
Documenta Math. 847

Fiberwise Kähler-Ricci Flows on Families of

Bounded Strongly Pseudoconvex Domains

Young-Jun Choi and Sungmin Yoo

Received: March 10, 2021

Revised: May 1, 2022

Communicated by Mihai Păun

Abstract. Let π : Cn × C → C be the projection map onto the
second factor and let D be a domain in Cn+1 such that for y ∈ π(D),
every fiber Dy := D∩π−1(y) is a smoothly bounded strongly pseudo-
convex domain in Cn and is diffeomorphic to each other. By Chau’s
theorem, the Kähler-Ricci flow has a long time solution ωy(t) on
each fiber Xy. This family of flows induces a smooth real (1,1)-form
ω(t) on the total space D whose restriction to the fiber Dy satisfies
ω(t)|Dy

= ωy(t). In this paper, we prove that ω(t) is positive for all
t > 0 in D if ω(0) is positive. As a corollary, we also prove that the
fiberwise Kähler-Einstein metric is positive semi-definite on D if D is
pseudoconvex in Cn+1.
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1 Introduction

Let D be a domain in Cn+1 and S := π(D) ⊂ C, where π : Cn × C → C

is the standard projection map onto the second factor. We say that D is a
holomorphic family of bounded strongly pseudoconvex domains if it satisfies the
following:

(i) π−1(S) ∩ ∂D is smooth and π|∂D : π−1(S) ∩ ∂D → S is a submersion.

(ii) For y ∈ S, all fibers Dy := π−1(y) ∩ D are smoothly bounded strongly
pseudoconvex domains in Cn.
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In this case, there exists a defining function r of D such that ω :=
i∂∂(− log(−r)) is a d-closed smooth real (1, 1)-form on D whose restriction
to the fibers ω|Dy

is a complete Kähler metric with bounded geometry (see
Section 3.1).
Now we consider the following (normalized) Kähler-Ricci flow on each fiber Dy:

∂

∂t
ωy(t) = −Ric(ωy(t))− (n+ 1)ωy(t),

ωy(0) = ω|Dy
.

(1.1)

This flow has a long time solution ωy(t) which converges to the unique com-
plete Kähler-Einstein metric ωKEy with Ricci curvature −(n+ 1) as t→ ∞ by
Chau’s theorem in [6]. In fact, ωy(t) is given by the solution of a parabolic
Monge-Ampère equation. As a consequence of the implicit function theorem
for the Monge-Ampère operator, we obtain smooth real (1,1)-forms ω(t) on the
total space D whose restriction to the fibers Dy satisfies ω(t)|Dy

= ωy(t) (see
Proposition 3.3). Moreover, ω(t) evolves by the following equation, called the
fiberwise Kähler-Ricci flow :

∂

∂t
ω(t) = Θω(t) − (n+ 1)ω(t),

ω(0) = ω,

(1.2)

where Θω(t) is the relative curvature form of ω(t) (Theorem 3.5). This flow
was first introduced by Berman in [2] for the case of compact fibrations with
the name “relative Kähler-Ricci flow”. The main theorem of this paper is a
non-compact version of Berman’s theorem (cf. Corollary 4.9 in [2]).

Theorem 1.1. If ω is semi-positive in D and strictly positive at least one point
on each fiber Dy, then ω(t) is positive in D for all t > 0.

On the other hand, the family of Kähler-Einstein metrics ωKEy on Dy also
induces a d-closed smooth real (1, 1)-form ρ on the total space D. The form ρ is
called the fiberwise Kähler-Einstein metric since it satisfies ρ|Dy

= ωKEy (cf. [9,

18]). Using the fact that ωy(t) converges to ω
KE
y on each fiberDy, one can show

that the solution of the fiberwise Kähler-Ricci flow ω(t) smoothly converges to
the fiberwise Kähler-Einstein metric ρ on the total space D (Theorem 3.8).
Since the existence of initial form ω satisfying the hypothesis in Theorem 1.1
is guaranteed provided that D is pseudoconvex in Cn+1 (Proposition 3.1), we
have the following

Corollary 1.2. The fiberwise Kähler-Einstein metric ρ is semi-positive if D
is pseudoconvex.

Corollary 1.2 has already proved by the first named author in [9, 10]. In fact, he
further proved that ρ is strictly positive if D is strongly pseudoconvex. In his
papers [9, 10], he analyzed the boundary behavior of the variation of Kähler-
Eintein metrics via the boundary behavior of Kähler-Einstein metric due to
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Cheng and Yau. It is remarkable to note that the analysis for Corollary 1.2 in
this paper is lighter than the one in [9, 10].
A study on the positive variation of Kähler-Einstein metrics is first developed
by Schumacher [18]. More precisely, he has proved that the variation of Kähler-
Einstein metrics on a family of canonically polarized compact Kähler manifolds
is positive-definite on the total space. In [18], he showed that the geodesic
curvature of the fiberwise Kähler-Einstein metric, which measures the positiv-
ity along the horizontal direction, satisfies a certain elliptic partial differential
equation. A direct application of maximum principle says that the geodesic cur-
vature is positive, which is equivalent to the positivity of the fiberwise Kähler-
Einstein metric.
Later, Berman [2] proved the parabolic version of Schumacher’s result in the
same setting. On a canonically polarized compact Kähler manifold, the Kähler-
Ricci flow has a long time solution which converges to the unique Kähler-
Einstein metric by Cao’s theorem in [5]. Using this result, Berman con-
structed the relative Kähler-Ricci flow on a family of canonically polarized
compact Kähler manifolds. In [2], he proved the geodesic curvature of the
relative Kähler-Ricci flow satisfies a parabolic version of Schumacher’s elliptic
PDE. A parabolic maximum principle implies that the positivity of the rela-
tive Kähler-Ricci flow is preserved. In particular, Berman’s result implies the
Schumacher’s one since the relative Kähler-Ricci flow converges to the fiberwise
Kähler-Einstein metric.
In this paper, we shall generalize Berman’s results to a family of bounded
strongly pseudoconvex domains, which is one of the most important examples
for non-compact complete Kähler manifolds. In this case, the Kähler-Ricci flow
has a long time solution which converges to the unique Kähler-Einstein metric
due to Chau [6]. Moreover, the geodesic curvature of the fiberwise Kähler-Ricci
flow still satisfies Berman’s parabolic PDE. The difference comes from apply-
ing the parabolic maximum principle. In the previous case, since every fiber is
compact, we can apply the standard weak and strong parabolic maximum prin-
ciple. However, if the manifold is non-compact, the weak maximum principle
does not hold in general.
To resolve this problem, we will use Ni’s theorem in [15], which says that if
the function does not blow up too fast at the point at infinity, then the weak
maximum principle holds. To apply this, we have to investigate the boundary
behavior of the geodesic curvature of the fiberwise Kähler-Ricci flow. In fact,
we will show that it has a polynomial growth near the boundary with respect
to the defining function.
Throughout this paper, z = (z1, . . . , zn) will be a holomorphic local coordinate
system for the fibers Dy ⊂ Cn. For the base space S ⊂ C, we will always
use the standard Euclidean coordinate, denoted by s. We will use small Greek
letters, α, β, · · · = 1, . . . , n for indices on z unless otherwise specified. For a
properly differentiable function f on the total space D ⊂ Cn×C, we denote by

