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Abstract. We prove global equivariant refinements of Miller’s sta-
ble splittings of the infinite orthogonal, unitary and symplectic groups,
and more generally of the spaces O/O(m), U/U(m) and Sp/Sp(m).
As such, our results encode compatible equivariant stable splittings,
for all compact Lie groups, of specific equivariant refinements of these
spaces. In the unitary and symplectic case, we also take the actions of
the Galois groups into account. To properly formulate these Galois-
global statements, we introduce a generalization of global stable ho-
motopy theory in the presence of an extrinsic action of an additional
topological group.
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790 S. Schwede

1 Introduction

The purpose of this article is to establish global equivariant refinements of
Haynes Miller’s stable splittings of the infinite orthogonal, unitary and symplec-
tic groups, and more generally of the spaces O/O(m), U/U(m) and Sp/Sp(m).
In his classic paper [19], Miller showed that a filtration by the size of the ‘gener-
alized +1 eigenspaces’ on the finite-dimensional real, complex and quaternionic
Stiefel manifolds splits after a suitable suspension. Miller then obtains stable
splittings of the infinite dimensional Stiefel manifolds O/O(m), U/U(m) and
Sp/Sp(m) by passing to colimits. For m = 0 and m = 1, these include stable
splittings of the spaces underlying the groups O, SO, U , SU and Sp.
Global equivariant homotopy theory is, informally speaking, equivariant ho-
motopy theory with simultaneous actions of all compact Lie groups. Unstable
global homotopy theory comes up in different incarnations, for example as the
homotopy theory of topological stacks and orbispaces [9], or spaces with an
action of the ‘universal compact Lie group’ [22]. Some of the protagonists
of Miller’s splittings have very natural and interesting equivariant and global
refinements. For instance, the unitary groups of all hermitian inner product
spaces form a global space U that refines the infinite unitary group, and whose
G-equivariant homotopy type is that of the unitary group of a complete com-
plex G-universe. The global space U features in a global refinement of Bott
periodicity, a global equivalence Ω2U ≃ U that encodes equivariant Bott pe-
riodicity for all compact Lie groups at once, see [21, Theorem 2.5.41]. There
are similarly natural global refinements O, SO, SU and Sp of the spaces O,
SO, SU and Sp; more generally, we introduce global refinements O/m, U/m
and Sp/m of the spaces O/O(m), U/U(m) and Sp/Sp(m), see Example 3.10
below.
In [21], the author has developed a framework for stable global homotopy the-
ory; one of the upshots is the compactly generated and tensor-triangulated
global stable homotopy category [21, Section 4.4] that forgets to the homo-
topy categories of genuine G-spectra for all compact Lie groups G; this global
stable homotopy category is the home for the splittings proved in this paper.
The global stable homotopy category exhibits all the ‘genuine’ (as opposed to
‘naive’) features of equivariant stable homotopy theory, it is different from the
stabilization obtained by inverting ordinary suspension, and its objects repre-
sent genuine cohomology theories on orbifolds [11]. The following is the main
result of this paper; we prove it as Theorem 4.8, where we also specify the
splitting morphisms.

Theorem. For every m ≥ 0 there is an isomorphism

Σ∞
+ O/m ∼=

∨

k≥0
Σ∞(GrRk )ν(k,m)⊕ad(k)

in the global stable homotopy category, an isomorphism

Σ∞
+ U/m ∼=

∨

k≥0
Σ∞(GrCk )ν(k,m)⊕ad(k)
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in the G(C)-global stable homotopy category, and an isomorphism

Σ∞
+ Sp/m ∼=

∨

k≥0
Σ∞(GrHk )ν(k,m)⊕ad(k)

in the G(H)-global stable homotopy category.

In the unitary and symplectic statements, G(C) and G(H) denote the Galois
groups of C and H over R. The flavor of global homotopy theory that encodes
an additional extrinsic symmetry group transcends the theory of [21]; we devote
Appendix A to developing the basics of C-global homotopy theory, for any topo-
logical group C, including the triangulated C-global stable homotopy category.
The Galois-global splittings are more highly structured, and imply splittings
in the global stable homotopy category of [21]. On the right hand side of the
splitting, (GrRk )V denotes the global Thom space of an O(k)-representation V ,
a specific global refinement of the Thom space of the vector bundle over BO(k)
associated to V , see Example 3.12. And similarly for (Gr

C

k )V and (Gr
H

k )V ,
where now V is a representation of the unitary group U(k) or the symplectic
group Sp(k), respectively. Moreover, ν(k,m) is an m-fold direct sum of copies
of the tautological representation of O(k), U(k) or Sp(k) on R

k, C
k or H

k,
respectively; Miller [19] refers to these as the canonical representations. And
ad(k) is the adjoint representation of O(k), U(k) or Sp(k), respectively.
The special case m = 0 yields stable global splittings of O, U and Sp, see
Theorems 2.5 and 4.10. And the special case m = 1 yields stable global split-
tings of SO and SU, see Theorem 4.12. The global stable homotopy category
comes with a highly forgetful functor to the non-equivariant stable homotopy
category, see [21, Section 4.5]; applying this forgetful functor to our main result
Theorem 4.8 returns Miller’s non-equivariant splitting [19, Corollary D].
There are natural stabilization morphisms O/m −→ O/(m+ 1) obtained from
the preferred embeddings Rm −→ R

m+1, and similarly in the unitary and sym-
plectic cases; we write O/∞, U/∞ and Sp/∞ for the global spaces obtained in
the colimit over m. Non-equivariantly, these colimit spaces are contractible, so
there is no incentive to study their homotopy types any further. Equivariantly
and globally, however, these limit objects are interesting and highly non-trivial,
see Remark 5.1. In Theorem 5.5 we formulate global stable splittings of the
global spaces O/∞, U/∞ and Sp/∞, ultimately obtained from the previous
splittings by passing to homotopy colimits.

We end this introduction with some comments intended to prevent possible
misconceptions about the nature of our global splitting result. Firstly, the for-
getful functor from the global stable homotopy category to the non-equivariant
stable homotopy category has a left adjoint, an exact functor of triangulated
categories that preserves infinite sums, compare [21, Theorem 4.5.1]. So one
can apply this left adjoint to Miller’s original non-equivariant splittings, yield-
ing global refinements in a formal way. However, the global spaces O/m, U/m
and Sp/m are not in the essential image of the left adjoint to the forgetful
functor, so our splitting is not a formal consequence of Miller’s.
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792 S. Schwede

Secondly, for the purposes of this paper, it is essential that the stable global
homotopy theory of [21], and more generally the C-global stable homotopy
theory of Appendix A, is not just the ‘naive’ stabilization of unstable global
homotopy theory. Indeed, as we explain in Construction 4.4, the global split-
ting morphisms make essential use of certain equivariant splittings of the top
cells of Stiefel manifolds that exist after smashing with non-trivial representa-
tions. Consequently, those equivariant splittings require a genuine (as opposed
to naive) equivariant stabilization, and our subsequent arguments would not
work in the homotopy theory of orbispaces with only the ordinary suspension
inverted.
Thirdly, Miller proves non-equivariant stable splittings of the finite-dimensional
real, complex and quaternionic Stiefel manifolds. He then obtains the stable
splitting of O/O(m), U/U(m) and Sp/Sp(m) by passing to colimits. Crabb
[6] and Ullman [25] have obtained certain equivariant refinements of some of
Miller’s splittings for certain Stiefel manifolds of finite-dimensional represen-
tations of specific compact Lie groups. Our results are in an entirely different
direction. In the global context, the finite-dimensional Stiefel manifolds are
not underlying any interesting global homotopy types (other than left or right
induced). So I cannot think of a meaningful global splitting that generalizes
the stable splittings of the finite-dimensional Stiefel manifolds due to Miller,
Crabb and Ullman. There is a certain tradeoff: the price for obtaining global
results is to work with infinite-dimensional objects.

Organization. We start in Section 2 by explaining a special case of our main
result, the global stable splitting of the orthogonal space O made from the
orthogonal groups. The short Section 2 is logically redundant, and intended
as a gentle introduction to the main ideas in an important special case that is
technically and notationally simpler. In Section 3 we introduce the orthogo-
nal spaces O/m, U/m and Sp/m made from real, complex and quaternionic
Stiefel manifolds, respectively. We review their ‘eigenspace filtrations’ and re-
call Miller’s identification of the open strata of the filtration as total spaces
of specific vector bundles over Grassmannians. Section 3 does not contain any
new mathematics; its purpose is to recast the known facts about the eigenspace
filtration in a form tailored to our purposes, while making all inherent symme-
tries explicit. Section 4 is the heart of the paper, culminating in the statement
and proof of our main result, Theorem 4.8; here we construct the morphisms in
the Galois-equivariant global stable homotopy categories that stably split the
eigenspace filtrations of O/m, U/m and Sp/m. In Section 5 we explain how
to pass to the colimit over m, and obtain splittings of the orthogonal spaces
O/∞, U/∞ and Sp/∞.
This paper contains two appendices. Appendix A is a brief introduction to
C-global homotopy theory, where C is a topological group. This appendix
is needed to give content to the Galois-equivariant refinements of the stable
global splittings of U/m and Sp/m; for these application we are interested
in the special case where C is the Galois group G(C) of C over R (a discrete
group of order 2), or where C is the group G(H) of R-algebra automorphisms
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Global Stable Splittings of Stiefel Manifolds 793

of the quaternions (a compact Lie group isomorphic to SO(3)). However, the
basic theory works just as well over arbitrary topological groups, so we develop
it in that generality. In Appendix A we in particular set up the triangulated
C-global stable homotopy category GHC , and identify global Thom spaces
over global classifying spaces as representing objects for equivariant homotopy
groups, see Theorem A.17. Appendix B provides proofs of the linear algebra
facts used in the main part of the paper. I make no claim to originality for
anything in Appendix B; its purpose is to show that all relevant arguments
from linear algebra over R and C can be adapted to the quaternion context.
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2 Warm-up: the global stable splitting of O

In this short section we sketch the global stable splitting of the orthogonal
space O made from the orthogonal groups. This section is logically redundant,
as the splitting of Theorem 2.5 is a special case of our main result, Theorem 4.8.
I am prepending this section because it already exhibits all the key features
of the later arguments in a simpler form, without the two additional layers of
complexity arising from the extra parameter m in the more general splittings
of O/m, U/m and Sp/m, and the Galois-global embellishment in the complex
and quaternionic setting. All necessary tools for the global splitting of O are
already contained in [21], and there is no need to appeal to the more general
C-global homotopy theory from Appendix A. Said differently, this brief section
is intended as a gentle introduction to the main ideas in an important special
case that is technically and notationally simpler.
We will freely use the language and results from [21]. In particular, we model
unstable global homotopy theory by orthogonal spaces in the sense of [21,
Definition 1.1.1], i.e., continuous functors to spaces from the category L of
finite-dimensional euclidean inner product spaces and R-linear isometric em-
beddings. The category L is also denoted I or I by other authors, and or-
thogonal spaces are also known as I -functors, I -spaces or I-spaces. And we
model stable global homotopy theory by orthogonal spectra with respect to
global equivalences as defined in [21, Definition 4.1.3], i.e., morphisms that in-
duce isomorphisms of equivariant homotopy groups for all compact Lie groups.

Example 2.1. The orthogonal space O made from the orthogonal groups is a
particular global refinement of the infinite orthogonal group O =

⋃

n≥1O(n).
The value of the O(V ) at an inner product space V is simply the orthogonal
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group of V . A linear isometric embedding ψ : V −→W is sent to the continuous
group homomorphism O(ψ) : O(V ) −→ O(W ) defined by

O(ψ)(f)(ψ(v) + w) = ψ(f(v)) + w ,

where v ∈ V and w ∈W −ψ(V ). So informally speaking, O(ψ) is ‘conjugation
by ψ’ and direct sum with the identity on the orthogonal complement of the
image of ψ. For more detailed information about the global homotopy type
of O we refer the reader to the discussion in [21, Example 2.3.6]; suffice it
to say here that the underlying G-homotopy type of O, for a compact Lie
group G, is the orthogonal group of a complete G-universe (i.e., orthogonal
automorphisms of the underlying inner product space with conjugation action
by G).
A filtration of O by orthogonal subspaces FkO is defined by the size of the +1
eigenspaces. At an inner product space V , we set

(FkO)(V ) = {f ∈ O(V ) : dim(ker(f − Id)⊥) ≤ k} ,

where (−)⊥ denotes the orthogonal complement. For fixed k and varying V ,
these spaces are closed under the structure maps; so they define an orthogonal
subspace FkO of O. Altogether we obtain an ascending sequence of orthog-
onal spaces FkO that exhausts O. This filtration happens to be the skeleton
filtration of the orthogonal space O in the sense of [21, Definition 1.2.2], but
we won’t show this fact because it plays no role for our arguments.

Before we attack the global splitting of the above eigenspace filtration of O,
we recall the identification of the k-th subquotient with the global Thom space
of the adjoint representation of the k-th orthogonal group. This identification
is classical, going back at least to Frankel [8], and versions of it appear in [19,
Theorem B] and [6, Proposition 1.7]. We write Grk for the k-th Grassmannian,
the orthogonal space whose value Grk(V ) is the Grassmannian of k-planes in an
inner product space V . The structure maps take images under linear isometric
embeddings. The orthogonal space Grk is a global classifying space, in the
sense of [21, Definition 1.1.27], of the orthogonal group O(k). We write

ad(k) = {X ∈M(k, k) : Xt = −X}

for the adjoint representation of O(k), i.e., the R-vector space of skew-
symmetric real matrices of size k × k, with O(k) acting by conjugation. The
global Thom space over Grk associated to ad(k) is the based orthogonal space

Gr
ad(k)
k = L(Rk,−)+ ∧O(k) S

ad(k) .

The Cayley transform provides an open embedding

c : ad(k) −→ O(k) , c(X) = (X/2− 1)(X/2 + 1)−1 (2.2)

onto the subspace of O(k) of those matrices that do not have +1 as an eigen-
value. The embedding is O(k)-equivariant for the conjugation actions on both
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sides. For varying inner product spaces V , the collapse maps associated to the
open embeddings

L(Rk, V )×O(k) ad(k) −→ (FkO)(V ) , [ψ,X ] 7−→ O(ψ)(c(X)) ,

form a morphism of orthogonal spaces

Ψ : FkO −→ Gr
ad(k)
k (2.3)

that factors over an isomorphism FkO/Fk−1O ∼= Gr
ad(k)
k . This isomorphism

is just a coordinate-free formulation of a special case of Miller’s [19, Theorem B].

On page 39 of [6], Crabb gives a particularly elegant exposition of Miller’s
method to stably split off the top cell of the unitary group U(k) in a fully
equivariant manner; we reproduce the argument, adapted to O(k). We write

sa(k) = {Z ∈M(k, k) : Zt = Z}

for the vector space of symmetric real matrices of size k × k; the notation an-
ticipates the role of sa(k) as the self-adjoint endomorphisms of Rk with respect
to the standard inner product. Then M(k, k) = ad(k) ⊕ sa(k). A basic linear
algebra fact is that the smooth map

O(k)× sa(k) −→ M(k, k) , (A,Z) 7−→ A · exp(−Z) = A ·
∑

k≥0
(−Z)k/k!

is an open embedding with image the subspace GLk of invertible matrices. The
embedding is O(k)-equivariant for the conjugation action on O(k), sa(k) and
M(k, k), so it provides an O(k)-equivariant collapse map

tk : Sad(k)⊕sa(k) = SM(k,k) −→ O(k)+ ∧ Ssa(k) (2.4)

in the opposite direction. The same reasoning as in [6, page 39] shows that the
composite

Sad(k)⊕sa(k) tk−−→ O(k)+ ∧ Ssa(k) c
♭∧Ssa(k)

−−−−−−→ Sad(k)⊕sa(k)

is O(k)-equivariantly based homotopic to the identity, where c
♭ is the collapse

map based on the open embedding (2.2), see also the proof of Theorem 4.7
below.
Everything explained so far is a review or reformulation of ideas and results
from [6, 8, 19]. Now comes the point where we leverage O(k)-equivariant infor-
mation into global information, using the technology developed in [21]. Specif-
ically, we use the global representability theorem for equivariant homotopy
groups from [21, Theorem 4.4.3 (i)], or rather a slight extension from integer-
graded to representation-graded homotopy groups. The collapse map (2.4)
gives rise to an ad(k)-graded O(k)-equivariant homotopy class

〈tk〉 ∈ π
O(k)
ad(k)(Σ

∞
+ FkO) ,
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the class represented by the composite

Sad(k)⊕sa(k)⊕νk tk∧S
νk−−−−−→ O(k)+ ∧ Ssa(k)⊕νk = (FkO)(νk)+ ∧ Ssa(k)⊕νk

(FkO)(i2)∧Id−−−−−−−−−→ (FkO)(sa(k)⊕ νk)+ ∧ Ssa(k)⊕νk = (Σ∞
+ FkO)(sa(k)⊕ νk) .

Here νk is the tautological O(k)-representation on Rk, and i2 : νk −→ sa(k)⊕νk
is the embedding as the second summand. The representation-graded general-
ization of [21, Theorem 4.4.3 (i)] – which is also a special case of Theorem A.17
(i) below – provides a unique morphism

sk : Σ∞Gr
ad(k)
k −→ Σ∞

+ FkO

in the global stable homotopy category characterized by the equation

(sk)∗(eO(k),ad(k)) = 〈tk〉 ,

where eO(k),ad(k) is the tautological homotopy class in π
O(k)
ad(k)(Σ

∞Gr
ad(k)
k ). The

fact that tk is a stable section to c
♭ : O(k) −→ Sad(k) translates into the relation

(Σ∞Ψ)∗〈tk〉 = eO(k),ad(k) ,

where Ψ : FkO −→ Gr
ad(k)
k is the collapse morphism (2.3). Since the morphism

Σ∞Ψ ◦ sk takes the tautological class eO(k),ad(k) to itself, another application
of the representability property shows that sk is a section, in the global stable
homotopy category, to the morphism

Σ∞Ψ : Σ∞
+ FkO −→ Σ∞Gr

ad(k)
k .

