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Abstract. Regular sequences are natural generalisations of fixed
points of constant-length substitutions on finite alphabets, that is, of
automatic sequences. Using the harmonic analysis of measures asso-
ciated with substitutions as motivation, we study the limiting asymp-
totics of regular sequences by constructing a systematic measure-
theoretic framework surrounding them. The constructed measures
are generalisations of mass distributions supported on attractors of
iterated function systems.
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1 Introduction

A sequence f is called k-automatic if there is a deterministic finite automaton
that takes in the base-k expansion of a positive integer n and outputs the
value f(n). Automatic sequences are ubiquitous in number theory, theoretical
computer science and symbolic dynamics, and can be described in many ways,
though the one we find most convenient is via the k-kernel,

kerk(f) :=
{
(f(kℓn+ r))n>0 : ℓ > 0, 0 6 r < kℓ

}
.

A sequence f is k-automatic if and only if its k-kernel is finite [20, Prop. V.3.3].
It is immediate that an automatic sequence takes only a finite number of values.
A natural generalisation to sequences that can be unbounded was given in the
early nineties by Allouche and Shallit [2]; a real sequence f is called k-regular
if the R-vector space

Vk(f) := 〈kerk(f)〉R

Documenta Mathematica 27 (2022) 629–653



630 M. Coons, J. Evans, N. Mañibo

generated by the k-kernel of f is finite-dimensional over R. One nice property
of this generalisation is that a sequence taking only a finite number of values is
automatic. Additionally, the set of k-regular sequences has algebraic structure;
it forms a ring under point-wise addition and (Cauchy) convolution.

The study of automatic sequences is rich from both number-theoretical and
dynamical viewpoints. Much of the number-theoretic literature on automatic
sequences mirrors that of the rational-transcendental dichotomies of integer
power series proved in the first third of the twentieth century, such as those of
Fatou [23], Carlson [13] and Szegő [37], and the more recent celebrated result of
Adamczewski and Bugeaud [1]. The dynamical literature has focussed on the
study of automatic sequences through their related substitution systems—every
automatic sequence is a coding of an infinite fixed point of a constant-length
substitution on finitely many letters; see Cobham [14]. The long-range order of
substitution systems has been well studied; there is an abundance of literature
on this still very active area of research going back to the seminal works of
Wiener [38] and Mahler [30]. The monographs by Queffélec [34] and Baake
and Grimm [6] contain details about both the tiling and symbolic pictures of
these systems as well as the associated diffraction and spectral measures—the
modern-classical means of examining the long-range order of these systems.

The spectral results concerning substitution systems are not dichotomies, but
classifications based on the Lebesgue Decomposition Theorem. In this context,
one starts with a substitution and forms a measure—usually the spectral mea-
sure or the diffraction measure. The culminating result is then determining the
spectral type of the measure. The Thue–Morse dynamical system is a paradig-
matic example; the Thue–Morse sequence t := abbabaab · · · is 2-automatic and
is the fixed point of the substitution on two letters given by

̺
TM

:

{
a 7→ ab

b 7→ ba .

Given a weight function w : {a, b} → C, one can calculate the diffraction mea-
sure (or correlation measure) µw of the sequence t which is determined by its
autocorrelation coefficients

µ̂w(t) := lim
n→∞

1

n

∑

06i, i−t<n

w(ti)w(ti−t) (1)

for t ∈ N with µ̂w(−t) := µ̂w(t); see [6, 34]. The diffraction measure of the
Thue–Morse sequence with weight function w(a) = 1, w(b) = −1 is purely sin-
gular continuous with respect to Lebesgue measure. This result was proved by
Mahler [30]—who was the first author to explicitly record a singular continu-
ous measure—and later in a dynamical setting by Kakutani [25]. For details
on diffraction see Baake and Grimm [6, Ch. 9].

Transitioning to regular sequences, the number-theoretic story is much the same
as automatic sequences, mirroring that of rational-transcendental dichotomies.
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The generalisation of the Cobham–Loxton–van der Poorten Conjecture for reg-
ular sequences was proved by Bell, Bugeaud and Coons [8]. But, in contrast to
automatic sequences, the study of the long-range order of unbounded regular
sequences f , and so also the related spaces Vk(f), is not so straight-forward; nei-
ther diffraction nor spectral measures can be associated with them in a natural
way.

As a first step of addressing the long-range order of such objects, Baake and
Coons [3] introduced a natural probability measure associated with Stern’s
diatomic sequence, one simple example of an unbounded regular sequence.
Stern’s diatomic sequence s is given by s(0) = 0, s(1) = 1, and for n > 1
by the recurrences s(2n) = s(n) and s(2n+ 1) = s(n) + s(n+ 1). Its 2-kernel
ker2(s) is infinite, but induces a finitely generated vector space;

V2(s) = 〈ker2(s)〉R = 〈{(s(n))n>0, (s(n+ 1))n>0}〉R.

Stern’s diatomic sequence has many interesting properties, e.g., the sequence
of ratios (s(n)/s(n+ 1))n>0 enumerates the non-negative rationals in reduced
form and without repeats, and—like the diffraction measure of the Thue–Morse
sequence—the associated measure is singular continuous. Baake’s and Coons’s
result rests on the fact that the sequence s satisfies certain self-similar type
properties; it has a fundamental region of recursion—between consecutive pow-
ers of two—and the sum of s over this fundamental region is linearly recurrent,
enabling the use of a volume-averaging process.

In this paper, we generalise the result of Baake and Coons [3]. Here, we provide
reasonable assumptions on a k-regular sequence f which guarantee the existence
of a natural probability measure µf associated to Vk(f). Indeed, there are
regular sequences for which such measures do not exist, and for which the
sequence of approximants is not even eventually periodic.

The measures µf we construct are analogous to mass distributions supported on
attractors of certain iterated function systems—those constructed by repeated
subdivision; see Falconer [22] for related definitions and Coons and Evans [15]
for a family of extended examples related to generalised Cantor sets. Here,
rather than iterating intervals under a finite number of maps, the finite ap-
proximants are pure point measures on the unit interval, whose corresponding
weights possess the recursive structure. In this way, the existence of a natural
measure associated with f and Vk(f) provides a path to derive interesting dy-
namical systems from Vk(f) and opens the possibility of associating (fractal)
geometric structures to these sequences and spaces.

