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Abstract. Skew-gentle algebras are skew-group algebras of gentle
algebras equipped with a certain Z2-action. Building on the bijec-
tive correspondence between gentle algebras and dissected surfaces,
we obtain in this paper a bijection between skew-gentle algebras and
certain dissected orbifolds that admit a double cover.
We prove the compatibility of the Z2-action on the double cover with
the skew-group algebra construction. This allows us to investigate
the derived equivalence relation between skew-gentle algebras in ge-
ometric terms: We associate to each skew-gentle algebra a line field
on the orbifold, and on its double cover, and interpret different kinds
of derived equivalences of skew-gentle algebras in terms of diffeomor-
phisms respecting the homotopy class of the line fields associated to
the algebras.
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1 Introduction

Gentle algebras, introduced in the 80’s [AsSk], provide an example of a class of
algebras whose derived category can be described explicitly ([BM] and [BuDr]).
The class of gentle algebras contains all finite dimensional path algebras of
type A and Ã and has been shown to be stable under derived equivalences
[SchZi]. More recently, gentle algebras have been found to be deeply and sur-
prisingly connected to the combinatorics and geometry of marked surfaces: The
Jacobian algebra of a triangulation of an unpunctured surface (S,M) is a gen-
tle algebra [ABCP, LF]. Thus certain gentle algebras appear as endomorphism
ring of cluster-tilting objects in the cluster category C(S,M) associated in [Am]
to the cluster algebra of a marked surface (S,M) without punctures defined in
[FST]. Building on this, [BZ] provide a geometric model for the objects in the
cluster category C(S,M) associating strings and bands with curves and closed
curves.
Obviously, triangulations of surfaces yield only certain gentle algebras. This
shortcoming has been overcome in [BCS] and [OPS] by relating every gentle
algebra to a dissection of a marked surface, cutting (S,M) into polygons. Using
this correspondence [BCS] give a geometric description of the module category
of a gentle algebra, while [OPS] provide a description of its derived category.
Note that a link between gentle algebras and ribbon graphs, thus again surfaces,
already appeared in [Sch].
Independently, [HKK] establish a description of the (partially wrapped) Fukaya
category of a surface S with stops using the derived category of a (graded)
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gentle algebra associated to these data, also given by a dissection of S, see also
[LP] for discussion of the derived equivalences.
Combining results in [OPS] and [LP], a geometric interpretation of the derived
equivalence relation for gentle algebras is given in [APS] and [O].
We aim in this paper to extend these results to orbifolds S̄ admitting a two-
fold cover. The two-fold cover S corresponds to a gentle algebra which comes
equipped with a Z2-action. The corresponding skew-group algebra is studied in
[GePe], called skew-gentle algebra. This class of algebras contains in particular

all path algebras of type D and D̃. In fact, these algebras had been studied
earlier under the name clannish algebra in [CB], motivated by a matrix problem
notion of clan, see also [De], but the viewpoint of skew group algebra allows
to use general results from [ReRi]. We employ this point of view, where a
description of the derived category of a skew-gentle algebra can be obtained
using the Z2-action, and the known results for gentle algebras.
Looking back to the cluster algebra of a triangulated surface, the orbifold points
correspond to punctures, and the fact that the Jacobian algebra admits a Z2-
action corresponds to having all orbifold points lying in a self-folded triangle.
This case has been studied in [GLFS], including a deformation argument similar
to the one employed in [Br2] which reduces the study to a gentle algebra.
The description of the cluster category for punctured surfaces with skew-gentle
algebras has been given in [QZ] using orbifolds, and in [AP] using a Z2-action
on the category and on the surface. We follow in this paper a similar approach
to the one in [AP], generalizing it to study the derived category in the case
of an orbifold allowing a dissection such that all orbifold points are uniquely
connected by an arc to the boundary (this is the polygonal equivalent of the
self-folded triangle in the cluster situation)
Of course, the class of skew-gentle algebras is not stable under derived equiva-
lences, not even the simplest case of type D satisfies this. It is however natural
to ask the following question:
What is the geometric interpretation of the derived equivalence relation for
skew-gentle algebras ?
Furthermore, keeping track of the Z2-action, we can refine the question to Z2-
derived equivalence relations. These are the two main questions we address in
this paper.

1.1 Organization and main results of the paper

We first study some general properties of G-invariant objects in the derived
category of an algebra Λ, for some finite group G acting on Λ. More precisely,
we study the G-invariant tilting objects in the derived category of Λ, and relate
them with the Ĝ-invariant tilting objects of the derived category of the skew
group algebra ΛG. Note that a general bijection of stable tilting objects is
given in the context of triangulated categories in [CCR, Theorem A].
In Section 3 we introduce the class of skew-gentle algebras, describing their
quiver and relations and various properties. We then provide a geometric model
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for skew-gentle algebras using certain dissections of a surface that we call x-
dissections. This simultaneously generalizes results from [OPS] for the gentle
case, and from [LF] for triangulations (where each puncture is in a selfolded
triangle) of a punctured surface.
In Section 4, we study the Z2-action, both on the algebraic side of the skew-
gentle algebras, and on their geometric realizations. To any dissected surface
which is invariant under the action of an order-2 diffeomorphism (with finitely
many fixed points), we associate

• a gentle algebra Λ together with a Z2 action;

• and an orbifold together with a x-dissection.

We then show that the skew-gentle algebra corresponding to the x-dissection
is Morita equivalent to the skew-group algebra ΛZ2. Conversely, given a skew-
gentle algebra, we construct a 2-folded cover of the corresponding orbifold that
satisfies the above properties. This construction combined with the results of
Section 2 permits us to prove that two skew-gentle algebras are Z2-derived
equivalent if and only if their corresponding gentle algebras are Z2-derived
equivalent.
Section 5 generalizes results from [APS] to the setting of orbifolds with a Z2-
cover. We equip the 2-folded cover (S, σ) associated with a skew-gentle alge-
bra Λ̄ with a σ-invariant line field η. We then adapt the results in [APS] to
the Z2-action setting and give a complete answer to the second question asked
above:

Theorem 1.1. (5.6) Two skew-gentle algebras Λ̄ and Λ̄′ are Z2-derived equiv-
alent if and only if there exists a diffeomorphism between their corresponding
2-folded covers commuting with the Z2-action and sending η to η′ up to homo-
topy.

Finally, we give a geometric interpretation of the derived equivalence relation
for skew-gentle algebras when the equivalence is given by a Z2-invariant tilting
object. The Z2-invariant line field η of the double cover induces a line field η̄
on the orbifold, and we have the following characterization:

Theorem 1.2. (5.9) Two skew-gentle algebras Λ̄ and Λ̄′ are derived equivalent
via a Z2-invariant tilting object if and only if there exists a diffeomorphism
between their corresponding orbifolds sending η̄ to η̄′ up to homotopy.

We finish by giving examples showing the subtle differences between these two
results.

Acknowledgement

Most of this work was done while Claire Amiot was in UMI 3457 Centre de
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2 G-derived equivalence between G-algebras and skew-group al-

gebras

Throughout this section G is a finite abelian group, and k is a field whose
characteristic does not divide |G|. We denote the dual (or character) group

of G by Ĝ = Hom(G, k×).

2.1 Skew-group algebras

We recall from [ReRi] the notion and some properties of skew-group algebras.
By a G-algebra, we mean a finite dimensional k-algebra Λ with an action of G
by automorphisms. Two G-algebras Λ and Λ′ are said to be G-isomorphic if
there exists an isomorphism ϕ : Λ→ Λ′ commuting with the action of G.
For g ∈ G, we denote by Λg the Λ-bimodule which is Λ as a left Λ-module,
and whose action on the right is twisted by g, that is, the map λ 7→ g(λ)
is an isomorphism of right Λ-modules Λ → Λg. Likewise for the twisted left
Λ-module gΛ.

Definition 2.1. Let Λ be a G-algebra. Then the skew-group algebra ΛG is
defined as follows:

• as k-vector space we have ΛG = Λ⊗
k
kG ;

• the multiplication is given by (λ⊗g).(µ⊗h) = λg(µ)⊗gh extended by lin-
earity and distributivity.

The map λ 7→ λ⊗1G is an algebra monomorphism Λ → ΛG, and so ΛG is
naturally a Λ−bimodule, which decomposes as ΛG ∼=

⊕
g∈G Λg. Moreover, ΛG

can be endowed with a Ĝ-action, which allows to consider the group algebra
ΛGĜ := (ΛG)Ĝ as follows:

Proposition 2.2. [ReRi, Prop 5.1] Let Λ be a G-algebra, then ΛG is a Ĝ-

algebra with Ĝ-action given by

χ(λ⊗g) := χ(g)λ⊗g for all χ ∈ Ĝ, λ ∈ Λ, g ∈ G.

The map ΛGĜ −→ EndΛ(ΛG) given by

λ⊗g⊗χ 7→ (µ⊗h 7→ χ(h)(λ⊗g).(µ⊗h)) (2.1)

is an isomorphism of algebras.

Remark 2.3. Since ΛG is isomorphic to the sum of |G| copies of Λ as a right

Λ-module, the proposition above implies that Λ is Morita equivalent to ΛGĜ.

Documenta Mathematica 27 (2022) 933–982



938 C. Amiot, T. Brüstle

2.2 G-invariant objects

An action of G on Λ induces an action on the category Db(modΛ) on the right
in the sense of [El, 3.1] as follows: For all g ∈ G we set

Xg := X
L
⊗
Λ
Λg

for all objects X ∈ Db(modΛ), and for f : X → Y ,

fg := f
L
⊗ 1Λg

.

Definition 2.4. An object X in Db(modΛ) is called G-invariant (or G-

equivariant) if there exist isomorphisms ιg : Xg−1

→ X for all g ∈ G such
that

ιgh = ιg ◦ (ιh)
g−1

holds for all g, h ∈ G.

With this definition, it is immediate to check the following (compare [KrSo, El]):

Lemma 2.5. If X ∈ Db(modΛ) is G-invariant, then G acts on EndDb(Λ)(X)
by

g.f := ιg ◦ f
g−1

◦ (ιg)
−1.

Proof. The definitions imply

g.(h.f) = ιg ◦ [ιh ◦ f
h−1

◦ (ιh)
−1]g

−1

◦ (ιg)
−1

= ιg ◦ (ιh)
g−1

◦ fh−1g−1

◦ ((ιh)
−1)g

−1

◦ (ιg)
−1

= gh.f

Note that we had to define the action on f using the shift fg−1

by the inverse
of g in order to obtain a left action of the group G. The action of the neutral
element e ∈ G can be identified with the identity, see [El, Remark 3.6] for
details.

Example 2.6.

1. The object Λ in Db(modΛ) is G-invariant, with isomorphisms
ιg : Λg−1 → Λ given by λ 7→ g(λ). By Lemma 2.5, the group G acts on
EndDb(Λ)(Λ) and it is easy to see that the isomorphism EndDb(Λ)(Λ) ≃ Λ
is a G-isomorphism.

2. For any X ∈ modΛ and χ ∈ Ĝ the map x⊗g 7→ χ(g)x⊗g induces an
isomorphism in modΛG

ιχ : (X ⊗
Λ
ΛG)χ

−1 ∼
−→ X ⊗

Λ
ΛG,

Documenta Mathematica 27 (2022) 933–982



Derived Equivalences For Skew-Gentle Algebras 939

which turns X⊗
Λ
ΛG into a Ĝ-invariant ΛG-module. Similarly, any object

in Db(modΛG) of the form X
L
⊗
Λ
ΛG is Ĝ-invariant.

3. Conversely, any object X in modΛG is G-invariant when viewed as a
Λ-module. Indeed, let us define

ιg : Xg−1

Λ
∼
−→ XΛ, x 7−→ x.(1 ⊗ g−1)

Then ιg is a morphism of Λ-modules

ιg(x.λ) = ιg(xg
−1(λ)) = xg−1(λ).(1 ⊗ g−1)

= x.(1⊗ g−1).(λ ⊗ 1)

= ιg(x).λ

and one verifies that
ιgh = ιg ◦ (ιh)

g−1

holds for all g, h ∈ G.