So sk splits the distinguished triangle

Σ∞
+ Fk−1O −→ Σ∞

+ FkO
Σ∞Ψ−−−→ Σ∞Gr

ad(k)
k −→ (Σ∞

+ Fk−1O) ∧ S1

in the global stable homotopy category. Induction on k and passage to the
colimit over the eigenspace filtration then yields:

Theorem 2.5. The morphism

∑

sk :
∨

k≥0

Σ∞Gr
ad(k)
k −→ Σ∞

+ O

is an isomorphism in the global stable homotopy category.

This concludes the warm-up. In the next two sections we promote the argu-
ments leading up to Theorem 2.5 to Galois-equivariant global statements about
the complex and quaterionic analogs U and Sp of O, while simultaneously gen-
eralizing to O/m, U/m and Sp/m for m ≥ 0.
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3 The unstable filtration

In this section we introduce and study the orthogonal spaces O/m, U/m and
Sp/m made from real, complex and quaternionic Stiefel manifolds, respec-
tively. These global objects are refinements of the spaces O/O(m), U/U(m)
and Sp/Sp(m), respectively. We review the ‘eigenspace filtrations’ of O/m,
U/m and Sp/m and recall Miller’s identification of the open strata of the fil-
tration as total spaces of specific vector bundles over Grassmannians. This
section does not contain any new mathematics; we only recast known results
in a form that is particularly convenient for our purposes, and that makes all
inherent symmetries explicit.
We start by fixing some notation and terminology. We write H for the skew-field
of quaternions; it is the R-vector space with basis (1, i, j, k) and multiplication
determined by the relations

i2 = j2 = k2 = ijk = −1 .

Quaternion conjugation is the anti-involution λ 7→ λ̄ of H given by

a+ bi+ cj + dk = a− bi− cj − dk
for a, b, c, d ∈ R. The quaternions contain the complex numbers C = R{1, i} as
a subfield, and quaternion conjugation restricts to complex conjugation on C.
The subfield R coincides with the fixed points of conjugation. For a uniform
treatment we will also talk about conjugation on R, where it is just the identity.
In order to treat the real, complex and quaternion Stiefel manifolds simultane-
ously and uniformly, we will write K for any one of the skew-fields R, C or H.
The particular choice of K is always in the background, but it is not always
reflected in the notation.

Notation 3.1 (Galois groups). Throughout our discussion we keep track of
the symmetries of the skew-fields R, C and H: we write

G(K) = AutR(K)

for the ‘Galois group’ of K over R, i.e., the compact Lie group of R-algebra
automorphisms of K. Obviously, G(R) is a trivial group, and G(C) is the
usual Galois group of the field extension C over R. The ‘Galois group’ G(H)
of the quaternions is isomorphic to SO(3). More specifically, the tautological
action of G(H) on H identifies it with the special orthogonal group of the 3-
dimensional subspace R{i, j, k} with respect to the euclidean inner product
〈x, y〉 = Re(x̄y). Also, every R-automorphism of H is inner, i.e., given by
conjugation by an element of Sp(1) = {x ∈ H : x̄ · x = 1}; since the center of
Sp(1) consists of ±1, the map

inner : Sp(1)/{±1} ∼=−−→ G(H)

that sends a unit quaternion to the associated inner automorphism is an iso-
morphism.
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Definition 3.2 (Inner product spaces). We let K be one of the skew-fields R,
C or H. A K-inner product space is a finite-dimensional right K-module W
equipped with an R-bilinear K-valued inner product

[−,−] : W ×W −→ K

that is sesquilinear and hermitian in the sense of the relations

[x · λ, y · µ] = λ̄ · [x, y] · µ and [y, x] = [x, y]

for all x, y ∈W and λ, µ ∈ K, and that is positive-definite, i.e., the real number
[x, x] is positive unless x = 0. Then length of a vector x ∈ W is the real number
|x| =

√

[x, x].

When K is R or C, inner product spaces are usually called euclidean vector

spaces or hermitian vector spaces, respectively. I do not know of standard
terminology for H-inner product spaces.

� Since R and C are commutative, one can write the factors λ̄, [x, y] and µ
in the sesquilinearity relation in any other order, and the more common

definitions display the scalars on the same side of the inner product. Multipli-
cation in the quaternions is not commutative, so for K = H, one has to beware
of the order of the factors λ̄, [x, y] and µ.

We will write Kk for the standard k-dimensional K-vector space endowed with
the inner product

[x, y] = x̄1 · y1 + · · ·+ x̄k · yk .
Given a K-subspace V of a K-inner product space W , we write

W − V = {w ∈W : [v, w] = 0 for all v ∈ V }

for the orthogonal complement, another K-subspace such thatW = V⊕(W−V ).
If the ambient space W is clear from the context, we might also use the notation
V ⊥ for W − V .
Given two K-inner product spaces V and W , we write LK(V,W ) for the Stiefel
manifold of K-linear isometric embeddings from V to W , i.e., K-linear maps
that respect the inner products, and are thus necessarily injective. For K = R

we sometimes omit the superscript, i.e., L(V,W ) = LR(V,W ).

Construction 3.3. We recall the filtration of LK(W,W ⊕ K
m) whose non-

equivariant stable splitability is the subject of Miller’s paper [19]. For k ≥ 0
we set

Fk(W ;m) = {f ∈ LK(W,W ⊕K
m) : dimK(ker(f − i1)⊥) ≤ k} , (3.4)

where i1 : W −→W ⊕Km is the embedding of the first summand. For a linear
isometric embedding f : W −→W ⊕K

m, the kernel of f− i1 coincides with the
kernel of the endomorphism f1 − 1 : W −→ W , i.e., the +1 eigenspace of the
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Global Stable Splittings of Stiefel Manifolds 799

first component of f . We will therefore refer to this filtration as the eigenspace

filtration.
For a K-linear isometric embedding ψ : V −→W we define ‘conjugation by ψ’

ψ(−) : LK(V, V ⊕K
m) −→ LK(W,W ⊕K

m) (3.5)

by
(ψf)(ψ(v) + w) = (ψ ⊕K

m)(f(v)) + (w, 0) ,

where v ∈ V and w ∈ W − ψ(V ). This continuous map is a closed embedding
that preserves the eigenspace filtration, i.e., it sends Fk(V ;m) into Fk(W ;m).

The subquotients of the eigenspace filtration can be described explicitly as
Thom spaces over Grassmannians, see Theorem 3.13 below. The key ideas
originate from Frankel’s paper [8], and the non-equivariant version of the for-
mulation we need is due to Miller [19, Theorem B]. Given a finite-dimensional
K-inner product space W , Miller [19, Theorem A] uses Morse theory to identify
the stratum

Fk(W ;m) \ Fk−1(W ;m)

with the total space of the vector bundle over the Grassmannian GrKk (W )
associated to the representation HomK(Kk,Km)⊕ad(k) of O(k), U(k) or Sp(k).
We now recall a different identification, based on explicit formulas due to Crabb
[6], see (3.9) below.

Notation 3.6. We write I(k) = LK(Kk,Kk) for the isometry group of the
standard k-dimensional K-inner product space. And we write

ad(k) = {X ∈ EndK(Kk) : X∗ = −X}

for the R-vector spaces of skew-adjoint endomorphisms of Kk, whereX∗ denotes
the adjoint endomorphism, compare Remark B.1. If we express linear endomor-
phism of Kk as matrices, the group I(k) becomes the orthogonal group O(k),
the unitary group U(k), or the symplectic group Sp(k), respectively, and the
adjoint operator corresponds to the conjugate-transpose matrix. The isometry
group I(k) acts on ad(k) by conjugation. The exponential map (B.3) restricts
to a map

exp : ad(k) −→ I(k)

from the skew-adjoint endomorphisms to the isometry group of Kk. This map
is a local diffeomorphism around the origin, and it exhibits ad(k) as the adjoint
representation of the compact Lie group I(k), whence the notation.

Construction 3.7. Crabb states in [6, Lemma 1.13] that for all k,m ≥ 0, the
map

c : HomK(Kk,Km)⊕ ad(k) −→ LK(Kk,Kk+m) , (3.8)

c(Y,X)(w) = (g(w), h(w))
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with

g = (X/2 + Y ∗Y/4− 1)(X/2 + Y ∗Y/4 + 1)−1 : K
k −→ K

k

h = Y (X/2 + Y ∗Y/4 + 1)−1 : K
k −→ K

m

is an open embedding onto the complement of Fk−1(Kk;m) in LK(Kk,Kk+m).
Crabb works in the complex setting and refrains from giving a proof, so we
provide an argument in Proposition B.8. The open embedding c is clearly
equivariant for the action of the isometry group I(k), acting tautologically on
all instances of Kk and trivially on all instances of Km. More precisely, the
relation

c(Y A∗, AXA∗) = (A⊕K
m) · c(Y,X) · A∗

holds for all A ∈ I(k). For m = 0, the map specializes to the Cayley transform
c : ad(k) −→ I(k), see also (2.2) above.
A generalization of the open embedding (3.8) is the map

LK(Kk,W )×I(k) (HomK(Kk,Km)⊕ ad(k)) −→ Fk(W ;m) , (3.9)

[ψ, Y,X ] 7−→ ψ(c(Y,X)) .

This map is an open embedding onto the complement of Fk−1(W ;m), i.e., we
recover Miller’s [19, Theorem A]. For the convenience of the reader, we also
recall a proof of this fact in Proposition B.11.
Now and in the following, we shall abbreviate

ν(k,m) = HomK(Kk,Km) .

A reader so inclined may identify this with the space of K-valued matrices of
size k ×m, or with the m-fold sum of the tautological representation of I(k)
on Kk, via the isomorphism

HomK(Kk,Km) ∼= K
k ⊕ · · · ⊕K

k , Y 7−→ (Y ∗(e1), . . . Y ∗(em))

that evaluates the adjoint at the coordinate basis. The collapse map associated
to the embedding (3.9) then becomes a continuous map

Ψ(W ) : Fk(W ;m) −→ LK(Kk,W )+ ∧I(k) Sν(k,m)⊕ad(k) .

In the rest of this section we organize the Stiefel manifolds, their eigenspace
filtrations and the identifications of the strata and subquotients into unstable
global information. We continue to use the orthogonal space model of [21,
Section 1] to represent unstable global homotopy types. Since we want to keep
track of the actions of the Galois group G(C) and G(H), we actually need an
extension to the context of ‘C-global homotopy theory’, i.e., a global homotopy
theory that incorporates an additional action of a topological group C. We
develop the necessary theory in Appendix A, modeled by orthogonal C-spaces,
i.e., continuous functors from the linear isometries category L to the category
of C-spaces.
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Example 3.10 (The orthogonal spaces O/m, U/m and Sp/m). We let K be
one of the skew fields R, C or H. For m ≥ 0, we define an orthogonal G(K)-
space L/m as follows. The value of L/m at a euclidean inner product space V
is

(L/m)(V ) = LK(VK, VK ⊕K
m) ,

the Stiefel manifold of K-linear isometric embeddings of VK into VK⊕Km. Here
VK = V ⊗R K is the scalar extension from R to K, endowed with the K-inner
product

[x⊗ λ, y ⊗ µ] = λ̄ · 〈x, y〉 · µ
for x, y ∈ V and λ, µ ∈ K. The space (L/m)(V ) is homeomorphic to the
homogeneous space O(k + m)/O(m), U(k + m)/U(m) or Sp(k + m)/Sp(m),
where k = dimR(V ). An R-linear isometric embedding ϕ : V −→ W is sent to
the continuous map

(L/m)(ϕ) = ϕK(−) : LK(VK, VK ⊕K
m) −→ LK(WK,WK ⊕K

m)

given by conjugation by ϕK : VK −→WK as defined in (3.5). The Galois group
G(K) = AutR(K) acts on (L/m)(V ) as a similar ‘conjugation’: for τ ∈ G(K)
we define

τ (−) : LK(VK, VK ⊕K
m) −→ LK(VK, VK ⊕K

m) by
τf = ((V ⊗ τ)⊕ τm) ◦ f ◦ (V ⊗ τ)−1 .

As τ varies, these maps define a continuous G(K)-action on (L/m)(V ). As V
varies, these actions assemble into a continuous G(K)-action on the orthogonal
space L/m. So we can – and will – view L/m as an orthogonal G(K)-space.
Whenever the skew-field K is specific, we replace the generic notation L/m
by the specific notation O/m (for K = R), U/m (for K = C) or Sp/m (for
K = H).
The eigenspace filtration (3.4) provides an exhausting filtration

∗ = F0(L/m) ⊆ F1(L/m) ⊆ F2(L/m) ⊆ . . . ⊆ Fk(L/m) ⊆ . . .

of L/m by G(K)-invariant orthogonal subspaces with terms

Fk(L/m)(V ) = Fk(VK;m)

= {f ∈ LK(VK, VK ⊕K
m) : dimK(ker(f − i1)⊥) ≤ k} .

Example 3.11 (The orthogonal spaces O, SO, U, SU and Sp). The special
cases m = 0 and m = 1 of Example 3.10 provide particularly interesting global
refinements of the infinite orthogonal, special orthogonal, unitary, special uni-
tary and symplectic groups. Indeed, (L/0)(V ) = LK(VK, VK) is the isometry
group of VK; in this special case, L/0 also supports an ultra-commutative mul-
tiplication in the sense of [21, Chapter 2] by orthogonal direct sum of isometric
embeddings. In the real case, L/0 is the ultra-commutative monoid O of or-
thogonal groups discussed in detail in [21, Example 2.3.6]. In the complex
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case, we obtain the ultra-commutative monoid U of unitary groups discussed
in [21, Example 2.3.7], with additional action by the Galois group of C over R.
For K = H, the construction becomes the ultra-commutative monoid Sp made
from symplectic groups, compare [21, Example 2.3.9], with an additional action
by the compact Lie group G(H).
In the real and complex cases, the special case m = 1 also deserves explicit
mentioning. Indeed, in the real case, L/1 is globally equivalent to the orthogo-
nal space SO of special orthogonal groups, the ultra-commutative submonoid
of O consisting of the special orthogonal groups, compare Proposition 4.11.
Similarly, in the complex case, L/1 is G(C)-globally equivalent to the orthog-
onal space SU of special unitary groups, see again Proposition 4.11. We refer
the reader to the extensive discussion in [21, Chapter 2] for further information
about equivariant and global homotopical properties of O, SO, U, SU and Sp.

The main result of this paper, Theorem 4.8 below, says that the filtration of
L/m by the orthogonal G(K)-subspaces Fk(L/m) splits once we pass to the
G(K)-global stable homotopy category. As we record now, the individual iden-
tifications of the subquotients of the eigenspace filtration are natural enough
to assemble into isomorphisms of G(K)-spaces.

Example 3.12 (Global Thom spaces). We organize the various Grassmannians
and the relevant Thom spaces over them into orthogonal G(K)-spaces. We
write GrKk for the orthogonal space whose value at a euclidean inner product
space V is the Grassmannian of k-dimensional K-subspaces in VK = V ⊗R

K. The structure map GrKk (ϕ) associated to an R-linear isometric embedding
ϕ : V −→ W takes the image under the scalar extension ϕK : VK −→ WK.
A Galois automorphism τ ∈ G(K) acts on Gr

K

k (V ) by taking images under
V ⊗ τ : VK −→ VK; this operation does take K-subspaces to K-subspaces,
despite the fact that V ⊗ τ need not be K-linear. Altogether, it makes GrKk
into an orthogonal G(K)-space.
The Galois group acts continuously on the isometry group I(k) = LK(Kk,Kk)
by conjugation, i.e., by

τf = τk ◦ f ◦ (τk)−1

for τ ∈ G(K) and f ∈ I(k). The extended isometry group is

Ĩ(k) = I(k) ⋊G(K) ,

the semidirect product for this action. By Theorem A.33, Gr
K

k is a global clas-
sifying G(K)-space for the augmentation ǫk : Ĩ(k) −→ G(K) of the extended
isometry group. In particular, the orthogonal space of Gr

R

k is a global classify-
ing space for the orthogonal group O(k), and the underlying orthogonal spaces
of GrCk and GrHk are global classifying spaces for the unitary group U(k) and
symplectic group Sp(k), respectively.
Now we let U be a real representation of the extended isometry group Ĩ(k).
The Stiefel manifold LK(Kk, VK) comes with a continuous Ĩ(k)-action by

(A,τ)ϕ = (V ⊗ τ) ◦ ϕ ◦ (A ◦ τk)−1 .
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The normal subgroup I(k) of Ĩ(k) acts freely, and the orthogonal orbit space
LK(Kk, VK)/I(k) is isomorphic to the Grassmannian Gr

K

k (V ), by sending a
linear isometric embedding to its image. We endow the space LK(Kk, VK)×I(k)
U with a G(K)-action by

τ [ϕ, u] = [(1,τ)ϕ, (1, τ)u] ;

it is the total space of a G(K)-vector bundle over Gr
K

k (V ), with Thom G(K)-
space LK(Kk, VK)+ ∧I(k) SU . We write

(GrKk )U = LK(Kk, (−)K)+ ∧I(k) SU ,

and refer to this as the G(K)-global Thom space associated to U .

