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1 Introduction

A right module M over a ring A is called cotorsion if Ext1A(F,M) = 0 for
every flat right A-module F . This class of modules was originally studied in
the context of abelian groups (see [Fuc70, §54]), and Enochs [Eno84] extended
it to the current definition, in relation to the precedent work [Eno81] containing
the question whether flat covers exist for an arbitrary ring. This question, later
called the flat cover conjecture, was affirmatively solved by Bican, El Bashir,
and Enochs [BEBE01], showing that the class of flat modules and the class of
cotorsion modules form a complete cotorsion pair, i.e., given any module M ,
there exists a surjection from a flat module to M with cotorsion kernel and an
injection from M into a cotorsion module with flat cokernel. This cotorsion
pair is called the flat cotorsion pair.
Like torsion pairs, cotorsion pairs are a general notion in abelian categories,
which initially appeared in [Sal79]. A cotorsion pair consists of two classes of
objects in an abelian category such that they are the orthogonal subcategory of
each other with respect to the first extension functor Ext1(−,−). This notion
is closely related to abelian model structures ([Hov02], [Hov07]), and plays an
important role in homological algebra and representation theory (e.g., [AB89],
[AR91], [KS03], [AHMH09], [HJ19], [BBOS20], [ŠŠ20]), extending its scope to
exact and triangulated categories (e.g., [IY08], [Gil11], [Nak11], [NP19], [LN19],
[PZ20]).
Given a cotorsion pair, it is often important to consider the intersection of the
two classes, called the core of the cotorsion pair. For the flat cotorsion pair,
its core consists of all flat cotorsion modules, and they have nice homological
properties close to projective modules and injective modules. To explain such
aspects, let us pay our attention to complexes of modules.
Gillespie [Gil04] showed that the flat cotorsion pair induces two complete co-
torsion pairs in the category of complexes, and this fact, along with the work of
Bazzoni, Cortés-Izurdiaga, and Estrada [BCIE20], enables us to show that the
(unbounded) derived category of modules is equivalent to the homotopy cate-
gory of K-flat complexes of flat cotorsion modules; see [NT20, Appendix A]. In
fact, this remarkable equivalence can be regarded as a restriction of a bigger
equivalence, by identifying the derived category with the homotopy category of
K-projective complexes of projective modules. Indeed, Neeman [Nee08] proved
that the homotopy category of projective modules is equivalent to the pure
derived category of flat modules (in the sense of Murfet and Salarian [MS11]),
which turns out to be also equivalent to the homotopy category of flat co-
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torsion modules as shown by Šťov́ıček [Šťo14, Corollary 5.8]; see also [NT20,
Remark A.9].
If the ring is left coherent and all flat right modules have finite projective
dimension, then the equivalence between the homotopy category of projective
modules and that of flat cotorsion modules also induces an equivalence between
their full subcategories consisting of totally acyclic complexes. Furthermore,
the homotopy category of totally acyclic complexes of projective modules is
equivalent to the stable category of Gorenstein-projective modules ([Buc86];
see also [Kra05, Proposition 7.2]), and the homotopy category of totally acyclic
complexes of flat cotorsion modules is equivalent to the stable category of
Gorenstein-flat cotorsion modules (studied in [Gil17]); see [CET20] for more
details.
These facts motivate us to determine the structure of flat cotorsion mod-
ules. The aim of this paper is to give a noncommutative generalization of
Enochs’ structure theorem [Eno84] for flat cotorsion modules over a commuta-
tive noetherian ring R. Enochs showed that an R-module M is flat cotorsion
if and only if M is isomorphic to

∏

p∈SpecR

Tp,

where each Tp is the p-adic completion of some free Rp-module, that is,

Tp = (R
(Bp)
p )∧p := lim

←−
n≥1

(R
(Bp)
p ⊗R R/p

n)

for a basis set Bp. The cardinality of Bp for each p ∈ SpecR is determined
by M . Enochs reached this formulation by using Matlis’ result [Mat58] on the
structure of injective R-modules and an isomorphism

