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Abstract. An isovariant map between spaces with a group action is
an equivariant map which preserves isotropy groups. In this paper, we
show that for a finite group G, the category of G-spaces with isovari-
ant maps has a Quillen model structure. We prove a Piacenza-style
model theoretic proof of an isovariant Elmendorf’s theorem, showing
that this model structure is Quillen equivalent to a model category of
diagrams.

2020 Mathematics Subject Classification: 55P91
Keywords and Phrases: Isovariant, model categories

1 Introduction

Let G be a finite group and let X and Y be compactly generated spaces with
continuous left G-actions. A map f ∶ X → Y is equivariant if it preserves the
G-action, so g ⋅ f(x) = f(g ⋅ x). One consequence of equivariance is that f can
increase isotropy subgroups, that is, Gx ⊆ Gf(x), where Gx = {g ∈ G ∶ g ⋅ x = x}.
A map f ∶ X → Y is isovariant if it is equivariant and Gx = Gf(x) for all x ∈X .

Example 1. Let C2 be the cyclic group with two elements. Consider the
one-point space ∗ with trivial C2-action and the unit disk D2 = {(x, y) ∈ R2 ∶
x2 + y2 ≤ 1} with the C2-action which reflects across the y-axis. Any map from
∗ to D2 whose image is on the y-axis is both equivariant and isovariant. In
fact, any injective equivariant map is isovariant. On the other hand, the map
D2
→ ∗ is equivariant, but not isovariant.

∗
eqvt

isvt

∗
eqvt

not isvt
∗
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614 S. Yeakel

Equivariant homotopy theory has led to important computations in the
nonequivariant setting, and isovariant maps occur naturally in the study of
surgery theory and classification questions for manifolds [BQ75]. The usual
approach in the isovariant setting is to require extra assumptions on the dimen-
sions of gaps between isotropy subspaces under which isovariant and equivari-
ant homotopy equivalences coincide [DS94, Sch06]. The further development
of isovariant homotopy theory could provide an alternative to gap hypothe-
sis assumptions. In this paper, we prove isovariant analogues of equivariant
categorical foundations for finite groups with the expectation that the extra
homotopical structure will yield new computational techniques. We motivate
the definitions of the isovariant orbit category LG and linking simplices ∆●G by
defining isovariant cell complexes. Assuming familiarity with cofibrantly gen-
erated model structures [Hov99], we define a Quillen model structure on the
category of G-spaces with isovariant maps isvt-Top. Introducing a formal termi-
nal object allows us to show that isvt-Top▷ is Quillen equivalent to presheaves
on the isovariant orbit category. Our main result is the following isovariant
analogue of Elmendorf’s theorem.

Theorem 4.1. For a finite group G, the following adjunction is a Quillen
equivalence.

∆●G ⊗LG
− ∶ Fun(LopG ,Top)

//

isvt-Top▷oo ∶Mapisvt(∆
●
G,−).

Equivariant precursors

Let Top denote the convenient category of compactly generated spaces, which
are not necessarily weak Hausdorff (see Remark 3.7). While much of equivariant
homotopy theory has been developed for compact Lie groups, in this paper we
work only with finite groups, and we fix a finite group G. Let eqvt-Top denote
the category of G-spaces with equivariant maps, and let isvt-Top denote the
category ofG-spaces with isovariant maps. The category eqvt-Top is enriched in
spaces, and thus isvt-Top is also enriched in spaces using the subspace topology.
We will denote the space of isovariant maps from X to Y by Mapisvt(X,Y ).

An important tool for working with eqvt-Top is the orbit category for the
group G. The G-orbit category OG has as objects the G-sets G/H for all
subgroups H ≤ G, and morphisms G/H → G/K are equivariant maps.

By adjunction, there is a natural homeomorphism Mapeqvt(G/H,G/K) ≅
(G/K)H . An equivariant map G/H → G/K is completely determined by its
value on the identity coset, eH ↦ γK. Thus a morphism Rγ ∶ G/H → G/K
in OG exists if and only if H is subconjugate to K, that is, γHγ−1 ≤ K. For
H =K, such elements γ ∈ G constitute the Weyl group γ ∈ NG(H)/H .

There is a cofibrantly generated model structure on the category Top of spaces
where the generating cofibrations are given by {Sn−1 → Dn} and generat-
ing acyclic cofibrations are given by {Dn × {0} → Dn × [0,1]} [Hov99, 2.4].
The family of adjunctions below allows this model structure to transfer to
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An Isovariant Elmendorf’s Theorem 615

eqvt-Top [Ste16].

{G/H × − ∶ Top //

eqvt-Topoo ∶Mapeqvt(G/H,−)}
G/H∈OG

.

In [Elm83], Elmendorf explicitly shows that the equivariant homotopy theory
of G-spaces (for G a compact Lie group) agrees with the homotopy theory of
diagrams indexed on the orbit category. In [May96], the result is extended to
any topological group, and in [Pia91], the theorem is reformulated to a Quillen
equivalence of model categories.

