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1 Introduction

The theory of operator algebras forms the core of many interesting non-
commutative generalisations of classical mathematical theories, including non-
commutative topology [6], free probability [25], quantum groups [18] and non-
commutative geometry [7]. Within this general paradigm, Rieffel’s theory of
compact quantum metric spaces [28, 29] provides an elegant non-commutative
counterpart to classical compact metric spaces. The essential data defining
such a compact quantum metric structure is given by a densely defined semi-
norm L on a unital C∗-algebra A. The main requirement for L is that the
extended metric

ρL(µ, ν) := sup{|µ(a)− ν(a)| | a ∈ Dom(L), L(a) 6 1} ∈ [0,∞], µ, ν ∈ S(A)

defines a genuine (i.e. everywhere finite) metric on the state space S(A) and
that this metrises the weak∗-topology, in which case L is referred to as a Lip-
norm. The definition is influenced by Connes’ non-commutative geometry [7],
since one naturally obtains a seminorm from a unital spectral triple (A, H,D)
by setting

LD(a) :=
∥∥[D, a]

∥∥, a ∈ A. (1.1)

For a given C∗-algebra A and Lip-norm L, it may be possible to enlarge or
reduce the domain of L and thereby obtain different quantum metric structures
on A. In the case of a unital spectral triple (A, H,D), there is a natural maximal
seminorm Lmax

D defined by the formula (1.1) but with domain

ALip :=
{
a ∈ A | a(Dom(D)) ⊆ Dom(D) and [D, a] extends boundedly to H

}
.

Here A denotes the norm closure of A ⊆ B(H). Experience with concrete
examples shows that it may not be possible to recover Lmax

D from LD. In fact,
the assignment a 7→ [D, a] yields a closable derivation ∂ : A → B(H) and the
closure of ∂ yields an intermediate algebra A ⊆ A1 ⊆ ALip which is, in general,
different from both A and ALip. Whereas all the relevant information regarding
the extension L1

D : A1 → [0,∞) can be obtained from LD : A → [0,∞) by
approximation arguments, this is not the case for Lmax

D . In fact, the analysis
of Lmax

D requires different methods relying more on von Neumann algebraic
techniques than C∗-algebraic techniques. In the classical case of a compact
spin manifold, the three different domains (coming from the Dirac operator)
would be smooth functions (or an appropriate algebra of polynomials), C1-
functions and Lipschitz functions. Notice in this respect that the derivative
of a Lipschitz function makes sense but only in the von Neumann algebraic
context of (equivalence classes of) bounded measurable functions.
One of the main virtues of the theory of compact quantum metric spaces is that
it allows for an analogue of the classical Gromov-Hausdorff distance [11, 12],
known as the quantum Gromov-Hausdorff distance [29] and denoted distQ, see
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Section 2.1 for the definition. This allows one to study the class of compact
quantum metric spaces from an analytical point of view, and ask questions
pertaining to continuity and convergence of families of compact quantum metric
spaces, see e.g. [1, 14, 19, 21, 29, 30] for examples of this.
The main focus in the present paper is the Podleś sphere S2

q [26], which forms
the base of a spectral triple for the Dąbrowski-Sitarz Dirac operator Dq [10],
whose associated seminorm Lmax

Dq
turns C(S2

q ) into a compact quantum metric
space, as proven in [2]. However, the natural point of departure when studying
S2
q is actually the associated coordinate algebra O(S2

q ) which is a subalgebra of
the Lipschitz algebra CLip(S2

q ) := Dom(Lmax
Dq

), and one may therefore restrict
Lmax
Dq

to O(S2
q ) to obtain another Lip-norm LDq

. In [3] we undertook a detailed
study of this Lip-norm, and proved that the family of compact quantum metric
spaces (C(S2

q ), LDq
)q∈(0,1] varies continuously in q with respect to the quantum

Gromov-Hausdorff distance – thus in particular showing that the quantised 2-
spheres S2

q converge to the classical round 2-sphere S2 as q tends to 1. Although
the coordinate algebra O(S2

q ) is a very natural domain for the Lip-norm when
approaching the theory of q-deformed spaces from a Hopf-algebraic angle, the
Lipschitz algebra CLip(S2

q ) is the more natural domain from the point of view
of non-commutative geometry. So the question remaining is if the convergence
results from [3] hold true also when LDq

is replaced with Lmax
Dq

. The main
point of the present paper is to answer this in the affirmative, by proving the
following:

Theorem A. It holds that distQ
(
(C(S2

q ), LDq
); (C(S2

q ), L
max
Dq

)
)
= 0.

As explained earlier in this introduction we also have an intermediate algebra
C1(S2

q ) obtained by taking the closure of the derivation coming from Dq and
it is straightforward to show that distQ

(
(C(S2

q ), LDq
); (C(S2

q ), L
1
Dq

)
)
= 0 (for

more general considerations along these lines, see [29, Proposition 7.1]). The
fact that this distance is equal to 0 is however of little help when approaching
the more general result in Theorem A. The algebra C1(S2

q ) is indeed sub-
stantially different from CLip(S2

q ) and the relevant information regarding the
seminorm Lmax

Dq
cannot be retrieved from the seminorm LDq

by standard ap-
proximation techniques. The deep gap between the two seminorms in question
is perhaps best illustrated by recalling the difference between the C∗-algebra
C(S2

q ) and the enveloping von Neumann algebra L∞(S2
q ): Similarly to the clas-

sical situation, derivatives of elements in the Lipschitz algebra CLip(S2
q ) are,

in general, not elements in C(S2
q ) but can only be described using the von

Neumann algebraic framework of L∞(S2
q ), see Lemma 3.7 for a more detailed

statement.
The result in Theorem A is a consequence of a careful analysis of the quantum
Berezin transform introduced in [3]. In fact, our analysis yields the following
approximation result, which is of interest in its own right:

Theorem B. For every q ∈ (0, 1], every ε > 0 and every x ∈ CLip(S2
q ) there

exists y ∈ O(S2
q ) with LDq

(y) 6 Lmax
Dq

(x) and ‖x− y‖ 6 ε · Lmax
Dq

(x).
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For q = 1, one has C(S2
1) = C(S2) and O(S2) is generated by the three coor-

dinate functions x1, x2, x3 arising from the natural embedding of S2 into R3.
Moreover, Lmax

D1
recovers the Lipschitz constant Ld

S2
(f) of a function f on S2

with respect to the usual round metric dS2 , and Theorem B therefore in par-
ticular includes an approximation result for classical functions1:

Corollary C. For every Lipschitz function f on S2 and every ε > 0 there
exists p ∈ O(S2) with Ld

S2
(p) 6 Ld

S2
(f) and ‖f − p‖∞ < ε · Ld

S2
(f).

