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Abstract. We investigate the structure of the Chow ring of the clas-
sifying stacks BT of algebraic tori, as it has been defined by B. Totaro.
Some previous work of N. Karpenko, A. Merkurjev, S. Blinstein and
F. Scavia has shed some light on the structure of such rings. In par-
ticular Karpenko showed the absence of torsion classes in the case
of permutation tori, while Merkurjev and Blinstein described in a
very effective way the second equivariant Chow group A2

T in the gen-
eral case. Building on this work, Scavia exhibited an example where
(A2

T )tors 6= 0.
Here, by making use of a very elementary approach, we extend the
result of Karpenko to special tori and we completely determine the
Chow ring A∗

T when T is an algebraic torus admitting a resolution
with special tori 0 → T → Q → P . In particular we show that there
can be torsion in the Chow ring of such tori.
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1 Introduction

In this paper we give some new examples of Chow rings of classifying spaces of
algebraic tori with non-trivial additive torsion; our example is more elementary
than the first one due to F. Scavia ([10], Th. 1.2), and it lies in A3

T ; the main
tool is a description of the Chow group of the total space for a torsor under a
permutation torus, which is of independent interest.
Let G be an affine algebraic group over a field k. B. Totaro [11] gave a definition
of the Chow ring A∗

G of the classifying space BG; when k = C there is a

Documenta Mathematica 27 (2022) 917–932



918 F. Sala

natural ring homomorphism from A∗
G to the cohomology of BG, which is an

isomorphism after tensoring with Q, but not integrally ([2], [13]).
The ring A∗

G has been computed for many classes of reductive split groups,
such as GLn, SLn, SOn, PGLp when p is a prime (see [13],[12]). On the other
hand, not much is known about Chow rings of classifying spaces of non-inner
forms of these groups.
When T = Gn

m is a split algebraic torus, the Chow ring A∗
T is a polynomial

ring Z[t1, . . . , tn], where ti is the first Chern class of the i-th projection Gn
m →

Gm, considered as a representation of T . In this paper we consider non-split
algebraic tori; let T be such a torus.
Choose a finite Galois extension k′ of k, with Galois group Γ, such that Tk′ ≃
Gn

m,k′ . The group Γ acts on A∗
T
k′

≃ Z[t1, . . . , tn]; the natural pullback map

A∗
T → A∗

T
k′

factors through the invariant subring (A∗
T
k′
)Γ. We call the resulting

homomorphism of graded rings A∗
T → (A∗

T
k′
)Γ the base-change homomorphism.

It is not hard to check that it is independent of the choice of k′, and that it is
an isomorphism when tensored with Q (it is, actually, true that A∗(X/G)Q ≃
A∗(X)GQ for any quotient by a finite group G, see [3] ex. 1.7.6). It is a natural
question whether it is always an isomorphism.
N. Karpenko ([5], Prop. 4.6) showed that this is always the case when T is a
permutation torus.
A. Merkurjev and S. Blinstein (see [7] and [6]) gave a cohomological interpreta-
tion of the kernel (A2

T )tors of the base-change homomorphism in degree 2. By
using this, Scavia gave an example of a torus T for which (A2

T )tors = 0, so that
the base-change homomorphism is not always injective in degree 2.
Recall that an algebraic group G is said to be special if every G−torsor is
Zariski-locally trivial; it is easy to see that permutation tori are special. In this
paper we show that the base-change is an isomorphism for all special tori; then
we investigate the simplest class of non-special algebraic tori, those tori T that
can be embedded into a special torus P , in such a way that the quotient P/T
is also special. For these tori Merkurjev ([6], Cor. 5.4) showed that (A2

T )tors is
always 0.
Here we give an example of tori of this special form for which the base-change
homomorphism is not injective nor surjective.
In the first section we study the simplest representation of a permutation
torus T , showing the following

Theorem. There exists an equivariant decomposition of the tautological rep-
resentation of T in N = dim(T ) strata. These strata are disjoint unions of
permutation tori, defined over some suitable extension k ⊆ L ⊆ k′.

In the second section we show a general result (Theorem 2.1) which allows
to calculate the Chow ring A∗(E) for a T−torsor p : E → M from the ring
A∗(M), valid for every permutation torus T .

Theorem. The pull-back map p∗ : A∗(M) → A∗(E) is surjective. For any
L : k let pL : EL → ML be the base change of the torsor along the map
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The Chow Ring of BT 919

πL : ML → M ; let c ∈ A∗(ML) be a characteristic class relative to pL. Then
the kernel of p∗ is generated by the elements of the form πL

∗ (c) as L, c vary.

This is our main new contribution.

In the third section we briefly recall the results which are known from the
literature and extend Karpenko’s result to special tori. We finally concentrate
on the T ’s with a resolution by special tori 0 → T → P → Q → 0. We give a
formula for the Chow ring A∗

T as a function of A∗
P , A

∗
Q, based on Theorem 2.1.

Using this formula, in the fourth and last section we prove

Theorem. There are examples of algebraic tori T with a resolution by special
tori 0 → T → P → Q → 0 such that the map φ : A∗

T → (A∗
T
k′
)Γ in not injective

or not surjective.
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2 Stratifying a representation of permutation tori

Here we begin to set up the tools which we will need to calculate the Chow
ring of the classifying stack BT for a class of algebraic tori T .

