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ABSTRACT. Multipliers of reproducing kernel Hilbert spaces can be
characterized in terms of positivity of n x n matrices analogous to the
classical Pick matrix. We study for which reproducing kernel Hilbert
spaces it suffices to consider matrices of bounded size n. We connect
this problem to the notion of subhomogeneity of non-selfadjoint oper-
ator algebras. Our main results show that multiplier algebras of many
Hilbert spaces of analytic functions, such as the Dirichlet space and
the Drury—Arveson space, are not subhomogeneous, and hence one
has to test Pick matrices of arbitrarily large matrix size n. To treat
the Drury—Arveson space, we show that multiplier algebras of certain
weighted Dirichlet spaces on the disc embed completely isometrically
into the multiplier algebra of the Drury—Arveson space.
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1 INTRODUCTION

1.1 BACKGROUND

Multiplication operators on Hilbert spaces of analytic functions appear in sev-
eral contexts in analysis. In operator theory, they frequently can be used to
model fairly general classes of operators; see for instance [1, 46]. In complex
analysis and harmonic analysis, multiplication operators provide a functional
analytic perspective on concrete function theoretic questions; see for example
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[41, 42]. With few exceptions, it is often not an easy task to decide which
functions are multipliers of a given Hilbert space of analytic functions. Func-
tion theoretic descriptions of multipliers exist for spaces such as the Dirichlet
space [44] and the Drury—Arveson space [9], but they tend to be difficult to
check in practice. Nevertheless, there is a very general and well known criterion,
which we now describe.

Let X be a non-empty set and let H be a reproducing kernel Hilbert space on X
with reproducing kernel K. We will always assume that reproducing kernels
do not vanish on the diagonal, i.e. K(z,2) # 0 for all z € X. A function
¢ : X — Cis said to be a multiplier of H if of € H for all f € H. In this case,
the multiplication operator

My, H—=H, f—=e-f

is bounded by the closed graph theorem, and the multiplier norm ||¢||yrex)
of ¢ is defined to be the operator norm of M.
The characterization of multipliers alluded to above says that a function ¢ :
X — C is a multiplier of H of multiplier norm at most 1 if and only if the
function

XxX =C, (z,w)— K(z,w)(1 - p(2)p(w)),

is positive semi-definite; see [38, Theorem 5.21]. More explicitly,
l|ollnuey < 1 if and only if for every n € N and every finite subset
{z1,...,2n} C X of n points in X, the n x n matrix

[K (zi, 2)) (1 = p(z0)0(2))]; 5y (1)

is positive semi-definite. In some special cases, it is not necessary to check this
condition for sets of arbitrary size n. For instance, if H is the Hardy space
on the unit disc, then the multipliers of H of norm at most 1 are precisely
the analytic functions on D which are bounded in modulus by 1. Hence, if
we assume a priori that ¢ is analytic, then it suffices to test positivity of the
matrices in Equation (1) for all singleton sets, i.e. n = 1 is suffices. Without
the analyticity assumption, a theorem of Hindmarsh [35] shows that sets of size
n = 3 suffice.

1.2 n-POINT MULTIPLIER NORMS

We ask if similar phenomena occur in other classical reproducing kernel Hilbert
spaces. To study this question, we introduce some terminology. We will also
consider operator valued multipliers. If £ is an auxiliary Hilbert space, we
say that a function L : X x X — B(&) is n-point positive if for every collec-
tion 21,...,2, of n (not necessarily distinct) points in X, the n X n matrix
[L(wi,x;)]} =1 is a positive operator on B(£™). Thus, L is positive if and only if
it is n-point positive for all n € N. We furthermore define the n-point multiplier
norm of a function ® : X — B(E) to be

@[ |Mute(#),n = Inf{C > 0: K(z,w)(C? — ®(z)®(w)*) is n-point positive},
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which is understood as +oc0 if no such C exists. We also adopt the convention
that ||®||nuie() = +oc if @ is not a multiplier.
The assumption K(z,z) # 0 for all z € X implies that

1@ aute),1 = sup [[(2)[[5(e)-
zeX
Moreover, it is clear that

1@l nuter),1 < Pl nutery.2 < - - - < @ vwtecr) s

where the quantities are allowed to be infinity.
We now ask:

QUESTION 1.1. Does there exist n € N such that

L |®f|muter) = [P llvuiecr),n for all functions @ : X — B(E) and all (finite
dimensional) Hilbert spaces £, or

2. [[ellmuer) = ll@llvusz,n for all functions ¢ : X — C, or

A

3. [[ellvuten) < Cllellvu,n for some constant C' > 0 and all functions
p: X —>C?

Clearly, a positive answer answer to (1) implies a positive answer to (2), which
in turn implies a positive answer to (3). One might also ask for the seemingly
weaker property that there exists n € N so that ||¢|lyuie(z),n < oo implies
¢ € Mult(H). However, one easily checks that the space of all functions ¢ :
X — Cwith |||l suie(r),n < 00 is a Banach space in the norm || - ||npuie(p),n (for
instance using Equation (2) below). Hence the closed graph theorem shows
that the seemingly weaker property is in fact equivalent to (3) above.

In Section 2, we will show that finiteness of |[¢||nuie(s),2 implies that ¢ is con-
tinuous in an appropriate sense. Moreover, we generalize Hindmarsh’s theorem
and prove that if H is a space of holomorphic functions, then finiteness of
|l nult(20),3 implies that ¢ is holomorphic.

It is a recurring phenomenon in functional analysis that properties that hold
at every matrix level have strong consequences. This is also the case in Ques-
tion 1.1. We will show that in a fairly general setting of spaces of holomorphic
functions on the Euclidean unit ball By C C?, a positive answer to part (1) of
Question 1.1 only happens in the trivial case when the multiplier norm is the
supremum norm. We remark, however, that it is in general not true that n-point
multiplier norms are comparable to the supremum norm (see Corollary 3.5 for
the classical Dirichlet space). Instead, we use Arveson’s theory of boundary
representations to prove our result addressing part (1) of Question 1.1.

More precisely, a regular unitarily invariant space is a reproducing kernel
Hilbert space on By with reproducing kernel of the form

K(z,w) = Z an(z,w)",
n=0

DOCUMENTA MATHEMATICA 27 (2022) 719-764



722 A. ALEMAN, M. HARTZ, J. MCCARTHY, S. RICHTER

where ag = 1, ap, > 0 for all n € N and lim,_, a— = 1. Regular uni-
tarily invariant spaces are a frequently studied class of reproducing kernel
Hilbert spaces; see for instance [31, 29]. A discussion of this condition can
be found in [16]. Here, we simply mention that the Hardy space H?(D), the
Drury—Arveson space H3, the Dirichlet space D, the standard weighted Dirich-
let spaces D, as well as standard weighted Dirichlet and Bergman spaces on By
are regular unitarily invariant spaces. Even the somewhat pathological Salas
space [5] belongs to this class.

THEOREM 1.2. Let d € N and let H be a regular unitarily invariant space
on By. Then the following are equivalent:

(i) There exists n € N so that ||®|vaer) = | PlMuiecr),n for all @ €
Mult(H ® €) and all finite dimensional Hilbert spaces €.

(i) Mult(H) = H>*(Bq) and [|®||\u(nce) = SuP.ep, [|P(2)]| for all @ €
Mult(H ® €) and all finite dimensional Hilbert spaces E.

Since the 1-point multiplier norm is the supremum norm, (ii) clearly implies
that (i) holds with n = 1. A stronger version of this result will be proved in
Section 4. There, we also record applications to concrete spaces of functions
on the ball.

Regarding the remaining parts of Question 1.1, we show that for many concrete
spaces on the unit disc or on the unit ball, even Part (3) of Question 1.1 has a
negative answer. For a € (0, 00), let D,(By) be the reproducing kernel Hilbert

space on B, with kernel
1

(1= (zw))*

We also let Dy(Bg) be the space corresponding to the kernel

(z,lw) log (1 - (1z,w>)

Equivalently, for ¢ > 0, we have

)= {1= 3 fle) e 0B 17 = Y wor @ fa)f? < oo}

r
aeNg aeNg (a+ )

and

)={f= 2 Jl= e 0B 117 = 3 (al+ 173 |,|f<a>|2<oo};

aeNg aeNg

the equivalence can be seen by expanding the reproducing kernel in a power
series; see for instance the proof of Theorem 41 in [49)].

Then D (D) = H? is the Hardy space, Do(DD) = D is the classical Dirichlet
space and the spaces D,(D) = D, are standard weighted Dirichlet spaces on
the unit disc for a € (0,1). Moreover, D;(By) = H3 is the Drury—Arveson
space.
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THEOREM 1.3. Let d € N and let 0 < a < %. Then there do not exist a
constant C > 0 and n € N so that

H@HMult(Da(Bd)) < CH@HMuu(Da(Bd)),n
for all ¢ € Mult(D,(By)).

Notice that this result applies in particular to the standard weighted Dirichlet
spaces D (D) for 0 < a < 1 and to the Drury—Arveson space H3 for d > 2. We
will obtain Theorem 1.3 as a special case of Theorem 1.7 below.

In fact, for the spaces D, (D), we study the n-point multiplier norm in more de-
tail. We show that the n-point multiplier norm on D, (D) is comparable to the
supremum norm for a > 0; see Corollary 3.3. This argument also provides a di-
rect proof of Theorem 1.3 for these spaces. For the classical Dirichlet space, the
n-point multiplier norm turns out to be neither comparable to the supremum
norm nor to the full multiplier norm; see Lemma 3.5 and Proposition 5.6.

1.3 SUBHOMOGENEITY

Question 1.1, at least when asked for a function ¢ or ® which is a priori as-
sumed to be a multiplier, can be reformulated in representation theoretic terms.
This reformulation connects Question 1.1 to the property of subhomogeneity
of operator algebras, but it is also useful for the sole purpose of understand-
ing Question 1.1, as for instance subhomogeneity passes to subalgebras and is
preserved by isomorphisms.

To explain this connection, recall that Mult(H) is a unital (non-selfadjoint)
operator algebra, via identifying a multiplier with its associated multiplica-
tion operator. If A C B(H) is an operator algebra, elements of M,(A) can
be regarded as operators on H". This identification makes it possible to en-
dow M, (A) with a norm. In the case of multiplier algebras, M, (Mult(#)) is
identified with Mult(H ® C"). If A and B are operator algebras, a linear map
7 : A — B induces linear maps 7(") : M,.(A) — M, (B), defined by applying 7
entrywise. The linear map 7 is said to be completely contractive if each 7(") is
contractive, and completely isometric if each 7(") is isometric.

Suppose now that F = {z1,...,2,} is a finite subset of X and let ’H|F be
the restriction of H to F), i.e. the reproducing kernel Hilbert space on F with
reproducing kernel K|, . (see [11, Part I, Section 6]). Then

1@ ntute(20),n = lbsj‘lf (9] lIntuie () 2y 26) (2)

for every function ® : X — B(&). Thus, if we consider the unital completely
contractive (u.c.c.) homomorphism

mp : Mult(H) — Mult(H| ), ¢~ @[,
then for ® € Mult(H ® C"), we have

19| suteryn = sup |70 (@)]]. (3)
|F|<n
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On the other hand,
1 |ty = o 7 (@)].