We finally record that the combination of the main convergence result from [3]
and the present Theorem A yield the following:

Corollary D. For every q0 ∈ (0, 1] we have that

lim
q→q0

distQ
(
(C(S2

q ), L
max
Dq

); (C(S2
q0 ), L

max
Dq0

)
)
= 0.
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Notation

Throughout the text, all inner products are assumed linear in the second vari-
able. The symbols ⊗, ⊗min, ⊗̂ and ⊗̄ will denote algebraic tensor products,
minimal tensor products of C∗-algebras, tensor products of Hilbert spaces and
tensor products of von Neumann algebras, respectively.

2 Preliminaries

In this section we give the necessary preliminaries concerning compact quan-
tum metric spaces, quantum SU(2) and the Podleś sphere. We will align our
notation with the one used in [3] where a much more in-depth introduction
is given, and for this reason the present presentation will be kept relatively
laconic.

2.1 Compact quantum metric spaces

The theory of compact quantum metric spaces was initiated by Rieffel around
year 2000 [28, 29], and the first approach took the theory of order unit spaces
as its point of departure. Since then, several variations of the theory have
emerged [22, 23, 28], and we here take an operator system approach aligning

1We suspect that this approximation result for classical functions is well-known but we

were unable to find it in the literature.
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with the recent developments in [9, 32]. Recall that a concrete operator system
is a closed subspace X of a unital C∗-algebra such that X is stable under the
involution and contains the unit. For a ∗-invariant unital subspace X ⊆ X we
let Xsa := {x ∈ X | x = x∗} denote the real vector space of selfadjoint elements
in X . Every operator system X has a state space S(X) consisting of all the
positive linear functionals mapping the unit to 1, and this leads to the following
definition of a compact quantum metric space:

Definition 2.1. A compact quantum metric space is a concrete operator sys-
tem X equipped with a densely defined seminorm L : Dom(L) → [0,∞) satis-
fying that:

(i) C · 1 ⊆ Dom(L) and L(x) = 0 if and only if x ∈ C · 1;

(ii) x∗ ∈ Dom(L) and L(x) = L(x∗) for all x ∈ Dom(L);

(iii) The function ρL(µ, ν) := sup{|µ(x) − ν(x)| | x ∈ Dom(L) and L(x) 6 1}
equips the state space S(X) with a metric which metrises the weak∗-
topology.

A densely defined seminorm L satisfying (i)-(iii) is called a Lip-norm and the
corresponding metric ρL is referred to as the Monge-Kantorovič metric.

Remark 2.2. For a compact quantum metric space (X,L) one often extends L

to all of X by setting it equal to infinity outside of Dom(L), which of course
captures the same information. This is for instance the approach taken in [3],
but since the domain of definition is particularly important in the present paper
we keep the seminorms on their finite domains to avoid confusion.

As already mentioned in the introduction, unital spectral triples provide a
natural source of examples of compact quantum metric spaces, but to better
understand the origin of Rieffel’s definitions, it is illuminating to also briefly
discuss the commutative case. Starting out with a compact metric space (X, d)
and forming the associated C∗-algebra C(X), one can consider the subalgebra
CLip(X) consisting of Lipschitz continuous functions. On CLip(X) the metric
gives rise to a natural seminorm defined by

Ld(f) := sup
{ |f(x)− f(y)|

d(x, y)

∣∣∣ x, y ∈ X, x 6= y
}
,

and it is well known that Ld is a Lip-norm, and that the restriction of ρLd
to

X ⊆ S(C(X)) agrees with the original metric d [15, 16].
If (X,LX) and (Y, LY ) are two compact quantum metric spaces, then a Lip-
norm L on X ⊕ Y with domain Dom(LX) ⊕ Dom(LY ) is called admissible if
the two quotient seminorms, the restriction

L : Dom(LX)sa ⊕ Dom(LY )sa → [0,∞)
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induces via the natural projections, agree with the restrictions
LX : Dom(LX)sa → [0,∞) and LY : Dom(LY )sa → [0,∞). For such an
admissible L, one obtains isometric embeddings

(S(X), ρLX
) →֒ (S(X ⊕ Y ), ρL) and (S(Y ), ρLY

) →֒ (S(X ⊕ Y ), ρL)

and hence the Hausdorff distance distρL

H

(
S(X),S(Y )

)
makes sense [13]. The

quantum Gromov-Hausdorff distance between (X,LX) and (Y, LY ) is then de-
fined as

distQ((X,LX); (Y, LY )) := inf {distρL

H (S(X),S(Y )) | L admissible} .

We underscore that this is simply a reformulation of Rieffel’s original definition
based on order unit spaces [29]. More precisely, putting A := {x ∈ Dom(LX) |
x = x∗} and B := {y ∈ Dom(LY ) | y = y∗} we obtain order unit compact quan-
tum metric spaces and distQ

(
(X,LX); (Y, LY )

)
= distQ

(
(A,LX |A); (B,LY |B)

)
.

In particular, it is important to note that distQ
(
(X,LX); (Y, LY )

)
= 0 is equiv-

alent to the existence of an isometric, affine bijection from (S(Y ), ρLY
) to

(S(X), ρLX
), or, equivalently, a Lip-norm isometric order unit isomorphism at

the level of (the closures of) A and B, see [29, Corollary 6.4 & Theorem 7.9].
Several more sophisticated notions of quantum distances have been proposed
over the past 20 years [17, 20, 22], but in the present paper we will only be
concerned with Rieffel’s original version.

2.2 Quantum SU(2) and the Podleś sphere

In this section we briefly introduce the main objects of study and fix the nota-
tion. As in the previous section, we align our notation with that of [3], which
also contains a more in-depth introduction to the material covered below. The
general literature on quantum groups is vast, and we refer the reader to the
monographs [18] and [33] and references therein for the background theory. A
central role in the present paper is played by Woronowicz’ quantum SUq(2)
introduced in [34] which is defined via a universal unital C∗-algebra C(SUq(2))
with generators a and b subject to the relations

ba = qab b∗a = qab∗ bb∗ = b∗b

a∗a+ q2bb∗ = 1 = aa∗ + bb∗.