fα =
∂f

∂zα
, fβ̄ =

∂f

∂zβ̄
, and fs =

∂f

∂s
, fs̄ =

∂f

∂s̄
, (1.3)
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where zβ̄ mean zβ. We will always use the Einstein convention and the same
letter “C” to denote a generic constant, which may change from one line to
another, but it is independent of the pertinent parameters involved.
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2 Preliminaries

A compact Kähler manifold with negative first Chern class admits an unique
Kähler-Einstein metric with negative constant Ricci curvature by Aubin [1]
and Yau [21] using the continuity method. Later, Cao [5] gave another proof
of the existence of Kähler-Einstein metric using the Kähler-Ricci flow.
On the other hand, these results can be generalized to non-compact complete
Kähler manifolds which admit properties of bounded geometry due to Cheng-
Yau and Chau. In this section, we recaptulate their results (for the details,
see [6, 8]).

2.1 Elliptic Monge-Ampère equation and Kähler-Einstein metric

The existence of Kähler-Einstein metric comes from the solvability of the com-
plex Monge-Ampère equation. For that purpose, Cheng and Yau introduced
the notion of the bounded geometry of non-compact complete Kähler manifold.

Definition 1 (Bounded geometry). Let (M,ω) be a complete Kähler manifold
of dimension n. We say that (M,ω) has bounded geometry of order k if for
each p ∈ M there exists a holomorphic chart (Up, ξp) centered at p satisfying
following conditions:

(i) There exist constant r > 0, independent of p satisfying

Br(0) ⊂ Vp := ξp(Up) ⊂ C
n,

where Br(0) denotes the ball of radius r centered at 0 in C
n.

(ii) There exists a constant C > 0 independent of p satisfying

1

C

(

δαβ̄
)

≤
(

gαβ̄
)

≤ C
(

δαβ̄
)

,

where ω = igαβ̄dξ
α ∧ dξβ for the coordinates ξp = (ξ1, . . . , ξn).
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(iii) For any l ≤ k, there exist constants Cl > 0 independent of p satisfying
∥

∥gαβ̄
∥

∥

Cl(Vp)
≤ Cl.

Suppose that a complete Kähler manifold (M,ω) has bounded geometry of
order k. Let {(Up, ξp)} be a family of holomorphic charts covering M and
satisfying the conditions in Definition 1. For any functions u ∈ Ck(M), we
define the Hölder norm by

‖u‖k+ǫ := sup
p∈M

{
∥

∥u ◦ ξ−1
p

∥

∥

Ck+ǫ(Vp)
},

where ‖·‖Ck+ǫ(Vp)
is the standard elliptic Hölder norm on Vp := ξp(Up) ⊂ Cn.

Define the little Hölder space C̃k+ǫ(M) by the closure of the subspace C∞(M)
with respect to the norm ‖·‖k+ǫ. This is a Banach space.
Now we can state the following theorem due to Cheng and Yau.

Theorem 2.1 (Theorem 4.4 in [8]). Suppose (M,ω) is a complete Kähler
manifold with bounded geometry of order k ≥ 5. Then, for any K > 0 and
F ∈ C̃k−2+ε(M), there exists a unique ψ ∈ C̃k+ε(M) satisfying the following
conditions:

(ω + i∂∂ψ)n = eKψ+Fωn, (2.1)

1

C
ω ≤ ω + i∂∂ψ ≤ Cω. (2.2)

Moreover, if all the data are analytic, the solution is also analytic.

Remark 2.2. The equation (2.1) is called the elliptic complex Monge-Ampère
equation. The inequality (2.2) implies that (M,ω + i∂∂ψ) also has bounded
geometry of order k (see Proposition 1.4 in [8]).

We further assume that the Kähler form ω satisfies the following condition:

Ric(ω) +Kω = i∂∂F, (2.3)

for some constant K > 0 and function F ∈ C̃k−2+ε(M). Consider the Kähler
metric ωKE := ω + i∂∂ψ, where ψ is the solution of the Monge-Ampère equa-
tion (2.1) in Theorem 2.1. Then we have the following

Theorem 2.3 (Cheng-Yau [8]). The Kähler metric ωKE := ω + i∂∂ψ is the
unique complete Kähler-Einstein metric of M satisfying Ric(ωKE) = −KωKE.

2.2 Parabolic Monge-Ampère equation and Kähler-Ricci flow

There is an alternative proof of Theorem 2.3 using Hamilton’s Ricci flow due
to Chau [6]. This flow is called the Kähler-Ricci flow since it preserves the
Kähler-ness along the flow.
One of the advantages of the Kähler-Ricci flow approach is that one can prove
the existence of Kähler-Einstein metric under weaker assumptions. More pre-
cisely, Chau proved the following parabolic version of Theorem 2.3.
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Theorem 2.4 (Chau [6]). Let (M,ω) be a complete Kähler manifold with
bounded curvature. Suppose that there exist a smooth bounded function F and
a constant K > 0 satisfying

Ric(ω) +Kω = i∂∂F.

Then there exist a time family of Kähler metrics ω(t) for all t > 0 satisfying

∂

∂t
ω(t) = −Ric(ω(t))−Kω(t),

ω(0) = ω.

(2.4)

Moreover, ω(t) converges to the unique complete Kähler-Einstein metric ωKE.