<oo
Note that dim(#|,) < |F|. In particular, we see that Mult(X) is a residually
finite-dimensional operator algebra, which means that for every r € N and
every ® € M,.(Mult(H)),

|@|| = sup{||7")(®)]|| : 7 : Mult(H) — M, is a u.c.c. homomorphism, n € N}.

Question 1.1 is then closely related to the question whether in the above supre-
mum, it suffices to consider representations into M,, for uniformly bounded
values of n.

The notion of residual finite-dimensionality was originally defined for C*-
algebras and plays a crucial role in this theory; see for instance [8] and the refer-
ences given in the introduction. Residually finite-dimensional operator algebras
of functions were studied in [37], where it was also observed that multiplier al-
gebras are residually finite-dimensional. For residual finite-dimensionality of
more general non-selfadjoint operator algebras, see [22].

In the theory of C*-algebras, a significant strengthening of the property of
residual finite-dimensionality is the notion of subhomogeneity; see for instance
[17, Section IV.1.4]. A unital C*-algebra A is said to be n-subhomogeneous if
every irreducible x-representation of A acts on a Hilbert space of dimension at
most n. For C*-algebras, this is equivalent to saying that for all a € A,

la|]| = sup{||7(a)|| : 7 : A — M}, is a unital x-homomorphism, k < n};

see the discussion at the beginning of Section 4.
We therefore make the following definitions.

DEFINITION 1.4. Let A be a unital operator algebra and let n € N.

1. A is completely isometrically n-subhomogeneous if for all » € N and all
Ae M. (A),
1Al = sup{[l=" (A)]1},

where the supremum is taken over all u.c.c. homomorphisms 7 : A — My,
and all k£ < n.

2. A is isometrically n-subhomogeneous if for all a € A,

lall = sup{[|m(a)[|},

where the supremum is taken over all unital contractive homomorphisms
m: A— My and all k < n.

3. A is topologically n-subhomogeneous if there exist constants C1,Cs > 0
so that for all a € A,

llall < Crsup{{|m(a)]},
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where the supremum is taken over all unital homomorphisms 7 : A — My,
with ||7|| < Cy and all k£ < n.

We say that A is completely isometrically / isometrically / topologically sub-
homogeneous if it is completely isometrically / isometrically / topologically
n-subhomogeneous for some n € N.

Thus, Question 1.1 leads us to ask the following more general question for a
reproducing kernel Hilbert space H.

QUESTION 1.5. Does there exist n € N so that

1. Mult(H) is completely isometrically n-subhomogeneous, or
2. Mult(#) is isometrically n-subhomogeneous, or
3. Mult(H) is topologically n-subhomogeneous?

Equation (3) shows that for j = 1,2, 3, a positive answer to part (j) of Ques-
tion 1.1 implies a positive answer to part (j) of Question 1.5 (for the same value
of n).

We then show the following stronger version of Theorem 1.2 in Theorem 4.2.

THEOREM 1.6. Let ‘H be a regular unitarily invariant space on Bg. Then
Mult(H) is completely isometrically subhomogeneous if and only if Mult(H) =
H>(By) completely isometrically.

The discussion above shows that this result will establish the non-trivial im-
plication (i) = (ii) in Theorem 1.2, as (i) in Theorem 1.2 in particular implies
that Mult(H) is completely isometrically subhomogeneous.

Theorem 1.3 also holds in the following stronger sense.

THEOREM 1.7. Let d € N and let 0 < a < 42, Then Mult(D,(By)) is not
topologically subhomogeneous.

Just as Theorem 1.3, this result applies in particular to the standard weighted
Dirichlet spaces Dy(ID) for 0 < a < 1 and to the Drury—Arveson space H3 for
d > 2. Theorem 1.7 will be proved in Corollary 9.5. The cases of D, (D) for 0 <
a < 1, Dy(D) and H3 are already contained in Corollary 5.3, Proposition 5.6
and Corollary 7.7, respectively.

To show Theorem 1.7 for the Drury—Arveson space, we establish an embedding
result for multiplier algebras of certain weighted Dirichlet spaces on the unit
disc, which may be of independent interest; see Proposition 7.2 for the precise
statement. We exhibit two more consequences of the embedding result. In
particular, we show that a certain sufficient condition for membership in the
multiplier algebra of the Drury—Arveson space of [6] is not necessary. This was
also proved, using different techniques, in a recent paper of Fang and Xia [27].
The remainder of this paper is organized as follows. In Section 2, we study the
n-point multiplier norm of functions for small values of n. In particular, we
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establish a generalization of Hindmarsh’s theorem for spaces of holomorphic
functions. Section 3 contains the result that the n-point multiplier norm on D,
is comparable to the supremum norm for a € (0,1), but not for the classical
Dirichlet space. In Section 4, we establish our results on completely isometric
subhomogeneity of multiplier algebras. Section 5 addresses topological sub-
homogeneity of multiplier algebras on the unit disc. In Section 6, we deduce
from our results on the unit disc results about topological subhomogeneity of
multiplier algebras on the unit ball. Section 7 contains the embedding of mul-
tiplier algebras of weighted Dirichlet spaces into the multiplier algebra of the
Drury—Arveson space, from which we deduce that the multiplier algebra of the
Drury—Arveson space is not topologically subhomogeneous. In Section 8, we
give two more applications of our embedding result established in Section 7.
Section 9 deals with topological subhomogeneity of multiplier algebras of spaces
between the Drury—Arveson space and the Hardy space. Finally, we close the
article in Section 10 with some questions.

We make one final remark regarding notation. If f, g are two functions taking
non-negative real values, we write f < g if there exists a constant C' > 0 so
that f < Cg. If f < gand g < f, we write f =~ g. Finally, the notation f ~ g
(x) =1.

xr

as * — xo means that limg_,,, %
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2 BOUNDEDNESS, CONTINUITY AND ANALYTICITY

In this section, we study the n-point multiplier norm of a function for small
values of n. Throughout, H denotes a reproducing kernel Hilbert space on a
set X with kernel K satisfying K(z,z) # 0 for all z € X. As mentioned in the
introduction,

||90||Mu1t(7-t),1 = sup |p(2)]
zeX

for all functions ¢ : X — C.
The 2-point norm can be understood in terms of a pseudo-metric induced by H,
which is for example studied in [10]. This pseudo-metric is defined by

oz w) = (1= Kz, w)l? ))1/2

K(z,2)K(w,w

for z,w € X; see [3, Lemma 9.9] for a proof of the triangle inequality. Recall
that the Hardy space H? is the reproducing kernel Hilbert space on D whose
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1
l—zw"

reproducing kernel is the Szegd kernel S(z, w) = In this case, dp2 is the

classical pseudohyperbolic metric 6 on D, that is,

zZ—w

02 (z,w) = (2, w) =

1—wz!

see [3, Equation 9.8].
We now show that the 2-point multiplier norm is closely related to the met-
ric 6. We say that K is non-vanishing if K(z,w) # 0 for all choices of z, w.

PRrROPOSITION 2.1. Let H be a reproducing kernel Hilbert space on X with non-
vanishing kernel K. Let ¢ : X — C be a function. Then

||<P||Mu1t(7-t),2 <1

if and only if ¢ is constant of modulus at most 1 or ¢ maps X into D and
satisfies

5(¢p(2), p(w)) < on(z,w)
for all z,w € X.

Proof. Let z,w € X. By Sylvester’s criterion, the matrix

K(z,2)(1=lp(2)]?)  K(z,w)(1 - g(2)p(w))
K(w,2)(1 = p(w)p(z))  K(w,w)(1 - |pw)]?)

is positive if and only if |¢(z)| < 1 and |p(w)| < 1 and its determinant is non-
negative. If p(z), (w) € D, then the determinant of this matrix is non-negative
if and only if

K@z wl* (1 =]e)P)A —[ew)*)

K(z,2)K(w,w) — 1= p(2)p(w)?

and since dy2 = ¢, this last inequality is equivalent to

(¢ (2), p(w)) < dn(z, w).

This shows that if ¢ maps X into D and is a dy — d-contraction, then
[[elInue(r),2 < 1. Clearly, constant functions ¢ of modulus at most 1 also
have 2-point norm at most 1.

Conversely, if ¢ has 2-point norm at most 1 and is not constant, then since K
does not vanish, [5, Lemma 2.2] implies that ¢ maps X into D. By the first
paragraph, ¢ is a d3 — d-contraction. O

Next, we study the 3-point multiplier norm. If # = H?, the Hardy space on
the disc, then every function ¢ : D — C with |[¢]|yrae(x),3 < 00 is analytic by
a theorem of Hindmarsh [35]. This result can be generalized. We begin with a
lemma.
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LEMMA 2.2. Let ‘H be a reproducing kernel Hilbert space of analytic functions
on D with kernel K. Let S denote the Szegd kernel. Then there exists r > 0
such that K (rz,rw) # 0 for all z,w € D and such that

S(z,w)
DxD—C >

% ALY K(rz,rw)’
s positive semi-definite.

Proof. In the first step, we show that if (b,) is a sequence of real numbers
with bg > 0 such that the power series ZZO:O b,t" has a positive radius of
convergence and if we define

then there exists ro > 0 such that
(z,w) —= S(z,w)L(rz,rw)

is positive semi-definite on D x D for all » € (0,79). (This will already prove
the lemma in the case when K has circular symmetry, by taking L = 1/K.)
To establish this claim, observe that for sufficiently small r» > 0, the identity

S(z,w)L(rz,rw) = Z(ZE)” Z bpr™ (zw)" = Z(ZE)” Z byt
n=0 n=0 n=0 k=0

holds, so it suffices to find ¢ > 0 such that ZZ:O bir® > 0 for all n € N and
all 7 € (0,79). Since Y > b,t" has a positive radius of convergence and since
bo > 0, there exists 9 > 0 such that Y -, |bi|rE < bo. Thus,

S bert > b0 — D [oilrt > bo = > [bilry >0
k=0 k=1 k=1

for all € (0,7¢), as desired.

Having established the claim, suppose now that K is the reproducing kernel of
a Hilbert space of analytic functions on D. We will show that there exist s > 0
and a sequence of real numbers (b,) with by > 0 such that > °  b,t" has a
positive radius of convergence, K (sz, sw) # 0 for all z,w € D, and

o0

(z,w) — K~ (sz, sw) — Z by (zw)"

n=0

is positive semi-definite in a neighborhood of (0,0). Once this is accomplished,
the first part shows that there exists ro > 0 such that L(rz,rw)S(z,w) > 0 for
all r € (0,79), where L(z,w) = Y_° ;b (2w)". Hence, in the order induced by
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positivity, we obtain by the Schur product theorem for sufficiently small » > 0
the inequality

K™Y (srz,smw)S(z,w) > L(rz,rw)S(z,w) > 0,

which finishes the proof.