Theorem ([Pia91]). The following adjunction is a Quillen equivalence.

evalG/e ∶ Fun(OopG ,Top) //

eqvt-Topoo ∶Mapeqvt(●,−).
The right adjoint is the functor taking a G-space X to the diagram X(−) ∶
OopG → Top which sends G/H ↦ XH ≅ Mapeqvt(G/H,X). The left adjoint is
evaluation of the diagram at the orbit G/e. The projective model structure on
the category of OG-diagrams is briefly described in section 4, but more details
can be found in [Pia91].
In the category isvt-Top of G-spaces with isovariant maps, the morphisms in-
duce maps on the stratification of the spaces by isotropy group. To capture
this extra structure, the replacement of the orbit category will have as objects
chains of subgroups of G. We call this category the link orbit category, LG (see
Definition 1.1). Since isovariant maps preserve stratification by isotropy, the
morphisms in the link orbit category preserve chains of subgroups and induce
equivariant maps on the corresponding orbits.
For each chain H0 < ⋯ < Hn of subgroups of the finite group G, we define a
linking simplex ∆H1<⋯<Hn

G as a quotient of G×∆n manifesting the subgroupsHi

as isotropy groups. We show ∆●G defines a functor from the link orbit category
to isvt-Top. The linking simplices fit into a family of adjunctions between the
categories of spaces Top and isovariant G-spaces isvt-Top.

{∆H0<⋯<Hn

G
× − ∶ Top

//

isvt-Topoo ∶Mapisvt(∆H0<⋯<Hn

G
,−)}

H0<⋯<Hn∈LG

.

We use Kan’s transfer principle to transfer the cofibrantly generated model
structure on Top across the adjunctions, which endows isvt-Top with a model
structure, but to be a model category requires isvt-Top to have all small limits
and colimits. While the category isvt-Top does not have a terminal object,
we may assign it a formal terminal object, completing the category to a model
category isvt-Top▷. A homotopy terminal object for isvt-Top can be constructed
as the image under the derived left adjoint ∆●G⊗LG

− of the constant diagram on
a point, and we assume our terminal object has the same isovariant homotopy
type.
Finally, using the projective model structure on the category of diagrams
Fun(LopG ,Top) and the transferred model structure on isvt-Top extended to
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616 S. Yeakel

isvt-Top▷, we prove the isovariant analogue of Elmendorf’s theorem. A nonfor-
mal ingredient of the proof is Lemma 4.2, which states that the linking simplex
functors Mapisvt(∆●G,−) are cellular in the sense that they preserve sequential
homotopy colimits and homotopy pushouts up to homotopy. We prove this
using semicontinuity arguments and careful deformations of simplices in the
cylinder coordinates of the homotopy colimits.
The paper is organized as follows. In section 2, we define the link orbit cat-
egory LG and the linking simplices ∆●G. In section 3, we prove that isvt-Top
has a cofibrantly generated model structure transferred across adjunctions with
Top and extend this structure to isvt-Top▷. Finally, in section 4, we prove the
main theorem, an isovariant version of Elmendorf’s theorem.

Acknowledgements
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at the Mathematical Sciences Research Institute. I would like to thank Kate
Ponto, Cary Malkiewich, and Inbar Klang for numerous illuminating discus-
sions on isovariance. I would also like to thank the referee whose detailed report
significantly improved this paper.

2 The link orbit category and linking simplices

We motivate the definition of the link orbit category for a finite group G by
considering how to modify G-CW complexes to the isovariant category.
In the standard model structure on eqvt-Top, the cofibrant objects are retracts
of G-CW complexes, which are built by attaching entire orbits at a time. That
is, a cell is G/H ×Dn with a trivial action on Dn, and the cell is equivariantly
glued along its boundary orbit G/H×Sn−1. For example, as a C2-CW complex,
the flip disk D2 in Example 1 is built from two fixed 0-cells G/G×D0 denoted
x, y, one fixed 1-cell G/G × D1 denoted z glued from y to x, one free 1-cell
G/e×D1 denoted w glued from x to y, and one free 2-cell G/e×D2 glued along
its boundary to w followed by z.

x

e ×D2

e ×w τ ×w

τ ×D2

z

y

The construction of this C2-CW complex does not transfer to the category
isvt-Top, because the attaching maps are not isovariant; for example, attaching
the free 1-cell w to the fixed points uses a non-isovariant map G/e×S0

→ {x, y}.
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An Isovariant Elmendorf’s Theorem 617

Building isovariant cell complexes will involve introducing new cells which in-
terpolate between the different strata of fixed points.
We define linking simplices ∆H1<⋯<Hn

G that play the role of orbits in the iso-

variant category. Then the linking cells will be ∆H1<⋯<Hn

G × Dn, in analogy
with the cells G/H × Dn in the equivariant category. We use the word link
because the 1-dimensional building block was called a link in Quinn’s work
on homotopically stratified spaces [Qui88]. The linking simplices can also be
described in terms of the nondegenerate simplices of the exit path category of
Lurie [Lur, A.6].
Let ∆n be the standard n-simplex in Top, that is,

∆n = {(t0, . . . , tn) ∈ [0,1]n+1 ∶ n∑
i=0

ti = 1} .
We define the 1-dimensional linking simplex to be ∆e<G = G×∆1/G× {(1,0)}.
The case G = C2 is pictured.