The equation (2.4) is called the (normalized) Kähler-Ricci flow. Note that
here, we assumed neither the conditions of bounded geometry for ω nor
F ∈ C̃k−2+ε(M). But one can always find such metrics using the short time
existence of Kähler-Ricci flow due to Shi [19] so that the Kähler-Einstein metric
exists by Theorem 2.3.
To prove the long time existence of Kähler-Ricci flow, Chau considered the
functions ϕ ∈ C∞(M × [0,∞)) such that ω(t) := ω + i∂∂ϕ(t) satisfies the
equation (2.4). Then the problem is reduced to the solvability of the following
parabolic complex Monge-Ampère equation.

Theorem 2.5 (Theorem 1.1 in [6]). There exists a solution ϕ ∈ C̃k+ǫ,
k+ǫ
2 (M ×

[0,∞)) of the following equation:

{

∂
∂t
ϕ = log (ω+i∂∂ϕ)n

ωn −Kϕ− F,

ϕ|t=0 = 0.
(2.5)

Moreover, ϕ(t) converges to the function ψ in C̃k+ε(M) as t→ ∞, where ψ is
the unique solution of the equation (2.1) in Theorem 2.1.

Here, C̃k+ǫ,
k+ǫ
2 (M × [0, T )) is the little (parabolic) Hölder space, which is the

Banach completion of the subspace C∞(M × [0, T )) with respect to the norm

‖u‖k+ǫ, k+ǫ
2

:= sup
p∈M

{

∥

∥u ◦ ξ−1
p

∥

∥

C
k+ǫ,

k+ǫ
2 (Vp×[0,T ))

}

,

where ‖·‖
C

k+ǫ,
k+ǫ
2 (Vp×[0,T ))

is the standard parabolic Hölder norm on Vp×[0, T ).

3 Fiberwise Kähler-Ricci flow

In this section, we discuss the variation of the Kähler-Ricci flows on a holomor-
phic family of bounded strongly pseudoconex domains, which gives the fiberwise
Kähler-Ricci flow. Moreover, we will prove that the fiberwise Kähler-Ricci flow
converges to the fiberwise Kähler-Einstein metric.
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3.1 Construction of the reference form

First recall the setting in Introduction : Let D be a domain in Cn+1 and
S := π(D) ⊂ C. Suppose that D is a holomorphic family of bounded strongly
pseudoconvex domains, i.e., it satisfies the following:

(i) π−1(S) ∩ ∂D is smooth and π|∂D : π−1(S) ∩ ∂D → S is a submersion.

(ii) For y ∈ S, all fibers Dy := π−1(y) ∩ D are smoothly bounded strongly
pseudoconvex domains in Cn.

Note that the Condition (i) implies that all fibers are diffeomorphic by Ehres-
mann’s fibration theorem (cf. [17]). Together with the Condition (ii), there
exists a defining function r of D such that r|Dy

is a strictly plurisubharmonic

function on Dy. Define a d-closed smooth (1, 1)-form on the total space D by

ω := i∂∂̄(− log(−r)),

where ∂ and ∂̄ are the operators of the total space Cn+1. Then one can check
that (Dy, ωy) is a complete Kähler manifold with bounded geometry of infinite
order (for the details, see [8]). However, there is no information about the
positivity of the reference form ω along the base direction. The following
theorem says that positivity of ω on D is guaranteed by the pseudoconvexity
of D in Cn+1.

Proposition 3.1. If D is pseudoconvex on Cn+1, then there exists a defining
function r of D such that ω := i∂∂̄(− log(−r)) satisfies the following conditions

• ωy := ω|Dy
is complete Kähler form on each fiber Dy.

• ω ≥ 0 on D, and ω is strictly positive at least one point on each fiber Dy.

Proof. Note that D is a holomorphic family of bounded strongly pseudoconvex
domains, which is pseudoconvex in Cn+1. Then there exists a smooth plurisub-
harmonic defining function r̃ ofD such that for y ∈ S, r̃|Dy

is a strictly plurisub-

harmonic function on Dy ∩U , where U is a neighborhood of π−1(S)∩∂D. Let
ǫ1, ǫ2 be negative constants satisfying {x ∈ U : ǫ1 < r̃(x) < ǫ2 < 0} ⊂⊂ U ∩D.
Choose χ ∈ C∞(R) such that χ is negative constant for t ≤ ǫ1, χ(t) = t for
t ≥ ǫ2, and χ

′, χ′′ > 0 for ǫ1 < t < ǫ2. Then for a suitable cutoff function λ,
r := χ ◦ r̃ + λ|z|2 is a smooth defining function of D satisfying the conditions
in the statement of the proposition.

Since ωy > 0 for each fiber, the relative curvature form of ω can be defined by

Θω := i∂∂̄ log(ωn ∧ dVs),

where dVs := ids∧ds is the volume form on the base space C (cf. [11]). In fact,
this is the curvature form of the relative canonical line bundle. The following
proposition will be used later to prove Theorem 3.5 and Theorem 4.2.
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Proposition 3.2. There exists a bounded smooth function F on D satisfying

−Θω + (n+ 1)ω = i∂∂̄F. (3.1)

Moreover, F is smoothly extended up to ∂D.

Proof. Let (z1, . . . , zn, s) be the Euclidean coordinate for Cn+1. Then we have

Θω = i∂∂̄ log det(gαβ̄),

where g := − log(−r) is a function on D. The computations in [8] show that

det(gαβ̄) =

(

1

−r

)n+1

det(rαβ̄)
(

−r + |∂r|2
)

,

where |∂r|
2
:= rαβ̄rαrβ̄ with rαβ̄ = (rαβ̄)

−1 as matrices. It follows that

Θω = i∂∂̄ log det(gαβ̄) = (n+ 1)ω + i∂∂̄ log
(

det(rαβ̄)
(

−r + |∂r|
2
))

.

If we define the function F : D → R by

F := − log
(

det(rαβ̄)
(

−r + |∂r|2
))

,

then F is a bounded smooth function satisfying the equation (3.1). Since r is
smooth on D and |∂r| 6= 0 on ∂D, the second assertion follows.

3.2 Fiberwise Kähler-Ricci flow

Note that Θω|Dy
= −Ric(ωy). Restricting the equation (3.1) to the fiber Dy,

we have
Ric(ωy) + (n+ 1)ωy = i∂∂̄Fy,

where Fy := F |Dy
. Therefore, Theorem 2.5 implies that for y ∈ S, there exists

a solution ϕy on Dy × [0,∞) of the parabolic Monge-Ampère equation:

∂

∂t
ϕy = log

(ωy + i∂∂̄ϕy)
n

ωny
− (n+ 1)ϕy − Fy ,

ϕy |t=0 = 0

(3.2)

Hence ωy(t) := ωy + i∂∂̄ϕy(t) is the solution of the (normalized) Kähler-Ricci
flow:

∂

∂t
ωy(t) = −Ric(ωy(t))− (n+ 1)ωy(t),

ωy(0) = ωy.