Tp ∼= HomR(ER(R/p), ER(R/p)
(Bp)), (1.1)

where ER(R/p) denotes the injective envelope of R/p. We generalize Enochs’
structure theorem to Noether algebras, which are a simultaneous generalization
of commutative noetherian rings and finite-dimensional algebras over a field.
Noether algebras have been studied from various aspects (e.g., [AS81a, AS81b],
[GN02], [IR08], [DK19], [IK20], [Kim20], [IK21]).
Let R be a commutative noetherian ring. A Noether R-algebra is a ring A
together with a ring homomorphism ϕ : R → A such that the image of ϕ
is contained in the center of A and A is finitely generated as an R-module.
Denote by SpecA the set of prime (two-sided) ideals of A. The structure
homomorphism R → A induces a canonical map SpecA → SpecR given by
P 7→ ϕ−1(P ). For brevity, we write P ∩R := ϕ−1(P ).
It is known that Matlis’ result on injective R-modules is generalized to a
Noether algebra A (see Theorem 2.22); there is a one-to-one correspondence

SpecA ∼−→ { isoclasses of indecomposable injective right A-modules } (1.2)
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in which each P ∈ SpecA corresponds to IA(P ), the unique indecomposable
direct summand of the injective envelope of A/P . Using the injective module
IAop(P ) over the opposite ring Aop, we define

TA(P ) := HomR(IAop(P ), ER(R/p)),

which is an indecomposable flat cotorsion right A-module (Remark 4.12) and

also an indecomposable projective right module over Âp := (Ap)
∧
p (Proposi-

tion 5.2). The following is one of the main results of this paper:

Theorem 1.1 (Theorem 6.1). Let A be a Noether R-algebra. A right A-
module M is flat cotorsion if and only if M is isomorphic to

∏

P∈SpecA

(TA(P )
(BP ))∧p

for some family of sets {BP }P∈SpecA, where TA(P )
(BP ) is the direct sum of

BP -indexed copies of TA(P ) and p := P ∩ R. The cardinality of each BP is
uniquely determined by M .

This theorem recovers Enochs’ result because TR(p) ∼= R̂p and (TR(p)
(Bp))∧p

∼=

(R
(Bp)
p )∧p for each p ∈ SpecR and any set Bp. Moreover, each component of

the direct product in Theorem 1.1 has a description

(TA(P )
(BP ))∧p

∼= HomR(IAop(P ), ER(R/p)
(BP )),

which recovers the isomorphism (1.1) (see Proposition 5.4).
As a consequence of Theorem 1.1, we obtain the following result:

Corollary 1.2 (Corollary 6.2). Let A be a Noether R-algebra. Then there is
a one-to-one correspondence

SpecA ∼−→ { isoclasses of indecomposable flat cotorsion right A-modules }

given by P 7→ TA(P ).

We denote by injA (resp. flcotA) the set of the isoclasses of indecomposable
injective (resp. flat cotorsion) right A-modules. By (1.2) and Corollary 1.2,
there is a bijection injAop

∼−→ flcotA given by IAop (P ) 7→ TA(P ). We interpret
this bijection as a phenomenon on Ziegler spectra.
An exact sequence of right modules over a ring A is said to be pure exact if
its exactness is preserved by the functor − ⊗A U for every left A-module U .
A right A-module N is called pure-injective if the functor HomA(−, N) sends
pure exact sequences to exact sequences. The isoclasses of indecomposable
pure-injective right modules form a topological space ZgA called the Ziegler
spectrum of A. There is a bijection, called elementary duality, between the
open subsets of ZgA and those of ZgAop . Note that this does not mean that
these topological spaces are homeomorphic in general. Our assumption that A
is a Noether R-algebra ensures that injA and flcotA are closed subsets of ZgA.
We endow injA and flcotA with the topologies induced from ZgA.
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Theorem 1.3 (Theorems 8.8 and 8.14). Let A be a Noether R-algebra. The bi-
jection injAop

∼−→ flcotA given by IAop(P ) 7→ TA(P ) is a homeomorphism. The
open sets of these topological spaces bijectively correspond to the specialization-
closed subsets of SpecA.