To construct the sequence (by,), observe that since H consists of holomorphic
functions, K is holomorphic in the first variable and conjugate holomorphic in
the second variable. Moreover, K(0,0) > 0 by our standing assumption that
reproducing kernels do not vanish on the diagonal. By Hartogs’ theorem, K is
jointly continuous, so K is non-vanishing in neighborhood of 0, and there exist
complex numbers (¢p,) such that

oo
K (z,w) = Z Cnm2 W™

n,m=0

for z,w in a neighborhood of 0. Since K(z,w) = K(w,z), it follows that
Cnm = Cmp for all m,n € Ng. In particular, each ¢, is real. Moreover, coy > 0
as K(0,0) > 0. By replacing K with a positive multiple of K, we may assume
that cpo = 1. Moreover, by replacing K (z,w) with K (sz, sw) for suitable s > 0,
we may assume that |, | < 1 whenever (n,m) # (0,0). Then

K7 (z,w) =14+ Y can(z0)" + D (com 2" 0" + Camz™W"). (4)

n=1 n<m

To treat the last sum, observe that if f is a function on D, then for all £ > 0,

e+ 7w = =+ £20) (+@> (O]

3

hence

() + Ty = —e2 - L&),

€
Using this observation with f(z) = Gumz™ ™ and € = &,,,, to be determined
later, as well as the Schur product theorem, we see that if n < m, then

2" (W™ + Cam 2

2
m

cnmznmm + —cnmzmwn m—n)

Y

ann(—&‘ _ 5;12 |cnm|2sznwmfn)
2T — e, 22T

Y

2
—&;,
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Consequently, if €2, = 2771 then

Z (Cnmz" @™ + Cpmz"w") > — Z (€2 2"w" + e, 22" w™)

n<m n<m
00 0 co m—1
= - Z Z 2 2"w" — Z Z e
n=0m=n+1 m=0 n=0

v

1 oo oo
) Z(z@)" - Z m2mtlm™,
n=0 m=0

where all sums converge absolutely for (z, w) in a neighborhood of 0. Combining
this estimate with Equation (4), we see that

1 /3
-1 n+1 =5\
K (z:,w)ZQ—ng:1 (5 + n2 )(zw) )
so if we set by = 1 and b, = —3 — n2"*1, then (b,) satisfies all desired

properties. O

We can now generalize Hindmarsh’s theorem [35]. The original theorem is
obtained by taking H = H?.

PROPOSITION 2.3. Let H be a reproducing kernel Hilbert space of analytic func-
tions on an open domain @ C C?. Then every function ¢ : Q — C with
[l nule(z),3 < 00 is analytic on Q.

Proof. Suppose that ||¢||vusx),s < 1. We will show that ¢ is analytic in each
variable separately. To this end, let w €  and j € {1,...,d}, and choose
s > 0 such that w + sDe; C (2, where ey, ..., eq is the standard basis of ce,
Let D = w + sDe;, define

t:D—= D, tw w+ stey,

and let k be the kernel on D given by k(z,w) = K(¢(z),t(w)). Then the
reproducing kernel Hilbert space H (k) on D with kernel &k consists of analytic
functions. Let ¢ = ¢ o¢. Then

[l Mute (1 (x)),3 < @l IMuter),3 < 1.
Lemma 2.2 shows that there exists » > 0 such that
S(z,w)k™(rz,rw) >0,
where S denotes the Szegd kernel. Since |[t)||nule(2(k)),3 < 1, the function
(z,w) = k(rz,rw)(1 — ¢(rz)y(rw))
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is 3-point positive, hence an application of the Schur product theorem yields
that

(z,w) = S(z,w)(1 = P(rz)y(rw))

is 3-point positive as well. In this setting, Hindmarsh’s theorem [35], see also
[24, Theorem III.2], implies that z — ¢ (rz) is analytic in D. (Hindmarsh’s
theorem concerns functions in the upper half plane, but a routine application
of the Cayley transform yields the corresponding statement in the unit disc.)
Therefore, v is analytic in a neighborhood of the origin, so that ¢ is analytic
in the j-th variable in a neighborhood of w. O

3 THE n-POINT NORM FOR SPACES ON D

In this section, we study the n-point multiplier norm for spaces of holomorphic
functions on the unit disc. Our first goal is to show that Question 1.1 has a
negative answer for the weighted Dirichlet spaces D,, i.e. no n-point multiplier
norm is comparable to the full multiplier norm for these spaces. While we
will establish a more general result concerning subhomogeneity of Mult(D,) in
Section 5, we consider this easier question first as it illustrates the ideas that
will be used later.

The following lemma shows that for certain spaces on D, the n-point multiplier
norm of an analytic function is comparable to the supremum norm. In the
sequel, we let Aut(ID) denote the group of conformal automorphisms of D.

LEMMA 3.1. Let ‘H be a reproducing kernel Hilbert space on D. Suppose that
every conformal automorphism of D is a multiplier on H and that there exists
a constant C' > 0 such that

0] Moy < C
for all 6 € Aut(D). Then
1 oo < 1 flInutecrn < C™HIflloo
for all f € H® and alln > 1.

Proof. The first inequality always holds, so it suffices to show the second one.
To this end, suppose that f € H* with ||f|lcc < 1. Let z1,...,2, € D. We
wish to show that

[K (21, 2))(C*" 7% = f(z0) [ (25))];
is positive. Since f belongs to the unit ball of H*°, there exists by classical
Nevanlinna-Pick interpolation a finite Blaschke product B of degree at most
n — 1 and a complex number A with |A\| < 1 such that AB(z;) = f(z) for
1 <4 < n; see [28, Section 1.2] or [3, Theorem 6.15]. Since B is a product of at

DOCUMENTA MATHEMATICA 27 (2022) 719-764



732 A. ALEMAN, M. HARTZ, J. MCCARTHY, S. RICHTER

most n — 1 conformal automorphisms of D, the assumption on H implies that
AB is a multiplier of H of norm at most C"~!. Therefore,

[K (20, 2))(C?" 2 = f(2:) F(2))] = [K(2i,2)(C*" "% = AB(2:)AB(2;))]
is positive, as desired. o

Using basic results from operator space theory, it is possible to extend the
preceding lemma to operator-valued multipliers. If £ is an auxiliary Hilbert
space, let H>®(B(£)) denote the space of bounded B(E)-valued holomorphic
functions on D, equipped with the supremum norm

[@lloc = sup [|2(2) | 5e)-
zeD

Thus, H>®(B(£)) = Mult(H? @ ), with equality of norms.

LEMMA 3.2. Assume the setting of Lemma 3.1 and let € be an auziliary Hilbert
space. Then

1210 < 1@ lIvtute(r),n < nC™HIP]|o

for all ® € H>*(B(E)) and alln > 1.
Proof. Once again, the first inequality always holds. To prove the second in-
equality, a straightforward approximation argument shows that it suffices to

consider finite-dimensional spaces £.
Let n € N, let F C D with |F| < n and consider the restriction mapping

R: H*® — Mult(H|r), ¢+~ @’F.
Lemma 3.1 implies that R is bounded with norm at most C™~!. Since
dim(Mult(H|r)) < n,

a basic result from operator space theory implies that R is completely bounded
with completely bounded norm at most nC™~1; see for instance [25, Corollary
2.2.4]. In other words, if £k > 1 and ® € HOO(Mk), then H(I)HMult((’}-[\F)®(C’“) <
nC"|®||o. Taking the supremum over all finite subsets F' of D of cardinality
at most n therefore yields the second inequality. o

Lemma 3.1 implies a negative answer to Question 1.1 for the weighted Dirichlet
spaces D,, where a € (0,1). In fact, we obtain the following more precise
statement.

COROLLARY 3.3. Let a € (0,1). Then there exists a constant C > 0 so that
for alln € N and all f € H*,

1 flloe < If Iatute(a)n < C" 71 flloo-

DOCUMENTA MATHEMATICA 27 (2022) 719-764



SUBHOMOGENEITY OF MULTIPLIER ALGEBRAS 733

More generally, for all n € N, all auziliary Hilbert spaces £ and all ® €
H¥(B(€). 1
[@llco < 1 2[lmute(a),n < nC™ 2] oo

In particular, there do not exist a constant C' > 0 and n € N so that

llelMue.) < CllelMult(a),n
for all ¢ € Mult(Dy,).

Proof. We show that D, satisfies the assumptions of Lemma 3.1, which will
prove the first two statements (by Lemma 3.1 and Lemma 3.2). The final
statement then follows from the well known fact that the multiplier norm of D,
is not equivalent to the supremum norm. Indeed, using the explicit formula for
the norm in D, from the introduction, we see that

n!l(a)

— = 1)t-e
F(n+a) (n+ ) )

12" Rt = l2nllD, =

which tends to infinity as n — oo; see for instance [48] for the asymptotic
relation.

Using the special form of the reproducing kernel of D, and a familiar identity for
disc automorphisms [40, Theorem 2.2.5 (2)], it is not hard to see that Mult(D,)
is isometrically invariant under compositions with conformal automorphisms,
that is, if ¢ € Mult(D,) and if § € Aut(D), then ¢ o § € Mult(D,) and

e o Ollmue(p.) = ll@llnMue(p,); see for instance the easy implication of [32,
Corollary 4.4]. In particular, [|0|[nie(p,) = l|2lIMule(p,) for all 0 € Aut(D), so
that D, satisfies the assumptions of Lemma 3.1. O

The classical Dirichlet space D requires a more careful analysis, as Aut(D) is
not a bounded subset of Mult(D). In fact, we will shortly see that the 2-point
multiplier norm on the Dirichlet space is not equivalent to the supremum norm
on D, and hence provides more information than the 1-point norm. This result
will be a consequence of the following estimate of the derivative in terms of the
2-point norm on the Dirichlet space, which is better than the classical estimate

in the Schwarz—Pick lemma by a factor of log( 1_1|Z| )12,

LEMMA 3.4. There exists a constant C > 0 so that for all f € O(D) and all
z €D,

1(2)] < 0T )

(1 - |Z|)1Og(1,1|z|)1/2.

Proof. By Proposition 18 (a) of [19], there exists a constant C' > 0 so that for
all f € Mult(D), inequality (5) holds with || f||nuiecp) in place of || f|lnuie(p),2-
Indeed, this follows from the fact that the map f — f’ is a bounded linear
map from Mult(D) into Mult(D, L2), combined with the standard estimate for
multipliers between reproducing kernel Hilbert spaces.
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Nevanlinna—Pick property of D (see, for instance, [3, Corollary 7.41]), there
exists for every w € I a multiplier ¢, € Mult(D) with ||ow|[vugp) < 1 and

(,DU,(Z) = f(Z), ‘pw(w) = f(’LU) Thus,

£ (2) = fw)] = lpw(z) = pu(w)] < Sup |00 (2 + t(w = 2))| |z — wl.

Let now f € O(D) with ||f||zule(p),e < 1 and let 2z € D. By the complete

Applying the estimate for ¢!, explained in the preceding paragraph, we find
that

£ (2) = fw)| ¢

< sup
|2 — wl

tefo.1] (1 — [z + t(w — 2)]) log (=) V%

Taking the limit w — z, the lemma follows. O

The result about the 2-point norm that was alluded to above is an immediate
consequence.

COROLLARY 3.5. The norm || - |[nue(py,2 and the supremum norm on D are
not equivalent on the space of functions that are holomorphic in a neighborhood

of D.