If we specialize the collapse map associated to the open embedding (3.9) to
inner product spaces of the form W = VK, for euclidean inner product spaces V ,
it becomes a continuous map

Ψ(VK) : Fk(L/m)(V ) = Fk(VK;m) −→
LK(Kk, VK)+ ∧I(k) Sν(k,m)⊕ad(k) = (Gr

K

k )ν(k,m)⊕ad(k)(V ) .

We have thus proved the following theorem, which summarizes work of Miller
[19, Theorem B] and Crabb [6, Lemma 1.14] in a coordinate-free and Galois-
enhanced fashion.

Theorem 3.13. For varying euclidean inner product spaces V , the maps Ψ(VK)
constitute a morphism of orthogonal G(K)-spaces

Ψ : Fk(L/m) −→ (GrKk )ν(k,m)⊕ad(k)

that factors through an isomorphism

Fk(L/m)/Fk−1(L/m) ∼= (Gr
K

k )ν(k,m)⊕ad(k) .

We will also need to know that the pointset level eigenspace filtration of the
orthogonal space L/m is homotopically meaningful. This is guaranteed by the
following proposition, showing that the pairs of successive filtration stages have
the homotopy extension property internal to orthogonal G(K)-spaces.

Proposition 3.14. For all k,m ≥ 0, the inclusion Fk−1(L/m) −→ Fk(L/m)
has the homotopy extension property in the category of orthogonal G(K)-spaces.

Proof. The key ingredient is the pushout square of Ĩ(k)-spaces

S(ν(k,m)⊕ ad(k)) //

��

D(ν(k,m) ⊕ ad(k))

��
Fk−1(Kk;m) // LK(Kk,Kk+m)
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proved by Miller in [19, Lemma 2.4], using a Morse theoretic construction
that goes back to Frankel [8]. The upper row is the inclusion of the unit
sphere into the unit disc of the representation ν(k,m)⊕ ad(k) of the extended
isometry group Ĩ(k), with respect to some Ĩ(k)-invariant inner product. There
is one caveat, namely that Miller states the equivariance only for the group
I(k) (for which he writes Gk), whereas we need equivariance for the larger
group Ĩ(k). But this is easy to fix: as explained in [19, §4], the vertical maps
in the pushout square are derived from an explicit Morse-Bott function and
an explicit Riemannian metric on LK(Kk,Kk+m) specified on page 417 of [19];
both the Morse-Bott function and the metric are invariant even for the extended
isometry group Ĩ(k). Hence also the gradient vector field, the associated flow
and the vertical attaching map in the pushout square derived from this data
are equivariant for the larger group Ĩ(k).
The inclusion of unit sphere into unit disc of any orthogonal representation of a
compact Lie group has the equivariant homotopy extension property. Since the
homotopy extension property is also stable under cobase change, we conclude
that the inclusion Fk−1(Kk;m) −→ LK(Kk,Kk+m) has the Ĩ(k)-equivariant
homotopy extension property.
For every K-inner product space W , the map

LK(Kk,W )×I(k) LK(Kk,Kk+m) −→ Fk(W ;m) , [ψ, f ] 7−→ ψf

is a relative homeomorphism from the pair

(

LK(Kk,W )×I(k) LK(Kk,Kk+m), LK(Kk,W )×I(k) Fk−1(Kk;m)
)

to the pair (Fk(W ;m),Fk−1(W ;m)), compare Proposition B.11. Taking W =
VK and letting V vary over all euclidean inner product spaces thus yields a
pushout square of orthogonal G(K)-spaces

LK(Kk, (−)K)×I(k) Fk−1(Kk;m) //

��

LK(Kk, (−)K)×I(k) LK(Kk,Kk+m)

��
Fk−1(L/m) // Fk(L/m)

Since the inclusion Fk−1(Kk;m) −→ LK(Kk,Kk+m) has the Ĩ(k)-equivariant
homotopy extension property, the upper horizontal morphism has the homo-
topy extension property internal to orthogonal G(K)-spaces. The homotopy
extension property is stable under cobase change, so this proves the claim.

4 The stable splitting

In this section we construct the morphisms in the G(K)-global stable homotopy
category that stably split the eigenspace filtration of L/m, and we prove our
main result Theorem 4.8, the G(K)-global splitting of the unreduced suspension
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spectrum of L/m. The construction is based on a particularly natural way to
split off the top cell of the Stiefel manifold LK(Kk,Kk+m) that was exhibited
by Crabb [6, Theorem 1.16]. Compared to the statement in Miller’s original
paper on the subject [19], the main refinement is the additional equivariance
with respect to the extended isometry groups; this extra equivariance is crucial
for our arguments, as it allows us to leverage the information to the G(K)-global
context.
Crabb actually states the analogous splitting in the unitary situation, i.e., for
the complex Stiefel manifold LC(Ck,Ck+m) (which he denotes U(Ck;Cm)). For
the convenience of the reader, we recall the construction in a form that works
simultaneously over R, C and H. The upshot is the map tk,m in (4.3) below;
needless to say that I claim no originality for the construction of this map.

Construction 4.1. We write

sa(k) = {Z ∈ EndK(Kk) : Z∗ = Z}

for the R-vector spaces of self-adjoint endomorphisms of Kk. A basic linear
algebra fact is that for all k,m ≥ 0, the smooth map

LK(Kk,Kk+m)× sa(k) −→ HomK(Kk,Kk+m) , (4.2)

(A,Z) 7−→ A ◦ exp(−Z)

is an open embedding with image the subspace of K-linear monomorphisms.
For the convenience of the reader, we give a proof in Proposition B.7. The
extended isometry group Ĩ(k) acts on HomK(Kk,Kk+m) by conjugation, i.e.,
by

(A,τ)X = ((A ◦ τk)⊕ τm) ·X · (A ◦ τk)−1

for (A, τ) ∈ Ĩ(k) = I(k) ⋊ G(K) and X : Kk −→ Kk+m. This conjugation
action leaves the subspace LK(Kk,Kk+m) invariant; and in the case m = 0,
the action leaves the subspace sa(k) invariant. The open embedding (4.2) is
Ĩ(k)-equivariant, so it provides an Ĩ(k)-equivariant collapse map

SHomK(K
k,Kk+m) −→ LK(Kk,Kk+m)+ ∧ Ssa(k) .

We recall that ν(k,m) = HomK(Kk,Km); we use the equivariant direct sum
decomposition

ν(k,m)⊕ ad(k)⊕ sa(k)
∼=−−→ HomK(Kk,Kk ⊕K

m), (f,X, Y ) 7−→ (X + Y, f),

to interpret the previous collapse map as a continuous Ĩ(k)-equivariant map

tk,m : Sν(k,m)⊕ad(k) ∧ Ssa(k) −→ LK(Kk,Kk+m)+ ∧ Ssa(k) . (4.3)

As is implicit in [6], and as we recall in the proof of Theorem 4.7, the map
tk,m represents a section, in the Ĩ(k)-equivariant stable homotopy category,
of the collapse map LK(Kk,Kk+m) −→ Sν(k,m)⊕ad(k) associated to the open
embedding (3.8).

Documenta Mathematica 27 (2022) 789–845



806 S. Schwede

Now comes the point where we leverage Ĩ(k)-equivariant information into
G(K)-global information. We model G(K)-global stable homotopy theory by
orthogonal G(K)-spectra, i.e., orthogonal spectra equipped with a continuous
action of G(K). We refer to Appendix A for a detailed discussion of this model,
the notion of G(K)-global equivalence (see Definition A.6), and the G(K)-global
stable homotopy category (A.10). The next construction turns the collapse
map tk,m into a morphism sk,m : Σ∞(Gr

K

k )ν(k,m)⊕ad(k) −→ Σ∞
+ Fk(L/m) in

the G(K)-global stable homotopy category.

Construction 4.4. The unreduced suspension spectrum of the orthogonal
G(K)-space Fk(L/m) is an orthogonal G(K)-spectrum Σ∞

+ Fk(L/m). Restrict-

ing actions along the augmentation ǫk : Ĩ(k) −→ G(K) of the extended isome-
try group provides an orthogonal Ĩ(k)-spectrum ǫ∗k(Σ∞

+ Fk(L/m)). We will now
promote the collapse map (4.3) to an equivariant homotopy class

〈tk,m〉 ∈ π
Ĩ(k)
ν(k,m)⊕ad(k)

(

ǫ∗k(Σ∞
+ Fk(L/m))

)

,

graded by the Ĩ(k)-representation ν(k,m) ⊕ ad(k); see (A.13) for equivariant
homotopy groups graded by a representation.
We write νk for the tautological orthogonal representation of Ĩ(k) on K

k, i.e.,
the underlying R-vector space uKk endowed with the euclidean inner product
〈x, y〉 = Re[x, y], the real part of the K-inner product. The K-linear isometric
embedding

ζ : K
k −→ (uKk)⊗R K = (νk)K

is defined in (A.25). We write i2 : (νk)K −→ (sa(k) ⊕ νk)K for the embedding
as the second summand. Conjugation by i2ζ as defined in (3.5) is then a
continuous Ĩ(k)-equivariant map

i2ζ(−) : LK(Kk,Kk+m) = Fk(Kk;m) −→
Fk((sa(k)⊕ νk)K;m) = Fk(L/m)(sa(k)⊕ νk) .

We define 〈tk,m〉 as the homotopy class of the following composite

Sν(k,m)⊕ad(k)⊕sa(k)⊕νk
tk,m∧Sνk

−−−−−−→ LK(Kk,Kk+m)+ ∧ Ssa(k)⊕νk

i2ζ(−)+∧Ssa(k)⊕νk

−−−−−−−−−−−−→ Fk(L/m)(sa(k)⊕ νk)+ ∧ Ssa(k)⊕νk

= (Σ∞Fk(L/m))(sa(k)⊕ νk) .

The tautological homotopy class ek,ν(k,m)⊕ad(k) is defined in (A.34). The rep-
resentability result in Corollary A.35 provides a unique morphism

sk,m : Σ∞(GrKk )ν(k,m)⊕ad(k) −→ Σ∞
+ Fk(L/m) (4.5)

in the G(K)-global stable homotopy category characterized by the equation

(sk,m)∗(ek,ν(k,m)⊕ad(k)) = 〈tk,m〉 . (4.6)
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The collapse morphism of orthogonal G(K)-spaces

Ψ : Fk(L/m) −→ (Gr
K

k )ν(k,m)⊕ad(k)

was defined in Theorem 3.13.

Theorem 4.7. For all k,m ≥ 0, the relation

(Σ∞Ψ)∗〈tk,m〉 = ek,ν(k,m)⊕ad(k)

holds in the group π
Ĩ(k)
ν(k,m)⊕ad(k)(ǫ

∗
k(Σ∞(GrKk )ν(k,m)⊕ad(k))). The composite

Σ∞(GrKk )ν(k,m)⊕ad(k) sk,m−−−→ Σ∞
+ Fk(L/m)

Σ∞Ψ−−−→ Σ∞(GrKk )ν(k,m)⊕ad(k)

is the identity in the G(K)-global stable homotopy category.

Proof. The theorem hinges on the fact that the collapse map tk,m defined in
(4.3) indeed splits off the top cell of the Stiefel manifold LK(Kk,Kk+m) in
the genuine Ĩ(k)-equivariant stable homotopy category. More precisely, the
composite

Sν(k,m)⊕ad(k) ∧ Ssa(k) tk,m−−−−→ LK(Kk,Kk+m)+ ∧ Ssa(k)

c
♭∧Ssa(k)

−−−−−−→ Sν(k,m)⊕ad(k) ∧ Ssa(k)

is Ĩ(k)-equivariantly based homotopic to the identity, where c
♭ :

LK(Kk,Kk+m) −→ Sν(k,m)⊕ad(k) is the collapse map based on the open
embedding (3.8). The argument given by Crabb [6] in the unitary situation
works just as well over R and over H, as follows. Collapsing along open
embeddings is transitive, so the composite (c♭ ∧ Ssa(k)) ◦ tk,m is the collapse
map of the composite open embedding:

F : HomK(Kk,Kk+m) = ν(k,m)× ad(k)× sa(k) −→ HomK(Kk,Kk+m)

F (Y,X,Z) = c(Y,X) · exp(−Z)

Inspection of the explicit formulas shows that the open embedding F is smooth
and its differential at the origin is the identity. So the associated collapse
map is Ĩ(k)-equivariantly based homotopic to the identity. This is the desired

equivariant homotopy from (c♭∧Ssa(k))◦ tk,m to the identity of SHom(Kk,Kk+m).

Now we can determine (Σ∞Ψ)∗〈tk,m〉. Expanding definitions shows that
(Σ∞Ψ)∗〈tk,m〉 is represented by the following composite, smashed with the
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identity of Sνk :

Sν(k,m)⊕ad(k)⊕sa(k) tk,m∧Ssa(k)

−−−−−−−−→ LK(Kk,Kk+m)+ ∧ Ssa(k)

c♭∧Ssa(k)

−−−−−−→ Sν(k,m)⊕ad(k) ∧ Ssa(k)

=
(

LK(Kk,Kk)+ ∧I(k) Sν(k,m)⊕ad(k)
)

∧ Ssa(k)

ζ∗∧S
sa(k)

−−−−−−→
(

LK(Kk, (νk)K)+ ∧I(k) Sν(k,m)⊕ad(k)
)

∧ Ssa(k)

= (GrKk )ν(k,m)⊕ad(k)(νk) ∧ Ssa(k)

(i2)∗∧S
sa(k)

−−−−−−−−→ (GrKk )ν(k,m)⊕ad(k)(sa(k)⊕ νk) ∧ Ssa(k) .

Since the composite of the first two maps is equivariantly homotopic to the
identity, we conclude that (Σ∞Ψ)∗〈tk,m〉 = ek,ν(k,m)⊕ad(k). Together with the
defining property (4.6) of sk,m, this shows that

((Σ∞Ψ) ◦ sk,m)∗(ek,ν(k,m)⊕ad(k)) = (Σ∞Ψ)∗〈tk,m〉 = ek,ν(k,m)⊕ad(k) .

The representability property of Corollary A.35 thus shows that the composite
(Σ∞Ψ) ◦ sk,m is the identity.

We write

sKk,m : Σ∞(Gr
K

k )ν(k,m)⊕ad(k) −→ Σ∞
+ L/m

for the composite of the morphism sk,m of (4.5) and the morphism of suspension
spectra induced by the inclusion Fk(L/m) −→ L/m. The following theorem is
the main result of this paper.

Theorem 4.8. Let K be one of the skew-fields R, C or H. For every m ≥ 0,
the morphism

∑

sKk,m :
∨

k≥0

Σ∞(GrKk )ν(k,m)⊕ad(k) −→ Σ∞
+ L/m

is an isomorphism in the G(K)-global stable homotopy category.

Proof. In a first step we prove the analogous splitting result for Fn(L/m) by
induction on n ≥ 0, namely that the morphism

∑

sk,m :
∨

0≤k≤n

Σ∞Gr
ν(k,m)⊕ad(k)
k −→ Σ∞

+ Fn(L/m) (4.9)

is an isomorphism in the G(K)-global stable homotopy category. There
is nothing to show for n = 0, so we assume n ≥ 1. The inclusion
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Fn−1(L/m) −→ Fn(L/m) has the homotopy extension property in the cat-
egory of orthogonal G(K)-spaces by Proposition 3.14. So the induced mor-
phism Σ∞

+ Fn−1(L/m) −→ Σ∞
+ Fn(L/m) is an h-cofibration of orthogonalG(K)-

spectra. Hence there is a distinguished triangle

Σ∞
+ Fn−1(L/m) −→Σ∞

+ Fn(L/m)

Σ∞Ψ−−−→Σ∞(Gr
K

n)ν(n,m)⊕ad(n) −→ (Σ∞
+ Fn−1(L/m)) ∧ S1

in the G(K)-global stable homotopy category; we have used Theorem 3.13 to
substitute Fn(L/m)/Fn−1(L/m) by (GrKn)ν(n,m)⊕ad(n). Theorem 4.7 splits the
distinguished triangle, so the morphism

incl + sn,m : Σ∞
+ Fn−1(L/m) ∨ Σ∞(GrKn)ν(n,m)⊕ad(n) −→ Σ∞

+ Fn(L/m)

is an isomorphism in GHG(K). Induction on n then proves that the morphism
(4.9) is an isomorphism in the G(K)-global stable homotopy category.
Passage to the colimit over n then yields the claim, as follows. For every con-
tinuous homomorphism α : G −→ G(K), the G-equivariant homotopy groups
of source and target of the morphism in question are the colimit over n of
the truncated versions (4.9). So the morphism of the theorem induces isomor-
phisms of G-equivariant homotopy groups for all such homomorphisms α, and
is thus an isomorphism in the G(K)-global stable homotopy category.

We take the time to make some particularly interesting special cases of The-
orem 4.8 explicit. For m = 0, the orthogonal space L/0 specializes to the
ultra-commutative monoids O, U and Sp of orthogonal, unitary and sym-
plectic groups that we discuss in detail in Examples 2.3.6, 2.3.7 and 2.3.9 of
[21]. In the real case, we already presented the global stable splitting of O in
Theorem 2.5. In the complex and quaternionic case, Theorem 4.8 specializes
to:

Theorem 4.10. The morphism

∑

sCk,0 :
∨

k≥0

Σ∞(Gr
C

k )ad(k) −→ Σ∞
+ U

is an isomorphism in the G(C)-global stable homotopy category. The morphism

∑

sHk,0 :
∨

k≥0

Σ∞(Gr
H

k )ad(k) −→ Σ∞
+ Sp

is an isomorphism in the G(H)-global stable homotopy category.