It should be mentioned that Herzog [Her93] observed the existence of a home-
omorphism injAop

∼−→ flcotA for a certain class of rings, which includes all left
noetherian rings. The homeomorphism was obtained as a restriction of a bi-
jection between certain points of Ziegler spectra, called reflexive points ; for
each reflexive point N ∈ ZgAop , the corresponding reflexive point DN ∈ ZgA
is determined by the property that the closure of N corresponds to the closure
of DN by elementary duality (regarded as a bijection for closed subsets). The
following result, together with Theorem 1.3, shows that our homeomorphism in
Theorem 1.3 is an explicit realization of Herzog’s homeomorphism for Noether
algebras:

Corollary 1.4. Let A be a Noether R-algebra. For each P ∈ SpecA, the
points IAop(P ) ∈ ZgAop and TA(P ) ∈ ZgA are the unique generic points in
their closures, and these closed subsets correspond to each other by elementary
duality.

This paper is organized as follows. In section 2, we recall basic facts on Noether
algebras, including those on the flat cotorsion pair and pure-injective modules.
In section 3, we show that every flat cotorsion module over a Noether R-
algebra A can be decomposed as a direct product of p-local p-complete modules
for various p ∈ SpecR. In section 4, we prove that each p-local p-complete
flat (resp. p-local p-torsion injective) A-module is a flat cover (resp. injective
envelope) of a semisimple Ap-module. Furthermore, we observe that the flat
cover (resp. injective envelope) of a semisimple rightAp-module can be obtained
by applying a variant of Matlis duality to the injective envelope (resp. flat cover)
of a simple left Ap-module. In section 5, we show that every p-local p-complete
flat A-module is cotorsion and such a module is characterized as the p-adic
completion of a direct sum of indecomposable projective modules over Âp.
In section 6, we complete the proofs of Theorem 1.1 and Corollary 1.2. In
section 7, we give a result that realizes flat cotorsion A-modules as nontrivial
flat covers and pure-injective (or cotorsion) envelopes. In section 8, we first
recall some known results on Ziegler spectra and elementary duality, and then
show that Herzog’s homeomorphism applied to a Noether algebra coincides
with the homeomorphism in Theorem 1.3. section A provides some basic facts
on ideal-adic completion over Noether algebras, which are used throughout the
paper.
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2 Preliminaries

Throughout the paper, A will be a Noether R-algebra unless otherwise speci-
fied. That is, R is a commutative noetherian ring, A is a ring together with a
ring homomorphism R→ A, called the structure homomorphism, whose image
is contained in the center of A, and A is finitely generated as an R-module.
It follows that A is a left and right noetherian ring. We denote by ModA
the category of right A-modules, and interpret ModAop as the category of left
A-modules, where Aop is the opposite ring of A.
In this section, we collect some known results, which we will use in later sec-
tions.

2.1 Cotorsion modules and pure-injective modules

A right A-module M is called cotorsion if Ext1A(F,M) = 0 for all flat right
A-modules F . A flat cotorsion module is a module that is flat and cotorsion.
A short exact sequence 0 → L → M → N → 0 in ModA is said to be
pure exact if it remains exact after applying − ⊗A U for every U ∈ ModAop.
A right A-module N is called pure-injective if HomA(−, N) sends each pure
exact sequence in ModA to an exact sequence. Every injective module is pure-
injective by definition.

Proposition 2.1. Every pure-injective right A-module is cotorsion.

Proof. See [EJ00, Lemma 5.3.23].

Proposition 2.2. Fix an injective R-module E and consider the exact functor

(−)∗ := HomR(−, E) : ModA→ ModAop.

For a right A-module M , the following hold:

(1) M∗ is pure-injective, and hence cotorsion.

(2) If E is an injective cogenerator, then the canonical morphism M →M∗∗

is a pure monomorphism. In particular, this map splits if M is pure-
injective.

(3) If M is flat, then M∗ is injective. The converse holds if E is an injective
cogenerator.
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(4) If M is injective, then M∗ is flat (cotorsion). The converse holds if E is
an injective cogenerator.