To see how this works, we start with a real-valued k-regular sequence f and
obtain a basis for Vk(f), the R-vector space generated by the k-kernel of f . In
particular, let k > 2 be an integer, f be a k-regular sequence and let the set of
sequences

{f = f1, f2, . . . , fd} ⊆ kerk(f) (2)
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be a basis for Vk(f) := 〈kerk(f)〉R. Set f(m) = (f1(m), f2(m), . . . , fd(m))T .
For each a ∈ {0, . . . , k − 1} let Ba be a d × d real matrix such that, for all
m > 0,

f(km+ a) = Ba f(m). (3)

We refer the reader to the seminal paper of Allouche and Shallit [2] and Nish-
ioka’s monograph [32, Ch. 5] for details on existence and the finer definitions.
Note that there is w ∈ Rd×1 such that for each i ∈ {1, . . . , d} and n > 0, we
have

fi(m) = eTi B(m)kw = eTi Bi0Bi1 · · ·Bisw,

where ei is the ith elementary column vector, (m)k = is · · · i1i0 is the base-k
expansion of m and B(m)k := Bi0Bi1 · · ·Bis . Set

B :=
k−1∑

a=0

Ba.

We note that the matrix B is analogous to the substitution matrix M̺ of a
substitution ̺ on a finite alphabet. In fact, if ̺ is a constant-length substitu-
tion of length k on the d letters 0, 1, . . . , d − 1, then the matrices Ba are the
so-called digit (instruction) matrices and M̺ = B; compare [4, 34]. When
considering the dynamical properties of substitution systems it is common to
assume that the substitution is primitive; that is, the non-negative substitution
matrix M̺ is primitive. To continue our analogy with substitutions, we make
similar assumptions. At first glance, it is reasonable to restrict ourselves to
the assumption that B is primitive. But if this is the case for the k-regular
sequence f , then we can consider f as a kj-regular sequence with j being the
smallest positive integer for which B

j is positive. Thus, in the context of
k-regular sequences the distinction between primitivity and positivity is some-
what blurred. Note that this is also tacitly done for substitutions, where one
normally chooses an appropriate power j such that M

j
̺ > 0, or equivalently,

̺j(a) contains all the letters of the alphabet A, for all a ∈ A. Hence we
make the following definition; compare [35, Ch. 2] which deals which primitive
morphisms and morphic words.

Definition 1. We call a k-regular sequence f primitive provided f only takes
non-negative values, is not eventually zero, each of the k digit matrices Ba is
non-negative and the matrix B is positive.

We are close to being able to state our results—the final ingredients are the
introduction of fundamental regions and the definition of the related pure point
measures. To this end, we note that, in analogy to the lengths of the iterates of a
substitution applied to an initial seed, a k-regular sequence f has a fundamental
region, the interval [kn, kn+1). Over these regions, the sum of a regular sequence
is linearly recurrent, a property which can be thought of as a sort of self-
similarity property for regular sequences. This property provides a structured
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volume to average by, and using it, we can construct a probability measure.
Formally, for each i ∈ {1, . . . , d}, set

Σi(n) :=

kn+1−1∑

m=kn

fi(m) (4)

and define

µn,i :=
1

Σi(n)

kn+1−kn−1∑

m=0

fi(k
n +m) δm/kn(k−1), (5)

where δx denotes the unit Dirac measure at x. We can view (µn,i)n∈N0
as a

sequence of probability measures on the 1-torus, the latter written as T = [0, 1)
with addition modulo 1. Here, we have simply re-interpreted the (normalised)
values of the sequence (fi(m))m>0 between kn and kn+1−1 as the weights of a
pure point probability measure on T supported on the set

{
m

kn(k−1) : 0 6 m <

kn(k − 1)
}
. Set

µn = µf,n := (µn,1, . . . , µn,d)
T . (6)

Our first result, Theorem 1 below, provides a unique probability measure on T

associated with the space Vk(f).

Theorem 1. Let f be a primitive real-valued k-regular sequence. If f1, . . . , fd
form the basis of Vk(f) associated with B, then the vectors µf,n of pure

point measures converge weakly to a vector of probability measures µf =

(µf , . . . , µf )
T on T.

Of course, one may also wish to consider the measure associated with f apart
from the full considerations surrounding that of the space Vk(f). With a little
more specificity one can prove a stronger result. Recall that for a real matrix B,
the spectral radius ρ(B) is the largest absolute value of its eigenvalues. The
joint spectral radius ρ∗({B0, . . . ,Bk−1}) is the corresponding generalisation for
a finite set of matrices; see Eq. (17) below for the formal definition.

Theorem 2. Let f be a real-valued k-regular sequence. Suppose that ρ(B) is

the unique dominant eigenvalue of B, ρ(B) > ρ∗({B0, . . . ,Bk−1}) and that the

asymptotical behaviour of Σf(n) is determined by ρ(B). If the limit Ff (x) of the
sequence µf,n([0, x]) is a function of bounded variation, then Ff (x) = µf ([0, x])
is the distribution function of a measure µf , which is continuous with respect

to Lebesgue measure.

Note that, in lieu of the non-negativity assumption in Theorem 1, we have
assumed a non-degeneracy assumption in Theorem 2 which allows one to cover
sequences which take negative values. This more general situation may not
result in a probability measure, but possibly, a signed measure.

This article is organised as follows. Section 2 contains the proof of our first the-
orem, the existence of a measure associated with Vk(f), and Section 3 contains
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the proof of our second theorem. In Section 4, we provide witnessing examples
which demonstrate why our assumptions are reasonable. Finally, we offer some
concluding remarks and open questions in Section 5.