This becomes a C∗-algebraic compact quantum group [35] and we denote its
comultiplication by ∆: C(SUq(2)) → C(SUq(2))⊗minC(SUq(2)) and the Haar
state (see [35, Theorem 1.3]) by h. Furthermore, we fix a complete set of irre-
ducible unitary corepresentations (un)n∈N0

, satisfying the additional technical
conditions specified in [3, Section 2.1]. In particular, the corepresentation u1

is the so-called fundamental unitary corepresentation given by the matrix

u1 =

(
a∗ −qb

b∗ a

)
,
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which is also denoted u in the sequel. We denote the GNS-space associated
with h by L2(SUq(2)), the natural inclusion C(SUq(2)) ⊆ L2(SUq(2)) by Λ
and the associated GNS-representation C(SUq(2)) → B(L2(SUq(2))) by ρ. The
matrix coefficients un

ij are linearly independent and form an orthogonal basis of
L2(SUq(2)) (once included in this Hilbert space via Λ). We apply the notation

ζnij := h
(
(un

ij)
∗un

ij

)−1/2
· un

ij ∈ C(SUq(2))

for the corresponding normalised elements, which then have the property that
{Λ(ζnij) | n ∈ N0, 0 6 i, j 6 n} is an orthonormal basis for L2(SUq(2)).
In addition to the C∗-algebraic picture, one may consider SUq(2) from an
algebraic point of view, by restricting attention to the unital ∗-subalgebra
O(SUq(2)) generated by a and b. This unital ∗-subalgebra can be given the
structure of a unital Hopf ∗-algebra where the comultiplication is obtained by
restriction of the comultiplication on C(SUq(2)). We shall denote the counit
and antipode of O(SUq(2)) by ǫ and S respectively, and note that SUq(2) is
known to be co-amenable [5, Theorem 2.12], meaning that the counit extends
boundedly to a character on C(SUq(2)). We note that

O(SUq(2)) = spanC{u
n
ij | n ∈ N0, 0 6 i, j,6 n}.

Also at the Lie algebra level it is possible to pass to the q-deformed level,
and upon doing so one arrives at the quantum enveloping algebra Uq(su(2))
with generators e, f and k (see [18, Chapter 3] for the precise definition).
The quantum enveloping algebra is also a unital Hopf ∗-algebra which admits
a non-degenerate dual pairing with O(SUq(2)) denoted by 〈·, ·〉 : Uq(su(2)) ×
O(SUq(2)) → C. The dual pairing, in turn, gives rise to right and left actions
of Uq(su(2)) on O(SUq(2)) (by linear endomorphisms) defined, respectively, by

δη(x) := (〈η, ·〉 ⊗ 1)∆(x) and ∂η(x) := (1⊗ 〈η, ·〉)∆(x),

for x ∈ O(SUq(2)) and η ∈ Uq(su(2)). Among these operators, the following
three play a key role in the next section:

δ1 := q1/2δe, δ2 := q−1/2δf and δ3 :=
δk − δk−1

q − q−1
. (2.1)

The operator δ3 is of course only well-defined by the above formula for q 6= 1,
and for q = 1 we put δ3 := 1

2δh where h = [f, e] in the classical enveloping Lie
algebra U(su(2)), see [3] for a more detailed discussion of this. The operators
δ1, δ2 and δ3 are all δk-twisted derivations (with k = 1 for q = 1), meaning that

δi(xy) = δi(x)δk(y) + δk−1(x)δi(y), x, y ∈ O(SUq(2)), i ∈ {1, 2, 3}.
(2.2)

Moreover, they are compatible with the adjoint operation in the sense that

δ1(x
∗) = −δ2(x)

∗ and δ3(x
∗) = −δ3(x)

∗, x ∈ O(SUq(2)). (2.3)
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For each η ∈ Uq(su(2)) it holds that h ◦ δη = h ◦ ∂η = η(1) · h which follows
directly from the bi-invariance of the Haar state; in particular

h ◦ δ1 = h ◦ δ2 = h ◦ δ3 = 0 and h ◦ δk = h, (2.4)

by the properties of the pairing and the comultiplication in Uq(su(2)). Both δk
and ∂k are algebra automorphisms of O(SUq(2)) and the composition ν :=
δk−2 ◦ ∂k−2 is the modular automorphism (see [18, Chapter 4, Proposition 15])
for the Haar state, meaning that

h(xy) = h(ν(y)x), y ∈ O(SUq(2)) and x ∈ C(SUq(2)). (2.5)

The classical Hopf fibration SU(2) → S2 shows that C(S2) may be viewed
as the fixed point algebra C(SU(2))S

1

for the induced circle action S1 y

C(SU(2)). The q-deformed analogue also admits a natural circle action S1 σ
y

C(SUq(2)) (given on generators by σz(a) = za and σz(b) = zb) and the Podleś
sphere S2

q is defined, implicitly, via the C∗-algebra C(S2
q ) := C(SUq(2))

S1

.
Concretely, C(S2

q ) is generated by the elements A := b∗b and B := ab∗, and
the dense unital ∗-algebra generated by A and B is denoted O(S2

q ) ⊆ C(S2
q )

and referred to as the coordinate algebra. This unital ∗-algebra can also be
described in terms of the matrix units, as one has the identity

O(S2
q ) = spanC{u

2n
in | n ∈ N0, 0 6 i 6 2n}.

The aforementioned circle action gives rise to spectral subspaces

An := {x ∈ O(SUq(2)) | ∀z ∈ S1 : σz(x) = znx}, n ∈ Z (2.6)

which may also be described (see e.g. [34, Theorem 1.2]) as

An := {x ∈ O(SUq(2)) | ∂k(x) = qn/2x}, q 6= 1.

Note that it follows from this description that the modular automorphism ν

preserves the spectral subspaces, a fact we will be using in the sequel without
further mentioning. We denote by H− and H+ the closure of Λ(A−1) and Λ(A1)
in L2(SUq(2)), respectively, while the closure of Λ(O(S2

q )) will be denoted
L2(S2

q ). Clearly, each An is a left module over A0 = O(S2
q ), so upon restricting

the GNS-representation, both H− and H+ acquire an action of C(S2
q ) and hence

so does their direct sum H+⊕H−. We denote the corresponding representation
by

π : C(S2
q ) → B(H+ ⊕H−).

In [10], Da̧browski and Sitarz provided a Dirac operator Dq on H+ ⊕ H−

and they proved (among other things) that the coordinate algebra O(S2
q ) then

fits in an even unital spectral triple (O(S2
q ), H+ ⊕ H−, Dq). Concretely, Dq

is defined as follows: The endomorphisms ∂e and ∂f of O(SUq(2)) restrict
to linear maps ∂e : A1 → A−1 and ∂f : A−1 → A1. These restrictions can
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therefore be considered as densely defined unbounded operators at the level
of Hilbert spaces, and upon doing so we denote them E and F , respectively.
Thus, E : Λ(A1) → H− and F : Λ(A−1) → H+, and one may show that F ⊆ E∗

and E ⊆ F∗. In particular, both E and F are closable and we denote their
closures by E and F respectively. The Da̧browski-Sitarz Dirac operator is the
unbounded selfadjoint operator on H+ ⊕H− with domain Dom(E)⊕Dom(F )
given by

Dq =

(
0 F

E 0

)
.

We denote the associated Lip-algebra by

CLip(S2
q ) :=

{x ∈ C(S2
q ) | x(Dom(Dq)) ⊆ Dom(Dq) and [Dq, x] extends boundedly}.

The map ∂ : CLip(S2
q ) → B(H+ ⊕H−) given by ∂(x) = [Dq, x] is a derivation

with respect to the diagonal action of CLip(S2
q ), and it has the form

∂(x) =

(
0 ∂2(x)

∂1(x) 0

)
.

