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1 INTRODUCTION

Let us fix a ground field k of characteristic zero, a finite-dimensional vector
space V and a central arrangement of hyperplanes A in V. We let S be the
algebra of polynomial functions of V, fix a defining polynomial Q € S for A,
and consider, following K. Saito [15], the Lie algebra

Der(A) = {6 € Der(5) : 6(Q) € QS}

of derivations of S logarithmic with respect to A, which is, geometrically speak-
ing, the Lie algebra of vector fields on V which are tangent to the hyperplanes
of A. This Lie algebra is a very interesting invariant of the arrangement and
has been the subject of a lot of work — we refer to the book of P. Orlik and
H. Terao [12] and the one by A. Dimca [5] for surveys on this subject. In partic-
ular, using this Lie algebra we can define an important class of arrangements:
we say that an arrangement A is free if Der(A) is free as a left S-module. For
example, central arrangements of lines in the plane are free, as are, according
to a beautiful result of Terao [18], the arrangements of reflecting hyperplanes
of a finite group generated by pseudo-reflections.

Now, along with Der(.A) we can consider also the associative algebra Z(A)
generated inside the algebra Endg(S) of linear endomorphisms of the vector
space S by Der(A) and the set of maps given by left multiplication by elements
of S: we call it the algebra of differential operators tangent to the arrange-
ment A — in the literature its elements are also called logarithmic differential
operators, but we prefer the more geometric term. When A is free, it coincides
with the algebra of differential operators on S which preserve the ideal QS of .S
and all its powers, studied for example by F.J. Calderén-Moreno [3] or by the
second author in [17].

The purpose of this paper is to study, from the point of view of non-
commutative algebra and homological algebra, this algebra 2(A) in the sim-
plest case of a free arrangement, that of central line arrangements.

Let us describe briefly our results. We thus assume in what follows that A is
a central arrangement of r + 2 lines in a 2-dimensional vector space V', and
for simplicity we suppose that A has at least five lines, so that » > 3. We let
@ € S be a defining polynomial for A, that is, a square-free product of linear
forms on V' with the union of the hyperplanes of A as zero locus. As S is a
subalgebra of 2(A), we view @ as an element of the latter.
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ALGEBRAS OF DIFFERENTIAL OPERATORS 871

THEOREM A. The algebra 2(A) is a noetherian domain, it has global dimen-
sion 4 and projective dimension as a bimodule over itself also equal to 4. The

Hochschild cohomology HH®*(2(A)) of 2(A) has Hilbert series

> dimHH(Z(A)) -t = 14 (r +2)t + (2r + 3)t% + (r + 2)¢°,

i>0

The algebra P(A) has Hochschild homology and cyclic homology isomorphic to
those of a polynomial algebra k[X], and periodic cyclic homology and K -theory
isomorphic to that of the ground field k. It is a twisted Calabi—Yau algebra of
dimension 4, the element Q of Z(A) is normal, and the modular automorphism
o: 2(A) = 2(A) of Z(A) is the unique one such that for all a € Z(A) one

has

Qa = o(a)Q.

These claims are contained in Propositions 4.7, 6.1, 7.2 and 8.10. In Proposi-
tions 5.3 and 5.6 we describe completely the cup product and the Gerstenhaber
Lie structure on HH®*(Z2(A)) — we refer to their statements for the precise
details, which are technical. The calculations needed in order to do these com-
putations are annoyingly involved.

We obtain a very concrete description of HH'(2(A)) in Proposition 5.2, along
with one of its Lie algebra structure in Proposition 5.6:

THEOREM B. Let Q = aj - - - a42 be a factorization of the defining polynomial
as a product of linear factors, so that ay, ..., ar42 are linear polynomials on V
whose zero loci are the hyperplanes of A.
(i) Foreachi € {1,...,r+2} thereis a unique derivation 0; : 2(A) — 2(A)
such that 0;(f) = 0 for all f € S and 0;(6) = 6(ay)/; for all 6 € Der(A).
(i) The set of classes of D1, ..., Opio in HH(2(A)), which we view as the
space of outer derivations of the algebra P(A), is a basis.
(iii) The Lie algebra HH'(2(A)) is abelian.

The elements 04, . .., 0,12 are canonically determined and in a natural bijection
with the set of hyperplanes. We do not have a description along the same lines
of the rest of the cohomology. In Proposition 5.4, though, we do obtain the
following piece of information:

THEOREM C. The subalgebra 77 of HH*(2(A)) generated by the component
HH'(2(A)) of degree 1 is isomorphic to the de Rham cohomology of the com-
plement M(A) of the arrangement. It is generated as a graded-commutative
algebra by the r + 2 elements 01, ..., Opyo of HHY(2(A)) subject to the rela-
tions

0i— 0;+ 05— O + 0 — 0; =0,
one for each choice of three pairwise distinct elements i, j, k of {1,...,7+2}.

Using our precise description of HH'(2(A)) and the techniques of J. Alev and
M. Chamarie [1], we arrive in Section 8 at a description of the automorphism

DOCUMENTA MATHEMATICA 27 (2022) 869-916



872 F. KORDON, M. SUAREZ-ALVAREZ

group of the algebra Z(A), stated there as Theorem 8.7. Since the arrange-
ment A is central, the Lie algebra Der(A) is a graded S-module, and that
grading turns 2(A) into a graded algebra: we will use this structure in the
following result.

THEOREM D. Let G be the subgroup of GL(V) of maps which preserve the
arrangement A.

(i) There is an action of G on a vector space W of dimension r +2 such that
the semidirect product G x W is isomorphic to the group Auto(Z2(A)) of
algebra automorphisms of P(A) which respect the grading.

(ii) An element of P(A) is locally ad-nilpotent if and only if it belongs to S.
The set Exp(A) = {expad(f) : f € S} of the automorphisms of Z(.A)
obtained as exponentials of locally ad-nilpotent elements is a subgroup of
the full group of automorphisms Aut(2(A)).

(#t) There is an action of Auto(Z(A)) on Exp(A) such that there is an iso-
morphism of groups Aut(Z(A)) = Auto(Z2(A)) x Exp(A).

This knowledge of the automorphism group of Z(A) allows us to describe the
set of normal elements of the algebra and its birational class: putting together
our Propositions 8.9 and 8.13 we obtain the following result.

THEOREM E. The set of normal elements of P(A) is the saturated multiplica-
tively closed subset generated by Q. The mazimal normal localization of D(A),
which is therefore @(A)[%], is isomorphic to the localization of the Weyl algebra

7(9)(5)

Finally, using —as it is often done— normal elements, we are able to classify
in Proposition 8.11 the algebras under study up to isomorphism:

THEOREM F. Let A and A’ be two central arrangements of lines in V. The
algebras 2(A) and P(A") are isomorphic if and only if the arrangements A
and A’ themselves are linearly isomorphic.

This means, essentially, that we can reconstruct the arrangement from the
algebra Z(A) of its differential operators.

We expect most of the above results to hold in the general case of a free arrange-
ment of hyperplanes of arbitrary rank. As our computations here make clear,
some technology is needed in order to deal with more complicated cases. In
future work, we will show how to organize this computation using the language
of Lie-Rinehart pairs [14] and their cohomology theory. On the other hand, one
can interpret the second cohomology space HH?(2(A)) as classifying infinitesi-
mal deformations of the algebra 2(A) and use HH*(2(A)) and our description
of the Gerstenhaber bracket to study the deformation theory of Z(A). This
produces a somewhat concrete interpretation of the second cohomology space
in geometrical terms. As this involves quite a bit of calculation, we defer the
exposition of these results to a later paper.
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ALGEBRAS OF DIFFERENTIAL OPERATORS 873

The paper is organized as follows. We start in Section 2 by giving a concrete
realization of the algebra Z(A) as an iterated Ore extension of a polynomial
ring and proving some useful lemmas. In Section 3 we construct a resolution
for 2(A) and in Sections 4 and 5 we present the computation of the Hochschild
cohomology HH®*(Z(A)) and its Gerstenhaber algebra structure. Section 6
gives the much easier determination of the Hochschild homology, cyclic homol-
ogy, periodic cyclic homology and K-theory of our algebra, followed by the
proof, in Section 7, of the twisted Calabi—Yau property. Finally, in the last sec-
tion we determine the automorphism group of Z(.A) and classify the algebras
of this form up to isomorphism.

SOME NOTATIONS. We will use the symbols > and < to denote the left and right
actions of an algebra on a bimodule whenever this improves clarity. We will
have a ground field k of characteristic zero. All vector spaces and algebras are
implicitly defined over k, and unadorned ® and Hom are taken with respect
to k. If M is a vector space, we will often denote by

an element of M about which we do not need to be specific. We will use the
vertical bar | as a synomym for ® whenever horizontal space is scarce.

We refer to the book [12] for a general reference about hyperplane arrange-
ments and their derivations, and to C. Weibel’s book [19] for generalities about
homological algebra and, in particular, Hochschild, cyclic and periodic theo-
ries. Finally, whenever we mention K-theory we refer to both Ky and higher
K-theory.
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2 THE ALGEBRA OF DIFFERENTIAL OPERATORS ASSOCIATED TO A CENTRAL
ARRANGEMENT OF LINES

2.1. We fix once and for all a ground field k of characteristic zero and put
S = Kk[z,y]. We view S as a graded algebra as usual, with both z and y of
degree 1, and for each p > 0 we write .S, the homogeneous component of S of
degree p.

We write Der(S) for the Lie algebra of k-linear derivations of S, which is a
free left graded S-module, freely generated by the usual partial derivatives
Oz, 0y 1 § — S, which are homogeneous elements of Der(S) of degree —1.
On the other hand, we write 2(S) the associative algebra of regular differential

DOCUMENTA MATHEMATICA 27 (2022) 869-916



874 F. KORDON, M. SUAREZ-ALVAREZ

operators on S, as defined, for example, in [11, §15.5]. As this is by definition
a subalgebra of Endg(.S), there is a tautological structure of left 2(.S)-module
on S.

There is an injective morphism of algebras ¢ : S — 2(5) such that ¢(s)(a) =
as for all choices of s and a in S which we will view as an identification;
elements in its image are the differential operators of order zero. Since S is a
regular algebra, the algebra 2(S5) is generated as a subalgebra of Endi(S) by S
and Der(S); see [11, Corollary 15.5.6]. A consequence of this is that 2(S5) is
generated as an algebra by z, y, 8, and 0,, and in fact these elements generate
it freely subject to the relations

[,9) = [0z, 4] = [0y, 2] = 02, 0,] = 0, [0z, 2] = [0y, y] = 1.

It follows easily from this that 2(S) has a Z-grading with 2 and y in degree 1
and 0, and Jy in degree —1, and that with respect to this grading S is a graded
2(S)-module.

2.2. We fix an integer » > —1 and consider a central arrangement A of r + 2
lines in the plane A2. Up to a change of coordinates, we may assume that the
line with equation 2 = 0 is one of the lines in A, so that the defining polyno-
mial @ of the arrangement is of the form xF' for some square-free homogeneous
polynomial F' € S of degree r + 1 which does not have x as a factor. Up to
multiplying by a scalar, which does not change anything substantial, we may
assume that F' = 2F + y"t! for some F € S,.

We let Der(A) be the Lie algebra of derivations of S that preserve the arrange-
ment, as in [12, §4.1], so that

Der(A) = {0 € Der(S5) : §(Q) € QS}.
This a graded Lie subalgebra of Der(S). The two derivations
E =20, +y0,, D =Fo,

are elements of Der(A) of degrees 0 and r, and it follows immediately from
Saito’s criterion [12, Theorem 4.19] that the set {E, D} is a basis of Der(.A) as
a graded S-module; this is the content of Example 4.20 in that book.

The algebra of differential operators tangent to the arrangement A is the subal-
gebra Z(A) of 2(S) generated by S and Der(A). It follows immediately from
the remarks above that 2(.A) is generated by z, y, F and D, and a computation
shows that the following commutation relations hold in Z(A):

[y,x] =0,
[Dax]:O’ [Day]:F’ (1)
[E,z] =z, [E,y] =y, [E,D] = rD.

Since these generators are homogeneous elements in 2(S) —with E of degree 0,
x and y of degree 1 and D of degree — we see that the algebra 2(A) is a
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ALGEBRAS OF DIFFERENTIAL OPERATORS 875

graded subalgebra of Z(S) and, by restricting the structure from 2(5), that S
is a graded 2(A)-module.

The set of commutation relations given above is in fact a presentation of the
algebra Z(A). More precisely, we have:

LEMMA. The algebra P(A) is isomorphic to the iterated Ore extension S[D][E].
It is a noetherian domain and the set {x'y? DFE' : i, j k,1 > 0} is a k-basis
for 2(A).