2 A natural probability measure associated with Vk(f)

The aim of this section is to prove Theorem 1. To do this, we attempt to
mimic the ideas behind the establishment of spectral measures associated with
substitution dynamical systems. Fortunately, the generating power series of k-
regular sequences satisfy functional equations that can be thought of as taking
the place of a substitution. That is, for each i ∈ {1, . . . , d} setting Fi(z) :=∑

m>0 fi(m)zm and F(z) = (F1(z), . . . , Fd(z))
T , we have [32, p. 153] that F(z)

satisfies the Mahler functional equation

F(z) = B(z)F(zk), (7)

where B(z) :=
∑k−1

a=0 Ba z
a. The matrix-valued function B(z) is analogous to

the Fourier cocycle in the renormalisation theory of substitution and inflation
systems, which carries information about features of the underlying diffraction
and spectral measures; see Bufetov and Solomyak [11, 12] and Baake, Gähler
and Mañibo [4]. Note that B(1) = B; this specialisation will be discussed more
below. Equation (7) shows that the functions Fi(z) behave well under the Frobe-
nius map z 7→ zk. The functional equation (7) is analogous to a substitution
with repeated application mirroring the iterated composition of a substitution.
This property is essentially what allows us to form certain cocycles (e.g., see
(14)) that, under the primitivity assumption above, have convergence proper-
ties which provide for the existence of the desired limit measures. To achieve
our goal, we require a few preliminary results.

For i ∈ {0, . . . , k − 1} let Σi(n) be as defined in (4) and set

Σ(n) := (Σ1(n), Σ2(n), . . . , Σd(n))
T .

In the Introduction, we stated that the sequences Σi(n) are linearly recurrent,
which is a well-known result, whose proof we include here for completeness.

Lemma 1. If n > 1, then Σ(n) = B ·Σ(n− 1).

Proof. Here we are considering the sums of each fi over all integers in the
interval [kn, kn+1 − 1]. These are precisely all of the integers that have n + 1
digits in their k-ary expansions. Noting that the k-ary expansion of a non-zero
integer cannot begin with a zero, we thus have that Σi(n) satisfies

kn+1−1∑

m=kn

fi(m) =

kn+1−1∑

m=kn

eTi B(m)kw = eTi B
n

k−1∑

a=1

Baw.
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Thus

Σ(n) = B
n

k−1∑

a=1

Baw = B ·Bn−1
k−1∑

a=1

Baw = B ·Σ(n− 1),

where the second equality follows from the first by writing n = 1+(n− 1).

Now, define the polynomials bij(z) byB(z) = (bij(z))16i,j6d and for each n > 1
define the matrix

An(z) :=

(
Σj(n− 1) bij(z)

Σi(n)

)

16i,j6d

. (8)

Note that since f is primitive, the denominator Σi(n) cannot vanish. The
matrices An(z) are normalised versions of the matrix B(z). In particular, they
allow us to lift the result of Lemma 1 to the level of measures; see Proposition 1
below. Before proving that result, we note the following corollary of Lemma 1.

Corollary 1. For any n > 1, the matrix An(1) is a Markov matrix, i.e., all

of its row sums are equal to 1.

Recall that for two finite Borel measures µ and ν on T, the convolution µ ∗ ν
is defined by

(µ ∗ ν)(g) =
∫

T×T

g(x+ y) dµ(x) dν(y),

for continuous functions g on T. Consequently, for Dirac measures δx and δy, we
have δx ∗δy = δx+y, which is a linear operation. We let (δx)

r = δrx be its r-fold
convolution product with itself. This allows one to define the value of p(δx), for
any polynomial p ∈ C[z]. Linearity also allows one to define the convolution
product M1 ∗ M2 of two matrices whose entries are linear combinations of
Dirac measures, where the usual point-wise multiplication is replaced by the
convolution product.

Proposition 1. For n > 1, one has

µn = An

(
δ1/kn(k−1)

)
∗ µn−1 (9)

where An(z) is the matrix-valued function defined in Eq. (8).

Proof. Fix an i ∈ {1, . . . , d} and consider the ith entry of the vector on the
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right-hand side of (9). For this entry, we have

eTi An

(
δ1/kn(k−1)

)
∗ µn−1 =

d∑

j=1

Σj(n− 1) bij(δ1/kn(k−1))

Σi(n)
∗ µn−1,j

=
1

Σi(n)

d∑

j=1

kn−kn−1−1∑

ℓ=0

bij(δ1/kn(k−1)) ∗ fj(kn−1 + ℓ) δℓ/kn−1(k−1)

=
1

Σi(n)

kn−kn−1−1∑

ℓ=0

k−1∑

a=0

d∑

j=1

(Ba)ij (δa/kn(k−1)) ∗ fj(kn−1 + ℓ) δℓ/kn−1(k−1)

=
1

Σi(n)

kn−kn−1−1∑

ℓ=0

k−1∑

a=0

δ(kℓ+a)/kn(k−1)

d∑

j=1

(Ba)ij fj(k
n−1 + ℓ)

=
1

Σi(n)

kn−kn−1−1∑

ℓ=0

k−1∑

a=0

δ(kℓ+a)/kn(k−1) fi(k
n + kℓ+ a)

=
1

Σi(n)

kn+1−kn−1∑

m=0

fi(k
n +m) δm/kn(k−1)

= µn,i = eTi µn.

Here, the third equality follows using the definition of bij(z), the fifth equality
follows by invoking (3) and the sixth step is just a change of index.

The following is an immediate consequence of Proposition 1.

Corollary 2. For n > 1, the Fourier coefficients µ̂n(t) satisfy

µ̂n(t) = An

(
e−

2πit
kn(k−1)

)
µ̂n−1(t). (10)

for all t ∈ Z.

Remark 1. While the convergents µn are pure point probability measures
on T, one can also consider the measures νn = δZ ∗ µn, which are Z-periodic
measures in R. Here, one has ν̂n : R → C, with R̂ = R. In the discussion
below, we only carry out the analysis for µn, but the (vague) convergence of
the relevant matrix products also hold for νn. ♦

Using Equation (9), one can construct the infinite matrix convolution and hope
for the existence of the limit vector

µ :=

( ∞∗
n=1

An

(
δ1/kn(k−1)

))
∗ µ0. (11)

The existence of the limit vector µ depends on the convergence of the Fourier
coefficients, which boils down to the compact convergence of the analytic matrix
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product
∞∏

n=1

An

(
e−

2πit
kn(k−1)

)
, (12)

a property we demonstrate below.

We require the following lemma that the positivity of B implies the convergence
of the quotients Σi(n− 1)/Σj(n) to a positive value.

Lemma 2. Let f be a primitive k-regular sequence. Then for each i, j ∈
{1, . . . , d}, limn→∞ Σj(n− 1)/Σi(n) = cij where cij > 0.