(3.3)

The following proposition yields that the solution ϕy(t) of the equations (3.2)
vary smoothly along the base direction s.
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Proposition 3.3. For t ∈ [0,∞), the function ϕ(t) given by

ϕ(x; t) := ϕy(x; t)

where y = π(x) and x ∈ D, is smooth on the total space D.

Proof. For a fixed point y0 ∈ S, denote by Ω := Dy0 . Ehresmann’s fibration
theorem implies that there exists a fiber-preserving diffeomorphism Φ : D →
Ω × S which is smoothly extended up to the boundary π−1(S) ∩ ∂D. Hence

for y ∈ S, all Banach spaces C̃k+ǫ,
k+ǫ
2 (Dy × [0, T )) can be identified with the

space C̃k+ǫ,
k+ǫ
2 (Ω× [0, T )).

Now we define the following parabolic Monge-Ampère operator

M : U × C̃k+ǫ,
k+ǫ
2 (Ω× [0, T )) → C̃k−2+ǫ, k−2+ǫ

2 (Ω× [0, T ))

by

M(y, φ) =
∂

∂t
φ− log

(ωy + i∂∂̄φy)
n

ωny
+ (n+ 1)φ+ Fy,

where i∂∂̄ is the operator ofDy pulled back under the chosen diffeomorphism Φ.

By Theorem 2.5, there exists ϕy0 ∈ C̃k+ǫ,
k+ǫ
2 (Ω× [0, T )) such that

M(y0, ϕy0) = 0.

Then, the partial Fréchet derivative of M at the point (y0, ϕy0) is an operator

D2M(y0, ϕy0) : C̃
k+ǫ, k+ǫ

2 (Ω× [0, T )) → C̃k−2+ǫ, k−2+ǫ
2 (Ω× [0, T ))

which is defined by for any φ ∈ C̃k+ǫ,
k+ǫ
2 (Ω× [0, T )),

D2M(y0, ϕy0)(φ) =
( ∂

∂t
−∆t + (n+ 1) · id

)

φ,

where ∆t is the Laplacian with respect to ωy0(t) = ωy0 + i∂∂̄ϕy0(t).
Using a version of maximum principle, we can show that D2M(y0, ϕy0) is a

Banach space isomorphism between C̃k+ǫ,
k+ǫ
2 (Ω×[0, T )) and C̃k−2+ǫ, k−2+ǫ

2 (Ω×
[0, T )) (for details, see the proof of Claim 1 of Lemma 2.2 in [7]). Hence the
Implicit Function Theorem implies that there exists a Fréchet differentiable

function µ : U → C̃k+ǫ,
k+ǫ
2 (Ω× [0, T )) such that

M(y, µ(y)) = 0.

The uniqueness of the solution implies µ(y) = ϕy so that ϕy ∈ C̃k+ǫ,
k+ǫ
2 (Ω ×

[0, T )). Since the Monge-Ampère operator M is smooth, the implicit function
theorem implies that ϕy vary smoothly along the base direction s.

Remark 3.4. The proof of Proposition 3.3 implies that for any l1, l2 =
0, 1, 2, . . . ,

(

∂

∂s

)l1 ( ∂

∂s

)l2

ϕ
∣

∣

∣

Dy

∈ C̃k+ǫ,
k+ǫ
2 (Dy × [0,∞)).
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By Proposition 3.3, we can define d-closed smooth real (1, 1)-forms ω(t) on the
total space D by

ω(t) := ω + i∂∂̄ϕ(t). (3.4)

Since ωy(t) := ω(t)|Dy
is Kähler on each fiber Dy, one can consider relative

curvature form Θω(t) of ω(t) on D, given by

Θω(t) = i∂∂̄ log(ω(t)n ∧ dVs).

Theorem 3.5. The form ω(t) on D satisfies the following equation:

∂

∂t
ω(t) = Θω(t) − (n+ 1)ω(t),

ω(0) = ω.

(3.5)

Proof. It follows from (3.2) that

∂

∂t
ϕ = log

(ω + i∂∂̄ϕ)n ∧ dVs
ωn ∧ dVs

− (n+ 1)ϕ− F.

Taking i∂∂̄, we have

i∂∂̄

(

∂

∂t
ϕ

)

= Θω(t) −Θω − (n+ 1)i∂∂̄ϕ− i∂∂̄F.

Since ω does not depend on t, (3.1) implies that

∂

∂t

(

ω + i∂∂̄ϕ
)

= Θω(t) − (n+ 1)ω.

This completes the proof.

Remark 3.6. We will call the equation (3.5) the fiberwise Kähler-Ricci flow
on D, since the restriction of it to the fiber Dy is equal to the equation (3.3).
This flow was first introduced by Berman in [2] with the name “relative Kähler-
Ricci flow”.

3.3 Fiberwise Kähler-Einstein metric

On the other hand, Theorem 2.5 implies that for all fibers Dy, the solution
ϕy(t) of the parabolic Monge-Ampère equation (3.2) converges to the solution
ψy of the elliptic Monge-Ampère equation:

(ωy + i∂∂̄ψy)
n = e(n+1)ψy+Fyωny ,

1

C
ωy ≤ ωy + i∂∂ψy ≤ Cωy.

(3.6)

By the uniqueness of the Kähler-Einstein metric, we have

ωy + i∂∂̄ψy = ωKEy ,
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where ωKEy is the unique Kähler-Einstein metric with Ricci curvature −(n+1).
As in Proposition 3.3, the implicit function theorem for the elliptic Monge-
Ampère operator implies the following

Proposition 3.7 (cf. Section 3 in [9]). The function ψ : D → R, defined by

ψ(x) := ψy(x)

where y = π(x), is smooth on the total space D.

Define a d-closed smooth (1, 1)-form ρ on the total space D by

ρ := ω + i∂∂ψ.

The form ρ is called the fiberwise Kähler-Einstein metric, since ρ|Dy
= ωKEy .

