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Abstract. Paige loops, simple non-associative Moufang loops, were
constructed by Paige as quotients of the set of Zorn vector-matrices
of unit norm under split octonion multiplication. In this paper, we
show that the same quotient set sustains two related simple quasi-
group structures, in which the split octonion multiplication is re-
placed with multiplication from para-octonion and Okubo algebras.
The new quasigroups are known respectively as the para-Paige and
Okubo quasigroups. We study the properties of these simple quasi-
groups: their multiplication groups, power structure, generating sets,
subquasigroups, and automorphisms. Notably, examination of the
power structure in the Okubo quasigroups leads to analysis of a class
of hitherto unstudied identities holding in Moufang loops.
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1 Introduction

LetK be a commutative unital ring. Consider the split octonion algebra overK
realized, for example, by the algebra Zorn(K) of Zorn vector-matrices [14, 35],
cf. Section 4. The underlying free K-module of rank 8 carries three algebra
structures of interest:

• The original Zorn vector-matrix multiplication ·, giving rise to the split
octonion algebra Zorn(K);
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• The multiplication x ◦ y = x · y, giving rise to the para-Zorn algebra
PZorn(K) = (Zorn(K), ◦) whose properties are closely related to those of
the split octonion algebra [5, 8, 26];

• The multiplication x ∗ y = xρ · xρ2, giving rise to the Okubo algebra
Okubo(K) = (Zorn(K), ∗) [5, 8, 23, 24]. Here, ρ is a certain order-3
automorphism of the split octonion algebra Zorn(K).

All three of these nonassociative algebras come equipped with a norm that
permits composition. Consequently, the elements of norm 1 form a subset
closed under multiplication, in fact a quasigroup, cf. Subsection 1.1.

In this paper we are particularly interested in the quasigroups of norm 1 el-
ements in the three algebras, and the quotients of these quasigroups by the
congruence identifying x with −x. For a field F , the quotient construction
yields the Paige loops PSL1+3(F ) from Zorn(F ) [25], the para-Paige quasigroups
PP(F ) from PZorn(F ), and the Okubo quasigroups OQ(F ) from Okubo(F ).
(The subscript 1 + 3 in this notation reflects the structure of the Zorn vector-
matrices, with scalars on the diagonal and 3-dimensional vectors off the diag-
onal.)

Although the three quasigroups PSL1+3(F ), PP(F ) and OQ(F ) are isotopic,
their properties are quite different. This is particularly true for the Okubo
quasigroups OQ(F ). We obtain many new results for PP(F ) and OQ(F ). The
paper is organized as follows:

In Section 2 we show that quasigroups isotopic to simple loops are simple. The
argument is not difficult, and we present it in full detail since it does not seem
to be available in the literature.

In Section 3 we develop an abstract and purely multiplicative notion of a norm-
supporting triple that is applicable for all three of the above algebras. In this
setting, elements of norm 1 form a semisymmetric quasigroup, while elements
whose norm is invertible form a weakly semisymmetric magma. Weak semisym-
metry naturally explains the fifth-degree identity discussed by Petersson in [26].

The three algebras are defined in Section 4. For Okubo algebras we use two
approaches: directly in terms of a canonical basis, and then as an isotope of
the Zorn algebra.

In Section 5 we introduce the three quasigroups of norm 1 elements modulo
the normal subgroup {±1}. Using the results of Section 2, we show that they
are simple. (In the finite case, an alternative approach to the simplicity may
be based on the character tables discussed in Section 9.)

While PSL1+3(F ) is power-associative and diassociative (and indeed, a Mo-
ufang loop), PP(F ) is power-associative only if |F | ∈ {2, 3} and it is never
diassociative. The Okubo quasigroups OQ(F ) are never power-associative. We
present these results in Section 6. The behavior of powers and mono-generated
subquasigroups in Okubo quasigroups turns out to be very delicate, depending
on certain consequences of the Moufang identities that we present here for the
first time.
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In Section 7 we recall results about automorphism groups of Paige loops, and
transfer them to the setting of para-Paige quasigroups. We prove that the au-
tomorphism groups Aut(PSL1+3(F )) and Aut(PP(F )) coincide for all fields.
In particular, Aut(PP(F )) is the split extension G2(F ) ⋊ Aut(F ) when F
is a perfect field. Furthermore, we show that linear automorphisms of the
three algebras induce multiplicative automorphisms of the three quasigroups
of norm 1 elements modulo the normal subgroup {±1}, and that this assign-
ment is injective. Finally, we compute the automorphism groups Aut(OQ(2))
and Aut(Okubo(2)).
Multiplication groups of the three types of quasigroups are described in Sec-
tion 8, again taking advantage of the known result that for Paige loops, the
multiplication group is D4(F ). We show that Mlt(PP(F )) = D4(F ).2 =
Mlt(OQ(F )). Furthermore, as observed in Section 9, the character tables of
PSL1+3(F ), PP(F ) and OQ(F ) coincide.
The rank r(Q) of a quasigroup Q is the smallest cardinality of a generating set
of Q. It is known that r(PSL1+3(q)) = 3. We prove that r(PP(q)) = 3 as well.
In fact, one may choose a 3-generator subset that simultaneously generates
PSL1+3(q) and PP(q). We prove that r(OQ(q)) = 2 when q 6≡ 1 (mod 3), and
that 2 ≤ r(OQ(q)) ≤ 3 when q ≡ 1 (mod 3).
In Section 11 we study Hasse diagrams modulo the action of the automorphism
group that allow us to illustrate complicated posets of subalgebras by compar-
atively simple diagrams. Then in Section 12 we examine the subloop structure
of PSL1+3(2), and calculate the subquasigroup structure of PP(2) and OQ(2).
Open problems are collected in Section 13.

1.1 Preliminaries

A set Q with binary operations ∗, /, \ is a quasigroup (Q, ∗, /, \) if the identities

(x ∗ y)/y = x, (x/y) ∗ y = x, x\(x ∗ y) = y, x ∗ (x\y) = y

hold for all x, y ∈ Q. Equivalently, (Q, ∗) is a quasigroup if the translations

L(x) : Q→ Q; y 7→ yL(x) = x ∗ y, R(x) : Q→ Q; y 7→ yR(x) = y ∗ x

are bijections of Q, in which case we have x\y = yL(x)−1 and x/y = xR(y)−1.
We will also use the notation L∗(x), R∗(x) for translations if we need to keep
track of the multiplication operation. The default multiplication operation will
be denoted by · with the usual convention that xy means x · y. Moreover, if
we use juxtaposition, ·, / and \ in the same expression, then we assume that
juxtaposition is more binding than the divisions which are in turn more binding
than ·. For instance x\y · uv/w stands for (x\y) · ((u · v)/w).
The symmetric group on a set Q (the group of bijections Q → Q) is denoted
by Q!. The multiplication group of a quasigroup (Q, ·, /, \) is the subgroup
Mlt(Q) = 〈Lx, Rx | x ∈ Q〉Q! of Q! generated by all translations.
A quasigroup (Q, ·, /, \) is a loop if it possesses an identity element, that is, an
element e ∈ Q such that ex = x = xe holds for all x ∈ Q.
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The inner mapping group Inn(Q) of a loop Q is the stabilizer of the identity
element e ∈ Q in Mlt(Q).
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2 Isotopes of simple loops

In this brief section we observe that quasigroup isotopes of simple loops are
themselves simple. Recall that a “universal” algebra A (in the sense of [27,
Appendix B]) is simple if it is not the domain of a nonconstant noninjective
homomorphism. Also recall that a group G acts primitively on a set A if it
acts transitively on A and the only partitions of A preserved by the action are
{{x} | x ∈ A} and {A} [7].

Proposition 2.1 ([29, Corollary 2.1]). A quasigroup Q is simple if and only
if the multiplication group Mlt(Q) acts primitively on the set Q.

Let (Q1, ·), (Q2, ∗) be quasigroups. A triple (α, β, γ) of bijectionsQ1 → Q2 is an
isotopy from (Q1, ·) onto (Q2, ∗) if for every x, y ∈ Q1 we have xα∗yβ = (x·y)γ.
An isotopy (α, β, γ) on the same set is principal if γ = 1. By a result of
Bruck (see for instance [27, p.5]), every isotopy from (Q1, ·) onto (Q2, ∗) is a
composition of a principal isotopy from (Q1, ·) onto some quasigroup (Q1, ◦)
and an isomorphism from (Q1, ◦) onto (Q2, ∗).

Lemma 2.2. Suppose that (α, β, 1) is a principal isotopy from a quasigroup Q
onto a loop L. Then Mlt(Q) = 〈Mlt(L), α, β〉.

Proof. Let Q = (X, ·) and L = (X, ◦). Since xα ◦ yβ = x · y, we have L(x) =
βL◦(xα) and R(y) = αR◦(yβ). Then

Mlt(Q) = 〈L(x), R(x) | x ∈ X〉

= 〈βL◦(xα), αR◦(xβ) | x ∈ X〉 = 〈βL◦(x), αR◦(x) | x ∈ X〉

because α, β are bijections of X .
Let e be the identity element of the loop L. Then L◦(e) = R◦(e) = 1 and
therefore α = αR◦(e) and β = βL◦(e) are elements of Mlt(Q). But then
L◦(x) = β−1(βL◦(x)) and R◦(x) = α−1(αR◦(x)) are elements of Mlt(Q) for
every x ∈ X and we have 〈Mlt(L), α, β〉 ≤ Mlt(Q). Conversely, it is clear that
L(x), R(x) ∈ 〈Mlt(L), α, β〉 and hence Mlt(Q) ≤ 〈Mlt(L), α, β〉.

Theorem 2.3. Let Q be a quasigroup isotopic to a simple loop. Then Q is
simple.
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Proof. Let Q = (X, ·) be isotopic to a simple loop K. Then there is a quasi-
group L = (X, ◦) isomorphic to K, together with bijections α, β of X , such
that (α, β, 1) is a principal isotopy from Q onto L. In particular, L is a simple
loop. By Lemma 2.2, Mlt(Q) = 〈Mlt(L), α, β〉. By Proposition 2.1, Mlt(L) acts
primitively on X , so Mlt(Q) also acts primitively on X , being a supergroup of
Mlt(L). Then applying Proposition 2.1 again, we see that Q is simple.

Example 2.4. Let L be the underlying abelian group of GF(22). Let Q be the
quasigroup defined on GF(22) by the multiplication x · y = x + ωy, where ω
is a primitive element of GF(22). Then although L is isotopic to the simple
quasigroup Q, the loop L is not simple.

3 Semisymmetry

3.1 Invariant products and forms

Definition 3.2 establishes a purely multiplicative approach to ring-theoretic
topics considered by Okubo and Osborn in [24]. A magma is a set with a
binary operation. A monoid is an associative magma with an identity element.
If (M, ·, 1) is a monoid then a set X with a monoid homomorphism from M to
the monoid of all functions X → X is an M -set. (For more on M -sets, see [30,
I.1].) A quasigroup is semisymmetric if it satisfies the identity y(xy) = x. (For
a discussion of semisymmetry in quasigroups, see [27, §1.4].)

Proposition 3.1 ([27, Corollary 1.1 and Proposition 1.2]). If (Q, ·) is a magma
satisfying y(xy) = x then it is a semisymmetric quasigroup. The following
identities are equivalent in quasigroups: y(xy) = x, (yx)y = x, x\y = yx,
x/y = yx.

Definition 3.2. A triple (A,M,N) is called norm-supporting if

• A = (A, ·) is a magma,

• (M, ·, 1) is a commutative submonoid of (A, ·),

• A is anM -set with respect to the operations (x,m) 7→ x·m, where x ∈ A,
m ∈M ,

• A is M -invariant in the sense that (xm)(yn) = (xy)(mn) for every x,
y ∈ A and m, n ∈M ,

• N : A×A→ A satisfies N(x, x) ∈M for every x ∈ A,

• N is M -invariant in the sense that N(xm, yn) = N(x, y)mn for all x,
y ∈ A and m, n ∈M .

The induced map N : A→M ;x 7→ N(x, x) is called a norm.
A norm-supporting triple (A,M,N) (or just the norm N , if A and M are clear
from the context)
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• is semisymmetric if y(xy) = (yx)y = xN(y) holds for all x, y ∈ A,

• is associative if N(xy, z) = N(x, yz) holds for all x, y, z ∈ A,

• permits composition if N : A→M is a magma homomorphism.

Theorem 3.3. Let (A,M,N) be a norm-supporting triple.

(a) If N is associative and semisymmetric, it permits composition.

(b) If N permits composition, then the sets

SQ(A) = {x ∈ A | N(x) = 1},

Q(A) = {x ∈ A | N(x) is invertible in M}

are submagmas of (A, ·).

(c) If N permits composition and is semisymmetric, then SQ(A) is a
semisymmetric quasigroup.

(d) If N permits composition and is semisymmetric, then Q(A) is a quasi-
group, and for every x ∈ Q(A) the translations L(x), R(x) are bijections
of A.