Proof. Let r € (0,1) and let f(z) = {==. Then f € Aut(D) and in particular
[I7llcc < 1. On the other hand,

so Lemma 3.4 implies that

1 1 1/2 1 1/2
> —(1— ! > -
[ leoye 2 50 =log (7= ) " 1F 0] = 55108 (=)

which tends to infinity as r — 1. O

We will show that in spite of the last corollary, there is no n € N so that the
multiplier norm on the Dirichlet space is equivalent to the n-point multiplier
norm. To avoid repetition, we postpone the proof to Section 5, where we
establish a more general result about subhomogeneity of the multiplier algebra
of the Dirichlet space.

4 COMPLETELY ISOMETRIC SUBHOMOGENEITY

The goal of this section is to prove Theorems 1.2 and 1.6. To this end, we
will make use of Arveson’s theory of boundary representations [13] (see also
[18, Chapter 4] and [23]), which generalizes the classical notion of the Choquet
boundary of a uniform algebra.
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Let A C B(H) be a unital subalgebra. It follows from Arveson’s extension
theorem that every unital completely contractive map ¢ : A — B(K) extends
to a unital completely positive map 7 : C*(A) — B(K). The map ¢ is said
to have the unique extension property if there is a unique such extension, and
this extension is a x-homomorphism. If, in addition, the extension 7 is an
irreducible representation of C*(A), then it is called a boundary representation
of A. This notion is in fact independent of the concrete representation of A as
an operator algebra [13, Theorem 2.1.2].

In general, completely isometric copies of an operator algebra A can generate
many different C*-algebras. The C*-envelope is the smallest one in the follow-
ing sense. A C*-cover of A is a C*-algebra 2 together with a unital complete
isometry j : A — A so that A = C*(j(A)). The C*-envelope is a C*-cover
t: A — C%,,(A) so that for every other C*-cover j : A — 2, there is a *-
homomorphism 7 : 2 — C*  (A) so that : = woj. As an example, completely
isometric copies of the disc algebra A(D) generate the C*-algebras C(T), C(D)
and the Toeplitz algebra. The C*-envelope of the disc algebra is C(T).

It is a theorem of Davidson and Kennedy [23], proved by Arveson in the sep-
arable case [15], that every operator algebra has sufficiently many boundary
representations in the sense that their direct sum 7 is completely isometric.
As a consequence, the C*-envelope of A is the C*-algebra generated by 7(A).
Boundary representations and C*-envelopes have a long and rich history, which
we will not review here. Instead, we refer to [15, 23] and the references therein.
Recall from the introduction that a unital C*-algebra 2 is called n-
subhomogeneous if every irreducible representation of 20 has dimension at
most n. Equivalently, for all a € 2,

la]| = sup{||7(a)] : m : A — M}, is a unital *-homomorphism, k <n}. (6)

(For each a € A, there is an irreducible GNS-representation 7 of A4 with
|l (a)|| = |lal|, so n-subhomogeneity implies (6). Conversely, if (6) holds for all
a € A, then A embeds into a product [[,.; My, with n; < n for all i, which
implies that A is n-subhomogeneous; see [17, Proposition IV.1.4.6].) Recall fur-
ther that we defined a unital operator algebra A to be completely isometrically
n-subhomogeneous if for all » € N and all A € M,.(A),

| A|| = sup{[|7")(A)|| : 7 : A — My, is a u.c.c. homomorphism, k < n}.

The following proposition connects completely isometric subhomogeneity of
operator algebras to subhomogeneity of C*-algebras.

PROPOSITION 4.1. Let A C B(H) be a unital operator algebra and let n € N.
The following assertions are equivalent:

(i) A is completely isometrically n-subhomogeneous,

(ii) the C*-envelope of A is an n-subhomogeneous C*-algebra,
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(iii) every boundary representation of A acts on a Hilbert space of dimension
at most n.

Proof. (i) = (ii) Suppose that A is completely isometrically n-
subhomogeneous. Then there exists an index set I and natural numbers
(ni)ier with sup;c;n; < n and a unital complete isometry

oA [ M,

el

The second characterization of n-subhomogeneity mentioned in the discussion
before the proposition shows that the product on the right and hence also the
subalgebra C*(®(A)) are n-subhomogeneous. Since the C*-envelope of A is
a quotient of C*(®(.A)), the first characterization of n-subhomogeneity shows
that the C*-envelope is n-subhomogeneous as well. (These permanence prop-
erties for n-subhomogeneous C*-algebras also follow directly from [17, Propo-
sition IV.1.4.6].)

(ii) = (iii) The invariance principle for boundary representations [13, The-
orem 2.1.2] (see [12, Proposition 3.1] for a modern proof) shows that ev-
ery boundary representation of A is an irreducible representation of the C*-
envelope, hence it acts on a Hilbert space of dimension at most n.

(iii) = (i) The main result of [23] shows that the direct sum of all bound-
ary representations of A is completely isometric on A, hence A is completely
isometrically n-subhomogeneous. O

Recall that a regular unitarily invariant space is a reproducing kernel Hilbert
space on B, with reproducing kernel of the form

K(z,w) = Z an{z, w)",
n=0

an

where a9 = 1, a, > 0 for all n € N and lim,_,~ ™
unitarily invariant space, then the polynomials are multipliers of H. We can
now prove Theorem 1.6, which we restate for the convenience of the reader. As
explained in the introduction, this will establish Theorem 1.2 as well.

= 1. If H is regular

THEOREM 4.2. Let H be a reqular unitarily invariant space on By. Then
Mult(H) is completely isometrically subhomogeneous if and only if Mult(H) =
H>(B4) completely isometrically.

Proof. Tt is clear that H*°(Bg) is completely isometrically 1-subhomogeneous.
Conversely, let A(H) denote the norm closure of the polynomials inside of
Mult(H) and let A(B4) denote the ball algebra. Then the natural inclusion
A(H) — A(Bg) is completely contractive. We first show that if A(H) is com-
pletely isometrically subhomogeneous, then this inclusion is a complete isome-
try.
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To this end, suppose that the inclusion A(H) — A(Bg;) is not a complete
isometry. The maximum modulus principle then shows that the map

R:A(H) = C(0Ba), f+ flyg,»

is not a complete isometry. Since H is regular, [31, Theorem 4.6] yields a short
exact sequence of C*-algebras

0— K(H) = C*(A(H)) = C(9B4) — 0,

where the first map is the inclusion map and the second map agrees with R on
A(H). Thus, the quotient map by the compact operators on C*(A(H)) is not
completely isometric on A(?H). In this setting, Arveson’s boundary theorem
[14, Theorem 2.1.1] implies that the identity representation of C*(A(H)) is a
boundary representation for A(#). In particular, A(#) has an infinite dimen-
sional boundary representation and is therefore not completely isometrically
subhomogeneous by Proposition 4.1.

Finally, we turn from A(%) to Mult(#). The natural inclusion Mult(H) —
H*>(B,) is completely contractive. If Mult(#H) is completely isometrically
subhomogeneous, then so is the subalgebra A(#). By the preceding para-
graph, A(H) = A(B4) completely isometrically. If F' belongs the unit ball
of M, (H*(Bg4)), then for each r € (0,1), the function F,.(z) = F(rz) be-
longs to the unit ball of M, (A(B;)), hence F, belongs the to the unit ball
of M, (Mult(H)) for all » € (0,1). Since F, converges to F pointwise as
r — 1, we conclude that F belongs to the unit ball of M, (Mult(H)). Therefore,
Mult(H) = H*°(Bg4) completely isometrically. O

The question of when the identity representation is a boundary representation
of A(H) was already studied in [31].

We record two concrete applications to spaces on the unit ball. Recall that
D.(B4) is the reproducing kernel Hilbert space on By with kernel K(z,w) =
and Dy(B,) has kernel K (z,w) = —t~ log(m).

1
(1=(zw))*? (z,w)

COROLLARY 4.3. Let a € [0,00). Then Mult(D,(Bg)) is completely isometri-
cally subhomogeneous if and only if a > d.

Proof. Let H = Dy(Bg). If a = d, then H is the Hardy space on the ball; if
a > d, then H is a weighted Bergman space; see, for instance, [50, Theorem 2.7
and Proposition 4.28]. In either case, Mult(H) = H*(B,), which is completely
isometrically 1-subhomogeneous.
Conversely, one can deduce from Examples 1 and 2 in [31] that the identity
representation of A(H), the norm closure of the polynomials in Mult(H), is a
boundary representation if a < d, so that Mult(H) is not completely isometri-
cally subhomogeneous by Proposition 4.1.
Alternatively, we can argue with Theorem 4.2 as follows. If a > 0, then

I'(a) 1

. 2 = — =
Hzlllﬂ F(a+1) a
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If Mult(#) is completely isometrically subhomogeneous, then Theorem 4.2 im-
plies that Mult(H) = H>*(B,) completely isometrically. In particular,

21

d
1= : Z |ZZ||’H__

Fd] || Mulb(H,HeoC)
so that a > d. Similarly, if a = 0, then ||z|3, = 2, so that Mult(#) is not
completely isometrically subhomogeneous by the same reasoning. o

Our second application concerns spaces with the complete Nevanlinna—Pick
property; see [3] for background on this topic.

COROLLARY 4.4. Let H be a reqular unitarily invariant space on By with the
complete Nevanlinna—Pick property. Then Mult(H) is completely isometrically
subhomogeneous if and only if d =1 and H = H*(D).

Proof. Tt is clear that Mult(H?(D)) = H>°(D) is completely isometrically 1-
subhomogeneous. Conversely, it was proved in [21, Theorem 6.2] that the iden-
tity representation of A(H) is a boundary representation unless H = H?(DD),
so the result follows from Proposition 4.1.

Alternatively, we can again argue with Theorem 4.2 directly. Observe that if
K(z,w) =Y 0" g an{z,w)", then ||z;||3, = . If Mult(H) is completely isomet-
rically subhomogeneous, then Mult(H) = H °°(IBd) completely isometrically by
Theorem 4.2, so

21

d
1= Zmnﬂ——

Zd ] || Mule(H, HeC)

hence a; > d. Since H has the complete Nevanlinna—Pick property, there exists
a sequence (by,) of non-negative numbers with 37 b, <1 and Y7 jant™ =
W for t € D. (This is a variant of [3, Theorem 7.33], see for instance
[32, Lemma 2.3] for the precise statement.) Since a3 = by, it follows that
by =d=1and b, =0 for n > 2, hence H = H(D). O

5 TOPOLOGICAL SUBHOMOGENEITY FOR SPACES ON THE DISC

In this section, we study topological subhomogeneity of multiplier algebras of
weighted Dirichlet spaces on the unit disc. As in Section 3, the basic idea is to
interpolate holomorphic functions in ID by finite Blaschke products.

If A is a diagonalizable n x n matrix with o(A) C D, then classical Nevanlinna—
Pick interpolation shows that for any f € H*>(D) with || f|lcc < 1, there exists
a finite Blaschke product B of degree at most n — 1 and A € D such that f
and AB agree on o(A), hence f(A) = AB(A). We require a generalization
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of this fact to not necessarily diagonalizable matrices, which corresponds to
interpolating suitable derivatives as well. This generalization readily follows
from Sarason’s approach to Nevanlinna—Pick interpolation [41].

LEMMA 5.1. Let A € M,, with 0(A) C D and let f € H*® with ||f]|sc < 1.
Then there exists a finite Blaschke product B of degree at most n — 1 and a
complex number A with |\| <1 such that f(A) = AB(A).