The associated maps ∂1 : C
Lip(S2

q ) → B(H+, H−) and ∂2 : C
Lip(S2

q ) →

B(H−, H+) are therefore also derivations for the natural CLip(S2
q )-bimodule

structure on the two spaces, and on the coordinate algebra O(S2
q ) one has the

relations

∂1(x) = q1/2ρ(∂e(x))|H+
and ∂2(x) = q−1/2ρ(∂f (x))|H−

.

We obtain two natural seminorms

LDq
: O(S2

q ) −→ [0,∞)

Lmax
Dq

: CLip(S2
q ) −→ [0,∞),

both given by taking the operator norm of the bounded extension of the com-
mutator [Dq, x]. The main result in [2] is that C(S2

q ) becomes a compact
quantum metric space for the seminorm Lmax

Dq
, and since O(S2

q ) ⊆ CLip(S2
q )

this implies that the same is the case for LDq
, see e.g. [27, Theorem 1.8].

2.3 The quantum Berezin transform and quantum fuzzy spheres

The key to the convergence results in [3] is a quantum analogue of the classical
Berezin transform, and the main results in the present paper will turn out to be
a consequence of a careful analysis of its analytic properties. Before embarking
on this analysis, we first briefly introduce the quantum Berezin transform at
the algebraic level, following [3, Section 3]. As with the above, this will be kept
rather short, and the reader is referred to [3] for more details.
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For each N ∈ N, one obtains a state hN : C(S2
q ) → C by setting

hN (x) := 〈N + 1〉 · h
(
(a∗)NxaN

)
, (2.7)

where 〈N+1〉 denotes the quantity
∑N

k=0 q
2k. The quantum Berezin transform

is then defined as the map βN : C(S2
q ) → C(S2

q ) given by

βN (x) := (1⊗ hN )∆(x).

A priori, βN (x) ∈ C(SUq(2)) but one can show that the image of βN is actually
contained in C(S2

q ). Actually, it turns out that Im(βN ) is (N+1)2-dimensional
and contained in O(S2

q ), and the quantum fuzzy sphere FN
q is defined as the

concrete operator system FN
q := Im(βN ). In fact, it is proved in [3, Lemma 3.3]

that
FN
q = spanC{u

2n
in | n ∈ {0, 1, . . . , N} , i ∈ {0, 1, . . . , 2n}}.

In the classical setting (i.e. when q = 1), one usually defines the fuzzy sphere
in degree N as the matrix algebra MN+1(C), see [24]. This is linked to the 2-
sphere S2 by means of the so-called covariant Berezin symbol σN : MN+1(C) →
C(S2) and its adjoint σ̆N : C(S2) → MN+1(C) (see [30, Section 2] and refer-
ences therein). The classical Berezin transform is then defined as σN ◦ σ̆N , and
in [3] it was proven that this agrees with the map βN constructed above. In the
q-deformed setting, we have thus by-passed the covariant Berezin symbol and
its adjoint and merely defined their composition, and the relationship between
the quantum fuzzy sphere constructed above and its classical counterpart is
given by the relation FN

1 = σN

(
MN+1(C)

)
.

3 The Berezin transform is a Lip-norm contraction

In [3] we showed that the quantum Berezin transform is a Lip-norm contraction
on O(S2

q ), and the aim of the current section is to prove that the same holds
true at the level of CLip(S2

q ). We consider again the orthonormal basis {Λ(ζnij) |
n ∈ N0 , i, j ∈ {0, 1, . . . , n}} for L2(SUq(2)) consisting of normalised matrix
units, and define, for each N ∈ N0, the linear map ΦN : B(L2(S2

q )) → FN
q by

the formula

ΦN (T ) :=

N∑

n=0

2n∑

i=0

ζ2nin 〈Λ(ζ2nin ), TΛ(1)〉,

By construction, ΦN is continuous from the weak operator topology (WOT)
on B(L2(S2

q )) to the norm topology on FN
q .

Lemma 3.1. For each N ∈ N0 and x ∈ C(S2
q ), it holds that βN (x) =

βN (ΦN (x)).

Proof. By norm-density of O(S2
q ) ⊆ C(S2

q ) and linearity and continuity of the
involved operations, we only need to show that βN (x) = βN (ΦN (x)) in the case

Documenta Mathematica 27 (2022) 765–787



An Approximation of Quantum Lipschitz Functions 775

where x = u2m
jm for some m ∈ N0 and j ∈ {0, 1, . . . , 2m}. Suppose first that

m > N . In this case we have that ΦN (u2m
jm) = 0 since 〈Λ(u2k

ik ),Λ(u
2m
jm)〉 = 0

for all k 6 N and all i ∈ {0, 1, . . . , 2k}. Moreover, we see from [3, Lemma 3.2
and 3.3] that βN (u2m

jm) = 0, hence proving the claimed identity in this case.
Suppose next that m 6 N . We then have that

ΦN (u2m
jm) =

N∑

k=0

2k∑

i=0

ζ2kik 〈Λ(ζ
2k
ik ),Λ(u

2m
jm)〉 = ζ2mjm 〈Λ(ζ2mjm ),Λ(u2m

jm)〉 = u2m
jm,

(3.1)

which proves the claimed identity in this case as well.

We apply the notation L∞(S2
q ) for the von Neumann algebra generated by

C(S2
q ) ⊆ B(L2(S2

q )), and define the extended Berezin transform β̃N : L∞(S2
q ) →

FN
q as

β̃N (x) := βN (ΦN (x)).

Since ΦN is WOT-norm continuous, we obtain that the same holds true for
the extended Berezin transform β̃N : L∞(S2

q ) → FN
q . Moreover, we see from

Lemma 3.1 that the extended Berezin transform agrees with the usual Berezin
transform on C(S2

q ) ⊆ L∞(S2
q ).

Lemma 3.2. The extended Berezin transform β̃N : L∞(S2
q ) → FN

q is unital and
completely positive and hence completely contractive.

Proof. The map βN : C(S2
q ) → C(S2

q ) is defined by slicing the unital ∗-
homomorphism ∆ with the state hN and is therefore unital and completely
positive. The fact that the same holds true for β̃N now follows by an approx-
imation argument: given a positive element x∗x ∈ L∞(S2

q ) there exists a net
{xi}i∈I in C(S2

q ) converging to x in the strong operator topology. The net
{x∗

i xi}i∈I then converges to x∗x in the WOT and by the WOT-norm continu-
ity of ΦN we obtain that the net {βN(x∗

i xi)}i∈I converges in norm to β̃N (x∗x).
Since βN (x∗

i xi) > 0 for all i ∈ I, the positivity of β̃N (x∗x) follows. This shows
that β̃N is positive and the fact that it is completely positive is proven in
exactly the same manner.