Remark 2.7. Since (Λg)
g′

= Λgg′ , the object ΛG viewed as a Λ-module admits
a realization as G-invariant object which is different from the one given in
Example 2.6(3), namely with the isomorphisms ιg given by the permutation of
the summands of ΛG. This induces by Lemma 2.5 an action ofG on EndΛ(ΛG).

Like the dual group Ĝ acts on ΛG, the double dual group G =
̂̂
G acts on ΛGĜ,

and the isomorphism ΛGĜ ∼= EndΛ(ΛG) described in Proposition 2.2 is a G-
isomorphism. However, if we denote by e : ΛG → ΛG the projection to the
component Λ ∼= Λ⊗1G of ΛG, this idempotent of EndΛ(ΛG) is not stable under
the action of G. It is not clear in general how to construct an idempotent e of
ΛGĜ together with a G-isomorphism eΛGĜe→ Λ.

We recall from [LeM, Lemma 2.3.1] that the triangle functors

Db(Λ)

−
L
⊗
Λ
ΛG

// Db(ΛG)
Res

oo

form adjoint pairs in both directions, and the unit of adjunction splits. In
particular, we have for all X ∈ Db(Λ) a functorial isomorphism

Res(X
L
⊗
Λ
ΛG) ∼= ⊕g∈GX

g. (2.2)

It is shown in Proposition 5.2.3 of [LeM] that the skew-group ring
EndDb(Λ)(X)G of a G-invariant object X is Morita equivalent to the en-

domorphism ring of X
L
⊗
Λ
ΛG. We show that they are actually isomorphic:

Documenta Mathematica 27 (2022) 933–982



940 C. Amiot, T. Brüstle

Proposition 2.8. Let Λ be a G-algebra, and X ∈ Db(Λ) be a G-invariant

object. Then we have a Ĝ-isomorphism

EndDb(Λ)(X)G ∼= EndDb(ΛG)(X
L
⊗
Λ
ΛG).

Proof. Left multiplication with 1⊗g yields an isomorphism of Λ−ΛG bimodules
ΛG→ gΛG. This induces an isomorphism which is functorial in X ∈ Db(Λ)

LX
g : X

L
⊗
Λ
ΛG→ Xg−1 L

⊗
Λ
ΛG

since we have Λ⊗g ΛG = Λg−1 ⊗ ΛG. Then one easily checks that

LX
gh = LXh−1

g ◦ LX
h and LY

g ◦ (u⊗ 1) = (ug−1

⊗ 1) ◦ LX
g (2.3)

for any g, h ∈ G and any u ∈ HomDb(Λ)(X,Y ).

Now let X be a G-invariant object in Db(Λ) and ig the corresponding isomor-
phism. Define a map

φ : EndDb(Λ)(X)G→ EndDb(ΛG)(X
L
⊗
Λ
ΛG)

by
φ(u⊗ g) = ((u ◦ ig)⊗ 1ΛG) ◦ L

X
g .

We first verify that φ is a morphism of algebras: Using the properties for ig
and (2.3), one sees that the product

(u⊗ g) · (v ⊗ h) = u ◦ ig ◦ v
g−1

◦ i−1
g ⊗ gh

is mapped to

(u ◦ ig ◦ vg
−1

◦ i−1
g ◦ igh ⊗ 1ΛG) ◦ LX

gh= (u ◦ ig ⊗ 1) ◦ ((v ◦ ih)g
−1

⊗ 1) ◦ LXh−1

g ◦ LX
h

= (u ◦ ig ⊗ 1) ◦ LX
g ◦ (v ◦ ih ⊗ 1) ◦ LX

h

= φ(u ⊗ g) ◦ φ(v ⊗ h).

Next, the adjunction formula and equation (2.2) yields isomorphisms of vector
spaces

EndDb(ΛG)(X ⊗ ΛG) ∼= HomDb(Λ)(X,HomDb(ΛG)(ΛG,X ⊗ ΛG))

∼= HomDb(Λ)(X,X ⊗ ΛG)

∼= HomDb(Λ)(X,
⊕

g∈G

Xg)

∼= EndDb(Λ)(X)G

under which the element (u◦ ig⊗1)◦LX
g is sent to the element u⊗g. Therefore

φ is an isomorphism, which can be verified to be compatible with the action
of Ĝ.
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2.3 Invariant tilting objects in Db(Λ) and in Db(ΛG)

We study now tilting objects in a derived category with a group action. Let us
recall that an object T of Db(Λ) is tilting if thick(T ) = Db(Λ) and T is rigid,
that is, HomDb(Λ)(T, T [i]) = 0 for any integer i 6= 0.

Definition 2.9. For Λ a G-algebra, and T a G-invariant tilting object of
Db(Λ), the category add(T ) will be called a G-tilting subcategory of Db(Λ).

The following result has been partially shown in [LeM, Corollary 5.2.2] in the

context of cluster-tilting subcategories. Note however that we consider Ĝ-
invariance instead of invariance under a composition of functors.

Theorem 2.10. Let Λ be a G-algebra. Then the functors

Db(Λ)

−
L
⊗
Λ
ΛG

// Db(ΛG)
Res

oo

induce a bijection

{G-tilting subcategories of Db(Λ)} ↔ {Ĝ-tilting subcategories of Db(ΛG)}.

For the proof we need the following lemma:

Lemma 2.11. There is an isomorphism of ΛG-bimodules

ΛGĜ ≃ ΛG⊗
Λ
ΛG.

Proof. We construct two isomorphisms of ΛG-bimodules

ΛGĜ
Φ1 // EndΛ(ΛG) ΛG⊗

Λ
ΛG

Φ2oo .

The map Φ1 is the one given in (2.1). This is an isomorphism, and clearly
a left ΛG-module map. So it remains to show that it is a morphism of right
ΛG-modules.
The right ΛG-module structure of ΛGĜ is induced by the embedding
ΛG→ ΛGĜ, while the right ΛG-module structure of EndΛ(ΛG) comes from
the left ΛG-module structure of ΛG. A direct computation yields

Φ1((λ⊗g⊗χ).(λ′
⊗g′⊗1

Ĝ
))(µ⊗h) = Φ1(λ⊗g⊗χ)((λ′

⊗g′).(µ⊗h)),

thus Φ1 is an isomorphism of ΛG-bimodules.
The left Λ-module ΛG⊗

Λ
ΛG is a free module with basis given by the elements

(1⊗g1) ⊗ (1⊗g2), g1, g2 ∈ G. We define Φ2 on this basis and extend it by left
Λ-linearity: We set Φ2((1⊗g1)⊗ (1⊗g2)) to be the map

ϕg1,g2 : µ⊗h 7→ (1⊗g1).δg2,h−1g2(µ)⊗1G,
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where δi,j is the Kronecker symbol.

First, a direct computation gives

ϕg1,g2((µ⊗h).(λ⊗1G)) = (ϕg1,g2(µ⊗h)).(λ⊗1G),

so ϕg1,g2 is indeed a map of right Λ-modules.

Next, note that the elements ϕg1,g2 form a Λ-basis of EndΛ(ΛG), so Φ2 is an
isomorphism of left Λ-modules. Moreover Φ2 is clearly a left ΛG-morphism.
Finally by a direct computation we get that

Φ2((1⊗g1)⊗ ((1⊗g2).(λ⊗g))(µ⊗h) = ϕg1,g2((λ⊗g).(µ⊗h)),

hence Φ2 is a right ΛG-module morphism.

Proof of Theorem 2.10. Let T ∈ Db(Λ) be a G-tilting object. Then T
L
⊗
Λ
ΛG

is Ĝ-invariant by Example 2.6(2). As in the proof of proposition 2.8, one sees
that

HomDb(ΛG)(T
L
⊗
Λ
ΛG, T

L
⊗
Λ
ΛG[i]) ∼= HomDb(Λ)(T,

⊕

g∈G

T g[i])

and therefore the object T
L
⊗
Λ

ΛG is rigid since T is so. To show that

thick(T
L
⊗
Λ
ΛG) = Db(ΛG), consider an object X ∈ Db(ΛG). Since T is tilting,

we have

XΛ ∈ D
bΛ = thick(T ),

hence X
L
⊗
Λ
ΛG ∈ thick(T

L
⊗
Λ
G). Now we use the fact that ΛG is projective as

Λ-module, and Lemma 2.11 to obtain

X
L
⊗
Λ
ΛG = (X

L
⊗
ΛG

ΛG)
L
⊗
Λ
ΛG ∼= X

L
⊗
ΛG

(ΛG
L
⊗
Λ
ΛG)

∼= X
L
⊗
ΛG

ΛGĜ

∼=
⊕

χ∈Ĝ

Xχ

Since a thick subcategory is closed under direct factors, we conclude X ∈

thick(T
L
⊗
Λ
ΛG).

Conversely, let U ∈ Db(ΛG) be a Ĝ-tilting object. Then UΛ is G-invariant by
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Example 2.6(3). To show that U is rigid, we verify

HomDbΛ(UΛ, UΛ[i]) ∼= HomDb(ΛG)(UΛ

L
⊗
Λ
ΛG,U [i])

∼= HomDb(ΛG)(UΛ

L
⊗
ΛG

(ΛG⊗Λ ΛG), U [i])

∼= HomDb(ΛG)(
⊕

χ∈Ĝ

Uχ, U [i]) = 0.

Consider an object X ∈ DbΛ. Then (X
L
⊗
Λ
ΛG)Λ ∈ thick(UΛ) since X

L
⊗
Λ
ΛG ∈

DbΛG = thick(U). As before, this implies X ∈ thick(UΛ) since X is a direct

factor of (X
L
⊗
Λ
ΛG)Λ ∼=

⊕
g∈G Xg.

We have so far verified that the functors −
L
⊗
Λ
ΛG and Res induce maps

add(T ) 7−→ add(T
L
⊗
Λ
ΛG)

and

add(U) 7−→ add(UΛ)

between G-tilting subcategories of DbΛ and Ĝ-tilting subcategories of DbΛG.
To verify that these maps are inverse to each other, observe that

add((T
L
⊗
Λ
ΛG)Λ) = add(

⊕

g∈G

T g) = add(T )

since T is G-invariant. Likewise,

add(UΛ

L
⊗
Λ
ΛG) = add(

⊕

χ∈Ĝ

Uχ) = add(U).

Note that as a consequence of this result, if T ∈ Db(Λ) is a G-invariant tilting
object, and if Λ′ = EndDb(Λ)(T ) is the corresponding G-algebra, then we have
the following commutative diagram
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Db(Λ)

−
L
⊗
Λ
ΛG

��

Db(Λ′)

−
L
⊗
Λ′

T

oo

−
L
⊗
Λ′

Λ′G

��
Db(ΛG) Db(Λ′G)

−
L
⊗

Λ′G

(T
L
⊗
Λ
ΛG)

oo

where both horizontal maps are equivalences. This leads us to state the follow-
ing:

Definition 2.12. Two G-algebras Λ and Λ′ are called G-derived equivalent
if there exists a G-invariant tilting object T ∈ Db(Λ) together with a G-
isomorphism EndDb(Λ)(T ) ≃ Λ′. We denote it by Db(Λ) ∼

G
Db(Λ′).

Therefore we have

Corollary 2.13. Let Λ and Λ′ be G-algebras, then we have

Db(Λ) ∼
G
Db(Λ′)⇒ Db(ΛG) ∼

Ĝ

Db(Λ′G).

If moreover there exists a G-invariant idempotent θ of ΛGĜ and θ′ of Λ′GĜ
together with G-isomorphisms Λ ≃ θΛGĜθ and Λ′ ≃ θ′Λ′GĜθ′, then we have

Db(Λ) ∼
G
Db(Λ′)⇔ Db(ΛG) ∼

Ĝ

Db(Λ′G).