In particular we start by considering quasi-split tori over a fixed field k, i.e.
algebraic tori which arise as Weil restriction from a finite type étale k−algebra.
If E is such an algebra, we thus denote T := RE/kGm,E. If k′ is a Galois
closure of E, then Tk′ is a split torus, and the group Γ := Gal(k′ : k) acts by
permutation on the character lattice of Tk′ (or, in other words, this lattice has a
Γ−invariant basis on which the action of Γ permutes the elements). Therefore,
these groups are also classified under the name of permutation tori.

Indeed let E =
∏m

i=1 ki, where each ki is a finite separable extension of k of
degree di (in particular k′ will contain the normal closure over k of each ki). If
Ti := Rki/kGm,ki

then T =
∏m

i=1 Ti.

We now prove that each factor Rki/kGm,ki
is isomorphic - as a scheme - to

A
di

k − {Nki

k = 0}. Here A
di

k is Spec k[x1, . . . , xdi
] and Nki

k is the polynomial

in the xj ’s given by
∏di

l=1 σl(
∑

αjxj) - where α1, . . . , αdi
is a basis of ki over

k and the σl : ki →֒ k′ are the immersions of ki in k′ leaving k fixed. This is
known from basic field theory to have coefficients in k.

In order to prove the above claim let us fix an extension k′ : k, let F be the
Galois closure of k′ over k and let J be the set of immersions k′ →֒ F fixing k.
Then Γ := Gal(F : k) acts on J by permuting its elements, and we have a
well-known
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Proposition 2.1. Let X ′ be a variety over k′ and let X :=
∏
j∈J

X ′×k′,j F . For

every σ ∈ Γ let φσ be the automorphism of X induced by the action of σ on J .

Then the φσ define Galois descent data, and the variety over k defined by these
data is Rk′/kX

′.

With this result we can easily construct Rk′/kX
′ for a given k′−variety X ′. In

particular let us concentrate on X ′ = Gm,k′ .

Let x1, . . . , xn be a set of indeterminates indexed by J , and let e1, . . . , en be a
basis of k′ over k. Then

∏
σ:k′ →֒F

(
∑

j∈J σ(ej)xj) is the homogeneous polynomial

Nk′

k in the x′
js which defines the norm over k of the element

∑
xjej . Let

X = An
k − {Nk′

k = 0}.

In order to prove our claim, we can just considerX×kF (with F a Galois closure
as above): this is equal to An

F −{
∏

σ:k′ →֒F

∑
ejxj = 0} ≃ An

F −{y1 . . . yn = 0}
via the isomorphism sending

∑
σ(ei)xi to yσ. But it is exactly

∏
j∈J

Gm,k′×k′,jF ,

with the action of Γ = Gal(F : k) which permutes the factors as it does on J
(corresponding to the action of Γ on the factors

∑
σ(ei)xi). This completes

the proof.

We note that each Rki/kGm,ki
splits over k as a product of [ki : k] factors

isomorphic to Gm,k, and Γ permutes them according to its action on the set of

k−immersions ki →֒ k.

Now, Rki/kGm,ki
has a natural representation Vi over k of degree di and the

whole product T has a natural representation V := ⊕Vi of degree N :=
∑

i di.

Then Vk′ := V ×Spec k Spec k′ is a representation of the split torus Tk′ whose
action is induced by the tautological inclusion Tk′ →֒ GL(Vk′ ) of diagonal
matrices.

From now on we will call Ii the set of integers in the interval (
∑

j<i dj ,
∑

j≤i dj ],

which can label the immersions ki →֒ k.

We have Ti ×Spec k Spec k′ ≃ A
di

k′ − {
∏di

l=1 σl(
∑

αjxj) = 0}, which gives an

isomorphism Ti ×Spec k Spec k′ ≃ G
di

m,k′ = Spec k′[y±1
1 , . . . y±1

di
] sending yl to

σl(
∑

αjxj) for each l. In particular Vi ×Spec k Spec k′ ≃ Spec k′[y1, . . . , ydi
]

inherits an action of Γ which is the obvious one on Spec k′ and sends yl to
yτ(l), where τ is the permutation of {1, . . . , di} induced by the action of Γ on
the σl’s.

To summarize, the group Γ acts on the space V ×Spec k Spec k′ as follows:
tautologically on Spec k′, while for each i it permutes {xj : j ∈ Ii} according
to the identification of the latter with the set of k−immersions ki →֒ k.

Clearly V = Vk′/Γ, where the action of Γ on V is the one described at the end
of the preceding paragraph.

For each j ∈ {1, . . .N} let Hj be the hyperplane in Vk′ = Spec k′[y1, . . . , yN ]
defined by {yj = 0} and for each J ⊆ {1, . . .N} let HJ be the linear subspace
of Vk′ obtained by

⋂
j∈J

Hj .
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Then if Zp :=
∐

|J|=p

HJ , these closed subschemes are Tk′ and Γ-stable; moreover

these two actions are compatible with the action of Γ on Tk′ , in the sense that
for g ∈ Γ, t ∈ Tk′ it holds g(t · x) = g(t) · g(x) for every x. This implies that
the closed subschemes Zp := Zp/Γ →֒ V are T−stable. Thus we have found
a T−equivariant stratification of V , and the latter is the disjoint union of the
Wp := Zp − Zp+1, which we call the strata.

