDrigpM1qpδ´1

1
qq b Oy1 {I 1 H0

ϕ,ΓpDrigpM1qpδ´1

1
q b Oy1 {I 1q

H0
ϕ,ΓpDrigpM1qpδ´1

1
qq b Oy1 {my1 H0

ϕ,ΓpDrigpM1qpδ´1

1
q b Oy1 {my1qi

f red

where the map i is injective ([KPX14] eq 6.3.9.1). As the map f is non-zero,
the map red is also non-zero. Thus by [BC09] Lemma 3.3.9,

H0

ϕ,ΓpDrigpM1qpδ´1

1
q b Oy1 {I 1q
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is free of rank one over Oy1 {I 1. Thus by [BC09] Proposition 3.2.3 and
Lemma 3.3.9, for all cofinite length ideal J of Oy “ A, we have that

H0

ϕ,ΓpDrigpMqpδpiq,´1

1
q b Oy{Jqq,

is free of rank 1 over A{J .

Lemma B.4. Suppose that D is a ϕ,Γ-module of rank 1 on an artinian ring A,
and with Hodge-Tate weight k “ pkσqσPΣ P ZΣ. Fix

δ : Kˆ ÝÑ Aˆ,

and denote ptσqσPΣ P ZΣ its Hodge-Tate weights. Suppose that

H0

ϕ,ΓpDpδ´1qq,

is free of rank 1 over A. Then D “ RApδ1q with δ1 “ δ
ś
σ x

kσ´tσ
σ .

Proof. Let D “ RApδ1q and by hypothesis we have a injective morphism of
RA-modules

Rpδq ãÑ D “ RApδ1q.
Let v be the image of a basis of Rpδq, and denote by e a basis of D. Thus,
D1 “ RAv is a sub-ϕ,Γ-module of D, isomorphic to RApδq. Reducing modulo
mA, by [KPX14] Corollary 6.2.9 we have that D1 “ ś

σ t
lσ
σ D for some lσ P Z.

But Γ acts on v as δpγq. Moreover, using the previous equality, it also acts
on v by

γv “
ź

σ

LTσpγqlσδ1pγqv.

Thus, δ|Γ “ p
ś
σ xσδ

1q|Γ, which by hypothesis gives

lσ “ tσ ´ kσ.

Consider M “
ś
σ t

´lσ
σ RAv. Then M is saturated in D1, thus D1 “ M . But as

RAv » RApδq, M » Rpś
σ x

´lσ
σ δq, thus, by [KPX14] Lemma 6.2.13,

δ1 “ δ
ź

σ

xkσ´tσ
σ .

Recall ([BC09] Lemma 8.27, that we have an injective map

ιT,i,j : ExtT pi, jq ãÑ ExtkrGE,Sspi, jq.

Theorem B.5. Let ρ : G ÝÑ GLdi`dj pA{Iq an extension of T1 by Ti inside
the image of ιT,i,1. Then, if p splits, for ‹ “ v, v

Dcrys,‹pρpδ´1

1,|Γqqϕ“F1
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is free of rank 1 over A{I. If p is inert,

Dcrys,τpρpδ´1

1,|Γqqϕ2“F1

is free of rank 1 over A{I.

Proof. Let’s do the proof at v when p splits. Recall that 1 is the only con-
stituent of ρy which has 1 “ pwt1F1 as eigenvalue for its Frobenius. By [BC09]
Theorem 1.5.6 (2), there is an exact sequence,

0 ÝÑ K ÝÑ pM1{IM1 ‘ ρiq ÝÑ ρ ÝÑ 0,

with Kss being a direct sum of Tk, k ‰ 1. Thus, DcryspKpδ´1

1|Γqqϕ“F1 “
DcryspTipδ´1

1|Γqqϕ“F1 “ t0u. In particular, it is enough to prove that

DcryspM1pδ´1

1|Γqqϕ“F1

is free of rank 1 over A. We will use the same devissage as in B.3. By [BC09]
Lemma 4.3.9, there exists M “ M1 ‘ N1 such that MK “ K3 a sub-ArGs
module of K3 of finite type over A. Extending this module to an affinoid
U Ă E containing y, and using the accumulation of Z 1 at y (Proposition B.1),
we can find a birational morphism π : U 1 ÝÑ U and M1 the strict transform
of M, locally free on U 1, for which the conclusion of [KPX14] Theorem 6.3.9
for pM1q_ and δ´1

1
applies. In particular

H0

ϕ,ΓpDrigpM1qpδ´1

1
qq

is locally free of rank one on U 1.
As in Lemma B.3 we can specialize at Oy1 for every y1 above y P U . But we
have the commuting diagram

H0
ϕ,ΓpDrigpM1qpδ´1

1
qq b Oy1 {I 1 H0

ϕ,ΓpDrigpM1qpδ´1

1
q b Oy1 {I 1q

H0
ϕ,ΓpDrigpM1qpδ´1

1
qq b Oy1 {my1 H0

ϕ,ΓpDrigpM1qpδ´1

1
q b Oy1 {my1qi

f red

where the map i is injective ([KPX14] eq 6.3.9.1), the map f is non-zero, thus
the map red is also non-zero. By [BC09] Lemma 3.3.9,

H0

ϕ,ΓpDrigpM1qpδ´1

1
q b Oy1 {I 1q

is free of rank one over Oy1 {I 1 for all y1 P π´1pyq and I 1 of cofinite length.
Thus the hypothesis of [BC09] Proposition 3.2.3 are satisfied, and by [BC09]
Lemma 3.3.9 again,

H0

ϕ,ΓpDrigpM bA{Iqpδ´1

1
qq
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is free of rank 1. In particular we have an injection of RA{I -modules,

0 ÝÑ RA ÝÑ DrigpM bA{Iqpδ´1

1
q ÝÑ Q ÝÑ 0.

Moreover, as the reduction to A{mA of DcryspMpδ´1

1
qqϕ“1 is of rank 1, us-

ing the functor Dcris, we have that Dcrisp1q Ă DcrispMpδ´1

1
qqϕ“1 and thus

DcryspQqϕ“1 “ t0u. In particular DcryspMpδ´1qqϕ“1 “ Dcrysp1q is free of
rank 1 over A, and thus

DcryspMpδ1|Γq´1qϕ“F1

is free of rank 1 over A. The same proof remains valid in the case where p
is inert, as 1 “ pwt1F1 is also the first and only constituent of ρy, and by
duality in the inert case, as ρy,v “ ρ_

y,vε
´1, whose refinement at y is given by

εppq´1p1, χvppq, εppqq_ “ p1, χvppq, εppqq, thus starts by 1, thus the same proof
as for v also applies for v.
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Compatibilité entre les correspondances de Langlands locales aux
places divisant l “ p. II, Ann. Sci. Éc. Norm. Supér. (4) 47
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1970/71, Exp. No. 389, 123–165. Lecture Notes in Math., 244,
Springer, Berlin, 1971.

[EGA] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude
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