Here we view D as a derivation of S, so that we way construct the Ore extension
S[D], and view E as a derivation of this last algebra, so as to be able extend
once more to obtain S[D][E].

Proof. Tt is clear at this point that the obvious map 7 : S[D|[E] — 2(A) is
a surjective morphism of algebras, so we need only prove that it is injective.
To do that, let us suppose that there exists a non-zero element L in S[D][E]
whose image under the map 7 is zero, and suppose that L = 3=, . fi ;D" E7,
with coefficients f; ; € S for all 4, 7 > 0, almost all of which are zero. As L is
non-zero, we may consider the number m = max{i + j : f; ; # 0}.

Let us now fix a point p = (a,b) € A% which is not on any line of the arrange-
ment A, so that aF'(a,b) # 0, and let &, be the completion of S at the ideal
(x — a,y — b) or, more concretely, the algebra of formal series in z — a and
y —b. We view 0, as a left module over Z(S) in the tautological way and,
by restriction, as a left Z(.A)-module. There exist formal series ¢ and ¢ in 0,
such that

E-¢=1, D ¢=0, E-=0, D ¢ =a"

Indeed, we may choose ¢ = In x to satisfy the first two conditions, and the last
two ones are equivalent to the equations

r—1 r

811/}:71' y; ay’l/):%a

which can be solved for v, as the usual well-known sufficient integrability con-
dition from elementary calculus holds. If now s, t € Ny are such that s+t = m,
a straightforward computation shows that L - ¢Sy = sltla™ f, ; in 0, and this
implies that fs: = 0. This contradicts the choice of m and this contradiction
proves what we want. O

2.3. We will use the following two simple lemmas a few times:

LEMMA. Suppose that r > 2. If a, B € Sy are such that oFy + BF, = 0, then
a=p=0.

The conclusion of this lemma is false if r < 2.

Proof. Suppose that Fy, Fy and F3 are three distinct linear factors of F (here is
where we need the hypothesis that the arrangement has at least 4 lines, so that
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876 F. KORDON, M. SUAREZ-ALVAREZ

r > 2) so that F' = F1 Fo F3F’ for some F’ € S,._o; as F has degree at least 3,
this is possible. We have F, = F1,FoF3F' and F,, = F1, F>F3F' modulo Fi, so
that (aFiy + BF1y)F2F3F’ =0 mod Fy. Since F is square free, this tells us
that Fy divides aF', + BF1, and, since both polynomials have the same degree
and F; # 0, that there exists a scalar A such that aFi, + 8F1y = AFy. Of
course, we can do the same with the other two factors F» and F35. We can state

this by saying that the matrix (a“ Ba ) has the three vectors (1{:1; ) , (%; ) and

ay By
(5;; ) as eigenvectors. Since no two of these are linearly dependent, because F

is square-free, this implies that the matrix is in fact a scalar multiple of the
identity, and there is a u € k such that o = px and 8 = py. The hypothesis
is then that u(r + 1)F = p(zF, + yF,) = 0, so that g = 0. This proves the

claim. 0
2.4. LEMMA. If aq, ..., ap41 € S1 are such that F = H:ill «;, then the set of
quotients {a—FI, cee ail} is a basis for S.

Proof. Suppose ci, ..., ¢,41 € k are scalars such that Z:;l cig = 0. If
je{l,...,r+ 1}, we then have cj§ = 0 modulo «; and, since F' is square-

J

free, this implies that in fact ¢; = 0. The set {ail, ceey QLH} is therefore linearly
independent. Since dim S, = r + 1, this completes the proof. O

3 A PROJECTIVE RESOLUTION

3.1. We keep the situation of the previous section, and write from now on A
instead of 2(A). Our immediate objective is to construct a projective resolu-
tion of A as an A-bimodule, and we do this by looking at A as a deformation
of a commutative polynomial algebra, which suggests that it should have a
resolution resembling the usual Koszul complex.

3.2. If U is a vector space and u € U, there are derivations
Vi Vy i S—=>5SeUeS
of S into the S-bimodule S ® U ® S uniquely determined by the condition that
Vi) =1ou®l, Viy)=0, Vi (z)=0, Vi(y)=10uxl,
and in fact we have, for every ¢, j > 0, that

Vi(z'y?) = Z r* @u® xty, VZ(ziyj): Z Tyt @ u @y
s+t+1=1 s+t+1=j

We consider also the derivation
V::V§+VZ:S—>S®51®S.
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It is the unique derivation such that V(o) = 1® a®1 for all « € S;. There is,
on the other hand, a unique morphism of S-bimodules

d:5®515 =58

such that d(1®@ a® 1) =a®1—1® « for all a € Sy, and we have

av(f)=fel-1ef (2)

whenever f is in S. To check this last equality, it is enough to notice that the
composition doV : S — S ® S is a derivation and, since S; generates S as an
algebra, that the equality holds when f € S;.

3.3. Let V be the subspace of A spanned by z, y, D and E. This is a graded
subspace and its grading induces on the exterior algebra A®(V) an internal
grading. If w is an element of an exterior power AP(V') of V, we write (—) Aw
for the map of A-bimodules

ARSI QA= A ATV @ A

such that (1@ a® 1) Aw=1®aAw®1 for all a € 5.

3.4. Recall that we are using the bar | as a synomym for the tensor product ®
over the ground field. There is a chain complex P of free graded A-bimodules
of the form

0 — AATV]|A 25 AIAPVIA &5 AA2V|A 25 AVIA 25 A4 (3)
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with A¢-linear maps homogeneous of degree zero and such that
di(1|v|1) = [v, 1]1], Yv eV,

do(1z Ay|l) = [z, 1y[1] — [y, 1]z[1];

do(l|lz A E1) = [z, 1|E[1] — [E, 1]z|1] + 1]z[1;
da(lly A E1) = [y, 1E[1] — [E, 1]y[1] + 1|y|1;
da(1]z A D|1) = [x,1|D[1] — [D, 1]x|1];

da(1ly A D|1) = [y, 1|D[1] — [D, 1|y[1] + V(F);
da(1|D N E1) = [D,1|E|1] — [E, 1|D]1] 4 r|D|1;

ds(1lz Ay A D|1) = [z, 1|y A D[1] = [y, 1|z A D1} + [D, 1]z A y[1]

+ V(F) A z;
ds(llx Ay A E1) = [z, 1y A E|1] — [y, 1|z A E|1] + [E, 1]z A y|1]
— 2|z Ayll;
d3(llz ADANE) = [z,1|D A E|1] — [D,1llx A E|1] + [E, 1|z A D|1]
— (r+1)|xz A D|1;

d3(lly AN D A E|1) = [y,1|D A E|1] = [D, 1|y A E|1] + [E, 1|y A DI|1]
+V(F)NE - (r+1)ly AD|1;

ds(Llxr A\yAD ANE|L1) = [z,lly ND A E|1] — [y, 1|z A D A E|1]
+[D, 1|z Ay A E|1] — [E, 1|z Ay A D|1]
+V(F)ANzANE+ (r+2)|z Ay A DJL.

That P is indeed a complex follows from a direct calculation that we omit. Let
us only show how the element V(F) first comes into the picture: we have

di (da(1]y A DI)) = di ([y, 1D]1] = [D, 1[y/1] + V(F))
= [y, D1 = 1/[y, D] + d(V(F))

and this is zero precisely because of the equality (2). The appearence of V(F)
in d3 and d4 provides for similar cancellations.
More interestingly, this complex is exact:

LEMMA. The complex P is a projective resolution of A as an A-bimodule, with
augmentation dy : A|A — A such that do(1|1) = 1.

Proof. For each p € Ny we consider the subspace F,A = (z'y/ D¥E' : k+1 < p)
of A. As a consequence of Lemma 2.2, one sees that FA = (FpA),>0 is an
exhaustive and increasing algebra filtration on A and that the correspond-
ing associated graded algebra gr(A) is isomorphic to the usual commutative
polynomial ring k[z,y, D, E]. Since V is a subspace of A, we can restrict the
filtration of A to one on V, and the latter induces as usual a filtration on each
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exterior power APV. In this way we obtain a filtration on each component of
the complex P, which turns out to be compatible with its differentials, as can
be checked by inspection. The complex gr(P) obtained from P by passing to
associated graded objects in each degree is isomorphic to the Koszul resolution
of gr(A) as a gr(A)-bimodule and it is therefore acyclic over gr(A4). A standard
argument using the filtration of P concludes from this that the complex P itself
acyclic over A. As its components are manifestly free A-bimodules, this proves
the lemma. O

3.5. One almost immediate application of having a projective resolution for
our algebra as a bimodule over itself is in computing its global dimension.
PROPOSITION. The global dimension of A is equal to 4.

Of course, as A is noetherian, there is no need to distinguish between the left
and the right global dimensions.

Proof. If A € k let M) be the left A-module which as a vector space is freely
spanned by an element u) and on which the action of A is such that x - uy =
y-ux =D -uy=0and F-uy = \uy. It is easy to see that all 1-dimensional
A-modules are of this form and that My = M, iff A = u, but we will not need
this.

The complex P ® 4 M, is a projective resolution of M) as a left A-module, and
therefore the cohomology of Homa (P ®4 My, M,,) is canonically isomorphic
with Ext% (M, M,,). Let us identify Homa (P ® 4 My, M,,) with M, ® M} ®
A*V*, with V* the dual space Hom(V, k) and M} the vector space Hom(My, k),
and write £ for a fixed non-zero element in M, ® My. Up to that identification,
the complex has the form

M, @ M; —2 M, @ M; @V —2 M, ® M} @ A2V —2
—— M, @ M} @ AV~ M, @ Mj @ A1V*
with differentials given by
8°(€) = (n—NE® E,
a7+ bE® G+ € @D+ dE @ D)
=N\ +1—-wa@EAE+A+1—-pb@jAE
+A+r—peE@DAE,
P QENGHWERENE+cEQGAE+dEQREAD
+efQGAD+ fEQDAE)
=(U—-A—2aRFNJAE+(u—A—r—1)dE@FADANE
+(u—A—r—1efQJADANE,
Bl QENGAD +WERQENJANE+cE Q@ ANDANE+dé@§ADAE)
=\ +r+2—af@EAGADANE
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880 F. KORDON, M. SUAREZ-ALVAREZ

for all choices of a, b, ¢, d, e and f in k.

An easy computation shows that

1, ifp=3orp=4;
dim Ext?, (M, Mysr42) = np P
0, in any other case.

In particular, Exti (M, Mxir42) # 0 and therefore gldim A > 4. On the other
hand, we have constructed a projective resolution of A as an A-bimodule of
length 4, so that the projective dimension of A as a bimodule is pdim 4. A < 4.
Since gldim A < pdim 4. A, the proposition follows from this. O

4 THE HOCHSCHILD COHOMOLOGY OF Z(A)

4.1. We want to compute the Hochschild cohomology of the algebra A. Apply-
ing the functor Hom ge (—, A) to the resolution P of 3.4 we get, after standard
identifications, the cochain complex

d° « dt 21/« _d' 3y/% _d° 47/%
Ao AV o AR NV o AQ NV o AQAYVF — 0

Sl S2 83 S
which we denote simply by A ® AV*, with differentials such that

d°(a) = [z,a) @ & + [y,a] @ § + [D,a] ® D + [E,a] ® E;

d(a®i)=—[y,a] @EAJ+ (a—[E,a)) @& ANE —[D,a] @2 AD

+ V4(F)®gA D;

d(a®)) =[r,d @EAG+ (a—[E,a)) @GN E

+ (Vy(F) = [D, ])
b)z[m,a]@x/\D—i—[ ]®yAD+(ra—[ al) ®
B)=[r,ad @i NE+[y,a]®@§AE+[D,ad bAE
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Pa@iANE)= —[y,d @2 AJANE —[D,a) @ i ADAE
+VYUF)@§ADAE;

P(a®jNE)=[v,a] @ AJAE+ (VI(F) - [D,a]) ®§ A D A E;

Pa®iAD)=—[y,a) @& AjAD+ (|E,a] — (r+1)a) ® & A D A E;

Pa@jyAD) =[x, @EAGAD + ([E,a] — (r+1)a) @ j A D A E;

Pa@DANE)=[z,a) @2 ANDANE+[y,a] @ jADAE;

Bla®iAjAD) = (—[E,a)+ (r+2)a) @& AGADAE;

d*la®i ANJAE) = ([D,a] — VI(F)) @& A§ADANE;

Pa®@iANDANE)=—[y,a] @2 AGADAE;

(

Pla@gADANE)=[z,a] @EAGADANE.
These differentials are homogeneous with respect to the natural internal grading
on the complex A ® AV* coming from the grading of A. We denote v: A®
AV* - A ® AV* the k-linear map whose restriction to each homogeneous
component of the complex A ® AV* is simply the multiplication by the degree.
There is a homotopy, drawn in the diagram (3) with dashed arrows, with

sHa®i+b@j+coD+doE)=d,
SPaREANjJ+DQENE+cQiANE+dQEAD
+e@IAD+FfRDANE)=-b@2—c®)—fRD,
Sa@ENGAD+OREANJAE+c@EANDANE+dQ§ADAE)
=b@QEANj+cREAD+dRGAD,
sYa®@EANGADANE)=—a@2AGAD
and such that do s+ sod = ~: this tells us that v induces the zero map on
cohomology. Since our ground field k has characteristic zero, this implies that

the inclusion (A ®@ AV*)y — A® AV* of the component of degree zero of our
complex A ® AV* is a quasi-isomorphism.