(1,0)e × (0,1) τ × (0,1)

For subgroups H ≤ G, the orbit G/H can be interpreted as a 0-dimensional link
simplex ∆H = G/H ×∆0. Then the flip disk D2 can be built as an isovariant
cell complex with two link 0-cells ∆e<G × D0 (labeled m1,m2) and one link
1-cell ∆e<G ×D1 glued to m1,m2 as pictured.

m1

m2

For finite groups with longer chains of subgroups, we use higher-dimensional
link simplices to keep track of how all subgroups in a chain interact with each
other. For example, for e < H < G, the fundamental domain of the space
∆e<H<G is ∆2 with (1,0,0) fixed by G, the edge from (1,0,0) to (0,1,0) fixed
by H , and the rest of the simplex fixed only by e.

(0,0,1)

fixed by e

fixed by Hfixed by G

(1,0,0) (0,1,0)
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618 S. Yeakel

The linking simplices are naturally indexed on the link orbit category.

Definition 2.1. The link orbit category, LG, can be constructed in two stages.
Let [n] = {0,1, . . . , n}, and let L̃G be the small category with objects given by
strictly increasing chains of subgroups of G, H = H0 < ⋯ < Hn. Let the
morphisms L̃G(H0 < ⋯ < Hn,K0 < ⋯ < Km) be pairs (ι, γ), where ι ∶ [n] →[m] is an order-preserving inclusion and γ ∈ G is an element such that Hj =
γKι(j)γ

−1 for all j ∈ [n]. That is, γ induces a mapRγ ∶ G/Hj → G/Kι(j) ∶ gHj ↦

gγKι(j) for all j. Composition in L̃G is defined by (ι, γ) ○ (ι′, γ′) = (ι ○ ι′, γ′γ).
Then the link orbit category LG is the quotient of L̃G in which two parallel
morphisms (ι, γ), (ι′, γ′) ∶H→K are identified if ι = ι′ and Rγ = Rγ′ ∶ G/Hj →

G/Kι(j) = G/Kι′(j) for all j. We denote the morphisms in LG by (ι, γ), and
note that γ ∈ ∩j∈[n]C(Hj ,Kι(j))/Kι(0), where C(Hj ,Kι(j)) = {γ ∈ G ∶ γ−1Hjγ =
Kι(j)}. That is, γ is a class of elements of G which simultaneously conjugate
Hj to Kι(j) for all j ∈ [n].
While the link orbit category LG contains the objects of the ordinary orbit
category OG as the length zero chains, LG is missing all non-self-maps between
them. For example, for G = C2, the orbit category OC2

has a map G/e→ G/G,
but the link orbit category LC2

does not have any map e→ G because e is not
a subchain of G. This is manifesting the fact that there is no isovariant map
∆e
G →∆G

G.

Definition 2.2. The linking simplex ∆H

G for a chain H = H0 < ⋯ < Hn is the
quotient

∆H0<⋯<Hn

G = (G ×∆n)/ ∼,
where (g, x) ∼ (g′, x) if and only if gHk = g′Hk, when x = (t0, . . . , tn−k,0, . . . ,0),
0 ≤ k ≤ n. Let G×∆n

→∆H0<⋯<Hn

G be the natural projection and denote the im-
age of (g, x) ∈ G×∆n under the projection by ⟨g, x⟩. The space ∆H

G has a left G-
action given by g′ ⋅ ⟨g, x⟩ = ⟨g′g, x⟩; points of the form ⟨g, (t0, . . . , tn−k,0, . . . ,0)⟩
where tn−k ≠ 0 are fixed by gHkg

−1 under the G-action.

We note that ∆H0<⋯<Hk

G
is the same as the “equivariant simplex”

∆k(G;Hk, . . . ,H0) defined in [Ill83], although in the equivariant simplex,
subgroups may be repeated. Illman shows that the equivariant simplex is a
compact Hausdorff space with orbit space ∆k.
For the length 0 chain objects H0 of LG, ∆H0

G ≅ G/H0. The fundamental
domain of the G-space ∆e<G

G = G × ∆1/G × {(1,0)} is homeomorphic to an
interval with 0 fixed. The category LG captures higher dimensional links for
the stratification by isotropy, and this extends to a functor ∆●G ∶ LG → isvt-Top.
We describe the maps ∆(ι,γ) now.
For an order-preserving inclusion ι ∶ [n]→ [m], we define a map ι∗ ∶∆

n
→∆m

which sends x = (t0, . . . , tn) to the m + 1-tuple (s0, . . . , sm) defined by

sm−j = ∑
ι(k)=j

tn−k.
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An Isovariant Elmendorf’s Theorem 619

Remark 2.3. This is not the usual induced map on standard simplices. For
example, for the ordered inclusion ι ∶ {0,1,2} ↦ {0̂,1,2, 3̂,4}, the map ι∗ is
defined by ι∗(t0, t1, t2) = (t0,0, t1, t2,0).
Note that ι∗ sends the vertex (0, . . . ,0,1,0, . . . ,0) with a 1 in the n − kth spot
to the vertex with a 1 in the m− ι(k)th spot. Similarly, ι∗(t0, . . . , tn−k,0, . . . ,0)
has zeros above the m − ι(k)th spot.