Proof. (a) For elements x, y of A, one has

N(xy) = N(xy, xy) = N(x, y(xy)) = N(x, xN(y)) = N(x)N(y)

by respective application of the associativity, semisymmetry, and the M -
invariance of N .

Part (b) follows on noting that SQ(A) is the preimage of the submagma {1}
ofM under the magma homomorphismN : A→M , whileQ(A) is the preimage
of the group M∗ of invertible elements of M .

For (c), by semisymmetry ofN , the magma SQ(A) satisfies the identity y(xy) =
xN(y) = x, and thus SQ(A) is a semisymmetric quasigroup by Proposition 3.1.

Finally, for any x ∈ Q(A) and y ∈ A, define x\y = yxN(x)−1 and y/x =
xyN(x)−1. Note that x\y, y/x are elements of Q(A) if y ∈ Q(A). In any case,
by semisymmetry of N we have

x(x\y) = x(yxN(x)−1) = x(yx)N(x)−1 = yN(x)N(x)−1 = y,

x\(xy) = (xy)xN(x)−1 = yN(x)N(x)−1 = y

and, similarly, (y/x)x = y, (yx)/x = y. This proves that L(x), R(x) are
bijections of A, and that Q(A) is a quasigroup.
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3.2 Weak semisymmetry

In general, the quasigroups Q(A) that are exhibited in Theorem 3.3(d) are not
semisymmetric. Nevertheless, they do satisfy a certain identity.

Definition 3.4. Let (Q, ·) be a quasigroup. For each element q of Q, consider
the right bimultiplication

R(q)L(q) = B(q) : Q→ Q;x 7→ q(xq) .

Then the quasigroup (Q, ·) is said to be weakly right semisymmetric if

B : Q→ Q!

is a magma homomorphism from (Q, ·) to the symmetric group Q!. Dually,
(Q, ·) is said to be weakly left semisymmetric if the mapping q 7→ L(q)R(q) is
a magma homomorphism from Q to Q!. Then (Q, ·) is weakly semisymmetric
if it is weakly right and left semisymmetric.

The weak right semisymmetry condition of Definition 3.4 may be written in
the explicit form

z · (y · xy)z = yz · x(yz) (3.1)

of a magma identity, expressing the equation B(y)B(z) = B(yz) for elements
y, z of Q. Note that (3.1) is the opposite of the fifth-degree identity discussed
by Petersson [26, (I)]. Thus that identity may be interpreted in the current
terms as expressing weak left semisymmetry.

Proposition 3.5. Let (A,M,N) be a norm-supporting triple and suppose
that N permits composition and is semisymmetric. Then the quasigroups Q(A)
exhibited in Theorem 3.3(d) are weakly right semisymmetric.

Proof. For elements x, y, z of Q(A), one has

z · (y · xy)z = xN(y)N(z) = xN(yz) = yz · x(yz)

as required.

Example 3.6. The quasigroup with multiplication table

2 4 1 6 3 8 5 7

4 3 7 1 8 2 6 5

1 7 3 5 4 6 2 8

3 1 5 2 7 4 8 6

6 8 4 7 2 5 1 3

8 2 6 4 5 3 7 1

5 6 2 8 1 7 3 4

7 5 8 3 6 1 4 2

is weakly right semisymmetric, but not weakly left semisymmetric. The exam-
ple was found with the finite-model builder Mace4 [18].
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4 Zorn vector matrices

4.1 The Zorn vector-matrix algebra Zorn(K)

Suppose that K is a commutative unital ring. A Zorn vector-matrix over K is
a 2× 2 matrix

z =

[
α a

b β

]
(4.1)

in which α and β are scalars from K, while a and b are 3-dimensional row
vectors over K, elements of the free module K3 of rank 3. A Zorn scalar is a
vector-matrix of the form [

α 0
0 α

]

for an element α of the ring K. In particular, the Zorn identity matrix is the
vector-matrix

I =

[
1 0
0 1

]
.

For a Zorn-vector matrix (4.1) we introduce the Zorn conjugate z, transpose zT

and conjugate transpose z∗ = zT as follows:

z =

[
β −a

−b α

]
, zT =

[
α b

a β

]
, z∗ =

[
β −b

−a α

]
.

The norm or Zorn determinant of the Zorn vector-matrix (4.1) is the ring
element

|z| =

∣∣∣∣
α a

b β

∣∣∣∣ = αβ − a · b (4.2)

defined using the usual scalar product

a · b = [a0 a1 a2] · [b0 b1 b2] = a0b0 + a1b1 + a2b2

of row vectors.

Definition 4.1. The Zorn vector-matrix algebra Zorn(K) over the ring K is
the free K-module of rank 8 consisting of all the Zorn vector-matrices over K.
The module operations are defined componentwise, while the product of two
Zorn vector-matrices is given as

[
α a

b β

]
·

[
γ c

d δ

]
=

[
αγ + a · d αc+ δa− b× d

γb+ βd+ a× c b · c+ βδ

]
(4.3)

using the usual vector or cross product

[a0 a1 a2]× [b0 b1 b2] = [a1b2 − a2b1 a2b0 − a0b2 a0b1 − a1b0]

of row vectors.
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The ring K is identified with the subalgebra of Zorn scalars; indeed
[
λ 0
0 λ

]
·

[
α a

b β

]
=

[
λα λa
λb λβ

]
=

[
α a

b β

]
·

[
λ 0
0 λ

]
(4.4)

for λ in K.
There is a bilinear map

N : Zorn(K)× Zorn(K) → Zorn(K); (u, v) 7→ u · v.

Straightforward computation establishes the following result.

Lemma 4.2. Consider u, v ∈ Zorn(K).

(a) u = u and u · v = v · u,

(b) (uT )T = u and (u · v)T = vT · uT ,

(c) u∗ = uT = uT , (u∗)∗ = u and (u · v)∗ = u∗ · v∗.

Recall the Moufang identities

(x · yz)x = xy · zx,

x(yz · x) = xy · zx,

(xy · x)z = x(y · xz),

(xy · z)y = x(y · zy).

Proposition 4.3 ([25, Lemma 3.2]). The triple (Zorn(K),K,N) is norm-
supporting (cf. Definition 3.2). The Zorn norm | | is given by |u| = N(u, u) =
u · u = u · u and it permits composition. The magma (Zorn(K), ·) satisfies the
Moufang identities.

It can be checked directly that the identity

x(xy) = (xx)y = yN(x) = y(xx) = (yx)x (4.5)

holds in the Zorn vector-matrix algebra Zorn(K).
Let SL3(K) denote the group of (3× 3)-matrices over K having determinant 1.
Write A−T for the transposed inverse of an element A ∈ SL3(K). Then define
AZorn(K) or

A : Zorn(K) → Zorn(K);

[
α a

b β

]
7→

[
α a

b β

]A
=

[
α aA

bA−T β

]
. (4.6)

Using the identities a · b = aA · bA−T and (a× b)A = aA−T × bA−T (cf. [5,
Proposition 5.7]), it is straightforward to check that AZorn(K) is an automor-

phism of Zorn(K), uA = uA for every u ∈ Zorn(K), and A is an isometry of
(Zorn(K), | |). In particular,

ρ =



0 1 0
0 0 1
1 0 0


 ∈ SL3(K) (4.7)

induces an automorphism of Zorn(K). Note that ρ3 = I3 and ρ−T = ρ.
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4.2 The para-Zorn algebra PZorn(K) = (Zorn(K), ◦)

Definition 4.4. Let K be a commutative unital ring. Then the para-Zorn
algebra PZorn(K) = (Zorn(K), ◦) is given by the product

u ◦ v = u · v (4.8)

on the underlying module Zorn(K) of Zorn vector-matrices.

Proposition 4.5. Let K be a commutative, unital ring. Then the equation
[
α a

b β

]
◦

[
γ c

d δ

]
=

[
βδ + a · d −βc− γa− b× d

−δb− αd+ a× c b · c+ αγ

]

presents an explicit version of the para-Zorn product.
The triple (PZorn(K),K,N) is norm-supporting. The norm N is semisymmet-
ric, and it permits composition.

Proof. The formula follows by straightforward calculation. Note that m ◦ n =
m · n for scalar matrices m, n. It is then easy to show that (PZorn(K),K,N)
is norm-supporting. We have

y ◦ (x ◦ y) = y(x y) = y(yx) = xN(y)

by Lemma 4.2 and (4.5). Similarly,

(y ◦ x) ◦ y = (y x)y = (xy)y = xN(y),

proving that N is semisymmetric. Finally, since N(x) = N(x), we have N(x ◦
y) = N(x · y) = N(x)N(y) = N(x)N(y) by Proposition 4.3.

Proposition 4.6 ([5, Proposition 5.7]). Consider A ∈ SL3(K). The induced
map AZorn(K) of (4.6) is an automorphism of the para-Zorn algebra PZorn(K).

4.3 The split Okubo algebra Okubo(K) = (Zorn(K), ∗)

Let K be a commutative unital ring. We will construct the split Okubo algebra
Okubo(K) in two ways: first by defining an explicit multiplication and norm
on a canonical basis, and secondly by modification of the Zorn multiplication
on Zorn(K).

4.3.1 The canonical basis

Let e0 = [1 0 0 ], e1 = [0 1 0 ], e2 = [0 0 1 ] be the vectors constituting the
standard basis of K3. Then the Zorn vector-matrices

e∞ =

[
1 0
0 0

]
, e0 =

[
0 −e0
0 0

]
, e1 =

[
0 −e1
0 0

]
, e2 =

[
0 −e2
0 0

]
,

e∞′ =

[
0 0
0 1

]
, e0′ =

[
0 0
e0 0

]
, e1′ =

[
0 0
e1 0

]
, e2′ =

[
0 0
e2 0

]
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are said to constitute the canonical basis of Zorn(K) [5, p.426].
Consider the free K-module K8 over the 8-element set {ei | i ∈ I} for the index
set I = {∞,∞′, 0, 0′, 1, 1′, 2, 2′}. Define a so-called Okubo algebra structure
Okubo(K) = (K8, ∗) by the table

* e∞ e∞′ e0 e0′ e1 e1′ e2 e2′

e∞ e∞′ 0 0 −e2′ 0 −e0′ 0 −e1′
e∞′ 0 e∞ −e2 0 −e0 0 −e1 0
e0 −e1 0 e0′ 0 −e2′ 0 0 −e∞
e0′ 0 −e1′ 0 e0 0 −e2 −e∞′ 0
e1 −e2 0 0 −e∞ e1′ 0 −e0′ 0
e1′ 0 −e2′ −e∞′ 0 0 e1 0 −e0
e2 −e0 0 −e1′ 0 0 −e∞ e2′ 0
e2′ 0 −e0′ 0 −e1 −e∞′ 0 0 e2

of basic multiplications. (This is just [9, Table 1], written with a more com-
pact notation for the suffices analogous to the notation of [5, (5.11)], essen-
tially regarding a nonzero vector (a, b) from GF(3)2 as homogeneous coordi-
nates for a point a/b of the projective line of order 3, and adding a prime
if b = −1 or (a, b) = (−1, 0). In particular, Okubo(Z) is the algebra given
as OkuboZ in [9].) The construction of Okubo(K) is the object part of a
functor Okubo from the category CRing of commutative unital rings to the
category Rnag of (homomorphisms of) nonassociative nonunital rings, with
Okubo( ) = Okubo(Z) ⊗Z ( ).
Consider the bilinear form on Okubo(K) given by

N(x, y) = x∞y∞′ + x0y0′ + x1y1′ + x2y2′ (4.9)

for x =
∑

i∈I xiei and y =
∑

i∈I yiei. This form is associative, semisymmetric,
and K-invariant (cf. [9, (2.8)]). By Theorem 3.3, N permits composition.

4.3.2 Okubo algebras as isotopes of Zorn algebras

Proposition 4.7. Let K be a commutative unital ring.

(a) The product

u ∗ v = uρ ◦ vρ2 = uρ · vρ2, (4.10)

on Zorn(K), namely

[
α a

b β

]
∗

[
γ c

d δ

]
=

[
βδ + aρ · dρ2 −βcρ2−γaρ−bρ×dρ2

−δbρ−αdρ2+aρ×cρ2 bρ · cρ2 + αγ

]
,

offers an explicit version of the split Okubo algebra Okubo(K), with
N(u, v) = u · v for u, v ∈ Zorn(K).

(b) The mapping ρ is an automorphism of Okubo(K).
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(c) The triple
(
Okubo(K),K,N

)
is norm-supporting.

(d) The norm N is semisymmetric, associative, and permits composition.

Proof. Part (a) is [5, pp.427–8].

(b) By Proposition 4.6, (x ∗ y)ρ = (xρ ◦ yρ2)ρ = xρ2 ◦ y = xρ ∗ yρ.

(c) The triple (Okubo(K),K,N) is norm-supporting since m ∗ n = m · n for
scalar matrices.