4.2. FROM NOW ON AND UNTIL THE END OF THIS SECTION, WE WILL ASSUME
THAT r > 3. Let us write the complex (A ® AV*)y simply X and let us put
T = k[E], which coincides with Ag. The complex ¥ has components

x0 = A,
X =A@ kiak)) oA 9kD @ Ay QKE,
X2=AekiNjd A @ kiANESkjAE)® A, @kDAE

® Apy1 @ (ki AD @ kj A D),
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=A@ AJANEGA 1@ kEANDANEGKIADAE)
®Aryo @k AGAD,
X' =A 0 QEAGJADNANE

and, since r > 2, we have that

Ag =T, Ay = 51T,
Ay = ST, A, = (S, ®kD)T,
AT+1 = (ST+1 D SlD)T, AT+2 = (Srr+2 D SQD)T

In fact, this is where our assumption that r > 3 intervenes: if r < 2, then these
subspaces of A have different descriptions.
The differentials in X can be computed to be given by

50(a) =zm(a) ® & +y71(a) ® §+ D7r-(a) ® f),

Hpa® &) = —pymi(a) @& Aj — (Foya + ¢D7.(a)) @ & A D
+VeU(F)
' (ga ® §) = grmi(a) @ & A G+ (V9" (F) = Foya — ¢D7,(a))
6*((¢ + AD)a ® D) = (¢pari(a) + A\eD7y(a)) @ 2 A D
+ (¢ymi(a) + AF(71(a) — a) + \yDri(a)) @ § A D,
e E)=2m(a) @i ANE+yr(a) @9 A E+ Dr(a) @ DAE,

& Ag) = (Féya+ ¢Dr(a) — VI (F)) ® & AjA D,
ANE)=—¢yri(a) @ AGAE
— (Foya+ ¢D7.(a)) @ EANDANE+VS(F)@jADAE,
(pa@GAE)=drmi(a) @EAGAE
+ (VSUF) — Féya — ¢D7.(a)) @ §AD A E,
§*((¢ +¥D)a® 2 A D)
= (~¢yn(a) = YF(ri(a) —a) = yyDri(a) @ E AGAD,
3*((p+¥D)a®§ AD) = (pa7i(a) + YpaDri(a)) ® & AG A D,
6%((¢+ AD)a ® D A E) = (¢pa71(a) + AeD7i(a)) @ & A D A
+ (¢ymi(a) + AyDri(a) + AF(r1(a) —a)) @ A D N E,
(¢ +¢vD)a®@ i AjAD)=0,
B (pa®i AjAE)=(Féya+ ¢Dr(a) — VI (F) @& AGJADANE
(¢ +¢vD)a® i ADAE)
= —(¢y71(a) + YyD7i(a) + P F(1(a) — a))
3*((¢+vD)a®§ADAE) = (pom(a) + YaDri(a))

DOCUMENTA MATHEMATICA 27 (2022) 869-916



ALGEBRAS OF DIFFERENTIAL OPERATORS 883

Here and below 7 : T — T is the k-linear map such that 7(E™) = E™— (E+t)"
for all n € Ny, and ¢ and 1 denote homogeneous elements of A of appropriate
degrees and X a scalar.

4.3. We proceed to compute the cohomology of the complex X, starting with
degrees zero and four, for which the computation is almost immediate. Indeed,
since the kernel of 71 and of 7, is k C T, it is clear that H(X) = ker §° = k.
On the other hand, if ¢ € Sy and a € T, we can write ¥ = 1 + Y9y for some
1, Py € S and there is a b € T such that 71(b) = a, so that

5 (~2 Db@EADAE+91 Db@JADAE) = ($Da+[ S, 12T]) @2 AGADAE.
Similarly, we have
(S 1 TQEANDANE+ S, i TQGADANE) =S, 0T @&ANjADAE.

These two facts imply that the map §° is surjective, so that H*(X) = 0.

4.4. Let w € X! be a 1-cocycle in X. There are then a, b, ¢, d, e, f € T, k € Ny
and ¢q, ..., ¢or € S, such that either k = 0 or ¢, # 0, and

k
w=(za+yb) @& + (zc+ yd) @ i + (ZqﬁiEiJrDe) @D+ fQE.
1=0

If € € T is such that 7,.(¢) = e, then by replacing w by w — §°(€), which does
not change the cohomology class of w, we can assume that e = 0. The formula
for 8° then shows that w is a coboundary iff it is equal to zero. The coefficient
of & A in 61(w) is

2271 (c) + 2y(mi(d) — 11(a)) — y*m1(b) = 0.

We therefore have b, ¢, d — a € k. The coefficient of D A E, on the other hand,
is D7.(f) = 0, so that also f € k; exactly the same information comes from the
vanishing of the coefficients of & A E and of gA E. Since b € k, the coefficient
of # A D is

k
—Fb—2D7.(a) + Z pixm (EY) = 0.
i=0

We see that 7,(a) = 0, so that a € k, and that Y. ¢;ori (E?) = Fb. This
implies that k < 1, that —¢1x = F'b and therefore, since x is not a factor of F'
by hypothesis, that ¢; =0 and b = 0.

Finally, using all the information we have so far, we can see that the vanishing
of the coefficient of j A D in 6" (w) implies that Fyza + Fy(zc + yd) = Fd.
Together with Euler’s relation Fyx + Fyy = (r + 1)F this tells us that

(cx+ (d—a)y)F, = (d— (r+1)a)F. (4)
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As F is square-free, it follows! from this equality the polynomial cx + (d — a)y
is zero so that ¢ = 0 and d = a and, finally, that a = 0. We conclude in this
way that the set of 1-cocycles

6D+ fRE, peS,, fek

is a complete, irredundant set of representatives for the elements of H'(X).
4.5. Let w € X3 be a 3-cocycle, so that

W=aQEANJAD+bQEAGAE+cQEADANE+d@jADANE

for some a € (Sy12 ® SoD)T, b € SoT, ¢, d € (Sy41 ® S1D)T and §(w) = 0.
For all ¢ € S; and e € T we have

P(pe@ i NE)=—dyri() @2 AGAE+[A 1| @2 ADAE
+| A1 |@gADAE

P(pe@GAE) = gami(e) @i ANjAE+[A 1| @G ADAE,

and

so that by adding to w an element of §2(S1T® & A E+ ST ®§AE), which does
not change the cohomology class of w, we can suppose that b = 0. Similarly,
for all ¢ € S and all e € T we have

5 (ge @& N ) = (Sr+aT| +¢D7e(e) @ AGAD,

and for all ¢ € S,11 and all e € T we have

2(pe @i AD)=—¢yri(e) @EAGAD
and

8% (pe @ § A D) = pxri(e) @& AGAD.

Using this we see that, up to changing w by adding to it a 3-coboundary, we
can suppose that a = 0. Finally, for each ¢ € S, and all e € T' we have

3*(¢pe@ DAE) = ¢an(e) @i ADANE+[A 1| @A DAE,
3*(De® DAE) =aDri(e) @i ADAE +[A 1| @ gADAE
and
P(~y@iNE+FE@DAE) =y '@ ADANE+| A1 |@ gADAE,

ISuppose that u = cx + (d — a)y is not zero. Differentiating in (4) with respect to y, we
find that —raFy = uFyy. Since x does not divide F', we have Fy, # 0, and then a # 0 and
u divides Fy: from (4) it follows then that u? divides F, since the left hand side of that
equality is non-zero, and this is absurd because F' is square-free.
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so we can also suppose that ¢ € y" ' ET + yDT.

There are [ > 0, A1, ..., A, fos ---5 i1 €K, ¢, -, &1 € Spg1, Yo, ..., Y1 €
S1, Coy --+, ¢ € Sy such that ¢ = 22:1 Ny TR + Zé:o wiyDE? and d =
Zlizo(qﬁi +; D)E'. The vanishing of §%(w) means precisely that

I
Z(uinDﬁ (B — wiyF(E + 1) — ¢pyxr (EY) — pjaD7y (EZ))
i=0

l
+ Z /\inJrQTl (Ez) =0.
i=1

The left hand side of this equation is an element of S, 2T & SoDT. The
component in So DT is Zézo(uiyzfﬁ)ix)Dﬁ (E*) = 0 and therefore p; = 1; = 0
for all i € {1,...,1}. On the other hand, the component in S, 2T is

1 l
Z Ny P21 (EY) — poyF — Z pixm (EY) = 0.
i=1 i=0
This implies that \;y" 2 —¢;z = 0if i € {2,...,1}, so that \; = ¢; = 0 for such
i, and then the equation reduces to A\1y" 2+ poyF —¢12 = 0. Recalling from 2.2

that F' = "t 4+ 2F, we deduce from this that A\; = —pp and ¢1 = peyF. We
conclude in this way that every 3-cocycle is cohomologous to one of the form

(1oyD — poy" TP EYe AD AN E + (¢ + oD + poyFEYJADANE — (5)

with po € k, ¢o € Sr41 and g € S1, and a direct computation shows that
moreover every 3-cochain of this form is a 3-cocycle.
Let now 1 be a 2-cochain 1 in X, so that

n=|A:@kiAj® A1 ® (ki AD®kjAD)

+uQ@EiANE+v@ A AE+w@DAE

with u, v € A; and w € A,, and let us suppose that its coboundary §2(n)
is equal to the 3-cocycle written in (5). There are then I > 0, «ag, ..., «a,
Bo, -, B € 51,7, ---, 1 €S and &, ..., & € k such that uzzlizoaiEi,
v=Y"_ BiE andw = Y'_ (v +&D)E". The coefficient of ZA§A E in 62 (1)
must be equal to zero, so that

l

Z(_aiy + Biz)m (EY) =0,

=0

and this implies that there are scalars p;, ..., p; € k such that «; = p;xz and
Bi = piy for all i € {1,...,1}.
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Looking now at the coefficient of # A D A E in 62(n) and comparing with (5)
we find that

l
Z —FayE' — o; D, (EY) + vsxm (EY) + &aDmy (EZ))
1=0

= poyD — poy T E. (6)

This is an equality of two elements of ST @ SDT. Considering the components
in DT, we find that D Zli:l(—piTT(Ei) + &7 (EY)) = poyD, and this tells us
that po = 0 and that

l

Z (7piTr(Ei) + &1 (El)) =0. (7)

=1

On the other hand, as the components in ST of the two sides of (6) are equal,
we have

1
—Fogy + Z%xﬁ (EY) =0,
i=0
sothaty; =0foralli € {2,...,1} and Fag,+v1z = 0. As z does not divide F,
we must have ag, = 0 and v; = 0; in particular, there is a pg € k such that
Qo = PoZ. R R
Finally, considering the coefficient of § A D A E of §%(n) and of (5) we see that

l
SO (Ve (F) + VIE(F) = FBy B' — BiDr (B')

=0

+ 9y (') + &yDni () = &F(E+1)") = o+ oD,

which at this point we can rewrite (using in the process the equality (7) above
and the fact that VZE' (F) + VY (F) = F Y1 (E +t)') as

l T
porky + foFy — F (ﬂOy + &0 — Z (Pi Z(E +1)" —&i(E + 1)1>>
i=1 t=1
= ¢o + Yo D.
It follows at once that ¥y = 0 and that, in fact,

poxFy + foFy — F (ﬁOy +& - Z (pl >t — «5)) =

i=1

The polynomial ¢¢ is then in the linear span of zF,, zF,, yF, and F in-
side S,41. Euler’s relation implies that already the first three polynomials
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span this subspace, and we have
S(rQENE)=2F, @ jADAE,
S(x@JAE)=2F, @G ADANE, (8)
Sy gANE—-D®DE)=yF,®@§ADAE.
We conclude in this way that the only 3-coboundaries among the cocycles of the
form (5) are the linear combinations of the right hand sides of the equalities (8);

these three cocycles are, moreover, linearly independent. This means that there
is an isomorphism

L Sty .