Then we define the map ∆
(ι,γ)
G

∶ ∆H

G → ∆K

G which takes ⟨g, x⟩ ∈ ∆H

G

to ⟨gγ, ι∗(x)⟩ ∈ ∆K

G . If (g, x) ∼ (g′, x), then gHk = g′Hk and x =(t0, . . . , tn−k,0, . . . ,0), thus ι∗(x) has zeros above the m − ι(k) spot. For any
representative γ of γ, we note that gγKι(k) = gHkγ = g′Hkγ = g′γKι(k), so the

map ∆
(ι,γ)
G is well-defined. Since ∆

(ι,γ)
G commutes with the G-action and is

injective, it is also isovariant. It is not hard to check the following.

Proposition 2.4. The linking simplices define a functor ∆●G ∶ LG → isvt-Top.

Example 2.5. The linking simplices ∆●C4
and their (non-self) maps are pic-

tured below.

e < C2 < C4

e < C4

e < C2C2 < C4

eC4

C2
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620 S. Yeakel

3 A model structure on isvt-Top

In this section we will describe a cofibrantly generated model structure on
isvt-Top. For the general theory and recognition principles of cofibrantly gen-
erated model categories, one may consult [Hov99]. For the category Top,
there is a cofibrantly generated model structure with generating cofibrations
given by I = {Sn−1 → Dn} and generating acyclic cofibrations given by
J = {Dn × {0} → Dn × [0,1]}. We start by stating Kan’s transfer principle
([Hir03, 11.3.2]).

Proposition 3.1. (modified transfer principle [Ste16, A.1]) Let C be a cofi-
brantly generated model category with generating cofibrations I and generating
acyclic cofibrations J . Let D be a category with all small limits and colimits.
Suppose {Fι ∶ C ⇄ D ∶ Uι} is a set of adjunctions. If FI = ∪ι{Fι(f);f ∈ I}
and FJ = ∪ι{Fι(f);f ∈ J} permit the small object argument, and for all ι the
functor Uι sends relative FJ-cell complexes to weak equivalences, then D is a
cofibrantly generated model category with generating cofibrations FI, generating
acyclic cofibrations FJ , and weak equivalences and fibrations defined by Uι.

We use this to transfer the cofibrantly generated model structure on Top to
isvt-Top. We note that D is not required to be complete to transfer the model
structure.

Theorem 3.2. There is a cofibrantly generated model structure on isvt-Top
with generating cofibrations given by

{∆H

G × S
n−1
→∆H

G ×D
n}

and generating acyclic cofibrations given by

{∆H

G ×D
n × {0}→∆H

G ×D
n × [0,1]} ,

where H =H0 < ⋯ <Hk is an object of the link orbit category LG and n ∈ N.

We prove the theorem by defining the necessary adjunctions and checking the
conditions of Kan’s transfer principle.

Proposition 3.3. For each object H = H0 < ⋯ < Hn of LG, there is an
adjunction

∆H

G × − ∶ Top
//

isvt-Topoo ∶Mapisvt(∆H

G ,−).
This is an easy consequence of using the subspace topology for Mapisvt(X,Y ).
Let UH = Mapisvt(∆H

G ,−), and let FI = ⋃H∈LG
{∆H

G × f ∶ f ∈ I} and FJ =
⋃H∈LG

{∆H

G × f ∶ f ∈ J} where I and J are the generating cofibration sets
for Top.

Lemma 3.4. The domains of FI (resp, FJ) are small with respect to relative
FI (resp, FJ)-cell complexes, and UH takes relative FJ-cell complexes to weak
equivalences for all objects H of LG.
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An Isovariant Elmendorf’s Theorem 621

Proof. The domains ∆H

G ×S
n−1 and ∆H

G ×D
n are compact, and thus small with

respect to relative cell complexes.
To show that Mapisvt(∆H

G ,−) takes relative FJ-cell complexes to weak equiva-
lences, we first note that the map ∆K

G ×D
n×[0,1]→∆K

G ×D
n given by collaps-

ing [0,1] to {0} yields an isovariant deformation retraction. Pushouts preserve
deformation retractions. Thus the maps in the sequential colimit defining a
relative FJ-cell complex are isovariant homotopy equivalences.
Given an isovariant homotopy K ∶ W × [0,1] → Z, one can construct a homo-
topy Mapisvt(∆H

G ,W )× [0,1]→Mapisvt(∆H, Z) which sends (λ, t) to Kt ○λ for
all H. This implies that an isovariant homotopy equivalence f ∶ X → Y has the
property that Mapisvt(∆H

G , f) is a homotopy equivalence of spaces for all H,
and thus also a weak equivalence of spaces. Then the maps in the sequential
colimit defining a relative FJ-cell complex are weak equivalences.
Finally, a map from ∆H

G to the sequential colimit A → colimnXn defining a
cell complex will factor through a finite stage because the domain is compact
and the quotients Xn/A are T1 (that is, points are closed). This holds because
the maps Xi →Xi+1 are pushouts along maps of FJ , which have the property
that successive quotients are T1.