(d) To establish semisymmetry of N in Okubo(K), recall that ρ is an automor-
phism of PZorn(K) by Proposition 4.6, N is semisymmetric in PZorn(K) by
Proposition 4.5, and observe that N(y) = N(yρ). Then

y ∗ (x ∗ y) = yρ ◦ (xρ ◦ yρ2)ρ2 = yρ ◦ (x ◦ yρ) = xN(yρ) = xN(y),

(y ∗ x) ∗ y = (yρ ◦ xρ2)ρ ◦ yρ2 = (yρ2 ◦ x) ◦ yρ2 = xN(yρ2) = xN(y).

Associativity N(x, y ∗z) = N(x∗y, z) can be checked directly. The fact that N
permits composition is then immediate from Theorem 3.3, or we calculateN(x∗
y) = N(xρ ◦ yρ2) = N(xρ)N(yρ2) = N(x)N(y).

We conclude this section with two useful formulas for Okubo(K).

Corollary 4.8 ([9, (5.1)]). The formula

u · v = (I ∗ u) ∗ (v ∗ I) (4.11)

holds for u, v ∈ Zorn(K).

Proof. Note that
I ∗ u = Iρ · uρ2 = I · uρ2 = uρ2 (4.12)

and
v ∗ I = vρ · Iρ2 = vρ · I = vρ.

Then (I ∗ u) ∗ (v ∗ I) = uρ2 ∗ vρ = uρ2ρ · vρρ2 = u · v follows.

Corollary 4.9. The formula

I ∗ (I ∗ u) = uρ (4.13)

holds for u ∈ Zorn(K).

Proof. The equation I ∗(I ∗u) = uρ2ρ2 = (uρ2)ρ2 = uρ is obtained from (4.12).

5 Quasigroups of unit norm elements

Throughout this section, let F be a field.
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5.1 Paige loops PSL1+3(F )

Following Paige [25], let SL1+3(F ) = SQ(Zorn(F )) be the loop of elements of
norm 1 in the Zorn algebra Zorn(F ), and let PSL1+3(F ) be the quotient of
SL1+3(F ) by the normal subloop {±I} = {I,−I}. We call PSL1+3(F ) the
Paige loop over F .
If the field F has finite order q, then PSL1+3(F ) is also written as PSL1+3(q).
When no confusion is possible, we will identify the elements of PSL1+3(F )
with the elements of SL1+3(F ); that is, we will write u ∈ PSL1+3(F ) for u ∈
SL1+3(F ) rather than the formally correct ±u = u · {±I} ∈ PSL1+3(F ).

Proposition 5.1 ([25]). For each field F , the Paige loop PSL1+3(F ) is simple.

For a quasigroup Q, consider the commutant

C(Q) = {x ∈ Q | xy = yx for all y ∈ Q} .

Note that it is an isomorphism invariant: isomorphic quasigroups have isomor-
phic commutants. The following result will be needed for the discussion in
Section 7.1 of automorphisms of para-Paige quasigroups.

Lemma 5.2. The commutant of PSL1+3(F ) is trivial.

Proof. Let Q = PSL1+3(F ). We certainly have I ∈ C(Q). For the reverse
inclusion, let

u =

[
α a

b β

]
, v =

[
γ c

d δ

]

be elements of SL1+3(F ), and suppose that u ∈ C(Q). Focusing on the top
row, the condition u · v = v · u in PSL1+3(F ) forces

αγ + a · d = ±(γα+ c · b),

αc+ δa− b× d = ±(γa+ βc − d× b),

with a simultaneous choice of the same sign in both conditions.
Suppose first that a 6= 0. Choosing c = 0 (which forces γδ = 1), the first
condition becomes a ·d ∈ {0, −2αγ}. Choosing further d so that a ·d 6= 0, we
see that the first condition is violated when char(F ) = 2. When char(F ) 6= 2,
we can further choose γ so that a·d 6= −2αγ, again violating the first condition.
Thus without loss of generality, we can now assume that a = 0 = b, so |u| =
αβ = 1. Then the above conditions reduce to

αγ = ±γα, αc = ±βc,

Suppose for a while that char(F ) 6= 2. Then any choice of γ 6= 0 yields
αγ 6= −γα, so the first condition can only be satisfied with a positive sign. We
can therefore assume without loss of generality and in any characteristic that
the signs are positive in both conditions. Choosing c 6= 0 then forces α = β,
hence 1 = αβ = α2 and α ∈ {±1}.
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5.2 Para-Paige quasigroups PP(F )

Definition 5.3. For a given field F , the isotope of the Paige loop(
PSL1+3(F ), ·

)
induced by u ◦ v = u · v is called the para-Paige quasigroup

PP(F ) = (PSL1+3(F ), ◦) over F . If F has finite order q, then PP(F ) is also
denoted by PP(q).

Proposition 5.4. For each field F , the para-Paige quasigroup PP(F ) is simple
and semisymmetric.

Proof. By Proposition 5.1, PSL1+3(F ) is a simple loop. By (4.8), the triple
( , , 1) is an isotopy PSL1+3(F ) → PP(F ). By Theorem 2.3, PP(F ) is a sim-
ple quasigroup. By Proposition 4.5, (PZorn(F ), F,N) is semisymmetric and
permits composition. By Theorem 3.3(c), the elements of norm 1 in PZorn(F )
form a semisymmetric quasigroup. The quotient PP(F ) is then also semisym-
metric.

Lemma 5.5. Consider a field F .

(a) Each subloop of PSL1+3(F ) is closed under conjugation.

(b) Each subloop of PSL1+3(F ) is a subquasigroup of PP(F ).

(c) The multiplication in PP(F ) may be written as

u ◦ v = u−1 · v−1 = (v · u)−1 (5.1)

with u, v ∈ PSL1+3(F ) and inverses taken in PSL1+3(F ).

Proof. By Lemma 4.2, u = u−1|u| = u−1 for every u ∈ SL1+3(F ). The claims
follow.

5.3 Okubo quasigroups OQ(F )

For the Okubo algebra Okubo(F ), consider the semisymmetric quasigroup
SQ(Okubo(F )) that is provided by Theorem 3.3.

Definition 5.6. For a given field F , the quotient of SQ(Okubo(F )) by the
congruence with classes {{x,−x} | x ∈ SQ(Okubo(F ))} is called the Okubo
quasigroup OQ(F ) over F . If F has finite order q then OQ(F ) is also denoted
by OQ(q).

Theorem 5.7. Consider a field F .

(a) The Okubo quasigroup OQ(F ) is principally isotopic to the Paige loop
PSL1+3(F ).

(b) The Okubo quasigroup OQ(F ) is simple and semisymmetric.
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(c) The multiplication in OQ(F ) may be written as

u ∗ v = uρ ◦ vρ2 = (uρ)−1 · (vρ2)−1 = u−1ρ · v−1ρ2

with u, v ∈ PSL1+3(F ) and inverses taken in PSL1+3(F ).

Proof. (a) Note that I ∈ SQ(Okubo(F )). Then for elements u, v of
SQ(Okubo(F )), one has

u · v = (I ∗ u) ∗ (v ∗ I)

by (4.11). Passing to the corresponding {±I}-orbits, there is a principal isotopy

(
L∗({±I}), R∗({±I}), 1

)
:
(
PSL1+3(F ), ·, {±I}

)
→

(
OQ(F ), ∗

)

from the Paige loop to the Okubo quasigroup.

(b) The simplicity follows, via the isotopy from (a), by Theorem 2.3. The quasi-
group SQ(Okubo(F )) is semisymmetric by Theorem 3.3 and Proposition 4.7.
Then the quotient OQ(F ) of the semisymmetric quasigroup SQ(Okubo(F )) is
also semisymmetric.

(c) This follows from Proposition 4.7.

The following result yields the number of Zorn vector matrices of a given norm,
as well as the cardinalities of Paige loops, para-Paige quasigroups and Okubo
quasigroups over finite fields.

Theorem 5.8 (compare [25, p.471]). Let F = GF(q) be the finite field of or-
der q. For any λ ∈ F , let nλ denote the number of elements of norm λ in
Zorn(F ). Then

nλ =

{
q7 − q3, if λ 6= 0;
q7 + q4 − q3, if λ = 0.

In particular,

|PSL1+3(q)| = |PP(q)| = |OQ(q)| =

{
q7 − q3, if q is even;
(q7 − q3)/2, if q is odd.

Proof. Suppose 0 6= λ ∈ F . We will count the elements z ∈ Zorn(F ) with
N(z) = λ. The top row of z must be nonzero, else N(z) = 0. Let i be a position
in the bottom row of z that corresponds to a nonzero entry in the top row under
the norm calculation. No matter what the values are in the bottom row outside
of i, there is a unique choice of the value in i that guarantees N(z) = λ. Thus
nλ = (q4 − 1)q3 = q7 − q3. Then n0 = q8 − (q− 1)(q7 − q3) = q7 + q4 − q3. The
rest is clear.
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6 Powers, power-associativity and diassociativity

In this section we investigate powers, power-associativity and diassociativity
in the three classes of quasigroups just introduced. It turns out that powers
are quite intricate in Okubo quasigroups. Section 6.2 presents some previ-
ously unknown consequences of the Moufang identities that are required for an
understanding of powers in Okubo quasigroups.

6.1 Power-associativity and diassociativity

A universal algebra is said to be power-associative if each element generates
an associative subalgebra, and diassociative if each pair of elements gener-
ates an associative subalgebra. Obviously, each diassociative algebra is power-
associative. Is it well-known that Zorn(F ) is diassociative, while PZorn(F ) and
Okubo(F ) are never power-associative, cf. [6].
A Moufang quasigroup is defined as a quasigroup satisfying any one of the
Moufang identities. Kunen proved in [17] that a Moufang quasigroup is auto-
matically a loop satisfying all four Moufang identities. By Moufang’s Theorem
[19], each Moufang loop is diassociative. The Paige loops PSL1+3(F ) in partic-
ular, as Moufang loops, are diassociative and power-associative.
From now on, we will adopt the following notational conventions: Since
Paige loops are power-associative, the power xk is well-defined for each x ∈
PSL1+3(F ) and k ∈ Z. The quasigroups PP(F ) and OQ(F ) are defined on the
same underlying set as PSL1+3(F ). Whenever we use powers of elements of
PP(F ) or OQ(F ), we implicitly refer to the powers in PSL1+3(F ).

Lemma 6.1. Consider the magma (Z, •) defined by x • y = −(x+ y). Then the
submagma of (Z, •) generated by 1 is equal to 3Z+ 1.

Proof. Suppose that H is the submagma generated by 1. Note that (3k + 1) •
(3ℓ+ 1) = −3k− 1− 3ℓ− 1 = 3(−(k+ ℓ+ 1)) + 1, so H ⊆ 3Z+ 1. Conversely,
we have 3(−1)+ 1 = −2 = 1 • 1 ∈ H . The identities (−2) • (−3k+1) = 3k+1
and 1 • (3k + 1) = −3(k + 1) + 1 finish the proof.

Given a semisymmetric quasigroup (Q, ·, /, \) and a subset S of Q, the sub-
magma of (Q, ·) generated by S is equal to the subquasigroup of (Q, ·, /, \)
generated by S: that is, it is not necessary to consider left and right divisions.
This is a consequence of Proposition 3.1.

Proposition 6.2. Let x ∈ PP(F ). Then the subquasigroup 〈x〉PP(F ) of PP(F )

generated by x is equal to {x3k+1 | k ∈ Z}.

Proof. We have xk ◦ xℓ = x−kx−ℓ = x−(k+ℓ), and the rest follows from
Lemma 6.1.

Lemma 6.3. The para-Paige quasigroup PP(F ) is power-associative if and only
if x6 = 1 holds for every x ∈ PP(F ).
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Proof. Suppose that PP(F ) is power-associative, and let x ∈ PP(F ). Since x
generates a subgroup of PP(F ), there must be a y ∈ PP(F ) such that x◦y = x.
This is equivalent to x−1·y−1 = x, i.e., y = x−2 by diassociativity of PSL1+3(F ).
We must then also have (x◦x)◦x−2 = x◦x, which is equivalent to x−2 ◦x−2 =
x−2, i.e., x4 = x−2, x6 = 1.
Conversely, suppose that the identity x6 = 1 holds in PSL1+3(F ). By Propo-
sition 6.2, the subquasigroup of PP(F ) generated by x is then equal to
{x3k+1 | k ∈ Z} = {x, x−2}. But this is a group with identity element x−2.

Proposition 6.4. Let F be a field.

(a) The quasigroup PP(F ) is power-associative if and only if |F | ∈ {2, 3}.

(b) The quasigroup PP(F ) is not diassociative. In fact, the right alternative
identity x ◦ (y ◦ y) = (x ◦ y) ◦ y fails in PP(F ).

Proof. (a) With

y =

[
1 e0
0 1

]
∈ PP(F )

we have

y ◦ (y ◦ (y ◦ y)) =

[
1 −2e0
0 1

]
6=

[
1 4e0
0 1

]
= (y ◦ y) ◦ (y ◦ y)

if char(F ) 6∈ {2, 3}, so that PP(F ) is not power-associative in that case. Sup-
pose from now on that char(F ) ∈ {2, 3}.
By Lemma 6.3, PP(F ) is power-associative if and only if the identity x3 =
x−3 = x3 holds. Given a generic element

x =

[
a (b, c, d)

(e, f, g) h

]

of PP(F ), a calculation using the constraint ah− be− cf − dg = 1 shows that

x3 =

[
a3 + (2a+ h)(ah− 1) ((a+ h)2 − 1)(b, c, d)
((a+ h)2 − 1)(e, f, g) h3 + (2h+ a)(ah− 1)

]
.