Theorem 3.8. The solution of fiberwise Kähler-Ricci flow ω(t) locally uni-
formly converges to the fiberwise Kähler metric ρ on D as t → ∞. More
precisely, we have that ϕ(t) → ψ in C∞

loc(D).

Proof. It is enough to show that ϕ(t) smoothly converges to ψ on any compact
subset of D. More precisely, we will show that for each point x ∈ D, there
exists a neighborhood U of x in D such that

‖ϕ(t)− ψ‖Ck(U) → 0

as t → ∞, for all k ≥ 0. Before going to the proof, note that for y ∈ S, we
already know that as t→ ∞,

∥

∥ϕ(t)|Dy
− ψ|Dy

∥

∥

C̃k,ǫ(Dy)
→ 0. (3.7)

First consider the C0-convergence. Differentiating (3.2) with respect to t, we
get

∂

∂t
ϕ̇y = ∆tϕ̇y − (n+ 1)ϕ̇y,

ϕ̇y |t=0 = Fy.

(3.8)

It follows that
∂

∂t
(e(n+1)tϕ̇y) = ∆t(e

(n+1)tϕ̇y).

A maximum principle implies that
∣

∣

∣
e(n+1)tϕ̇y

∣

∣

∣
≤ sup

Dy

|Fy| ≤ C

for some uniform constant C > 0, independent of y. For 0 < t′ < t′′, we have

|ϕy(x, t
′)− ϕy(x, t

′′)| ≤

∣

∣

∣

∣

∣

∫ t′′

t′
ϕ̇y(x, u)du

∣

∣

∣

∣

∣

≤

∫ t′′

t′
|ϕ̇y(x, u)| du

≤

∫ t′′

t′
Ce−(n+1)udu ≤ C

(

e−(n+1)t′ − e−(n+1)t′′
)

.
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By (3.7), this implies that

‖ϕ(t)− ψ‖C0(D) ≤ Ce−(n+1)t.

Now we consider the Ck-convergence for any fixed k ∈ N. For each l1, l2 ∈ N

with l1 + l2 ≤ k, the proof of Proposition 3.3 implies that

U ∋ y → Dl1,l2
s ϕy(t) :=

( ∂

∂s

)l1( ∂

∂s

)l2
ϕ(t)

∣

∣

∣

Dy

∈ C̃k+ǫ,
k+ǫ
2 (Dy × [0,∞)).

is smooth where U is a neighborhood of y. Hence there exists a uniform con-
stant C which depends only on l1, l2, k such that

sup
y∈U

∑

l1+l2≤k

∥

∥Dl1,l2
s ϕy(t)

∥

∥

C̃
k+ǫ,

k+ǫ
2 (Dy×[0,∞))

< C.

This implies that there exists a neighborhood V of x in D and an uniform
constant C which does not depend on t such that

‖ϕ(t)‖Ck(V ) < C

where Ck(V )-norm means the usual Ck-norm on V ⊂ Cn+1. Therefore, the
proof is completed by the Arzela-Ascoli theorem and the uniqueness of limit
(for the details, see [5, 4]).

Theorem 3.5 and Theorem 3.8 imply the following

Corollary 3.9 (cf. Remark 3.4 in [12]). The fiberwise Kähler-Einstein met-
ric ρ satisfies the equation

Θρ = (n+ 1)ρ, (3.9)

where Θρ is the relative curvature form of ρ.

4 Geodesic curvature of the fiberwise Kähler-Ricci flow

In this section, we introduce the horizontal lift, which is developed by Siu
and Schumacher (cf. [20, 18]), and the geodesic curvature which measures the
positivity of a fiberwise Kähler form. We also discuss Berman’s parabolic PDE
which the geodesic curvature of the fiberwise Kähler-Ricci flow satisfies.

4.1 Horizontal lift and Geodesic curvature

Let D be a domain in Cn+1 such that every fiber Dy is a domain in Cn for
y ∈ S := π(D). Denote by v := ∂

∂s
∈ T ′

yS the coordinate vector field in the
base.

Definition 2. Let τ be a d-closed smooth real (1, 1)-form on D whose restric-
tion to the fibers τ |Dy

is positive definite.
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(1) A vector field vτ of type (1, 0) is called the horizontal lift along Dy of v
with respect to τ if vτ satisfies the following:

(i) 〈vτ , w〉τ = 0 for all w ∈ T ′Dy,

(ii) dπ(vτ ) = v.

(2) The geodesic curvature c(τ)(v) of τ along v is defined by the norm of vτ
with respect to the sesquilinear form 〈·, ·〉τ induced by τ , namely,

c(τ) := c(τ)(v) = 〈vτ , vτ 〉τ .

Remark 4.1. We have the following remarks.

(1) Under a local coordinate system (z1, . . . , zn, s), τ can be written as

τ = i
(

τss̄ds ∧ ds+ ταs̄dz
α ∧ ds+ τss̄ds ∧ dz

β̄ + ταβ̄dz
α ∧ dzβ̄

)

.

Then the horizontal lift vτ and the geodesic curvature c(τ) are given by

vτ =
∂

∂s
− τsβ̄τ

β̄α ∂

∂zα
and c(τ) = τss̄ − τsβ̄τ

β̄αταs̄,

where (τ β̄α) is the inverse matrix of (ταβ).

(2) The following identity is well-known and important (cf. [18]):

τn+1

(n+ 1)!
= c(τ) ·

τn

n!
∧ ids ∧ ds̄.

Since τ |Dy
> 0, this implies that c(τ) ≥ 0 if and only if τ is a semi-

positive real (1, 1)-form on D. Furthermore, c(τ) > 0 if and only if τ is
positive.

4.2 Berman’s parabolic PDE

Let D be a holomorphic family of bounded strongly pseudoconvex domains.
Then the geodesic curvature c(ω(t)) satisfies a certain parabolic PDE, which
was first computed by Berman for a family of canonically polarized compact
Kähler manifolds. The following theorem is essentially the same with Berman’s
one, but we will give a precise proof for the reader’s convenience.

Theorem 4.2 (cf. Theorem 4.7 in [2]). For each fiber Dy, c(ω(t))|Dy
evolves

by
(

∂

∂t
−∆t

)

c(ω(t)) + (n+ 1)c(ω(t)) =
∥

∥∂vω(t)
∥

∥

2
, (4.1)

where ∆t is the Laplace-Beltrami operator of the Kähler metric ωy(t) :=
ω(t)|Dy

.
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Proof. Note that ω(t) = i∂∂g(t) on D, where g(t) := − log(−r) +ϕ(t). During
this proof, for simplicity, we will omit t for the function g(t) =: g. Then ω(t)
can be written as follows:

ω(t) = i
(

gss̄ds ∧ ds+ gαs̄dz
α ∧ ds+ gsβ̄ds ∧ dz

β̄ + gαβ̄dz
α ∧ dzβ̄

)

.