In the real and complex situation, the special case m = 1 of Theorem 4.8 is also
worth making explicit because O/1 and U/1 can be replaced by other global
spaces made from special orthogonal and special unitary groups. The closed
embeddings

i1 ◦ − : O(V ) −→ L(V, V ⊕ R) and i1 ◦ − : U(VC) −→ LC(VC, VC ⊕ C)
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form morphisms of orthogonal spaces and orthogonal G(C)-spaces

ι : O −→ O/1 and ι : U −→ U/1 ,

respectively. We denote by SO and SU the orthogonal subspaces of O and U

with respective values

SO(V ) = SO(V ) and SU = SU(VC) ,

the isometries of determinant 1.

Proposition 4.11. The morphisms

ι|SO : SO −→ O/1 and ι|SU : SU −→ U/1

are a global equivalence of orthogonal spaces, and a G(C)-global equivalence of

orthogonal G(C)-spaces, respectively.

Proof. By [21, Theorem 1.1.10], the closed embeddings

SO(V ) −→ SO(V ⊕ R) , A 7−→ A⊕ R

form a global equivalence SO −→ sh(SO), where sh denotes the additive shift
of an orthogonal space in the sense of [21, Example 1.1.11]. The restriction
homeomorphisms

− ◦ i1 : SO(V ⊕ R)
∼=−−→ L(V, V ⊕ R)

form an isomorphism of orthogonal spaces sh(SO) ∼= O/1. The restriction of ι :
O −→ O/1 to SO coincides with the composite of the former global equivalence
and the latter isomorphism; so ι|SO is a global equivalence, too. The argument
in the complex case is analogous, with one caveat: one must convince oneself
that [21, Theorem 1.1.10] generalizes to the G(C)-global context, with the same
proof.

Because the morphism ι|SO : SO −→ O/1 is a global equivalence of orthogonal
spaces, the morphism

Σ∞
+ ι|SO : Σ∞

+ SO −→ Σ∞
+ O/1

is a global equivalence of orthogonal spectra, see [21, Corollary 4.1.9]. Simi-
larly, Proposition A.12 shows that the morphism of orthogonal G(C)-spectra
Σ∞

+ ι|SU : Σ∞
+ SU −→ Σ∞

+ U/1 is a G(C)-global equivalence. So the special case
m = 1 of Theorem 4.8 yields the following result.

Theorem 4.12. The morphism
∑

(Σ∞
+ ι|SO)−1 ◦ sRk,1 :

∨

k≥0

Σ∞(Gr
R

k )νk⊕ad(k) −→ Σ∞
+ SO

is an isomorphism in the global stable homotopy category, and the morphism
∑

(Σ∞
+ ι|SU)−1 ◦ sCk,1 :

∨

k≥0

Σ∞(Gr
C

k )νk⊕ad(k) −→ Σ∞
+ SU

is an isomorphism in the G(C)-global stable homotopy category.
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5 The limit case

The stable global splittings of O/m, U/m and Sp/m are sufficiently compatible
so that we can pass to the colimit in m, and also obtain stable global splittings
of the E∞-global spaces O/∞, U/∞ and Sp/∞. Curiously, this is a purely
equivariant phenomenon: the underlying non-equivariant spaces of O/∞, U/∞
and Sp/∞ are contractible, so from a non-equivariant perspective, this colimit
splitting has no content. Equivariantly and globally, however, O/∞, U/∞ and
Sp/∞ are non-trivial and very interesting homotopy types.

Remark 5.1 (The E∞-global space O/∞). To advertise the global spaces
O/∞, U/∞ and Sp/∞, we recall some background on how these measure the
difference between specific global refinements of the spaces BO, BU and BSp.
Since these remarks are mostly motivational, we don’t give complete details
and we restrict to the real case O/∞; analogous remarks apply to U/∞ and
Sp/∞, with additional Galois equivariance.
Postcomposition with the embedding i : Rm −→ Rm+1 by i(x) = (x, 0) is a
closed embedding

(V ⊕ i) ◦ − : L(V, V ⊕ R
m) −→ L(V, V ⊕ R

m+1) .

In the colimit over m we obtain the infinite Stiefel manifold L(V, V ⊕R∞); the
eigenspace filtration and the conjugation maps (3.5) make just as much sense
in the limiting case. We can thus define an orthogonal space O/∞ with values

(O/∞)(V ) = L(V, V ⊕ R
∞) ,

and an exhausting eigenspace filtration by orthogonal subspaces Fk(O/∞).
Since the orthogonal space O/∞ is objectwise contractible, its underlying non-
equivariant homotopy type is boring. However, O/∞ represents a very inter-
esting and non-trivial global homotopy type, as we shall now explain.
The classifying space BO of the infinite orthogonal group has two particularly
interesting global refinements bO and BO, see Examples 2.4.1 and 2.4.18 of
[21]. Their values at an inner product space V are given by

bO(V ) = Gr|V |(V ⊕ R
∞) and BO(V ) = Gr|V |(V ⊕ V ⊕ R

∞) ,

the Grassmannians of dim(V )-planes in V ⊕R∞ and in V ⊕V ⊕R∞, respectively.
The structure maps are given by

bO(ϕ)(L) = (ϕ⊕ R
∞)(L) + ((W − ϕ(V ))⊕ 0) and

BO(ϕ)(L) = (ϕ⊕ ϕ⊕ R
∞)(L) + ((W − ϕ(V ))⊕ 0⊕ 0) .

To be completely honest, the orthogonal space BO of [21] is not literally the
one we use here, as it is built from Grassmannians in V ⊕ V as opposed to
V ⊕V ⊕R

∞; but the two are globally equivalent by [21, Proposition 2.4.28]. As
we explain in detail in Section 2.4 of [21], the small difference in the definitions
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of bO and BO has a drastic effect on the global homotopy type. A morphism
i : bO −→ BO is given at V by the effect of the embedding

V ⊕ R
∞ −→ V ⊕ V ⊕ R

∞ , (v, x) 7−→ (0, v, x) ;

the morphism i : bO −→ BO is a non-equivariant equivalence, but not a
global equivalence. Each of bO and BO comes with an associated global
Thom spectrum mO and MO, and these represent equivariant bordism and
stable equivariant bordism, respectively, see Sections 6.1 and 6.2 of [21].
Now we connect the orthogonal space O/∞ to the two global forms of BO.
The maps

p(V ) : (O/∞)(V ) = L(V, V ⊕ R
∞) −→ Gr|V |(V ⊕ R

∞) = bO(V )

that send a linear isometric embedding to its image form a morphism of or-
thogonal spaces p : O/∞ −→ bO. The composite i ◦ p : O/∞ −→ BO is
null-homotopic, as witnessed by the system of compatible homotopies

H : [0, 1]× L(V, V ⊕ R
∞) −→ Gr|V |(V ⊕ V ⊕ R

∞)

H(t, f) = image
(

v 7→ (tv,
√

1− t2 · f(v))
)

.

We write P (BO) for the path object of BO, i.e., P (BO)(V ) is the space of
paths in BO(V ) that end in the subspace V ⊕ 0⊕ 0. The null-homotopy H is
adjoint to a morphism

H̃ : O/∞ −→ P (BO)

that participates in a commutative diagram of orthogonal spaces:

O //

��

O/∞ H̃ //

p

��

P (BO)

��
∗ // bO

i
// BO

(5.2)

We claim without proof that both squares are globally homotopy cartesian.
Since the path object P (BO) is globally trivial, the right square expresses
O/∞ as the global homotopy fiber of the morphism i : bO −→ BO. In this
sense, O/∞ measures the difference between bO and BO.
The situation becomes even more interesting by the additional multiplicative
structure present. Indeed, the orthogonal space BO can be refined to a globally
group-like ultra-commutative monoid, see [21, Example 2.4.1]. The orthogonal
space bO supports a global E∞-multiplication, implemented by an action of
the linear isometries operad, compare [21, Remark 2.4.25]. By [21, Proposi-
tion 2.4.29], the E∞-structure on bO is not group-like and cannot be refined
to an ultra-commutative multiplication. In contrast to O/m for finite m, the
limiting object O/∞ supports an E∞-structure in a very similar way as bO,
and all the morphisms in the diagram (5.2) are morphisms of E∞-orthogonal
spaces.
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As we explain in the next construction, the identification of the strata and sub-
quotients of the eigenspace filtration of L/m are compatible with increasing m,
and thus yield analogous identifications for the eigenspace filtration of L/∞.

Construction 5.3. The open embeddings (3.8) are compatible with increas-
ing m along the embedding i : Km −→ Km+1, i(x) = (x, 0). The same is true
for the open embeddings (3.9), so the associated collapse maps participate in
a commutative square of orthogonal spaces:

Fk(L/m)
Ψ //

Fk(L/i)

��

(Gr
K

k )ν(k,m)⊕ad(k)

(Gr
K

k)
ν(k,i)⊕ad(k)

��
Fk(L/(m+ 1))

Ψ
// (Gr

K

k )ν(k,m+1)⊕ad(k)

We now pass to colimits over m in the vertical direction; we denote the
colimit of the right vertical sequence by (Gr

K

k )ν(k,∞)⊕ad(k). Theorem 3.13
then implies that the morphism of orthogonal G(K)-spaces Ψ : Fk(L/∞) −→
(GrKk )ν(k,∞)⊕ad(k) factors through an isomorphism

Fk(L/∞)/Fk−1(L/∞) ∼= (GrKk )ν(k,∞)⊕ad(k) .

Now we explain that also the stable splitting morphisms sk,m :

Σ∞(GrKk )ν(k,m)⊕ad(k) −→ Σ∞
+ Fk(L/m) of the eigenspace filtrations are

sufficiently compatible for varying m.

Construction 5.4. The open embeddings (4.2) are compatible with increas-
ing m along the embedding i : Km −→ Km+1, i(x) = (x, 0). So the associated
collapse maps (4.3) form a commutative square:

Sν(k,m)⊕ad(k) ∧ Ssa(k)
tk,m //

Sν(k,i)⊕ad(k)∧Ssa(k)

��

LK(Kk,Kk+m)+ ∧ Ssa(k)

L
K(Kk,Kk⊕i)+∧Ssa(k)

��
Sν(k,m+1)⊕ad(k) ∧ Ssa(k)

tk,m+1

// LK(Kk,Kk+m+1)+ ∧ Ssa(k)

The associated homotopy classes thus satisfy the relation

(Σ∞
+ Fk(L/i))∗〈tk,m〉 = (ν(k, i)⊕ ad(k))∗〈tk,m+1〉

in the representation-graded equivariant homotopy group

π
Ĩ(k)
ν(k,m)⊕ad(k)

(

ǫ∗k(Σ∞
+ Fk(L/(m+ 1)))

)

.

Here (ν(k, i) ⊕ ad(k))∗ is the grading-changing homomorphism given by pre-
composition with Sν(k,i)⊕ad(k) : Sν(k,m)⊕ad(k) −→ Sν(k,m+1)⊕ad(k). The repre-
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sentability isomorphism of Corollary A.35 turns this relation into a commuta-
tive square in the G(K)-global homotopy category:

Σ∞(Gr
K

k )ν(k,m)⊕ad(k)
sk,m //

(Gr
K

k)
ν(k,i)⊕ad(k)

��

Σ∞
+ Fk(L/m)

Σ∞
+ Fk(L/i)

��
Σ∞(Gr

K

k )ν(k,m+1)⊕ad(k)
sk,m+1

// Σ∞
+ Fk(L/(m+ 1))

Now we pass to homotopy colimits, in the sense of triangulated categories, in
the vertical direction; since the vertical morphisms in the previous square are
represented by actual morphisms of orthogonal G(K)-spaces that are object-
wise closed embeddings, the vertical homotopy colimits are modeled by the
suspension spectra of the corresponding colimits of orthogonal G(K)-spaces.
So there exists a morphism in the G(K)-global stable homotopy category

sk,∞ : Σ∞(Gr
K

k )ν(k,∞)⊕ad(k) −→ Σ∞
+ Fk(L/∞)

such that all the squares

Σ∞(Gr
K

k )ν(k,m)⊕ad(k)
sk,m //

��

Σ∞
+ Fk(L/m)

��
Σ∞(Gr

K

k )ν(k,∞)⊕ad(k)
sk,∞

// Σ∞
+ Fk(L/∞)

commute in GHG(K). Sequential homotopy colimits in triangulated categories
are only weak colimits, so the morphism sk,∞ is only determined by this prop-
erty up a potential ambiguity measured by a lim1-term. We write

sKk,∞ : Σ∞(GrKk )ν(k,∞)⊕ad(k) −→ Σ∞
+ L/∞

for the composite of the morphism sk,∞ and the morphism of suspension spectra
induced by the inclusion Fk(L/∞) −→ L/∞.

Theorem 5.5. Let K be one of the skew-fields R, C or H. The morphism
∑

sKk,∞ :
∨

k≥0

Σ∞(Gr
K

k )ν(k,∞)⊕ad(k) −→ Σ∞
+ L/∞

is an isomorphism in the G(K)-global stable homotopy category.

Proof. We let α : G −→ G(K) be any continuous homomorphism from a com-
pact Lie group. Both vertical maps in the commutative square of graded abelian
groups

⊕

k≥0 colimm π
G
∗ (α∗(Σ∞(GrKk )ν(k,m)⊕ad(k)))

∑
k colimm(sKk,m)∗//

��

colimm π
G
∗ (α∗(Σ∞

+ L/m))

��
⊕

k≥0 πG∗ (α∗(Σ∞(GrKk )ν(k,∞)⊕ad(k))) ∑
k(s

K

k,∞)∗

// πG∗ (α∗(Σ∞
+ L/∞))
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are isomorphisms, and the upper horizontal map is an isomorphism by The-
orem 4.8. So the lower vertical map is an isomorphism. Since equivariant
homotopy groups takes wedges to direct sums, this proves the claim.

A A glimpse of C-global homotopy theory

In this section we give a brief introduction to C-global homotopy theory,
where C is a topological group. In this refinement of global homotopy the-
ory, all objects are equipped with an external action of C. For the application
to the global stable splittings of Stiefel manifolds we are mostly interested in
the special case where C is the Galois group G(C) of C over R (a discrete group
of order 2), or where C is the group G(H) of R-algebra automorphisms of the
quaternions (a compact Lie group isomorphic to SO(3)). However, the basic
theory works just as well over arbitrary topological groups, so we develop it in
that generality.

The philosophy behind C-global homotopy theory is to merge the ‘global’ di-
rection of [21] with the ‘proper stable homotopy theory’ in the spirit of [7]. So
while we allow arbitrary topological groups to act, all homotopical informa-
tion is probed by restriction along continuous homomorphisms α : G −→ C
whose source G is a compact Lie group. We will introduce unstable and sta-
ble C-global homotopy theory via particular models. For the unstable theory,
we will use orthogonal C-spaces; for the stable theory, we will use orthogonal
C-spectra.

In order to keep the length of this paper within a reasonable bound, we intro-
duce just enough formalism to be able to formulate and prove the G(C)-global
stable splitting of U/m and the G(H)-global stable splitting of Sp/m in The-
orem 4.8. To this end we set up the triangulated C-global stable homotopy
category GHC , identify global Thom spaces over global classifying spaces as
representing objects for equivariant homotopy groups (see Theorem A.17), and
prove that GHC is compactly generated (see Corollary A.19). The global sta-
ble splitting of O/m does not involve any extrinsic group actions, so it can be
formulated entirely in the framework of [21] and does not need the tools from
this appendix.

In the special case of discrete groups C, and when probing through homo-
morphisms from finite groups (as opposed to compact Lie groups), Lenz [13]
introduces several models for unstable and stable C-global homotopy theory;
among these are models based on I-spaces and symmetric spectra, the discrete
analogs of orthogonal spaces and orthogonal spectra. In his context, Lenz de-
velops substantially more theory and provides many more tools than we do
here. In the special case of compact Lie groups C, Barrero [2, Theorem A.20]
exhibits the C-global equivalences as the weak equivalence in the C-global model

structure on the category of orthogonal C-spaces.
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A.1 Unstable C-global homotopy theory

We start with an introduction to unstable C-global homotopy theory, where C
is any topological group. Without the external C-action, there are several mod-
els for unstable global homotopy theory available; historically, the first model
were the orbispaces of Gepner-Henriques [9] that model a suitable homotopy
theory of topological stacks. More recently, the author developed models in
terms of orthogonal spaces [21, Section 1] and spaces with an action of the ‘uni-
versal compact Lie group’ [22]. We will generalize the orthogonal space model
now, and work with orthogonal C-spaces, i.e., orthogonal spaces equipped with
a continuous C-action; the relevant homotopy theory is encoded in the class of
C-global equivalences, see Definition A.2.

For the purposes of this paper, a space is a compactly generated space in the
sense of [18], i.e., a k-space (also called Kelley space) that satisfies the weak
Hausdorff condition. We write T for the category of compactly generated
spaces and continuous maps. A topological group is a group object internal to
the category T of compactly generated spaces. A C-space is then a C-object
internal to T, i.e., a compactly generated space X equipped with an associative
and unital action C×X −→ X that is continuous with respect to the compactly
generated product topology. We write CT for the category of C-spaces and
continuous C-maps.
As in [21], we denote by L the category with objects the finite-dimensional
euclidean inner product spaces and morphisms the R-linear isometric embed-
dings. The morphism spaces of the category L come with a preferred topology
as Stiefel manifolds; this makes L into a topological category.