Proof. (1): See [EJ00, Proposition 5.3.7] or [Pre09, Proposition 4.3.29].
(2): See [EJ00, Proposition 5.3.9] or [GT12, Corollary 2.21(b)].
(3): See [EJ00, Theorem 3.2.9].
(4): See [EJ00, Theorem 3.2.16].

Proposition 2.3. Every flat cotorsion right A-module is pure-injective.

Proof. This is [Xu96, Lemma 3.2.3], but we give a proof here as it will be used
in the proof of Lemma 3.1.
Let E be an injective cogenerator in ModR, and put (−)∗ := HomR(−, E).
If M is a flat right A-module, then M∗ is injective and M∗∗ is flat by Proposi-
tion 2.2(3) and (4). Thus the cokernel of the pure monomorphism M → M∗∗

in Proposition 2.2(2) is flat. If in addition M is cotorsion, then the pure
monomorphism splits, so M is pure-injective by Proposition 2.2(1).

By Propositions 2.1 and 2.3, a flat cotorsion right A-module is nothing but a
flat pure-injective right A-module.

Remark 2.4. Although we are focusing on a Noether R-algebra, Proposi-
tion 2.1, and Proposition 2.5 and Lemma 2.7 below hold for an arbitrary ring
(which is assumed to be associative and to have identity throughout this paper).
Proposition 2.2(1)–(3) hold for a ring A together with a ring homomorphism
from a commutative ring R to the center of A. The first claim of (4) holds if in
addition A is right coherent, and the second claim holds if A is right noetherian;
see [GT12, Corollary 2.18(b)]. Proposition 2.3 and Proposition 2.8 below hold
for a left coherent ring.

2.2 Covers and envelopes

Let A be an additive category and let X be a full subcategory of A closed under
isomorphisms. A morphism f : N → M in A is called right minimal if every
g ∈ EndA(N) satisfying fg = f is an isomorphism. A left minimal morphism
is defined dually, that is, it is a morphism that is right minimal in the opposite
category.
A morphism f : X → M in A is called an X -precover, or a right X -
approximation, if X ∈ X and, for every X ′ ∈ X , the induced map
HomA(X

′, X)→ HomA(X
′,M) is surjective. The latter condition means that

every morphism from an object in X to M factors through f . An X -cover,
or a right minimal X -approximation, is an X -precover X → M that is right
minimal. It is immediate that an X -cover is unique up to isomorphism in the
sense that, if f : X → M and f ′ : X ′ → M are X -covers, then there exists
an isomorphism h : X ′ → X such that fh = f ′. An X -preenvelope (or a left
X -approximation) and an X -envelope (or a left minimal X -approximation) are
defined dually. If an X -cover X → M (resp. an X -envelope M → X) exists,
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then the object X is often called the X -cover (resp. the X -envelope) ofM since
the isoclass (i.e., isomorphism class) of X is uniquely determined by M .
Now let A be an abelian category. A cotorsion pair in A is a pair (X ,Y) of
full subcategories of A such that

X = {M ∈ A | Ext1A(M,Y ) = 0 for all Y ∈ Y } and

Y = {M ∈ A | Ext1A(X,M) = 0 for all X ∈ X }.

A cotorsion pair (X ,Y) is called hereditary if ExtiA(X,Y ) = 0 for all X ∈ X ,
Y ∈ Y, and i ≥ 1. A cotorsion pair (X ,Y) is called complete if, for every
M ∈ A, there exist exact sequences