Thus in isvt-Top, a map f ∶ X → Y is an isovariant weak equivalence (respec-
tively, fibration) if Mapisvt(∆H

G ,X) → Mapisvt(∆H

G , Y ) is a weak equivalence
(resp., fibration) for all H ∈ LG.

Example 3.5. Consider the C2-isovariant map f ∶ ∗ → D2 from Example 1.
This is an equivariant weak equivalence because the induced maps fe, fG are
both weak equivalences of spaces. But f is not an isovariant weak equivalence
because Mapisvt(∆e

G,∗) is empty while Mapisvt(∆e
G,D

2) is not.
Remark 3.6. Since ∆H0

G ≅ G/H0, the space Mapisvt(∆H0

G ,X) is homeomorphic
to XH0

, the points of X which are fixed by H0 but no larger subgroup. That is,
Mapisvt(∆e

G,X) consists of free points X∖∪H≠eXH , and Mapisvt(∆G
G,X) =XG.

The space Mapisvt(∆e<G
G ,X) is equivalent to a free neighborhood of the fixed

points.

Finally, we check whether isvt-Top has all small limits and colimits. Colimits
in isvt-Top can be constructed as the underlying colimit in eqvt-Top.

Remark 3.7. The referee has pointed out that the corresponding category
of compactly generated weak Hausdorff spaces with G-action would not have
certain colimits. For example, consider the pushout of the following corner
in isvt-Top with G = C2, where i is inclusion and the generator of C2 acts on
everything by multiplication by −1.

(−∞,0) ∪ (0,∞) i
//

x

∣x∣

��

R

{±1}
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The pushout in ordinary spaces is a three-point space which is not Hausdorff.
After weak Hausdorffification, the pushout is a single point with trivial C2-
action, but there are no isovariant maps from any of the spaces in the diagram
to a trivial point.

On the other hand, the underlying product X × Y is not a product in the
isovariant category because if Y has nontrivial G-action, the projection X ×
Y → X is not necessarily isovariant. Thus we must delete subspaces of the
underlying product to define the isovariant product.

Definition 3.8. The isovariant product of G-spaces is the subspace of the
product in Top comprised of tuples of points which all have the same isotropy

group. We denote the isovariant product of two G-spaces by X
isvt
× Y .

For example, if X has a trivial G action then X
isvt
× G is empty. If X = [−1,1]

with C2-action given by negation, the isovariant product is

X
isvt
× X = [−1,1] × [−1,1] ∖ ({0} × [−1,1] ∪ [−1,1] × {0}) ∪ (0,0).

That is, the isovariant product X
isvt
× X is made up of points with either both

coordinates zero or both nonzero.
Thus isvt-Top also has all (nonempty) small limits, since it has all nonempty
products, and all equalizers. To complete the category, we must assign it a
formal terminal object T . We denote this new category isvt-Top▷. We show
now that this is a cofibrantly generated model category, that is, a category with
all small limits and colimits with a cofibrantly generated model structure.

Proposition 3.9. The category isvt-Top▷ is a cofibrantly generated model cat-
egory with the same generating cofibrations and generating acyclic cofibrations
as in Proposition 3.2. The new weak equivalences are W▷.

Proof. We will add some of the new mapsX → T to the classes of fibrations and
weak equivalences. A map X → T is in W▷ if X is isovariantly contractible,
that is, Mapisvt(∆H,X) ≃ ∗ for each chain of subgroups H. We assume that the
formal terminal object T is isovariantly contractible. Thus a map f ∶ X → T

is a weak equivalence if Mapisvt(∆H, f) is a weak equivalence of spaces for
each H. We will check the conditions of [Hov99][2.1.19] to show that isvt-Top▷

is a cofibrantly generated model category, where I = {∆H

G × S
n−1
→ ∆H ×Dn}

and J = {∆H

G ×D
n
→∆H ×Dn × [0,1]}, as in Proposition 3.2.

For clarity, when refering to classes of maps in isvt-Top▷ with lifting prop-
erties against the generating (acyclic) cofibrations, we will use notation I▷

(respectively, J▷). For example I-inj ⊆ I▷-inj, because there are more maps
in isvt-Top▷ which have the right lifting property with respect to I than in
isvt-Top.
The domains of I and J have not changed, so are still small relative to I-cell
and J-cell. The subcategory W▷ is closed under retracts, since the only new
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An Isovariant Elmendorf’s Theorem 623

retracts of maps in W are of the form Y → T , where Y is a retract of X , so is
also isovariantly contractible. The subcategory W is closed under 2-out-of-3,
as the new compositions to consider are of the form X → Y → T or X → T → T ,
and weak equivalences of spaces are closed under 2-out-of-3.