As we saw in Remark 4.1, the geodesic curvature is given by

c(ω(t)) = gss̄ − gsβ̄g
β̄αgαs̄.

Thus we have

∂

∂t
c(ω(t)) =

(

∂

∂t
g

)

ss̄

−

(

∂

∂t
g

)

sβ̄

gβ̄αgαs̄ − gsβ
∂

∂t
gβ̄αgαs̄ − gsβ̄g

β̄α

(

∂

∂t
g

)

αs̄

.

On the other hand,

∆tc(ω(t)) =∆tgss −∆t(gsβ̄g
β̄α)gαs̄ − gδ̄γ(gsβ̄g

β̄α)γ(gαs̄)δ̄

− gδ̄γ(gsβ̄g
β̄α)δ̄(gαs̄)γ − (gsβ̄g

β̄α)∆tgαs̄

=I0 − I1 − I2 − I3 − I4.

Notice that (log det(gαβ))s = gδ̄γ(gs̄)γδ̄ = ∆tgs. This implies that

I0 := ∆tgss̄ = gδ̄γ(gss)γδ̄ = gδ̄γ(gγδ̄)ss̄ = (gδ̄γ(gγδ)s)s − (gδ̄γ)s(gγδ̄)s̄

= (gδ̄γ(gs̄)γδ̄)s + gδ̄α(gαβ̄)sg
β̄γ(gγδ̄)s̄

= (log det(gαβ))ss̄ + gδ̄α(gαβ̄)sg
β̄γ(gγδ̄)s̄

=

(

∂

∂t
g

)

ss̄

+ (n+ 1)gss̄ + gδ̄α(gαβ̄)sg
β̄γ(gγδ̄)s̄.

In the last equality, we used the fact that ω(t) satisfies the equation (3.5) so
that

(

∂

∂t
g

)

ss

= (log det(gαβ))ss − (n+ 1)gss.

From now on, we fix a point and choose a normal coordinate (z1, . . . , zn) such
that

∂gαβ̄

∂zγ
(x) = 0 =

∂gαβ̄

∂zδ̄
(x).

Then the term I1 := ∆t(gsβ̄g
β̄α)gαs̄ can be simplified as follows:

I1 =gsα∆tg
β̄αgγs + gδ̄γ(gsα)δ̄(g

β̄α)γgγs + gδ̄γ(gsβ̄)γ(g
β̄α)δ̄gαs̄ +∆tgsβ̄g

β̄αgαs̄

=gsβ̄∆t(g
β̄α)gαs̄ + gβ̄α∆t(gsβ̄)gαs̄.
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To compute the first term, note that

(gβ̄α)γδ̄ = (−gβ̄σ(gστ̄ )δ̄g
τ̄α)γ

= −(gβ̄σ)γ(gστ̄ )δ̄g
τ̄α − gβ̄σ(gστ̄ )γδ̄g

τ̄α − gβ̄σ(gστ̄ )δ̄(g
τ̄α)γ

= −gβ̄σ(gστ̄ )γδ̄g
τ̄γ .

This implies that

∆t

(

gβ̄α
)

= gδ̄γ
(

gβ̄α
)

γδ̄
= −gβ̄σgτ̄αgδ̄γ (gστ̄ )γδ̄ = −gβ̄σgτ̄α

(

log det
(

gγδ̄
))

στ̄

= −gβ̄σgτ̄α
∂

∂t
gστ̄ − (n+ 1)gβ̄σgτ̄αgστ̄

= −gβ̄σgτ̄α
∂

∂t
gστ̄ − (n+ 1)gβ̄α.

In the last second equality, we used the fact that the equation (3.5) implies
that

(

∂

∂t
g

)

στ̄

=
(

log det(gαβ)
)

στ̄
− (n+ 1)gστ̄ .

The equation (3.5) also implies that ∆t(gsβ̄) =
∂
∂t
gsβ̄ + (n + 1)gsβ̄ . Then we

have

I1 = gsβ̄∆t(g
β̄α)gαs̄ +∆t

(

gsβ̄
)

gβ̄αgαs̄

= −gsβ̄

(

gβ̄σgτ̄α
(

∂

∂t
gστ̄

)

+ (n+ 1)gβ̄α
)

gαs̄ +

(

∂

∂t
gsβ̄ + (n+ 1)gsβ̄

)

gβ̄αgαs̄

= −

(

∂

∂t
gστ̄

)

gβ̄σgτ̄αgsβ̄gαs̄ +

(

∂

∂t
gsβ̄

)

gβ̄αgαs̄,

and

I4 := gsβ̄g
β̄α∆tgαs̄ = gsβ̄g

β̄α

(

∂

∂t
gαs̄

)

+ (n+ 1)gsβ̄g
β̄αgαs̄.

Since our coordinate is normal,

I2 := gδ̄γ(gsβ̄g
β̄α)γ(gαs̄)δ̄ = gδ̄γ(gsα)γg

β̄α(gγs)δ̄ = gδ̄γgβ̄α(gsα)γ(gγs)δ̄.
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Therefore, we have

∆tc(ω(t)) =I0 − I1 − I2 − I3 − I4

=

(

∂

∂t
g

)

ss̄

+ (n+ 1)gss̄ + gδ̄α(gαβ̄)sg
β̄γ(gγδ̄)s̄

+
∂

∂t
gστ̄g

β̄σgτ̄αgsβ̄gαs̄ −
∂

∂t
gsβ̄g

β̄αgαs̄ − gδ̄γgβ̄α(gsα)γ(gγs)δ̄

− I3 − gsβ̄g
β̄α ∂

∂t
gαs̄ − (n+ 1)gsβ̄g

β̄αgαs̄

=

(

∂

∂t
g

)

ss̄

− gsβ̄
∂

∂t
gβ̄αgαs̄ −

∂

∂t
gsβ̄g

β̄αgαs̄ − gsβ̄g
β̄α ∂

∂t
gαs̄

+ (n+ 1)
(

gss̄ − gsβ̄g
β̄αgαs̄

)

− I3

=
∂

∂t
c(ω(t)) + (n+ 1)c(ω(t))− I3.