H3(%) 2k SSDgANDANE® —" @ gADAE,
A R o R

with o ~ o

ws= WD -y "'EY® i ANDANE+yFEQ§ANDAE,

and that, in particular, dim H3(X) = r+ 2, since the denominator appearing in

the right hand side of this isomorphism is a 3-dimensional vector space —this

follows at once from Lemma 2.3.

4.6. We consider now a 2-cocycle w € X2 and polynomials a € S»T, b, ¢ € ST,

d,e € S, 1T ® S1DT and f € S, T & DT such that

W=aQENJ+bRENE+cR@GAE+d®@2AND+e®@G§AD
+f@EAD.

Adding to w an element of 6*(T' ® E), we can assume that f € 5,7; adding an
element of 61 (S1T®%® S1T ®7)), we can suppose that a = 0; finally, adding an
element of §'((S,T @ DT) ® D) we can suppose that d € y"™'T @y DT. In this
situation, there are an integer I > 0, «ag, ..., aq, Bo, ---, Bi € S1, Ao, -+ Al
tos -5 i €k, @0, ..., & € Spt1, Yo, oo, Y € S and &, ..., & €S,
such that b = Zli:o Bl e = Zi:o BiE, d = Zizo()\iy”‘l + piyD)E?, e =

Yico(di +¥iD)E" and f = Yo &E. As
SN ~y@i+ FE® D)=y @i AD+[S, 1| @gAD,
we can assume that Ao = 0.
The coefficient of & A § A E in 62(w) is Y\ (—asy + Biz) 71 (E?) = 0, and this

implies that there are scalars py, ..., p; € k sAuch :uhat a; = p;x and B; = piy
for each i € {1,...,1}. The coefficient of # A D A E in §2(w) is

l

Z(—FaiyEi — a; D1 (E") + & (EY)) = 0. (9)
i=0
It follows that Zé:o a;D1.(E") = 0, so that ay = -+ = o = 0; as a conse-
quence of this, we have that py = ---=p,=0and g1 =--- = 5, = 0. The
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equality (9) also tells us that —Fagy + Zé:o &ami(EY) = 0, and from this we
see that &, = --- =& = 0 and —Fagy — {17 = 0, so that agy, = 0 and & = 0,
since x does not divide F'. In particular, there is a pg € k such that g = pozx.
The coefficient of §j A D A E in 62(w) is

l . .
> (Ve (F) + Vi (F) = FBiy E' = B,D7 (') + €iym (EY))
=0

= poxrkFy + ﬂOFy - ﬂOyF
= (po — (r+ 1) Boy)xFs + (Bowz + (1 — (L + 7)) Boyy) Fy = 0,

and our Lemma 2.3 implies then that Bo = 0 and pg = 0. Finally, we consider
the coeflicient of £ A § A D:

l

S (A (B + pyF(E +1) — py? D ()
1=0

+ (bimTl(Ei) + ’lbi.TDTl(Ei)) =0.
Looking at the terms involving D in this equation, we see that

l

> (—piy® + iz) Dy (BY)) =0,

i=0
sopuy =---=p =0and ¥; =--- =1 = 0. The terms not involving D add
up to
l
poy ' + Z(—)\i?f” + ¢ir)m(E') =0,
i=0
so that g = --- = X\ =0, ¢2 = .. = ¢l :_O and MoyF+/\1yT+1*¢1iE =0,

which implies that A\; = —pp and ¢1 = peyF.
After all this, we see that every 2-cocycle in our complex is cohomologous to
one of the form

(hoyD — poy™ " E)i A D + (¢o + oD + poyFE)jAD +&DAE — (10)

with po € k, ¢o € Sp41, Yo € S1 and & € S,. Computing we find that all
elements of this form are in fact 2-cocycles.

Let us now suppose that the cocycle (10), which we call again w, is a cobound-
ary, so that there exist kK > 0, g, ..., ak, Bo, ---, Bx € S1, 01, ..., O € Sy,
Coy - -+, Cx € k and u € T such that if

k k k
n= Z o E'% + Z BiE'y + Z(Ui +GD)E'D + uE,
i=0 i=0 i=0
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we have 6'(n) = w. The coefficient of D A E in 6'(5) is D7,(u) so, comparing
with (10), we see that we must have £ = 0 and u € k; it follows from this that
the coefficients of E A E and of §j A E in 6'(n) vanish. On the other hand, the
coefficient of & A in &' (n) is Y1_y(—asy + Bix)m (E'): as this has to be zero,

we see that there exist p1, ..., pr € k such that a; = p;x and B; = p;y for each
ie{l,...,k}.
The coefficient of & A D in §'(n) is
k
Z(—FaiyEZ — ;D7 (E") + o527 (E*) + aDmy (EZ))
i=0

= poyD — poy T E. (11)

This means, first, that Zle (=pixD7.(E") 4+ Gz D71 (E")) = poyD and this is
only possible if pg = 0 and

k

Z(fpiTr(Ei) + CiTl (Ez)) =0. (12)

i=1

Second, the equality (11) implies that

k
> (-FaiE' + oizri (BY)) = —Fag, + Y ogzm (EY) =0,
i=0 i=1
so that oy = --- = 0, = 0 and Fagy + o012 = 0, which tells us that oy =0 and

oy = 0; there is then a py € k such that ag = pox.
Finally, the coefficient of § A D in §1(n) is

k
Z(vgib” (F) + V8F(F) - FBiyyE' — B;D7(E") + oyymi (E")
1=0

— GF(E+1)" + GyDr(E")) = ¢o + thoD.

Looking only at the terms which are in S; DT, we see that

yDZ pzTT +§T( >>:7/)0D

and, in view of (12), it follows from this that )9 = 0. The terms in S,+17, on
the other hand, are

k
POze+ﬂOFy+F<ﬂ0y<0+Z(P12E+t CZE+1))>¢O7
1=0 t=1
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and proceeding as before we see that ¢¢ is in the linear span of zF,, xF,
and yFy,. Computing, we find that

Hr@i)=aF, @ AD,
51(z®gj):sz®ﬁ/\D,
S'y®9—DD)=yF,@jAD.

We thus conclude that there is an isomorphism

Sr41 A “ N
H?*(%) =k — Tl @gADSSIDRGADDS, @ DAE,
) W2@<zeaszayFy>®y eabey Bore
with we = (yD —y™ 1 E) @ & A D+ yFE® A ﬁ, and that, in particular, the
dimension of H?(X) is 2r + 3.

4.7. We can summarize our findings as follows:

PROPOSITION. Suppose that r > 3. For all p > 4 we have HHP(A) = 0. There
are isomorphisms

HH’(A) =k,

HH'(A)~ S, @ Dak® E,

HHQ(A)gkwg@meayAD@SlD@yAD@ST@DAE,
T Y Yy

STJrl

HH?(A) ~ k Tt @gADANE®SIDRGADAE,
(A) w$®<$Fm$Fy’yFy>®y &S D®j

with

wy =YD -y T'E)® 2 AD+yFE®jAD,

ws=yD—y 'E)Q 2 ADANE+yFE®jADAE.
The Hilbert series of the Hochschild cohomology of A is

hite 4y (t) = 14 (r + 2)t + (2r + 3)¢% + (r + 2)°
=1+ +(r+Dt+ (r+2)t%). O

In fact, in each of the isomorphisms appearing in the statement of the propo-
sition we have given a set of representing cocycles. This will be important
in what follows, when we compute the Gerstenhaber algebra structure on the
cohomology of A.

We have chosen a system of coordinates in the vector space containing the
arrangement A in such a way that one of the lines is given by the equation
x = 0. This was useful in picking a basis for the S-module of derivations Der(.A)
and, as a consequence, obtaining a presentation of the algebra A amenable to
the computations we wanted to carry out, but the unnaturality of our choice
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is reflected in the rather unpleasant form of the representatives that we have
found for cohomology classes —a consequence of the combination of the truth
of Hermann Weyl’s dictum that the introduction of coordinates is an act of
violence together with that of the everyday observation that violence does not
lead to anything good. In the next section we will be able to obtain a more
natural description.

4.8. In Proposition 4.7 we considered only line arrangements with r» > 3, that
is, with at least 5 lines. As we explained in 4.2, without the restriction the
method of calculation that we followed has to be modified, and it turns out
that this is not only a technical difference: the actual results are different. Let
us describe what happens, starting with the factorizable cases:
e If there are no lines, so that r = —2, the arrangement is empty and Z(.A)
is the second Weyl algebra k[x, y, 0;, 0y].
o If there is one line, then 2(A) is k[z, y, 205, 0,] and this is isomorphic
to % (s) ® A1, with % (s) the enveloping algebra of the non-abelian 2-
dimensional Lie algebra s and A; the first Weyl algebra.
o If there are two lines, so that » = 0, then Z(A) is k[x, y, 20y, yd,], which
is isomorphic to % (s) @ % (s).
The Hochschild cohomology of the Weyl algebras is well-known —for example,
from [16]— as is that of % (s). Using this and Kiinneth’s formula (this is
the claim in Theorem XI.3.1 of [4] about the “product V”) we find that when
—2 < r <0 we have for all 7 € Nj.

dim I (2(A)) = (r j 2).
Finally, we have the cases of three and four lines. Up to isomorphism of ar-
rangements, one can assume that the defining polynomials are Q = xy(x — y)
and Q@ = ay(x — y)(x — Ay) for some A € k\ {0,1}, respectively. One can
compute the Hochschild cohomology of Z(.A) in these cases along the lines of
what we did above, but the computation is surprisingly much more involved.
We have done the computation using an alternative, much more efficient ap-
proach —using a spectral sequence that computes in general the Hochschild
cohomology of the enveloping algebra of a Lie-Rinehart pair— on which the
first author, together with Thierry Lambre, reports in [9]. Let us here content
us with describing the result: when r is 2 or 3, the Hilbert series of HH®(A) is

hame (4)(t) = 14 (r +2)t + (2r + 4)8* + (r + 3)t°.

This differs from the general case of Proposition 4.7 in the coefficients of #2
and t3.

For our immediate purposes, we remark that in all cases HH'(2(A)) has dimen-
sion equal to the number of lines in the arrangement A, and that its concrete
description is the same in all cases.
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5 THE GERSTENHABER ALGEBRA STRUCTURE ON HH®(Z2(A))

5.1. Let BA be the usual bar resolution for A as an A-bimodule. There is a
morphism of complexes ¢ : P — BA over the identity map of A such that
¢ = ¢ + ¢y with ¢i, ¢n : P — BA maps of A-bimodules such that

Src(Lor A= Avpl1) = D (1) vy |-+ [or ()1,

TeSy
whenever p > 0 and vy, ..., v, € V, with the sum running over permutations
of degree p, and
on(1[1) = 0;

on(1v]l) =0, YveV;
on(z Ayll) = on(1lz A E1) = én(1y A E|1)
=¢n(1lz AD|1) = ¢n(1|D AN E[1) = 0;
on (Ly A DI|1) = quyldz)las)|l — FIL1[1;
¢N(1|.T/\y/\E|1) :¢N(1|$ADAE|1) =0;
én(Llz Ay A D) = qylGeylas) |zl — qq)lde)lzlas) |1
+qylzlqe)lae)|l — Fle[1[1]1 — FI1{1]z[1;
én(Lly AD A EN) = qu)lqe)las | ENL — qa)lde) | Elas) 11
+q)|E|qe2)lqs)|1 — FIE[1[1]1 — F|1|1|E|L.

Here q(1)|q(2)lq(s) denotes the element V(F) of S ® S ® S, with an omitted
sum, a la Sweedler.

On the other hand, there is a morphism of complexes of A-bimodules

1 : BA — P over the identity map of A such that

bo(1[1) =11,

Y1 (1w[l) = way|wey lw), for all standard monomials w;
Y2(LyDly[1) = —yly A D[1 — q(1yla2) A ylas);

Yo (1ly" Ely|1) = =y y A B[

Yo(1|Elw|l) = —wqy|wey A Elws) for all standard monomials w;
(

Yo (1|v|w|l) = —1|w A v|1, if v,w € {z,y,D, E} and vw is
not standard;

Yo (lwlz|l) = —wy|r A wg)|ws) for all standard monomials w;
and
Yo (llufv|l) =0

whenever v and v are standard monomials of A such that the concatenation
uv is also a standard monomial. This morphism 1 can be taken — and we will
take it — to be normalized, so that it vanishes on elementary tensors of BA
with a scalar factor.
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5.2. We need the comparison morphisms that we have just described in order
to compute the Gerstenhaber bracket on HH®(A), but we start with a more

immediate application: obtaining a natural basis of the first cohomology
space HH'(A).