For each j ∈ {1, 2, 3} we define the unbounded operator Dj : Λ
(
O(S2

q )
)
→

L2(S2
q ) by the formula Dj(Λ(x)) := Λ(δj(x)), where δ1, δ2 and δ3 are the

linear endomorphisms of O(S2
q ) defined in (2.1). Thus, Dj is simply δj ,

but now thought of as an unbounded operator on L2(S2
q ). We also define

D4 := −D3 : Λ
(
O(S2

q )
)
→ L2(S2

q ).

Lemma 3.3. Each Dj, j ∈ {1, 2, 3, 4}, is adjointable with Λ(O(S2
q )) ⊆

Dom(D∗
j ) and for y ∈ O(S2

q ) we have the explicit formulae:

D
∗
1 (Λ(y)) = q−1 · D2(Λ(y)), D

∗
2 (Λ(y)) = q · D1(Λ(y)) and

D
∗
3 (Λ(y)) = D3(Λ(y)), D

∗
4 (Λ(y)) = D4(Λ(y)).
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Proof. We only give the proof in the case of D1 : Λ
(
O(S2

q )
)
→ L2(S2

q ) since
the remaining cases follow from a similar argumentation. For x, y ∈ O(S2

q ),
we apply (2.2), (2.3) and (2.4) together with the defining relations in the Hopf
∗-algebra Uq(su(2)) (see [3, Page 4]) to compute as follows:

〈Λ(y),D1Λ(x)〉 = h
(
y∗δ1(x)

)
= h

(
δ1(δk(y

∗)x)
)
− h
(
δ1(δk(y

∗))δk(x)
)

= −h
(
δ1(δk(y

∗))δk(x)
)
= −q−1h

(
δk(δ1(y

∗))δk(x)
)

= −q−1h(δ1(y
∗)x) = q−1h(δ2(y)

∗x) = 〈q−1 · D2Λ(y),Λ(x)〉.

For each N ∈ N0 we consider the orthogonal projection PN : L2(S2
q ) → L2(S2

q )
given by the formula

PN (ξ) :=

N∑

n=0

2n∑

i=0

Λ(ζ2nin )〈Λ(ζ2nin ), ξ〉.

Remark that PNΛ(x) = Λ(ΦN (x)) for all x ∈ C(S2
q ).

Lemma 3.4. For each j ∈ {1, 2, 3, 4} and each N ∈ N0, it holds that

PNDj ⊆ DjPN .

Proof. Let N ∈ N0 be given. We only need to consider the case where
j ∈ {1, 2, 3}. Using the description of δj : O(S2

q ) → O(S2
q ) in terms

of the coproduct on O(SUq(2)) and the pairing of Hopf ∗-algebras 〈·, ·〉 :
Uq(su(2))×O(SUq(2)) → C we obtain that

ΦNδj(u
2n
in ) =

{
0 for n > N

δj(u
2n
in ) for 0 6 n 6 N

= δjΦN (u2n
in ).

The above identity now proves the lemma since Dom(Dj) agrees with the linear
span of the elements Λ(u2n

in ) ∈ L2(S2
q ) (for n ∈ N0 and i ∈ {0, 1, . . . , 2n}).

We introduce the linear map

δ : O(S2
q ) → M2

(
O(S2

q )
)

δ(x) :=

(
−δ3(x) δ2(x)
δ1(x) δ3(x)

)
.

An application of [3, Proposition 3.11] then shows that

δ(x) = u∂(x)u∗ for all x ∈ O(S2
q ),

where u is the fundamental unitary corepresentation. We then introduce the
four linear maps δ̃j : C

Lip(S2
q ) → B(L2(S2

q )), j ∈ {1, 2, 3, 4}, by the formulae

δ̃1(x) := (u∂(x)u∗)10, δ̃2(x) := (u∂(x)u∗)01 and

δ̃3(x) := (u∂(x)u∗)11, δ̃4(x) := (u∂(x)u∗)00,
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where the subscripts denote the matrix entries of u∂(x)u∗ ∈ M2

(
B(L2(S2

q ))
)
.

We also introduce the linear map

δ̃ : CLip(S2
q ) → M2

(
B(L2(S2

q ))
)

δ̃(x) :=

(
δ̃4(x) δ̃2(x)

δ̃1(x) δ̃3(x)

)
.

By construction we have that δ̃(x) = u∂(x)u∗ for all x ∈ CLip(S2
q ) and hence

from the above we obtain that δ̃(x) = δ(x) for all x ∈ O(S2
q ).

We wish to consider each δ̃j as a densely defined unbounded operator.
More precisely, for each j ∈ {1, 2, 3, 4} we define an unbounded operator
D̃j : Λ

(
CLip(S2

q )
)
→ L2(S2

q ) by setting

D̃j(Λ(x)) := δ̃j(x)
(
Λ(1)

)
.

By construction, the unbounded operator D̃j is an extension of the unbounded
operator Dj : Λ(O(S2

q )) → L2(S2
q ). We are now going to show that D̃j also

has a densely defined adjoint. To do so, it turns out to be convenient to work
with a slightly more general type of unbounded operator. For each ξ, η ∈ A1

(see (2.6) for a definition of this space) we define the unbounded operators
Rξ,η, Tη∗,ξ∗ : Λ

(
CLip(S2

q )
)
→ L2(S2

q ) by

Rξ,η(Λ(x)) := (ξ · ∂1(x) · η)Λ(1) and Tη∗,ξ∗(Λ(x)) := (η∗ · ∂2(x) · ξ
∗)Λ(1),

where we consider ξ as a bounded multiplication operator from H− to H0, η
as a bounded multiplication operator from H0 to H+ and ∂1(x) as a bounded
operator from H+ to H− and ∂2(x) as a bounded operator from H− to H+.

Lemma 3.5. For ξ, η ∈ A1, the unbounded operators Rξ,η and Tη∗,ξ∗ are ad-
jointable with Λ

(
O(S2

q )
)

in the domain of their adjoints, and on Λ
(
O(S2

q )
)

we
have the explicit formulae

R∗
ξ,ηΛ(y) = Λ

(
∂f (ξ

∗y) · ν(η)∗ − ξ∗y · ν(∂e(η))
∗
)

and

T ∗
η∗,ξ∗Λ(y) = Λ

(
∂e(ηy) · ν(ξ

∗)∗ − ηy · ν(∂f (ξ
∗))∗

)

for all y ∈ O(S2
q ). In particular, we obtain that R∗

ξ,ηΛ(y) and T ∗
η∗,ξ∗Λ(y) belong

to Λ
(
O(S2

q )
)
.