Hence it is enough to show that I3 =
∥

∥∂vω(t)
∥

∥

2
. Remark 4.1 says that

∂vω(t) =
(

−(gsβ̄)δ̄g
β̄α − gsβ̄(g

β̄α)δ̄

)

dzδ̄ ⊗
∂

∂zα
.

In the normal coordinates, we have

∥

∥∂vω(t)
∥

∥

2
= gτ̄α(gsτ̄ )δ̄g

σ̄β(gsσ̄)γ̄gαβg
δ̄γ = gτ̄αgδ̄γ(gsτ̄ )δ̄(gs̄α)γ .

On the other hand,

I3 = gδ̄γ(gsβ̄g
β̄α)δ̄(gαs̄)γ = gδ̄γ(gsβ̄)δ̄g

β̄α(gαs̄)γ = gδ̄γgβ̄α(gsβ̄)δ̄(gαs̄)γ .

This completes the proof.

Remark 4.3. For a holomorphic family of canonically polarized compact
Kähler manifolds, the positivity of ω(t) can be immediately proved by applying
the standard weak and strong parabolic maximum principle to the equation (4.1)
(see Corollary 4.9 in [2]). The standard weak maximum principle, however,
does not hold in general if the manifold is non-compact. In the next section,
we will use a version of weak parabolic maximum principle for non-compact
manifolds due to Ni.

5 Positivity of fiberwise Kähler-Ricci flows

Fix an arbitrary point y ∈ S. Denote its fiber by Ω := Dy. Throughout this
section, we will omit the index y for the defining function ry and the Kähler
metrics ωy and ωy(t). Let g := − log(−r) be the strictly plurisubharmonic
function on Ω. Then ω = i∂∂̄g is a complete Kähler metric on Ω satisfying

|dg|
2
ω = gαβ̄gαgβ̄ =

|∂r|
2

|∂r|
2
− r

≤ 1.
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By Theorem 2.5, there exist one parameter family of Kähler metrics ω(t) :=
i∂∂g(t) on Ω satisfying the Kähler-Ricci flow:

∂

∂t
ω(t) = −Ric(ω(t))− (n+ 1)ω(t),

ω(0) = ω.

(5.1)

We also know that ω(t) converges to the unique complete Kähler-Einstein met-
ric as t→ ∞. Moreover, there exists a constant C > 0 (independent of t) such
that

1

C
ω ≤ ω(t) ≤ Cω. (5.2)

We denote the volume forms by dVt :=
ω(t)n

n! and dV0 := ωn

n! .

5.1 Parabolic maximum principle

The following theorem is essentially the same with Ni’s parabolic maximum
principle in [15], except it is expressed by a plurisubharmonic exhaustion func-
tion instead of the distance function.

Theorem 5.1 (cf. Theorem 2.1 in [15]). Let f be a smooth function on Ω×[0, T )
satisfying

(

∂

∂t
−∆t

)

f ≥ 0 whenever f ≤ 0.

Assume that there exists a constant b > 0 such that
∫ T

0

∫

Ω

(−r)b(f−)
2 dVtdt <∞, (5.3)

where f− := −min{f, 0}. If f ≥ 0 on Ω at t = 0, then f ≥ 0 on Ω× [0, T ).

Proof. Let S(t) be the scalar curvature of ω(t), defined by

S(z, t) := g(t)αβ̄ (logω(t)n)αβ̄ .

Denote by S∗(t) := inf
z∈Ω

S(z, t) and let

f̃(z, t) := exp

(
∫ t

0

1

2
(S∗(s) + n(n+ 1)) ds

)

f(z, t).

A direct computation gives that
(

∂

∂t
−∆t −

1

2
(S∗(t) + n(n+ 1))

)

f̃(z, t) ≥ 0

whenever f̃(z, t) ≤ 0. For any T ′ with 0 < T ′ < T , let

g̃(z, t) := −
g(z)2

4C(2T ′ − t)
.
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Without the loss of the generality we may assume that T ′ ≤ 1
2b2C , since we

can always split [0, T ′] into smaller intervals (such that each has length less
than 1

2b2C ) and apply the induction. Therefore near the boundary of Ω and
t ∈ [0, T ′), we have

eg̃ ≤ e−
b2

4
g2 = e−( b

2
log( 1

−r
))2 ≤ (−r)b,

since e−x
2

≤ e−2x for any large enough x. Now the condition (5.3) implies that

∫ T ′

0

∫

Ω

eg̃f̃2
−dVtdt <∞. (5.4)

Using the inequality (5.2), we have |∇g|
2
ω(t) ≤ C. Hence it follows that

|∇g̃|2 +
∂

∂t
g̃ ≤ 0.

Let χ : [0,∞) → [0, 1] be a cut-off function so that χ(s) = 0 for s ≥ 1 and

χ(s) = 1 for s ≤ 1. Set η(z) := χ
(

g(z)
a

)

. Using the inequality (5.2), it is easy

to see that there exists a constant C1 > 0 independent of a such that

|∇η|
2
≤
C1

a2
. (5.5)

Now Stoke’s theorem implies the following:
∫

Ω

η2eg̃f̃−∆tf̃dVt = −

∫

Ω

〈

∇
(

η2eg̃f̃−

)

,∇f̃
〉

dVt

= −

∫

Ω

(

2
〈

∇η,∇f̃−

〉

ηeg̃f̃− +
〈

∇f̃ ,∇g̃
〉

η2eg̃f̃− +
∣

∣

∣
∇f̃−

∣

∣

∣

2

η2eg̃
)

dVt

≤

∫

Ω

(

2 |∇η|
2
eg̃ f̃2

− +
1

2
|∇g̃|

2
η2eg̃f̃2

−

)

dVt.

On the other hand, integration by parts implies that

∫ T ′

0

∫

Ω

η2eg̃f̃−
∂f̃

∂t
dVtdt = −

1

2

∫ T ′

0

∫

Ω

η2eg̃
∂

∂t

(

f̃2
−

)

dVtdt

= −

∫

Ω

1

2
η2eg̃f̃2

−dVt

∣

∣

∣

T ′

0
+

1

2

∫ T ′

0

∫

Ω

∂

∂t

(

η2eg̃
dVt

dV0

)

f̃2
−dV0dt.