PROPOSITION.
(i) If « is a non-zero element of Sy that divides Q, then there exists a unique

derivation Oy : A — A such that 9, (f) =0 for all f € S and

for all § € Der(A).

(i) If Q =g ...arq1 is a factorization of Q as a product of elements of Sy,
then the cohomology classes of the r + 2 derivations Ouq, - .., Oa,,, of A
freely span the vector space HH'(A).

Here we are viewing HH'(A) as the vector space of outer derivations of A,
as usual. It should be noticed that the derivation 0, associated to a linear
factor of @) does not change if we replace a by one of its non-zero scalar multi-
ples: this means that the basis of HH'(A) is really indexed by the lines of the
arrangement A.

Proof. (i) Let us fix a non-zero element « in S; dividing Q. There is at most
one derivation d, : A — A as in the statement of the proposition simply
because the algebra A is generated by the set S U Der(.A). In order to prove
that there is such a derivation, we need only recall from [12, Proposition 4.8]
that d(a) € S for all § € Der(A) and check that the candidate derivation
respects the relations (1) of 2.2 that present the algebra A.

(1) We need to pass from the description of HH'(A) as the space of outer
derivations to its description in terms of the complex X that was used to com-
pute it: we do this with the comparison morphism ¢ : P — BA over the
identity map that we described in 5.1. If § : A — A is a derivation of A and
6:AQ A® A — A is the map such that 6(a@b®c) = ad(b)c for all a, b, ¢ € A,
which is a 1-cocycle on BA, the composition o ¢ : AQV @A — Ais a 1-
cocycle in the complex Hom 4 (P, A) whose cohomology class corresponds to §
in the usual description of HH'(A) as the space of outer derivations of A. In
the notation that we used in 4.1, this cohomology class is that of

5(r) @i +0(y) @Y +6D)D+IE)REc AR V.
Using this, we can now prove the second part of the proposition. We can
suppose without loss of generality that ag = =z, and then the class of d,,
in HH'(A) is that of R
1®E.
On the other hand, for each i € {1,...,r+1}, computing we find that the class
of Oy, is
F . .
iy — ® D+1®E.

K2
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It follows easily from the second part of Lemma 2.3 that these r + 2 classes
span HH'(A) and, since the dimension of this space is exactly 4+ 2, do so
freely. O

THE CUP PRODUCT

5.3. We describe the associative algebra structure on HH®(A) given by the cup
product.

PROPOSITION. The cup product on HH®*(A) is graded-commutative and such
that
S,®D— S, ®D =0;
¢D — E=¢D NE, Vo € Sy
S, ® D — HH*(A) = 0;
1®@F — ws = ws;
1QE— k@A AND=k@§ANEAD, Vi € Spy1/(xFy, xF,,yF,);
1QE—¢yD@GAD=9vDRGADAE, Vi Si;
19E— S, ®@DANE=0.

These equalities completely describe the multiplication of the Hochschild co-
homology algebra HH®(A).

Proof. That the cup product is graded-commutative is a celebrated theorem of
Murray Gerstenhaber [7]. There is a morphism of complexes of A-bimodules A :
P — P ®4 P that lifts the canonical isomorphism A — A ®4 A such that
A= AK + AN, with
o A : P — P®4P the map of A-bimodules such that for whenever p > 0
and vy, ..., v, € V we have

Ag(Lvr A Avpll) = (=1 viy, Av- A, [1@ Lwg, A-- Ay, |1,

with the sum taken over all decompositions r + s = p with r, s > 0, and
all permutations (i1,...,%, j1,...,4s) of (1,...,p) such that i1 < --- <,
and j; < --- < jg, and where ¢ is the signature of the permutations,

e and Ay : P — P ®4 P the map of A-bimodules such that
An(1[1) =0;
An(1jw|]l) =0, YveV;
An(lfo Aw[l) =0, ifv, we {z,y, D, B}, v 4w and {v,w} # {y, D};

An(1ly A D) = foylfo)lfe) @ Ufwlfe):
An(llz AyAD1)=An1lzAyAE|l)=An(llz AD AE|1) = 0;

DOCUMENTA MATHEMATICA 27 (2022) 869-916



ALGEBRAS OF DIFFERENTIAL OPERATORS 895

AN(lly AD A E|L) = —fy|fio) A Elfz) @ 1 fay | fi5)
+ foylfe)lfe) @ Ufa A Elfis)-

Here we have written f(1)|fe)|f()|fa)|f(s) for the image of ' under the
composition

ids@idsl RV

S Y, 925 ®S SR5195®5 ®S,

with an omitted sum, a la Sweedler as usual.

We leave the verification that this does define a morphism of complexes to the
reader.

The cup product of the algebra HH®(A) can be computed using this di-
agonal morphism A. Indeed, we view HH®(A) as the cohomology of the
complex Hom 4 (P, A), and if ¢ and 1 are a p- and a g-cocycle in that complex,
the cup product of their cohomology classes is represented by the composition

Prig 225 Pooa Py 22% Ay A= A,

with A, 4 the component Py, — P, ® P, of the morphism A. The multiplica-
tion table given in the statement of the composition can be computed in this
way, item by item. O

5.4. PROPOSITION.
(i) For alli, j, k€ {0,...,r+ 1} we have

Oa; ~ Oa; + Oa; ~ Oy, + 0oy, = 0o, =0 (13)

i

and HH'(A) — HH'(A) =S, @ D A E.

(i) The subalgebra ¢ of HH*(A) generated by HH'(A) is the graded-
commutative algebra freely generated by its elements Ongy, ..., Oa,,, Of
degree 1 subject to the (TJ§2) relations (13).

This subalgebra 7 is isomorphic to the de Rham cohomology of the comple-
ment of the arrangement of lines A. This follows from a direct computation
of this cohomology or, in fact, from the solution of Arnold’s conjecture by
Brieskorn; this is discussed in detail in [12, Section 5.4].

Proof. Using Proposition 5.3 and the description given in the proof of Propo-
sition 5.2 for the derivations J,, we compute immediately that

@

Qi Oy

Qi Qg

Qiy  Qjy
for all i, j € {0,...,r+1}. Using this, we see that for all ¢, j, k € {0,...,r+1}
we have
(673 6% (052 Q
aai ~ aOt]‘ + aaj ~ 8ak + 80% ~ aai = — |Wiz iz Qg = 0;
. . aiajak
Qiy  Qjy  Qky
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as the determinant vanishes. This proves the first claim of (7). The second one
follows immediately from the description of the cup product of Proposition 5.3.

(ii) Let F = €D,,5 Fn be the free graded-commutative algebra generated by

r + 2 generators wop, ..., wy41 of degree 1 subject to the relations w;w; +
wjwg + wgw; = 0, one for each choice of 4, j, k € {0,...,r + 1}. We have
Fn = 0if n > 3: whenever ¢, j and k are elements of {1,...,r + 1} we have

that wywjwg = (wiw; +w;w+wrw; )wg, = 0, because of graded-commutativity.
On the other hand, we have dim F> < r 4+ 1. To see this, we notice that F5
is spanned by products w;w; with 1 < i < j < r 4+ 1. If i +1 < j then
WiW; = —Wi1w; — wipw;: it follows from this that the set of monomials
{w;wiq1 : 0 < i < r} already spans Fo.

The first part of the proposition implies that there is a surjective morphism of
graded algebras f : F — 4 such that f(w;) = 0,, for alli € {0,...,r+1}, and
this map is also injective because the dimension of the component of degree 2
of #, whichis S, ® DAE, is r+ 1. O

5.5. Proposition 5.4 describes a part of the associative algebra HH®(A), the
subalgebra # generated by HH'(A), in terms of the geometry of the arrange-
ment A. It is not clear how to make sense of the complete algebra. We can
make the following observation, though. Let us write

HH2(A) = kwy @ (Spy1/(xFy, xF,, yF,) & S1D) @4 A D,

which is a complement of .72 in HH?(A), and let Q = ayg ... a4 1 be a factor-
ization of ) as a product of linear factors. If § : A — A is derivation of A, then
our description of HHl(A) implies that there exist scalars dg, ..., d,41 € k and
an element u € A such that 6 = Z::& 0:i0a, +ad(u), and it follows easily from
Proposition 5.3 that the map

¢ € HH*(A) + § — ¢ € HH*(A)

L . . . g .
is either zero or an isomorphism, provided ZZIO 0; is zero or not.

THE GERSTENHABER BRACKET

5.6. Using the comparison morphisms of 5.1, we can now compute the Ger-
stenhaber bracket. As usual, this is very laborious.
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[0,¢] { [HH’(A),HH®(A)] =0,

[1,1] { [HH'(A),HH'(4)] =0,
[HH'(A), S, @ D A E] =0,

[1,2] { u® D4+ AR E, (v+wD)@§A D] =uwejAD,

W@ D+ A E w] = ((t — NyFy + pyF — y*u) @ § A D,

3 { [u®?+)\®li7,(v+wD)®Q/\lA)/\E]fuw®yA/\A/\AE, A
[u®@ D+ AR F,ws] = (1t — NyFy + pyF —y*0) @ gAD A E,
S, ® DAE,S,®DAE]=0,
[u@DAE,(v+wD)@jAD =uw®jADAE,

2,9] [u®DAE,w2] = (uyAquLunyyQTL) ®3}/\AIA)/\EA,
[(Sr41+S1D) @G A D,(Sr41+ 51D) @y A D] =0,
[(Sy41+81D) @ § A D,wa] =0,

[wa, wa] =0

Hereuw e Sy, A€k, v e Spy1, we Sy and p € k and u € S,_1 are such that
u =Ny + xu.

Proof. Let us first recall from [7] how one can compute the Gerstenhaber
bracket in the standard complex Homue(BA, A). If f : A®? — Ais a ¢-
cochain in the standard complex Hom4e(BA, A), which we identify as usual
with Hom(A®®, A), and p > ¢, we denote w,(f) : A®? — AP~9T! the p-cochain
in the same complex such that

p—q+1
Wp(f)(a1®"'®ap): Z (—1)((]71)(271)@1@---®ai_1®f(ai®---®ai+q_1)
=1
®ai+q®...®ap.

If now a and 8 are a p- and a g-cocycle in the standard complex, the Ger-
stenhaber composition ¢ (which is usually written simply o) of @ and f is the
(p + ¢ — 1)-cochain

aof=aowpie1(5)
and the Gerstenhaber bracket is the graded commutator for this composition,

so that
o, 8] = a0 B — (=1)P D VBoq.

Next, if o and 8 are now a p- and a g-cochain in the complex Homa. (P, A),
we can lift them to a p-cochain & = a0, and a g-cochain 3 = 3 01}, in the
standard complex Hom 4. (BA, A), and the Gerstenhaber bracket of the classes
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of @ and 8 is then represented by the (p + ¢ — 1)-cochain [&, B] © ¢ptqg—1. This
is the computation we have to do in order to compute brackets in HH®(A),
except that in some favorable circumstances we can take advantage of the
compatibility of the bracket with the product to cut down the work. We do
this in several steps.
e Since the morphism v is normalized and HH?(A) is spanned by 1 € k, it
follows immediately that

[HH"(A), HH®(A)] = 0.

e The Gerstenhaber bracket on HH'(A) is induced by the commutator of
derivations. From Proposition 5.2 we have a basis of HH'(A) whose
elements are classes of certain derivations, and it is immediate to check
that those derivations commute, so that

[HH'(A),HH'(A4)] = 0. (14)

e We know that the subspace S, ® DA E of HH?(A) is HH' (A) — HH!(A).
Since HH*(A) is a Gerstenhaber algebra and we know that (14) holds, it
follows that

[HH'(A), S, ® D A E] = 0.