Proof. This follows from the fact that B is positive and that f is non-negative
(and not trivial), so that given an i ∈ {1, . . . , d} there is a constant ci > 0 such
that

Σi(n) ∼ ci · ρPF
(B)n, (13)

as n → ∞, where the positive real number ρPF(B) is the Perron–Frobenius
eigenvalue of B. To see this, let ρ

PF
(B) be the Perron–Frobenius eigenvalue

of B and let v be the corresponding positive Perron–Frobenius eigenvector [33].
Let j be a positive integer so that Bj

w is entry-wise greater than v. Then for
n > j,

Σi(n) = eTi B
n
w = eTi B

n−j
B

j
w = eTi B

n−j
v + eTi B

n−j (Bj
w − v)

> eTi B
n−j

v = eTi ρPF
(B)n−j

v = (eTi v/ρPF
(B)j) · ρ

PF
(B)n.

Since ρPF(B) is a simple eigenvalue of B with maximal modulus, comparing the
eigenvalue expansion of the linear recurrent sequence Σi(n) with this inequality
proves (13). The lemma follows immediately.

To prove the next result, we adapt a technique used by Baake and Grimm in
determining the intensities of Bragg peaks of Pisot substitutions via the internal
Fourier cocycle [7, Thm. 4.6] to prove compact convergence of infinite products
of matrices. This is a higher-dimensional extension of a method employed in
[17, Thm. 2.1(b)] in dimension one. This convergence and Lévy’s continuity
theorem are the main ingredients of the proof.

Theorem 3. Let f be a primitive k-regular sequence. Then the weak limit

measure vector µ in Eq. (11) exists.

Proof. It follows from the convergence of the quotients Σj(n − 1)/Σi(n) in
Lemma 2 that An(z) → A(z) as n → ∞, with (A(z))ij = cijbij(z). In par-
ticular, one has An(1) → A(1), where every An(1) is a Markov matrix by

Corollary 1. Setting Sn(t) := An

(
e

−2πit

(k−1)
)
, one gets Sn(t) → S(t) := A

(
e

−2πit

(k−1)
)
.

For 1 6 r 6 ℓ define the product

S
(ℓ,r)(t) := Sℓ

(
t

kℓ

)
· · · Sr

(
t

kr

)
.
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These products satisfy the identity S
(ℓ,r)(t) = S

(ℓ,c+1)(t)S(c,r)(t), for 1 6 r 6

c < ℓ. Moreover, S(ℓ,r)(0) is a Markov matrix for any such ℓ, r, being a finite
product of Markov matrices. Here we let S(ℓ,0)(t) := S

(ℓ)(t). One then has

m∏

n=1

An

(
e−

2πit
kn(k−1)

)
= S

(m)(t) = Sm

(
t

km

)
Sm−1

(
t

km−1

)
· · · S1

(
t

k

)
. (14)

In order to prove weak convergence of the approximant measures, we need to
show that the vector of Fourier coefficients converges pointwise in Z. This
entails showing that the S

(m)(t) converges compactly on Z. To this end, we
first prove that for a fixed m ∈ N, S(m,ℓ)(t) is equicontinuous at t = 0 for all ℓ
satisfying 1 6 ℓ 6 m.

Employing a telescoping argument, one obtains the equality

S
(m,ℓ)(t)− S

(m,ℓ)(0) =

m−1∑

j=ℓ−1

(
S
(m,j+2)(0)S(j+1,ℓ)(t)− S

(m,j+1)(0)S(j,ℓ)(t)
)

This implies the following

‖S(m,ℓ)(t)− S
(m,ℓ)(0)‖∞

6

m−1∑

j=0

‖S(m,j+2)(0)S(j+1,ℓ)(t)− S
(m,j+1)(0)S(j,ℓ)(t)‖∞

6

m−1∑

j=0

‖S(m,j+2)(0)‖∞ · ‖S(j+1,ℓ)(t)− Sj+1(0)S
(j,ℓ)(t)‖∞

6

m−1∑

j=0

‖S(m,j+2)(0)‖∞ · ‖Sj+1(
t

kj+1 )− Sj+1(0)‖∞ · ‖S(j,ℓ)(t)‖∞

6

m−1∑

j=0

‖Sj+1(
t

kj+1 )− Sj+1(0)‖∞,

where the last step follows from the properties ‖S(m,j+2)(0)‖∞ = 1 and

‖S(j,ℓ)(t)‖∞ 6 ‖S(j,ℓ)(0)‖∞ = 1,

where the inequality holds since the matrices Ba are non-negative and the
equality follows from S

(j,ℓ)(0) being Markov.

Now, let ε > 0 be given and choose δ > 0 such that

‖Sj+1(
t

kj+1 )− Sj+1(0)‖∞ <
ε

kj+1
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holds whenever | t
kj+1 | < δ. This yields

‖S(m,ℓ)(t)− S
(m,ℓ)(0)‖∞ 6

m−1∑

j=0

‖Sj+1(
t

kj+1 )− Sj+1(0)‖∞

<

∞∑

j=0

ε

kj
= ε

(
k

k − 1

)
(15)

which proves that S(m,ℓ)(t) is equicontinuous at t = 0.

Compact convergence means for any given compact set K ⊂ Z, S(m,0)(t) uni-
formly converges in K, which we show by proving it is uniformly Cauchy in K.
Choose p such that | t

kp | < δ for all t ∈ K, which implies | t
kj | < δ for all j > p

and t ∈ K. One then has

‖S(p+q+r)(t)− S
(p+q)(t)‖∞ 6 ‖S(p+q+r,p+1)(t)− S

(p+q,p+1)(t)‖∞ · ‖S(p)(t)‖∞
6 ‖S(p+q+r,p+1)(t)− S

(p+q,p+1)(t)‖∞,

since ‖S(p)(t)‖ 6 1. Thus, using the triangle inequality, we obtain

‖S(p+q+r,p+1)(t)− S
(p+q,p+1)(t)‖∞ 6 ‖S(p+q+r,p+1)(t)− S

(p+q+r,p+1)(0)‖∞
+ ‖S(p+q+r,p+1)(0)− S

(p+q,p+1)(0)‖∞ + ‖S(p+q,p+1)(t)− S
(p+q,p+1)(0)‖∞

where the first and the third summands are strictly less than ε · k/(k − 1) by
invoking Eq. (15) for large enough p. The second summand splits further, into