3 Skew-gentle algebras and dissections

From now on and in the rest of the paper, k is assumed to be a field of char-
acteristic 6= 2.

3.1 Skew-gentle algebras

We first recall from [GePe] the concept of skew-gentle algebras and then study
some of their basic properties.

Definition 3.1. A gentle pair is a pair (Q, I) given by a quiver Q and a
subset I of paths of length two in Q such that

• for each i ∈ Q0, there are at most two arrows with source i, and at most
two arrows with target i;

• for each arrow α : i → j in Q1, there exists at most one arrow β with
target i such that βα ∈ I and at most one arrow β′ with target i such
that β′α /∈ I;
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• for each arrow α : i → j in Q1, there exists at most one arrow β with
source j such that αβ ∈ I and at most one arrow β′ with source j such
that αβ′ /∈ I.

• the algebra A(Q, I) := kQ/I is finite dimensional.

An algebra is gentle if it admits a presentation A = kQ/I where (Q, I) is a
gentle pair.

We follow [BeHo] stating the definition which appeared first in [GePe]:

Definition 3.2. A skew-gentle triple (Q, I, Sp) is the data of a quiver Q, a
subset I of paths of length two in Q, and a subset Sp of loops in Q (called
’special loops’) such that (Q, I ∐ {e2, e ∈ Sp}) is a gentle pair. In this case,
the algebra Ā(Q, I, Sp) := kQ/〈I ∐ {e2 − e, e ∈ Sp}〉, is called a skew-gentle
algebra. Note that as a gentle algebra is finite dimensional, so is a skew-gentle
algebra.

Skew-gentle algebras are known to be tame algebras, and a classification of
their indecomposable modules is given in [CB, De] using the notion of a certain
matrix problem called clan, hence they use the name clannish algebra. Skew-
gentle algebras can also be related to clannish matrix problems by gluing them
together from smaller pieces as in [Br], we present this method here to obtain
another description of the class of skew-gentle algebras:
First recall from [Br, Prop 5.2] that gentle algebras can be obtained by gluing

together the following puzzle pieces Sn and S̃n:

(a) Sn denotes, for n ≥ 1, the linearly oriented quiver of type An with radical
square zero:

x1
α1 // x2

α2 // · · · xn−1

αn−1 // xn

with αiαi+1 = 0 for 1 ≤ i ≤ n− 2.

(b) S̃n denotes, for n ≥ 1, the cyclically oriented quiver of type Ãn with
radical square zero:

x1
α1 // x2

α2 // · · · xn−1

αn−1// xn = x1

with αiαi+1 = 0 for 1 ≤ i ≤ n− 1modn.

A gluing is obtained by choosing a (not necessarily perfect) matching of the
vertices of a collection of puzzle pieces of type (a) or (b), and identifying the
pairs of vertices related by the matching. The resulting algebra is gentle if it
is finite-dimensional, and every gentle algebra is obtained in this way.
We produce skew-gentle algebras by allowing one additional puzzle piece, a
special loop sp:
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(c) sp denotes the quiver with one vertex and one loop e with relation
e2 − e = 0 :

x eee

Lemma 3.3. A gluing of puzzle pieces of type (a), (b) or (c) yields a skew-gentle
algebra if it is finite-dimensional, and every skew-gentle algebra is obtained in
this way.

Proof. Replacing all special loops in a skew-gentle algebra by loops e with
e2 = 0 one obtains a gentle algebra, which is glued from puzzle pieces (a)
and (b) by [Br, Prop 5.2]. Note that the condition of the algebra being finite
dimensional requires that every loop e in the gentle case satisfies e2 = 0. The
special loops are then obtained from gluing pieces of type (c) instead of loops
e with e2 = 0.

The proof of the previous lemma used the fact that replacing all special loops
in a skew-gentle algebra by loops e with e2 = 0 one obtains a gentle algebra.
More generally, given a skew-gentle algebra Ā = Ā(Q, I, Sp), let us define for
every t ∈ k the algebra

Āt := kQ/〈I ∐ {e2 − te, e ∈ Sp〉.

Then Ā0 is the gentle algebra used in the proof of Lemma 3.3, and Ā1 is the
original skew-gentle algebra.

Lemma 3.4. Let k be an algebraically closed field. Any skew-gentle algebra
Ā(Q, I, Sp) is a deformation of the corresponding gentle algebra Ā0.

Proof. We assume the field to be algebraically closed so we can speak about
deformation in the affine variety of associative k-algebra structures with an
action of a general linear group as considered in [Ge, CB2]: An algebra lying
inside a GLn(k)-orbit is a deformation of any point in the closure of the orbit.
It is sufficient to show that for all t 6= 0 the algebras Āt are isomorphic to Ā1,
since Ā0 lies then in the closure of this family of isomorphic algebras. Define,
for all t ∈ k, an algebra morphism φt : Āt → Ā1 by sending e 7→ te if e is a
special loop, and a 7→ a for the remaining arrows. This transforms the relation
e2 − te = 0 in Āt into t2(e2 − e) = 0, thus φt is indeed well-defined. It admits,
for all t 6= 0 an inverse defined by sending e 7→ e

t
.

Note that the theorem of Geiss [Ge] implies that skew-gentle algebras are tame
since they degenerate to a gentle algebra. However, degeneration does not pro-
vide precise information about indecomposable modules, so we use Lemma 3.4
more to compare different geometric models. A similar deformation argument
to the one in Lemma 3.4 has been used in [BPS, GLFS] to show that similar
classes of algebras are tame.
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3.2 The quiver of a skew-gentle algebra

Note that every gentle algebra is skew-gentle (with empty set of special loops).
In this case, the quiver Q is the quiver QĀ defined by the algebra Ā. This is not
the case when we have special loops, since the relation e2− e is not admissible.
In fact, the idempotent e attached to vertex i of Q splits the vertex into two
so that the quiver QĀ of the algebra Ā has two vertices for every vertex of Q
with a special loop. The arrows are split accordingly, hence the quiver of a
skew-gentle algebras is described as follows:
Consider the skew-gentle algebra Ā = Ā(Q, I, Sp). We divide the vertex set Q0

of the quiver Q into two disjoint sets: Denote by Qsp
0 the set of ’special’ vertices

of Q where a special loop is attached, and let Qord
0 be the remaining ’ordinary’

vertices. Then the quiver Q̄ of the algebra Ā is given as follows:

• The vertices of Q̄ are bijection with

Qord
0 ∪ (Qsp

0 × Z2).

For i ∈ Qsp
0 , we denote by i0 (resp. i1) the vertex (i, 0) ∈ Qsp

0 × Z2

(resp. (i, 1)) the vertex (j, 0) (resp. (j, 1)). It corresponds to idempotent
e (resp. ei − e) where e is the special loop attached to i.

• Given two ordinary vertices i and j in Qord
0 , then arrows in Q̄ between i

and j are bijection with the arrows in Q between i and j;

• Given an ordinary vertex i and a special vertex j ∈ Qsp
0 , there are two

arrows

i

j0

j1

0α

1α

in Q̄ for every arrow
i jα

in Q.

• dually, every arrow
j iα

in Q with i ordinary and j special yields two arrows

i

j0

j1

α0

α1

in Q̄;
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• for every arrow

i
α // j

in Q with both i and j special, there are four arrows

i0

i1

j0

j1

0α0

0α11α0

1α1

in Q̄.

The relations generating the ideal Ī of the algebra Ā = kQ̄/Ī can be described
as follows: Consider a relation βα in I

α // i
β // .

If i is an ordinary vertex, then we have ǫβαǫ′ ∈ Ī, for each ǫ = 0, 1, ∅ and
ǫ′ = 0, 1, ∅, where the expression makes sense. For example if the source of α
is a special vertex, and if the target of β is an ordinary vertex, the relations
ǫβαǫ′ ∈ Ī mean βα0 ∈ Ī and βα1 ∈ Ī. When i is a special vertex, then we have
(ǫβ0)(0αǫ′) + (ǫβ1)(1αǫ′) ∈ Ī, for all possible ǫ = 0, 1, ∅ and ǫ′ = 0, 1, ∅.

Example 3.5. Consider the skew-gentle algebra Ā = Ā(Q, I, Sp) obtained by
gluing a piece S5 (which is of type (a)) with three special loops in the middle
vertices, thus the quiver Q is given by

1
α // 2

e

�� β // 3

f

�� γ // 4

g

��
δ // 5

with relations αβ = βγ = γδ = 0 and special loops Sp = {e, f, g}. Then the
quiver Q̄ of the algebra Ā = kQ̄/Ī is a garland where all squares are anti-
commutative:

1

20

21

0α

1α

30

31

0β0

0β11β0

1β1

40

41

0γ0

0γ11γ0

1γ1

5

δ0

δ1

It is clear from the description of quiver and relations that a skew-gentle algebra
admits a Z2-action. This has been explored in [GePe], and we will come back
to it in Section 4 using a geometric description of skew-gentle algebras.
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The fact that the quiver Q defining Ā = Ā(Q, I, Sp) is in general not the
quiver Q̄ of the skew-gentle algebra Ā creates some ambiguity of the data
defining skew-gentle algebras: Let Q be the following quiver with a special
loop attached to vertex 2

1
a // 2 edd

and consider also the quiver

Q′ : 2+ ←− 1 −→ 2−

If both sets I and I ′ are empty, then the skew-gentle algebras Ā(Q, I, {e}) and
Ā(Q′, I ′, ∅) are isomorphic, but the quivers Q and Q′ are not. This example
illustrates the fact that the quiver of Dynkin type D3 (skew-gentle) is actually
an equi-oriented quiver of type A3 (which is gentle). We address in the following
lemma the question when it is possible to express a skew-gentle algebra with
non-empty set of special loops as a gentle algebra:

Lemma 3.6. Let Λ be a connected gentle algebra, and assume Λ can be expressed
as a skew-gentle algebra Λ ∼= Ā(Q, I, Sp) with Sp 6= ∅. Then Ā(Q, I, Sp) is one
of the following cases or its dual:

1e ::
a // 2 1e ::

a // 2 fdd

Proof. We assume that Λ can be presented as a skew-gentle algebra Λ ∼=
Ā(Q, I, Sp) with a special loop e at vertex y. If y lies on a path x → y → z
in Q, then the quiver Q̄ of Ā(Q, I, Sp) contains an anti-commutative square,
and thus Λ is not gentle by Definition 3.1. Therefore there is exactly one arrow
in Q attached to the vertex y, and we can assume up to duality it is a : y → z.
If there is a further arrow between z and some different vertex w in Q, then
the quiver Q̄ of Λ contains a subquiver of type Dn with n ≥ 4, thus it is not
gentle. Therefore, only the cases described in the lemma are possible.

The gentle pair (Q, I) of a gentle algebra is well defined up to isomorphism of
gentle pairs (that is an isomorphism Q → Q′ sending I to I ′). We generalize
the proof of this fact and show that the same holds true for skew-gentle algebras
and their triples, when avoiding the cases described in the previous lemma:

Proposition 3.7. Let Λ be a connected skew-gentle algebra which is not gen-
tle. Then Λ ∼= Ā(Q, I, Sp) for a unique skew-gentle triple (Q, I, Sp), up to an
isomorphism of quivers Q→ Q′ sending I to I ′ and Sp to Sp′.