Proof. Clearly, we may assume that f # 0 and that A £ 0. Let ¥ be the finite
Blaschke product of degree at most n whose zeros are those of the minimal
polynomial of A, counted with multiplicity. Let K = H?> S H?. The corollary
to Proposition 5.1 of [41] shows that there exists a unique function ¢ € H*®
with

Py M|, = PxM;y|,  and |[@lloc = [|Px My | |; (7)

moreover, this ¢ is a rational function of constant modulus on the unit circle
with strictly fewer zeros than 1. In other words, ¢ = AB for a finite Blaschke
product B of degree at most n — 1 and a number A € C with |A] < 1. Equation
(7) and co-invariance of K under multiplication operators imply that f —AB €
YH?2. Consequently, f(A) = AB(A), as desired. O

The next step is to establish a version of Lemma 3.1 for representations of
multiplier algebras. In order to be able to treat the classical Dirichlet space
as well, we formulate and prove a more flexible version in which Aut(DD) is not
assumed to be a bounded subset of the multiplier algebra.

LEMMA 5.2. Let H be a reproducing kernel Hilbert space on D and suppose that
Aut(D) C Mult(H). Forr € [0,1), let

h(r) = sup [|6(rz)[|nurecr)-
0cAut(D)

Let m : Mult(H) — M, be a unital bounded homomorphism. Then for all
r € (0,1), the inclusion H>®(r=tD) C Mult(H) holds, and

7 (I < lIwllar)" =" sup|£(2)]

zer—1D
for all f € H®(r~'D).

Proof. We first observe that the condition Aut(D) C Mult(#) implies that
2z € Mult(H) and that o(z) C D. Indeed, if A ¢ D, then

—1

AN =z

—— € Mul
T o1, € ult(H),

hence A — 2 belongs to the ideal of Mult(H) generated by A — z, and hence 1
belongs to this ideal, so that A\ — z is invertible. The analytic functional calcu-
lus therefore implies that every function analytic in a neighborhood of D is a
multiplier of H.
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Next, let 7 : Mult(#) — M, be a unital bounded homomorphism, let r € (0,1)
and let f be an element of the unit ball of H*°(r~'D). Define A = 7(z) € M,
so that o(T) C D by the first paragraph. Applying Lemma 5.1 to the matrix A
and the function z +— f(r~'z), we find A € D and a finite Blaschke product B
of degree at most n — 1 so that AB(rA) = f(A). Using that 7 is a unital
bounded homomorphism, we conclude that

7(f) = f(A) = AB(rA) = An(B(rz)).

Since B is a product of at most n — 1 disc automorphisms, ||B(rz)|nuler) <
h(r)"=1, so that

IO < 7l Br2) ey < llwllh(r)™
which is the desired estimate. O

The following result is a generalization of Corollary 3.3.

COROLLARY 5.3. Let a € (0,1). Then Mult(D,) is not topologically subhomo-
geneous.

Proof. As explained in the proof of Corollary 3.3, Aut(D) C Mult(D, ) and

||9|\Mult(Da) = HZHMult(Da)

for all § € Mult(D,). Moreover, it is well known that if ¢ € Mult(D,) and
r € (0,1), then ¢(rz) € Mult(D,) and |¢o(r2)||Mu,) < [|¢lMu(p,); this
follows, for instance, from rotational invariance of Mult(D,) and a routine
application of the Poisson kernel. Thus, the function A in Lemma 5.2 is bounded
above by [|z||mult(p,)- An application of Lemma 5.2 therefore shows that for
every unital bounded homomorphism 7 : Mult(#) — M,, and every polynomial
f € C[z], the estimate

7 (O < I llll2 ], sup £ (2)]
zeD

holds. Since the multiplier norm on D, is not dominated by a constant times the
supremum norm on D (see the proof of Corollary 3.3), it follows that Mult(D,)
is not topologically subhomogeneous. O

To apply Lemma 5.2 in the case of the Dirichlet space, we require the following
estimate.

LEMMA 5.4. There exists a constant C > 0 so that for all @ € Aut(D) and all
re(0,1),

2 \1/2

1002 ey < Clog (7—) -
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Proof. Tt is a result of Brown and Shields [19, Proposition 18] that if f € H*
and Y7 (nlog(n))|f(n)]> < oo, then f € Mult(D); see also [26, Exer-
cise 5.1.3]. Here f(z) = >..°, f(n)z". The closed graph theorem (or an

inspection of the proof of this result) then shows that there exists a constant
C > 0 such that

> ~ /
oy < (1l + (3 miog(mlFm)?) )
n=1

for all functions f that are holomorphic in a neighborhood of . We will apply
this inequality to a disc automorphism 6(z) = {=, where a € D, and the
function f(z) = 6(rz). Note that

fz)=a=> r@)" (1 -lal*)2".

It therefore suffices to show that there exists a (possibly different) constant
C > 0 so that for all a € D and all r € [0, 1),

> 2
> nlog(n)r|ar"~*(1 - |a]?)* < C'log (—— ). (8)
= (1 — 7“)

Clearly, we may assume that |a| > % and r > % We use the known asymptotic

- 1 1
anog(n)x" ~ e log (1 — z) asx N1,
n=1

which for instance can be deduced from [47, Chapter VII, Example 5, p. 242].
With this asymptotic identity, we estimate the left hand side of (8) as

- 1—|al?)? 1
r2(1 —|a|?)? Z nlog(n)|ar|*"~% < (1= la) log ( )
n=1

~ (1= ar]?)? 1 —far|?
1

<log (—),

=08 1—7r
where the implied constants do not depend on a or on r. This estimate finishes
the proof. O
Remark 5.5. Lemma 3.4 shows that the estimate in Lemma 5.4 is best possible
up to constants. Indeed, if 6(z) = —7== and f(z) = 0(rz), then f'(r) =
r(1—r?)

ooy ﬁ asr 1, so

1 \1/2
He(m)HMult(D) 2 log (E) asr 1.
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We are now ready to show that Mult(D) is not subhomogeneous.

PROPOSITION 5.6. The algebra Mult(D) is not topologically subhomogeneous.
In particular, there does not exist a constant C > 0 and n € N so that

lelvuty < CllelmuleD),n
for all ¢ € Mult(D).

Proof. Assume towards a contradiction that there exist n € N and constants
C1,Cs > 0 so that for all f € C[z], the estimate

[ IMuie(py < Crsup{[[=(f)]I} 9)

holds, where the supremum is taken over all unital homomorphisms 7 :
Mult(D) — My, with ||7|| < C and k < n.

Lemma 5.2 and Lemma 5.4 show that there exists a constant C' > 0 so that for
all 7 € (0,1), all f € C[z] and all representations 7 : Mult(D) — M}, as above,

P )<n71>/2

n—1
I7()ll < C2C" log (7

sup [f(2)].

[z[<r—1t

L Since
m

We apply this inequality to f(z) = z™ for m large and r = 1 —
(1 —-1)=™ tends to e, we find that

I (=")|| S log(2m)"~D72,

where the implied constant is independent of m and of the particular represen-
tation . On the other hand,

2™ Moy > 2" |D = vm + 1.

Since
m-+1

log(2m)(n—172 >

as m — oo, this contradicts the assumption (9). Finally, the additional state-
ment follows from the fact that the n-point norm is dominated by the supremum
on the right-hand side of (9); see Equation (3) in the introduction. O

6 TOPOLOGICAL SUBHOMOGENEITY FOR SPACES ON THE BALL

In this section, we generalize the results about topological subhomogeneity
in the preceding section from the unit disc to the unit ball. To deduce the
higher dimensional statements from the ones in dimension one, we establish an
embedding result. To this end, we require variant of a result of Kacnelson [36].
Let I be a totally ordered set and let H be a Hilbert space with orthogonal
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basis (e;)icr. We say that a bounded linear operator T' on H is lower triangular
if

(Te;,e;) =0  whenever j < i,
and we write T(H) for the algebra of all bounded lower triangular operators

on H. The statement below can be found in [7, Corollary 3.2] in the case when
I = Ny, equipped with the usual ordering.

LEMMA 6.1. Let H and K be Hilbert spaces with H C K as vector spaces. Let I
be a totally ordered set and let (e;)icr be a sequence of vectors in H that is
an orthogonal basis both for H and for K. If the family (||eill2/|leillx) is non-
decreasing with respect to the order on I, then T(H) C T(K), and the inclusion
18 a complete contraction.

Proof. If I is a finite set, the result was established in [7, Corollary 3.2]. We will
reduce the general case to this particular case. To this end, let F(I) denote the
set of finite subsets of I, which is a directed set under inclusion. For J € F(I),
let H; C H and K; C K denote the linear spans of {e; : i € J}, respectively, so
that H; = K as vector spaces, but with possibly different norms. Moreover,
let Py € B(K) denote the orthogonal projection onto ks, and notice that on H,
the operator P; also acts as the orthogonal projection onto H ;. Since for any
T € T(H), the operator P;T Py is lower triangular on H ;, the case of finite I
shows that ||P;TPs|lgc) < IT|B(x), and the net (P;TPy)jer(r) converges
to T in the strong operator topology of B(K). The general result follows from
this observation. O

The main tool of this section is the following lemma. It allows us to embed
multiplier algebras on the unit disc into multiplier algebras on the unit ball by
extending a function f on D to the function z — f(z1) on the unit ball.

LEMMA 6.2. Let H be a reproducing kernel Hilbert space on By with reproducing
kernel

K(z,w) = Z an(z,w)",
n=0

where a, > 0 for alln € Ng. Let d < d and let H' be the reproducing kernel
Hilbert space on By with reproducing kernel K|B <5, Lhen the map
d/ d/

O : Mult(H') — Mult(H), ¢+ poP,

where P denotes the projection from C% onto ce given by P(z1,...,2q4) =
(21,...,2ar), is a complete isometry.

Proof. We will repeatedly use the basic fact that the monomials (za)aeNg form
an orthogonal basis of H with

a2 o
||Z H’H_ an|a|!
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In particular, the map
V:H —H, frfoP,

is an isometry, so it suffices to show that ® is a complete contraction.
Clearly, we may assume that d’ < d. Throughout the proof, we write z = (u, v),
where v = (21,...,2¢) and v = (2441, .., 24). For 8 € Ngid , let

HB = \/{Ua’l}ﬁ YOS Ng,} - H,

so that H is the orthogonal direct sum of the subspaces Hg. Moreover, Hy =
VH'. Observe that if ¢ € Mult(H’), then the (a priori unbounded) operator
Mo p preserves this direct sum decomposition. Thus, it suffices to show that

for all € Ni—%, n e Ny and all [¢;;] € M, (Mult(H)),
H[M%;‘0P|HB]HMTL(B(HB)) < ”[Mw”]HMn(B(H’))

To this end, let 8 € Ngid,, let k = || and let ﬁg be the Hilbert space of formal

power series in the variable u = (21, ..., z¢/) with orthogonal basis (uazf)aeNg/
and norm defined by

2l 5, = [0

If ¢ € Mult(H’), then M op

H, is unitarily equivalent to M, on Hg. To

compare the norm of M, on ﬁg and on H’, we will use Lemma 6.1. Let
= \{u®zf :a e N¢'} ¢ H'. Then

k2 k :
21 115, ez (et ket Thioi(en+)) (10)
luezflZ,  fluof| alp! B! ’
B

which is increasing in «;. Thus, H), C 7-[,3 as vector spaces, and if we order
Ng/ lexicographically, then the quantity in (10) is non-decreasing in « € Ng/.
Moreover, if ¢ € Mult(#’), then the operator M, is lower triangular with
respect to the orthogonal basis (u®z¥), of H} in this ordering, so that by
Lemma 6.1,

||[M<Pijop|Hﬂ]HMn(B(Hﬂ)) = ”[Mw”]HMn(B(f]B)) < ||[M</7” 7—[;6]||Mn(B(H§€))

S ||[M<P”]

RYACICT)
for all n € N and all [p;;] € M, (Mult(H')). O

Remark 6.3. If H is a complete Nevanlinna—Pick space, one can argue more
easily as follows. Let ® € Mult(H’' ® C™) be a multiplier of norm at most 1. By
the complete Nevanlinna—Pick property, there exists a multiplier ¥ € Mult(H®
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C™) of norm at most 1 with \IJ|]B = ®. Writing z = (u,v) as in the preceding
d/
proof, we see that for (u,v) € By,

@ P)(u.) = ¥(w0) = 5 [ ", ) d.