For exactly the same reasons we also have that
S, ® DAE,S,®DAE]=0.

o Let a =u®@D+A@E, withu € S, and A € k. If 3= (v+wD)®GAD,
with v € S 1 and w € Sy, one can compute that (&of)o¢ =uw®yA D
and that (8¢ &) o ¢ = 0: it follows from this that

[a,(v+wD)®§A D] =uw®gAD.
On the other hand, we have (W ¢ &) 0o ¢ = 0 and
[@,@0) 0= (Gow)odp=(yu— A/ TN@EAD+ NFQjAD
= ((n = NyFy + pyF — y*a) @ g A D
~ " (W= NF —ya)E@ D+ (A — p)y ® &)

with @ € S,._1 and p € k chosen so that u = py” + zu.
Finally, if v € S,41 and w € S, using the compatibility of the bracket
and the product and what we know so far we see that
[a, v+ wD)@JADAE] =[0,1® E — (v4 wD)
=18 F — [a,(v+wD)
=1F —uw®gA D
=uw YA DAE
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and, similarly, that

[, ws] = [a,wy — 1® E] = [o,ws] — 1@ E+wy — [a,1® E]
= ((u— NyFy + pyF —y*a) @ yAD A E.
o Let ue S,. If ve S, ;1 and w € 57, we have
u@ DANE,(v+wD)@jAD=u®D —1®FE,(v+wD)®jA D]
=u®D,(v+wD)RJAD] — 10 E

+u®D < [1QE, (v+wD)®jA D)
—uw@GAD - 1@ E=uw®§ADANE.
Similarly,

U@ DAE,w]=[u®D—1® E,uw)]
=u®@D,w] —1@FE+u®D < [1®E,w)]
:(MyFm—l—uyF—yQﬂ)@yA/\ﬁ/\EA.

if u=py" 4+ zu with p €k and @ € S,_;.

e Let now o = (v+wD)®3}/\D and 8 = (s+tD)®@/\[), with v, s € S;41

and w, t € S1. We claim that (& o B) o ¢ =0, so that, by symmetry, we
have [@&, 8] o ¢ = 0. To verify our claim, we compute:

lleAyANE| 2y k[x,y, E]®° RGN 0;

1|z A DA E|LS K, D, )25 222 o,

1z Ay A D1 1zly| D1 — 1|z Dly|1 + 1|D|z|y|1
~1|Dlyla|t + 1ly|Dlat — 1fyl|DJ1 +[5%°]
22O (s 4 tD) ||l — 1|z|(s + tD)|1

— 78(1)|:L' A 8(2)|S(3) — t(1)|:€ A t(2)|t(3)D — t|:C A D|1
= 0;

1ly A D A B|L 1y D|E|1 - 1]yl E|D|1 + 1|Ely|D|1 — 1|E[Dly|1

+1|D|E[y|1 - 1|DJy|E|1 + | K[z, y, E]*°

220, 1 |(s 4 tD)|E|L — 1|E|(s + tD)|1

Di) 5(1) |S(2) A E|S(3) + t(1)|t(2) A E|t(3)D + t|D A E|1
s 0.
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e Let again a = (v+ wD) ®J A D, withv € S,41 and w € S1, and let us
compute that (@3 0 &) o ¢3 = —w(yD —y" T E) @& AGAD.

lz Ay Az|1 23, k[x,y, E]®° ALIGNY)

1z A DA E[LE% Kz, D, )25 ] 222, o
1z Ay A D15 1zly| D1 — 1|z Dly|1 + 1|D|z|y|1
~1IDlyl[1 + 1ly|Dl[1 — jyle D] + [557]
2D (v 4+ wD) |1 + L|z|(v + wD)|1
P2
— 7’0(1)|SC A ’U(2)|’U(3) — W(1) |:L' A ’LU(2)|’LU(3)D — w|z A D|1
22y —w(yD — yTJrlE)
1ly A D A E|1 1)y|D|E|L — 1|y|E|D|1 + 1|E|y|D|1 — 1|E|D|y|1
+1|D|E[y|1 = 1|D|y|E|1 +|Kk[z,y, E]®®
2|+ wD)|E|L — 1|E|(v + wD)|1
P2
— 1)(1)|’U(2) A E|’U(3) =+ w(1)|w(2) A E|w(3)D + ’LU|D A E|1
=25 0).
Similarly, we have that (@ ¢ @s)o g3 =y(v+wD) R T AGA D:
Lz Ay A 2142 | klz,y, E]®°
WQ((:)Q) O

1|z A D A E|1+25 12| D|E|1 — 1|2|E|D|1 + 1| E|z|D|1
—1|E|D|z|1 + 1|D|E|z|1 — 1|D|z|E|1
22, B|(yD — y M E)1+ 1|(yD — v Y B
2 1y AE|D —y|D A E|L+ Zy|y A By
1=0
)
1)z Ay A DI1 2% 1]zly|D|1 — 1]z|Dly|1 + 1| D|z|y|1

—1|Dlylz[1 + 1]y| D]x[1 — 1]y D[1 +[5%5]

W3 ((:12) — r
=" —l|zlyFElz[1 = 1|(yD -y E)|y[1
+ 1y F Bzl +1]yl(yD -y E)[1

»w—2>y|y/\D|1—yT+1_|y/\E|1 ) )
— (WEFE) )l A (yFE) o)l (yFE)@s)
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s —y(v 4+ wD)

1y A DA E|1 25 1)y|D|E|1L — 1|y|E|D|1 + 1| E|y|D|1

—1|E|Dlyl1 +1|D|Ely|t — 1|Dly|E|1 + K[z, y, E]*°]
&) By FEN + 1|yFE|E|1
2, (WFE))|(yFE) @) N E|(yFE)s)
s 0.
It follows from this that
[@2,8] 0 s = —w(yD —y"™ ' E) Q2 AGAD +ylv+wD) @& AjAD
=(wu+y T'E)®@2@AjAD

and, as we say in 4.5, this is a coboundary.
e The one computation that remains is that of the bracket of ws with itself,
which is represented by the 3-cocycle

[, 0] 0 g = 2(@2 0 @a) 0 3 = 2’ FEREAGA D, (15)
as can be seen from the following calculation:
Tz Ay A z|1 23,
wa (@2) 0

1|z A D A E|1 %% 1|2|D|E|1 — 1|2|E|D|1 + 1|E|z|D|1
—1|E|D|z|1 + 1|D|E|z|1 — 1|D|z|E|1

ws (D2) ” r
——2% —1|E|(yD —y" ' E)|1+ 1|(yD — y" ) |E1

Y2 Ay AEID —yDAEL+ > y'ly A Ely

1=0
=25 0
1)z Ay A DI1 2% 1]zly|D|1 — 1]z|Dly|1 + 1| D|z|y|1

—1|Dlylz[1 + 1]y| Dlx[1 — 1]y D[1 +[5%5]

W (‘:}2) " r
=" —l|zlyFElz[1 - 1|(yD -y E)[y[1
+ 1y F Bzt +1]yl(yD -y E)[1

»w—2>y|y/\D|1—yT+1_|y/\E|1 ) )
— (WEFE) )l A (yFE) o)l (yFE)@s)
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1)y A D A E|1+2% 1]y|D|E|1 — 1|y|E|D|1 + 1|Ely|D|1

—1|E|Dlyl1 +1|D|Ely|t — 1|Dly|E|1 + K[z, y, E]*°]
@), |EWFE + 1jyFE|EN
2 WFE) ) |(yFE) @) A E|(yFE) )
=25 0.
Now the 3-cocycle (15) is a coboundary, again by what we saw in 4.5, so

that we have [wa, ws] = 0.
This completes the proof of the proposition. O

6 HOCHSCHILD HOMOLOGY, CYCLIC HOMOLOGY AND K-THEORY

6.1. For completeness, we determine the rest of the ‘usual’ homological in-
variants of our algebra A. Recall that our ground field k is of characteristic
zZero.

PROPOSITION. The inclusion T = k[E] — A induces an isomorphism in
Hochschild homology and in cyclic homology. In particular, there are isomor-
phisms of vector spaces

T, ifi=0o0ri=1;
0, ifi>2;

T, ifi=0;

HC:(4) = {HCi(k), ifi>0.

HH;(A) {

On the other hand, the inclusion k — A induces an isomorphism in periodic
cyclic homology and in K -theory.

Proof. As we know, the algebra A is Ny-graded and for each n € Ny its homoge-
neous component A, of degree n is the eigenspace corresponding to the eigen-
value n of the derivation ad(F) : A — A. On one hand, this grading of A in-
duces as usual an Ny-grading on the Hochschild homology HH,(A) of A; on the
other, the derivation ad(E) induces a linear map Laqg) : HHe(A) — HH,e(A)
as in [10, §4.1.4] and, in fact, for all n € Ny the homogeneous component
HH,(A),, of degree n for that grading coincides with the eigenspace correspond-
ing to the eigenvalue n of L,q(gy. As the derivation ad(E) is inner, it follows
from [10, Proposition 4.1.5] that the map L,q(g) is actually the zero map and
this tells us in our situation that HHe(A), = 0 for all n # 0. Of course, this
means that HHe(A) = HH,(A)o and, since A is non-negatively graded, it is
immediate that the Oth homogeneous component HHq(A)o coincides with the
Hochschild homology HH,(Ap) of Ap and that the map HHq(Ag) — HH4(A)
induced by the inclusion Ay — A is an isomorphism. Now, in the notation

of [10, Theorem 4.1.13], this tells us that HH, (A) = 0 so that by that theorem
we also have HNC.(A) = 0: this means precisely that the inclusion Ay — A in-
duces an isomorphism HC,4(A4g) — HC4(A) in cyclic homology. Together with
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the well-known computation of the Hochschild homology of a polynomial ring
and that of the cyclic homology of symmetric algebras [10, Theorem 3.2.5], this
proves the first claim of the statement.

In the proof of the lemma of 3.4 we constructed an increasing filtration F' on
the algebra A with F_1 A = 0 and such that the corresponding graded algebra
is the commutative polynomial ring gr A = k[z,y, D, E] with generators z
and y in degree 0 and D and E in degree 1. In particular, both gr A and
its subalgebra gry A of degree 0 have finite global dimension. It follows from
a theorem of D. Quillen [13, p.117, Theorem 7] that the inclusion k[z,y] =
FyA — A induces an isomorphism K;(k[z,y]) — K;(A) in K-theory for all
i > 0. Similarly, the theorem of J.Block [2, Theorem 3.4] tells us that that
inclusion induces an isomorphism HP,4(k[z,y]) — HPJ(A) in periodic cyclic
homology. As the inclusion k — k[z, y| induces an isomorphism in K-theory

and in periodic cyclic homology, we see that the second claim of the proposition
holds. o

7 THE CALABI-YAU PROPERTY

7.1. The enveloping algebra A° of A is a bimodule over itself, with left and
right actions > and < given by ‘outer’ and ‘inner’ multiplication, respectively,
so that if a ® b, c® d and e ® f are elementary tensors in A€, we have

a®brc®Rd<e® f =ace® fdb.
From this bimodule structure we obtain a duality functor
HOmAe (—’ Ae) I Ae Mod — MOdAe .

On the other hand, using the anti-automorphism 7 : A¢ — A€ such that
T(a®b) =b®a for all a, b € A, we can turn a right A°-module M into a
left A°-module, with action u>m = m < 7(u) for all u € A and all m € M.
In this way, we obtain an isomorphism of categories 7* : Mod g — 4-Mod. We
denote (—)Y : 4eMod — 4<Mod the composition 7* o Hom 4e (—, A¢).

Let now W be a finite dimensional vector space, let W* be the vector space
dual to W, and view AQ W ® A and A® W*® A as left A°-modules using the
usual ‘exterior’ action. There is a unique k-linear map

P ARW @A — (AW ® A)Y

such that P(a®d®b)(1 @w ® 1) = ¢p(w)b® a and it is an isomorphism of left
A°-modules: we will view it in all that follows as an identification.

7.2. PROPOSITION. The algebra A is twisted Calabi-Yau of dimension 4 with
modular automorphism o : A — A such that

o(z) =z, oly) =y, o(D) =D + F,, o(Ey=E+r+2.
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Let us recall from [8] that this means that A has a resolution of finite length by
finitely generated projective A-bimodules, that Ext’. (A, A°) = 0 if i # 4 and
that Ext%. (A, A°) = A,, the A-bimodule obtained from A by twisting its right
action using the automorphism o, so that a> 2 <b = axo(b) for all a, b € A
and all z € A,.