No matter what a, h are, we can certainly choose b 6= 0 and e 6= 0. Consider
the three conditions

a3 + (2a+ h)(ah− 1) = h3 + (2h+ a)(ah− 1), (6.1)

(a+ h)2 − 1 = −((a+ h)2 − 1), (6.2)

a3 + (2a+ h)(ah− 1) = −h3 − (2h+ a)(ah− 1). (6.3)

Conditions (6.1), (6.2) correspond to the equality x3 = x3 for matrices, while
condition (6.3) corresponds to the equality x3 = −x3 for matrices. Thus PP(F )
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is power-associative if and only if, for every a, h, either both (6.1) and (6.2)
hold, or (6.3) holds.
Suppose first that char(F ) = 2. Then (6.3) coincides with (6.1), and (6.2) is
vacuous. It is easy to see that (6.1) is equivalent to (a+ h)3 = a+ h. Since we
can choose a+ h arbitrarily, we deduce that PP(F ) is power-associative if and
only if |F | = 2.

Now suppose that char(F ) = 3. Condition (6.2) is then equivalent to a + h =
±1, while condition (6.1) holds for both a + h = 1 and a + h = −1. Finally,
(6.3) can be rewritten as (a+ h)3 = 0; that is, a+ h = 0. If |F | = 3 then every
choice of a, h yields a+ h ∈ {0, 1,−1} and thus PP(F ) is power-associative. If
|F | 6= 3 then we can choose a, h so that a+ h 6∈ {0, 1,−1} and thus PP(F ) is
not power-associative.

(b) We have (x ◦ I) ◦ I = x−1 ◦ I = x, while x ◦ (I ◦ I) = x ◦ I = x−1. Any x ∈
PP(F ) with x 6= x−1 then demonstrates that the identity x◦ (y ◦y) = (x◦y)◦y
fails in PP(F ).

Proposition 6.5. If F is a field, OQ(F ) is not power-associative. In fact, the
identity x ∗ (x ∗ (x ∗ x)) = (x ∗ x) ∗ (x ∗ x) fails in OQ(F ).

Proof. We have

y ∗ (y ∗ (y ∗ y)) =

[
1 −(0, 1, 1)

(1, 0, 0) 1

]

6=

[
0 (1, 1, 1)

−(1, 0, 0) 0

]
= (y ∗ y) ∗ (y ∗ y)

with y as in the proof of Proposition 6.4.

6.2 Some consequences of the Moufang identities

In this subsection we derive consequences of Moufang identities that were not
previously known. The identities obtained should be useful in the study of the
free Moufang loop on three generators, a very complicated object.

Proposition 6.6. The following identities hold in Moufang loops for every
n ≥ 0:

(xy · z)n · xy = (x · yz)nx · y, (ϕn)

(xy · z)n · xy = x · (y · zx)ny. (ψn)

Proof. We prove the two sets of identities simultaneously by induction on n.
Both (ϕ0), (ψ0) reduce to xy = xy. Substituting xy for u in the valid identity
uzu = ((uz)u)y−1 · y = u(z(uy−1)) · y yields

xy · z · xy = (xy)(z(xy · y−1)) · y = (xy)(zx) · y = x(yz)x · y,
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which is (ϕ1), and then

xy · z · xy = (xy)(zx) · y = x(y · (zx)y) = x · y(zx)y,

which is (ψ1).
Suppose that n ≥ 1 and (ϕi), (ψi) hold for every i ≤ n. We will establish
(ϕn+1) and (ψn+1). The left hand side of (ϕn+1) is equal to

(xy · z)n+1 · xy = xy · (z · xy)nz · xy = x(y · (z · xy)nz)x · y,

where we have used (ϕ1) in the last step. The right hand side of (ϕn+1) is
equal to

(x · yz)n+1x · y = x((yz · x)n · yz)x · y

by diassociativity. Upon canceling y on the right and then x on both sides, we
see that (ϕn+1) holds if and only if

y · (z · xy)nz = (yz · x)n · yz,

which is (ψn).
Similarly, the left hand side of (ψn+1) is equal to

(xy · z)n+1 · xy = xy · (z · xy)nz · xy = x(y · ((z · xy)nz)x · y),

where we have used (ψ1) in the last step. The right hand side of (ψn+1) is
equal to

x · (y · zx)n+1y = x(y · (zx · y)n · zx · y)

by diassociativity. Upon canceling, we see that (ψn+1) holds if and only

(z · xy)nz · x = (zx · y)n · zx,

which is (ϕn).

Corollary 6.7. The following identity holds in Moufang loops for every n ≥ 0:

(xy · z)n · xy = (x · yz)nx · y = x · (y · zx)ny

= xy · (z · xy)n = x(yz · x)n · y = x · y(zx · y)n.

Proof. The first three products coincide by (ϕn) and (ψn). The rest follows by
diassociativity: the first product is equal to the fourth, the second is equal to
the fifth, and the third is equal to the sixth.

Proposition 6.8. The following identities hold in Moufang loops for every m,
n ≥ 0:

(x · yz)mx · (y · zx)ny = (xy · z)m+n · xy, (αm,n)

(xy · z)m(xy) · (zx · y)n(zx) = (x · yz)m+n+1x. (βm,n)
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Proof. We prove the identities by induction onm. The identity (α0,n) is covered
by Corollary 6.7. The identity (β0,n) is

(xy) · (zx · y)n(zx) = (x · yz)n+1x.

The left hand side can be written as (xy)((z · xy)nz · x) by Corollary 6.7 and
then as x(y · (z · xy)nz)x by a Moufang identity. Cancelling x on the left and
on the right of both sides yields y · (z · xy)nz = yz · (x · yz)n, which holds by
Corollary 6.7.
Suppose that m > 0 and both (αm−1,n), (βm−1,n) hold. We can rewrite the
left hand side of (αm,n) as

(x · (yz)(x · yz)m−1 · x) · (y · zx)ny

= x[(yz)(x · yz)m−1 · (x · (y · zx)ny)]

= x[(yz)(x · yz)m−1 · (xy · z)n(xy)]

= x[(yz · x)m−1(yz) · (xy · z)n(xy)],

while the right hand side is x · (y · zx)m+ny. Upon canceling x on the left, we
obtain

(yz · x)m−1(yz) · (xy · z)n(xy) = (y · zx)m+ny,

which is (βm−1,n).
The left hand side of (βm,n) is equal to

(xy)(z · xy)m · (zx · y)n(zx)

= (xy)(z · xy)m · ((z · xy)nz · x)

= (x · y(zx · y)m) · ((z · xy)nz · x)

= x[y(zx · y)m · (z · xy)nz]x.

Upon canceling x of both sides, (βm,n) becomes

y(zx · y)m · (z · xy)nz = (yz · x)m+n · yz,

which is (αm,n).

6.3 Powers in Okubo quasigroups

We have seen that Okubo quasigroups are not power-associative. Now, in
this section, we describe powers and mono-generated subquasigroups in Okubo
quasigroups.
For any automorphism α of PSL1+3(F ) and any x ∈ PSL1+3(F ), let us write
xα = xα and x−α = (x−1)α = (xα)−1. With this notational convention, the

multiplication in the Okubo quasigroup can be written as x ∗ y = x−ρy−ρ2

.

Lemma 6.9. Let F be a field and x ∈ OQ(F ). Let

a = x, b = xρ, c = xρ
2

.
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For every n ≥ 0, define the elements w3n+1, w3n+2 ∈ PSL1+3(F ) by

w3n+1 = a(cb · a)n,

w3n+2 = (b−1c−1)(a−1 · b−1c−1)n.

Then:

w3m+1 ∗w3n+1 = w3(m+n)+2,

w3m+2 ∗w3n+2 = w3(m+n+1)+1,

w3m+1 ∗w3n+2 =

{
w3(n−m)+1, if n ≥ m,
w3(m−n−1)+2, if n < m,

w3m+2 ∗w3n+1 =

{
w3(m−n)+1, if m ≥ n,
w3(n−m−1)+2, if m < n.

Proof. We have

w3m+1∗w3n+1 = [a(cb · a)m]∗[a(cb · a)n] = [a(cb · a)m]−ρ·[a(cb · a)n]−ρ2

= [b(ac · b)m]−1·[c(ba · c)n]−1 = (b−1 · c−1a−1)mb−1 · (c−1 · a−1b−1)nc−1

= (b−1c−1 · a−1)m+n · b−1c−1 = w3(m+n)+2,

where we have used the identity (αm,n) for the penultimate equality. Similarly,

w3m+2 ∗ w3n+2 = [(b−1c−1)(a−1 · b−1c−1)m] ∗ [(b−1c−1)(a−1 · b−1c−1)n]

= (ac · b)m(ac) · (ba · c)n(ba) = (a · cb)m+n+1a = w3(m+n+1)+1,

where we have used (βm,n) in the penultimate step.
For the remaining cases, we will need some easy consequences of the identities
(αm,n), (βm,n). We have

w3m+1 ∗ w3n+2 = [a(cb · a)m] ∗ [(b−1c−1)(a−1 · b−1c−1)n]

= (b−1 · c−1a−1)mb−1 · (ba · c)n(ba) .

Dividing on the left by (x · yz)mx in (αm,n) yields

x−1(z−1y−1 · x−1)m · (xy · z)m+n(xy) = (y · zx)ny

for every m, n ≥ 0. If n ≥ m, we deduce the identity

x−1(z−1y−1 · x−1)m · (xy · z)n(xy) = (y · zx)m−ny ,

and therefore w3m+1∗w3n+2 = w3(n−m)+1. Dividing on the right by (zx·y)n(zx)
in (βm,n) and reindexing yields the identity

(x · yz)mx · (x−1z−1)(y−1 · x−1z−1)n = (xy · z)m−n−1(xy)

as long as n < m. Hence w3m+1 ∗ w3n+2 = w3(m−n−1)+2 in that case.
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The case w3m+2 ∗ w3n+1 is similar. In detail,

w3m+2 ∗ w3n+1 = [(b−1c−1)(a−1 · b−1c−1)m] ∗ [a(cb · a)n]

= (ac · b)m(ac) · (c−1 · a−1b−1)nc−1.

Dividing by (y · zx)ny on the right in (αm,n) and reindexing yields

(xy · z)m(xy) · y−1(x−1z−1 · y−1)n = (x · yz)m−nx

as long as m ≥ n, in which case we deduce w3m+2 ∗ w3n+1 = w3(m−n)+1.
Finally, dividing on the left by (xy · z)m(xy) in (βm,n) and reindexing yields

(zx · y)n−m−1(zx) = (y−1x−1)(z−1 · y−1x−1)m · (x · yz)nx

as long as m < n, and hence w3m+2 ∗ w3n+1 = w3(n−m−1)+2 in that case.

Proposition 6.10. Let x ∈ OQ(F ). Then the subquasigroup 〈x〉OQ(F ) of
OQ(F ) generated by x is equal to

{
x(xρ

2

xρ · x)n, (x−ρx−ρ2

)(xρ
2

xρ · x)−n
∣∣n ≥ 0

}
.

In particular, the inequality

∣∣〈x〉OQ(F )

∣∣ ≤ 2
∣∣〈xρ2

xρ · x〉PSL1+3(F )

∣∣

holds when F is finite.

Proof. We recognize x(xρ
2

xρ · x)n as w3n+1 and (x−ρx−ρ2

)(xρ
2

xρ · x)−n as
w3n+2 from Lemma 6.9.
We claim that any nonempty word w in (OQ(F ), ∗) on the single generator x
is of the form w3n+1 or w3n+2 for some n ≥ 0. We prove this by induction on
the number k > 0 of occurrences of x in w. If k = 1, we have w = x = w1.
If k > 1 and w = u ∗ v for some shorter words u, v, then we are done by the
induction assumption and Lemma 6.9.
Moreover, we claim that every product w3n+1, w3n+2 with n ≥ 0 actually
appears in S = 〈x〉OQ(F ). Indeed, we have w1 = x ∈ S, w3n+2 = w1 ∗ w3n+1,
and w3(n+1)+1 = w2 ∗ w3n+2 by Lemma 6.9.

7 Automorphisms

We discuss the automorphism groups of Paige loops and para-Paige quasigroups
over perfect fields. For Paige loops, this was already done in [21], relating
automorphism groups of Paige loops to the groups G2(F ) of Lie type. While
we do not know the automorphism groups of Okubo quasigroups in general
(compare Problem 13.2), we do describe a computational determination of
Aut(OQ(2)).
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7.1 Automorphism groups

We begin by recalling an explicit result about the automorphism groups of
certain Paige loops.

Theorem 7.1 ([21, Theorem 2.3]). If F is a perfect field, the automorphism
group of PSL1+3(F ) is the semidirect product G2(F )⋊Aut(F ).