Proof. We only give a proof in the case of Rξ,η since the proof for Tη∗,ξ∗ follows
a similar structure. Let x ∈ CLip(S2

q ) and y ∈ O(S2
q ) be given. Using that

∂1(x) = [E, x] on Dom(E) ⊇ Λ(A1) in combination with the twisted tracial
property of the Haar state from (2.5) we compute as follows:

〈Λ(y), Rξ,η(Λ(x))〉 =
〈
Λ(y), ξ · ∂1(x)(Λ(η))

〉

=
〈
Λ(ξ∗y), E(xΛ(η))

〉
−
〈
Λ(ξ∗y), xE(Λ(η))

〉

=
〈
F
(
Λ(ξ∗y)

)
,Λ(x · η)

〉
−
〈
Λ(ξ∗y),Λ(x∂e(η))

〉

=
〈
Λ
(
∂f (ξ

∗y) · ν(η)∗
)
,Λ(x)

〉
−
〈
Λ
(
ξ∗y · ν(∂e(η))

∗
)
,Λ(x)

〉
.

This proves the result of the lemma.
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Since δ̃(x) = u∂(x)u∗, a direct computation of the matrix products shows that
each entry is of the form Rξ1,η1

+ Tη∗

2
,ξ∗

2
for some ξ1, η1, ξ2, η2 ∈ A1, and hence

it follows from the lemma above that each of the corresponding unbounded
operators D̃j : Λ(C

Lip(S2
q )) → L2(S2

q ) has a densely defined adjoint and that

D̃j

∗(
Λ(O(S2

q ))
)
⊆ Λ(O(S2

q )).

We now prove that the conclusion of Lemma 3.4 also holds true for the extended
unbounded operators.

Lemma 3.6. For each N ∈ N0 and j ∈ {1, 2, 3, 4} we have that

PN D̃j ⊆ DjPN .

Proof. Let x ∈ CLip(S2
q ) be given. It suffices to show that

〈PN D̃j

(
Λ(x)

)
, ξ〉 = 〈DjPN (Λ(x)), ξ〉

for all ξ ∈ L2(S2
q ). Since D̃j

∗
(Λ(O(S2

q ))) ⊆ Λ(O(S2
q )) there exists an M > N

such that PM D̃j

∗
PNξ = D̃j

∗
PN ξ. Using Lemma 3.4 and the inclusion Dj ⊆ D̃j

we may thus compute as follows:

〈PN D̃j

(
Λ(x)

)
, ξ〉 = 〈Λ(x), PM D̃j

∗
PNξ〉 = 〈PN D̃jPMΛ(x), ξ〉

= 〈PNDjPMΛ(x), ξ〉 = 〈DjPNPMΛ(x), ξ〉 = 〈DjPNΛ(x), ξ〉.

To ease the notation, we define an algebra automorphism ν1/2 : O(SUq(2)) →
O(SUq(2)) as the composition ν1/2 := ∂−1

k ◦ δ−1
k . Notice that the square root

notation indeed makes sense since ν1/2 ◦ ν1/2 = ν. We furthermore define an
antilinear surjective isometry J : L2(SUq(2)) → L2(SUq(2)) by the formula

J
(
Λ(y)

)
:= Λ

(
ν−1/2(y∗)

)
for all y ∈ O(SUq(2)).

Clearly J2 = id and using that ν
1
2 (x)∗ = ν−

1
2 (x∗) (see [3, (2.10) & (3.3)]), a

direct computation shows that

[Jρ(x)J, ρ(y)] = 0 for all x, y ∈ C(SUq(2)), (3.2)

where ρ : C(SUq(2)) → B(L2(SUq(2))) as usual denotes the GNS-
representation. In fact, it can be verified that J : L2(SUq(2)) → L2(SUq(2))
is the phase operator in the polar decomposition of the adjoint operation
∗ : Λ(O(SUq(2))) → L2(SUq(2)) (considered as an anti-linear unbounded
operator on the GNS-space). The analysis we are carrying out is therefore
fully compatible with Tomita-Takesaki theory and J is exactly the modular
conjugation associated to O(SUq(2)) considered as a left Hilbert algebra with
inner product coming from the Haar-state, see [31, Chapter VI]. To continue,
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we notice that J(H±) = H∓ and we apply the same notation J for the induced
map

J :=

(
0 J

−J 0

)
: H+ ⊕H− −→ H+ ⊕H−.

The latter antilinear surjective isometry J : H+ ⊕ H− → H+ ⊕ H− is re-
ferred to as the reality operator since it provides the even unital spectral triple
(C(S2

q ), H+⊕H−, Dq) with a real structure of dimension 2, see [8, Definition 3].
This real structure was also found by Da̧browski and Sitarz in their paper [10].
For the convenience of the reader we provide some details on these matters.
We first of all have the identities J2 = −id and Jγ = −γJ (here γ denotes the
grading operator) at the level of operations on H+ ⊕H− and it can be verified
that

J(Dom(Dq)) = Dom(Dq) and DqJ = JDq. (3.3)

Secondly, to prove the first order condition, i.e. that [JyJ−1, ∂(x)] = 0 for all
x, y ∈ CLip(S2

q ), we may, without loss of generality, assume that y ∈ O(S2
q ).

Letting ξ ∈ Dom(Dq) and applying (3.2) and (3.3) we then compute that

[JyJ−1, ∂(x)](ξ) = [JyJ−1, Dqx− xDq](ξ)

= [JyJ−1, Dq]x(ξ) − x[JyJ−1, Dq](ξ)

=
[
x, [Dq, JyJ

−1]
]
(ξ) = [x, J∂(y)J−1](ξ).

Since ∂1(y), ∂2(y) ∈ O(SUq(2)) and J∂(y)J−1 =

(
0 −J∂1(y)J

−J∂2(y)J 0

)

we now immediately obtain from (3.2) that [JyJ−1, ∂(x)] = 0.

We are now ready to prove that the maps δ̃j take values in L∞(S2
q ). This is

essential since it allows us to compose these maps with the extended Berezin
transform. In fact, we shall see that δ̃j actually commutes with the extended
Berezin transform and this will be the key ingredient in our proof of Theorem B.

Lemma 3.7. For j ∈ {1, 2, 3, 4} and x ∈ CLip(S2
q ), it holds that δ̃j(x) ∈

L∞(S2
q ).

Proof. We first note that the antilinear surjective isometry J : L2(SUq(2)) →
L2(SUq(2)) restricts to an antilinear surjective isometry J : L2(S2

q ) → L2(S2
q ).

As above this restricted J agrees with the modular conjugation arising from
O(S2

q ) considered as a left Hilbert algebra with inner product coming from the
Haar state h : C(S2

q ) → C. In particular, it follows from [31, Theorem 1.19]
that the commutant of L∞(S2

q ) ⊆ B(L2(S2
q )) agrees with JL∞(S2

q )J . By von
Neumann’s bicommutant theorem, it hence suffices to show that

[JyJ−1, u∂(x)u∗] = 0

for all y ∈ O(S2
q ). This does however follow from the first order condition

[JyJ−1, ∂(x)] = 0 and the fact that the fundamental corepresentation unitary
u belongs to M2

(
O(SUq(2))

)
. Indeed, using (3.2) we obtain that

[JyJ−1, u∂(x)u∗] = u[JyJ−1, ∂(x)]u∗ = 0.
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We also record the following easy consequence of the above lemmas:

Corollary 3.8. For each N ∈ N0 and each j ∈ {1, 2, 3, 4} we have δjΦN (x) =

ΦN δ̃j(x) for all x ∈ CLip(S2
q ).