Definition A.1. Let C be a topological group. An orthogonal C-space is a
continuous functor from the linear isometries category L to the category of
C-spaces. A morphism of orthogonal C-spaces is a natural transformation of
functors. We denote the category of orthogonal C-spaces by spcC .

The use of continuous functors from the category L to spaces has a long his-
tory in homotopy theory. The category L (or its extension that also contains
countably infinite-dimensional inner product spaces) is denoted I by Board-
man and Vogt [3], and this notation is also used in [16]; other sources [14]
use the symbol I. Accordingly, orthogonal spaces are sometimes referred to as
I -functors, I -spaces or I-spaces.

Orthogonal C-spaces admit a refinement of global homotopy theory that takes
the C-action into account, and that generalizes the unstable global homotopy
theory as developed in [21, Chapter 1]. The additional homotopical information
is located at compact Lie groups ‘augmented over C’, i.e., compact Lie groups G
equipped with a continuous homomorphism α : G −→ C.
For us, a representation of a compact Lie group G is an inner product space V
equipped with a continuous G-action through linear isometries. Such an action
can also be packaged as a continuous homomorphism ρ : G −→ O(V ) to the
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orthogonal group of V . For every orthogonal C-space Y , every continuous
homomorphism α : G −→ C and G-representation V , the value Y (V ) comes
with a continuous (G × C)-action from the G-action on V and the C-action
on Y . For a G-equivariant linear isometric embedding ϕ : V −→ W , the
induced map Y (ϕ) : Y (V ) −→ Y (W ) is (G× C)-equivariant. We write

Γ(α) = {(g, α(g)) : g ∈ G}
for the graph of α, a closed subgroup of G× C. We denote by

Dk = {x ∈ R
k : |x| ≤ 1} and ∂Dk = {x ∈ R

k : |x| = 1}
the unit disc in Rk and its boundary, a sphere of dimension k− 1, respectively.
In particular, D0 = {0} is a one-point space and ∂D0 = ∅ is empty.

Definition A.2. Let C be a topological group. A morphism f : X −→ Y of
orthogonal C-spaces is a C-global equivalence if the following condition holds:
for every compact Lie group G, every continuous homomorphism α : G −→ C,
every G-representation V , every k ≥ 0 and all continuous maps a : ∂Dk −→
X(V )Γ(α) and b : Dk −→ Y (V )Γ(α) such that b|∂Dk = f(V )Γ(α) ◦ a, there is a
G-representation W , a G-equivariant linear isometric embedding ϕ : V −→W
and a continuous map λ : Dk −→ X(W )Γ(α) such that λ|∂Dk = X(ϕ)Γ(α) ◦ a
and such that f(W )Γ(α) ◦ λ is homotopic, relative to ∂Dk, to Y (ϕ)Γ(α) ◦ b.
If the group C is trivial, then the notion of C-global equivalence specializes to
the global equivalences of [21, Definition 1.1.2]. We recall from [21, Definition
1.1.16] that an orthogonal space Y is closed if it takes every linear isometric
embedding ϕ : V −→W of inner product spaces to a closed embedding Y (ϕ) :
Y (V ) −→ Y (W ). Most orthogonal spaces that occur naturally are closed,
and for morphisms between closed orthogonal C-spaces, the next proposition
provides a useful criterion for detecting C-global equivalences.
We let G be a compact Lie group. We recall that a complete G-universe is
an orthogonal G-representation of countably infinite dimension into which ev-
ery finite-dimensional G-representation embeds, by an equivariant R-linear iso-
metric embedding. Complete G-universes exist, they are unique up to equiv-
ariant linear isomorphism, and the space of equivariant linear isometric self-
embeddings of a complete G-universe is contractible. If H is a closed subgroup
of a compact Lie group G, then the underlying H-representation of a complete
G-universe is a complete H-universe. In the following, for every compact Lie
group G we fix a complete G-universe UG. We let s(UG) denote the poset, un-
der inclusion, of finite-dimensional G-subrepresentations of UG. The underlying

G-space of an orthogonal space Y is

Y (UG) = colimV ∈s(UG) Y (V ) ,

the colimit of the G-spaces Y (V ). If Y is an orthogonal C-space for some topo-
logical group C, then Y (UG) becomes a (G × C)-space. The next proposition
is a generalization of [21, Proposition 1.1.17]; the proof is almost verbatim the
same, and we omit it.
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Proposition A.3. Let C be a topological group. Let f : X −→ Y be a

morphism between orthogonal C-spaces whose underlying orthogonal spaces are

closed. Then f is a C-global equivalence if and only if for every continuous

homomorphism α : G −→ C from a compact Lie group, the map

f(UG)Γ(α) : X(UG)Γ(α) −→ Y (UG)Γ(α)

is a weak equivalence.

The basic building blocks of ‘classical’ global homotopy theory (i.e., global ho-
motopy theory without an external action of any additional group) are the
global classifying spaces of compact Lie groups. For example, these global clas-
sifying spaces generate the ∞-category of global spaces under colimits, and
their suspension spectra generated the global stable homotopy category as a
triangulated category [21, Theorem 4.4.3]. In the orthogonal space model, the
global classifying space BglG of a compact Lie group is introduced in [21, Def-
inition 1.1.27]; the name is motivated by the fact that BglG globally classifies
G-equivariant principal bundles, compare [21, Proposition 1.1.30]. The coun-
terpart of BglG in the world of topological stacks is thus the stack of principal
G-bundles.
Global classifying spaces also exist in C-global homotopy theory, and we will
introduce them now. In the C-global context, these object are not associated
to compact Lie groups, but rather to continuous homomorphisms α : G −→ C
from compact Lie groups. As in the ‘classical’ case, their global classifying
spaces Bglα are the basic building blocks of C-global homotopy theory. A
rigorous statement to this effect is our Theorem A.17 below, saying that the
C-global stable homotopy category is compactly generated by the suspension
spectra of the global classifying spaces of all continuous homomorphisms from
compact Lie groups to C.

Construction A.4 (Global classifying spaces). We let C be a topological
group, G a compact Lie group, and α : G −→ C a continuous homomorphism.
We let V be a faithful G-representation. Then the assignment

Bglα = C ×α L(V,−) : L −→ CT

is an orthogonal C-space, the global classifying space of α. The value of Bglα
at an inner product space W is thus the orbit C-space of the G-action on
C × L(V,W ) by

(c, ϕ) · g = (cα(g), ϕ ◦ lg) ,
where lg : V −→ V is left multiplication by the group element g.

When the group C is trivial, Bglα specializes to a global classifying space
BglG for the compact Lie group G as defined in [21, Definition 1.1.27]. The
following Proposition A.5 in particular shows that the C-global homotopy type
ofBglα is independent of the choice of faithful G-representation; the proposition
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generalizes [21, Proposition 1.1.26]. Given two inner product spaces V and W ,
the restriction homomorphism of represented orthogonal spaces

ρV,W : L(V ⊕W,−) −→ L(V,−)

restricts a linear isometric embedding from V ⊕W to the first summand.

Proposition A.5. Let α : G −→ C be a continuous homomorphism from a

compact Lie group to a topological group. Let V and W be G-representations
such that G acts faithfully on V , and let A be a G-space. Then the restriction

morphism

C ×α (ρV,W ×A) : C ×α (L(V ⊕W,−)×A) −→ C ×α (L(V,−)×A)

is a C-global equivalence.

Proof. We claim that the underlying orthogonal space of C ×α (L(V,−) × A)
is closed; the same is then also true for C ×α (L(V ⊕W,−) × A). Indeed, if
ϕ : U −→ U ′ is a linear isometric embedding, then the induced map of Stiefel
manifolds L(V, ϕ) : L(V, U) −→ L(V, U ′) is a closed embedding, hence so is
the map C × L(V, ϕ) × A. Taking orbits by a continuous action of a compact
topological group preserves closed embeddings, see [21, Proposition B.13 (iii)],
so the map C ×α (L(V, ϕ) ×A) is a closed embedding, too.
Now we let K be another compact Lie group, and we let UK a complete K-
universe. The map

ρV,W (UK) : L(V ⊕W,UK) −→ L(V,UK)

is a (K ×G)-homotopy equivalence by [21, Proposition 1.1.26]. So the map

C ×α (ρV,W (UK)×A) : C ×α (L(V ⊕W,UK)×A) −→ C ×α (L(V,UK)×A)

is a (K×C)-homotopy equivalence. Hence for every continuous homomorphism

β : K −→ C, the map of Γ(β)-fixed points (C ×α (ρV,W (UK)×A))
Γ(β)

is a
weak equivalence. Proposition A.3 then applies to show that the morphism
C ×α (ρV,W ×A) is a C-global equivalence.

A.2 Stable C-global homotopy theory

We continue to let C be any topological group. An orthogonal C-spectrum is an
orthogonal spectrum equipped with a continuous C-action by automorphisms
of orthogonal spectra. A morphism of orthogonal C-spectra is a C-equivariant
morphism of orthogonal spectra. If α : G −→ C is a continuous homomorphism
between topological groups and Y is an orthogonal C-spectrum, we write α∗Y
for the orthogonal G-spectrum with the same underlying orthogonal spectrum,
and with G-action through the homomorphism α.
For a compact Lie group G, the k-th equivariant homotopy group πGk (Y ) of
an orthogonal G-spectrum, based on a complete G-universe, is defined, for
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example, in [21, (3.1.11)]. We emphasize that while we allow for actions of
arbitrary topological groups, equivariant homotopy groups only show up for
actions of compact Lie groups.

Definition A.6. Let C be a topological group. A morphism f : X −→ Y of
orthogonal C-spectra is a C-global equivalence if for every compact Lie group
G, every continuous homomorphism α : G −→ C and all integers k, the map
πGk (α∗f) : πGk (α∗X) −→ πGk (α∗Y ) is an isomorphism.

An equivalent way to recast the previous is definition is as follows. A morphism
f : X −→ Y of orthogonal C-spectra is a C-global equivalence if and only if for
every continuous homomorphism α : G −→ C from a compact Lie group, the
morphism of orthogonal G-spectra α∗f : α∗X −→ α∗Y is a π∗-isomorphism in
the sense of [21, Definition 3.1.12].
A morphism f : A −→ B of orthogonal C-spectra is an h-cofibration if it has the
homotopy extension property, i.e., given a morphism of orthogonal C-spectra
ϕ : B −→ X and a homotopy H : A∧ [0, 1]+ −→ X starting with ϕf , there is a
homotopy H̄ : B∧ [0, 1]+ −→ X starting with ϕ such that H̄ ◦(f ∧ [0, 1]+) = H .

Proposition A.7. Let C be a topological group.

(i) Let {fi : Xi −→ Yi}i∈I be a family of C-global equivalences of orthogonal

C-spectra. Then the coproduct
∨

i∈I fi :
∨

i∈I Xi −→
∨

i∈I Yi is a C-global
equivalence.

(ii) Let

A
f //

g

��

B

��
C

k
// D

be a pushout square of orthogonal C-spectra such that f is a C-global
equivalence. If, in addition, f or g is an h-cofibration, then also the

morphism k is a C-global equivalence.

(iii) Let fn : Yn −→ Yn+1 be h-cofibrations of orthogonal C-spectra that are

also C-global equivalences, for n ≥ 0. Then the canonical morphism f∞ :
Y0 −→ colimn Yn to any colimit of the sequence is a C-global equivalence.

Proof. The fact that the restriction functor α∗ : SpC −→ SpG along a continu-
ous homomorphism α : G −→ C preserves h-cofibrations and colimits reduces
all three claims to the special case of compact Lie groups. In that context,
all three statements can be found in [17, III Theorem 3.5], and proofs can be
found in Corollary 3.1.37, Corollary 3.1.39 and Proposition 3.1.41 of [21].

We will now argue that the classes of C-global equivalences and h-cofibrations
make the category of orthogonal C-spectra into a cofibration category. A cofi-
bration category is a category equipped with two classes of morphisms, the
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‘weak equivalences’ and the ‘cofibrations’, that satisfy a specific list of axioms.
The original notion and the basic theory go back to Brown [4] who had in-
troduced the dual notion under the name ‘category of fibrant objects’. After
Brown, several authors have proposed and studied variations of the concept
that differ in details; a nice summary and an extensive list of references can
be found in the introduction of [24]. For our purposes, the formulation of
Szumi lo is particularly convenient, and we will use the axioms as stated in [24,
Section 1].

The homotopy category of a cofibration category C is any localization at the
class of weak equivalences, i.e., a functor γ : C −→ Ho(C) that is initial among
functors from C that take weak equivalences to isomorphisms. We will often
refer to the category Ho(C) alone as the homotopy category, leaving the local-
ization functor γ implicit. The cofibration structure gives rise to an abstract
notion of homotopy and a ‘calculus of left fractions’, through which the homo-
topy category becomes manageable. This calculus includes the following two
facts, where ‘acyclic cofibration’ refers to a morphism that is simultaneously a
cofibration and a weak equivalence.

(i) Every morphism in Ho(C) is a fraction of the form γ(s)−1 ◦ γ(f), where
f and s are C-morphisms with the same target, and s is an acyclic cofi-
bration.

(ii) Given two morphisms f, g : A −→ B in C, then γ(f) = γ(g) in Ho(C) if
and only if there is an acyclic cofibration s : B −→ B̄ such that sf and
sg are homotopic.

A proof of these facts (or rather the dual statements for ‘categories of fibrant
objects’) can be found in [4, I.2 Theorem I] and Remark 2 immediately there-
after.

In our applications we will want to know that the C-global stable homotopy
category has arbitrary coproducts, and that these are modeled by wedges of
orthogonal C-spectra. This fact is a special case of a general property of cofi-
bration categories with well-behaved set-indexed coproducts, see the following
proposition. The proposition should not be surprising, but I am not aware of a
reference, so I include a proof. For finite coproducts, the following proposition
is a special case of the statement dual to [5, Corollaire 2.9]. Following [24] we
call a cofibration category cocomplete if it has set-indexed coproducts, and if
the classes of cofibrations and acyclic cofibrations are stable under coproducts.

Proposition A.8. Let C be a cocomplete cofibration category. Then the lo-

calization functor γ : C −→ Ho(C) preserves coproducts. In particular, the

homotopy category admits coproducts.

Proof. Since the localization functor γ can be arranged to be the identity on
objects, we drop γ in front of objects to simplify the notation. Now we consider
an index set I, and an I-indexed family {Xi}i∈I of C-objects. We denote a
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coproduct of the family by ∐i∈IXi, and we write κj : Xj −→ ∐i∈IXi for the
universal morphisms. We must show that for every C-object Y , the map

Ho(C)(∐i∈IXi, Y ) −→
∏

j∈I
Ho(C)(Xj , Y ) , ψ 7−→ (ψ ◦ γ(κj))j∈I (A.9)

is bijective. For surjectivity we let (ψj : Xj −→ Y ) be any I-indexed family of
morphisms in Ho(C). By the calculus of left fractions, we can write

ψj = γ(sj)
−1 ◦ γ(fj)

for some families of C-morphisms fj : Xj −→Wj and sj : Y −→Wj such that
the morphisms sj are acyclic cofibrations. We choose a coproduct of the family
{Wi}i∈I and a coproduct of the constant family {Y }i∈I of copies of Y . Then
we form the C-morphisms

∐i∈IXi
∐fi−−→ ∐i∈IWi

∐si←−−
∼
∐i∈IY ∇−−→ Y ,

where ∇ denotes the fold morphism. Since coproducts of acyclic cofibrations
are acyclic cofibrations, the middle morphism is an acyclic cofibration. So we
can form the morphism

γ(∇) ◦ γ(∐si)−1 ◦ γ(∐fi) : ∐i∈IXi −→ Y

in the homotopy category. The map (A.9) sends this morphism to the original
family (ψj)j∈I ; so the map (A.9) is surjective.
For injectivity we consider two morphisms ψ, ψ′ : ∐i∈IXi −→ Y in Ho(C) such
that ψ ◦ γ(κj) = ψ′ ◦ γ(κj) for all j ∈ I. We start with the special case where
ψ = γ(f) and ψ′ = γ(f ′) for two C-morphisms f, f ′ : ∐i∈IXi −→ Y . Because

γ(fκj) = ψ ◦ γ(κj) = ψ′ ◦ γ(κj) = γ(f ′κj) ,

the calculus of left fractions provides acyclic cofibrations tj : Y −→ Ȳj such
that tjfκj : Xi −→ Ȳj is homotopic to tjf

′κj : Xj −→ Ȳj for every j ∈ I. We
choose a pushout:

∐i∈IY ∇ //

∐ti ∼

��

Y

∼ t

��
∐i∈I Ȳi

∇′

// Y ′

Since coproducts of acyclic cofibrations are acyclic cofibrations, the left vertical
morphism is an acyclic cofibration, and hence so is the right vertical morphism
t : Y −→ Y ′.
For each j ∈ I, we choose a cylinder object Zj of Xj and a homotopy
Hj : Zj −→ Yj from tjfκj to tjf

′κj . Since coproducts preserve cofibrations
and acyclic cofibrations, the coproduct ∐i∈IZi is a cylinder object for ∐i∈IXi,
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where we leave the additional data of a cylinder object implicit. Moreover, the
composite

∐i∈IZi ∐Hi−−−→ ∐i∈I Ȳi ∇′

−−−→ Y ′

is then a homotopy from tf to tf ′. We conclude that γ(tf) = γ(tf ′) in Ho(C).
Since t is a weak equivalence, γ(t) is an isomorphism in Ho(C), and so γ(f) =
γ(f ′). This proves injectivity in the special case.
Now we treat the general case, and we let ψ, ψ′ : ∐i∈IXi −→ Y be arbitrary
morphisms in Ho(C) such that ψ ◦γ(κj) = ψ′ ◦γ(κj) for all j ∈ I. The calculus
of left fractions provides C-morphisms f : ∐i∈IXi −→W , f ′ : ∐i∈IXi −→ W ′,
s : Y −→ W and s′ : Y −→W ′ such that s and s′ are acyclic cofibrations and
such that

ψ = γ(s)−1 ◦ γ(f) and ψ′ = γ(s′)−1 ◦ γ(f ′) .