7.1.1 Automorphism groups of para-Paige quasigroups

We now show that, for any field F , the automorphism group of the para-
Paige quasigroup PP(F ) actually coincides with the automorphism group of
the corresponding Paige loop PSL1+3(F ).

Lemma 7.2. The element I is fixed by every automorphism of PP(F ).

Proof. Recall the notation C(Q) for the commutant of a quasigroup Q. Note
that x ∈ C(PP(F )) if and only if x−1 ∈ C(PSL1+3(F )). But C(PSL1+3(F )) =
{I} by Lemma 5.2. Hence C(PP(F )) = {I} and I is fixed by every automor-
phism of PP(F ).

Proposition 7.3. Consider a field F .

(a) In all cases, Aut(PSL1+3(F )) = Aut(PP(F )).

(b) If F is perfect, then the automorphism group Aut(PP(F )) is the semidi-
rect product G2(F )⋊Aut(F ).

Proof. (a) Consider a bijection f of the underlying set of PP(F ). In the chain

f(u) ◦ f(v) = (f(v) · f(u))−1 (i)
= (f(v · u))−1 (ii)

= f((v · u)−1) = f(u ◦ v) ,

the undecorated equalities always hold. When f is an automorphism of
PSL1+3(F ), the equalities labeled (i) and (ii) do hold, and therefore f is an auto-
morphism of PP(F ). Conversely, suppose that f is an automorphism of PP(F ).
Then f(w)−1 ·f(w−1)−1 = f(w)◦f(w−1) = f(w◦w−1) = f(w−1 ·w) = f(I) = I
by Lemma 7.2, and so f(w−1) = f(w)−1. Equality (ii) follows. Since
f(u) ◦ f(v) = f(u ◦ v), we deduce that (i) holds; that is, f is an automor-
phism of PSL1+3(F ).

Statement (b) now follows from (a) and Theorem 7.1.

7.1.2 Automorphism groups of Okubo algebras

Theorem 7.4. Suppose that F is a field, of characteristic prime to 3, that
contains a primitive cube root ω of 1. Then Aut

(
Okubo(F )

)
is PGL3(F ).
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Proof. Consider the special Lie algebra sl3(F ) of traceless elements of the ma-
trix algebra F 3

3 . Define a product ∗ on the 8-dimensional vector space sl3(F )
by

x ∗ y = ωxy − ω2yx− (ω − ω2)tr(xy)3−1 (7.1)

(compare (2.1) of [9]). Then the Okubo algebra Okubo(F ) is isomorphic to the
algebra

(
sl3(F ), ∗

)
, with bilinear form

N(x, y) = −tr(xy)

corresponding to (4.9) [9, pp.2–7]. Now consider the restriction map

res: PGL3(F ) = Aut(F 3
3 ) → Aut

(
sl3(F ), ∗

)
(7.2)

with two-sided inverse extending automorphisms of sl3(F ) by fixing the identity
matrix. Then (7.2) is an isomorphism (cf. [9, Theorem 12]).

7.2 Induced multiplicative automorphisms

Let F be a field. Let • be one of the three multiplication operations ·, ◦, ∗ on
Zorn(F ), giving rise to

(a) the Zorn algebra (Zorn(F ), ·) of §4.1,

(b) the para-Zorn algebra PZorn(F ) = (Zorn(F ), ◦) of §4.2, and

(c) the Okubo algebra Okubo(F ) = (Zorn(F ), ∗) of §4.3,

respectively. Then (PSL1+3(F ), •) is either the Paige loop PSL1+3(F ), the
para-Paige quasigroup PP(F ) or the Okubo quasigroup OQ(F ). We will show
that for each of the operations • ∈ {·, ◦, ∗}, a (linear) automorphism ϕ of
(Zorn(F ),+, •) induces a (multiplicative) automorphism ϕ′ of (PSL1+3(F ), •).
Moreover, the assignment ϕ 7→ ϕ′ is injective.
Note that if F is a field then the multiplication • ∈ {·, ◦, ∗} is linear in
(Zorn(F ),+, •).

Lemma 7.5. Let F be a field, • ∈ {·, ◦, ∗} and A(F ) = (Zorn(F ),+, •). For
ϕ ∈ Aut(A(F )), let ϕ′ be the restriction of ϕ to the quasigroup SQ(A(F )) of
elements of norm 1. Then ϕ′ ∈ Aut(SQ(A(F )), •). Moreover, the assignment
ϕ 7→ ϕ′ is injective.

Proof. Let ϕ ∈ Aut(A). Since SQ(A(F )) is closed under the multiplication
•, and ϕ(u • v) = ϕ(u) • ϕ(v) for all u, v ∈ Zorn(F ), it follows that ϕ′ ∈
Aut(SQ(A(F )), •). The linear automorphism ϕ is determined by its values
on the canonical basis {ei, ei′ | i ∈ {∞, 0, 1, 2}} of Zorn(F ). The canonical
basis consists of vectors of norm 0, but each basis vector can be written as a
difference of two vectors of norm 1. Indeed,

ei =

{
(ei + e∞ + e∞′)− (e∞ + e∞′), if i ∈ {0, 0′, 1, 1′, 2, 2′},
(ei + e0 + e′0)− (e0 + e0′), if i ∈ {∞,∞′}.
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Therefore ϕ is determined by its values on SQ(A(F )): the assignment ϕ 7→ ϕ′

is injective.

Corollary 7.6. Suppose that F is a field, • ∈ {·, ◦, ∗}, and A(F ) =
(Zorn(F ),+, •). Then the group Aut(A(F )) of linear automorphisms of the
algebra A(F ) embeds into the group Aut(SQ(A(F )), •) of automorphisms of
the quasigroup SQ(A(F )) of norm 1 elements of Zorn(F ).

Lemma 7.7. Let F be a field, • ∈ {·, ◦, ∗}, and A(F ) = (Zorn(F ),+, •). Suppose
that ϕ, ψ ∈ Aut(A(F )) are such that ϕ(d) ∈ {ψ(d),−ψ(d)} for every d ∈
SQ(A(F )). Then ϕ = ψ.

Proof. If F has characteristic 2 then ϕ and ψ coincide on SQ(A(F )) and there-
fore ϕ = ψ by Lemma 7.5. For the rest of the proof, suppose that char(F ) 6= 2.
For ε ∈ {+,−} consider the subspace V ε = {d ∈ A(F ) | ϕ(d) = εψ(d)} and
note that SQ(A(F )) ⊆ V + ∪ V − by the assumption. We will say that two
elements have the same parity if they both belong to V + or if they both belong
to V −.
Consider the elements u = e∞ + e∞′ , v = e0 + u, w = e0′ + u, z = e0 + e0′ of
SQ(A(F )), and note that z = v+w− 2u, whence ψ(z) = ψ(v)+ψ(w)− 2ψ(u).
We will show that u and v have the same parity. Suppose for a while that
u ∈ V + and v ∈ V −. Then ψ(z) = −ϕ(v)+ψ(w)−2ϕ(u). If z ∈ V + we deduce
ϕ(z) = −ϕ(v)±ϕ(w)−2ϕ(u) = ϕ(−v±w−2u), so that z = −v±w−2u. This
is a contradiction, since the coefficient of e0 is 1 on the left hand side and −1
on the right hand side. If z ∈ V − then w ∈ V + leads to −z = −v + w − 2u, a
contradiction (compare e0′), while w ∈ V − leads to−z = −v−w−2u = −z−4u,
0 = 4u, a contradiction. A similar argument shows that u ∈ V − and v ∈ V +

is impossible.
Hence u and e0 + u have the same parity. Similarly, for every i ∈
{0, 0′, 1, 1′, 2, 2′}, u and ei + u have the same parity. Finally, with v′ = e∞ + z,
w′ = e∞′ + z ∈ SQ(A(F )) we have u = v′ + w′ − 2z and it can once again be
shown that z, e∞ + z and e∞′ + z have the same parity.
Suppose now that u = e∞ + e∞′ ∈ V ε. Then for every i ∈ {0, 0′, 1, 1′, 2, 2′},
ei + u ∈ V ε and therefore ei = ei + u − u ∈ V ε. Then z ∈ V ε and thus e∞,
e∞′ ∈ V ε. Altogether, Zorn(F ) = V ε. If ε = 1, we are done. If ε = −1 then
the linear automorphism τ = ϕ−1ψ satisfies τ(u) = −u for all u ∈ Zorn(F ).
But then −I = τ(I) = τ(I • I) = τ(I) • τ(I) = (−I) • (−I) = I • I = I by
linearity, a contradiction.

Proposition 7.8. Suppose that F is a field, • ∈ {·, ◦, ∗}, and A(F ) =
(Zorn(F ),+, •). For ϕ ∈ Aut(A(F )), a map

ϕ′ : PSL1+3(F ) → PSL1+3(F )

is well-defined by ϕ′(±u) = ±ϕ(u). Then ϕ′ ∈ Aut(PSL1+3(F ), •). Moreover,
the assignment ϕ 7→ ϕ′ is injective.
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Proof. Let ϕ ∈ Aut(A(F )). For u ∈ Zorn(F ) we have ϕ(−u) = −ϕ(u), so ϕ′ is
well-defined. Then

ϕ′((±u) • (±v)) = ϕ′(±(u • v)) = ±ϕ(u • v) = ±(ϕ(u) • ϕ(v))

= (±ϕ(u)) • (±ϕ(v)) = ϕ′(±u) • ϕ′(±v)

by linearity. Clearly, ϕ′ is surjective. If ϕ′(±u) = ϕ′(±v), then ±ϕ(u) = ±ϕ(v)
and thus ±u = ±v, proving that ϕ′ is injective. If ϕ, ψ ∈ Aut(A(F )) and
ϕ′ = ψ′ then for every u ∈ SQ(A(F )) we have ϕ(u) ∈ {ψ(u),−ψ(u)}. By
Lemma 7.7, ϕ = ψ.

Corollary 7.9. Suppose that F is a field, • ∈ {·, ◦, ∗} and A(F ) =
(Zorn(F ),+, •). Then the group Aut(A(F )) of linear automorphisms of the
algebra A(F ) embeds into the group Aut(PSL1+3(F ), •) of multiplicative au-
tomorphisms of the quasigroup SQ(A(F )) of unit norm elements of Zorn(F )
modulo the normal subgroup {±I}.

7.3 The automorphism groups of OQ(2) and Okubo(2)

In this subsection we will computationally determine the groups Aut(OQ(2))
and Aut(Okubo(2)).

Proposition 7.10. The group Aut(OQ(2)) is of order 216 and has structure
(C3 × C3) : SL2(3).

Proof. We constructed the quasigroup OQ(2) in GAP [11] and calculated
Aut(OQ(2)) using the LOOPS package [20]. The structure description of
Aut(OQ(2)) was also obtained in GAP.

Remark 7.11. The group Aut(PSL1+3(2)) is isomorphic to G2(2) and has order
12096 = 56 ·216. We checked that Aut(OQ(2)) is not isomorphic to a subgroup
of index 56 in Aut(PSL1+3(2)).

By Corollary 7.6, if ϕ is a linear automorphism of (Zorn(F ),+, •) then the
restriction ϕ′ of ϕ onto (SQ(Zorn(F )), •) is a multiplicative automorphism and
the mapping ϕ→ ϕ′ is one-to-one. We now consider the converse problem.

Lemma 7.12. Suppose that F is a field, • ∈ {·, ◦, ∗}, and let f ∈

Aut(SQ(Zorn(F )), •). Define f̂ : Zorn(F ) → Zorn(F ) by setting

f̂(ei) =

{
f(ei + e∞ + e∞′)− f(e∞ + e∞′), if i ∈ {0, 0′, 1, 1′, 2, 2′},
f(ei + e0 + e0′)− f(e0 + e0′), if i ∈ {∞,∞′}

on the canonical basis of Zorn(F ) and extending it linearly. Then f̂ is an
additive homomorphism of (Zorn(F ),+). Moreover:

(a) f̂ is the unique candidate for an extension of f into a linear automorphism
of (Zorn(F ),+, •),

Documenta Mathematica 27 (2022) 535–580



Okubo Quasigroups 561

(b) f̂ extends f into a linear automorphism of (Zorn(F ),+, •) if and only if f̂

is a bijection of Zorn(F ), f̂(u • v) = f̂(u)• f̂(v) for every u, v ∈ Zorn(F ),

and the restriction of f̂ to SQ(Zorn(F )) coincides with f .

Proof. All the vectors used in the definition of f̂ on the canonical basis of
Zorn(F ) are of norm 1. The rest is clear.

Proposition 7.13. Every multiplicative automorphism of OQ(2) =
SQ(Okubo(2)) extends into a linear automorphism of Okubo(2). In par-
ticular, Aut(Okubo(2)) is isomorphic to Aut(OQ(2)).

Proof. Given f ∈ Aut(OQ(2)), we have constructed

f̂ : Zorn(2) → Zorn(2)

as in Lemma 7.12 and checked that the conditions of Lemma 7.12(b) are sat-
isfied.