Proof. The map Λ: C(S2
q ) → L2(S2

q ) extends (injectively) to L∞(S2
q ) and it

is straightforward to see that the relation PNΛ(z) = ΛΦN(z) still holds for
z ∈ L∞(S2

q ). For x ∈ CLip(S2
q ) we therefore obtain (using Lemma 3.6) that

Λ(δjΦN (x)) = Dj(Λ(ΦN (x))) = DjPNΛ(x) = PN D̃jΛ(x)

= PN (Λ(δ̃j(x))) = Λ(ΦN δ̃j(x)).

Proposition 3.9. For each N ∈ N0 and j ∈ {1, 2, 3, 4} we have that δjβN (x) =

β̃N δ̃j(x) for all x ∈ CLip(S2
q ).

Proof. First note that the composition on the right hands side indeed makes
sense by Lemma 3.7. Let x ∈ CLip(S2

q ) be given. By [3, Lemma 3.7], Lemma 3.1
and Corollary 3.8 we obtain that

δjβN (x) = δjβNΦN (x) = βNδjΦN (x) = βNΦN δ̃j(x) = β̃N δ̃j(x).

With the above results at our disposal, it is now an easy task to show that the
Berezin transform is a Lip-norm contraction also at the level of the Lipschitz
algebra CLip(S2

q ). This extends the result in [3, Proposition 3.12].

Theorem 3.10. For each N ∈ N0 and x ∈ CLip(S2
q ) we have the inequality

Lmax
Dq

(βN (x)) 6 Lmax
Dq

(x).

Proof. By [3, Proposition 3.11], Lemma 3.2 and Proposition 3.9 it holds that

Lmax
Dq

(βN (x)) = ‖u∂(βN(x))u∗‖ = ‖δ(βN(x))‖

= ‖β̃N(δ̃(x))‖ 6 ‖δ̃(x)‖ = Lmax
Dq

(x).

4 The coproduct commutes with the Dirac operator

In order to prove our main results, we are still missing one important ingredient,
namely a certain compatibility between the Dirac operator and the coproduct.
This compatibility result is related to the Uq(su(2))-equivariance of the Dirac
operator which was described in [10]. We are here clarifying that this equiv-
ariance actually comes from an underlying relationship between the coproduct
and the Dirac operator. In order to achieve this, we need the unitary oper-
ator W : L2(SUq(2))⊗̂L2(SUq(2)) → L2(SUq(2))⊗̂L2(SUq(2)) defined by the
formula

W (Λ(x)⊗ Λ(y)) := ∆(y)
(
Λ(x)⊗ Λ(1)

)
.
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This operator (known as the multiplicative unitary for SUq(2)) implements the
coproduct ∆: C(SUq(2)) → C(SUq(2))⊗min C(SUq(2)) in the sense that

∆(z) = W (1 ⊗ z)W ∗ for all z ∈ C(SUq(2)),

see [4] for more details on multiplicative unitaries. This formula also shows
that ∆ extends to a normal ∗-homomorphism

∆: L∞(SUq(2)) → L∞(SUq(2))⊗̄L∞(SUq(2)),

and this actually turns L∞(SUq(2)) into a von Neumann algebraic compact
quantum group. Using [34, Theorem 1.2], it is not difficult to see that A1 is
generated by a and b as a right module over O(S2

q ), and, similarly, that A−1

is generated by a∗ and b∗. Since

∆(a) = a⊗ a− qb∗ ⊗ b and ∆(b) = b⊗ a+ a∗ ⊗ b,

it therefore follows that A1 and A−1 are comodules for O(SUq(2)) in the sense
that ∆(Ai) ⊆ O(SUq(2)) ⊗Ai, i = ±1, and the unitary operator W therefore
restricts to two unitary operators

W+ : L2(SUq(2))⊗̂H+ −→ L2(SUq(2))⊗̂H+ and

W− : L2(SUq(2))⊗̂H− −→ L2(SUq(2))⊗̂H−.

We now define the unbounded selfadjoint operator

1⊗̂Dq : Dom(1⊗̂Dq) → L2(SUq(2))⊗̂(H+ ⊕H−)

as the closure of the unbounded symmetric operator

1⊗

(
0 F
E 0

)
: Λ
(
O(SUq(2))

)
⊗
(
Λ(A1)⊕Λ(A−1)

)
→ L2(SUq(2))⊗̂(H+⊕H−).

Lemma 4.1. The unitary operator W+ ⊕W− preserves Dom(1⊗̂Dq) and

[1⊗̂Dq,W+ ⊕W−](ξ) = 0

for all ξ ∈ Dom(1⊗̂Dq).

Proof. Since W+ ⊕W− preserves the core Λ
(
O(SUq(2))

)
⊗
(
Λ(A1)⊕Λ(A−1)

)
,

it suffices to verify the identity for

ξ = Λ(x)⊗

(
Λ(y1)
Λ(y−1)

)

with x ∈ O(SUq(2)) and y1 ∈ A1 and y−1 ∈ A−1. It then follows that W+⊕W−

preserves Dom(1⊗̂Dq) and that the commutation relation holds true here as
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well. In this case, the desired identity follows from [3, Lemma 4.1] via the
computation:

(1⊗̂Dq)(W+ ⊕W−)(ξ) =

(
(1⊗F)

(
∆(y−1)(Λ(x)⊗ Λ(1))

)

(1⊗ E)
(
∆(y1)(Λ(x) ⊗ Λ(1))

)
)

=

(
∆(∂f (y−1))(Λ(x) ⊗ Λ(1))
∆(∂e(y1))(Λ(x) ⊗ Λ(1))

)

= (W+ ⊕W−)(1⊗̂Dq)(ξ).

The unital C∗-algebra C(SUq(2))⊗min C(S2
q ) acts on L2(SUq(2))⊗̂(H+ ⊕H−)

via the representation ρ⊗ π (which we will from now on often suppress). We
define the dense unital ∗-subalgebra

Lip1⊗̂Dq
(C(SUq(2))⊗min C(S2

q )) ⊆ C(SUq(2))⊗min C(S2
q )

to consist of those x ∈ C(SUq(2)) ⊗min C(S2
q ) which preserves the domain of

1⊗̂Dq and whose commutator with 1⊗̂Dq extends to a bounded operator on
L2(SUq(2))⊗̂(H+ ⊕H−). For each x ∈ Lip1⊗̂Dq

(
C(SUq(2))⊗min C(S2

q ))
)

we
let

(1⊗ ∂)(x) : L2(SUq(2))⊗̂(H+ ⊕H−) −→ L2(SUq(2))⊗̂(H+ ⊕H−)

denote the bounded extension of the commutator

[1⊗̂Dq, x] : Dom(1⊗̂Dq) −→ L2(SUq(2))⊗̂(H+ ⊕H−).