In particular Z0 = Tk′ and Z0 = T .

We now describe quite explicitly the strata Wp, in terms of the action of Γ on
{1, . . . , N}.

Let us take J ⊆ {1, . . . , N} such that |J | = p and consider the split N−p-torus
TJ := HJ −

⋃
J(I

HI . Clearly Γ acts on the set {I ⊆ {1, . . . , N} : |I| = p} and

the orbit of J for this action OrbΓ(J) determines the orbit of TJ for the action
of Γ on Zp: OrbΓ(TJ) =

∐
I∈OrbΓ(J)

TI .

We shall see, by Galois descent, how to characterize OrbΓ(TJ)/Γ; we will show
that this is again a permutation torus defined over a finite extension kJ : k.

Let us consider for a moment a field k such that k ⊆ ki for all i, and let � ⊆ Γ
be the group Gal(k′ : k) . Then Γ acts on RE/kGm,E ×Spec k Spec k′, which
is a disjoint union of n := [k : k] tori of dimension N/n, as follows: the orbits
of � partition {1, . . . , N} into n pieces, and we can identify each of these n tori
with one of them (where characters corresponds to elements i ∈ {1, . . . , N});
then Γ, acting on {1, . . . , N} induces the sought action on these tori.

This variety embeds Γ−equivariantly into Vk′ , as we can see immediately.
Indeed if I ⊂ {1, . . . , N} is the subset corresponding to the immersions
ki →֒ k′ (for any i) which leave k fixed, and I

c is its complement, then
OrbΓ(TIc) is a disjoint union of n split tori of dimension N/n (since Γ par-
titions {1, . . . , N} into N/n subsets isomorphic to I); in particular it is iso-
morphic to RE/kGm,E ×Spec k Spec k′. According to the observations we
made in the preceding paragraphs, Γ acts on this orbit exactly as it does
on RE/kGm,E ×Spec k Spec k′, so that the embedding of the latter into Vk′

is Γ−equivariant.

In particular by Galois descent we have that (OrbΓ(TIc))/Γ ≃ RE/kGm,E .
Moreover we note that the stabilizer of I in Γ is exactly �, while the ki’s
correspond to the subsets of � which stabilize the orbits of its action on I (or
on I

c, which does not change them). Thus we can determine k and all the ki’s
just by looking at the action of Γ on OrbΓ(TIc).

The same reasoning allows us to determine (OrbΓTJ)/Γ for a general J .

First of all, let SJ ⊆ Γ be the stabilizer of J , which corresponds to a field
extension K : k. Moreover let J1, . . . , Js be the orbits of the elements of J
under the action of SJ , and S1, . . . , Ss the respective stabilizers. The Si’s
induce extensions Ki : K, and let E be the étale K−algebra

∏s
i=1 Ki. Then

we can compare the action of Γ on RE/KGm,E ×Spec k Spec k′ with the action
of Γ on OrbΓ(J), so that we are exactly in the situation of the last paragraph

Documenta Mathematica 27 (2022) 917–932



922 F. Sala

(we just restrict to the vector subspace of Vk′ generated by {yi : i ∈ ∪
g∈Γ

g(J)}).

We conclude that OrbΓ(TJ)/Γ ≃ RE/KGm,E. Let this torus be called TOrb(J).

So each of the Wp’s is a disjoint union of algebraic tori defined over extensions
k ⊆ K ⊆ k′: Zp =

∐
|J|=p

TOrb(J).

We conclude this section with the crucial

Lemma 2.2. Let J ⊆ {1, . . . , N}, and k be the fixed field inside k′ of the stabi-
lizer in Γ of J and Jc. Then TOrb(J) ×Spec k TOrb(Jc) = T ×Spec k Spec k.

Proof. Let � be the group Gal(k′ : k). As before, we can take the prod-
uct (over Spec k) of both sides with Spec k′. Then T ×Spec k Spec k ≃
Tk′/�, where the action of � on Tk′ is just the one induced by the action
of Γ. So by Galois descent we just need to verify that the action of � on
(OrbΓ(TJ)/Γ×Spec k OrbΓ(TJc)/Γ) ×Spec � Spec k′ (which is a split N−torus)
can be identified with the action of � on Tk′ . But this is clear since the action
of � on OrbΓ(TJ)/Γ×Spec � Spec k′ is induced by the restriction of the action
of Γ on Tk′ to the subspace generated by {yi : i ∈ Jc}; so the product of the
J, Jc-tori gives a split N−torus with the entire action that � had on Tk′ .

3 The Chow ring of T−torsors

We now exploit the results of the previous section to give a general formula for
the Chow ring of a T−torsor, where T is a permutation torus.

We will keep the same notation as before. In particular, V will denote the
standard representation of T , and the Zp’s will be the closed sets of the strati-
fication we found. Moreover we have a set of permutation tori Wp = Zp−Zp+1

defined over field extensions of k.

From now on, we will also call Up := V −Zp the open sets of the stratification.

Let E
p
−→ M be a T−torsor of smooth schemes. Then we have a ring map

p∗ : A∗(M) → A∗(E) given by pull-back.