‖S(p+q+r,p+1)(0)− S
(p+q,p+1)(0)‖∞ 6 ‖S(p+q+r,p+1)(0)−A(1)q+r‖∞

+ ‖A(1)q+r −A(1)q‖∞ + ‖S(p+q,p+1)(0)−A(1)q‖∞, (16)

Since Sℓ(0) converges to A(1), one can choose p′ large enough such that

‖Sℓ(0)−A(1)‖∞ <
ε

kℓ

for all ℓ > p′. One can then invoke a similar argument to show that the first
and the third summands in Eq. (16) are strictly less than ε ·k/(k−1) whenever
p > p′. Finally, since A(1) is Markov, A(1)q converges to a steady state matrix
whence one can choose q large enough such that the second summand is less
than ε. Since r is arbitrary, this means for all m,n > max {p, p′} + q one has
that

‖S(m)(t)− S
(n)(t)‖∞ < ε

(
5k − 1

k − 1

)
,

and thus, S(n)(t) converges uniformly on K. Since K is arbitrary, we have
shown compact convergence on Z.
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This convergence, together with Corollary 2, implies that the limit vector

µ̂(t) :=
(

lim
m→∞

S
(m)(t)

)
µ̂0(t)

of Fourier coefficients is well defined for all t ∈ Z. The weak convergence
to a limit measure vector in Eq. (11) is now guaranteed by Lévy’s continuity
theorem; see [10, Sec. 26, Cor. 1] or [9, Thm. 3.14].

We next prove that the entries of the limit vector of measure in Theorem 3 are
all the same measure.

Proposition 2. If f is a primitive k-regular sequence, then µ = (µf , . . . , µf )
T ,

where µf is a probability measure on T. That is, for each i ∈ {1, . . . , d}, the
weak limit of µn,i is µf .

Proof. Let L(t) := limm→∞ S
(m)(t). By Lemma 2, An(1) → A(1) as n → ∞,

where A(1) is a primitive Markov matrix, where the primitivity of A(1) follows
from the positivity of B. This means A(1)n converges to the rank-1 projec-
tor PA corresponding to the eigenvector 1 = (1, . . . , 1)T . One then gets the
equality

A(1)L(t) = L(t) = PA L(t),

which implies µ̂(t) = PA µ̂(t) = c(t)1. This means that the limit measures µi

have the same Fourier coefficients for all t, and hence must correspond to the
same measure µ = µf for all i satisfying 1 6 i 6 d.

Theorem 1 follows by combining Theorem 3 and Proposition 2.

As stated previously, the non-negativity assumptions on the k matrices Ba and
the positivity (primitivity, initially) assumption on B are natural, especially if
one views it as the corresponding analogue of the substitution matrix M̺ for
shift spaces arising from a substitution ̺. While these assumptions seem less
natural in the context of regular sequences, they are satisfied by many of the
regular sequences that concern computer scientists and number theorists.

For simplicity, let ̺ be a primitive constant-length substitution on a finite alpha-
bet A (like the Thue–Morse substitution given in the Introduction). Consider
the one-sided hull X̺, which can be defined by picking any fixed point x of ̺,
and building its orbit closure under the shift action T , i.e.,

X̺ = {T nx | n ∈ N},

where the closure is seen with respect to the local topology in AN.

The primitivity of M̺ implies that the hull X̺ is strictly ergodic. We then
have the following well known result, which is a consequence of this property;
see Baake’s and Grimm’s monograph [6, Ch. 9] for details and definitions. Here,
we define the diffraction measure via Eq. (1).
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Fact 1. Let ̺ be a primitive constant-length substitution on a finite alphabet A
and x ∈ X̺. Then for any fixed weight function w : A → C, the diffraction

measure µw exists and is the same measure for all x ∈ X̺.

The result we obtain in Proposition 2 can then be seen as an analogous unique-
ness result in the context of regular sequences for the basis {f1, . . . , fd} of Vk(f).

3 A natural probability measure associated with f

In this section we will prove Theorem 2, via the general situation described at
the end of the Introduction. To set up, we recall the following notation, now
for only a single k-regular sequence f ,

Σf (n) :=

kn+1−1∑

m=kn

f(m)

and

µf,n :=
1

Σf (n)

kn+1−kn−1∑

m=0

f(kn +m) δm/kn(k−1),

where δx denotes the unit Dirac measure at x. Also as previously, let f be
defined by the matrices B0, . . . ,Bk−1 and the vector w ∈ Rd×1 such that
f(m) = eT1 B(m)kw, where (m)k = is · · · i1i0 is the base-k expansion of m and

B(m)k := Bi0Bi1 · · ·Bis . As before, set B :=
∑k−1

a=0 Ba. Let ρ(M) denote the
spectral radius of the matrix M and denote the joint spectral radius of a finite
set of matrices {M1,M2, . . . ,Mℓ}, by the real number

ρ∗({M1,M2, . . . ,Mℓ}) = lim sup
n→∞

max
16i0,...,in−16ℓ

∥∥Mi0Mi1 · · ·Min−1

∥∥1/n , (17)

where ‖·‖ is any (submultiplicative) matrix norm. This quantity was introduced
by Rota and Strang [36] and has a wide range of applications. For an extensive
treatment, see Jungers’s monograph [24].

Unlike Theorem 1, so also unlike the previous section, we do not yet assume
that f is non-negative, nor that B is positive. However, to avoid degeneracies
(discussed in the next section), we assume that the spectral radius ρ(B) is the
unique dominant eigenvalue of B, that

ρ := ρ(B) > ρ∗({B0, . . . ,Bk−1}) =: ρ∗,

that for n large enough Σf (n) 6= 0 and that the asymptotical behaviour of
Σf (n) is determined by ρ(B). This last assumption will be highlighted and
made explicit below.

To exploit the asymptotical behaviour of Σf (n), we use a result of Dumas [19,
Thm. 3] on the asymptotic nature of the partial sums

∑
m6x f(m). Through-

out this paper, we have used the convention that B(m)k := Bi0Bi1 · · ·Bis ,
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where (m)k = is · · · i1i0 is the base-k expansion of m, however, the result of
Dumas [19] that we use here requires multiplying in the opposite order. These
two representations are related via matrix transposition;

f(m) = eT1 B(m)kw = w
T
B

T
(m)k

e1.