0→ Y → X →M → 0 and 0→M → Y ′ → X ′ → 0

with X,X ′ ∈ X and Y, Y ′ ∈ Y. Morphisms X → M and M → Y ′ fitting
into such exact sequences are often called a special X -precover and a special
Y-preenvelope, respectively. It is easy to see that they are indeed an X -precover
and a Y-preenvelope.
Denote by FlatA (resp. CotA) the full subcategory of ModA consisting of all
flat (resp. cotorsion) modules. If X = FlatA, then an X -(pre)cover is called
a flat (pre)cover, which is necessarily an epimorphism. If Y = CotA, then
a Y-(pre)envelope is called a cotorsion (pre)envelope, which is necessarily a
monomorphism. It is known that (FlatA,CotA) is a complete hereditary co-
torsion pair in ModA and every right A-module has a flat cover and a cotorsion
envelope (see [Xu96, the proof of Proposition 3.1.2, Lemma 3.4.1, and Theo-
rem 3.4.6] and [BEBE01]), where these facts are proved for an arbitrary ring.
Given a right A-module M , we denote the flat cover of M by FA(M) → M
and the cotorsion envelope of M by M → CA(M).
Projective (pre)covers, injective (pre)envelopes, and pure-injective
(pre)envelopes can be defined in the same way. A projective precover is
merely an epimorphism from a projective module, and an injective preen-
velope is merely a monomorphism to an injective module. Recall that a
monomorphism f : L → M is called an essential monomorphism if, for every
morphism h : M → M ′ such that hf is a monomorphism, h is a monomor-
phism. An injective envelope is nothing but an essential monomorphism to
an injective module. Pure-injective (pre)envelopes also have an alternative
characterization, as in Proposition 2.5. A monomorphism L → M is called a
pure monomorphism if it fits into a pure exact sequence. Moreover, a pure
monomorphism f : L → M is called a pure-essential monomorphism if, for
every morphism h : M → M ′ such that hf is a pure monomorphism, h is a
pure monomorphism.

Proposition 2.5. Let f : M → N be a morphism in ModA with N pure-
injective.

(1) f is a pure-injective preenvelope if and only if f is a pure monomorphism.
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(2) f is a pure-injective envelope if and only if f is a pure-essential monomor-
phism.

Proof. (1): The “if” part is straightforward. To show the “only if” part, sup-
pose that f is a pure-injective preenvelope. Let E be an injective cogener-
ator in ModR and set (−)∗ := HomR(−, E). Then we have the canonical
pure monomorphism g : M → M∗∗, where M∗∗ is pure-injective; see Proposi-
tion 2.2(1) and (2). Then there is a morphism h : N →M∗∗ such that hf = g.
Since g is a pure monomorphism, it follows that f is a pure monomorphism.
(2): If f is a pure-essential monomorphism, then it is a pure-injective preenve-
lope by (1) and is also left minimal by the definition of pure-essentiality because
every pure monomorphism from a pure-injective module splits. To show the
“only if” part, suppose that f is a pure-injective envelope. Let h : N → N ′

be a morphism such that hf is a pure monomorphism. To observe that h is
a pure monomorphism, it suffices to show that the composition of h with the
canonical pure monomorphism N ′ → N ′∗∗ is a pure monomorphism. There-
fore, replacing N ′∗∗ by N ′, we may assume that N ′ is pure-injective. Then the
morphism hf : M → N ′ is a pure-injective preenvelope, but then h is a split
monomorphism since f is a pure-injective envelope.

Remark 2.6. Our pure-essentiality is the same as that of [Pre09, p. 145], and
this definition is, in general, strictly stronger than the classical definition, in
which a pure monomorphism f : L → M is called a pure-essential monomor-
phism if, for every morphism h : M → M ′ such that hf is a pure monomor-
phism, h is a monomorphism. It has been known to experts that some of the
proofs for the existence of pure-injective envelopes (pure-injective hulls) do not
work due to this difference; see [GPGA00, p. 197, Remarks]. However, the
notion of pure-injective envelopes is consistent in any case, and they do exist
over any ring. For valid proofs on the existence of pure-injective envelopes, we
refer the reader to [Pre09, Theorem 4.3.18] or [Dau94, §18-5]. The former uses
a functor category, and the latter (based on the classical pure-essentiality) uses
a cardinality argument. The definitions of pure-injective envelopes therein are
given in different ways, but they both agree with ours defined as X -envelopes
for the class X of pure-injective modules; see [Pre09, Proposition 4.3.16] and
[Dau94, Theorem 18-5.9].