Clearly if x ∈ A∗(M) is a characteristic class relative to E (or, more fancifully,
an element in the image of the pull-back A∗

T → A∗(M) for the map which
classifies E) we have p∗(x) = 0; indeed p∗(x) is nothing but a characteristic
class relative to the pull-back torsor p∗E → E, which is the trivial torsor
E × T → E.

Analogously, let us fix a field extension L ⊇ k, and let EL
pL

−−→ ML be the
corresponding TL−torsor. Then, as before, we have that if x ∈ A∗(ML) is a
TL−characteristic class relative to EL then p∗L(x) = 0. Consider the commuting
square

A∗(ML) A∗(M)

A∗(EL) A∗(E)

p∗

L p∗
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where the horizontal arrows are the push-forwards for the obvious projections.
Then, if x′ ∈ A∗(ML) lies in the ideal generated by the TL−characteristic
classes induced by EL and if x is its image in A∗(M), we see immediately that
p∗(x) = 0 in A∗(E).
We claim that the classes we found so far are the only generators of ker(p∗):

Theorem 3.1. Let E
p
−→ M be a T−torsor. Let I ⊆ A∗(M) be the ideal

generated by the push-forwards πL
∗ (x ·m), where for some field L ⊇ k we denote

πL : ML → M the projection and x,m ∈ A∗(ML), x being a TL-characteristic
class induced by EL.
Then A∗(E) = A∗(M)/I.

Proof. We will prove by descending induction on p that A∗(M) → A∗(E×T Up)
is surjective, and that its kernel lies in I. This will be sufficient, since U0 = T
and E ×T U0 = E.
The base case is clear, since UN = V − {0} and A∗(E ×T UN ) = A∗(E ×T

V )/cN (V ), where cN is the N−th Chern class relative to V (which is a T -
characteristic class coming from E).
Fix now some J ⊆ {1, . . . , N} with |J | = p and let k be the field of definition
of TOrb(J) (which, we recall, is the subfield of k corresponding to the stabilizer
of J with respect to the action on {1, . . . , N} of the Galois group of k).
We have Wp =

∐
|J|=p

TOrb(J), and by the localization exact sequence

A∗(E ×T Wp)
i∗−→ A∗(E ×T Up+1) → A∗(E ×T Up) → 0

we see that we just need to prove that for each J the image of A∗(E×T TOrb(J))
in A∗(E ×T Up+1) lies in the image of I.
Now observe that if VJ is the standard representation over k of TOrb(J) we have
an open immersion j : E ×T TOrb(J) →֒ Ek ×Tk

VJ .
Moreover we can see TOrb(J) as an irreducible component of TOrb(J)×k Spec(k),
since TOrb(J) is defined over k; so we have a closed immersion i′ given by

E ×T TOrb(J) →֒ Ek ×Tk
(TOrb(J) ×k Spec(k)) →֒ (E ×T Up+1)×k Spec(k).

In particular we can factorize the closed immersion i : E ×T TOrb(J) →֒ E ×T

Up+1 as the composition

E ×T TOrb(J)
i′

→֒ (E ×T Up+1)×k Spec(k)
πk

։ E ×T Up+1 (1)

Now, there is a fiber diagram

E ×T TOrb(J) (E ×T Up+1)×k Spec(k)

Ek ×Tk
VJ Ek ×Tk

Vk

i′

j j′

k
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where k is the closed immersion induced by VJ →֒ Vk and the vertical rows are
open immersions.
Clearly we have that j∗ : A∗(Mk) ≃ A∗(Ek ×Tk

VJ ) → A∗(E ×T TOrb(J)) is
surjective, and that j′∗ is also surjective (it is true for every open immersion).
But i′∗j

∗ = j′∗k∗, so that if x′ ∈ A∗(Mk) lifts x ∈ A∗(E ×T TOrb(J)), we can
apply the self-intersection formula to see that x′ ·xJ lifts the push-forward of x
in A∗((E ×T Up+1) ×k Spec(k)). Here xJ denotes the characteristic class in
A∗(Mk) corresponding to xJ ∈ A∗

(Tk), in the notation of the previous section.
Indeed, the conormal bundle of Ek ×Tk

VJ in Ek ×Tk
Vk is induced exactly by

the standard representation VJc of TOrb(Jc). This is easily seen recalling that
TOrb(J) × TOrb(Jc) = Tk (Lemma 1.2). Its higher Chern class is represented
precisely by xJ .
From the factorization (1), it follows that πk

∗(x
′ ·xJ ) lifts i∗(x) in A∗(M). This

clearly lies in I, so we have our claim.