To show that I▷-inj= W▷ ∩ J▷-inj, we use the adjunction of Proposition 3.3.
The map f in isvt-Top▷ is in I▷-inj if and only if f has the right lifting property
with respect to maps in I. By adjunction, for each chain of subgroups H,
Mapisvt(∆H, f) has the right lifting property with respect to maps in ITop ={Sn−1 →Dn}. Because Top is a cofibrantly generated model category, this holds
if and only if Mapisvt(∆H, f) ∈ WTop ∩ JTop-inj. By definition, Mapisvt(∆H, f) ∈
WTop for all H if and only if f ∈ W▷, and Mapisvt(∆H, f) ∈ JTop-inj if and only
if f ∈ J▷-inj.
Finally, J-cell ⊆ W ∩ I-cof, because there are no new elements of J-cell in
isvt-Top▷ that were not in isvt-Top. Since W ⊆ W▷ and I-cof ⊆ I▷-cof, this
completes the proof.

We note that the new fibrations of isvt-Top▷ are X → T which have the right
lifting property against the generating acyclic cofibrations and the new acyclic
fibrations are X → T which lift against the generating cofibrations. Since T
is formal, the property of being a fibrant object of isvt-Top▷ is the same as
possessing an extension property along the generating acyclic cofibrations.

4 Isovariant Elmendorf’s theorem

In this section, we show that for a finite group G, the category isvt-Top▷ of
G-spaces with isovariant maps given the model structure of Proposition 3.9 is
Quillen equivalent to a category of functors on the link orbit category. This is
analogous to Elmendorf’s theorem for equivariant spaces, where the diagrams
are on the orbit category OG [Elm83, May96]. The argument is mostly formal,
except for the proof that the links Mapisvt(∆H

G ,−) preserve certain homotopy
colimits up to homotopy.

We will denote by Fun(LopG ,Top) the category whose objects are functors
F ∶ LopG → Top with morphisms given by natural transformations. Because LopG
is small, the cofibrantly generated model structure on Top can be transferred
across an adjunction to endow Fun(LopG ,Top) with the projective model struc-
ture, where the weak equivalences and fibrations are levelwise, and generating
cofibrations are given by {HomLG

(−,H)× I}, where I denotes the collection of
generating cofibrations of Top [Hir03]. More details about the projective model
structure on diagrams can be found in [Pia91] or [Hir03, 11.6.1].

Theorem 4.1. Let G be a finite group. The following adjunction is a Quillen
equivalence.

∆●G ⊗LG
− ∶ Fun(LopG ,Top) //

isvt-Top▷oo ∶Mapisvt(∆●G,−).
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The proof is given in steps. We start with a key technical lemma showing that
the functors Mapisvt(∆H

G ,−) are cellular.

Lemma 4.2. The functors Mapisvt(∆H

G ,−) are homotopically cellular in the
sense that they preserve homotopy pushouts and sequential homotopy colim-
its up to homotopy.

Proof. We need only consider the isovariant mapping spaces from the fun-
damental domains of the linking simplices ∆H

G , which are simplices ∆k with
specified isotropy groups on faces. Further, as long as we do not collapse the
dimension of the simplex, the G-action is not necessary for the proof. In par-
ticular, we may use the stratification on ∆k given by the isotropy groups of
a fundamental domain of the linking simplex. Let k ≥ 0 and let L denote the
functor Mapstrat(∆k,−) ∶ stratTop → Top of continuous stratified maps. Let X

denote the pushout diagramB
f←Ð A

gÐ→ C, and consider the model for the homo-
topy pushout given by hocolimX = (B×{0})∐f(A×[0,1])∐g(C×{1}). Define
pc ∶ hocolimX → [0,1] to be projection to the cylinder coordinate, with B sent
to 0 and C sent to 1.

The universal property of homotopy pushouts gives rise to the map φ ∶
hocolimL(X ) → L(hocolimX ), which we will show is a weak equivalence.
This weak equivalence then restricts to a weak equivalence on the homo-
topy colimits of mapping spaces on the fundamental domains of the linking
simplices, which can then be extended to the full linking simplices. The ele-
ments of hocolimL(X ) are maps of simplices which are constant in the cylin-
der coordinate, or after application of pc. Define a deformation retraction
cr ∶ hocolimX → hocolimX which collapsesA×[0,1/4] to B by f andA×[3/4,1]
to C along g and stretches A× (1/4,3/4) to A × (0,1). The choice of 1/4 is for
convenience; any number less than 1/2 would suffice. Then there is an equiva-

lence hocolimL(X ) ≃Ð→ cr hocolimL(X ). Let n ≥ 0 and consider the commuting
diagram for the pairs (Dn, Sn−1) → (L(hocolimX ),hocolimL(X )). We will
show ψ lifts up to homotopy by defining a map Dn

→ cr hocolimL(X ) which
makes the top and bottom triangles commute up to compatible homotopy.