To set up Dumas’ result, we require some further notation. Let the column
vector vρ be a ρ-eigenvector of BT and let the nonzero real number eρ be such
that vρeρ equals the component of e1 in the invariant subspace ofBT associated
with ρ. Finally, we define the matrix-valued function Fρ : R → Rd×1 by

Fρ(x) · ρ =

k−1∑

a=0

B
T
a ·Fρ(kx− a), (18)

with the boundary conditions

Fρ(x) =

{
0 for x 6 0

vρ for x > 1.

The function Fρ exists and is unique since ρ > ρ∗. Moreover, the function Fρ

is Hölder continuous with exponent α for any α < logk(ρ/ρ
∗). Functional equa-

tions such as (18) are known as dilation equations or two-scale difference equa-

tions in the literature; seminal work on these was done by Daubechies and
Lagarias [17, 18]. See also Micchelli and Prautzsch [31]. A point of interest
for our context is that both the above-mentioned papers of Daubechies and
Lagarias as well as the seminal paper of Allouche and Shallit [2] introducing
k-regular sequences were published within the span of one year. Twenty years
later, Dumas [19]—extending ideas of Coquet [16]—connected these ideas by
showing explicitly how one can use a dilation equation to determine the asymp-
totic growth of the partial sums of a regular sequence. We record his result
here in the special case fit for our purpose.

Theorem 4 (Dumas). Suppose that the spectral radius ρ = ρ(B) is the unique

dominant eigenvalue of B and that ρ(B) > ρ∗({B0, . . . ,Bk−1}). Then

∑

m6x

f(m) = w
T
Eρ(logk(x)) eρ + o(ρlogk(x)),

where

Eρ(x) := (Id −B
T
0 )vρ

(
1− ρ⌊x⌋+1

1− ρ

)
+ ρ⌊x⌋+1

Fρ(k
{x}−1),

where Id denotes the d× d identity matrix.

A point to be made here is that, while Theorem 4 is certainly technical, in
the cases we apply it, for integers x ∈ [kn, kn+1), the integer part ⌊x⌋ = n is
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constant, so only the dependence on the fractional parts {x} will need to be
dealt with. For a detailed example of how this theorem can be applied to give
a distribution function, see Baake and Coons [3, Sec. 3], where they give an
account concerning the Stern sequence.

Now, applying Theorem 4 to the complete sumsΣf (n) and using the transposed
representation as that theorem requires, gives

Σf (n) =

kn+1−1∑

m=kn

f(m) = ρn+1
w

T

(
Fρ

(
k − 1/kn

k

)
− Fρ

(
1

k

))
eρ + o(ρn).

As n → ∞, since Fρ is Hölder continuous,

Fρ

(
k − 1/kn

k

)
= vρ + o(1),

so that

Σf (n) = ρn+1
w

T

(
vρ − Fρ

(
1

k

))
eρ + o(ρn). (19)

Since we are assuming that for n large enough Σf(n) 6= 0 and that the asymp-
totical behaviour of Σf (n) is determined by ρ(B), we have that

w
T

(
vρ − Fρ

(
1

k

))
6= 0. (20)

Arguing as in the previous paragraph allows us to prove the following result.

Theorem 5. Let f be a real-valued k-regular sequence. Suppose that ρ(B) is

the unique dominant eigenvalue of B, ρ(B) > ρ∗({B0, . . . ,Bk−1}) and that

the asymptotical behaviour of Σf (n) is determined by ρ(B). Then, the limit

Ff (x) of the sequence µf,n([0, x]) exists. Moreover, the function Ff (x) is Hölder
continuous with exponent α for any α < logk(ρ/ρ

∗).

Proof. Let x ∈ T and consider the sequence of functions µf,n([0, x]). Then,
applying the argument of the above paragraph with (k − 1/kn)/k replaced by
1 + (k − (1 + 1/kn))x, we have

Σf (n)µf,n([0, x]) =
∑

m=kn6m6kn(1+(k−(1+1/kn))x)

f(m)

= ρn+1
w

T

(
Fρ

(
1 + (k − (1 + 1/kn))x

k

)
− Fρ

(
1

k

))
eρ + o(ρn).

As before, using the Hölder continuity of Fρ, we obtain

Σf (n)µf,n([0, x]) = ρn+1
w

T

(
Fρ

(
1 + (k − 1)x

k

)
−Fρ

(
1

k

)
+ o(1)

)
eρ + o(ρn).
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Using the asymptotic (19) yields

µf,n([0, x]) =
w

T
(
Fρ

( 1+(k−1)x
k

)
− Fρ

(
1
k

)
+ o(1)

)
+ o(1)

wT
(
vρ − Fρ

(
1
k

))
+ o(1)

.

Since the denominator limits to a nonzero value, the point-wise limit of
µf,n([0, x]) exists for all x; explicitly,

Ff (x) = lim
n→∞

µf,n([0, x]) =
w

T
(
Fρ

( 1+(k−1)x
k

)
− Fρ

(
1
k

))

wT
(
vρ − Fρ

(
1
k

)) .

Finally, we note that the function Ff (x) is Hölder continuous with exponent α
for any α < logk(ρ/ρ

∗), a property it inherits directly from Fρ.

The assumptions of Theorem 5 are not strong enough to guarantee the existence
of a measure µf for which Ff (x) is a distribution function, but the additional
assumption that Ff (x) is of bounded variation, as assumed in the statement of
Theorem 2, suffices.

Proof of Theorem 2. We start with the function Ff (x) provided by Theorem 5.
Assuming that Ff (x) is of bounded variation, we form the (possibly) signed
measure µf via a Riemann–Stieltjes integral, assigning the value

µf ((a, b]) :=

∫ b

a

dµf := Ff (b)− Ff (a)

to any interval (a, b] ⊆ T; see Lang [29, Chp. X] for details on Riemann–Stieltjes
integration and measure. This is a Borel measure and has distribution function
µf ([0, x]) = Ff (x). Since the distribution functions µf,n([0, x]) of the measures
µf,n are converging point-wise to the continuous distribution function µf ([0, x])
of the measure µf , the measures µf,n are converging weakly to µf . Moreover,
the measure µf has no pure points since µf ([0, x]) = Ff (x) is continuous,
thus µf is continuous with respect to Lebesgue measure.

We have the following corollary.