Proof. Let ϕ : A = A(Q, I, Sp)→ A′ = A(Q′, I ′, Sp′) be an isomorphism. The
algebra isomorphism ϕ induces an isomorphism of the corresponding Gabriel
quivers ϕ̄ : Q̄→ Q̄′ sending Ī to Ī ′, and we denote the image of any primitive
idempotent ei with i ∈ Q̄0 by ei′ with i′ ∈ Q̄′

0. Denote by r (resp. r
′ ) the

radical of A (resp. A′). Then ϕ induces vector space isomorphisms

ϕn
i,j : ej(r

n/rn+1)ei → ej′(r
′n/r′n+1)ei′
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which are compatible with the multiplication. We first show that unless Q̄ is
the Kronecker quiver (which is gentle), ϕ1 sends any arrow to a multiple of an
arrow of Q̄′. If Q has no double arrows, this is clear. Now since A is finite
dimensional, there are no oriented cycles of double arrows in Q̄. If α and β are
parallel arrows then since the quiver is not the Kronecker quiver, there exists γ
that composes with α or β. If ϕ1(γ) is a multiple of γ, then one can check that
so are ϕ1(α) and ϕ1(β). Using this argument, one can show by induction that
any arrow is sent to a multiple of an arrow by ϕ1.
Now ϕ1 induces a isomorphism Q̄ to Q̄′, we denote by a′ ∈ Q̄′

1 the image of
a ∈ Q̄1. Let us check that it sends Ī to Ī ′. If αβ ∈ I, then ϕ1(α)ϕ1(β) is in Ī ′.
Since it is a multiple α′β′, we have α′β′ ∈ Ī ′. If α0β0 + α1β1 is in I, then
ϕ1(α0)ϕ

1(β0) + ϕ1(α1)ϕ
1(β1) is in I ′ and is a linear combination of α′

0β
′
0 and

α′
1β

′
1, therefore it must be a multiple of α′

0β
′
0 + α′

1β
′
1 .

We conclude using that the assignment (Q, I, Sp) 7→ (Q̄, Ī) is injective unless
(Q, I, Sp) is as described in the previous lemma. In fact, the set of special loops
is determined by (Q̄, Ī) as follows: Every anti-commutative square in (Q̄, Ī) is
given by a path of length two in Q passing through a vertex equipped with a
special loop. Moreover, every subquiver of Q̄ of the form Dn with n > 4

v w x

u0

u1

is necessarily obtained from Q by splitting a vertex u into two vertices u0, u1

by means of a special loop attached at u.

3.3 Gentle algebras and dissected surfaces

In this subsection, we recall some definitions and results from [OPS] (but we
mostly follow the notation in [APS]).
A marked surface (S,M, P ) is the data of

• an oriented closed smooth surface S with non empty boundary, that is a
compact closed oriented smooth surface from which some open discs are
removed;

• a finite set of marked pointsM on the boundary, such that there is at least
one marked point on each boundary component (this set corresponds to
the set M• in [APS]);

• a finite set P of marked points in the interior of S (which corresponds to
the set P• in [APS]).

The points in M and P are called marked points. A curve on the boundary of S
intersecting marked points only on its endpoints is called a boundary segment.
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An arc on (S,M, P ) is a curve γ : [0, 1] → S such that γ|(0,1) is injective and
γ(0) and γ(1) are marked points. Each arc is considered up to isotopy (fixing
endpoints).

Definition 3.8. A •-dissection is a collection D = {γ1, . . . , γs} of arcs cut-
ting S into polygons with exactly one side being a boundary segment.
Two dissected surfaces (S,M, P,D) and (S ′,M ′, P ′, D′) are called diffeomor-
phic if there exists an orientation preserving diffeomorphism Φ : S → S ′ such
that Φ(M) = M ′, Φ(P ) = P ′, and Φ(D) = D′.

Following [OPS], one can associate to the dissection D a quiver Q, together
with a subset of quadratic monomial relations I, such that the algebra A(D) :=
A(Q, I) is a gentle algebra. In the next subsection, we explain this construction
in detail and give illustrating examples in the more general context of skew-
gentle algebras.

Proposition 3.9. [OPS] The assignment D 7→ A(D) induces a bijection

{
(S,M, P,D)

dissected surface

}

/ diffeo
←→

{
A(Q, I)

gentle algebra

}

/iso

3.4 Skew-gentle algebras and dissected surfaces

Definition 3.10. A marked orbifold (S,M, P,X) is the data of

• a marked surface (S,M, P )

• a finite set X of points in the interior of S, called orbifold points.

An arc on (S,M, P,X) is an arc with endpoints in M , P or X .
A x-dissection is a •-dissection D of the marked surface (S,M, P ∪ X) such
that each x in X is the endpoint of exactly one arc jx. We call these arcs jx the
x-arcs of D, and arcs with both endpoints in M ∪ P are referred to as •-arcs.
Two x-dissected orbifolds (S,M, P,X,D) and (S ′,M ′, P ′, X ′, D′) are called
diffeomorphic if there exists an orientation preserving diffeomorphism Φ : S →
S ′ such that Φ(M) = M ′, Φ(P ) = P ′, Φ(X) = X ′ and Φ(D) = D′.

Considering the x-dissection D as a •-dissection of (S,M, P ∪ X), one can
associate to D a gentle pair (Q, I). The condition for a •-dissection to be
a x-dissection implies that there is a distinguished set of square zero loops
corresponding to the unique arcs linking a x ∈ X to a • ∈M ∪ P . Hence, one
can define a skew-gentle triple (Q, I ′, Sp) with skew-gentle algebra Ā(D) :=
Ā(Q, I ′, Sp)) from D, where Sp is the set of loops attached to the x’s, and
where I ′ := I \ {e2, e ∈ Sp}.

Proposition 3.11. The assignment D 7→ Ā(D) maps x-dissections to skew-
gentle algebras, and all skew-gentle algebras are obtained in this way.
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Proof. The gentle algebra Ā0(Q, I, Sp) which is a degeneration of a given
skew-gentle algebra Ā(Q, I, Sp) is obtained by the bijection in Proposition 3.9
uniquely by a •-dissection of a surface (S,M, P ). Square-zero loops of
Ā0(Q, I, Sp) correspond under this bijection to self-folded triangles contain-
ing one • in its interior. Changing the • to a x, one obtains a x-dissection D,
and the choice of x’s corresponds to a selection of special loops, thus Ā(D) =
Ā(Q, I, Sp).

We now describe in detail the generalized version of the assignment D 7→ A(D)
from [OPS]. Let D be a x-dissection of a surface (S,M, P ). Then the quiver Q̄
of the algebra Ā(D) and its set of relations Ī such that Ā(D) = kQ̄/Ī can be
constructed as follows:

• The vertices of Q̄ are in bijection with

{i •-arc} ∪ ({j x-arc} × Z2).

• Given i and j •-arcs in D, there is one arrow

i jα

in Q̄ whenever the arcs i and j have a common endpoint • and when i is
immediately followed by the arc j in the counterclockwise order around •;

• Given a •-arc i and a x-arc j in D, there are two arrows

i

j0

j1

0α

1α

( resp. i

j0

j1

)
α0

α1

in Q̄ whenever the arcs i and j have a common endpoint • and when i is
immediately followed by the arc j in the counterclockwise (resp. clock-
wise) order around • ;

• Given i and j x-arcs in D, there are four arrows

i0

i1

j0

j1

0α0

0α11α0

1α1

in Q̄ whenever the arcs i and j have a common endpoint • and when i is
immediately followed by the arc j in the counterclockwise order around •.
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The set of relations Ī can be described as follows: If i, j, and k have a com-
mon endpoint •, and are consecutive arcs following the counterclockwise order
around •, then

• if j is a •-arc, we have ǫβαǫ′ ∈ Ī, for each ǫ = 0, 1, ∅ and ǫ′ = 0, 1, ∅, when
the expression makes sense .

• if j is a x-arc, then we have (ǫβ0)(0αǫ′)+(ǫβ1)(1αǫ′) ∈ Ī, where ǫ = 0, 1, ∅
and ǫ′ = 0, 1, ∅, when the expression makes sense.

Example 3.12. Consider a disc with one orbifold point and n−1 marked points
on the boundary with the following x-dissection depicted for n = 5:

x •

•

•

•

12

3 4

The corresponding skew-gentle algebra is a quiver of type Dn as follows:

10

11

2 3 4

Now consider the disc with n−2 marked points on the boundary and 2 orbifold
points with a dissection of the following form:

x

x •

•

•

•

1

5

2

3 4

Then the corresponding skew-gentle algebra is of type D̃n:
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10

11

2 3 4

50

51

4 Skew-gentle as skew-group algebras, and Z2-action on a sur-

face

From now on, and in the rest of the paper, G will be the group Z2.

4.1 Z2-action on dissected surfaces

Let (S,M, P ) be a marked surface, and let σ : S → S be a diffeomorphism
of order 2, preserving setwise P and M , and having finitely many fixed points
which are all in S\P . We call these data a G-marked surface.
This induces a free action of the group G = {1, σ} on the sets M and P . We
denote by X the set of fixed points of σ and we define a G-dissection D to
be a •-dissection of (S,M, P ) which is fixed (globally) by σ. We also refer to
(S,M, P, σ,D) as a G-dissected surface.
Two G-dissected surfaces (S,M, P, σ,D) and (S ′,M ′, P ′, σ′, D′) are called G-
diffeomorphic if there exists an orientation preserving diffeomorphism Φ : S →
S ′ preserving the marked points, sending D to D′, and such that Φ◦σ = σ′ ◦Φ.
From a G-dissection D, we obtain a gentle algebra A(D) given by a gentle pair
(Q, I), and the diffeomorphism σ induces a G-action on Q, fixing globally the
paths of I. Therefore we get the following result:

Proposition 4.1. The assignment D 7→ A(D) induces an injective map

{
(S,M, P, σ,D)

G-dissected surface

}

/ G− diffeo
−→

{
A(Q, I)

G-gentle algebra

}

/G− iso

Moreover for each G-gentle algebra obtained above, the action of G comes from
an action on the quiver which is free on the arrows.

Given a diffeomorphism σ : S → S of order two, the quotient S := S/σ has a
structure of orbifold surface, with orbifold points X . Denote by p : S → S the
quotient map. We may consider (S,M, P ,X) as a marked orbifold.

Proposition 4.2. Let (S,M, P, σ) be a G-marked surface. Then the projection
p : S → S induces a bijection

{D, G−dissection(S,M, P, σ)} ←→ {D, x−dissection(S,M, P ,X)}.

Two G-dissections are G-diffeomorphic if and only if the corresponding x-
dissections are diffeomorphic.
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Proof. Let D be a G-dissection of (S,M, P, σ). We first show that a fixed
point x of σ cannot be in the interior of one of the polygons cut out by D.
Indeed, the diffeomorphism σ acts locally around x as a central symmetry, so
it would fix globally the polygon containing x. But this polygon has exactly
one side which is on the boundary of S, thus σ would fix globally this side,
and σ would have a fixed point on the boundary, a contradiction.
Therefore every fixed point of σ lies in the interior of an arc of D. If γ is an arc
in D containing two distinct fixed points, then γ would fix a point in between,
this would contradict the fact that X is finite by an easy induction . Finally,
if γ contains x ∈ X , then γ is fixed by σ since γ does not intersect another
arc of D. Again arguing by finiteness of X , we cannot have σ(γ) = γ, hence
we conclude σ(γ) = γ−1. We have therefore shown that the G-dissection D
has exactly m = |X | arcs γ such that σ(γ) = γ−1 and each of them contains
exactly one point in X . Setting X = {x1, . . . , xm}, we can write

D = {γ1, . . . , γm, α1, . . . , αs, σ(α1), . . . , σ(αs)}

with σ(γi) = γ−1
i , and we can assume xi = γi(

1
2 ). Cutting the self-symmetric

arcs into two parts at the fixed point, we write γi = γ0
i .γ

1
i where γ0

i (0) = xi.
Then the set of arcs

{γ0
1 , γ

1
1 , . . . , γ

0
m, γ1

m, α1, . . . , αs, σ(α1), . . . , σ(αs)}

is a dissection of (S \X,M,P ∪X) for which every xi ∈ X belongs exactly to
the two arcs γ0

i and γ1
i . Therefore the collection

D = {p(γ0
1), . . . , p(γ

0
m), p(α1), . . . , p(αs)}

is a system of non-intersecting arcs. The action of σ on the polygons cut out
by D is free, indeed if one polygon were fixed, then σ would have a fixed point
in its interior. Since the projection S \X → S\X is a two folded cover without
branched points, the collection D cuts the surface S into polygons with exactly
one boundary segment on the boundary. Therefore D is a x-dissection of S.
Conversely, let D = {γ̄1, . . . , γ̄m, ᾱ1, . . . , ᾱs} be a x-dissection of (S,M, P ,X)
where the γ̄i are the arcs incident to a point in X . Then p−1(ᾱi) is a union of
two arcs that do not intersect and that are mapped under σ onto each other,
thus we can write p−1(ᾱi) = {αi, σ(αi)}.
The preimage p−1(γ̄i) is a union of two curves that both have xi ∈ X as
endpoint. So if we write p−1(γ̄i) = {γi, σ(γi)}, we have that γ̃i := γi.σ(γi)

−1

is an arc of (S,M, P ). It is then easy to see that

D := {γ̃1, . . . , γ̃m, α1, . . . , αs, σ(α1), . . . , σ(αs)}

is a dissection of (S,M, P ) which is invariant under σ.