We choose a pushout:

Y ∼
s //

s′ ∼

��

W

∼ t

��
W ′ ∼

t′
// V

Then t and t′ are acyclic cofibrations because s and s′ are. We now obtain the
relation

γ(tf)◦γ(κj) = γ(t)◦γ(s)◦ψ◦γ(κj) = γ(t′)◦γ(s′)◦ψ′◦γ(κj) = γ(t′f ′)◦γ(κj)

for every j ∈ I. The special case treated above lets us conclude that γ(tf) =
γ(t′f ′). Thus

γ(ts) ◦ ψ = γ(tf) = γ(t′f ′) = γ(t′s′) ◦ ψ′ .

Because the morphism γ(ts) = γ(t′s′) is an isomorphism, also ψ = ψ′. This
completes the proof.

A cofibration category is pointed if it has a zero object, i.e., if every initial object
is also terminal. The homotopy category of a pointed cofibration category
supports a specific suspension functor Σ : Ho(C) −→ Ho(C), see the dual to [4,
I.4 Theorem 3], or [20, Proposition A.4]. A cofibration category is stable if it
is pointed and the suspension functor is an autoequivalence of the homotopy
category. The homotopy category of a stable cofibration category supports
the structure of a triangulated category, see [20, Theorem A.12]. A candidate
triangle in Ho(C) is distinguished if and only if it is isomorphic to the triangle

A
γ(j)−−→ B

γ(proj)−−−−→ B/A
δ(j)−−→ ΣA

arising from some cofibration j : A −→ B; here δ(j) : B/A −→ ΣA is a specific
‘connecting morphism’ in Ho(C), defined in [20, (A.10)].
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We write

GHC = SpC [C-global equivalences−1] (A.10)

for the localization of the category of orthogonal C-spectra at the class of C-
global equivalences, and we refer to it as the C-global stable homotopy category.
The suspension functor −∧S1 : SpC −→ SpC preserves C-global equivalences,
so it descends to a functor Ho(− ∧ S1) : GHC −→ GHC by the universal
property of localizations. For every orthogonal C-spectrum X , the C-spectrum
X ∧ S1 is a cokernel of the ‘cone inclusion’ − ∧ 1 : X −→ X ∧ [0, 1] = CX ,
which is always an h-cofibration to an object that is homotopy equivalent,
and hence C-globally equivalent, to the zero object. So we can – and will –
choose the suspension functor on the C-global stable homotopy category as
Σ = Ho(− ∧ S1).

Theorem A.11. Let C be a topological group.

(i) The C-global equivalences and the h-cofibrations make the category of or-

thogonal C-spectra into a cocomplete stable cofibration category.

(ii) The localization functor γ : SpC −→ GHC preserves coproducts. In par-

ticular, the C-global stable homotopy category admits coproducts.

Proof. (i) We verify the axioms (C0) – (C6) and (C7-κ) for any regular cardi-
nal κ, as stated in [23, Definition 1.1]. Most of the axioms are straightforward
from the definitions: the C-global equivalences satisfy the 2-out-of-6 property
(C0); every isomorphism is a C-global equivalence and an h-cofibration (C1);
the trivial orthogonal C-spectrum is a zero object (C2); the unique morphism
∗ −→ X from a trivial orthogonal C-spectrum to any orthogonal C-spectrum
is an h-cofibration (C3). Since h-cofibrations are precisely the morphisms with
the left lifting property against the class of morphisms X [0,1] −→ X that eval-
uate a path at 0, the class of h-cofibrations is stable under pushouts along
arbitrary morphisms (half of C4), under sequential colimits (half of C6) and
under arbitrary coproducts (half of C7-κ). The other halves of axioms (C4),
(C6) and (C7-κ) demand that the class of h-cofibrations that are simultane-
ously C-global equivalences be stable under cobase change, under sequential
composites, and under κ-small coproducts; Proposition A.7 takes care of these
requirements. Finally, a morphism X −→ Y of orthogonal C-spectra factors
as the composite of the mapping cylinder inclusion

X −→ X ∧ [0, 1]+ ∪f Y ,

which is an h-cofibration, followed by the projection X ∧ [0, 1]+ ∪f Y −→ Y to
the ‘end’ of the cylinder. This projection is a homotopy equivalence of orthogo-
nal C-spectra, and hence a C-global equivalence. This verifies the factorization
axiom (C5).
As we explained before stating the theorem, the abstract suspension functor is
here given by Ho(−∧S1) : GHC −→ GHC . The loop functor Ω : SpC −→ SpC
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also preserves C-global equivalences; so it, too, descends to a functor on the
C-global stable homotopy category. The unit X −→ Ω(X ∧ S1) and counit
(ΩX) ∧ S1 −→ X of the adjunction (− ∧ S1,Ω) are C-global equivalences by
[21, Proposition 3.1.25]; so Ho(−∧S1) and Ho(Ω) are inverse autoequivalences
of GHC . In particular, the cofibration structure on the category of orthogonal
C-spectra is stable. Part (ii) is a special case of Proposition A.8.

The unreduced suspension spectrum of an orthogonal space is defined in Con-
struction 4.1.7 of [21]. The suspension spectrum functor is continuous, so it
extends, by functoriality, to a functor

Σ∞
+ : spcC −→ SpC

from orthogonal C-spaces to orthogonal C-spectra. The next proposition is
the immediate generalization of [21, Corollary 4.1.9] from global to C-global
homotopy theory. Essentially the same proof as there also works in our more
general context, mutatis mutandis; we omit the details.

Proposition A.12. Let C be a topological group. The unreduced suspension

spectrum functor takes C-global equivalences of orthogonal C-spaces to C-global
equivalences of orthogonal C-spectra.

We let U be a representation of a compact Lie group G. For an orthogonal
G-spectrum, we write map∗(SU , Y ) for the orthogonal G-spectrum obtained by
applying the based mapping space from the representation sphere levelwise. We
define the U -th G-equivariant homotopy group of an orthogonal G-spectrum Y
as

πGU (Y ) = πG0 (map∗(SU , Y )) . (A.13)

So for U = Rn with trivial G-action, this specializes to the n-th homotopy
group πGn (Y ). Looping by a representation sphere preserves equivariant equiv-
alences, compare [21, Proposition 3.1.40]. So for every continuous homomor-
phism α : G −→ C to a topological group, the functor πGU (α∗(−)) takes C-
global equivalences to isomorphisms. Hence the universal property of a local-
ization provides a unique factorization

πGU ◦ α∗ : GHC −→ Ab

through the C-global stable homotopy category, for which we will use the same
notation. Our next major goal is to show that this functor is representable
by the suspension spectrum of a specific based orthogonal C-space, the ‘global
Thom space’ over the global classifying space of α : G −→ C associated to the
given representation.

Construction A.14 (C-global Thom spaces). The C-global classifying space
of a continuous homomorphism α : G −→ C from a compact Lie group to a
topological group was introduced in Construction A.4. The definition involves
a choice of faithful G-representation V , suppressed from the notation. Now we
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also consider another G-representationU , and we define an associated ‘C-global
Thom space’ over Bglα, namely the based orthogonal C-space

(Bglα)U = C+ ∧α (L(V,−)+ ∧ SU ) : L −→ CT .

For example, if U = R
n with trivial G-action, then (Bglα)U is isomorphic

to (Bglα)+ ∧ Sn. The next theorem (with Z being the unit sphere of the
representation U) shows that the resulting suspension spectrum is independent,
up to C-global equivalence, of the choice of faithful G-representation; this is
the justification for omitting the representation V from the notation.

Theorem A.15. Let α : G −→ C be a continuous homomorphism from a com-

pact Lie group to a topological group. Let V and W be G-representations such

that V is faithful, and let Z be a G-space. Then the morphism of orthogonal

C-spectra

Σ∞C+ ∧α ((ρV,W )+ ∧ Z⋄) : Σ∞C+ ∧α (L(V ⊕W,−)+ ∧ Z⋄)

−→ Σ∞C+ ∧α (L(V,−)+ ∧ Z⋄)

is a C-global equivalence, where Z⋄ denotes the unreduced suspension of Z.

Proof. Proposition A.5 shows that the two morphisms of orthogonal C-spaces

C ×α ρV,W : C ×α L(V ⊕W,−) −→ C ×α L(V,−) and

C ×α (ρV,W × Z) : C ×α (L(V ⊕W,−)× Z) −→ C ×α (L(V,−)× Z)

are C-global equivalences. So the induced morphisms of unreduced suspension
spectra

Σ∞
+ C ×α ρV,W and Σ∞

+ C ×α (ρV,W × Z)

are C-global equivalences of orthogonal C-spectra by Proposition A.12. The
spectrum Σ∞C+ ∧α (L(V,−)+ ∧Z⋄) is isomorphic to the mapping cone of the
morphism

Σ∞
+ C ×α (L(V,−)× Z) −→ Σ∞

+ C ×α L(V,−)

that collapses Z to a point, and similarly for V ⊕W instead of V .

Now we let β : K −→ C be a continuous homomorphism from another compact
Lie group, and we restrict actions along β. The two mapping cones give rise to
long exact sequences of K-equivariant homotopy groups, see for example [21,
Proposition 3.1.36]. The various morphisms derived from ρV,W feature in a
commutative diagram relating the two long exact sequences. The five lemma
thus shows that the morphism

β∗(Σ∞C+ ∧α ((ρV,W )+ ∧ Z⋄))

is a π∗-isomorphism of orthogonal K-spectra. This finishes the proof.
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The reduced suspension spectrum of the C-global Thom space (Bglα)U is an
orthogonal C-spectrum, and it comes with a tautological G-equivariant homo-
topy class

eα,U,V ∈ πGU
(

α∗(Σ∞(Bglα)U )
)

, (A.16)

defined as the class of the G-map

SV⊕U −→ SV ∧ α∗(C+ ∧α (L(V, V )+ ∧ SU )) =
(

α∗(Σ∞
+ (Bglα)U )

)

(V )

(v, u) 7−→ v ∧ [1 ∧ IdV ∧u] .

The following representability theorem is a C-global generalization of [21, The-
orem 4.4.3], which is the special case where the group C and the representation
U are trivial.

Theorem A.17. Let α : G −→ C be a continuous homomorphism from a

compact Lie group to a topological group, and let U be a G-representation.

(i) For every orthogonal C-spectrum Y , the evaluation homomorphism

GHC(Σ∞(Bglα)U , Y ) −→ πGU (α∗Y ) , f 7−→ f∗(eα,U,V )

is an isomorphism.

(ii) The orthogonal C-spectrum Σ∞
+ Bglα is a compact object in the triangu-

lated category GHC .

Proof. (i) To show surjectivity we represent any given class y ∈ πGU (α∗Y ) by
a continuous based G-map f : SV⊕W⊕U −→ (α∗Y )(V ⊕ W ), for some G-
representation W . Adjoint to f is a morphism of orthogonal C-spectra

f ♯ : Σ∞C+ ∧α (L(V ⊕W,−)+ ∧ SU ) −→ Y .

This morphism satisfies
f ♯∗(eα,U,V⊕W ) = y ,

by design. The morphism Σ∞C+ ∧α ((ρV,W )+ ∧ SU ) is a C-global equivalence
by Theorem A.15, so it becomes invertible in the C-global stable homotopy
category. So we obtain a morphism in GHC

γ(f ♯) ◦ γ(Σ∞C+ ∧α ((ρV,W )+ ∧ SU ))−1 :

Σ∞(Bglα)U = Σ∞C+ ∧α (L(V,−)+ ∧ SU ) −→ Y .

The morphism Σ∞C+∧α ((ρV,W )+∧SU ) sends the tautological class eα,U,V⊕W

to the tautological class eα,U,V . So we deduce the relation

(

γ(f ♯) ◦ γ(Σ∞C+ ∧α ((ρV,W )+ ∧ SU ))−1
)

∗
(eα,U,V ) = γ(f ♯)∗(eα,U,V⊕W ) = y.

This proves surjectivity of the evaluation homomorphism.
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For injectivity we consider a morphism ω : Σ∞(Bglα)U −→ Y in GHC such that
ω∗(eα,U,V ) = 0. The calculus of fractions lets us write ω = γ(s)−1◦γ(f) for two
morphisms of orthogonalC-spectra f : Σ∞(Bglα)U −→ Z and s : Y −→ Z such
that s is a C-global equivalence. Then γ(f)∗(eα,U,V ) = γ(s)∗(ω∗(eα,U,V )) = 0.
So we can assume without loss of generality that the original morphism is of the
form ω = γ(f) for a morphism of orthogonal C-spectra f : Σ∞(Bglα)U −→ Y .
The class γ(f)∗(eα,U,V ) is represented by the G-map

SV⊕U −→ Y (V ) , (v, u) 7−→ f(V )(v ∧ [1 ∧ IdV ∧u]) .

Since this class is trivial, there is a G-representation W such that the stabiliza-
tion

SV⊕W⊕U −→ Y (V ⊕W ), (v, w, u) 7−→ f(V ⊕W )((v, w)∧ [1∧ iV ∧u]) (A.18)

is G-equivariantly based null-homotopic. We choose a null-homotopy that wit-
nesses this fact and adjoint it to a morphism of orthogonal C-spectra

H : Σ∞C+ ∧α (L(V ⊕W,−)+ ∧ SU ) ∧ [0, 1] −→ Y ;

here the unit interval [0, 1] is based at 0, and the restriction of H to the point 1
is adjoint to (A.18). We arrive at a commutative diagram in SpC :

Σ∞C+ ∧α (L(V,−)+ ∧ SU )
f

$$
Σ∞C+ ∧α (L(V ⊕W,−)+ ∧ SU ) //

−∧1

��

Σ∞C+∧α((ρV,W )+∧SU ) ∼

OO

Y

Σ∞C+ ∧α (L(V,−)+ ∧ SU ) ∧ [0, 1]

H

::

Since the upper left morphism becomes invertible in the C-global stable homo-
topy category, and because the lower left spectrum becomes a zero object in
GHC , this proves that the image of f in GHC is the zero morphism.
(ii) By Theorem A.11 (ii), the wedge of any family of orthogonal C-spectra is
a coproduct in GHC . The vertical maps in the commutative square

⊕

i∈I GHC(Σ∞
+ Bglα, Xi) //

��

GHC(Σ∞
+ Bglα,

⊕

i∈I Xi)

��
⊕

i∈I π
G
0 (α∗(Xi)) // πG0

(
∨

i∈I α
∗(Xi)

)

are evaluation at the tautological class, and hence isomorphisms by part (i).
The lower horizontal map is an isomorphism, see for example [21, Corollary
3.1.37]; so the upper horizontal map is an isomorphism, too. This shows that
Σ∞

+ Bglα is compact as an object of the triangulated category GHC .
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In the special case where the G-representation U is trivial, Theorem A.17 (i)
says that the unreduced suspension spectrum Σ∞

+ Bglα represents the functor
πG0 ◦ α∗ : GHC −→ Ab. So if Y is an orthogonal C-spectrum such that the
group GHC(Σ∞

+ (Bglα)[k], Y ) is trivial for every continuous homomorphism α :
G −→ C from a compact Lie group G and all integers k, then Y is C-globally
equivalent to the trivial orthogonal C-spectrum. So Y is a zero object in GHC .
This proves the following result.

Corollary A.19. Let C be a topological group. As α : G −→ C varies over a

set of representatives of the isomorphism classes of continuous homomorphisms

from compact Lie groups to C, the suspension spectra Σ∞
+ Bglα form a set of

compact weak generators for the triangulated C-global stable homotopy cate-

gory GHC. In particular, the C-global stable homotopy category is compactly

generated.

Remark A.20 (The∞-category of C-global spectra). We let C be a topological
group. The triangulated C-global stable homotopy category is only the shadow
of a more refined structure, namely an underlying compactly generated stable
∞-category. We define the ∞-category of C-global spectra as the∞-categorical
localization of the 1-category of orthogonal C-spectra at the class of C-global
equivalences. For example, the quasicategory of frames in the sense of Szumi lo
[23, Section 2] associated to the cofibration structure of Theorem A.11 on the
category of orthogonal C-spectra is a particular construction. This quasicate-
gory is cocomplete by [23, Theorem 2.3]. Stability of an∞-category is detected
by the homotopy category, see [15, Corollary 1.4.2.27]; so the ∞-category of
C-global spectra is stable. Similarly, the property of a stable ∞-category to
be compactly generated is detected by the homotopy category, compare [15,
Remark 1.4.4.3]. So the stable ∞-category of C-global spectra is compactly
generated; in particular, this stable ∞-category is also presentable and com-
plete.

Suppose that C is a Lie group (not necessarily compact); for example, C could
be an infinite discrete group. Then the C-global equivalences also take part in
several model category structures on the category of orthogonal C-spectra. The
essential ingredients for the construction of the model structure are a synthesis
of the arguments needed in the special case of the trivial group, i.e., the global
model structure of orthogonal spectra [21, Theorem 4.3.18], and the arguments
used in [7, Section 1.2] to set up the proper stable homotopy theory for non-
compact Lie groups. Since we don’t need any model structures for the purposes
of this paper, I won’t dwell on this any further.