We have Aut(Okubo(2)) = 〈g1, g2, g3, g4〉, where the values of the linear auto-
morphisms gi on the canonical basis are given by

g1 : (e∞, e∞′)(e0, e0′)(e1, e1′)(e2, e2′),

g2 : (e0, e1, e2)(e0′ , e1′ , e2′),

g3 : (e∞, e0′ , e∞′ , e0)(e1, e2′ , e1′ , e2),

g4 : e∞ 7→ e∞′ + e0′ + e1′ + e2′

e∞′ 7→ e∞ + e0′ + e1′ + e2′

e0 7→ e0′ + e1 + e2

e0′ 7→ e∞ + e∞′ + e0 + e0′ + e1′ + e2′

e1 7→ e0 + e1′ + e2

e1′ 7→ e∞ + e∞′ + e0′ + e1 + e1′ + e2′

e2 7→ e0 + e1 + e2′

e2′ 7→ e∞ + e∞′ + e0′ + e1′ + e2 + e2′ .

The subgroup generated by {g1, g2, g3} is isomorphic to SL2(3), and it consists
of all 24 linear automorphisms that permute the canonical basis.

8 Multiplication groups

Let F be a field. In this section we describe the multiplication groups of Paige
loops, para-Paige quasigroups and Okubo quasigroups. Again, the result for
Paige loops is known:

Theorem 8.1 ([22, Corollary 4.7]). Suppose that F is a field. Then the multi-
plication group of the Paige loop PSL1+3(F ) is D4(F ).
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We proceed to describe the multiplication group of PP(F ). For a diassociative
loop Q, let

J : Q→ Q;x 7→ x−1 (8.1)

denote the inversion mapping. Recall that a permutation ϕ of a loop Q is a
right pseudo-automorphism if there exists an element cϕ of Q, the companion
of ϕ, such that

(xy)ϕ · cϕ = xϕ · (yϕ · cϕ)

for all elements x and y of Q.

Proposition 8.2. Let Q be a nontrivial Moufang loop with trivial commutant.
Let ϕ be an anti-automorphism of Q. Then ϕ 6∈ Mlt(Q).

Proof. Since 1ϕ = (1·1)ϕ = 1ϕ·1ϕ, we have 1ϕ = 1. It therefore suffices to show
that ϕ 6∈ Inn(Q). Suppose that ϕ does lie in Inn(Q). By [3, Lemma VII.3.2],
each inner mapping of a Moufang loop is a right pseudo-automorphism. We
therefore have (yϕ · xϕ) · cϕ = (xy)ϕ · cϕ = xϕ · (yϕ · cϕ) for x, y in Q. Since ϕ
is a bijection of Q, we conclude (yx)cϕ = x(ycϕ) for x, y in Q. With y = c−1

ϕ ,
we get c−1

ϕ xcϕ = x, so cϕ lies in the trivial commutant. Then yx = xy and
Q = C(Q), a contradiction.

Corollary 8.3. For any field F , the inversion mapping J is not an element
of Mlt

(
PSL1+3(F )

)
.

Proof. Since Moufang loops are diassociative, the inversion mapping is an anti-
automorphism of PSL1+3(F ). The result follows from Lemma 5.2 and Propo-
sition 8.2.

Theorem 8.4. Let F be a field. The multiplication group of the para-Paige
quasigroup PP(F ) is D4(F ).2.

Proof. Since u ◦ v = uJ · vJ , one has

Mlt(PP(F )) = 〈Mlt(PSL1+3(F )), J〉 = 〈D4(F ), J〉 = D4(F ).2

by Lemma 2.2, Theorem 8.1 and Corollary 8.3.

We conclude by describing the multiplication groups of Okubo quasigroups.

Lemma 8.5. For a field F , consider the map ρ or ρZorn(F ) given by the element
(4.7) of SL3(F ).

(a) The map ρZorn(F ) is orthogonal.

(b) The map ρZorn(F ) acts as the permutation (e0 e1 e2)(e0′ e1′ e2′) on the
canonical basis of §4.3.

(c) The map ρZorn(F ) has determinant 1.
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(d) The map ρZorn(F ) induces an element of Mlt(PSL1+3(F ))), a group iso-
morphic to D4(F ).

Theorem 8.6. Let F be a field. The multiplication group of the Okubo quasi-
group OQ(F ) is D4(F ).2.

Proof. Since u ∗ v = uJρ · vJρ2, one has

Mlt(OQ(F )) = 〈Mlt(PSL1+3(F )), Jρ, Jρ
2〉 = 〈Mlt(PSL1+3(F )), J, ρ〉

= 〈D4(F ).2, ρ〉 = D4(F ).2

by Lemma 2.2, Theorem 8.4 and Lemma 8.5.

9 Character tables

In this section, the character tables of the para-Paige and Okubo quasigroups
over a finite field GF(q) will be identified as coinciding with those of the Paige
loop over GF(q) [2, 31]. The character table of a quasigroup determines its
congruence lattice [15, Theorem 3.6] [27, Theorem 7.1], and therefore its sim-
plicity. Thus the following theorem offers an alternative proof of the simplicity
of the finite para-Paige and Okubo quasigroups.

Theorem 9.1. For a prime power q, the character tables of the Paige loop
PSL1+3(q), the para-Paige quasigroup PP(q), and the Okubo quasigroup OQ(q)
coincide.

Proof. Recall that the (quasigroup) conjugacy classes of a quasigroup are the
orbits of the diagonal action of its multiplication group on the Cartesian square
of the quasigroup [27, §6.1]. By Theorems 8.4 and 8.6, the multiplication groups
of the para-Paige and Okubo quasigroups are extended from the multiplication
group of the Paige loop by the inversion mapping (8.1).
Let C be a conjugacy class of the quasigroup PSL1+3(q). Since the associa-
tion scheme consisting of all such classes is symmetric [2] [31, p.6], the class C
coincides with its converse C−1. Consider an element (1, x) of C whose first
component is the identity element of the loop PSL1+3(q). Note that each ele-
ment (y, z) of C may be written in the form (y, z) = (1, x)g for some element g
of Mlt(PSL1+3(F )). One then has

(y, z)J = (1, x)gJ = (1, x−1)gJ = (x, 1)R(x−1)gJ ∈ C−1 = C ,

so that CJ = C. The Fusion Theorem [16, §3] [27, §7.3] then shows that the
conjugacy class schemes, and in particular the character tables, of PSL1+3(q),
PP(q), and OQ(q) coincide.

Corollary 9.2. The number of quasigroup conjugacy classes in PP(q) and
OQ(q) is 1 + q if q is even, and (3 + q)/2 if q is odd.

Proof. These numbers, which count the rows and columns in the respective
character tables, were computed for PSL1+3(q) in [2].
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10 Minimal generating sets

Given a subset S of a quasigroup Q, let 〈S〉 = 〈S〉Q denote the subquasi-
group of Q generated by S, where we use the subscript when Q is not clear
from the context. Recall that a nonempty subset of a finite quasigroup is a
subquasigroup if and only if it is closed under multiplication.
For a quasigroup Q, let the rank r(Q) the smallest cardinality of a generating
set of Q.
In this section we determine the rank of all the finite Paige loops and finite para-
Paige quasigroups, by showing that r(PSL1+3(q)) = r(PP(q)) = 3. Moreover,
r(OQ(q)) = 2 if q 6≡ 1 (mod 3), and 2 ≤ r(OQ(q)) ≤ 3 if q ≡ 1 (mod 3).
We start with the Paige loops. Note that r(PSL1+3(F )) ≥ 3, since Moufang
loops are diassociative and Paige loops are not groups. It was shown in [34]
that r(PSL1+3(q)) = 3 for every q. We establish this result anew (cf. Theo-
rem 10.4), with a different choice of generators that will simultaneously generate
the corresponding para-Paige quasigroup.
Call an element of SL2(F ) diagonal if it is diagonal as a matrix. Then
an element of PSL2(F ) = SL2(F )/{±I} is diagonal if any of its SL2(F )-
representatives is diagonal.
For i ∈ {0, 1, 2} define ϕi : PSL2(F ) → PSL1+3(F ) by

[
a b
c d

]
ϕi =

[
a bei
cei d

]
.

Then ϕi is a monomorphism, and we set Gi(F ) = PSL2(F )ϕi.

Lemma 10.1. Let F be a field, and i, j distinct elements of {0, 1, 2}. Then
the Paige loop PSL1+3(F ) is generated by Gi(F ) ∪ Gj(F ). In particular, if
PSL2(F ) = 〈D,E〉 with D diagonal, then PSL1+3(F ) = 〈Dϕi, Eϕi, Eϕj〉.

Proof. The second statement follows immediately from the first, since Dϕi =
Dϕj when D is diagonal. To prove the first statement, we mimic the proof of
[34, Proposition 3.3]. For x in F or F 3 let

Ux =

[
1 x
0 1

]
.

Paige showed that Q = PSL1+3(F ) = 〈Ua, U
T
a

| a ∈ F 3〉, cf. [25, Lemmas 4.2,
4.3].
For the rest of the proof, let i, j be distinct elements of {0, 1, 2}. With α, β,
γ ∈ F , we have

Uαei
Uβej

· UT
−αβ(ei×ej)

= Uαei+βej
,

Uαei+βej
Uγ(ei×ej) · U

T
−βγei+αγej

= Uαei+βej+γ(ei×ej),

where we have used ei × (ej × ei) = ej and other familiar cross-product iden-
tities. Dual identities are obtained for UT

a
by applying the anti-automorphic
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transpose operation. Thus

Q = 〈Uαei
, UT

αei
| α ∈ F, i ∈ {0, 1, 2}〉 .

Finally, with 0 6= α ∈ F , we calculate

[
0 ei

−ei 0

] [
1 −αej

α−1ej 0

]
·

[
1 ei

−ei 0

] [
1 −αej

α−1ej 0

]
= −UT

α(ei×ej)
,

and dually for Ua. This implies that Q = 〈Gi(F ) ∪Gj(F )〉.

As will become clear from Lemma 10.5, we are particularly interested in gen-
erating sets of PSL2(q) where one of the generators is diagonal and at least one
generator has order relatively prime to 3. In Lemma 10.3, we rely heavily on
results of Albert and Thompson [1], where it was proved that each PSLn(q) has
a 2-generating set containing an involution.

Proposition 10.2 ([1, Lemmas 8, 9, 10]). Let G = PSL2(q), let α be a primitive
element of GF(q), and let

A =

[
a b

−(1 + a2)b−1 −a

]
, B =

[
α 0
0 α−1

]
, C =

[
0 1
−1 α

]
,

where a, b ∈ GF(q) will be specified below.

(a) If q > 2 then G is generated by B and C.

(b) If q > 2 is even then G is generated by A and B, where a 6= 0, 1 and
b = αa3(1 + a−1)2. Moreover, A is an involution.

(c) If q is odd, q 6= 3, 5, 9, then G is generated by A and B, where a =
(α−α−1)/2, δ = (α+α−1)/(α−α−1) and b = a−3δ2α((1−δ2)(δ4−1))−1.
Moreover, A is an involution. �

Lemma 10.3. Let q > 2. Then PSL2(q) = 〈D,E〉, where D is diagonal and one
of D, E has order relatively prime to 3.

Proof. If q > 2 is even, let D = B and E = A as in Proposition 10.2(b). If q is
odd and q 6= 3, 5, 9, let D = B and E = A as in Proposition 10.2(c). Finally,
supposing that q ∈ {3, 5, 9}, use D = B and E = C as in Proposition 10.2(a),
and note that |D| = (q − 1)/2 is relatively prime to 3 in this situation.

Note that no nonidentity element of PSL2(2) ∼= S3 is diagonal, so Lemma 10.3
does not extend to the case q = 2.

Theorem 10.4. Every finite Paige loop has rank 3. Moreover, it is always
possible to choose a 3-generating subset of PSL1+3(q) in which at least one
element has order relatively prime to 3.
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Proof. When q > 2, we are done by Lemmas 10.1 and 10.3. We have

PSL1+3(2) =

〈
±

[
1 e1
0 1

]
, ±

[
1 e2
0 1

]
, ±

[
0 e3
e3 1

]〉

by [34, Proposition 4.1], and the first generator has order 2.

We proceed to obtain a minimal generating set for finite para-Paige quasi-
groups.

Lemma 10.5. Let q be a prime power. Identify the underlying sets of PSL1+3(q)
and PP(q), and let S be a nonempty subset of PSL1+3(q). Then:

(a) 〈S〉PP(q) ⊆ 〈S ∪ S〉PP(q) = 〈S ∪ S〉PSL1+3(q) = 〈S〉PSL1+3(q).

(b) x ∈ 〈x〉PP(q) if and only if the order of x in PSL1+3(q) is not divisible by
3.

(c) If S contains an element whose order in PSL1+3(q) is not divisible by 3,
then 〈S〉PP(q) = 〈S〉PSL1+3(q).

Proof. (a) Note that x = x−1 and x◦y = x−1y−1, where the inverses are taken
in PSL1+3(q). Part (a) follows.