4 Some remarks on other nice classes of tori

We can observe that the permutation tori RE/kGm are special groups, that
is every T−torsor is Zariski-locally trivial: indeed by the main result (The-
orem 1.1) of [9] it suffices to check that for every field extension k ⊆ K
with Galois group Γ := Gal(K : K) we have 0 = H1(K,K ⊗k RE/kGm) =

H1(K,RE⊗kK/KGm) = H1(Γ, (E ⊗k K)∗); but E ⊗k K as a Γ−module splits

as a product of K, so the latter group is 0 by Hilbert 90 theorem.
Let us briefly see what is the structure of A∗

T for such tori.
The ring A∗

T
k′

is easily seen (since Tk′ is a split torus) to be isomorphic to the

polynomial ring Z[x1, . . . , xN ], where each of the xi’s corresponds to a character
of Tk′ .
Indeed Totaro defines A∗

G as the limit of A∗(U/G) where U ranges over open
sets of G−representations on which G acts freely; for the rest of the paper we
will refer to these as approximating varieties for BG.
The space BTk′ is then the ”limit” of the quotients (Vk′ − {0})⊗n/Tk′ ≃
(PN−1

k′ )⊗n, whose Chow rings are generated exactly by the (image of) elements
x1, . . . , xN .
In particular we can identify the Chow ring A∗

T
k′

with the symmetric ring over

the character module T̂k′ , which we will denote S(T̂k′). We will call it the ring
of characters of the torus.
Now, BT ≃ BTk′/Γ is approximated by the spaces (PN−1

k′ )⊗n/Γ, where Γ acts

tautologically on Spec k′ and permutes the factors PN−1
k according to its action

on V .
In his article [5], Karpenko considers the approximating varieties for the
classifying space of a permutation torus. In particular he takes the tori
T = Rk′/kGm,k obtained by Weil restriction from the multiplicative group.
These approximating varieties are thus equal to the Weil restrictions Rk′/kP

n

(where as before k′ is a splitting field for the permutation torus T ).
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The Chow Ring of BT 925

He then shows how to calculate the class of these varieties in the ring of Chow
motives (for a definition and the main properties of Grothendieck’s theory of
motives see [1]). In the ring of motives, setting pt = (Spec L, Id) we have Pi

L =
(pt, 0)⊕ (pt, 1) · · · ⊕ (pt, i) ([1], ex. 6); in particular we have a decomposition
for Pi

L × . . .Pi
L in factors of the form (pt, k).

Karpenko determines the quotient of this by Γ; indeed, each factor of the above
product is determined by a map p : {1, . . . , n} → {0, 1, . . . , i}, and Γ permutes
the factors corresponding to the Γ−orbits in the set of such maps. If S is an
orbit, for each p ∈ S the quantity |p| =

∑n
k=1 p(k) is the same, and we call this

sum |S|. Karpenko’s result states that

Proposition 4.1. For each orbit S let � ⊆ Γ be its stabilizer, and LS ⊆ L
the corresponding subfield of L. The the motive of RL/kP

i
L is equal to⊕

S

(Spec LS, |S|).

By using this it is immediate to conclude that

Corollary 4.2. If T is the Weil restriction T = RE/kGm,k′ and n = E : k
then the map A∗

T → Z[x1, . . . , xn]
Γ is an isomorphism.

Actually with the results of Section 1 we could re-demonstrate this result.
Now, let us come back to special tori. We can characterize all the tori which
are special (e.g. [4], Th. 5.1):

Theorem 4.3. An algebraic torus is special if and only if there exists a torus T1

such that T × T1 is a permutation torus.

Note that the sufficiency is clear, since in this case for any field extension K : k
we have H1(K,T )⊕H1(K,T1) = H1(K,T × T1) = 0.
We can extend the result of Corollary 3.2 to the case where T is special:

Proposition 4.4. Let T be a special torus over an infinite field with splitting
field k′ and S(T̂k′) be its ring of characters.

If Γ = Gal(k′ : k), then the map A∗
T → S(T̂k′)

Γ
is an isomorphism.

Proof. Let T1 be a torus such that P := T ×T1 is quasi-split; since extending k′

does not change the action of the Galois group on S(T̂k′) we can assume that k′

splits P, T1. We have BT × BT1 = BP (we mean that, for each classifying
bundles U/T, U1/T1, the product (U×U1)/(T×T1) is an approximating variety
of BP ).
The variety U1/T1 has a k−rational point (as k is infinite). In particular we
have a regular immersion map i : BT → BP and a projection map p : BP →
BT such that p ◦ i = Id, and i∗ ◦ p∗ = Id : A∗

T → A∗
T . We conclude that

p∗ : A∗
T → A∗

P is injective and that i∗ : A∗
P → A∗

T is surjective. Thus A∗
T does

not contain torsion classes since A∗
P does not.

Now we want to show that the base change A∗
T → (A∗

T
k′
)Γ (where k′ is a

splitting field for T and Γ = Gal(k′ : k)) is an isomorphism or precisely that,
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passing to the limit, the image of p∗ : A∗
T → A∗

P contains all the symmetric

tensors coming from S(T̂ ) ⊂ S(P̂ ).
Consider the short exact sequence

0 → R → A∗
P

k′

i∗

−→ A∗
T
k′

→ 0.

The maps i∗, p∗ are Γ−equivariant, so the above sequence has an equivariant
splitting and remains exact after passing to Γ−invariants.
Consider now the following commutative diagram with exact rows:

0 Q A∗
P A∗

T 0

0 RΓ (A∗
P

k′
)Γ (A∗

T
k′
)Γ 0

π∗

i∗

π∗

i∗

Since the middle vertical map is an isomorphism, we immediately conclude that
the vertical map on the right is a surjection, as we wanted to see.