A.3 Global classifying spaces by complex and quaternion isomet-

ric embeddings

As we explain in detail in Construction A.4, the global classifying C-space of
a continuous homomorphism α : G −→ C from a compact Lie group uses real
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Stiefel manifolds, i.e., spaces of R-linear isometric embeddings from a faith-
ful orthogonal G-representation. In our applications to stable splittings of
U/m and Sp/m, the naturally occurring objects are complex and quaternionic

Stiefel manifolds. We will thus need to know that we can also use spaces of
C-linear or H-linear isometric embeddings from a faithful unitary or symplectic
G-representation to define global classifying spaces. Moreover, we want to keep
track of the natural symmetries, parameterized by the groups of R-algebra au-
tomorphisms of C and H. In this subsection we explain the connection in detail.
A precursor of the results in this subsection already occurs in [21, Proposition
1.3.11], which treats the complex case without any mentioning of the Galois
group G(C). The key ingredients are already present in the proof of the pre-
cursor; our main work here is to carefully adapt the arguments from C to H,
while incorporating an augmentation to the Galois group.

In the rest of this section, we let K be one of the skew-fields C or H. The
arguments also work for K = R, but then they are either tautological, or
already well-known and explicitly stated in [21]. As before we write G(K) =
AutR(K) for the ‘Galois group’ of K, i.e., the compact Lie group of R-algebra
automorphisms. Then G(C) is discrete of order 2, and G(H) is abstractly
isomorphic to SO(3).

Definition A.21. We let G be a compact Lie group and ǫ : G −→ G(K)
a continuous homomorphism. A (G, ǫ)-representation is a K-inner product
space W endowed with a continuous R-linear G-action such that

g · (xλ) = (gx) · ǫ(g)(λ) and [gx, gy] = ǫ(g)([x, y])

for all g ∈ G, λ ∈ K and x, y ∈ W .

Remark A.22 (Extended isometry group). The extended isometry group Ĩ(W )
of a K-inner product space W is the group of pairs (A, τ) consisting of an R-
linear automorphism A : W −→W and a Galois automorphism τ ∈ G(K) such
that

• the morphism A is τ -semilinear, i.e., A(xλ) = A(x) · τ(λ) for all x ∈ W
and λ ∈ K, and

• the relation
[Ax,Ay] = τ [x, y] (A.23)

holds for all x, y ∈ W .

If W is non-zero, then the Galois automorphism τ is actually determined by A;
nevertheless, it is convenient to explicitly keep track of τ . Composition in
Ĩ(W ) is componentwise, i.e, (A, τ) · (A′, τ ′) = (AA′, ττ ′). The relation (A.23)
in particular implies that for (A, τ) ∈ Ĩ(W ), the map A is an isometry of the
underlying euclidean vector space uW , i.e., the underlying R-vector space of W
equipped with the euclidean inner product 〈x, y〉 = Re[x, y]. So Ĩ(W ) is a closed
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subgroup of O(uW ) ×G(K), and hence a compact Lie group. The projection
to the second factor p : Ĩ(W ) −→ G(K) is a continuous epimorphism whose
kernel is isomorphic to I(W ). Moreover, Ĩ(W ) is isomorphic to a semidirect
product I(W ) ⋊G(K), but not in a natural way.
The reader might want to convince themself that a (G, ǫ)-representation with
underlying inner product space W can equivalently be specified by a continuous
homomorphism ρ : G −→ Ĩ(W ) to the extended isometry group that covers
the augmentations, i.e., such that p ◦ ρ = ǫ.

For K = C, every (G, ǫ)-representation in particular has an underlying or-
thogonal representation of the compact Lie group G; and it has an underlying
unitary representation of the kernel of ǫ : G −→ G(C). Compact Lie groups
augmented to the Galois group of C over R and their twisted representations
are studied as ‘augmented compact Lie groups’ by Karoubi [12], and prior to
that (in special cases) by Atiyah and Segal [1, Section 6]. For K = H, every
(G, ǫ)-representation in particular has an underlying orthogonal representation
of the compact Lie group G; and it has an underlying symplectic representa-
tion of the kernel of ǫ : G −→ G(H). I am not aware of a reference where
compact Lie groups augmented to G(H) and their ‘twisted’ representations are
systematically investigated.

We write VK = V ⊗R K for the scalar extension from R to K of a euclidean
inner product space V , with K-inner product [−,−] obtained from the euclidean
inner product 〈−,−〉 on V by

[x⊗ λ, y ⊗ µ] = λ̄ · 〈x, y〉 · µ

for x, y ∈ V and λ, µ ∈ K. The underlying euclidean inner product space uW
of a K-inner product space W is the underlying R-vector space endowed with
the euclidean inner product

〈x, y〉 = Re[x, y] ,

the real part of the K-valued inner product.

Construction A.24. We let K be C or H, and we let W be a K-inner product
space. For several arguments we shall need a specific natural K-linear isometric
embedding

ζ : W −→ (uW )K = (uW )⊗R K . (A.25)

To define it, we separate the two cases. For K = C, the map ζ is defined as

ζ : W −→ (uW )C = (uW )⊗R C by ζ(x) = 1/
√

2 · (x⊗ 1− xi⊗ i) .

For K = H, it is given by

ζ : W −→ (uW )H = (uW )⊗R H ,

ζ(x) = 1/2 · (x ⊗ 1− xi⊗ i− xj ⊗ j − xk ⊗ k) .
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Proposition A.26. Let ǫ : G −→ G(K) be a continuous homomorphism, where

K is C or H. Let W be a (G, ǫ)-representation. Then the map ζ is a K-linear

isometric embedding that satisfies

ζ ◦ lg = (lg ⊗ ǫ(g)) ◦ ζ (A.27)

for all g ∈ G, where lg : W −→W is left multiplication by g.

Proof. We give the argument for K = H. The proof in the complex case is
similar, but easier. The map ζ is clearly R-linear, and it commutes with right
multiplication by the quaternion scalars i and j; so ζ is in fact H-linear. To
show that the map ζ is isometric we observe that
[

xλ ⊗ λ̄, xν ⊗ ν̄
]

= λ · 〈xλ, xν〉 · ν̄ = λ · Re
(

λ̄[x, x]ν
)

· ν̄ = [x, x] · Re
(

λ̄ν
)

· λν̄

for all x ∈ W and λ, ν ∈ H. For λ, ν ∈ {1, i, j, k} with λ 6= ν we have
Re

(

λ̄ν
)

= 0. So

[ζ(x), ζ(x)] = 1/4 · [x, x] ·
∑

λ∈{1,i,j,k}

Re(λ̄λ) · λλ̄ = [x, x] .

It remains to prove the relation (A.27). The tautological action of G(H) on H is
isometric for the euclidean inner product 〈x, y〉 = Re(x̄y). Since (1, i, j, k) is an
orthonormal R-basis for this inner product, the element 1⊗1+i⊗i+j⊗j+k⊗k
is fixed under the diagonal G(H)-action (and could have been specified by any
other orthonormal basis). Since 1⊗ 1 is evidently G(H)-fixed, too, the element

1⊗ 1− i⊗ i− j ⊗ j − k ⊗ k

is fixed under the diagonal G(H)-action. So we conclude that

ζ(gx) = 1/2 · (gx) · (1⊗ 1− i⊗ i− j ⊗ j − k ⊗ k)

= 1/2 · (gx) · (1⊗ 1− ǫ(g)(i)⊗ ǫ(g)(i)

− ǫ(g)(j)⊗ ǫ(g)(j)− ǫ(g)(k)⊗ ǫ(g)(k))

= 1/2 · ((gx) ⊗ 1− g(xi)⊗ ǫ(g)(i)− g(xj)⊗ ǫ(g)(j)− g(xk)⊗ ǫ(g)(k))

= (lg ⊗ ǫ(g))(ζ(x))

for all g ∈ G and x ∈W .

A basic fact in the global homotopy theory of orthogonal spaces is that for
two compact Lie groups K and G, and for any faithful G-representation V ,
the infinite Stiefel manifold L(V,UK) is a universal (K ×G)-space for the fam-
ily of graph subgroups, compare [21, Proposition 1.1.26]. This property relies
on the fact that for every finite-dimensional K-representation W , the space
LK(W,UK) of K-equivariant R-linear isometric embeddings is contractible,
compare [21, Proposition 1.1.21]. Both statements have suitable analogs in
the complex and quaternionic situations, with easily adapted proofs. Since I
do not know of references, I provide proper statements and proofs now.
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Proposition A.28. Let UK be a complete universe of a compact Lie group K.

Let β : K −→ G(K) be a continuous homomorphism, where K is either C or

H. Let K act on UK

K = UK ⊗R K by

k · (x⊗ λ) = (kx)⊗ β(k)(λ) .

Then for every (K,β)-representation W , the space LK,K(W,UK

K) of K-linear

K-equivariant isometric embeddings is weakly contractible.

Proof. We let U be any (K,β)-representation, possibly of countably infinite
dimension. Then the homotopy

H : [0, 1]× LK,K(W,U) −→ LK,K(W,U ⊕W ) ,

H(t, ϕ)(w) = (
√

1− t2 · ϕ(w), t · w)

witnesses the fact that the map

i1 ◦ − : LK,K(W,U) −→ LK,K(W,U ⊕W )

(post-composition with i1 : U −→ U ⊕W ) is homotopic to a constant map.
The space

LK,K(W,U ⊕W∞) = colimn≥0 LK,K(W,U ⊕Wn)

is the colimit along the post-composition maps with the direct sum embeddings
U ⊕Wn −→ U ⊕Wn+1. Every map in the colimit system is homotopic to a
constant map, by the previous paragraph. Since the maps are also closed
embeddings, the colimit is weakly contractible.
Now we can prove the proposition. Because UK is a complete K-universe, there
is a K-equivariant R-linear isometry UK ∼= V⊕ (uW )∞ for some orthogonal K-
representation V (typically infinite dimensional). The K-linear K-equivariant
isometric embedding ζ : W −→ (uW )⊗RK provides an isomorphism of (K,β)-
representations

(uW )⊗R K ∼= C ⊕W ,

where C is the orthogonal complement of the image of ζ. So UK

K is isomorphic
to

(V ⊕ (uW )∞)⊗R K ∼= (V ⊗R K)⊕ C∞ ⊕W∞ .

The space LK,K(W,UK

K) is thus weakly contractible by the first paragraph.

Construction A.29. We let K and G be compact Lie groups, and we let
β : K −→ G(K) and ǫ : G −→ G(K) be two continuous homomorphisms. We
write

K ×G(K) G = {(k, g) ∈ K ×G : β(k) = ǫ(g)}
for the fiber product over G(K). We let W be a (G, ǫ)-representation, and we
let UK be a complete K-universe. As before we write UK

K = UK ⊗R K for the
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scalar extension. The group K ×G(K) G then acts on the space LK(W,UK

K) of
K-linear isometric embeddings by

(k, g) · ϕ = (lk ⊗ β(k)) ◦ ϕ ◦ l−1
g , (A.30)

where lk : UK −→ UK and lg : W −→ W are the translation maps. We exploit
here that for (k, g) ∈ K ×G(K) G, both maps lk ⊗ β(k) and lg are semilinear
for the same R-algebra automorphism of K, so the composite (A.30) is again
K-linear. So altogether the assignment (A.30) defines a continuous action of
the compact Lie group K ×G(K) G on the space LK(W,UK

K).

Proposition A.31. Let K be C or H. Let ǫ : G −→ G(K) be a continuous

epimorphism from a compact Lie group with kernel G0. Let W be a faithful

(G, ǫ)-representation. Then for every continuous homomorphism β : K −→
G(K) from another compact Lie group and for every complete K-universe UK ,

the (K ×G(K) G)-space LK(W,UK

K) is a universal (K ×G(K) G)-space for the

family of those closed subgroups that intersect 1×G0 trivially.

Proof. Essentially the same argument as in the real situation in [21, Proposition
1.1.19], which relies on Illman’s equivariant triangulation theorem for smooth
actions of compact Lie groups [10], shows that LK(W,UK

K) is cofibrant as a
(K ×G(K) G)-space. Since G0 acts faithfully on W , the action on LK(W,UK

K)
by precomposition is free. So every subgroup of K ×G(K) G with fixed points

on LK(W,UK

K) must intersect the group 1 × G0 trivially. Conversely, we now
consider a closed subgroup ∆ of K ×G(K) G such that ∆ ∩ (1×G0) = e. Then
∆ is the graph of some continuous homomorphism

α : L −→ G

defined on some closed subgroup L of K, such that ǫ ◦ α = β|L. Hence

(

LK(W,UK

K)
)∆

= LK,L(α∗(W ),UK

K) ,

the space of K-linear and L-equivariant isometric embeddings from α∗(W ) into
UK

K , with L-action on the target by

l · (x⊗ λ) = (lx)⊗ β(l)(λ) .

Because UK is a complete K-universe, the underlying L-representation is a
complete L-universe. So the space LK,L(α∗(W ),UK

K) is weakly contractible by
Proposition A.28. This completes the proof.

Construction A.32. Let ǫ : G −→ G(K) be a continuous epimorphism from
a compact Lie group. Let W be a (G, ǫ)-representation. For a euclidean inner
product space V , we define a G-action on the Stiefel manifold LK(W,VK) by

gϕ = (V ⊗ ǫ(g)) ◦ ϕ ◦ l−1
g ,
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where lg : W −→W is translation by g ∈ G. The orbit space

LK(W,VK)/G0

by the action of the closed normal subgroup G0 = ker(ǫ) inherits a resid-
ual G(K)-action; for varying V , this defines an orthogonal G(K)-space
LK(W, (−)K)/G0. For example, for the augmentation ǫk : Ĩ(k) = I(k) ⋊

G(K) −→ G(K) of the extended isometry group of Kk and the tautological
(Ĩ(k), ǫk)-representation on Kk, the construction specializes to the Grassman-
nian GrKk from Example 3.12.

We let ǫ : G −→ G(K) be a continuous epimorphism, and we continue to write
G0 = ker(ǫ). We will now argue that for every faithful (G, ǫ)-representation
W , the orthogonal G(K)-space LK(W, (−)K)/G0 is a G(K)-global classifying
space, in the sense of Construction A.4, of the epimorphism ǫ : G −→ G(K).
Because G acts faithfully on W , we can use the underlying orthogonal G-
representation uW to construct a G(K)-global classifying space

Bglǫ = G(K)×ǫ L(uW,−) = L(uW,−)/G0 .

The issue now is to compare this orthogonal G(K)-space to LK(W, (−)K)/G0.
To this end we recall from (A.25) the K-linear isometric embedding

ζ : W −→ (uW )⊗R K = (uW )K .

The enriched Yoneda lemma provides a unique morphism of orthogonal spaces

ζ♭ : L(uW,−) −→ LK(W, (−)K)

whose value at uW takes the identity to ζ. Since the map ζ is G0-equivariant,
so is the morphism ζ♭. For any G-space Z, we can thus form the morphism of
orthogonal spaces

ζ♭ ×G0 Z : L(uW,−)×G0 Z −→ LK(W, (−)K)×G0 Z .

The relation (A.27) implies that this morphism is G(K)-equivariant, and hence
a morphism of orthogonal G(K)-spaces.

Theorem A.33. Let ǫ : G −→ G(K) be a continuous epimorphism from a

compact Lie group, where K is either C or H. Let W be a faithful (G, ǫ)-
representation, and let Z be a G-space.

(i) The morphism of orthogonal G(K)-spaces ζ♭×G0Z is a G(K)-global equiv-
alence.

(ii) The morphism of orthogonal G(K)-spectra

Σ∞ζ♭+ ∧G0 Z
⋄ : Σ∞L(uW,−)+ ∧G0 Z

⋄ −→ Σ∞LK(W, (−)K)+ ∧G0 Z
⋄

is a G(K)-global equivalence, where Z⋄ denotes the unreduced suspension.
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Proof. (i) We consider a continuous homomorphism β : K −→ G(K) from
another compact Lie group. Then LK(W,UK

K) is a universal (K×G(K)G)-space
for the family of those closed subgroups that intersect 1 × G0 trivially, by
Proposition A.31. Also, the (K ×G)-space L(uW,UK) is a universal space for
the family of graph subgroups, i.e., those closed subgroups ∆ of K × G such
that ∆ ∩ (1 × G) = e, compare [21, Proposition 1.1.26]. For a subgroup of
K×G(K)G, the intersections with 1×G and 1×G0 coincide; so the underlying
(K ×G(K) G)-space of L(uW,UK) is a universal space for the family of those
closed subgroups ∆ such that ∆ ∩ (1×G0) = e. The continuous map

ζ♭(UK) : L(uW,UK) −→ LK(W,UK

K) , ϕ 7−→ (ϕ ⊗K) ◦ ζ
is (K ×G(K) G)-equivariant; since source and target are universal spaces for
the same family of subgroups, the map is a (K×G(K)G)-equivariant homotopy
equivalence. The induced map on G0-orbit spaces

ζ♭(UK)×G0 Z : L(uW,UK)×G0 Z −→ LK(W,UK

K)×G0 Z

is thus an equivariant homotopy equivalence for the action of the group
(K ×G(K) G)/G0. The projection to the first factor identifies the group
(K ×G(K) G)/G0 with K; and the (K ×G(K) G)/G0-fixed points coincide with

the fixed points of the graph of β on (ζ♭ ×G0 Z)(UK). So we have verified that
the map ((ζ♭ ×G0 Z)(UK))Γ(β) is a weak equivalence for every continuous ho-
momorphism β : K −→ G(K). Since the orthogonal spaces underlying source
and target of ζ♭ ×G0 Z are closed, the morphism ζ♭ ×G0 Z is a G(K)-global
equivalence by Proposition A.3.
(ii) The same argument to compare the long exact homotopy group sequences
of mapping cones as in Theorem A.15 applies here, but now the role of Propo-
sition A.5 is played by the first part of this theorem.