(b) By Proposition 6.2, 〈x〉PP(q) = {x3k+1 | k ∈ Z}. It follows that x = x−1 ∈

〈x〉PP(q) if and only if x−1 = x3k+1 for some k, which happens if and only if 3

does not divide
∣∣〈x〉PP(q)

∣∣.

(c) Let x ∈ S be such that 3 does not divide
∣∣〈x〉PSL1+3(q)

∣∣. Since x ∈ 〈S〉PP(q)
by (b), we have 1 = x · x = x ◦ x ∈ 〈S〉PP(q) and y = 1 · y = 1 ◦ y ∈ 〈S〉PP(q) for

every y ∈ S. Hence 〈S〉PP(q) = 〈S ∪ S〉PP(q) and we are done by part (a).

Theorem 10.6. Each finite para-Paige quasigroup has rank equal to 3. More-
over, it is possible to choose a 3-element subset of PP(q) that simultaneously
generates PP(q) and PSL1+3(q).

Proof. By Lemma 10.5(a) we have r(PP(q)) ≥ r(PSL1+3)(q). We are done by
Theorem 10.4 and Lemma 10.5.

The situation appears to be more complicated in finite Okubo quasigroups and
we offer only a partial result. We start with an observation that appears to be
obvious, but for which we do not have a one-line argument:

Lemma 10.7. No finite Okubo quasigroup is generated by a single element.
That is, r(OQ(q)) > 1 for every q.

We offer two complete proofs, and yet another proof for the case q 6≡ 0 (mod 3).
In all three proofs, suppose for a contradiction that 〈a〉OQ(q) = OQ(q) for some
a ∈ OQ(q).
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Proof 1 (based on the fine structure of 〈a〉OQ(q)): By Proposition 6.10, the

order of 〈a〉OQ(q) is at most 2
∣∣〈aρ2

aρ ·a〉PSL1+3(q)

∣∣. Hence there is b ∈ PSL1+3(q)

such that
∣∣〈b〉PSL1+3(q)

∣∣ ≥ |PSL1+3(q)|/2. In any finite Moufang loop, the order

of an element divides the order of the loop [10, 12]. Thus either
∣∣〈b〉PSL1+3(q)

∣∣ =
|PSL1+3(q)| or

∣∣〈b〉PSL1+3(q)

∣∣ = |PSL1+3(q)|/2. The former case is impossible,
since PSL1+3(q) is power-associative but not a group. In the latter case, b
generates a subloop of index 2 in PSL1+3(q), necessarily a normal subloop, in
contradiction to the simplicity of PSL1+3(q).

Proof 2 (based on a linearization of semisymmetry): Let S = SQ(Okubo(q)).
Then 〈a,−a〉S = S. We will show that 〈a,−a〉S is contained in the linear span
of a and a ∗ a. This contradicts the fact that the linear span of S contains a
basis of Okubo(q) (see proof of Lemma 7.5). By semisymmetry, (a ∗ a) ∗ a =
aN(a) = a ∗ (a ∗ a). Linearizing the identity (x ∗ y) ∗ x = yN(x) with x+ z in
place of x, we get

yN(x+ z) = ((x+ z) ∗ y) ∗ (x+ z)

= (x ∗ y) ∗ x+ (x ∗ y) ∗ z + (z ∗ y) ∗ x+ (z ∗ y) ∗ z

= (x ∗ y) ∗ z + (z ∗ y) ∗ x+ y(N(x) +N(z)),

so (x∗y)∗z+(z∗y)∗x= y(N(x+z)−N(x)−N(z)). Substituting x = a, y = a
and z = a∗a yields (a∗a)∗(a∗a)+((a∗a)∗a)∗a = a(N(a+a∗a)−N(a)−N(a∗a)),
so (a ∗ a) ∗ (a ∗ a) = a(N(a+ a ∗ a)−N(a)−N(a ∗ a))− (a ∗ a)N(a). We have
shown that (a ∗ a) ∗ a, a ∗ (a ∗ a) and (a ∗ a) ∗ (a ∗ a) are elements of the linear
span of a and a ∗ a. More complicated iterated products of a then lie in the
same span by distributivity.

Partial proof 3 (based on automorphisms of OQ(q)): Suppose that q 6≡ 0
(mod 3). By Corollary 7.9, |Aut(OQ(q))| ≥ |Aut(Okubo(q))|. Theorem 7.4
yields Aut(Okubo(F )) = PGL3(q). Now,

PGL3(q) = (q3 − 1)(q3 − q)(q3 − q2)/(q − 1).

An automorphism of OQ(q) = 〈a〉OQ(q) is determined by its value on a and
therefore |Aut(OQ(q))| ≤ |OQ(q)|. By Theorem 5.8, |OQ(q)| = (q7 − q3)/2 if q
is odd and |OQ(q)| = q7 − q3 if q is even. In any case, |OQ(q)| ≤ q7 − q3. But
q7 − q3 < (q3 − 1)(q3 − q)(q3 − q2)/(q − 1) for every q, a contradiction.

Lemma 10.8. Let S ⊆ PSL1+3(F ), and let I be the identity element of
PSL1+3(F ). Then:

(a) 〈S ∪ {I}〉OQ(F ) ≥ 〈S〉PSL1+3(F ).

(b) If D, E ∈ PSL2(F ) are such that 〈D,E〉PSL2(F ) = PSL2(F ) and D is
diagonal, then 〈I,D,Eϕ1〉OQ(F ) = OQ(F ).

Proof. Part (a) follows immediately from the identity (4.11). For (b), let H =
〈I,D,Eϕ1〉OQ(F ). By (4.13), we have

Eϕ2 = (Eϕ1)
ρ = I ∗ (I ∗ Eϕ1)
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in H . By (a), H = 〈I,D,Eϕ1, Eϕ2〉OQ(F ) ≥ 〈D,Eϕ1, Eϕ2〉PSL1+3(F ). Finally,
by Lemma 10.1, 〈D,Eϕ1, Eϕ2〉PSL1+3(F ) = PSL1+3(F ).

Theorem 10.9. If q ≡ 1 (mod 3), then 2 ≤ r(OQ(q)) ≤ 3. If q 6≡ 1 (mod 3),
then r(OQ(q)) = 2.

In more detail, let B, C ∈ PSL2(q) be as in Proposition 10.2. Then OQ(q) =
〈I, B,Cϕ1〉OQ(q) for every q. If q 6≡ 1 (mod 3), then OQ(q) = 〈B,Cϕ1〉OQ(q).

Proof. By Lemma 10.7, r(OQ(q)) > 1. If q = 2 then I = B, and it can be
verified computationally that 〈I, Cϕ1〉OQ(2) = OQ(2). For the rest of the proof
suppose that q > 2.

Let α be a primitive element of GF(q) and set D = B and E = C. Then the
condition (b) of Lemma 10.8 holds by Proposition 10.2(a), and we therefore
have 〈I,D,Eϕ1〉OQ(q) = OQ(q).

For any diagonal element D0 ∈ PSL2(q), we have

〈D0〉OQ(q) = {D3k+1
0 | k ∈ Z}

by Lemma 6.1, since Dk
0 ∗Dℓ

0 = D−k
0 ·D−ℓ

0 = D
−(k+ℓ)
0 (with powers taken in

PSL2(q)).

Suppose that q 6≡ 1 (mod 3). If q ≡ 2 (mod 3), then q − 1 ≡ 1 (mod 3), and
hence I ∈ 〈D〉OQ(q). If q ≡ 0 (mod 3), then q−1 ≡ 2 (mod 3) and 2(q−1) ≡ 1
(mod 3), so I ∈ 〈D〉OQ(q) again. Thus 〈D,Eϕ1〉OQ(q) = 〈I,D,Eϕ1〉OQ(q) =
OQ(q).

Note that, up to the choice of a primitive element, Theorems 10.4, 10.6 and 10.9
are constructive.

We have also verified computationally that OQ(q) = 〈I, Cϕ1〉 for q = 4, 7
and 13.

11 Reduced Hasse diagrams

This section is motivated by concepts developed in [32, 33]. Given an algebraQ,
the Hasse diagram Sub(Q) is a drawing of the set of subalgebras of Q, partially
ordered with respect to inclusion, where a subalgebra A is placed below B if
and only if A < B.

Hasse diagrams become unwieldy when Q has a large number of subalgebras.
To overcome this problem, we describe a reduced version of the labeled Hasse
diagrams for finite algebras, in which the subalgebras are presented only up to
the action of the automorphism group Aut(Q). The resulting diagram, denoted
by Sub(Q)/Aut(Q) (see Definition 11.4), is typically much smaller than Sub(Q),
and although it does not capture all the details of Sub(Q), it gives useful global
and local information about inclusions among subalgebras.
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11.1 Automorphisms of binary relations

We start with a general notion.

Definition 11.1. Let X be a set and ∼1, ∼2 binary relations on X . For x1,
x2 ∈ X define

H∼1,∼2
(x1, x2) = {y ∈ X | x1 ∼1 y ∼2 x2},

h∼1,∼2
(x1, x2) = |H∼1,∼2

(x1, x2)|.

Note that if ≡ is an equivalence relation on X and x1 ≡ x′1, x2 ≡ x′2 then

H≡,∼2
(x1, x2) = H≡,∼2

(x′1, x2),

H∼1,≡(x1, x2) = H∼1,≡(x1, x
′
2).

(11.1)

We say that f is an automorphism of a binary relation ∼ on X if f is a bijection
on X , and for every x1, x2 ∈ X we have x1 ∼ x2 if and only if f(x1) ∼ f(x2).
Suppose that f is an automorphism of both ∼1 and ∼2. Then

f(H∼1,∼2
(x1, x2)) = {f(y) | x1 ∼1 y ∼2 x2}

= {f(y) | f(x1) ∼1 f(y) ∼2 f(x2)} = H∼1,∼2
(f(x1), f(x2))

implies
h∼1,∼2

(x1, x2) = h∼1,∼2
(f(x1), f(x2)). (11.2)

11.2 Subalgebras modulo automorphisms

We now specialize the above concepts to subalgebras modulo automorphisms.
Throughout this section, let Q be an algebra, and let X be the set of all
subalgebras of Q. Let ≤ be the partial order on X induced by inclusion, and
let ≡ be the equivalence relation on X whose equivalence classes are the orbits
of the action of G = Aut(Q) on X .

Definition 11.2. For A, B ∈ X , the constant h≤,≡(A,B) counts the number
of subalgebras C such that A ≤ C ≡ B, and h≡,≤(A,B) counts the num-
ber of subalgebras C such that A ≡ C ≤ B. The constants h≤,≡(A,B) and
h≡,≤(A,B) are called the (reduced) Hasse constants for Q.

Proposition 11.3. Under the assumptions of this section:

(a) The reduced Hasse constants h≤,≡(A,B), h≡,≤(A,B) are well-defined
modulo ≡ in both coordinates.

(b) For A, B ∈ X, define AG � BG if and only if h≤,≡(A,B) > 0, where
AG and BG are the respective orbits of A and B under the action of G
on X. Then � is a reflexive and transitive relation on X≡.

Furthermore, if Q is finite, then:
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(c) � is a partial order on X≡.

(d) For A, B ∈ X we have

|AG| · h≤,≡(A,B) = |BG| · h≡,≤(A,B). (11.3)

(v) Let A, B ∈ X be such that A < B.

(a) If |BG| = 1 then h≤,≡(A,B) = 1 and h≡,≤(A,B) = |AG|.

(b) If |AG| = 1 then h≤,≡(A,B) = |BG| and h≡,≤(A,B) = 1.

Proof. By (11.1), h≤,≡ is well-defined modulo ≡ in the second coordinate.
Suppose that A, A′ ∈ X satisfy A ≡ A′, and let f ∈ G be such that f(A) =
A′. By (11.2), we have h≤,≡(A,B) = h≤,≡(f(A), f(B)) = h≤,≡(A

′, f(B)) =
h≤,≡(A

′, B), where the last equality follows because B ≡ f(B) by definition.
The proof for h≡,≤ is similar.
For (b), suppose that A, B ∈ X . Since A ≤ A, we have h≤,≡(A,A) > 0, and
� is reflexive on X≡. Suppose that AG � BG � CG. Then there are A′ ∈ AG,
B′ ∈ BG such that A′ ≤ B′. Using (a) and h≤,≡(B,C) > 0, there is C′ ∈ CG

such that B′ ≤ C′. Hence A′ ≤ C′, and � is transitive on X .
For the remainder of the proof, suppose that Q is finite.
If AG � BG then |A| ≤ |B|. Hence, if AG � BG � AG, then |A| ≤ |B| ≤ |A|
implies |A| = |B|. Thus A = B, by finiteness, proving (c).
To establish (11.3), we will count in two ways the number m of pairs (A0, B0) ∈
X ×X such that A0 ≡ A, B0 ≡ B and A0 ≤ B0. On the one hand,

m =
∑

A0≡A

h≤,≡(A0, B) = |AG| · h≤,≡(A0, B) = |AG| · h≤,≡(A,B),

where we have used (a) in the last step. On the other hand,

m =
∑

B0≡B

h≡,≤(A,B0) = |BG| · h≡,≤(A,B0) = |BG| · h≡,≤(A,B).