(5.6)
Taking the trace of the equation (5.1), we have

∂g(t)αβ̄
∂t

g(t)αβ̄ = −S(t)− n(n+ 1).

Using Cramer’s rule, we obtain

∂

∂t

(

dVt

dV0

)

=
det(g(t)αβ̄)

det(gαβ̄)

∂g(t)αβ̄
∂t

g(t)αβ̄ =
dVt

dV0
(−S(t)− n(n+ 1)).
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Altogether, it follows that

0 ≤

∫ T ′

0

∫

Ω

η2eg̃f̃−

(

∂

∂t
−∆t −

1

2
(S∗(t) + n(n+ 1))

)

f̃ dVtdt

≤

∫ T ′

0

∫

Ω

(

2 |∇η|
2
eg̃f̃2

− +
1

2
|∇g̃|

2
η2eg̃f̃2

− +
1

2

∂g̃

∂t
η2eg̃f̃2

−

)

dVtdt

−

∫

Ω

1

2
η2eg̃f̃2

−dVt

∣

∣

∣

T ′

0
+

∫ T ′

0

∫

Ω

1

2

(

η2eg̃f̃2
− (−S(t) + S∗(t))

)

dVtdt

≤ 2

∫ T ′

0

∫

Ω

|∇η|
2
eg̃ f̃2

−dVtdt−

(

1

2

∫

Ω

η2eg̃ f̃2
−dVt

)

(T ′)

Letting a→ ∞, the inequalities (5.4) and (5.5) imply that
(
∫

Ω

eg̃f̃2
−dVt

)

(T ′) ≤ 0

This implies that f̃− ≡ 0, therefore we have f ≥ 0 on Ω× [0, T ′].

5.2 Proof of Theorem 1.1

By Remark 4.1, it is enough to show that the restriction of the geodesic cur-
vature of the fiberwise Kähler-Ricci flow c(ω(t)) := c(ω(t))|Ω is positive on Ω.
We will apply Theorem 5.1 to the function c(ω(t)) on Ω× [0,∞).
Note that Berman’s parabolic equation (4.1) says that

(

∂

∂t
−∆t

)

c(ω(t)) ≥ 0 whenever c(ω(t)) ≤ 0.

On the other hand, the computation in the proof of Proposition 3.2 implies
that

dV0 = det(rγδ̄)(−r + |∂r|
2
)
( 1

−r

)n+1

dV,

where dV is the Euclidean volume form of Cn. Since det(rγδ̄)(−r + |∂r|
2
) =

e−Fy is bounded function on Ω, this together with the quasi-isometry (5.2)
implies that

∫

Ω

(−r)bc(ω(t))2dVt .

∫

Ω

( 1

−r

)n+1−b

c(ω(t))2dV.

To satisfy the condition (5.3) in Theorem 5.1, we only need to show that the
geodesic curvature c(ω(t)) has a polynomial growth near the boundary with
respect to the defining function. More precisely, we will show that |c(ω(t))| =
O((−r)−2).
First consider the initial data c(ω). Since ω = i∂∂g with g := − log(−r), we
have

c(ω) := 〈vω, vω〉ω =
1

−r
i∂∂r(vω , vω) +

1

r2
|∂r(vω)|

2
= O((−r)−2). (5.7)
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Hence it suffices to show the following proposition.

Proposition 5.2. There exists constant C > 0 independent of t such that

|c(ω(t))− c(ω)| ≤
C

−r
. (5.8)

Proof. Recall that the fiberwise Kähler-Ricci flow ω(t) on D is given by ω(t) :=
i∂∂g(t) where g(t) := g + ϕ(t). For a fixed t ∈ (0,∞), denote by ϕ := ϕ(t).
Under the Euclidean coordinate system (z1, . . . , zn, s), c(ω(t)) can be expressed
as

c(ω(t)) = gss̄ + ϕss̄ − (gsβ̄ + ϕsβ̄)g(t)
β̄α

(gαs̄ + ϕαs̄)

Since c(ω) = gss̄ − gsβ̄g
β̄αgαs̄ and 1

C
ω ≤ ω(t) ≤ Cω, we have

|c(ω(t)) − c(ω)| . |ϕss̄ − ϕsβ̄g
β̄αϕαs̄ − gsβ̄g

β̄αϕαs̄ − ϕsβ̄g
β̄αgαs̄|.

Moreover, an explicit calculation of derivatives of g implies that gβ̄α = O(−r),
gsβ̄g

β̄α and gβ̄αgαs̄ are bounded functions on Ω (cf. Section 5 in [9]). Re-
mark 3.4 implies that ϕss̄ is bounded. Thus it is enough to estimate functions
ϕαs̄ and ϕsβ̄ . Note that Remark 3.4 implies that

∥

∥ξ∗pϕs
∥

∥

C
k+ǫ,

k+ǫ
2 (Vp×[0,∞))

≤ Ck

for some constant Ck > 0. In particular, this implies that there exist a constant

C > 0 independent of t such that
∣

∣

∣

∂
∂ξj

ϕs

∣

∣

∣
≤ C, where ξp = (ξ1, . . . , ξn) is

the coordinate system satisfying the conditions of bounded geometry. By the
construction of the coordinate system for the strongly pseudoconvex domain
(see Section 1 in [8]), we obtain the estimate

∣

∣ϕsβ̄
∣

∣ =

∣

∣

∣

∣

∂

∂zβ̄
ϕs

∣

∣

∣

∣

≤
C

(−r)

n
∑

j=1

∣

∣

∣

∣

∂

∂ξj
ϕs

∣

∣

∣

∣

≤
C

−r

on the Euclidean coordinates (z1, . . . , zn). The same argument for the func-
tion ϕs̄ shows that |ϕαs̄| ≤

C
−r

. This completes the proof.

Equations (5.7) and (5.8) imply that |c(ω(t))| = O((−r)−2) as we required.
Now the following strong maximum principle completes the proof of Theo-
rem 1.1.

Theorem 5.3 (cf. Theorem 6.54 in [13]). Let f be a smooth function on
Ω× [0, T ) satisfying

(

∂

∂t
−∆t

)

f ≥ 0.

Suppose that f ≥ 0 on Ω × [0, T ). If f(x, 0) > 0 for some point x ∈ Ω at the
initial time t = 0, then f > 0 on Ω× (0, T ).

Finally, Theorem 1.1 and Theorem 3.8 imply Corollary 1.2.
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