We record a special case of Theorem A.33 that is particularly relevant for the
application to global stable splittings of Stiefel manifolds. We write

ǫk : Ĩ(k) = I(k) ⋊G(K) = LK(Kk,Kk) ⋊G(K) −→ G(K)

for the augmentation of the extended isometry group of Kk, i.e., the projection
to the second factor. The tautological action makes Kk a faithful (Ĩ(k), ǫk)-
representation in the sense of Definition A.21. So for every orthogonal Ĩ(k)-
representation U , Theorem A.33 (ii) provides a G(K)-global equivalence of
orthogonal G(K)-spectra

Σ∞ζ♭+ ∧I(k) SU : Σ∞(Bglǫk)U
≃−−→ Σ∞(GrKk )U .

We write

ek,U = (Σ∞ζ♭+ ∧I(k) SU )∗(eǫk,U,uKk) ∈ π
Ĩ(k)
U (ǫ∗k(Σ∞(GrKk )U )) (A.34)

for the image under this G(K)-global equivalence of the tautological class de-
fined in (A.16). Because Σ∞ζ♭+ ∧I(k) SU is a G(K)-global equivalence, Theo-
rem A.17 (i) implies the following result.
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Corollary A.35. Let K be C or H. Let U be an orthogonal representation of

the extended isometry group Ĩ(k). Then for every orthogonal G(K)-spectrum Y ,

the evaluation map

GHG(K)(Σ
∞(GrKk )U , Y ) −→ π

Ĩ(k)
U (ǫ∗k(Y )) , f 7−→ f∗(ek,U )

is an isomorphism.

B Some linear algebra

The purpose of this appendix is to provide detailed proofs of the linear algebra
facts used in the main part of this paper. We set things up so that everything
works simultaneously over the fields R and C and over the skew-field H of
quaternions. Linear algebra over the quaternions comes with some additional
caveats, many due to the non-commutativity of the multiplication. So I felt
the need to justify that the relevant arguments can indeed be adapted to the
quaternion situation. I make absolutely no claim to originality for anything in
this appendix.

Throughout this appendix, we will let K denote one of the three skew-fields R,
C or H. A K-vector space is a right K-module. Given two K-vector spaces V
and W , we write HomK(V,W ) for the R-vector space of right K-linear maps.
For K = C one can make HomC(V,W ) a C-vector space by pointwise scalar mul-
tiplication, but we will not use this structure. Due to the non-commutativity
of the quaternions, for K = H there is no natural way to endow HomH(V,W )
with an H-action.

A K-inner product space is a finite-dimensional K-vector space equipped with a
sesquilinear, hermitian and positive-definite K-valued inner product [−,−], see
Definition 3.2. An example of an inner product space is Kk with the standard
inner product

[x, y] = x̄1 · y1 + · · ·+ x̄k · yk .

Every K-inner product space W admits an orthonormal basis (w1, . . . , wk), i.e.,
such that

[wi, wj ] =

{

1 for i = j, and

0 for i 6= j.

The familiar argument from real and complex linear algebra also works over
the quaternions: we choose a non-zero vector w ∈ W and normalize it to
w1 = w/|w|; the orthogonal complement W⊥ = {v ∈W : [v, w] = 0} is then a
K-subspace that has an orthonormal basis by induction over the dimension. A
choice of orthonormal basis of W provides a K-linear isometry Kk ∼= W , where
k = dimK(W ). So up to K-linear isometry, the standard examples K

k are the
only examples of K-inner product spaces.
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Remark B.1 (Adjoints). Because inner products are positive-definite, they are
in particular non-degenerate, i.e., they provide an identification with the dual
vector space. Given a K-vector space, we write

W∨ = HomK(W,K)

for the R-vector space of right K-linear maps. We give W∨ a right K-action by

(f · λ)(w) = λ̄ · f(w)

for f ∈ W∨, λ ∈ K and w ∈ W . If W is finite-dimensional and [−,−] is a
K-inner product on W , then the map

W −→ W∨ , w 7−→ [w,−]

is a K-linear isomorphism.
Now we let X : W −→ V be a K-linear map between K-inner product spaces.
The adjoint of X is the K-linear map X∗ : V −→ W that makes the following
square commute:

V
X∗

//

v 7→[v,−] ∼=
��

W

w 7→[w,−]∼=
��

V ∨

X∨

// W∨

So the adjoint is characterized by the relation

[X∗v, w] = [v,Xw]

for all v ∈ V and w ∈ W . Passage to the adjoint is R-linear, contravariantly
functorial, and involutive.

Given two K-inner product spaces V and W , we write LK(V,W ) for the
Stiefel manifold of K-linear isometric embeddings, i.e., right K-linear maps
A : V −→ W that satisfy [Av,Av′] = [v, v′] for all v, v′ ∈ V . An equivalent
condition is to demand that A∗ ·A = IdV . In the special case V = W , we also
write

I(W ) = LK(W,W )

and refer to this as the isometry group of W . The traditional names for the
isometry groups are of course the orthogonal group O(W ) in the case K = R,
the unitary group U(W ) in the case K = C, and the symplectic group Sp(W )
in the case K = H.

Remark B.2 (Adjoint representation). We let W be a finite-dimensional K-
vector space. The exponential map

exp: EndK(W ) −→ GLK(W ) is given by exp(X) =
∑

k≥0

Xk/k! . (B.3)
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If the endomorphisms X and Y commute, then exp(X+Y ) = exp(X) ·exp(Y ).
For a K-inner product space W , we write

ad(W ) = {X ∈ EndK(W ) : X∗ = −X}

for the R-vector space of its skew-adjoint endomorphisms. Since (X∗)k = (Xk)∗

for all k ≥ 0, also exp(X∗) = exp(X)∗. So if X ∈ ad(W ) is skew-adjoint, then

exp(X)∗ · exp(X) = exp(X∗) · exp(X) = exp(−X) · exp(X) = exp(0) = IdW .

In other words, the exponential map restricts to a smooth map

exp : ad(W ) −→ I(W ) (B.4)

from the skew-adjoint endomorphisms to the isometry group. This map is in
fact a local diffeomorphism around the origin, and it exhibits ad(W ) as the
adjoint representation of the compact Lie group I(W ), whence the notation.

� Due to the non-commutativity of the quaternions, the notions of ‘eigen-
values’ and ‘eigenvectors’ of H-linear endomorphisms are somewhat prob-

lematic. Indeed, if X : W −→ W is an H-linear endomorphism and λ ∈ H a
scalar, then the ‘eigenspace’

{w ∈W : Xw = wλ}

is an R-subspace of W , but typically not closed under multiplication by scalars
from H. If the scalar λ is real, and hence central in H, then the issue disappears
and the above is an H-subspace of W . So in order to deal with eigenspaces in a
uniform way for R, C and H, we should – and will – restrict to real eigenvalues.

Proposition B.5. Let X be a self-adjoint endomorphism of a K-inner product

space W , i.e., X∗ = X. Then X is diagonalizable with real eigenvalues and

pairwise orthogonal eigenspaces.

Proof. The argument over the real and complex numbers can be found in many
text books on linear algebra. So we restrict to the less common case K = H of
the quaternions. We argue over the dimension of W ; the induction starts with
W = 0, where there is nothing to show. Now we suppose that W 6= 0. We
treat X as a C-linear endomorphism of the underlying C-vector space of W .
There is then an eigenvector w ∈ W \ {0} and a complex scalar λ ∈ C such
that Xw = wλ. Because X is self-adjoint we deduce that

[w,w]λ = [w,wλ] = [w,Xw] = [Xw,w] = [wλ,w] = λ̄[w,w] .

Since w 6= 0, the inner product [w,w] is a non-zero real number, so we must
have λ = λ̄, i.e., the complex scalar λ is in fact real. Now we observe that the
orthogonal complement W⊥ of w is invariant under X . Indeed, for v ∈W⊥ we
have

[Xv,w] = [v,Xw] = [v, wλ] = [v, w]λ = 0 .
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We can thus apply the inductive hypothesis to the restricted endomorphism
X |W⊥ : W⊥ −→ W⊥. Since this restriction is diagonalizable with real eigen-
values and pairwise orthogonal eigenspaces, the same is true for the original
endomorphism W .

We write
sa(W ) = {X ∈ EndK(W ) : X∗ = X}

for the R-vector space of self-adjoint endomorphisms of a K-inner product
space W . As mentioned above, the exponential map (B.3) commutes with
the passage to adjoints; so if X is self-adjoint, then so is exp(X). Hence for
X ∈ sa(X), both X and exp(X) are diagonalizable with real eigenvalues and
pairwise orthogonal eigenspaces, by Proposition B.5. Moreover, if Xw = wλ,
then

exp(X)w =
∑

k≥0

Xkw =
∑

k≥0

w · λk = w · exp(λ) .

So exp(X) has the same eigenspaces as X , but the corresponding eigenvalues
are exponentiated. This process can be reversed as long as the eigenvalues are
positive, so the restricted exponential map

exp : sa(W )
∼=−−→ sa

+(W ) = {X ∈ sa(W ) : X is positive-definite} (B.6)

is a homeomorphism onto the subspace of positive-definite self-adjoint endo-
morphisms, i.e, the ones with positive real eigenvalues.

Proposition B.7. Let V and W be K-inner product spaces. The smooth map

LK(W,V )× sa(W ) −→ HomK(W,V ) , (A,Z) 7−→ A · exp(−Z)

is an open embedding with image the subspace of K-linear monomorphisms.

Proof. Since the restricted exponential map (B.6) is a homeomorphism, it suf-
fices to show that the composition map

◦ : LK(W,V )× sa
+(W ) −→ Hominj

K
(W,V )

is a homeomorphism. If B : W −→ V is any K-linear map, then B∗ · B is
self-adjoint and positive semi-definite. If B is a moreover injective, then B∗ ·B
is even positive-definite. We write

√
: sa

+(W ) −→ sa
+(W )

for the homeomorphism that sends a positive-definite self-adjoint endomor-
phism X to the unique positive-definite self-adjoint endomorphism such that√
X ·
√
X = X . Then the continuous map

Hominj
K

(W,V ) −→ LK(W,V )× sa
+(W ) , B 7−→

(

B ·
√
B∗ · B−1

,
√
B∗ ·B

)

is inverse to the composition map.

Documenta Mathematica 27 (2022) 789–845



Global Stable Splittings of Stiefel Manifolds 841

The complex version of the next proposition is [6, Lemma 1.13]; Crabb leaves
the proof as an exercise in linear algebra, and we will do the exercise. Crabb
indicates how one can arrive at the formula for the open embedding c in the
paragraph after [6, Lemma 1.15]. Propositions B.8 and B.11 together recover
Miller’s homeomorphism [19, Theorem A] that exhibits the filtration stratum
FK

k (W ;m) \FK

k−1(W ;m) as the total space of the vector bundle over GrKk (W )
associated to the I(k)-representation ν(k,m)⊕ ad(k).

Proposition B.8. Let V and W be K-inner product spaces. Then the map

c : HomK(W,V )⊕ ad(W ) −→ LK(W,W ⊕ V ) , c(Y,X) = (g, h)

with

g = (X/2 + Y ∗Y/4− 1)(X/2 + Y ∗Y/4 + 1)−1 : W −→ W

h = Y (1− g)/2 : W −→ V

is an open embedding onto the subspace of those f ∈ LK(W,W ⊕ V ) such that

ker(f − i1) = 0.

Proof. It will be convenient to abbreviate

C = X/2 + Y ∗Y/4 ;

we check that the endomorphism C+1 has a trivial kernel, and is thus invertible.
Indeed, suppose that Cw = −w for some w ∈W . Then

−Xw/2 = −(C − Y ∗Y/4)w = w + Y ∗Y w/4 ,

and hence

−[w,w] = [w,Cw] = [w, (X/2 + Y ∗Y/4)w]

= 1/2[X∗w,w] + 1/4[Y w, Y w]

= −1/2[Xw,w] + 1/4[Y w, Y w]

= [w + Y ∗Y w/4, w] + 1/4[Y w, Y w]

= [w,w] + 1/2[Y w, Y w] ≥ 0 .

So we must have w = 0. Since C + 1 is invertible, the definitions of

g = (C − 1)(C + 1)−1 (B.9)

and h make sense.
Now we show that g∗g + h∗h = 1, so that (g, h) : W −→ W ⊕ V is indeed a
linear isometric embedding. Because X is skew-adjoint and Y ∗Y is self-adjoint,
we have C + C∗ = Y ∗Y/2. Relation (B.9) implies

1− g = 2(C + 1)−1 , (B.10)
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so

h∗h = (1− g∗)Y ∗Y (1− g)/4 (B.10) = 2(C∗ + 1)−1(C∗ + C)(C + 1)−1 .

Hence

g∗g + h∗h = (C∗ + 1)−1 [(C∗ − 1)(C − 1) + 2(C∗ + C)] (C + 1)−1

= (C∗ + 1)−1(C∗ + 1)(C + 1)(C + 1)−1 = 1 .

The morphism 1− g is invertible by (B.10), and thus has trivial kernel. So also
the kernel of (g, h)−i1 = (g−1, h) : W −→W⊕V is trivial. This concludes the
verification that c is a well-defined map with image in the subspace of those
linear isometric embeddings f : W −→ W ⊕ V such that f − i1 has trivial
kernel.
Now we exhibit a continuous inverse to c. We define

λ : {(g, h) ∈ LK(W,W ⊕ V ) : ker(1− g) = 0} −→ HomK(W,V )⊕ ad(W )

by λ(g, h) = (Y,X) ,

where

Y = 2h(1− g)−1

X = 2(1− g∗)−1(g − g∗)(1 − g)−1 .

We show that λ is indeed inverse to c. To verify the relation c(λ(g, h)) = (g, h)
in the first component we set

C = X/2 + Y ∗Y/4

= (1− g∗)−1(g − g∗ + h∗h)(1− g)−1

= (1− g∗)−1 (g − g∗ + (1− g∗g)) (1− g)−1

= (1− g∗)−1(1− g∗)(1 + g)(1− g)−1

= (1 + g)(1 − g)−1 = 1 + 2g(1− g)−1 .

Then

(C − 1) · (C + 1)−1 = 2g(1− g)−1 ·
(

2(1 + g(1− g)−1)
)−1

= g(1− g)−1 ·
(

1 + g(1− g)−1
)−1

= g(1− g)−1 · (1− g) = g .

In the second component, the desired equality is simply

Y (1− g)/2 = 2h(1− g)−1(1− g)/2 = h .

The final check is the relation λ(c(Y,X)) = (Y,X). In the second component
we use that

1− g = 1− (C − 1)(C + 1)−1 = 2(C + 1)−1

g − g∗ = 2(C∗ + 1)−1 − 2(C + 1)−1 = 2(C∗ + 1)−1(C − C∗)(C + 1)−1 ,
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and hence

2(1− g∗)−1(g − g∗)(1 − g)−1 = C − C∗ = 1/2(X −X∗) = X .

In the first component, the desired equality is simply

2h(1− g)−1 = 2 (Y (1− g)/2) (1 − g)−1 = Y .

We let W be a K-inner product space. As in the body of this paper, we denote
the k-th term of the eigenspace filtration of the Stiefel manifold LK(W,W⊕Km)
by

Fk(W ;m) = {f ∈ LK(W,W ⊕K
m) : dimK(ker(f − i1)⊥) ≤ k} ,

where i1 : W −→ W ⊕ K
m is the embedding of the first summand. We write

I(k) = LK(Kk,Kk) for the isometry group of Kk. Conjugation ψ(−) by a linear
isometric embedding ψ was defined in (3.5).

Proposition B.11. For every K-inner product space W and all k,m ≥ 0, the
map

LK(Kk,W )×I(k) LK(Kk,Kk+m) −→ Fk(W ;m) , [ψ, f ] 7−→ ψf

is a relative homeomorphism from the pair
(

LK(Kk,W )×I(k) LK(Kk,Kk+m), LK(Kk,W )×I(k) Fk−1(Kk;m)
)

to the pair (Fk(W ;m),Fk−1(W ;m)).

Proof. Since all spaces involved are compact, we only need to show that the
map in question restricts to a homeomorphism from

LK(Kk,W )×I(k) (LK(Kk,Kk+m) \ Fk−1(Kk;m))

to the complement of Fk−1(W ;m) in Fk(W ;m). We consider a linear isometric
embedding g : W −→W ⊕Km in Fk(W ;m) \ Fk−1(W ;m), i.e., so that

dimK(ker(g − i1)⊥) = k .

We choose a K-linear isometry

ψ : K
k ∼=−−→ ker(g − i1)⊥ .

Then g restricts to a linear isometric embedding

ḡ : ker(g − i1)⊥ −→ ker(g − i1)⊥ ⊕K
m ,

and we can define the linear isometric embedding f : Kk −→ Kk+m by

f = (ψ−1 ⊕K
m) ◦ ḡ ◦ ψ .

Then g = ψf , and f satisfies ker(f − i1) = 0, so that f belongs to
LK(Kk,Kk+m) \ Fk−1(Kk;m). Since the only choice in this construction was
the K-linear isometry ψ, and any two choices differ by precomposition with an
element of I(k), this proves the claim.
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