The symmetry of K implies that for each ¢ € R, the function (u,v) — ®(u, e'v)
is a multiplier of norm at most 1, hence ® o P is a multiplier of norm at most
1 as well. Since the reverse inequality is clear, this argument proves the result
in the case of a complete Nevanlinna—Pick space.

We now obtain a negative answer to Question 1.5 for the spaces D, (B,), where
a € [0,1). In particular, Question 1.1 has a negative answer for these spaces as
well.

COROLLARY 6.4. Let a € [0,1) and let d € N. Then Mult(D,(Bg)) is not
topologically subhomogeneous. In particular, there do not exist a constant C > 0
and n € N so that

I f vttt (Da B2)) < Cllf IMuie(Da (Ba)),n
for all f € Mult(D,(Bg)).

Proof. By Proposition 5.6 and Corollary 5.3, the algebra Mult(D,(D)) is
not topologically subhomogeneous. Lemma 6.2 shows that Mult(D, (D)) is
(completely isometrically) isomorphic to a subalgebra of Mult(D,(B4)), hence
Mult(D,(B4)) is not topologically subhomogeneous either. As before, the ad-
ditional statement follows from the fact that the n-point multiplier norm can
be computed using representations of dimension at most n. O

7 EMBEDDING WEIGHTED DIRICHLET SPACES INTO THE DRURY—ARVESON
SPACE

In this section, we show that the multiplier algebra of the Drury—Arveson space
H? is not subhomogeneous for d > 2. This does not follow from Lemma 6.2, as
the multiplier algebra of H? is H*°(D), which is 1-subhomogeneous. Instead,
we show that multiplier algebras of certain weighted Dirichlet spaces embed
completely isometrically into Mult(H3).

We begin with a known construction that produces an embedding for the
Hilbert function spaces. Let d € N and let

7:By — D, 2 d?z2120 .. 24

It follows from the inequality of arithmetic and geometric means that 7 maps
By onto D and By onto ID. Let
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and let Hg4 be the reproducing kernel Hilbert space on D with reproducing
kernel

K(z,w) = Zan(zﬁ)".
n=0

The spaces Hy are weighted Dirichlet spaces on D that embed into H;, cf.
Lemmas 3.1 and 4.1 in [33].

LEMMA 7.1. Let d € N.

(a) The map
V:iHa— H?, fr for,

is an isometry whose range consists of all functions in H3 that are power
Sertes in 2129 ... 24.

(b) The asymptotic identity a,, ~ (n+ 1)1=D/2 holds.

(c) The space Hz is equal to the weighted Dirichlet space Dy /o, with equality
of norms.

(d) The space Hs is equal to the classical Dirichlet space D, with equivalence
of norms.

(e) Ford>4, Hq C A(D) and Mult(Hq) = Hq with equivalent norms.

Proof. (a) Since (™) and (7™) are orthogonal sequences in Hq and H3, respec-
tively, V' is an isometry by definition of the sequence (a,). Moreover, if M is
denotes the closed subspace of H3 generated by the monomials (2122 ...24)",
then the range of V is clearly contained in M and contains all polynomials in
Z1%9 -+ - 24, SO it is equal to M.

(b) By Stirling’s formula, n! ~ v2mn(2)", so

ol = HTnHQ — gnd (n))? -~ (27T)(d—1)/2n(d—1)/2
n Hgl - (dn)' )

from which (b) follows.

(c) follows from a computation involving the binomial series, see [33,
Lemma 4.1].

(d) is a consequence of (b).

(e) Part (b) shows that the sequence (a,) belongs to ¢! for d > 4, so that Hq
consists of continuous functions on D. Finally, the equality Hq = Mult(Hq)
follows from part (b) combined with Proposition 31 and Example 1 in Section 9

of [43]. O

We will show that the embedding V' of Lemma 7.1 is also a complete isometry
on the level of multiplier algebras.
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PROPOSITION 7.2. For d € N, the map
@ : Mult(Hg) — Mult(H3), @+ por,
s a unital complete isometry.

We require some preparation for the proof of this result.

Remark 7.3. Tt follows from part (c¢) of Lemma 7.1 that the space Ha has
the complete Nevanlinna—Pick property, and in general, the spaces Hy4 have
the complete Nevanlinna—Pick property, at least up to equivalence of norms
by part (b) of Lemma 7.1. Indeed, D;/; is well known to have the complete
Nevanlinna—Pick property, which can be seen by expanding the reciprocal of
the reproducing kernel of D; /, into a binomial series, see also [3, Theorem 7.33].

Moreover, if ’I/-Zl is the reproducing kernel Hilbert space on D with reproducing
kernel

K(zw) =3 (n+1) =972z,
n=0

then ”;[:1 has the complete Nevanlinna—Pick property for all d > 1 (see, for
instance, [3, Corollary 7.41]), and Lemma 7.1 (b) implies that Hy4 = Hq with
equivalent norms. We emphasize that the construction in Proposition 7.2 differs
from the universality theorem for complete Nevanlinna—Pick spaces of Agler
and M°Carthy [2].

Indeed, the main result of [2] yields an injection j : D — By for some d €
N U {oo} such that

H? = Hy, frr foy,

is a co-isometry and such that
Mult(H3) — Mult(Hs), ¢+ @oj,

is a complete quotient map. In fact, d = oo is necessary, see [32, Corollary 11.9].
Thus, [2] allows us to realize Mult(Hs) as a quotient of Mult(HZ2)). In Propo-
sition 7.2, the arrows are reversed. We obtain a surjection 7 : By — D such
that

H— HZ, frfor,

is an isometry and such that
Mult(H) — Mult(H3), ¢+~ por,

is a complete isometry. Thus, Proposition 7.2 allows us to realize Mult(H) as
a subalgebra of Mult(H3).

Our proof of Proposition 7.2 is related to a proof suggested by Ken Davidson
in the case d = 2. Davidson’s proof uses Schur multipliers and is in turn based
on a computation of Jingbo Xia (see [20, Example 6.6]).
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We begin by analyzing the action of the operator M, on the Drury—Arveson
space. In our computations with monomials, we will use familiar multi-index
notation. In addition, we set 1 = (1,1,...,1) € Ng and define

ONd = {a € Nd: a; =0 for some j € {1,...,d}}.
Finally, if o € ONg, let
Xo={a+kl:keNy}
and correspondingly, define
H, =span{z’: g€ X,} c H2.

Observe that the space Hy is precisely the range of the isometry V of
Lemma 7.1. Recall that 7(z) = d¥2z1 25 ... 24.

LEMMA 7.4. For d € N, the space Hg admits an orthogonal decomposition

Hj= @ Ha.

aEBNg

For each o € ONg, the space H, is reducing for the multiplication operator M.,
and the operator M, ‘ 5. is unitarily equivalent to a unilateral weighted shift with

positive weight sequence (Wi o), where
d
R = [[j=i (e +k+1)
o d N
Hj:1(|0‘| + kd + j)

Proof. To prove the first assertion, it suffices to show that N¢ is the disjoint

union
d
Ng= |J Xao
QEBNg

To see this, let 3 € N¢ and let & = min(B,...,3q4). Then 8 — k1 € N, so
B € X, where « = § — k1. To see that the union is disjoint, observe that if
B = a+ k1 with o € ONg, then k = min(fy, ..., 4) since a € INZ, hence « is
uniquely determined by £.

It is clear that each H,, is invariant and hence reducing for M. Moreover, with
respect to the orthonormal basis (2@T*1 /||z2+k1||)% | of H,, the operator M,
is a weighted shift with positive weights wy, o given by

ol 2 (ot (k4 D) o+ K1
Via =TGR T a0 (@t (k£ D)
d H?:l(aj +k+1)
ITj—i (lal + kd + j)’
as asserted. O
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To prove Proposition 7.2, we need to control the norm of M, and more gener-
ally of operators of the form M-, on the spaces H,. For this purpose, we will
use Kacnelson’s result [36] is a similar way as we did in the proof of Lemma 6.2.
More precisely, we will apply the following variant of Kacnelson’s result.

COROLLARY 7.5. Let H be a Hilbert space with an orthonormal basis (e,)5,
and let Sy and S5 be two weighted shifts given by

Sien = anent1  and  Ssen = Bpenti,
where ay,, Bn, > 0 for n € No. If 8, < ay, for all n € Ny, then the map
p(51) = p(S2) (p€Clz))
s a unital complete contraction.

Proof. Let H;1 be the space of formal power series in the variable z with or-
thogonal basis (2™)22, and norm defined by

n—1
12"l = TT ey,
7=0

where the empty product is understood as 1. Similarly, s has a norm defined
by

n—1
12"l = T 8-
j=0

Then S; is unitarily equivalent to the operator of multiplication by z on H; for
t = 1,2, and these operators are lower triangular with respect to the orthogonal
bases given by the monomials. Since 3, < a, for all n € Ny, the sequence
I12™|24, /112" ||, is non-decreasing, so the result follows from Lemma 6.1. O

To apply Corollary 7.5, we require the following combinatorial inequality.

LEMMA 7.6. Let wy, denote the positive weights of Lemma 7.4, that is,

d
w? " Hj:l(aj+k+1) .
’ TT0_, (ol + kd + 5)

Then the weights wy, o satisfy the inequalities
Wk,a < W0

for all k € Ng and all o € Ng.
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Proof. By the inequality of arithmetic and geometric means,

v < gl G AEE 1)
k,a = d NE
Hj:1(|04| + kd + j)

so it suffices to show that for all real numbers » > 0 and all k¥ € Ny, the
inequality

Grk+D)? _ (k+1)
H;l:1(r+k/’d+j) a H?:l(kd“l‘j)

holds. By taking logarithms, we see that this last statement is equivalent to
the assertion that for any k € Ny, the function f : [0,00) — R defined by

d
f(r) =dlog(5 +k+1) = > log(r+ kd + j),
j=1

has a global maximum at r = 0.
To see this, we compute the derivative

d

d
1 1 1
/ — _ _
I =+ ;Hdkﬂ d+kz+1 dZ§+ k+1

Jj=1

Q..I*

Since

r J r
—+k+=<-4k+1
djL er dJr +

for all j € {1,...,d}, we deduce from the formula for the derivative of f that
f/(r) <0 for all r € [0,00). In particular, f(r) < f(0) for all » € [0, 00), which
finishes the proof. O

We are now ready to prove Proposition 7.2.
Proof of Proposition 7.2. We wish to show that the map
@ : Mult(Hg) — Mult(H2), ¢+ por,

is a complete isometry. Since f +— fo7 is an isometry from H,4 into Hg by part
(a) of Lemma 7.1, it suffices to show that ® is a complete contraction (and in
particular maps into Mult(H3)).