Theorem 6. Suppose that f is a positive real-valued k-regular sequence such

that ρ(B) is the unique dominant eigenvalue of B, ρ(B) > ρ∗({B0, . . . ,Bk−1})
and that the asymptotical behaviour of Σf (n) is determined by ρ(B). Then the

measure µf exists and is continuous.

Proof. This follows immediately using the fact that the partial sums∑
m6y f(m) are increasing with y so that µf ([0, x]) is increasing and thus of

bounded variation.

Remark 2. The careful reader will have noticed that in the Introduction, we
chose the regular sequence f to be a member of the basis of Vk(f). While this
choice is standard in the area, it is even more convenient in our context—it
makes it obvious that the measures obtained in Sections 2 and 3 are indeed the
same.
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4 Some comments on assumptions

Theorem 1 relies on one main assumption, the primitivity of f , and Theorem 2
relies on a two key assumptions. In this section, we consider these assumptions,
highlighting certain pathologies which arise for examples which do not satisfy
them.

4.1 An example where µ1 6= µ2 for a basis {f1, f2}
The assumption of primitivity of the k-regular sequence f in Theorem 1 implies
that the matrix B is positive; recall, this positivity was gained by starting with
a primitive matrix and considering f as a kj-regular sequence, where j was the
minimal positive integer such thatBj is positive. Sometimes such a choice is not
immediately possible. For example, consider the Josephus sequence J , which
is 2-regular and determined by J(0) = 0 and the recursions J(2n) = 2J(n)− 1
and J(2n+1) = 2J(n)+ 1. These recursions imply that the sequences J and 1

(the constant sequence) form a basis for V2(J). With this basis, we arrive at
the linear representation J(n) = eT1 B(n)2(0, 1)

T , where

B0 =

(
2 −1
0 1

)
and B1 =

(
2 1
0 1

)
, so that B =

(
4 0
0 2

)
.

In this case, B is neither positive nor primitive, so Theorem 1 cannot be applied.
However, according to Theorem 6, one can apply the same limiting measures
µn,i via the results in Section 3. In the limit, one gets µJ = h(x) · λ whereas
µ1 = λ, where λ is normalised Haar measure on T and h(x) = 2x is the
Radon–Nikodym density for the limit measure associated with J .

But, there is hope here—a change of basis allows the use of Theorem 1. We
need only note that if we conjugate B0 and B1 by the matrix

P =

(
1 −1
1 1

)
,

we arrive at a new linear representation of the sequence J , and a new basis for
V2(J), where the matrix B is replaced by

PBP
−1 =

(
3 1
1 3

)
,

which is positive. Thus, we can apply Theorem 1 using this new basis resulting
in the vector of measures µJ = µJ(1, 1)

T . For more information on the Josephus
sequence and for a study on measures associated with affine 2-regular sequences,
see Evans [21].

4.2 An example where the limit measure does not exist

Shifting now to Theorem 2, consider the assumption that ρ(B) is the unique
dominant eigenvalue of B (which holds if B were say, primitive). There are
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plenty of examples of regular sequences where this is not the case. Dumas [19,
Ex. 5] gave an interesting example of a 2-regular sequence, which we denote
by D, whose associated matrix B has a negative integer entry, is not primitive
and does not have a maximal eigenvalue. Dumas’ sequence D is defined by
setting

B0 =

(
1 0
0 1

)
and B1 =

(
3 −3
3 3

)
,

and
D(m) = eT1 B(m)2e1 = eT1 B

s2(m)
1 e1, (21)

where s2(m) is the sum of the bits of m. As in the previous section, we consider
the sequence of pure point measures

µD,n :=
1

ΣD(n)

2n+1−1∑

m=2n

D(m) δm/2n+1 , (22)

where

ΣD(n) :=
2n+1−1∑

m=2n

D(m) =
3

2
·
(
(1 + i)(4 + 3i)n + (1− i)(4− 3i)n

)
, (23)

since in this case, the matrix B = B0 +B1 has eigenvalues 4 + 3i and 4 − 3i,
each of modulus 5. To show that the ‘limit’ µD does not exist, it is enough
to prove that the sequence

(
µD,n([0, 1/2))

)
n>0

does not have a limit. To see

why this is enough, note that if the measure µD did exist, then so would its
distribution function µD([0, x)) : [0, 1] → R, and necessarily we would have
that limn→∞ µD,n([0, 1/2)) = µD([0, 1/2)).

Proposition 3. The sequence
(
µD,n([0, 1/2))

)
n>0

does not converge. More-

over, it is not eventually periodic.

Proof. To prove this result, we show that there is a subsequence of this sequence
which is unbounded. To this end, note that (22) gives

µD,n([0, 1/2)) =
1

ΣD(n)

2n+2n−1−1∑

m=2n

D(m).

Using (21) we have that

2n+2n−1−1∑

m=2n

D(m) = eT1

( ∑

w∈{0,1}∗

|w|=n−1

Bw

)
B0B1e1

= eT1 (B0 +B1)
n−1

B1e1 =

2n−1∑

m=2n−1

D(m) = ΣD(n− 1),
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where we have used that B0 is the identity matrix to obtain the middle equality.
Thus

µD,n([0, 1/2)) =
ΣD(n− 1)

ΣD(n)
.

By a simple calculation applying (23) to both the numerator and denominator,
with some rearrangement, we have

µD,n([0, 1/2)) =
1

4 + 3i
· 1− e−i(2ϑ·(n−1)−π/2)

1− e−i(2ϑ·(n)−π/2)
,

where ϑ ≈ 0.6435 is the solution of cosϑ = 4/5. Now since ϑ is irrational and
not a rational multiple of π, we have that the sequence of fractional parts

(
{2ϑ · (n)− π/2}

)
n>0

is equidistributed in [0, 1). In particular, let M > 0 be a positive integer. Then
there is an ε > 0 satisfying

0 < ε <

∣∣1− e−2iϑ
∣∣

5M + 1
,

and there are infinitely many n such that

∣∣∣1− e−i(2ϑ·(n)−π/2)
∣∣∣ < ε.

For these infinitely many n,

∣∣µD,n([0, 1/2))
∣∣ > 1

5
·
∣∣1− e−2iϑ

∣∣− ε

ε
=

1

5
·
∣∣1− e−2iϑ

∣∣
ε

− 1

5
> M.