As mentioned above, every right A-module M has a pure-injective envelope,
which is unique up to isomorphism. It is denoted by M → HA(M), following
the notation in [Pre09, §4.3.3].
Flat precovers and cotorsion preenvelopes are not necessarily special, but flat
covers and cotorsion envelopes are:

Lemma 2.7. The kernel of a flat cover is cotorsion. The cokernel of a cotorsion
envelope is flat.

Proof. This is a consequence of Wakamatsu’s lemma; see [Xu96, Lemmas 2.1.1
and 2.1.2] or [EJ00, Lemma 5.3.25 and Proposition 7.2.4].
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By this lemma and Proposition 2.3, a cotorsion envelope of a flat right A-
module is a pure monomorphism into a pure-injective module, that is, a pure-
injective preenvelope, by Proposition 2.5(1). It is a pure-injective envelope by
the left minimality of the cotorsion envelope. Hence we have:

Proposition 2.8. For a flat right A-module, its cotorsion envelope and pure-
injective envelope coincide.

Remark 2.9. Over a right artinian ring, all flat right (and also left) modules
are projective ([AF92, Theorem 28.4 and Corollary 28.8]), and hence all right
(and left) modules are cotorsion. So flat covers and projective covers are the
same notion, and cotorsion envelopes are identity morphisms.

We observe when the scalar restriction functor along a ring homomorphism pre-
serves various covers and envelopes. To this end, we make use of the following
proposition:

Proposition 2.10. Let A and B be additive categories and let F : A → B be
a functor that has a right adjoint G : B → A. Let X and Y be full subcate-
gories of A and B, respectively, that are closed under isomorphisms and satisfy
F (X ) ⊆ Y and G(Y) ⊆ X . Then F sends X -preenvelopes to Y-preenvelopes
and G sends Y-precovers to X -precovers.

Proof. Straightforward.

Remark 2.11. Let f : A→ B be a homomorphism of arbitrary rings. Since the
scalar restriction functor f∗ : ModB → ModA can be written as HomB(B,−),
where B is regarded as an (A,B)-bimodule, the scalar extension functor
f∗ = − ⊗A B : ModA → ModB is a left adjoint to f∗. Since f∗ can also
be written as −⊗B B, where B is regarded as a (B,A)-bimodule, the functor
f ! = HomA(B,−) : ModA→ ModB is a right adjoint to f∗.
It is obvious that f∗ = −⊗AB and f∗ ∼= −⊗BB preserve pure exact sequences,
so it follows that their right adjoints f∗ and f ! preserve pure-injective modules.
Hence, by Proposition 2.10 applied to the adjoint pair (f∗, f

!), f∗ preserves
pure-injective preenvelopes. If B is flat as a left A-module, then the functor
f∗ = − ⊗A B is exact as well as f∗, so a similar argument, replacing pure
exactness and pure-injectivity by exactness and injectivity, respectively, shows
that f∗ preserves injective preenvelopes.
If B is flat as a right A-module, then f∗ ∼= −⊗BB preserves flat modules as well
as its left adjoint f∗, so f∗ preserves flat precovers by Proposition 2.10 applied
to the adjoint pair (f∗, f∗). We observe that f∗ preserves cotorsion preenvelopes
under the same assumption. Let C be a cotorsion right B-module. For every
flat right A-module F , take an exact sequence

0→ F ′ → P → F → 0 (2.1)

in ModA, where P is projective. Since this sequence is pure exact, f∗ applied
to (2.1) is pure exact, so the flatness of f∗(F ) implies that HomB(f

∗(−), C) ∼=
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HomA(−, f∗(C)) applied to (2.1) is exact since C is cotorsion. Therefore
Ext1A(F, f∗(C)) = 0, which means that f∗ preserves cotorsion modules. If
B is flat as a right A-module, f∗ preserves flat modules, so a similar argument,
using the adjoint pair (f∗, f

!) instead of (f∗, f∗), shows that f
! also preserves

cotorsion modules. Therefore f∗ preserves cotorsion preenvelopes by Proposi-
tion 2.10 applied to the adjoint pair (f∗, f

!).
Recall that the functor f∗ : ModB → ModA is fully faithful if and only if f is
a ring epimorphism (i.e., an epimorphism in the category of rings); see [Ste75,
Proposition XI.1.2]. When f is a ring epimorphism, a morphism g in ModB is
left minimal (resp. right minimal) if and only if so is f∗(g) in ModA.
Consequently, if f is a ring epimorphism such that B is flat as a left and a right
A-module, then f∗ sends injective (pre)envelopes, pure-injective (pre)envelopes,
cotorsion (pre)envelopes, and flat (pre)covers in ModB to those in ModA.