Proof. A direct computation shows that there is indeed an automorphism o
of A as in the statement of the proposition. We already know that A has a
resolution P of length 4 by finitely generated free A-bimodules, so we need
only compute Ext%.(A, A¢), and this is the cohomology of the complex PY
obtained by applying the functor described in 7.1 to P. Using the identifications
introduced there, this complex PV is

ATAS A v A% 41020 4% A8 1 4% Aty |4
with left A¢-linear differentials such that
A1) =—[,10i01]-[y,10jol] - [D,1® D 1]
~EJ10E®1];
B10iol)=[y10iAjel]+[D,10iAD1]
+[EA1@EAER+10iAE® 1+ VIN(F);
H10jel)=—[1,102A§®1]+[D,10§AD®1]
+IE10grE0l]+1jAEel+ VIN(F);
B1oDel)=—[2,10iAD1] - [y,10§AD®1]
+[E,19DAE@1+7r@DAE®T1;
BOAE®1)=-[,102AE01] - [1,10§AE®1]
~[D,1®@DAE®1];
d(1@EAge1)=—[D,10&AJAD®1] - VINAD(F)
—[B1@iAJANE®R1]-20EAGJAE®1;
BA1@iAD®1)=y10iAgAD®1]-[E,192ADAE®1]
—(r+1)®EADAE®I;
OAEANE) =[y,10iAjAE®1]+[D,102ADAE®1]
+@2ADAE(F);
BO1@GAD®1)=—[2,10iAJAD®1] - [E,19§ADAE®1]
~(r+1)@JADANE®1;
BARIAER1) = —[2,10 2 AJAE@1]+[D,1@§ADAE®1]
+@2AEAE(F);
BA@DANE®1)=—[2,102ADAE®1] —[y,10§ADAE®1];

DOCUMENTA MATHEMATICA 27 (2022) 869-916



ALGEBRAS OF DIFFERENTIAL OPERATORS 905

d1@EAGAD®1) =[E, 10 AGJADANE®1]
+(r+2)@EAGADANE®1;

Q(1@EAGAE®1) = —[D,102AJADAE®1] - VINAPAE (),
A1QEADANE®1) =[y,10EAjADAE®1];

OAQIJADAE®1) =—[2,102AgADAE®1],

where each @g is the image of V¥ under the map a @ u® b +— b® u ® a, and
the same with each @Z

Let us now identify P ® 4 A, with P as vector spaces, remembering that the
bimodule structure on P with this identification is given by a>z<b = axo(b) for
all a, b € A and all z € P. There is a morphism of complexes of A-bimodules
Y :PY - P®y A, such that

VAREIAGADAE®1) =10 1;
YARIADANE®]) =-10z®1;
YAREIADANE®1)=10y®1;
VAREIAJAER1)=-10D®1—¢
YAREIAGAD®1) =10 E®1;
YAIODANE®1) =-1zAy®1;
Y1READ®1)=10yAE®1;
PYARGAD®1)=-10zAE®1;
PARGAE®1) =10sADQ1+zAE;
YAIRIANE®1) =-10yAD®1+(
Y1REAjJR1)=—-1®DANE®1—£NAE;
Y10 E®1)=10zAyAD®1;

Y1 D®1l)=-10sAyAE®1;
PY1gie1) =1z ADAE®1+axAEANE;
Y10ie1)=-1QyADANE®1+(AE;
Y1) =102 AyADAE®]I,

where £ € A®V ® A and ¢ € A® A%V ® A are chosen so that

di(§) = @y(F) - 1|Fy> da(C) = &y — y& — 1|9|Fy - @;(F) + V(F).

That there are elements which satisfy these two conditions follows immedi-
ately from the exactness of the Koszul resolution of S as an S-bimodule —
indeed, the right hand sides of the two conditions are cycles in that complex —
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but we can exhibit a specific choice: if we write F' = ) cqx®y®, with

a+b=r+1
Coy -+, Cr—1 € kk, then we can pick
€= Y (t+Deayyly, (= D ylanylatyt.
a+b=r+1 at+b=r+1
s+t+1=b—1 s+t+1=b

s'+t'+1=a

That these formulas for 1 do indeed define a morphism of complexes follows
from a direct computation and it is easy to see that it is in fact an isomorphism,
as for an appropriate ordering of the bases of the bimodules involved the ma-
trices for the components of i are upper triangular. Of course, it therefore
induces an isomorphism in cohomology and, since A, is A-projective on the
left, we conclude that there are isomorphisms of A-bimodules

A, ifi=4;

H(PV)2 H(P®R4A,) =
(P) (P @4 4o) {o if i # 4.

This completes the proof. O

8 AUTOMORPHISMS7 ISOMORPHISMS AND NORMAL ELEMENTS

8.1. Our next objective is to compute the group of automorphisms of the al-
gebra A. We start by describing some graded automorphisms of A. Later we
will see that these are, in fact, all the graded automorphisms of our algebra,
and that together with the exponentials of locally ad-nilpotent elements they
generate the whole group Aut(A).

LEMMA. If (25) € GLa(k) and e € k* are such that
mQ(C@ + by, cx + dy) = Q(,y),

and v € k and ¢9 € Sy, then there is a homogeneous algebra automorphism
0:A— A such that

0(z) = ax + by, 0(y) = cx + dy, O(E)=FE+v
and
ebF
D) =¢o — E+eD. 1
(D) = o e +e (16)

Proof. This is proved by a straightforward calculation. It should be noted that
the quotient appearing in the formula (16) is always a polynomial. O

8.2. Recall that a higher derivation of A is a sequence d = (d;);>0 of linear
maps A — A such that dy =id4 and for all a, b € A and all i > 0 we have the
higher Leibniz identity

di(ab) = > dy(a)dy(b).

s+t=1
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It is clear that if d = (d;)i>0 is a higher derivation and m is a positive integer,
then the sequence d™ = (dI™),>( with

g di/m, if i is divisible by m;
t o, if not

is also a higher derivation. On the other hand, if d = (d;);>0 and d’ = (d});>0
are higher derivations of A, we can construct a new higher derivation (d//);>o,
which we denote d o d’, putting d} = > ., ;ds od; for all i > 0. Finally,
if § : A — A is a derivation of A, then the sequence (Z.—l!&i)izo is a higher
derivation, which we denote by exp(d); notice that this makes sense because
our ground field k has characteristic zero.

We let D(A) be the subalgebra of Endi(A) generated by Der(A), and say that
two higher derivations d = (d;);>0 and d' = (d})i>o of A are equivalent, and
write d ~ d', if for all ¢ > 0 the map d; — d} is in the subalgebra of Endg(A)
generated by D(A) and dp, ..., d;—1; one can check that this is indeed an
equivalence relation on the set of higher derivations.

8.3. We recall the following very useful lemma from [1] (where it appears as
the sous-lemme of Section 1.4):

LEMMA. If d = (di)i>0 is a higher derivation of A, then d; € D(A) for all
non-negative integers 1.

Proof. The result is an easy consequence of the fact that

if d is a higher derivation of A and j > 1, then there exists
a higher derivation d' = (d});>0 such that d' ~ d, d; = 0 if (17)
1 <i<j, and dj is an element of Der(A).

To prove that this holds, let d = (d;)i>o and suppose there is an j > 1 such
that that d; = 0 if 1 < ¢ < j. The higher Leibniz identity implies that d; is an
element of Der(A), and then we can consider the higher derivation exp(—d;)l!.
We let d’ = (d.);i>0 be the composition exp(—d;)ll o d. It is immediate that
d ~ d' and a simple computation shows that d; = 0if 1 < ¢ < j+ 1. The
claim (17) follows inductively from this. O

8.4. LEMMA. An element of A commutes with © and with y if and only if it
belongs to S.

Proof. The sufficiency of the condition is clear. To prove the necessity, let
e € A be such that [z,e] = [y,e] = 0. There are an integer m > 0 and
elements ¢q, ..., ¢, in the subalgebra generated by z, y and D in A such
that e =Y ) ¢ E*, and we have 0 = [z,¢e] = >, ¢;71(E"): this tells us that
¢; = 0 if ¢+ > 0, and that e = ¢g. In particular, there are an integer n > 0
and elements tg, ..., ¥, in S such that e = Y7 ;D' If i > 0 we have
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[D',y] =iFD""! mod @;;% SDJ . so that

n n—2
0=ley]= Z%[Di, yl =ny, FD"'  mod @ SD.
=0 j=0

Proceeding by descending induction we see from this that ¢¥; = 0 if ¢ > 0, so
that e =g € S. O

8.5. PROPOSITION. If 0 : A — A is an automorphism of A such that for all
i >0 and all a € A; we have 6(a) € a + P ;-,; Aj, then there exists an f € S,
uniquely determined up to the addition of a constant, such that

9(,@):1', G(Q)Zy’ G(D):D_ny’ G(E):E_[Eaf]

Conversely, every f € S determines in this way an automorphism of A satis-
fying that condition.

Proof. Let 6§ : A — A be an automorphism of A as in the statement. For
each j > 0 there is a unique linear map 6; : A — A of degree j such that for
each i > 0 and each a € A; the element 6,(a) is the (i + j)th homogeneous
component of #(a). We have that for all a € A we have 6;(a) =0 for j > 0 and
0(a) = 350 0:i(a) and, moreover, the sequence (f;);>0 is a higher derivation
of A. In particular, it follows from Lemma 8.3 that

0; € D(A) for alli > 0. (18)

We know, from Proposition 4.7, that Der(A) = STﬁ@kE@InnDer(A). Ifuisan
irreducible factor of zF, then (¢D)(uA), E(uA) and [a,uA] are all contained
in uA for all ¢ € S, and all a € A, and therefore (18) implies that that
O(uA) C uA. As our argument also applies to the inverse automorphism 61,
we have 671 (uA) C uA and, therefore, §(uA) = uA. Since all units of A are
in k, we see that #(u) = u. Since of xF has two linearly independent linear
factors, we can conclude that 6(z) = = and 6(y) = v.

Let 0(E) =E +e1 + -+ ¢ with e; € A; for each i € {1,...,1}. We have

z=0(z) = [0(E),0(x)] = [E,2] + [er, 2] + - + [e1, 2]

and, by looking at homogeneous components, we see that [e;, 2] = 0 for all
i€ {1,...,1} Similarly, [e;,y] = 0 for such 4, and therefore Lemma 8.4 tells us
that e, ..., e, € S.

Suppose now that (D) = D + dy41 + -+ + d; with d; € A; for each j €
{r +1,...,1}. Considering the equality [0(F),0(D)] = r6(D) we see that
dr+i = +Fe;y, for each i € {1,...,1}. Putting f = — 22:1 1e;, we obtain the
first part of the lemma. The second part follows from a direct verification. O
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8.6. The automorphisms described in Proposition 8.5 are precisely the expo-
nentials of the inner derivations corresponding to locally ad-nilpotent elements
of A. This is a consequence of the following result:

PROPOSITION. An element of A is locally ad-nilpotent if and only if it belongs
to S. If f € S, then the automorphism expad(f) maps x, y, D and E to
z,y, D—Ff, and E — [E, f], respectively.

Proof. Suppose that e € A is a locally ad-nilpotent element. The kernel
kerad(e) is a factorially closed subalgebra of A, so that whenever a, b € A
and ad(e)(ab) = 0 we have ad(e)(a) = 0 or ad(e)(b) = 0; see [6] for the proof
of this in the commutative case, which adapts to ours.
Since [ziy/ DFE!, 2] = —at1y) D*7 (E!) for all i, j, k, | > 0, we have [A, z] C
zA and from this we see immediately that [A,2A] C xA. This implies that
there is a sequence (uy)r>0 in A such that ad(e)*(z) = auy for all k& > 0.
Since e is locally ad-nilpotent, we can consider the integer kg = max{k €
Np : ad(e)*(z) # 0}, and then we have 0 # xuy, € kerad(e). As kerad(e)
is factorially closed, we see that ad(e)(x) = 0. In other words, the element e
commutes with z.
There are an integer m > 0 and elements ¢q, ..., ¢, in the subalgebra
generated by x, y and D in A such that e = Z;ZO ¢:E", and we have
0=[zel =>0",¢7(E: this tells us that ¢; = 0if i > 0, and that e = .
In particular, there are an integer n > 0 and elements vy, ..., 1, in S such
that e = Y1 ;D"
An induction shows that [D?, F] € F A for all i > 0, and using this we see that
le, F] =Y ,¢;[D*, F] € FA, from which it follows that in fact [e, FA] C FA.
There is therefore a sequence (v;);>0 of elements of A such that ad(e)*(F) = Fv;
for all 4+ > 0. The local nilpotence of the map ad(e) allows us to consider the
integer

ip = max{i € Ny : ad(e)*(F) # 0},

and then 0 # Fv;, € kerad(e). If axz + by is any of the factors of F', we have
b # 0 and az + by € kerad(e): clearly, this implies that y commutes with e.

In view of Lemma 8.4, we see that e € S: this proves the necessity of the
condition for local ad-nilpotency given in the lemma. Its sufficiency is a direct
consequence of the fact that the graded algebra associated to the filtration on A
described in 2.2 is commutative. Finally, the truth of the last sentence of the
proposition can be verified by an easy computation. o

8.7. We write Autg(A) the set all automorphisms of A described in Lemma 8.1,
and Exp(A) the set of all automorphisms of A described in Proposition 8.5;
they are subgroups of the full group of automorphisms Aut(A).