Since M > 0 can be chosen arbitrarily large,
(
µD,n([0, 1/2))

)
n>0

is unbounded,

which is the desired result.

To observe large values of
(
µD,n([0, 1/2))

)
n>0

one must be patient. Fig-

ure 1 shows values of µD,n([0, 1/2)) for n from 0 to 100000. Modifying the
proof of Proposition 3, mutatis mutandis, one can show that the sequences(
µD,n([0, 1/2

k))
)
n>0

are unbounded for every k > 1.

Corollary 3. The sequence of the pure point measures µD,n does not converge

weakly to a finite Borel measure.

We now consider the dependence of Theorem 2 on the assumption that the
asymptotical behaviour of Σf (n) is determined by ρ(B). While this assumption
adds to the technicality of the statement of Theorem 2, seen from the view of
some of common situations, the condition is quite natural. When B’s dominant
eigenvalue is simple, this assumption is required to avoid certain degenerate
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Figure 1: The values of µD,n([0, 1/2)) for (left) n = 0, . . . , 200, (middle) n =
201, . . . , 10000 and (right) n = 10001, . . . , 100000.

situations. For example, consider the positive k-regular sequence f , where
f(m) = eT1 B(m)k w, with

B0 = B1 = · · · = Bk−1 =

(
∗ 0
0 c

)
, and w =

(
∗
0

)
,

where the ‘∗’ indicates any positive values. For large integers c the dominant
eigenvalue of B will be k · c, but none of the matrices Ba nor w have any
component that interacts with this part of the matrix B, and so this growth
is not reflected in the behaviour of Σf (n). Of course, the linear representation
of the sequence is not unique, so this problem is not intrinsic to the sequence.
More probable is that one has made a sub-optimal choice of the matrices Ba—
as is readily apparent, one can fix this example by deleting the un‘∗’ parts.

With these examples in mind, assuming that degenerate situations can be
avoided, the sufficient assumptions of Theorem 2 seem quite natural for the
existence of such measures. Of course, on a case-by-case basis, the measure
could exist without satisfying these conditions, but it is certainly not guaran-
teed in general.

5 Concluding remarks

In working with examples, curiosities having to do with spectral type are ev-
ident, and natural examples with certain properties are elusive. A case in
point is the seeming scarcity of regular sequences yielding pure point measures.
Of course, Corollary 6 concludes that if f is primitive (and other conditions),
then µf is continuous. So to find examples, it seems wise to study sequences f
which have many zeros. For a trivial example, if one takes f = χ

2
to be

the characteristic sequence of the powers of two, then we easily compute that
µχ

2
= δ0. Staying with binary sequences for the moment, as soon as the density
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of ones in the fundamental regions [2n, 2n+1) is bounded below, we are spread-
ing the mass equally to these points, so the mass allocated to any one point
in T must go to zero, and so assuming some regularity on the distribution of
the non-zero values of the sequence the measure will be continuous; see Coons
and Evans [15] for a family of singular continuous examples related to iterated
function systems. Some examples of sequences with pure-point measures exist,
see Evans [21]. However, these still occur in a relatively trivial way, where cer-
tain terms of the sequence contain a non-zero fraction of its entire mass. One
could attempt to produce pure point measures differently, by instead having
many small point masses concentrate in a single location, yet we are unable to
find a regular sequence whose measure exhibits this property.

For a non-regular example, consider the values of the binomial coefficients, say
f(n) =

(
2m

n−2m

)
for 2m 6 n < 2m+1 and follow our process. This sequence is not

k-regular for any k since it grows exponentially along a subsequence whereas
regular sequences can only grow at most polynomially [2, Thm. 2.10]. More
precisely, f(nj) ∼ 2nj/

√
π · nj for nj = 2j + 2j−1. The measure obtained will

be µf = δ1/2. This happens because, even though the ratio of every value to
the sum is going to zero, the sequence is dominated by the central binomial
coefficient and the limiting Gaussian curve, when scaled to the interval [0, 1),
is collapsing to its mean.

Our paradigm contrasts starkly with the situation for diffraction measures,
where there is a plethora of examples with pure point spectral type, e.g. those
arising from model sets (both in the regular and weak sense) and Toeplitz sys-
tems; see Keller [26] and Keller and Richard [27]. For example, the diffraction
measure of the paperfolding sequence is pure point [6, p. 380], but in our con-
struction the produced measure is Lebesgue. We emphasise here that these
two measures, albeit derived from the same object, are not expected to be the
same (or even to be of the same spectral type) since they arise from completely
different constructions (which capture different aspects of the sequence).

The question of spectral purity also arises. In most of the examples we have
produced, the measure µf is of pure type. As suggested by Theorem 2, focusing
solely on continuous measures, is there a natural example of a regular sequence
with continuous measure of mixed spectral type, that is, having both absolutely
continuous and singular continuous components in its Lebesgue decomposition?
While examples can be constructed—using that the set of k-regular sequences
is a group under point-wise addition [2]—we have yet to find a natural non-
trivial example or a “good” sufficient criterion for purity. We have some results
along this direction and we hope to address this in a future work.
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[24] Raphaël Jungers, The joint spectral radius: Theory and applications, Lec-
ture Notes in Control and Information Sciences, 385, Springer, Berlin,
2009.

[25] Shizuo Kakutani, Strictly ergodic symbolic dynamical systems, In Pro-

ceedings of the Sixth Berkeley Symposium on Mathematical Statistics and

Probability, 319–326, Univ. California Press, Berkeley, Calif., 1972.

[26] Gerhard Keller, Maximal equicontinuous generic factors and weak model

sets, Discrete Contin. Dyn. Syst. 40 (2020), no. 12, 6855–6875.

[27] Gerhard Keller and Christoph Richard, Dynamics on the graph of the torus

parametrisation, Ergod. Th. & Dynam. Syst. 38 (2018), no. 3, 1048–1085.

Documenta Mathematica 27 (2022) 629–653



652 M. Coons, J. Evans, N. Mañibo
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Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
33501 Bielefeld
Germany
cmanibo@math.uni-bielefeld.de

Documenta Mathematica 27 (2022) 629–653

mcoons.math@gmail.com
james.evans10@uon.edu.au
cmanibo@math.uni-bielefeld.de


654

Documenta Mathematica 27 (2022)