2.3 Prime ideals and localization

An ideal means a two-sided ideal unless otherwise specified. A prime ideal of A
is an ideal P ( A such that, for any a, b ∈ A, the condition aAb ⊆ P implies
that a ∈ P or b ∈ P . A maximal ideal of A is an ideal Q ( A that is maximal
among all ideals except A itself. Every maximal ideal is a prime ideal. Denote
by SpecA (resp. MaxA) the set of all prime (resp. maximal) ideals of A.
Denote by ϕ : R→ A the structure homomorphism of the Noether R-algebraA.
This homomorphism induces a canonical map SpecA → SpecR which sends
each P ∈ SpecA to its preimage ϕ−1(P ); see Remark 2.17 below. Although R
is not necessarily a subring of A, we write P ∩R for ϕ−1(P ).

Lemma 2.12. For every P ∈ SpecA, we have P ∈ MaxA if and only if P ∩R ∈
MaxR. In particular, the map SpecA→ SpecR restricts to MaxA→ MaxR.

Proof. This follows from [MR01, 10.2.12 and 10.2.13]. We give a more direct
proof in Remark 2.16 below for the reader’s convenience.

For each p ∈ SpecR, the Rp-module Ap, the localization of A at p as an
R-module, is naturally a Noether Rp-algebra. Moreover, for every right A-
module M , the localization Mp has a structure of a right Ap-module, and it
holds thatMp

∼=M⊗RRp
∼=M⊗AAp. We say thatM is p-local if the canonical

A-homomorphism M → Mp is an isomorphism. In this case, M itself can be
regarded as a right Ap-module.

Remark 2.13. The localization functor (−)p : ModA → ModAp has a fully
faithful right adjoint ModAp → ModA, which sends each Ap-module to itself
but regarded as an A-module along the canonical ring homomorphismA→ Ap.
In other words, the homomorphism A → Ap is a ring epimorphism (see Re-
mark 2.11). The essential image of the right adjoint ModAp → ModA consists
of all p-local right A-modules.

Proposition 2.14. Let p ∈ SpecR.
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(1) There is an order-preserving bijection

{P ∈ SpecA | P ∩R ⊆ p } ∼−→ SpecAp

given by P 7→ Pp = PAp. The inverse map is given by Q 7→ f−1(Q),
where f : A→ Ap is the canonical ring homomorphism.

(2) The bijection in (1) restricts to a bijection

{P ∈ SpecA | P ∩R = p } ∼−→ MaxAp.

Proof. (1): This follows from [MR01, 2.1.16, Proposition(vii)]. See also Re-
mark 2.16 below.

(2): Let P ∈ SpecA such that P ∩R ⊆ p. Lemma 2.12 applied to the Noether
Rp-algebra Ap implies that PAp ∈MaxAp if and only if PAp ∩Rp ∈MaxRp.
Since PAp∩Rp = (P∩R)Rp, the latter condition is equivalent to P∩R = p.

For p ∈ SpecR, the residue field at p is denoted by κ(p) := Rp/pRp. Note that
A ⊗R κ(p) is a finite-dimensional κ(p)-algebra in the sense that the Noether
κ(p)-algebra A ⊗R κ(p) is finite-dimensional as a κ(p)-vector space. In partic-
ular, it is a left and right artinian ring.

Proposition 2.15. Let p ∈ SpecR. There is a bijection

{P ∈ SpecA | P ∩R = p } ∼−→ Spec(A⊗R κ(p)) = Max(A⊗R κ(p))

given by P 7→ Pp/pAp. The inverse map is given by Q 7→ f−1(Q), where
f : A→ A⊗R κ(p) is the canonical ring homomorphism.