This result also allows us to calculate the Chow ring of BT when T is an
algebraic torus of the simplest kind apart from special tori, that is when there
exists a resolution

0 → T → Q → P → 0

with P,Q special tori. Of course, without loss of generality we can assume
that P is a permutation torus: if this is not the case then we can choose a
special torus P ′ such that P ⊕ P ′ is permutation, and then

0 → T → Q⊕ P ′ → P ⊕ P ′ → 0

is a resolution of the required kind.
Now, the point is that we have a map BT → BQ which is a P−torsor (to be
precise: for every approximating torsor U → U/Q we have that T acts freely
on U and U/T → U/Q is a Q/T = P−torsor).
In particular we can apply Theorem 2.1 and Corollary 3.2 to calculate A∗

T

in terms of A∗
P , A

∗
Q. From what we know so far we can infer that A∗

P = S(P̂ )Γ,
where Γ is the Galois group for some common splitting field over k of T,Q, P ,
and that A∗

Q → A∗
T is surjective.

The ideal I = ker(A∗
Q → A∗

T ) can be easily calculated. Indeed by the previous
theorem we have that I contains, for every subgroup Γ′ < Γ corresponding to
a field extension L, the image of (A∗

PL
)+A∗

QL
→ A∗

Q (where M+ denotes the
ideal of elements with positive degree in a graded ring). The push-forward from
A∗

QL
to A∗

Q is just IndΓ
Γ′(−), where ”IndΓΓ′” means the sum over representatives

of the right cosets of Γ/Γ′; this is well-defined since A∗
QL

is invariant under the
action of Γ′. These elements are a set of generators, and we can conclude the
following
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Corollary 4.5. If T is an algebraic torus with a resolution 0 → T → Q →
P → 0, Q special and P quasi-split, the ideal I = ker(A∗

Q ։ A∗
T ) can be written

as I =
∑

Γ′<Γ

IndΓΓ′((S(P̂ )+)Γ
′

S(Q̂)Γ
′

).

This comes almost trivially from Theorem 2.1, since it implies that we have

I =
∑

Γ′<Γ

S(Q̂)Γ · IndΓΓ′((S(P̂ )+)Γ
′

S(Q̂)Γ
′

),

but for any x ∈ S(Q̂)Γ and any y ∈ (S(P̂ )+)Γ
′

S(Q̂)Γ
′

we have
x · IndΓΓ′(y) = IndΓ

Γ′(x · y).

Let J := S(P̂ )+S(Q̂) be the kernel of the projection map S(Q̂) → S(T̂ ); then
we have a commutative square

A∗
Q S(Q̂)Γ

A∗
T S(T̂ )Γ

≃

which gives us that coker(A∗
T → S(T̂ ))Γ = coker(S(Q̂)Γ → S(T̂ )Γ) =

H1(Γ,J ).
The last step follows from the exact sequence

S(Q̂)Γ → S(T̂ )Γ → H1(Γ,J ) → H1(Γ, S(Q̂)) = 0

and the final identity is just Shapiro’s lemma.
Finally ker(A∗

T → S(T̂ )Γ) = ker(A∗
Q/I → S(T̂ )Γ) = J Γ/I.

Let us summarize the above results:

Proposition 4.6. Let us be given a short exact sequence of tori 0 → T → Q →
P → 0, with Q special and P quasi-split. Then if φ is the map A∗

T → (A∗
T
k′
)Γ

and I,J are defined as above we have that

ker(φ) = J Γ/I

and
coker(φ) = H1(Γ, I).

By using these formulas we will be able to show that in some cases we have
nonzero kernels and cokernels for the map A∗

T → S(T̂ )Γ.

5 Torsion and cotorsion classes

By using our Proposition 3.6 we will see how the kernel and cokernel of the
map A∗

T → A∗
T
k

Γ behave.
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Special tori are not the largest class for which the base change map is an iso-
morphism. A very easy example is that of norm one tori, that is the closed
subschemes T = kerNk′

k : Rk′/kGm,k′ → Gm,k, whose k−rational points cor-
respond to the elements in k′∗ with unitary norm over k. These are tori of
the type considered at the end of the previous section, but let us nonetheless
calculate directly their A∗

T :

Proposition 5.1. If T is a norm one torus the base-change map A∗
T → S(T̂ )Γ

is an isomorphism.

Proof. Let the character lattice of T be (x1Z⊕ · · · ⊕ xnZ)/(x1 + · · ·+ xn). If
P = Rk′/kGm,k′ , then the norm map gives an isomorphism P/T ≃ Gm,k; then
BT is a P/T ≃ Gm,k−bundle over BP , so his Chow ring is equal to A∗

P /c1,
where c1 is the first Chern class of this bundle.

Let R := Z[x1, . . . , xn] and x := c1 = x1 + · · · + xn. Then A∗
P = RΓ, so

A∗
T = RΓ/(x).

To conclude, we just note that the invariants of the character ring of T are
exactly (R/(x))Γ = RΓ/(x), as we can see from the exact sequence

RΓ ·x
−→ RΓ →

( R

(x)

)Γ

→ H1(Γ, R) = 0

where the last group is zero by Shapiro’s lemma.

Now, by using our calculation of A∗
T for a torus T with a resolution by special

tori 0 → T → Q → P → 0 we give some example of tori with nonzero kernel
and cokernel for A∗

T → S(T̂ )Γ.