Sn−1 //

��

hocolimL(X )
φ

��

≃
// cr hocolimL(X )

��

Dn

ψ
//

33
❣

❣

❣

❣

❣

❣

❣

❣

❣

❣

❣

❣

❣

L(hocolimX ) ≃
// L(crhocolimX )

For a disk of links in the homotopy colimit, that is, ψ(Dn), we will define a
continuous truncation of the links that we can then “flatten out” in the cylinder
direction of the homotopy colimit.

To define the truncation, we will define a lower semicontinuous function

L(hocolimX ) → (0,1]
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which takes a simplex in the homotopy pushout and returns a real number mea-
suring the shortest distance (in the simplex) from the vertex v0 = (1,0, . . . ,0) to
points of the simplex which travel more than 1/4 in the cylinder coordinate of
the homotopy pushout. For a simplex of dimension k = 1, the output measures
the first time the path travels more than 1/4 in the cylinder coordinate from
its starting point. First, we normalize the starting point (or vertex v0) of all
links to be at 0 in R. Let ι ∶ [0,1] → R be inclusion, and let L0(R) be the
space of links in R that start at 0; that is, L0(R) = {Map(∆k,R) ∶ v0 ↦ 0}.
Let γ ∈ L(hocolimX ), so γ ∶ ∆k

→ hocolimX . Then γ̃ ∈ L0(R) is de-
fined by (t0, . . . , tk) ↦ ιpcγ(t0, . . . , tk) − ιpcγ(v0). The normalization map
L(hocolimX )→ L0(R) ∶ γ ↦ γ̃ is continuous.
Then define ℓ ∶ L0(R) → (0,1] by

ℓ(γ̃) = inf { k

∑
i=1

ti ∶ ∣γ̃(t0, . . . , tk)∣ ≥ 1/4} .
Let 0 < α < 1. The function ℓ is lower semicontinuous if all the sets Uα = {γ ∈
L0(R) ∶ ℓ(γ) > α} are open using the compact open topology on L0(R). Let
γ ∈ Uα, so ℓ(γ) = α+ ǫ for some ǫ > 0. Define the open set W ⊆ L0(R) to be the
set of functions which take the compact set {(t0, . . . , tk) ∈∆k ∶ ∑ki=1 ti ≤ α+ǫ/2}
to the open set (−1/4,1/4) ⊂ R. We see γ ∈W , since ℓ(γ) = α+ ǫ. For example,
in the k = 1 case, we can think of γ ∶ ∆1

→ R as a function of the variable t1.
Then γ({(t0, t1) ∶ 0 ≤ t1 ≤ α + ǫ/2}) must fall within the open set (−1/4,1/4),
since γ takes the point with t1 = α + ǫ to either 1/4 or -1/4, and no smaller
value of t1 leaves the set (−1/4,1/4) by definition of infimum. We also see that
W ⊆ Uα since all simplices γ ∈ W have the property that ℓ(γ) > α + ǫ/2 > α.
Thus we have shown that Uα is open and ℓ is lower semicontinuous.
The composition of ℓ with the normalization L(hocolimX ) → L0(R) → (0,1]
is also lower semicontinuous. The image ψ(Dn) in L(hocolimX ) is a compact
subset, so the composition Dn

→ (0,1] is lower semicontinuous and achieves its
minimum value, ℓmin. Then there is a continuous function Dn

→ (0,1] which
takes the constant value ℓmin on the entire disk.
Thus we have a continuous truncation for a disk of links. That is, for γ in the
image ψ(Dn), let γℓ ∶ ∆k

→ hocolimX denote precomposition of γ with the
map which linearly scales ∆k to {(t0, . . . , tk) ∈ ∆k ∶ ∑ki=1 ti ≤ ℓmin}. (Note this
scaling is isovariant on ∆H

G .) The simplex γℓ is a truncated version of γ which
stretches no more than 1/4 in the cylinder coordinate.
The last step of the map Dn

→ cr hocolimL(X ) is to flatten the truncated links
to be constant in the cylinder direction. We do this piecewise by postcomposing
with projection. If pcγ(v0) ∈ (1/4,3/4), project γℓ (which remains completely
in the cylinder) along the cylinder coordinate to the element of hocolimL(X )
with pcγ(v0) in the cylinder coordinate. (This can be done isovariantly, since
the cylinder of the homotopy pushout has trivial group action.) If pcγ(v0) ∈[0,1/4], apply the map f ∶ A → B to γℓ to push the link into B. Similarly,
if pcγ(v0) ∈ [3/4,1], use g ∶ A → C to push γℓ to C. Since the truncation
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is defined continuously on the disk of links ψ(Dn), this defines a continuous
function from the image of the disk Dn in L(hocolimX ) to cr hocolimL(X ).
The image of the map Sn−1 → hocolimL(X ) must contain links which are
constant in the cylinder coordinate, and these remain constant after collapsing
the first and last quarter of the cylinder using cr. Thus the homotopy of the
top triangle involves the (isovariant) deformation retraction between the links
and their truncations γℓ. The bottom triangle commutes up to homotopy using
the same deformation, but also using the straight line homotopy through the
cylinder coordinate to unflatten the links.
Thus the map φ ∶ hocolimL(X ) → L(hocolimX ) is a weak equivalence of
spaces and Mapisvt(∆H

G ,−) commutes with homotopy pushouts. The proof for
directed homotopy colimits proceeds similarly, using the mapping telescope and
collapsing only [3/4,1] in each interval.