The next result shows that ∂ commutes with the comultiplication, thus pro-
viding us with an analytic generalisation of [3, Lemma 4.1].
For each x ∈ CLip(S2

q ) we define the bounded operator

∆(∂(x)) := (W+ ⊕W−)(1⊗ ∂(x))(W+ ⊕W−)
∗

: L2(SUq(2))⊗̂(H+ ⊕H−) → L2(SUq(2))⊗̂(H+ ⊕H−).

Lemma 4.2. For x ∈ CLip(S2
q ) it holds that ∆(x) ∈ Lip1⊗̂Dq

(
C(SUq(2))⊗min

C(S2
q )
)

and (1⊗ ∂)∆(x) = ∆(∂(x)).

Proof. We first remark that (i + (1⊗̂Dq))
−1 = 1⊗ (i+Dq)

−1 so that

Λ
(
O(SUq(2))

)
⊗ Dom(Dq) = (i + (1⊗̂Dq))

−1
(
Λ
(
O(SUq(2))

)
⊗ L2(S2

q )
)
.

From this it follows that Λ
(
O(SUq(2))

)
⊗ Dom(Dq) is a core for 1⊗̂Dq. We

then obtain that 1⊗ x ∈ Lip1⊗̂Dq

(
C(SUq(2))⊗min C(S2

q )
)

and moreover that
(1⊗ ∂)(1⊗ x) = 1⊗ ∂(x). Let now ξ ∈ Dom(1⊗̂Dq). Using Lemma 4.1 we see
that

∆(x)(ξ) = (W+ ⊕W−)(1⊗ x)(W ∗
+ ⊕W ∗

−)(ξ) ∈ Dom(1⊗̂Dq)
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and compute the commutator

[(1⊗̂Dq),∆(x)](ξ) = (W+ ⊕W−)[(1⊗̂Dq), (1 ⊗ x)](W ∗
+ ⊕W ∗

−)(ξ)

= (W+ ⊕W−)(1 ⊗ ∂(x))(W ∗
+ ⊕W ∗

−)(ξ) = ∆(∂(x))(ξ).

This proves the lemma.

For each ξ, ζ ∈ L2(SUq(2)) we let φξ,ζ : C(SUq(2)) → C denote the bounded
linear functional φξ,ζ(x) := 〈ξ, ρ(x)ζ〉.

Lemma 4.3. For each ξ, ζ ∈ L2(SUq(2)) and z ∈ Lip1⊗̂Dq

(
C(SUq(2)) ⊗min

C(S2
q )
)

it holds that (φξ,ζ ⊗ 1)(z) ∈ CLip(S2
q ) and that

∂
(
(φξ,ζ ⊗ 1)(z)

)
= (φξ,ζ ⊗ 1)(1⊗ ∂)(z).

In particular, we have the estimate

Lmax
Dq

(
(φξ,ζ ⊗ 1)(∆(x))

)
6 ‖ξ‖‖ζ‖ · Lmax

Dq
(x)

for all x ∈ CLip(S2
q ).

Proof. We define two bounded operators Tξ, Tζ : H+ ⊕ H− →
L2(SUq(2))⊗̂(H+ ⊕H−) by Tξ(η) := ξ ⊗ η and Tζ(η) := ζ ⊗ η. It can then be
proved that Tζ(Dom(Dq)) ⊆ Dom(1⊗̂Dq) and T ∗

ξ

(
Dom(1⊗̂Dq)

)
⊆ Dom(Dq).

Moreover, it holds that

TζDq ⊆ (1⊗̂Dq)Tζ and T ∗
ξ (1⊗̂Dq) ⊆ DqT

∗
ξ .

We thus obtain that (φξ,ζ ⊗ 1)(z) = T ∗
ξ zTζ preserves the domain of Dq and

that

[Dq, T
∗
ξ zTζ] ⊆ T ∗

ξ [1⊗̂Dq, z]Tζ ⊆ T ∗
ξ (1⊗ ∂)(z)Tζ = (φξ,ζ ⊗ 1)(1⊗ ∂)(z).

This proves the first part of the lemma. The second part now follows immedi-
ately by an application of Lemma 4.2.

5 Proofs of the main results

In this section we gather the proofs of our main results, which are now easily ob-
tained with the tools developed in the previous sections at our disposal. Recall
that the co-amenability of SUq(2) means that the counit ǫ : O(SUq(2)) → C

extends to a ∗-character on C(SUq(2)), and by restricting its domain we may
consider ǫ as an element in S(C(S2

q ))). We also have the sequence of states
{hN}∞N=1 in S(C(S2

q )) defined in (2.7) and hence we may consider the distance
dmax
q (ǫ, hN ) with respect to the metric on S(C(S2

q )) defined via the maximal
seminorm Lmax

Dq
: CLip(S2

q ) → [0,∞). The following proposition now shows that
the quantum Berezin transforms approximate the identity map on the Lip-unit
ball well:
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Proposition 5.1. For each x ∈ CLip(S2
q ) it holds that ‖x − βN (x)‖ 6

dmax
q (hN , ǫ)Lmax

Dq
(x)

In [3, Proposition 4.3] the corresponding statement was proven for dq (the
metric arising from restricting the domain of LDq

to O(S2
q )) and x ∈ O(S2

q ),
but with the above analysis at our disposal the proof carries over verbatim:

Proof. First note that βN (x) − x = (1 ⊗ (hN − ǫ))∆(x), so for unit vectors
ξ, η ∈ L2(SUq(2)) we have

φξ,η(βN (x) − x) = (hN − ǫ)((φξ,η ⊗ 1)∆(x)) 6 dmax
q (hN , ǫ)Lmax

Dq
(x),

where the last inequality follows from Lemma 4.3.

The estimates in Proposition 5.1 and Theorem 3.10 together with the results
from [2] and [3], now allow us to prove our main results:

Proof of Theorem B. By [3, Proposition 4.4], we know that hN converges to
ǫ in the weak∗-topology on S(C(S2

q )) and by [2, Theorem 8.3] it holds that
C(S2

q ) is a compact quantum metric space with respect to Lmax
Dq

. We may thus
conclude that limN→∞ dmax

q (hN , ǫ) = 0. Theorem B now follows immediately
from the estimates in Proposition 5.1 and Theorem 3.10 since βN (x) ∈ O(S2

q )

for all N ∈ N and all x ∈ CLip(S2
q )

Proof of Theorem A. This follows immediately from Theorem B and [3,
Lemma 4.15].
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