Theorem 5.2. There exists a torus T such that the base-change map has
nonzero cokernel in degree 2.

Proof. Let k, L be fields such that Gal(L : k) = Sn (the symmetric group
of rank n > 3); we pick a torus with character lattice Zn = 〈a1, a2, . . . , an〉
equipped with an action of the Galois group Γ = Sn so that σ ∈ Sn sends
each element of the basis (a1, . . . , an) to sgn(σ)aσ(i) (where σ(−) denotes the
tautological action on a n-element set).

This has a resolution 0 → Zn → Z2n → T̂ → 0; the middle term Z2n is gener-

ated by elements a+i , a
−
i for i = 1, . . . , n with a Sn−action σ(a±i ) = a

±sgn(σ)
σ(i) ,

and the projection to T̂ is just a±i → ±ai.

The kernel of this projection is the n−dimensional lattice generated by the
a+i + a−i , with the Sn−action inherited by its inclusion in Z2n.

This resolution corresponds to a reverse resolution 0 → T → Q → P → 0,
where P,Q are permutation tori of dimension n, 2n respectively.

With the notations of the previous section we claim that H1(Sn,J ) is nonzero,

and in particular the map A∗
T → S(T̂ )Γ has a nonzero cokernel.
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This can be seen very easily at first glance: indeed the element x =
∑
i<j

aiaj ∈

S(T̂ )Sn cannot be lifted to any element of S(Q̂)Sn ; on the other hand 2x can

be lifted to
∑
i<j

(a+i a
+
j + a−i a

−
j ) ∈ S(Q̂)Sn .

In order to see it, let us calculate S(Q̂)Sn

2 (where the subscript labels the
degree); the symmetric group permutes the monomials a±i a

±
j which are a basis

of S(Q̂)2, so an invariant element containing a monomial nija
±
i a

±
j must also

contain all the monomials nija
±sgn(i)
σ(i) a

±sgn(σ)
σ(j) . However if n > 3 then Sn acts

transitively on the ordered pairs (i, j), and moreover for every (i, j) there is
an odd permutation leaving the ordered pair fixed (just take a trasposition
(a, b) with {a, b} disjoint from {i, j}). We conclude that all the invariants are
of the form

∑
i((a

±
i )

2 + (a∓i )
2) or

∑
i a

+
i a

−
i or

∑
i<j(a

ǫ1
i aǫ2j + a−ǫ1

i a−ǫ2
j ) with

ǫ1, ǫ2 ∈ {−1, 1}. Thus the image of S(Q̂)Sn

2 in S(T̂ )Sn

2 consists of elements of
the form a

∑
i a

2
i + 2b

∑
i<j aiaj (a, b ∈ Z), and none of these can be x.

Now let us investigate more closely the problem of the existence of torsion
classes in A∗

T . This is quite harder than the analogous problem on cotorsion,
but we can nonetheless build an example.

Theorem 5.3. There exists an algebraic torus T such that the base-change
map has nonzero kernel in degree 3.

Proof. Let us fix a field extension L : k with Galois group Γ = Q8, the group
of quaternions. We recall that it is a group of order 8 generated by elements
−1, i, j, k subject to the relations (−1)2 = 1, i2 = j2 = k2 = ijk = −1.
The groupQ8 has a natural action on Z4, and we can consider it as the character
lattice of a 4−dimensional torus T . There is a surjection Z8 → T̂ , whereQ8 acts
on Z8 as in its regular representation (or, more concretely, we identify a basis
of Z8 with the eight elements of Q8, which has a tautological action on them).
We will call these elements e, e′, x, x′, y, y′, z, z′ (corresponding respectively to
1,−1, i,−i, j,−j, k,−k). This defines a permutation torus Q and the kernel of

Q̂ → T̂ is the sublattice of Q̂ generated by e+ e′, x+x′, y+ y′, z+ z′, on which
Q8 has a permutation action induced by Q8/{1,−1} ≃ Z/2Z× Z/2Z. It gives
a permutation torus P .
Let us consider the element

w = OrbQ8
(xyz) = xyz + x′y′z′ + e′zy′ + ez′y + z′e′x+ zex′ + yx′e′ + y′xe

in S(Q̂)Q8 , which lies in the kernel of S(Q̂) → S(T̂ ). We claim that this element
does not lie in the ideal I.
First of all we prove that I3 (the set of elements in degree 3) is generated

(additively) by IndQ8

Z/2Z((S(P̂ )+)Z/2ZS(Q̂)Z/2Z)3, where Z/2Z = {−1, 1}.

We begin by enumerating these elements. We note that S(P̂ ) is already invari-

ant by the action of {−1, 1}. The elements of S(Q̂)
Z/2Z
1 are just those coming
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from P̂ , while the elements of S(Q̂)
Z/2Z
2 are generated by ee′, xx′, yy′, zz′ and

the polynomials of the form ab + a′b′, ab′ + a′b, a2 + a′2, where a 6= b are in
{e, i, j, k}.