To this end, let p = [p;;] be an n X n-matrix of polynomials. Lemma 7.4 shows
that [p;;(M,)] € B((H3)™) is the direct sum of the operators

[pij (M|, )] € B(Hy)

for o € ONg, and that each MT| ;. is unitarily equivalent to a weighted shift

with weight sequence (wg ). In this setting, Lemma 7.6 and Corollary 7.5
show that

1pis (M| y DI < Mlpis (M| g I = [1lpis (M)l 300y
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where the last equality follows from part (a) of Lemma 7.1. Thus,

I[pij © Tl Ivurea2zyn < Pij]l IMuteceg)

The preceding paragraph shows that ® is a unital complete contraction on the
subspace of all polynomials in Mult(#4). It is well known that circular invari-
ance of H4 implies that the unit ball of Mult(#,4) contains a WOT-dense subset
consisting of polynomials, so a straightforward limiting argument finishes the
proof. O

Our first application of Proposition 7.2 concerns subhomogeneity of Mult(H3).

COROLLARY 7.7. Ifd > 2, then Mult(H?) is not topologically subhomogeneous.
In particular, there do not exist a constant C' > 0 and n € N such that

llellmue(azy < Cllelmuaz)n
for all ¢ € Mult(H3).

Proof. By Corollary 5.3, the multiplier algebra of the weighted Dirichlet space
Dy 5 is not topologically subhomogeneous. By Proposition 7.2 and part (c)
of Lemma 7.1, Mult(D; /) is (completely isometrically) isomorphic to a sub-
algebra of Mult(H3), hence Mult(H3) is not topologically subhomogeneous.
The case of general d now follows from Lemma 6.2 (or from Remark 6.3).
The additional statement is once again a consequence of the fact that the n-
point multiplier norm can be computed using representations of dimension at
most n. O

8 APPLICATIONS TO MULTIPLIERS OF Hd2

We will use Proposition 7.2 to establish two more results regarding multipliers
of the Drury—Arveson space.

Our first application concerns the Sarason function, which was studied in [6].
If H is a complete Nevanlinna—Pick space whose kernel K is normalized at a
point and if f € H, then the Sarason function of f is defined by

Vi(2) = 2(f, K (-, 2)f) = I f1I*.

If # = H?, then ReV; is the Poisson integral of |f|?. In particular, f € H™ if
and only if Re V} is bounded.

In Theorem 4.5 of [6], it is shown that for a class of complete Pick spaces in-
cluding standard weighted Dirichlet spaces on the disc and the Drury—Arveson
space, boundedness of Re V; implies that f € Mult(#). Proposition 4.8 of [6]
shows that the converse fails for the standard weighted Dirichlet spaces D, for
0 < a < 1, that is, there are multipliers of D, whose Sarason function has
unbounded real part.

With the help of Proposition 7.2, we can establish such a result for the Drury-
Arveson space as well. This answers a question of Jorg Eschmeier (private
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communication, November 2018). This result was also obtained with a different
proof in the recent paper [27] by Fang and Xia.

PROPOSITION 8.1. For d > 2, there exist ¢ € Mult(H3) such that ReV,, is
unbounded.

Proof. 1t suffices to construct such a multiplier ¢ for d = 2, as the trivial
extension of ¢ to B, for d > 2 (i.e. the function wo P, where P is the projection
on the first coordinates) will be a multiplier of H3 (by Lemma 6.2) whose
Sarason function agrees with that of ¢ on B,.

By Proposition 4.8 of [6], there exists u € Mult(D;3) such that ReV,, is un-
bounded in D. Let 7 : B, — D be defined as in Section 7 and let ¢ = wo 7.
Then ¢ € Mult(H3) by Proposition 7.2. It remains to show that ReV,, is
unbounded in Bs.

To this end, let M = span{(z122)" : n € No} C H3, let L denote the reproduc-
ing kernel of M and let K be the reproducing kernel of Dy 5. It follows from
part (¢) of Lemma 7.1 (or by direct computation) that

K(1(2),7(w)) = L(z,w) (z,w € By).

Indeed, since V is given by composition with 7, we have V*L(-, w) = K (-, 7(w)),
and since V' : Dy /5 — M is a unitary, L(-,w) = VV*L(-,w) = K(-,7(w)) o 7.
Since ¢ € M, it is elementary to check that if h € M=, then ¢-h € M*. Using
the fact that L(-,w) = Py S(-,w), where S denotes the reproducing kernel of
H3, we therefore find that for w € By,

(. S(w)p) = (o, L(-, w)p) = (p, (K (-, 7(w)) 0 7)) = (u, K (-, 7(w))u)p, ,

where the last equality follows from part (a) of Lemma 7.1 and the definition of
¢ = uort. Therefore, V,, = V,,o7. Since 7 is surjective and Re V,, is unbounded,
ReV,, is unbounded as well. O

Our second application concerns subspaces of H? that entirely consist of mul-
tipliers. It is a special case of a theorem of Grothendieck [30] that every closed
infinite dimensional subspace of L?(T) contains functions that are not essen-
tially bounded; see [39, Theorem 5.2] for a fairly elementary proof. Thus, no
infinite dimensional closed subspace of H? consists entirely of multipliers of H?2.
Jorg Eschmeier (private communication, November 2018) asked if there exist
closed infinite dimensional subspaces of H; that entirely consist of multipli-
ers and that are graded in the sense that they are spanned by homogeneous
polynomials. We use Proposition 7.2 to provide a positive answer if d > 4.

COROLLARY 8.2. Ifd > 4, then the space
Ho =3span{(z122---2za)" :n € Ng} C H3
is contained in Mult(H?).

Proof. Part (a) of Lemma 7.1 shows that Hy = {fo7 : f € Hq}. But
Hqa = Mult(H4) by part (e) of Lemma 7.1, so that the result follows from
Proposition 7.2. o
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9 SPACES BETWEEN THE DRURY—ARVESON SPACE AND THE HARDY SPACE

Recall that in the scale of spaces D, (Bg), the values a = 1 and a = d correspond
to the Drury—Arveson space and to the Hardy space, respectively. We have
already seen that Mult(D,(Bg)) is not topologically subhomogeneous in the
case 0 < a < 1 and also in the case a = 1 and d > 2; see Corollary 6.4 and
Corollary 7.7. On the other hand, if a > d, then Mult(D,(Bgs)) = H>(By),
which is (even completely isometrically) 1-subhomogeneous. In this section, we
study topological subhomogeneity of Mult(D,(B4)) for 1 < a < d.

In fact, it will occasionally be more convenient to work with an equivalent norm
on D,(Bg). To this end, let s € R and let Hs(Bg) be the reproducing kernel
Hilbert space on By with kernel

(o9}

Z(n+1)s<z,w)".
n=0
Equivalently,
Hs(Ba)
ol ~
={f =Y Fl@)=" € 0®a) : [I? = Y (lal + 1)~ Tl (@) < oo}
aENd aENg | |

We simply write Hs = Hs(D). It is well known that if s = a—1 > —1,
then D, (Bg) = Hs(Bg) with equivalence of norms. Indeed, the weights in the
description of D,(B;) are comparable to those in the description of H(B,),
because for a > 0, we have

1 (n+1)'"
C(a+n) n!

see for instance [48].
As in the case of the Drury—Arveson space, it is possible to embed weighted
Dirichlet spaces on D into D, (B;) for certain values of a. As in Section 7, we
let

7:Bs — D, z»—>dd/22122...zd.

LEMMA 9.1. Let s € R. The map
HS_(d_l)/Q —)HS(Bd), f—=for,
1s bounded and bounded below.

Proof. The monomials form an orthogonal basis of H,_(4_1)/2, and powers of T
are orthogonal in Hs(Bg). Moreover, by Stirling’s formula we have

d
17 sy = 0 g+ 17 = ()00 2+ 1)
s na)!
~ d—1)/2—s __ n|2
~ (n+ 1)@ =

so the result follows. O
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Our goal is to show that in analogy with Proposition 7.2, the map ¢ — por
also yields an embedding on the level of multiplier algebras. Using notation as
in Section 7, we define for o € ON¢ a space

H® =span{z’: B € Xo} C Hs(By).
Then the following generalization of Lemma 7.4 is proved in the same way.

LEMMA 9.2. Letd € N and s € R. Then Hs(Bq) admits an orthogonal decom-
position
H(Ba)= P H

aEBNg

For eacha € aNg, the space Héf) 1s reducing for the multiplication operator M,
and the operator MT’H(a) is unitarily equivalent to a unilateral weighted shift

with positive weight sequence (Wg,a)5y, Where

d
(o +Ek+1 d —s
wia:dd 1_{1]_1( J ) (1 7)

’ TT5— (Il + kd + 5) laf + kd +1

For r € Ny and k € Ny, we define positive weights by

L4k 1) s
w2 =gl 5d*7 ) ,(1 d )
’ szl(TJrderj) r+kd+1
and
o _ .  (k+1)? d —*
e =4 (0 )
[Ij=: (kd+4)

Then the following inequalities hold.

LEMMA 9.3. Let wi o denote the weights of Lemma 9.2. Let r,k € Ny and
o € N

a) Wra < Vg |af-

( <
(b) If r =1ld+t with l,t € No, then vg, = Vkyit-

)
)
(c) Assume s <0. Then vg, < vgo and thus wgo < Wko-
(d) Assume s> 0. If 0 <r <d, then vy, < ug.

Proof. (a) follows from the inequality of arithmetic and geometric means.
(b) is obvious.
(c) and (d) We saw in the proof of Lemma 7.6 that
(5 +k+1)4 - (k+1)¢
[l + kd o+ 5)  TTjy (kd + )
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From this inequality and from the fact that the quantity

(1+ ﬁ)_s

is non-increasing in 7 if s < 0 and non-decreasing in r if s > 0, the inequalities
involving vy, in (c) and (d) follow. The inequality about wy, in (c) then
follows from the inequality about v, and part (a). O

We are now ready to prove the desired embedding result for multiplier algebras,
which extends Proposition 7.2.

PropPOSITION 9.4. Let s € R. Then the map
Mult(Hs—(a—1y/2) = Mult(H;(Ba)), @+ porT,

is a completely bounded isomorphism onto its image.
In particular, if a > %, then

Mult(Dy—(g—1y/2) — Mult(D,(Bg)), ¢ — o,
is a completely bounded isomorphism onto its image.