Part (v) follows immediately from (11.3).

11.3 The reduced Hasse diagram

Definition 11.4. Using the notational conventions of §11.2, the reduced Hasse
diagram Sub(Q)/Aut(Q) of Q is a labeled drawing of the partially ordered set
(X≡,�), with vertices AG labeled by |AG|, and with edges AG ≺ BG labeled
by the Hasse constants h≤,≡(A,B).

Remark 11.5. (a) Proposition 11.3 guarantees that the Hasse constants are
well-defined modulo the action of G = Aut(Q), and that � is a partial order
on X≡. The reduced Hasse diagram Sub(Q)/Aut(Q) is therefore well-defined.
Only the constants h≤,≡(A,B) are displayed in the reduced Hasse diagram.
However, the dual constants h≡,≤(A,B) may be derived from (11.3).
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(b) In the reduced Hasse diagram Sub(Q)/Aut(Q), we will suppress all edge la-
bels h≤,≡(A,B) with |AG| = 1 or |BG| = 1, since their values may be calculated
by Proposition 11.3(v).

(c) Call an edge A < B in a reduced Hasse diagram maximal if A is a max-
imal subalgebra of B. In an ordinary Hasse diagram of a finite algebra, it is
customary to plot only maximal edges, the remaining edges being implied by
the transitivity of inclusion. We will also plot only the maximal edges in the
reduced Hasse diagram Sub(Q)/Aut(Q). However, in general, the Hasse con-
stants on non-maximal edges cannot be deduced from the Hasse constants on
maximal edges and the vertex labels.

11.4 A symmetric group example

Z11

Z
+
23 Z

−
26

Z3 4

Z43 V +
43 V −

41

S3 4

D83 A41

S41

1 1
1

2

1

1 1

Figure 1: The Hasse diagram Sub(S4)/Aut(S4) with Z
+
2 = 〈(1, 2)(3, 4)〉, Z−

2 =
〈(1, 2)〉, V +

4 = 〈(1, 2), (3, 4)〉 and V −
4 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉.

To illustrate Definition 11.4 and the above conventions, Figure 1 depicts the
reduced Hasse diagram Sub(Q)/Aut(Q) for the symmetric group Q = S4. The
orbits of subalgebras (subgroups) are labeled with the isomorphism type of a
representative, where we use standard notational conventions of group theory,
and employ superscripts to distinguish orbits whose representatives have the
same isomorphism type. The nontrivial edge labels not displayed in Figure 1
are h≤,≡(Z

+
2 , D8) = 3 and h≤,≡(Z

−
2 , D8) = 1.
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12 Classifying subquasigroups over the field of order 2

We now present analyses of the subquasigroup structure for the Paige, para-
Paige, and Okubo quasigroups over the field GF(2).

12.1 Subloops of PSL1+3(2)

The lattice of subloops of the Paige loop Q = PSL1+3(2) and the actions of
Aut(Q) ∼= G2(2) on the subloops of Q are described in [33].

Z11

Z263 Z3 28

V +
463 V −

4252

S3 336

Z
3
263 A463

M(S3) 112

M(A4)63

PSL1+3(2)1

3 12 16 12

3 1

9

4

1

3 1

3

Figure 2: The Hasse diagram Sub(Q)/Aut(Q) for Q = PSL1+3(2).

Figure 2 gives the reduced Hasse diagram Sub(Q)/Aut(Q). In the diagram,
M(H) denotes the Chein double of a group H , cf. [4]. The nontrivial edge
labels not displayed in Figure 2 are listed as follows:

h≤,≡(Z2,Z
3
2) = 7 ; h≤,≡(Z2,M(S3)) = 16 ;

h≤,≡(Z2, A4) = 3 ; h≤,≡(Z2,M(A4)) = 15 ;

h≤,≡(Z3,M(S3)) = 4 ; h≤,≡(Z3,M(A4)) = 9 ;

h≤,≡(V
+
4 ,M(A4)) = 7 ; h≤,≡(V

−
4 ,M(A4)) = 3 .
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12.2 Subquasigroups of PP(2)

According to Proposition 7.3, the automorphism group of PP(2) is isomorphic
to G2(2). By Lemma 5.5, every subloop of PSL1+3(2) is also a subquasigroup
of PP(2). The converse is close to being true.

Lemma 12.1. A subquasigroup of PP(2) which is not a subloop of PSL1+3(2) is
a union of some idempotents of PP(2) different from I.
There are 57 idempotents in PP(2), corresponding to I and the 56 elements of
order 3 in PSL1+3(2).

Proof. By Lemma 10.5, a subquasigroup of PP(q) that is not a subloop of
PSL1+3(q) consists of elements whose order in PSL1+3(q) is divisible by 3. Any
element of PSL1+3(2) is of order 1, 2 or 3, and there are 56 elements of order 3.
Hence a subquasigroup of PP(2) which is not a subloop of PSL1+3(2) must
consist of elements whose order is precisely 3 in PSL1+3(2). Finally, we have
x ◦ x = x if and only if x−2 = x, that is, x3 = 1.

Computer calculations with the LOOPS package for GAP show:

Proposition 12.2. The proper subquasigroups of the para-Paige quasigroup
PP(2) over the two-element field consist of:

• the empty quasigroup;

• the 1045 subloops of PSL1+3(2) (see Figure 2 and Lemma 5.5);

• the 56 idempotents of Lemma 12.1, on which Aut(PP(2)) acts transitively;

• 126 additional quasigroups isomorphic to O4 = (Z2 × Z2, ∗) with multi-
plication

(a, b) ∗ (c, d) = (b + c+ d, a+ b+ c),

which are precisely the subquasigroups of PP(2) of order 4 generated by
2 idempotents, and on which Aut(PP(2)) acts transitively. These quasi-
groups are identified structurally in Corollary 12.5.

The reduced Hasse diagram Sub(Q)/Aut(Q) for Q = PP(2) is depicted in Fig-
ure 3. We keep the labels of subloops of PSL1+3(2) for subquasigroups of PP(2)
for convenience, but the subquasigroups are in fact isotopes of the subloops as
described in Lemma 5.5. The trivial subloop of PSL1+3(2) is denoted by Z

+
1 to

distinguish it from the remaining 56 idempotents of PP(2), denoted by Z
−
1 . Fi-

nally, O4 stands for any of the 126 quasigroups of order 4 that do not correspond
to any subloop of PSL1+3(2). The nontrivial Hasse constants not depicted in
Figure 3 are listed as follows:

h≤,≡(Z
−
1 , S3) = 12 ; h≤,≡(Z

−
1 ,M(S3)) = 4 ;

h≤,≡(Z
−
1 , A4) = 9 ; h≤,≡(Z

−
1 ,M(A4)) = 9 ;

h≤,≡(Q4,M(A4)) = 1 .
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Z
+
11

Z263 Z3 28

V +
463 V −

4252

S3 336

Z
3
263 A463

M(S3) 112

M(A4)63

PP(2)1

∅1

Z
−
1 56

O4 126

3 12 16 12

3 1

9

4

1

3 1

3

1 9

1

Figure 3: The Hasse diagram Sub(Q)/Aut(Q) for Q = PP(2).

12.3 Subquasigroups of OQ(2)

Let Q = OQ(2) be the Okubo quasigroup over the two-element field GF(2). In
this section we will describe the lattice of subquasigroups of Q to within the
action of the automorphism group of Q. With the exception of Proposition 12.4
and its corollary, all the results were obtained computationally with the LOOPS
package.

For the purposes of Proposition 12.3, let us fix a canonical copy of the Chein
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double M(S3) of the symmetric group S3 as follows:

1 2 3 4 5 6 7 8 9 10 11 12

2 1 4 3 6 5 8 7 12 11 10 9

3 6 5 2 1 4 9 10 11 12 7 8

4 5 6 1 2 3 10 9 8 7 12 11

5 4 1 6 3 2 11 12 7 8 9 10

6 3 2 5 4 1 12 11 10 9 8 7

7 8 11 10 9 12 1 2 5 4 3 6

8 7 12 9 10 11 2 1 4 5 6 3

9 12 7 8 11 10 3 4 1 6 5 2

10 11 8 7 12 9 4 3 6 1 2 5

11 10 9 12 7 8 5 6 3 2 1 4

12 9 10 11 8 7 6 5 2 3 4 1

.

Proposition 12.3. The subquasigroups of the Okubo quasigroup OQ(2) over
the two-element field consist of:

• the empty subquasigroup;

• 12 subquasigroups of order 1, denoted Z1;

• 36 subquasigroups of order 2 without identity element, denoted by O2;

• 4 subquasigroups of order 3 isomorphic to (Z3,−x− y), denoted O3,1;

• 24 subquasigroups of order 3 isomorphic to (Z3, 2− x− y), denoted O3,2;

• 9 subquasigroups of order 4 that are isomorphic to the quasigroup O4 =
(Z2 × Z2, ∗) of §12.2 that is described structurally in Corollary 12.5;

• 12 subquasigroups of order 6 isomorphic to (S3, ∗) with multiplication

x ∗ y = (1, 2, 3)x−1(1, 2, 3)y−1(1, 2, 3),

denoted O6;

• 9 subquasigroups of order 8 isomorphic to the direct product Z2 × O4,
described structurally in Proposition 12.4;

• 8 subquasigroups of order 12 isomorphic to (M(S3), ∗) with multiplication
x ∗ y = xf · yf−1, where

f = (2, 12, 7)(3, 5)(4, 10, 11)(6, 8, 9),

denoted O12,1;
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• 1 subquasigroup of order 12 isomorphic to (M(S3), ∗) with multiplication
x ∗ y = xf · yf−1, where

f = (2, 8, 7)(3, 5)(4, 12, 11)(6, 10, 9),

denoted O12,2, the union of the 12 idempotents of OQ(2);

• 4 subquasigroups of order 12 isomorphic to (M(S3), ∗) with multiplication
x ∗ y = xf · yf−1, where

f = (3, 5)(7, 9, 11)(8, 12, 10),

denoted O12,3;

• the improper subquasigroup OQ(2).

∅1

Z112 O3,2 24

O236 O3,14 O4 9

O612

Z2 ×O49O12,34 O12,18 O12,2 1

OQ(2)1

33 1

1

1

3
2 1

1

Figure 4: The Hasse diagram Sub(Q)/Aut(Q) for Q = OQ(2).

The reduced Hasse diagram Sub(Q)/Aut(Q) is depicted in Figure 4. The non-
trivial edge labels not displayed in the figure are as follows:

h≤,≡(Z1, O6) = 3 ; h≤,≡(Z1,Z2 ×O4) = 3 ;

h≤,≡(Z1, O12,1) = 2 ; h≤,≡(Z1, O12,3) = 1 ;

h≤,≡(Z2, O12,3) = 1 ; h≤,≡(O3,1, O12,3) = 1 .
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Proposition 12.4. The 8-element subquasigroups Z2 × O4 of OQ(2) are iso-
morphic to the semisymmetrization Z/∆2 of the additive group Z/2.

Proof. Consider row vectors x,y ∈
(
Z/2

)3
, i.e., bit strings of length 3. By [13,

(2,2)], the multiplication in the semisymmetrization Z/∆2 of the additive group
Z/2 is given by xP + yP−1 with

P =



0 0 1
1 0 0
0 1 0


 .

On the other hand, the multiplication in the quasigroup Z2 × O4 is given by
xQ + yQ−1 with

Q = [1]⊕

[
0 1
1 1

]
.

The matrix similarity Q = U−1PU with

U =



1 0 1
1 1 0
1 1 1


 .

then provides the required isomorphism.

The characteristic congruences on semisymmetrizations of abelian groups are
described in [13, §3]. Within Z/∆2 , two distinct bit strings of length 3 are related
by the characteristic congruence if and only if they are complementary.

Corollary 12.5. The 4-element subquasigroups O4 of PP(2) and OQ(2) are
isomorphic to the quotient of the semisymmetrization Z/∆2 of the additive group
Z/2 by its characteristic congruence.

13 Open problems

Problem 13.1. Determine Aut(PSL1+3(F )) = Aut(PP(F )) for fields F that
are not perfect.

Problem 13.2. Determine Aut(OQ(F )) for all fields F .

Problem 13.3. Within the semisymmetric quasigroups (PP(F ), •) and
(OQ(F ), •), which subquasigroups P carry a semisymmetrized algebra struc-
ture (P, •, α) in the sense of [28, Definition 34], so that they form the semisym-
metrization Q∆ of a quasigroup Q?

• A necessary condition is that |P | be a perfect cube.
• By Proposition 12.4, the 8-element subquasigroups of OQ(2) are
isomorphic to (Z/2,+)∆.

Problem 13.4. Is every finite Okubo quasigroup OQ(q) generated by 2 ele-
ments?

• For a positive answer, it would remain to be shown that for
q ≡ 1 (mod 3), there are x, y ∈ OQ(q) such that 〈x, y〉 = OQ(q).
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