Thus there are elements of the form IndQ8

Z/2Z(S(P̂ )3) (first type) and elements

of the form IndQ8

Z/2Z((a+ a′)y) where a ∈ {e, x, y, z} and y ∈ S(Q̂)
Z/2Z
2 (second

type). Actually, any element of the first type is also a sum of elements of the
second type, hence we will restrict our attention to the latter.

Let L be this group of degree 3 elements; we have to verify that I3 = L.

Let us check that these elements generate each IndQ8

Γ′ ((S(P̂ )+)Γ
′

S(Q̂)Γ
′

)3 with
Γ′ < Q8.

Let Γ′ = Q8. We note that all the elements of (S(P̂ )+)Q8

≤3 in degree 1, 3 are

Z/2Z-induced elements from S(P̂ )+. Indeed the three elements of order two
in Z/2Z × Z/2Z send e + e′ to x + x′, y + y′, z + z′ respectively, so that the

full action on the basis P̂ is transitive; in particular an invariant monomial in
e+e′, x+x′, y+y′, z+z′ must contain all of them and thus must have degree at
least four. Moreover, if a monomial is invariant under the action of one of the
three generators, suppose without loss of generality that this generator swaps
e + e′, x + x′ (as well as y + y′, z + z′): then the monomial must have factors
of the form (e + e′)(x + x′) and (y + y′)(z + z′); the only possibility is that it
has degree 2.

Now, every element of the form x · y with x ∈ (S(P̂ )+)Q8

1 , y ∈ S(Q̂)Q8

2 or

x ∈ (S(P̂ )+)Q8

3 , y ∈ Z must be of the form IndQ8

Z/2Z(x
′y) ∈ L with x′ ∈ S(P̂ )+,

since x is induced by some x′.

Finally, an element of S(Q̂)Q8

1 must be a multiple of e+e′+x+x′+y+y′+z+z′,

so every element of (S(P̂ )+)Q8

2 · S(Q̂)Q8

1 is a sum of elements of the previous
form. This concludes the case Γ′ = Q8.

Suppose Γ′ = Z/4Z = {1,−1, i,−i} (or some other subgroup obtained swap-
ping i with j or k, which can be checked exactly in the same way).

This case is similar to the preceding one. Indeed in degree 1 the Γ′−invariants
of S(P̂ )+ are e+ e′+x+x′ and y+ y′ + z+ z′, while in degree 3 the invariants
are (e + e′)(x + x′)(y + y′ + z + z′) and (e + e′ + x + x′)(y + y′)(z + z′),

which are all {−1, 1}-induced from S(P̂ )+. So every element x · y with x ∈

(S(P̂ )+)Γ
′

1 , y ∈ S(Q̂)Γ
′

2 or x ∈ (S(P̂ )+)Γ
′

3 , y ∈ Z is Z/2Z-induced from an

element of S(P̂ )+S(Q̂)Γ
′

. This implies that IndQ8

Γ′ (xy) is Z/2Z-induced from

S(P̂ )+S(Q̂)Γ
′

.

Finally every element of (S(P̂ )+)Γ
′

2 · S(Q̂)Γ
′

1 is of the form above, since S(Q̂)Γ
′

1

is generated by e + e′ + x+ x′ and y + y′ + z + z′.

If Γ′ = {−1, 1} the claim is tautological, so we are left with checking

the case Γ′ = {1}. This is almost trivial: indeed Ind
Z/2Z
1 (S(P̂ )+S(Q̂)) ⊆

S(P̂ )+S(Q̂)Z/2Z, since S(P̂ )+ is Z/2Z-invariant. In particular

IndQ8

1 (S(P̂ )+S(Q̂)) = IndQ8

Z/2Z(Ind
Z/2Z
1 (S(P̂ )+S(Q̂))) ⊆ L.

Documenta Mathematica 27 (2022) 917–932



The Chow Ring of BT 931

Now we can finally prove that w /∈ L. Note that we can write L = A⊕B, where

A is generated by IndQ8

Z/2Z((a + a′)y) with a ∈ {e, x, y, z} and y ∈ S(Q̂)
Z/2Z
2 is

an element such that either a appears in some of its monomials or y is of
the form bb′, b2 + b′2; then we have B, generated by IndQ8

Z/2Z((a+ a′)y), where

a ∈ {e, x, y, z} and y ∈ S(Q̂)
Z/2Z
2 is of the form pq + p′q′ or pq′ + p′q, with

p, q ∈ {e, x, y, z}\{a} distinct from each other. In other words A is generated
by the elements such that every monomial has factors intersecting at most two
of the couples {e, e′}, {x, x′}, {y, y′}, {z, z′}; similarly the elements of B have
monomials with factors in distinct couples.
Clearly if w ∈ L then w ∈ B. However we immediately see that the sum of the
coefficients of each generator of B is 16, and so the sum of the coefficients of w
should be a multiple of 16. This is obviously not true, since the sum is 8. This
gives us our sought torsion class.
Let us finally note that 2w ∈ L, so that the class has order 2. Indeed

2w = 2 · IndQ8

Z/2Z(xyz + x′y′z′)

= 2 · IndQ8

Z/2Z(yz(x+ x′)− x′z(y + y′) + x′y′(z + z′))

= IndQ8

Z/2Z((x+ x′)(yz + y′z′)− (y + y′)(x′z + xz′) + (z + z′)(xy + x′y′))
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