Proposition 4.3. Let (S,M, P, σ,D) be a G-dissected marked surface. There
is an isomorphism of algebras

(A(D)G)b ≃ Ā(D),
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where (A(D)G)b is the basic algebra of the skew-group algebra A(D)G.

Proof. We denote by A := A(D) and Ā := Ā(D̄).

The description of the quiver of AG follows from [ReRi]. But in order to
understand the relations, we need to exhibit a specific idempotent η ∈ AG
which turns ηAGη into a basic algebra, together with an explicit isomorphism
ϕ : Ā −→ ηAGη.

The action of σ is free on M and P , which allows to write M = M+∐M− and
P = P+ ∐ P− by choosing a representative for each orbit. This choice induces
a partition Q1 = Q+

1 ∐Q−
1 of the arrows of Q where an arrow i→ j is in Q+

1 if
and only if the corresponding endpoint common to arc i and j is in M+ ∪P+.
We denote the arrows in Qǫ

1 by αǫ for ǫ ∈ {+,−}. This partition of arrows
implies that a composition αǫβǫ′ is in I if and only if ǫ = ǫ′.

Now we choose a representative for each σ-orbit of the vertices Q0 and denote
Q0 = Q+

0 ∐ Q−
0 ∐ Qfix

0 (this choice is done independently from the choice of
arrows). Then a complete set of primitive pairwise orthogonal idempotents of
AG is given as follows:

{ei+⊗1G, i
+ ∈ Q+

0 } ∪ {ei−⊗1G, i
− ∈ Q−

0 } ∪ {ej⊗
1 + σ

2
, ej⊗

1− σ

2
, j ∈ Qfix

0 }.

The automorphism σ⊗ 1G of AG induces an isomorphism between the projec-
tives (ei+⊗1)AG and (ei−⊗1)AG. Let us fix

η :=
∑

i+∈Q
+
0

ei+⊗1 +
∑

j∈Qfix
0

ej⊗1,

then using [ReRi], the algebra ηAGη is basic and we have an isomorphism of
algebras (AG)b ≃ ηAGη.

Consider now the projection map p : S → S̄. Let γi be a •-arc in D̄, cor-
responding to a vertex i in the quiver Q(D̄) of Ā(D̄). Then p−1(γi) is a pair
γ+
i , γ−

i ∈ D with σ(γ+
i ) = γ−

i which corresponds to vertices i+ and i− in Q(D).
If γi is a x-arc in D̄, it corresponds to two vertices i0 and i1 in Q̄. Its preimage
in S is an arc of D which is σ-invariant, so there is one corresponding vertex
in Q(D) denoted by i.

Let γi and γj be two arcs in D̄ (•, or x) having a common endpoint m ∈ M̄
and such that γi is immediately followed by γj in the counterclockwise direction
around m. The point m has exactly two preimages m+ ∈M+ and m− ∈M−

in S. Hence there are exactly two arrows α+ ∈ Q+
1 and α− ∈ Q−

1 in the quiver
of D. Note that if γi (resp. γj) is a •-arc, the source (resp. tail) of α+ maybe
either i+ or i− (resp. j+ or j−). The possible local configurations of the two
quivers Q(D) and Q(D̄) are summarized in Figure 1.
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D̄ Q(D̄) D Q(D)
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•

•

γi γj
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i jα

•

•

•

m+

•

•

•
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. .

. .

α+

α−

•

•

x

γi γj

m

i

j0

j1

0α

1α

•

•

x

m+

•

•
m−

.

j

.

α+

α−

x

•

•

γi γj

m i0

i1

j
α0

α1

x

•

•

m+

•

•

m−

i

.

.

α+

α−

x

•

x

γi γj

m i0 j00α0

i1 j1

0α1

1α0

1α1

x

•

x

•

γi

m+

x

•

•

γi

m− i j
α+

α−

Figure 1: Local configurations of the quivers Q(D) and Q(D̄)
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Now we define a map Φ : kQ(D̄)→ ηA(D)Gη by

Φ(ēi) = ei+⊗1

Φ(ēiǫ) = ei⊗
1+(−1)ǫσ

2 ǫ = 0, 1
Φ(α) = (ej+⊗1)((α+ + α−)⊗(1 + σ))(ei+⊗1) for α : i→ j;

Φ(αǫ) = (ej+⊗1)(α+
⊗1 + (−1)ǫα−

⊗1)(ei⊗
1+(−1)ǫσ

2 ) for αǫ : iǫ → j

Φ(ǫα) = (ej⊗
1+(−1)ǫσ

2 )(α+
⊗1 + (−1)ǫα−

⊗1)(ei+⊗1) for ǫα : i→ jǫ

Φ(ǫ
′

αǫ) = (ej⊗
1+(−1)ǫ

′
σ

2 )(α+
⊗1)(ei⊗

1+(−1)ǫσ
2 ) for ǫ′αǫ : iǫ → jǫ′

It remains to check that the map Φ factors through the skew-gentle relations.
Let i, j and k be consecutive arcs around a •-point in D̄. Assume first that i,
j and k are •-arcs. Then we have

((β+ + β−)⊗(1 + σ)).((α+ + α−)⊗(1 + σ)) = 2(β+α+ + β−α−)⊗(1 + σ),

since the arrows β+ and α− (resp. β− and α+) do not compose. One can
check that Φ(βα) is one of the 8 terms of the right hand side, depending on
the sign index of the source and tail of α+ and β+. Therefore we clearly have
Φ(βα) = 0, since β+α+ and β−α− are in I.

For example assume that α+ : i− → j− and β+ : j− → k+. Then one has

Φ(β) = β+
⊗σ and Φ(α) = α−

⊗1

thus Φ(βα) = β+α+
⊗σ. The computations are similar if one of i, or k, or both

are x-arcs.

Assume now that j is a x-arc, and i and k are •-arcs. Then we have

(β+
⊗1 + β−

⊗1)(ej⊗
1 + σ

2
)(α+

⊗1 + α−
⊗1)

+(β+
⊗1− β−

⊗1)(ej⊗
1− σ

2
)(α+

⊗1− α−
⊗1)

= (β+α+ + β−α−)⊗(1 + σ)

Therefore we obtain Φ((β0)(0α) + (β1)(1α)) ∈ η(I ⊗ 1 + I ⊗ σ)η. The compu-
tations are similar for one of i, k or both being x-arcs.

Finally Φ is an isomorphism of algebras.

4.2 Examples

Example 4.4. Consider the disc with 2n marked points on the boundary with σ
being the central symmetry and with the following G-dissection.

Documenta Mathematica 27 (2022) 933–982



Derived Equivalences For Skew-Gentle Algebras 959

•

•

•

•

•

•

•

•

1

2+

3+

4+

2−

3−

4−

The corresponding gentle algebra is the path algebra Λ of the following quiver:

1

2+ 3+ 4+

2− 3− 4−

The automorphism σ has a unique fixed point, so it is immediate to see that
the corresponding orbifold surface S/σ is the disc with one orbifold point and n
marked points on the boundary. The skew-group algebra ΛG (where the group
action is given by seding the vertices + to −) is Morita equivalent to the path
algebra of Dn (cf. Example 3.12).

Similarly, taking a cylinder with nmarked points on each boundary component,
with σ sending one boundary component to the other, we can consider the
following G-invariant dissection:

•

•

•

•

••

•

•

3+ 2+

1

4−

5

3− 2−

4+

The corresponding gentle algebra is the path algebra Λ of the following quiver:
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1

2+ 3+ 4+

2− 3− 4−

5

The automorphism σ has two fixed points, and it is immediate to see that the
corresponding orbifold surface S/σ is the disc with two orbifold points and n
marked point on the boundary. The skew-group algebra ΛG (where the group
action is given by sending the vertices + to −) is Morita equivalent to the path

algebra of D̃n (cf. Example 3.12).

More generally, one can consider a surface of genus g with one or two boundary
components and with σ being the hyperelliptic involution:

•

•

•

•

The corresponding orbifold surface is a disc with an even number of orbifold
points in the interior in the first case, and with odd number in the second case.
The corresponding gentle and skew-gentle algebras are as follows:

1 2 n

10

11

20

21

n0

n1

Example 4.5. Let us consider the following G-dissected surface, where σ is
given by the central symmetry around the center of the square. It is a torus
with two boundary components.
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• • •

•

•

•••

•

•

>

>

△ △

>
>

>
>

One immediately sees that σ has two fixed points, marked here by a x. Let us
choose some representative in each orbit of the arcs of D, and of each marked
point.

• • •

•

•

•••

•

•

+ − −

−

+

−+−

+

−

x

x

x

3

3

1+ 1+

1− 1−

2

4+

4−

The associated gentle pair (Q, I) is as follows:

Q =

1+

1−

2 3

4+

4−

a+

a−

b+
b−

c+

c−

d+

d−

I = {b+a+, b−a−, c+b+, c−b−}

Note that in this example, it is not possible to choose representatives of the
orbits so that no + labeled arrow has a − labeled start or end vertex.
The x-dissected orbifold corresponding to (S, σ,D) is a cylinder with two orb-
ifold points.

• •

••

x x1 1

3 24

The corresponding skew-gentle algebra is given by the following skew-gentle
triple:

Q = 1

2 3

4

a

b

c

d

ǫ2 ǫ3

Ī = {ba, cb}

Sp = {ǫ2, ǫ3}

Therefore the algebra Ā is given by the following quiver with relations
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Q̄ = 1

20 30

21 31

4

0a

1a

0b0

1b0

0b1

1b1

c0

c1

d

Ī = {(0b0)(0a) + (0b1)(1a), (1b0)(0a) + (1b1)(1a), (c0)(0b0) + (c1)(1b0), (c0)(0b1) + (c1)(1b1)}

4.3 Construction of a cover from a x-dissection

Given a skew-gentle algebra Ā associated to a x-dissection D, there is a natural
action of Ĝ = {1, χ} on its quiver Q̄(D) defined as follows:

1. it fixes all vertices corresponding to •-arcs;

2. it fixes all arrows between two vertices corresponding to •-arcs;

3. for each x-arc, it switches the two vertices corresponding to it,

4. it switches accordingly the arrows with at least one vertex attached to a
x-arc.

This action clearly induces an action on the skew-gentle algebra Ā. It is known
from [GePe] that the skew-group algebra ĀĜ with such an action is (Morita
equivalent to) a gentle algebra. The next result relates geometrically the two
corresponding dissected surfaces.