Proposition 4.3. The maps in Theorem 4.1 form a Quillen adjunction.

Proof. This is formal using the projective model structure on the category of
Lop
G
-diagrams. In a Quillen adjunction, the right adjoint Mapisvt(∆●G,−) pre-

serves fibrations and acyclic fibrations. A fibration (resp., weak equivalence) f
in isvt-Top▷ is a map for whichMapisvt(∆H

G , f) is a fibration (resp., weak equiva-
lence) in Top for all H. This defines a natural transformation which is levelwise
a fibration (resp., weak equivalence).

Proposition 4.4. For cofibrant F ∈ Fun(Lop
G
,Top), the unit η ∶ F →

Mapisvt(∆●G,∆●G ⊗LG
F ) is a weak equivalence.

Proof. To show that the unit η is a weak equivalence of diagrams requires
showing that it is a levelwise weak equivalence of spaces. If F is a cofibrant
LopG -diagram, then F is a retract of an LG(−,H)⊗I-cell complex [Pia91]. Since
weak equivalences are closed under retracts, we need only show that η is an
equivalence for cell complexes. By Lemma 4.2, the functors Mapisvt(∆H

G ,−)
preserve homotopy pushouts and sequential homotopy colimits, so it is enough
to show η is an equivalence on the representable functors LG(−,H).
Formally, ∆●G ⊗LG

LG(●,H) ≅ ∆H

G , using the following adjunctions for a G-
space X and the Yoneda lemma.

Homisvt(∆●G ⊗LG
LG(●,H),X) ≅ HomFun(LG(●,H),Mapisvt(∆●G,X))

≅ Homisvt(∆H

G ,X).
Then the desired levelwise weak equivalence boils down to showing

LG(K,H) ≃Mapisvt(∆K

G ,∆
H

G ).
The morphisms in LG have the discrete topology, so we will show that
Mapisvt(∆K

G ,∆
H

G ) is a disjoint union of contractible components.
Let f ∶ ∆K

G → ∆H

G be an isovariant map. Then the element ⟨g, x⟩ =⟨g, (t0, . . . , tn−i,0 . . . ,0)⟩ ∈ ∆K

G is fixed by gKig
−1 under the G-action, so by
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isovariance f(⟨g, x⟩) is also fixed by gKig
−1 and there is a ji such that Hji is

conjugate toKi. Thus the subgroups of the chainK are conjugate to subgroups
in H. Further, f corresponds to an element γ ∈ G which simultaneously conju-
gates Ki to Hji . This can be seen by using an element γ ∈ G which conjugates
K0 to Hj0 . By continuity of f , the same γ ∈ G will work for all boundaries
of the simplex, thus for all Ki. That is, every element of Mapisvt(∆K

G ,∆
H

G )
corresponds to an element (ι, γ) of LG(K,H).
Two distinct elements (ι, γ), (ι′, γ′) of LG(K,H) produce two maps

∆
(ι,γ)
G ,∆

(ι′,γ′)
G in different path components of Mapisvt(∆K

G ,∆
H

G ) because
there is no isovariant homotopy between them.
By convexity of ∆n, any isovariant map ∆K

G → ∆H

G corresponding to (ι, γ)
is isovariantly homotopic to ∆

(ι,γ)
G

through a straight-line homotopy. Thus
π0(Mapisvt(∆K

G ,∆
H

G )) ≅ LG(K,H). Since the identity on the (ι, γ) compo-

nent of Mapisvt(∆K

G ,∆
H

G ) is homotopic to the constant map ∆
(ι,γ)
G , each path

component of Mapisvt(∆K

G ,∆
H

G ) is contractible.
Proof of Theorem 4.1. The adjunction of Theorem 4.1 is a Quillen equiva-
lence if the following condition holds: ∆●G ⊗ F → Y is a weak equivalence in
isvt-Top▷ if and only if F →Mapisvt(∆●G, Y ) is a weak equivalence of diagrams
Fun(LopG ,Top), where the diagram F is cofibrant and the isovariant space Y is
fibrant.
The map F → Mapisvt(∆●G, Y ) factors as F

≃
Ð→ Mapisvt(∆●G,∆●G ⊗ F ) →

Mapisvt(∆●G, Y ). The 2-out-of-3 property for weak equivalences completes the
proof.
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