Proof. The second statement follows from the first statement and the equality
Du(Bg) = Ha-1(Bg) with equivalence of norms. To prove the first statement,
in light of Lemma 9.1, it suffices to show that the map is completely bounded.
Moreover, as in the proof of Proposition 7.2, it suffices to show that the map
is completely bounded on the space of all polynomials by an approximation
argument. Let M, denote the operator of multiplication by z on H,_(4_1)/2-
Lemma 9.2 further implies that it suffices to prove that there exists a constant
C > 0 so that for all a € ON¢, the mapping

p(M:) — p(MT|H£j)) (p € Clz]) (11)

has completely bounded norm at most C.
Recall from Lemma 9.2 that the operator MT‘H(S) is a weighted shift with

weight sequence (wg,a)ie,. We introduce the following notation. Given two
weighted shifts S and T with positive weights, we write S < T if the map

p(T) = p(S), (peClz)

is completely contractive.
Suppose first that s < 0. Then part (c¢) of Lemma 9.3 and Corollary 7.5 imply
that

MT|Hff) < MT|H[()S)

for all @ € ONZ. Moreover, Lemma 9.1 implies that the map

p(Mz) = p(M'r |H(§S))
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is completely bounded, hence the mapping in Equation (11) is completely
bounded with completely bounded norm independent of a € ONg, which fin-
ishes the proof in the case s < 0.

Suppose now that s > 0. Let S, denote the weighted shift with weights
(Vk,r)72 and let S denote the weighted shift with weights (ux)g2,, defined
before Lemma 9.3. Let o € Nd. Then by part (a) of Lemma 9.3 and by
Corollary 7.5,

MT’HS) < S‘a|.

Write |a| = 1d+t with [,t € Ny and 0 < ¢t < d. Part (b) of Lemma 9.3 shows
that vy || = Vk+1t, 0 that S|, is unitarily equivalent to a restriction of Sy to
an invariant subspace and hence

Sla| < St
Finally, part (d) of Lemma 9.3 and Corollary 7.5 imply that
Sy < S,
so combining the last three relations, we see that
M, | He =S,
We finish the proof by showing that the map
p(M) = p(S5)

is completely bounded, where M, continues to denote the operator of multipli-
cation by z on H,_(4_1)/2- To this end, let K be the space of power series with
orthogonal basis (2™)22, and norm

n. d n -s
Jonl = a2 (1 )

Since i
[2HE

Nl _ 2
I2*1% ’

we see that S is unitarily equivalent to the operator of multiplication by z on .
Moreover, by Stirling’s formula,

12"1% ~ (n+ D)V + 1) = 1213, ) o

so that L = H,_(q—1),2 With equivalence of norms, hence S and M, are similar.
O

We can now show that multiplier algebras of some spaces between the Drury—
Arveson space and the Hardy space are not subhomogeneous.
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COROLLARY 9.5. Letd € N and let 0 < a < %. Then Mult(D,(Bg)) is not
topologically subhomogeneous.

Proof. We combine two arguments. Firstly, if % <a< %, then Propo-
sition 9.4 shows that Mult(D,(Bs)) contains a subalgebra isomorphic to
Mult(D,—(q—1)/2). Since 0 < a — % < 1, the algebra Mult(D,_(q—1)/2) is
not topologically subhomogeneous by Corollary 5.3 and Proposition 5.6. Thus,
Mult(D,(B4)) is not topologically subhomogeneous for % <a< %.
Secondly, if Mult(D,(Bg)) is not topologically subhomogeneous, then Lemma
6.2 implies that Mult(D,(B4+1)) is not topologically subhomogeneous either.
Combining these two statements, the result follows by an obvious induction

on d. 0
Corollary 9.5 leaves open the question of subhomogeneity of Mult(D,(Bg)) in
the range % < a < d. We now show that in this range, the multiplier

norm is not comparable to the supremum norm, from which we deduce that
Mult(D,(By)) is at least not topologically 1-subhomogeneous. To this end, we
will use inner functions on the unit ball. Recall that a bounded holomorphic
function f : By — C is said to be inner if lim, 1 |f(rz)| = 1 for almost every
z € 0By.

LEMMA 9.6. Let 0 < a < d and let f be a non-constant inner function on Bgy.
Then lim,, oo an”'Da([Bd) = 0.

Proof. If 0 < b < a, then Dy(By) is continuously contained in D,(B;), which
is easily seen by passing to the equivalent norm in Hs(B;) mentioned at the
beginning of this section. Therefore, it suffices to prove the result for a close
to d, say a = d — 0, where 0 < 6 < 1. It is well known that another equivalent
norm on D,(By) is given by

Ih]|* = [1(0)? +/B [Rh(2)]?(1 = [2[*)'° dV (2),

where R denotes the radial derivative and V is the Lebesgue measure on Bg; see
[49, Theorem 41]. Moreover, [45, Theorem 5.3] (choosing ¢ = 2 and p = ﬁ)
implies that for inner functions g,

/ Rg(:)P(1 — |2)'° dV(2) ~ / (1 [g(=)PP( — |25 av(z),

d Ba

where the implied constants do not depend on the inner function g. Choosing
g = f™ above, we find that

n|2 > | £n 2\2 _ 2\—0—1
If HDE(IBd)N/]Bd(l [f ()71 = 257" dV(2).

Since f is not constant, f™ converges to 0 pointwise on By, so the monotone
convergence theorem implies that the last integral tends to

/ (1~ 251 dV(z) = oo,
Ba
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which finishes the proof. O

We are now ready to prove the announced result about 1-subhomogeneity.

PROPOSITION 9.7. Let 0 < a < d. Then the multiplier norm on D,(By) is
not comparable to the supremum norm on Bg. In fact, Mult(D,(Bg)) is not
topologically 1-subhomogeneous.

Proof. If 0 < a < 1, then the result is a special case of Corollary 6.4, so we
may assume that 1 < a < d. We first show that there does not exist a constant
C > 0 so that

|2l Mule (. (Ba)) < CllPlloo
for all polynomials p. Suppose otherwise. Since every function f € H*(By)
is a pointwise limit of polynomials p, with ||pnllec < ||f]| (for instance the

Fejér means of f), it follows that every function f € H*(Bg) is a multiplier of
D, (Bd) with

[fIMute(pa(Bay) < Cllflloo-

On the other hand, if f is a non-constant inner function, which exists by a
theorem of Aleksandrov [4], then ||f™]| < 1 for all n € N, but Lemma 9.6
implies that
1™ Inte(Da@ay) = 1™ 1D, (82 == o0

This contradiction proves the claim and in particular the first part of the propo-
sition.

Next, let A denote the norm closure of the polynomials inside of Mult(D, (Bg)).
We will show that A is not topologically 1-subhomogeneous, which will finish
the proof. To this end, we determine the unital homomorphisms y : A — C,
i.e. the characters of A. We claim that if y is a character, then then there
exists A\ € By so that x(f) = f()\) for all f € A. Indeed, given a character ¥,
define A = (x(z1),...,x(zq4)). If K, denotes the reproducing kernel of D, (B,),

then
1

T

is positive, hence the tuple (M,,,..., M,,) forms a row contraction on D, (Bg).
Since characters are automatically contractive, and contractive functionals are
completely contractive, it follows that A € B;. (This can also be seen by
computing the spectrum of the tuple M..) Clearly, x(f) = f(\) for all poly-
nomials f, and hence for all f € A by definition of A.

In particular, the description of the characters of A implies that for all f € A,

(1= {z,w))Kq(z,w

sup{|x(f)| : x is a character of A} = ||f||co-

Since the multiplier norm of polynomials is not bounded by a constant times
the supremum norm by the first part, it therefore follows that there does not
exist a constant C' > 0 so that

| fIMute (D, (B2)) < Csup{|x(f)|: x is a character of A}
for all f € A. In other words, A is not topologically 1-subhomogeneous. o
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10 QUESTIONS

We close this article with a few questions.

10.1 SMALL DIRICHLET SPACES

It is well known that the scale of spaces D,, defined for a € [0,00), can be
extended as follows. For s € R, let H, be the reproducing kernel Hilbert space

on D with kernel

Z(n +1)°(zw)".

n=0

If s=a—12> —1, then D, = H, with equivalence of norms, see the discussion
at the beginning of Section 9. Moreover, if s > 0, then ||z||nule(s,) < 1, so von
Neumann’s inequality implies that Mult(H;) = H> completely isometrically
for s > 0. On the other hand, it follows from Theorem 1.6 that Mult(H;) is
not completely isometrically subhomogeneous for all s < 0, since the multiplier
norm of H, it not equivalent to the supremum norm for s < 0. In fact, by
Theorem 1.7, the algebra Mult(#) is not topologically subhomogeneous for
—1 < s <0, but the proof does not seem to extend to the range s < —1.

QUESTION 10.1. Is Mult(H) topologically subhomogeneous for s < —17

It is known that for s < —1, we have Mult(H,) = H, with equivalence of norms
(see Proposition 31 and Example 1 on page 99 in [43]). In particular, Mult(H)
is reflexive as a Banach space for s < —1. Thus, we ask more generally.

QUESTION 10.2. Does there exist a unital, infinite-dimensional operator algebra
that is subhomogeneous and reflexive as a Banach space?

Notice that the answer to this question is independent of what kind of subho-
mogeneity is specified, as reflexivity is stable under topological isomorphisms.

10.2 SPACES BETWEEN THE DRURY-ARVESON SPACE AND THE HARDY
SPACE

Consider the spaces D,(B;) for d > 2, and recall that D;(By) is the Drury—
Arveson space H7 and that Dg(B,) is the Hardy space H?*(By). We saw
in Corollary 4.3 that Mult(D,(B4)) is completely isometrically subhomoge-
neous if and only if @ > d. On the other hand, Theorem 1.7 implies that
Mult(D,(By)) is not even topologically subhomogeneous if 0 < a < “FL. More-
over, Mult(D,(Bg)) is not topologically 1-subhomogeneous for 0 < a < d by
Proposition 9.7.

. o dt1
QUESdl;ION 10.3. Is Mult(D,(Bg)) topologically subhomogeneous if - <
a < af
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The embedding of Proposition 9.4 does not appear to be useful for the study

of this question. For real numbers a in the range % < a < d, Proposi-

tion 9.4 yields embeddings of multiplier algebras that coincide with H>°(D), a
1-subhomogeneous algebra. Thus, a different argument seems to be needed to
cover the range % <a<d.

10.3 SIMILARITY OF MULTIPLIERS

Suppose that ‘H and K are reproducing kernel Hilbert spaces on the same set X .
If there exists a multiplier § € Mult(H, K) so that

S:H—=-K, [fe0f,

is bounded and invertible, then Mult(#) = Mult(K) with equivalence of norms.
More precisely, if C' = ||S||[|S~!|, then

CilHQOHMult(H) < lelvucy < Cllelvaer

for all ¢ € Mult(#H) (and these inequalities continue to hold for matrix-valued
multipliers). Thus, a positive answer to the following question would provide
another proof of Corollary 3.3 (with potentially different constants).

QUESTION 10.4. Let a € (0,1) and let n € N. Does there exist a constant
A > 0 so that for all finite sets F' C D with |F| = n, there exists a multiplier
0 e Mult(H2|F, Da|F) with

101 Mute( 2], Da | 2) 10 I Mutt(Da |, 1210y < A?

NOTE ADDED IN PROOF
The recent preprint [34] shows that Mult(D,(Bg)) is not topologically subho-

mogeneous for 0 < a < d, thus answering Question 10.3.
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