Theorem 4.6. Let (S,M, P,X,D) be a x-dissected surface and let Ā =
Ā(S,M, P,X,D) be the corresponding skew-gentle algebra. Then there exists a

G-marked surface (S̃, M̃ , P̃ , σ) such that:

1. there exists a 2-folded cover p : S̃ → S branched in the points in X that
induces a diffeomorphism (S̃ \ X̃)/σ → S \X where X̃ = p−1(X) are the
points fixed by σ;

2. D̃ := p−1(D) is a G-dissection of (S̃, M̃ , P̃ , σ);

3. there is a Ĝ-isomorphism η(A(D̃)G)η ≃ Ā, where η is a Ĝ-invariant
idempotent of A(D)G;

4. there is a G-isomorphism η̄(ĀĜ)η̄ ≃ A(D̃), where η̄ is a G-invariant

idempotent of ĀĜ.
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Proof. The construction of the double cover S̃ of S is similar to the construction
in [AP, Sections 3.2 and 3.3]: The x-dissection cuts the surface S into polygons
with exactly one side being a boundary segment. Fix a point on each boundary
segment that we denote by a green ◦. Enumerate the orbifold points by X =
{X1, . . . , Xf}. In each polygon containing at least one x on its boundary, draw
curves γi from the green point ◦ to each Xi on its boundary so that the γi’s do
not intersect and stay in the interior of the polygon.
In a first step, we cut the surface S along all the curves γi (see picture below).
We obtain a surface S+ which is connected since each x is adjacent to exactly
one arc, hence it is in the boundary of exactly one polygon. In S+ the curves
γi are now boundary segments [P+

i , Q+
i ] containing Xi. We take another copy

of this new surface, that we call S−. The surface S̃ is defined as the quotient
S+ ∪ S−/(Ψi) where Ψi is a diffeomorphism sending [P+

i , Q+
i ] to [Q−

i , P
−
i ]

(given in the picture below by identifying parallel green sides). Then by an

argument similar as Theorem 3.5 in [AP], the surface S̃ is an oriented smooth
surface with boundary. Moreover the diffeomorphism σ : S+ → S− induces a
diffeomorphism of order 2 on S̃ whose fixed points are exactly the X+

i = X−
i ’s.

S

•

•

•

•

•◦

x x xX2X1 X3

γ1 γ2 γ3

S+

•

•

•

•

•◦ ◦ ◦ ◦

X2X1 X3x x x

P+
1

P+
2 = P−

1

P+
3 = P−

2

P−
3

S̃

•

•

•

•

•

◦

◦ ◦

◦

x

x

xX1

X2

X3

•

•

•

•

•

◦

◦◦

◦

x

x

x

X2

X3

We now prove that p−1(D) is a G-dissection. First note that the •-arcs cut the
surface S+ into polygons, each of which has exactly one boundary side which is
the concatenation of one half of a boundary segment, several green segments,
and one half boundary segment (see picture above). If n is the number of x’s
in its boundary, then this polygon is cut into n+ 1-polygons {P+

0 , . . . ,P+
n } by

the x-arcs. The polygons P+
i contain exactly one boundary segment. After

gluing S+ with S− along the green boundaries, we obtain that P+
0 is glued to

P−
1 along one green boundary, P+

i is glued to P−
i−1 along exactly one green

segment, and to P−
i+1 along the other. Finally we obtain that the red arcs cut

the surface S̃ into polygons of the form

P+
0 ∪ P

−
1 ∪ P

+
2 ∪ . . .P±

n
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which are polygons that contain exactly one boundary segment which is the
gluing of the boundary of P+

0 with the boundary of P±
n (see picture below).

P+
0

P+
2

•

•

•

•

•

◦

◦ ◦

◦

x

x

x

P−
1

P−
3

•

•

•

•

•

◦

◦◦

◦

x

x

x

To prove assertion (3), we apply Proposition 4.3 for a particular choice of idem-
potent (that is a particular choice of orbits) that comes from the construction

of S̃. The only thing to check is that the isomorphism constructed in the proof
of Proposition 4.3 is a Ĝ-isomorphism for this particular choice of idempotent η.
Given a point in M̃ or in P̃ , it is either in S+ or in S− but not on both.
Therefore, we choose the orbits M̃+ ∪ M̃− accordingly. Now if an arc in D̃ is
not fixed by σ, then it is either entirely in S+, or entirely in S−. Hence, there
is a natural partition Q0(D̃) = Q+

0 ∪Q−
0 ∪Qfix

0 . With this choice of orbits, we
have the following property (that may fail for any other choice of orbits, see
Example 4.5):

For each arrow α+ ∈ Q1(D̃
+) = Q+

1 , the source and the target of α+ are in
Q+

0 ∪Qfix
0 .

Hence in this special setup, the map Φ : Ā(D)→ ηA(D̃)Gη defined in the proof
of Proposition 4.3 becomes:

Φ(ēi) = ei+⊗1

Φ(ēiǫ) = ei⊗
1+(−1)ǫσ

2
Φ(α) = α+

⊗1 for α : i→ j;

Φ(αǫ) = α+
⊗

1+(−1)ǫσ
2 for αǫ : iǫ → j

Φ(ǫα) = 1
2 (α

+
⊗1 + (−1)ǫα−

⊗σ) for ǫα : i→ jǫ

Φ(ǫ
′

αǫ) = (ej⊗
1+(−1)ǫ

′
σ

2 )(α+
⊗1)(ei⊗

1+(−1)ǫσ
2 ) for ǫ′αǫ : iǫ → jǫ′

Recall that the action of χ ∈ Ĝ on the skew group algebra ΛG is given by
χ(λ⊗g) := χ(g)λ⊗g. Hence the idempotent

η :=
∑

i+∈Q
+
0

ei+⊗1 +
∑

j∈Qfix
0

ej⊗1

is Ĝ-invariant. And one immediately checks that χ acts as follows on the quiver
of ηA(D̃)Gη:
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χ(ei) = ei
χ(eiǫ) = eiǫ+1 for ǫ ∈ Z2

χ(α) = α for α : i→ j;
χ(ǫα) = ǫ+1α for ǫα : i→ jǫ
χ(αǫ) = αǫ+1 for αǫ : iǫ → j

χ(ǫ
′

αǫ) = ǫ′+1αǫ+1 for ǫ′αǫ : iǫ → jǫ′

Therefore, the isomorphism Φ constructed in Proposition 4.3 is a Ĝ-
isomorphism for this special choice of orbits.

Combining (3) with Proposition 2.2, we know that the algebras (ĀĜ)b and

A(D̃) are isomorphic. But to prove (4) we need here a G-isomorphism. We

construct it explicitly, defining η̄ ∈ ĀĜ as the following idempotent:

η̄ :=
∑

i,•−arc

ēi⊗1 +
∑

j,x−arc

ēj0⊗1.

We now construct a morphism Ψ : kQ(D̃)→ η̄ĀĜη̄ as follows:

Ψ(ei±) = ēi⊗
1±χ
2

Ψ(ei) = ēi0⊗1

Ψ(α±) = ᾱ⊗
1±χ
2 for α± : i± → j±

Ψ(α±) = 0ᾱ⊗
1±χ
2 for α± : i± → j

Ψ(α±) = 1
2 (ᾱ

0
⊗1± ᾱ1

⊗χ) for α± : i→ j±

Ψ(α±) = 1
2 (

0ᾱ0
⊗1±0 ᾱ1

⊗χ) for α± : i→ j.

Checking the relations is then an immediate computation. For example, assume
that α± : i→ j and β± : j → k are double arrows in A(D̃), then we compute

Ψ(β−α−) =
1

2
(0β̄0

⊗1− 0β̄1
⊗χ)

1

2
(0ᾱ0

⊗1− 0ᾱ1
⊗χ)

=
1

4
((0β̄0 0ᾱ0 +0 β̄1 1ᾱ0)⊗1− (0β̄0 0ᾱ1 +0 β̄1 1ᾱ1)⊗χ)) = 0

while

β−α+ =
1

2
(0β̄0

⊗1− 0β̄1
⊗χ)

1

2
(0ᾱ0

⊗1 + 0ᾱ1
⊗χ)

=
1

4
((0β̄0 0ᾱ0 −0 β̄1 1ᾱ0)⊗1) + (0β̄0 0ᾱ1 −1 β̄1 1ᾱ1)⊗χ)) 6= 0

Therefore we obtain an isomorphism η̄ĀĜη̄ ≃ A(D̃). The action of G on ĀĜ is
given by g(a⊗χ) := χ(g)a⊗χ, hence the idempotent η̄ is clearly G-invariant. It
is straightforward to check that the isomorphism constructed above commutes
with the action of G.

A consequence of this double isomorphism (3) and (4) is the fact that we can
apply Corollary 2.13. Therefore we obtain the following.
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Corollary 4.7. Let Ā and Ā′ be two skew-gentle algebras. Denote by A and
A′ the corresponding gentle G-algebras described in Theorem 4.6. Then the
following are equivalent:

Db(Ā) ∼
Ĝ

Db(Ā′)⇔ Db(A) ∼
G
Db(A′).

Example 4.8. One easily checks that starting with the Dn or D̃n given in Ex-
ample 3.12, one obtains the cover given in Example 4.4. More generally, if
(S,M,X) is a disc with |M | = 1 and |X | = n, then for any x-dissection D,
the corresponding G-cover is a surface of genus g = [n−2

2 ] and with one or
two boundary components depending on the parity of n (see the end of Ex-
ample 4.4). Note that this can be checked using Riemann Hurwitz formula,
the Euler characteristic of the G-cover of the disc D with n orbifold points of
ramification index 2 satisfies χ = 2.χ(D)− n(2− 1) = 4− n.

Example 4.9. Let (S,M, P,X,D) be given as in Example 4.5, and Ā the cor-
responding skew-gentle algebra.

• •

••

x x

◦

1 1

3 24

1

20 30

21 31

4

Then the surface S+ is as follows.

◦ ◦◦

•

• •

•

x x

1+ 4+ 1+

3+ 2+

Hence the dissected surface (S̃, M̃ , D̃) is as follows:
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◦ ◦

◦

•

• •

•

x x

1+ 4+ 1+

3 2

◦◦

◦

•

••

•

xx

1−4−1−

32

where the two external green segments are identified. One easily checks that it
is a sphere with four holes.

The corresponding gentle pair is given by

Q =

1+

1−

2 3

4+

4−

a+

a−

b+
b−

c+

c−

d+

d−

I = {b+a+, b−a−, c+b+, c−b−}

Note that here, the cover and the gentle pair are different from the one in
Example 4.5.

The map Φ : Ā → ηAGη constructed in Proposition 4.3 sends the arrow d to
(e4+⊗1)((d+ + d−)⊗(1 + σ))(e1+⊗1). In the cover of Example 4.5, the arrow
d+ is 1+ → 4−, thus we have Φ(d) = d−⊗σ, while in the above example we
have Φ(d) = d+⊗1, since d+ : 1+ → 4+. Therefore, in the cover given in

Example 4.5, the Ĝ-action on Ā induced by Φ and the action of Ĝ on AG
sends d to −d, since we have χ(d−⊗σ) = χ(σ)(d−⊗σ).

5 Derived equivalence for skew-gentle algebras

5.1 Tilting objects in Db(A)

In this subsection, we recall results from [APS] that are essential in this paper.
We associate to any gentle algebra a marked surface with a line field on it. The
idea of associating a line field to a gentle algebra goes back to [HKK] (see also
[LP]). Note that the line field described here is the one defined in [APS], and
is slightly different from the one used in [LP].
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5.1.1 Line fields and graded arcs

Let (S,M•, P•, D) be a •-dissected surface, and A the corresponding gentle
algebra. We define a line field ηD on S \ (∂S ∪ P ), that is, a section of the
projectivized tangent bundle P(TS)→ S. The line field is tangent along each
arc of D and is defined up to homotopy in each polygon cut out by D by the
following foliation:

For a smooth curve γ intersecting transversally the line field η at its endpoints
we denote by wη(γ) or wD(γ) its winding number with respect to the line
field η. It is a well defined map on the regular homotopy class of γ, see [APS]
for details.

We fix a finite set of green points M◦ on the boundary of S such that each
boundary segment contains exactly one point in M◦. An ◦-arc is a curve
γ : [0, 1] → S such that γ|(0,1) is injective and in S \ (∂S ∪ P ), and such
that γ(0) and γ(1) belong to M◦. Arcs are considered up to isotopy fixing
the endpoints. Hence each ◦-arc can be assumed to intersect minimally and
transversally the •-dissection D.