PROPOSITION. The group Aut(A) is the semidirect product Auto(A) x Exp(A4),
corresponding to the action of Autg(A) on Exp(A) given by

0o - expad(f) = expad(0~1(f))
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for all g € Auto(A) and f € S. The subgroup Autg(A) is precisely the set of
automorphisms of A preserving the grading and Exp(A) is the set of exponen-
tials of locally nilpotent inner derivations of A.

Notice that the action described in this statement makes sense, as 6p(S) = S
whenever 6y belongs to Autg(A).

Proof. Let 8 : A — A be an automorphism and let us write 0(FE) = eg+- - - +¢y,
0(x) = xo+- -+, 0(y) = eot+- - +yu, (D) = do+---+d; with e;, z;, s, di € A;
for each i € {0,...,1}. Since 6 is an automorphism, we have

[0(E),0(x)] = 0(z),  [0(E),0(y)] =0(y),  [0(E),0(D)] =r6(D). (19)

Looking at the degree zero parts of these equalities, and remembering that Ay
is a commutative ring, we see xg = yo = dg = 0. As 0(x) # 0, we can consider
the number s = min{i € Ny : z; # 0} and we have s > 0. Looking that the
component of degree s of the first equality in (19), we see that [eg, zs] = .
This means that the restriction ad(eg) : As — A, has a nonzero fixed vector.
Now Ay as a right k[E]-module is free with basis {z'y/D* : i + j + rk = s},
the map ad(eg) is right k[E]-linear, and coincides with right multiplication
by —7s(eg) on As. Clearly, the existence of nonzero fixed vector implies that
—7s(eg) = 1, so that eg = uFE 4 v for some u € k™ and v € k with su = 1.
Putting now s’ = min{i € Ny : y; # 0} and s = min{u € Ny : d; # 0} and
looking at the components in the least possible degree in the second and third
equations of (19), we find that s'u = 1 and s”u = r. In particular, s = ¢’ and
s =rs.

Suppose for a moment that s > 1. As 6(z), 6(y) and (D) are in the ideal
(As) generated by A, the composition g : A — A of § with the quotient map
A — A/(A;) is a surjection such that ¢(Ag) = A/(As). This is impossible, as
Ap is a commutative ring and A/(A;) is not: we therefore have s = 1 and, as
a consequence, u = 1.

There exist a, b, ¢, d € k[E] such that 21 = za+ yb and y; = xzc+yd. The four
elements §(E), 0(z), 0(y) and §(D) generate A and, as (D) is in €D, A;, the
elements x and y are in the subalgebra generated by the first three. It follows
at once that x, y € z1k[E] + y1k[E] and, therefore, that (¢ %) € GLa(k[E]).
Let us write f € k[E] — f € k[E] the unique algebra morphism such that
E = E+1. We have [0(z),0(y)] = 0 and in degree 2 this tells us that

22(al — dc) + xy +42(bd — bd) =0,
so that
ac = dc, bd = éd. (20)

Suppose that a is not constant. As the characteristic of k is zero (and possibly
after replacing k by an algebraic extension, which does not change anything)
there is then a & € k such that a(§) = 0 and @(§) = a(§ + 1) # 0, and the
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first equality in (20) implies that ¢(¢) = 0. The determinant of (%) is thus
divisible by E — ¢, and this is impossible. Similarly, we find that all of b, ¢, d
must be constant.

Since d, € A,, there exist k > 0, ¢, ..., ¢r € S, and h € k[E] such that
d, =¥ #:E" + Dh. The component of degree r + 1 of [0(D), 6(x)] is
k
0=[dr,1] == (az +by)p;r1(E") — (az + by) D71 (h) + bFh.
i=0

We thus see that h is constant, that ¢; = 0 if ¢ > 2, and that
(azx + by)¢p1 + bhF = 0.

If b = 0, then ¢; = 0, and if instead b # 0, then either A # 0 and we see that
az + by divides F and that ¢1 = —bhF/(ax +by), or h = 0 and ¢ = 0. In any
case, we see that

_ qso—mLfbyEJth, if b #£0;
" \¢o+hD, if not.

Finally, the component of degree r + 1 of the equality [#(D),0(y)] = 0(F) tells

us that
o F

ar + by’

It follows now from Lemma 8.1 that there is a graded automorphism 6y :
A — A such that 0y(x) = ax + by, Oo(y) = cx + dy, 0o(FE) = E + v and
00(D) = d,.. The composition 961 of satisfies the hypothesis of Proposition 8.5,
and then there exists an f € S such that 6 = 6 o expad(f). This shows that
Aut(A) = Auto(A) - Exp(A). Moreover, if 0 is a graded automorphism, then
so is expad(f) = 6, " o 0 and, since it maps E to E — [E, f], this is possible if
and only if f € k, that is, if and only if expad(f) = ida; this proves the last
claim of the theorem.

Finally, computing the action of both sides of the equation on the generators
of A, we see that

F(ax + by, cx + dy) = (ad — bc)h

expad(f) o 6 = g o expad(0=1(/))

for all f € S and all 8y € Autg(A), and this tells us that Aut(A) is indeed a
semidirect product Autg(A4) x Exp(A4). O

8.8. As usual, we say that an element u of A is normal if uA = Au. Such an
element, since it is not a zero-divisor, determines an automorphism 6,, : A — A
uniquely by the condition that ua = 6,(a)u for all u € A.

8.9. PROPOSITION. Let @Q = «g - - - a,r41 be a factorization of Q as a product of
linear factors. The set of non-zero normal elements of A is

N (A) =l - -arit AN EK ig, ... i1 € N}
This set is the saturated multiplicatively closed subset of A generated by Q.
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Proof. A direct computation shows that each of the factors «q, ..., a,11 of Q
is normal in A, so the set .#7(A) is contained in the set of non-zero normal
elements of A, for the latter is multiplicatively closed. The set A4'(A) is mul-
tiplicatively closed and it is saturated because S is closed under divisors in A,
and it is clear that as a saturated multiplicatively closed it is generated by Q.
To conclude the proof, we have to show that every non-zero normal element
of A belongs to A4 (A).

Let u be a non-zero normal element in A and let 6, : A — A be the associated
automorphism, so that ua = 6,(a)u for all a € A. There are k, | € Ny with

k <l and elements ug, ... u; € A such that v = ug + --- + u;, u; € A; if
k <i <l and ux # 0 # u;. Similarly, there are s, t € Ny with s < ¢t and
elements eg, ..., e; € A such that 0,(FE) =es+ -+ e, e; € A if s <i <,

and e; # 0 # e;. As we have
ugE 4+ wFE =uE =0,(E)u =esur + -+ epy

with up F, wiF, esug and e;u; all non-zero, looking at the homogeneous com-
ponents of both sides we see that s =t = 0. This means that 0, (FE) = f(E) €
k[E], and therefore the above equality is really of the form

upE+ -+ wE = f(E)ur + -+ f(E)u.

It follows from this that w,E = f(F)u; = u; f(E + ) for all i € {k,...,l} and
therefore that E = f(E+ k) and that E = f(E +1). Since our ground field has
characteristic zero, this is only possible if k = [: the element v is homogeneous
of degree [.

Now, since ua = 0, (a)u for all a € A, the homogeneity of u implies immediately
that 6, is a homogeneous map. There are n € Ny and ¢q, ..., ¢, in the
subalgebra of A generated by «, y and D, such that ¢, #0and u =" , OB
As 6, (z) has degree 1, it belongs to S; and we have

Ou(®) Y GiB' = Ou(x)u=ux =Y ¢;B'w =2 ¢:;(E+1)"

i=0 i=0 i=0
Considering only the terms that have E™ as a factor we see that 6,,(z) = z, and
then the equality tells us that in fact > 1 (¢ E* = >, ¢(E + 1)*. Looking
now at the terms which have E"~! as a factor here we see that moreover n = 0,
so that u € k[z,y, D]. There exist then m € Ny and g, ..., ¥, € S such that
Um # 0 and u = > 1" ;D'. As 0,(y) has degree 1, it belongs to S and we
have

0u(y) ;%Di =0u(y)u =uy = ;%Diy = ;W%Di + ;"/}i[Dia yl.

Comparing the terms that have D™ as a factor we conclude that also 6,,(y) = v.
As 60, fixes x and y, the element v commutes with z and y, and Lemma 8.4
allows us to conclude that w is in S;. Moreover, we know that all homogeneous
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automorphisms of A are those described in Lemma 8.1, so there exist ¢ € S,
and e € k* such that 0,(D) = ¢ + eD. We then have that

uD = 0,(D)u = (¢ + eD)u = ¢pu + euD + eu, F

and this implies that e = 1 and ¢u + uy,F' = 0. Suppose now that « is a
linear factor of u and let & € N and v € S be such that u = a*v and v is not
divisible by a.. The last equality becomes ¢pa*v + kakflavaJrakva = 0 and
implies that o divides o F': this means that « is a non-zero multiple of = or a
linear factor of F'. As u can be factored as a product of linear factors, we can
therefore conclude that u belongs to the set described in the statement of the
proposition. O

8.10. There is a close connection between normal elements, the first Hochschild
cohomology space that we computed in Section 4 and the modular automor-
phisms of A.

PROPOSITION. Let Q = «q---ar+1 be a factorization of Q as a product of
linear factors.

(i) Ewvery linear combination of the derivations Oay, ..., Oa,., + A — A
described in Proposition 5.2 is locally milpotent.
i) If u = Aol a7, with A € kKX and i, ..., ir+1 € Ng, is a normal
0 r+1 +

element of A, then the automorphism 6, : A — A associated to u is

r+1
0, =exp | — Zijaaj
j=0

This automorphism is such that 0, (f) = f for all f € S and

0u(6) = 6+ 20

for all 6 € Der(A).
(i3) The modular automorphism o : A — A described in Proposition 7.2
coincides with the automorphism 0g associated to the normal element Q.

8.11. Another immediate application of the determination of the set of normal
elements is the classification under isomorphisms of our algebras.

PROPOSITION. Let A and A’ be two central arrangements of lines in A%. The
algebras 2(A) and 2(A") are isomorphic if and only if the arrangements A
and A’ are isomorphic.

Proof. The sufficiency of the condition being obvious, we prove only its neces-
sity. We will denote with primes the objects associated to the arrangement A’,
so that for example A’ = 2(A’) and so on. Moreover, in view of the suffi-
ciency of the condition we can suppose without loss of generality that both
arrangements A and A’ contain the line with equation x = 0.
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Let us suppose that there is an isomorphism of algebras ¢ : A — A’. Since
¢ maps locally ad-nilpotent elements to locally ad-nilpotent elements, it fol-
lows from Proposition 8.6 that ¢(S) = S’ and therefore that ¢ restricts to
an isomorphism of algebras ¢ : S — S’. On the other hand, ¢ also maps
normal elements to normal elements, so that ¢ restricts to a monoid homo-
morphism ¢ : A (A) = A (A"). Let Q@ = ag-- a1 and Q' = ag--- oy, be
the factorizations of () and of Q' as products of linear factors. The invertible
elements of the monoid .#'(A) are the units of k and the quotient .#"(4)/k*
is the free abelian monoid generated by (the classes of) ag, ..., ar41 and, of
course, a similar statement holds for the other arrangement. Since ¢ induces
an isomorphism A (A)/k* — A (A")/k* we see, first, that r = 7’ and, sec-
ond, that there are a permutation 7 of the set {0,...,r + 1} and a function
A:{0,...,r+ 1} — k* such that ¢(a;) = (i), for all i € {0,...,r + 1}
As there are at least two lines in each arrangement, this implies that the re-
striction ¢|s : S — S’ restricts to an isomorphism of vector spaces ¢ : S; — 57,
so that ¢|g is linear, and that ¢(Q) = Q’. It is clear that this implies that the
arrangements A and A’ are isomorphic. O

8.12. A simple and final observation that we can make at this point is that
our algebra A and the full algebra 2(S5) of regular differential operators of S
are birational, that is, that they have the same fields of quotients. In fact, the
two algebras become isomorphic already after localization at a single element:

8.13. PROPOSITION. The inclusion A — 2(S) induces after localization at Q an
isomorphism A[é] — @(S)[%] and, in particular, A and 2(S) have isomorphic
fields of fractions.

That both localizations actually exist follows from the usual characterization
of quotient rings; see, for example, [11, Chapter 2].

Proof. Clearly the map A[é] - 9(S )[%] induced by the inclusion is injective,

and it is surjective since S is contained in its image as are 9, = %D and
—1p_3

Or = E oD- O
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