A graded ◦-arc is a pair (γ,n) where γ is a ◦-arc, and n is map n : γ(0, 1)∩D→
Z satisfying:

n(γ(ti+1)) = n(γ(ti)) + wη(γ|[ti,ti+1]
),

if γ(ti) and γ(ti+1) are two consecutive intersections of γ with D. More con-
cretely, on [ti, ti+1], the curve γ intersects one polygon cut out by D, and we
have

n(γ(ti+1)) = n(γ(ti)) + 1

if the boundary segment the polygon is on the left of the curve γ|[ti,ti+1]
, and

n(γ(ti+1)) = n(γ(ti)) + 1

if the boundary segment lies on the right.

To a graded ◦-arc (γ,n), one can associate an object denoted P(γ,n) in the

category Db(A). Denote by t1 < t2 < · · · < tr ∈ (0, 1) the parameters such
that the γ(tj) are the intersection points of γ with the dissection D. Denote by
i1, . . . , ir the corresponding arcs of D. For j = 1, . . . , r − 1 one can associate a
path pj(γ) of the quiver Q(D) as in the following picture.
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◦

•

•

• •

•

•

••

ij

ij+1
pj(γ)

γ

As a graded A-module, P(γ,n) is defined to be

P(γ,n) :=
r⊕

j=1

eijA[n(γ(tj)].

The differential is given by the following r × r matrix (d(k,ℓ))k,ℓ

• if wη(γ|(tj ,tj+1)
) = +1, then d(j+1,j) = pj(γ)[n(γ(tj))]

• if wη(γ|(tj ,tj+1)
) = −1, then d(j,j+1) = pj(γ)[n(γ(tj+1))]

• all other values of d(k,ℓ) are 0.

Moreover we have P(γ,n) ≃ P(γ′,n′) if and only if γ = γ′ (up to isotopy) and
n = n

′, or γ−1 = γ′ and n = n
′.

5.1.2 Tilting objects as ◦-dissections

Definition 5.1. A ◦-dissection is a collection {γi, i ∈ I} of ◦-arcs cutting the
surface S into polygons that have

• either exactly one • on its boundary and no • in its interior,

• or no • on its boundary and exactly one • in its interior.

There is a duality between •-dissections and ◦-dissections. More precisely,
for each •-dissection there exists a unique ◦-dissection such that each ◦-arc
intersects exactly one •-arc and vice versa.
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•

•

•

•

•
◦◦

◦◦

The following is the main result we use in this section.

Theorem 5.2. [APS, Thm 3.2, Cor.3.8, Thm 4.1][O, Lemmas 7.5 and 7.6]
Let (S,M•, P•, D) be a dissected surface and A = A(D) be the corresponding
gentle algebra.

1. If T is a basic tilting object in Db(A), then there exists a collection of
graded arcs {(γi,ni), i ∈ I} such that

(a) T ≃
⊕

i∈I P(γi,ni);

(b) {γi, i ∈ I} is a ◦-dissection whose dual •-dissection is denoted by
DT ;

(c) we have an isomorphism of algebras EndDb(A)(T ) ≃ A(DT );

(d) for any δ ∈ π1(S), we have wD(δ) = wDT
(δ).

2. Let {γi, i ∈ I} be a ◦-dissection, and denote by D′ its dual •-dissection.
If for any δ ∈ π1(S) we have wD(δ) = wD′(δ), then there exists a grading
ni for any i ∈ I such that

⊕
i∈I P(γi,ni) is a tilting object in Db(A).

In this result, the object A seen as a tilting object in Db(A) corresponds to the
dual ◦-dissection of D with the zero grading.

Remark 5.3. A key point in the proof of Theorem 5.2 is the following fact: if
T =

⊕
i∈I P(γi,ni) is a tilting object, and if γi and γj intersects on the boundary

(say γi(0) = γj(0)), then ni(γi(t1)) = nj(γj(t
′
1)) where γi(t1) (resp. γj(t

′
1)) is

the first intersection point of γi (resp. γj) with D.

5.2 G-invariant tilting objects

Our aim is now to adapt Theorem 5.2 to the case of a G-marked surface.
Let (S,M, P, σ,D) be a G-•-dissected surface, and A the corresponding gentle
G-algebra.

Lemma 5.4. Let (γ,n) be a graded curve. Then we have (P(γ,n))
σ ≃ P(σ◦γ,n◦σ)

in Db(A).
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Proof. First note that if i is a vertex of Q(D), then the automorphism σ of A
induces an isomorphism of projective A-modules

(eiA)
σ = eiAσ ≃ eσ(i)A.

If γ intersects the arcs i1, . . . , ir of D in t1 < · · · < tr, then the arc σ ◦ γ
intersects the arcs σ(i1), . . . , σ(ir) in t1 < · · · < tr. It is immediate to see that
pj(σ ◦ γ) = σ(pj(γ)). Hence as a graded A-module we have

P(σ◦γ,n◦σ−1) =
r⊕

j=1

eσ(ij)A[n(γ(tj))].

Now, since D is G-invariant, the line field η attached to it is also G-invariant,
that is we have σ∗(η) = η. Therefore we have

wη(σ ◦ γ|[tj ,tj+1]
) = wσ∗(η)(γ|[tj ,tj+1]

) = wη(γ|[tj ,tj+1]
).

Hence we get the result.

Theorem 5.5. Let (S,M•, P•, σ,D) be a G-dissected surface and A = A(D)
be the corresponding gentle G-algebra.

1. If T is a basic G-invariant tilting object in Db(A), then there exists a
collection of graded arcs {(γi,ni), i ∈ I} such that

(a) T ≃
⊕

i∈I P(γi,ni);

(b) {γi, i ∈ I} is a ◦-dissection which is G-invariant, and whose dual
•-dissection is denoted by DT ;

(c) we have an isomorphism of G-algebras EndDb(A)(T ) ≃ A(DT );

(d) for any δ ∈ π1(S), we have wD(δ) = wDT
(δ).

2. Let {γi, i ∈ I} be a G-invariant ◦-dissection, and denote by D′ its dual
•-dissection. If for any δ ∈ π1(S) we have wD(δ) = wD′(δ), then there
exist a grading ni for any i ∈ I such that

⊕
i∈I P(γi,ni) is a G-invariant

tilting object in Db(A).

Proof. Assume that T is a G-invariant tilting object. Then by Theorem 5.2, T
is of the form

⊕
i∈I P(γi,ni) for some ◦-dissection {γi, i ∈ I}. Since T is G-

invariant, we have by Lemma 5.4

⊕

i∈I

P σ
(γi,ni)

≃
⊕

i∈I

P(σ◦γi,n◦σ) ≃
⊕

i∈I

P(γi,ni).

Moreover, P(γ,n) ≃ P(γ′,n′) implies that γ′ is homotopic to γ or γ−1, hence we
obtain that {γi, i ∈ I} and its dual DT are σ-invariant. Thus we get (1) (b).

Now we want to check that the isomorphism EndDb(A)(T ) ≃ A(DT ) commutes
with the action of σ. It is enough to verify that the action commutes on the
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generators, that is on the quiver. First, the vertices of Q(DT ) are in bijection
with the arcs of DT which are in bijection with the arcs γi. The action of σ
on the vertex corresponding to γi is then σ(γi). Since P σ

(γi,ni)
is isomorphic to

P(σ(γi),n◦σ), the action is compatible on the vertices.
Secondly, let α : i → j be an arrow in the quiver Q(DT ). We will explicitly
construct its image pα through the isomorphism A(DT )→ EndDb(A)(T ). The
arrow α goes from i to j in Q(DT ) precisely when the arcs γi and γj share
an endpoint (assume γi(0) = γj(0)) and γj follows directly γi counterclockwise
around γi(0). Moreover, by Remark 5.3, we have ni(γi(t1)) = nj(γj(t

′
1)) where

γi(t1) (resp. γj(t
′
1)) is the first intersection point of γi (resp. γj) with D.

Denote by ℓ (resp. k) the arc of D such that γi(t1) ∈ ℓ (resp. γj(t
′
1) ∈ k). The

arcs ℓ and k are a side of a common polygon cut out by D (the one containing
γi(0) = γj(0) on its boundary). So there is a path (that may be trivial) from
ℓ to k in Q(D), which corresponds to a non zero map

pα : eℓA(D)[ni(γi(t1))]→ ekA(D)[nj(γj(t
′
1)].

The image of α : i → j in EndDb(A)(T ) is the morphism P(γi,ni) → P(γj ,nj)

induced by the map pα.

•

•

•

•

•◦
γi(0)

γi(t1)

γj(t
′
1)

pα

From the construction, it is now clear that σ(pα) = pσ(α) and we get (1) (c).

Let {γi, i ∈ I} be a G-invariant ◦-dissection as in (2). Then by Theorem 5.2
there exists a grading ni for each i ∈ I such that

⊕
i∈I P(γi,ni) is a tilting object.

Since the collection {γi, i ∈ I} is G-invariant, there exists a permutation ω of
the indices i ∈ I such that σ(γi) = γω(i) or σ(γi) = γ−1

ω(i). In order to prove

that T is G-invariant we need to show that for any i ∈ I, if t is such that γi(t)
is in D, then

ni ◦ σ(σ(γi(t)) = ni(γi(t)) = nω(i)(σ(γi(t)) (5.1)

◦

◦

γi(t)

◦

◦

σ(γi(t))
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First assume that i is such that ω(i) = i. This means that σ(γi) = γ−1
i , and

there exists a unique point of γi fixed by σ. This point is then a x, and without
loss of generality we may assume that it is γi(

1
2 ). Let t < 1

2 be such that
γi(t) ∈ D. By definition of a grading we have

ni(γi(t)) = ni(γi(
1

2
))− wη(γ|[t, 12 ]).

x

◦

γi(
1
2 )

γi(t)

◦

σ(γi(t))

Therefore we have the following equalities:

ni(σ(γi(t)) = ni(σ(γi(
1

2
))) − wη(σ ◦ γi|

[t, 1
2
]
)

= ni(γi(
1

2
))− wσ∗η(γi|

[t, 1
2
]
) = ni(γi(t))

since σ∗η is homotopic to η. That is, we have (5.1) for i such that ω(i) = i.

Now assume that γj is an arc with ω(j) 6= j. Suppose that γj shares an
endpoint with an arc γi satisfying (5.1). Without loss of generality we may
assume that γi(0) = γj(0). Define t1 (resp. t′1) such that γi(t1) (resp. γj(t

′
1))

is the first intersection of γi (resp. γj) with D. Let t ≥ t′1 such that γj(t) is
in D. Then σ(γi) and σ(γj) also have the same starting point, and their first
intersection with D are also at t1 (resp. at t′1).

x

◦

◦

γi(t1)

γj(t
′
1)

γj(t)

◦

◦

σ(γi)(t1)

σ(γj)(t
′
1)

σ(γj)(t)

We have the equalities
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nω(j)(σ(γj)(t)) = nω(j)(σ(γj(t
′
1)) + wη(σ ◦ γj|[t′1,t]

)

= nω(i)(σ(γi(t1)) + wσ∗(η)(γj|[t′
1
,t]
)

= ni(γi(t1)) + wη(γj|[t′
1
,t]
)

= nj(γj(t
′
1)) + wη(γj|[t′

1
,t]
)

= nj(γj(t))

Now we can conclude by induction since the surface S is connected and since
there exists at least one fixed point for σ.

5.3 Ĝ-derived equivalences

Combining this result with Corollary 4.7 we obtain the following.

Theorem 5.6. Let Λ̄ and Λ̄′ be skew-gentle algebras, together with their natural
Ĝ-action. Let (S,M, P, σ,D) (resp. (S ′,M ′, P ′, σ′, D′)) be the G-dissected
surface associated to Λ̄ (resp. to Λ̄′) as constructed in Theorem 4.6. The
following are equivalent

1. the algebras Λ̄ and Λ̄′ are Ĝ-derived equivalent;

2. there exists an orientation preserving G-diffeomorphism Φ : S → S ′ send-
ing M (resp. P ) to M ′ (resp. P ′) such that the line fields Φ∗(η′) and η
are homotopic.

Proof. Denote by Λ (resp. Λ′) the G-gentle algebras associated to Λ̄ (resp.
Λ̄′) as in Theorem 4.6. These are the algebras associated with the G-dissected
surfaces (S,M, P, σ,D) (resp. (S ′,M ′, P ′, σ′, D′)). From Corollary 4.7, (1) is
equivalent to the fact that Λ and Λ′ are G-derived equivalent.

Assume (1), then there exists a G-tilting object T ∈ Db(Λ) together with a
G-isomorphism EndDb(Λ)(T ) ≃ Λ′. Hence by Theorem 5.5, there exists a G-
invariant dissection DT of S, together with a G-isomorphism A(DT ) ≃ Λ′ ≃
A(D′). By Proposition 4.1, there exists a G-invariant diffeomorphism Φ : S →
S sending DT on D′. Denote by η (resp. η′) the line field associated with D
(resp. D′), then we have for δ ∈ π1(S)

wη(δ) = wD(δ) = wDT
(δ) = wD′(Φ(δ)) = wΦ∗(η′)(δ).

Therefore the line fields η and Φ∗(η′) are homotopic.

Asume (2), and denote by D′′ := Φ−1(D). Since Φ is G-invariant, this is
a G-invariant dissection of S. Moreover wD′′ (δ) = wD′(Φ(δ)) = wD(δ) by
assumption so we can conclude by Theorem 5.5.
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Remark 5.7. We can apply Theorem 1.2 in [APS] to get a more concrete cri-

terion to check whether two skew-gentle algebras are Ĝ-derived equivalent or
not. However, as far as we know, we only get a necessary condition for (1) to
be true. Indeed, if (2) is satisfied in Theorem 5.6, then we get some equalities
for the winding numbers of a basis of the fundamental group of the surfaces S
and S ′ with respect to the line fields η and η′ (see Section 5.5 for examples).
However, when trying to apply the converse implication in Theorem 1.2 in
[APS], we only obtain the following: if all the numbers in Theorem 1.2 in
[APS] coincide for Λ and Λ′, we deduce that

• the line fields η and η′ are G-invariant (this is by construction)

• the surfaces S and S ′ are G-diffeomorphic;

• there exists a diffeomorphism Φ : S → S ′ such that Φ∗(η′) is homotopic
to η.

But it is not clear that this Φ is a G-diffeomorphism.

5.4 Derived equivalence via Ĝ-tilting objects

We are now interested in the case where the derived equivalence between two
skew-gentle algebras does not necessarily respect the Ĝ-action.
Let S be a smooth surface, and σ be a diffeomorphism of S of order 2 with
finitely many fixed points X . Denote by S̄ = S/σ the corresponding orbifold
and p : S → S̄ the projection. If η is a G-invariant line field on S, then there
exists a line field η̄ = p∗(η) on S̄ \ X , since p is locally a diffeomorphism on
S \X . Moreover, if η and η′ are two G-invariant line fields on S, then we have

wη = wη′ ⇔ wη̄ = wη̄′ . (5.2)

Indeed, if δ is a closed curve in π1(S), then p(δ) is a closed curve in S̄. Con-

versely, if δ is in π1(S̄), denote by δ̃ a lift of δ. If δ̃ is a closed curve, we clearly
have

wη̄(δ) = wη(δ̃). (5.3)

If δ̃ is not a closed curve, then δ̃.σ(δ̃) is closed, and

wη̄(δ) = wη(δ̃) =
1

2
(wη(δ̃.σ(δ̃)), (5.4)

since η is σ-invariant.

Remark 5.8. Note that when (S, σ, η) is constructed from a G-gentle algebra A.
The line field η̄ = p∗(η) on S̄ \X is exactly the line field coming from the gentle
degeneration Ā0 of the skew-gentle algebra Ā.

Theorem 5.9. Let Λ̄ and Λ̄′ be skew-gentle algebras associated with x-dissected
surfaces (S,M, P,X,D) and (S ′,M ′, P ′, X ′, D′). Then the following are equiv-
alent:
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1. there exists an equivalence Db(Λ̄) ≃ Db(Λ̄′) given by a Ĝ-tilting object;

2. there exists an orientation diffeomorphism Φ̄ : S → S ′ sending M to
M ′, P to P ′, X to X ′ and such that the line fields ηD and Φ̄∗(ηD′) are
homotopic.

Proof. Denote by Λ the G-gentle algebra corresponding to Λ̄ as constructed
in Theorem 4.6. We denote by (S̃, M̃ , P̃ , σ, D̃) the corresponding G-dissected
surface.

Assume (1), and denote by T̄ ∈ Db(Λ̄) a Ĝ-invariant tilting object such that
EndDb(Λ̄)(T̄ ) ≃ Λ̄′ (note that we do not ask this isomorphism to be compatible

with the action of Ĝ). By Theorem 2.10, there exists a G-tilting object T in

Db(Λ) such that add(T̄ ) = add(T
L
⊗
Λ
ΛGe) where e is the idempotent defined in

Theorem 4.6.
Denote by DT the G-dissection of S̃ corresponding to T , and D̄T := p(DT )
the corresponding x-dissection of S. By Theorem 5.5(1) (c), we have a G-
isomorphism

EndDb(Λ)(T ) ≃
G
A(DT ) (5.5)

Therefore we have the following isomorphisms

Ā(D′) ≃ Λ̄′ ≃ EndDb(Λ̄)(T̄ )

≃ (EndDb(Λ)(T )G)b by Theorem 2.10
≃ (A(DT )G)b by (5.5)
≃ Ā(D̄T ) by Proposition 4.3

Hence by Proposition 4.1, there exists a diffeomorphism Φ̄ : S \X → S ′ \X ′

sending marked points to marked points and such that Φ̄(D̄T ) = D′. Now
since T is a tilting object, we have w

D̃
= wDT

. Hence by (5.2), we have
wD = wD̄T

and so wηD
= wΦ̄∗(ηD′ ).

Assume (2) and denote by D′′ := Φ̄−1(D′), which is a x-dissection of S. Then

D̃′′ := p−1(D′′) is a G-invariant dissection of S̃. By a similar argument as
above we have w

D̃
= w

D̃′′ , hence there exists a G-invariant tilting object T in
Db(Λ) together with a G-isomorphism

EndDb(Λ)(T ) ≃
G
A(D̃′′)

Then the object T̄ := T
L
⊗
Λ
ΛGe is a Ĝ-tilting object in Db(Λ̄) such that

EndDb(Λ̄)(T̄ ) ≃ (EndDb(Λ)(T )G)b

≃ (A(D̃′′)G)b

≃ Ā(D′′)

≃ Ā(D′) = Λ̄′.
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Remark 5.10. Note that in this proof, we work only in the covering S̃ of S given
by D, and never in the covering of S ′ given by D′. Indeed, in general, these two
coverings may be non homeomorphic surfaces (cf. Examples in Section 5.5).

Remark 5.11. Theorem 5.9 can be used much more easily than Theorem 5.6.
Indeed, given two skew-gentle algebras Λ̄ and Λ̄′, it is enough to compute
the winding numbers with respect to ηD and ηD′ of some generators of the
fundamental group of each surface π1(S \ X) and π1(S ′ \ X ′) and compare
them using Theorem 1.2 in [APS] to decide wether the algebras Λ̄ and Λ̄′ are
derived equivalent or not. This is illustrated in the section below.

Combining Theorem 5.9 with Remark 5.8, we obtain the following.

Corollary 5.12. Let Ā and B̄ be two skew-gentle algebras, and denote by
Ā0 and B̄0 their corresponding gentle degenerations. If Ā and B̄ are derived
equivalent via a Ĝ-tilting object, then Ā0 and B̄0 are derived equivalent.

Note that the converse is not true in general. Indeed, if the gentle algebras Ā0

and B̄0 are derived equivalent, then there exists a diffeomorphism between the
corresponding surfaces, but this diffeomorphism could a priori send a x to a
puncture or vice versa.

5.5 Examples

Consider the following four x-dissections D̄1, . . . , D̄4 of the cylinder with two
orbifold points and two marked points (S,M,X) (the set P is empty here),
together with their corresponding skew-gentle algebras Λ̄i as in Figure 2 (the
special loops are indicated in red).
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Note that for Λ̄2 and Λ̄4 (resp. Λ2 and Λ4) the quivers are isomorphic, but the
relations are different. Also note that the quiver of Λ3 is a garland, but the
relations are not anticommutative squares, they are quadratic monomial and
the algebra is gentle, not skew-gentle.

One checks that the covering surface S̃1, . . . , S̃4 constructed in Theorem 4.6 is
a sphere with four holes for Λ̄1 and Λ̄2 while it is a torus with two holes for
Λ̄3 and Λ̄4 (see Example 4.9). Therefore neither of Λ̄1 and Λ̄2 is Ĝ-derived
equivalent to Λ̄3 or Λ̄4, by Theorem 5.6.
Denote by c1 and c2 curves in π1(S \X) surrounding the two boundary compo-
nents. Computing the winding numbers of these curves for the dissection D̄1,
we obtain wD̄1

(c1) = −2 and wD̄1
(c2) = 0. The lift c̃1 of c1 (resp. c̃2 of c2) in

S̃1 is a closed curve, hence by (5.3) we have

wD1(c̃1) = −2 and wD1(c̃2) = 0.

So by symmetry, we obtain that the winding numbers of the four curves sur-
rounding the boundary components of S̃1 with respect to D1 are (−2, 0,−2, 0).
For D̄2, a similar argument shows that the four winding numbers are
(−1,−1,−1,−1) since wD̄2

(c1) = wD̄2
(c2) = −1. Therefore there are no dif-

feomorphism from S̃1 to S̃2 sending ηD1 to a line field homotopic to ηD2 . By

Theorem 5.6 the algebras Λ̄1 and Λ̄2 are then not Ĝ-equivalent (in fact the
gentle algebras Λ1 and Λ2 are not even derived equivalent).

For Λ̄3 and Λ̄4 we can use a similar argument. We have wD̄3
(c1) = wD̄3

(c2) =

−1, but here a lift c̃1 of c1 on S̃3 is not a closed curve. However, c̃1.σc̃1 is
a closed curve surrounding one the boundary component of S̃3. Therefore by
(5.4) we have that the winding numbers of the curves surrounding the boundary

components of S̃3 are (−2,−2). For Λ̄4 they are (0,−4). Therefore there are

no diffeomorphisms from S̃3 to S̃4 sending ηD3 to a line field homotopic to ηD4 ,

and the algebras Λ̄3 and Λ̄4 are not Ĝ-equivalent.

Now consider the surface (S \X,M) which is a cylinder with 2 punctures (the
points in X) and two marked points on the boundary. In order to understand

which of the algebras Λ̄i are derived equivalent via a Ĝ-tilting object, we have to
understand which of the surfaces with line field (S \X, ηD̄i

) are diffeomorphic.
Using Theorem 6.4 in [APS], since the genus of S \X is zero, it is enough to
compare the collections (wη(c), n(c)), where c describes the curves surrounding
the boundary components, or the punctures, and where n(c) is the number
of marked points for the corresponding boundary, or 0 if c is surrounding a
puncture. In our case, we have two curves c1, c2 surrounding the boundary
components and two curves c3 and c4 surrounding the punctures. For x in X ,
and any dissection D̄i, since there is exactly one arc with endpoint in x, we
have wη̄i

(c3) = wη̄i
(c4) = −1. Therefore the collection of (wη(c), n(c)) for Λ̄1

is
(−2, 1), (0, 1), (−1, 0), (−1, 0).
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Doing the same computations for all the algebras Λ̄2, Λ̄3 and Λ̄4, we conclude
that Λ̄1 and Λ̄4 are derived equivalent, and so are Λ̄2 and Λ̄3. Moreover Λ̄1 is
not derived equivalent via a Ĝ-tilting object to Λ̄2.
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[AsSk] I. Assem and A. Skowroński. Iterated tilted algebras of type Ãn, Math.
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