Consequently, the fiber {P ∈ SpecA | P ∩ R = p } over each p ∈ SpecR is a
(possibly empty) finite set.

Proof. The bijection in Proposition 2.14(1) induces an injection

{P ∈ SpecA | P ∩R = p } → {Q ∈ SpecAp | pAp ⊆ Q },

and an elementary argument shows that every P ∈ SpecA with P ∩R ⊆ p and
pAp ⊆ Pp satisfies P ∩R = p, so the above injection is bijective, and the right-
hand side can naturally be identified with Spec(A⊗R κ(p)) since A⊗R κ(p) =
Ap/pAp. Thus we have the desired bijection. By [GW04, Theorem 3.4 and
Proposition 4.19], A⊗R κ(p) has only finitely many prime ideals, which are all
maximal.

If the structure homomorphism R → A is injective, then the induced map
SpecA → SpecR is surjective, i.e., each fiber is nonempty ([MR01, 10.2.9,
Theorem]).
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Remark 2.16. Proposition 2.14(1) holds for a ring A together with a ring
homomorphism from a commutative ring R to the center of A. In fact, it can
be proved in a similar way to the case A = R ([Mat89, p. 22, Theorem 4.1 and
Example 2]); note that, if P ∈ SpecA, a ∈ A, s ∈ R \ (P ∩ R), then as ∈ P
implies that aAs ⊆ P and hence a ∈ P . Lemma 2.12, Proposition 2.14(2), and
Proposition 2.15 also hold if in addition A is finitely generated as an R-module.
We give here a proof of Lemma 2.12, which works in this setting.

The “only if” part of the lemma follows from [MR01, 10.2.10, Corollary(iii)],
and it can also be proved as follows: Let P ∈ MaxA and set p := P ∩ R.
Then we have an injection R/p →֒ A/P , so we may suppose P = 0 and p = 0,
and hence R is a domain and A is a simple ring. Suppose that there is a
prime ideal 0 6= q of R. Localization of the injection R →֒ A at q yields an
injection Rq →֒ Aq, where Aq is a simple ring by Proposition 2.14(1). Since Aq

is a nonzero finitely generated Rq-module, Aq/qAq is nonzero by Nakayama’s
lemma, so the ring Aq/qAq contains a prime ideal. This means that Aq contains
a prime ideal Q with qAq ⊆ Q, but 0 6= qRq ⊆ qAq, so this contradicts the fact
that Aq is simple.

To prove the “if” part, assume that p := P ∩R ∈MaxR. Then R/p is a field,
and A⊗R (R/p) = A/pA is a finite-dimensional (R/p)-algebra. Since pA ⊆ P ,
we have a canonical surjective ring homomorphism A/pA → A/P , and hence
A/P is also a finite-dimensional (R/p)-algebra. So all prime ideals of A/P
are maximal ideals by [GW04, Proposition 4.19]. In particular, the zero ideal
0 = P/P of A/P is a maximal ideal. Therefore P ∈MaxA.

Remark 2.17. In general, for a ring homomorphism f : A→ B of noncommu-
tative rings and a prime ideal Q of B, the ideal f−1(Q) of A is not necessarily
a prime ideal; see [MR01, 10.2.3].

However, if we assume that B is a centralizing extension of f(A) (cf. [MR01,
10.1.3]), that is, as a right (or equivalently, left) f(A)-module, B is generated
by a (possibly infinite) subset S ⊆ B such that every element of S commutes
with every element of f(A), then f−1(Q) is a prime ideal of A for every prime
ideal Q of B (cf. [MR01, 10.2.4, Theorem]). The proof is straightforward. This
assumption is satisfied if the homomorphism f is surjective or f(A) is contained
in the center of B.

2.4 Simple modules and injective modules

We will recall that (semi)simple modules and injective modules over a Noether
R-algebra A are controlled by maximal ideals and prime ideals, respectively.
First we assign a simple module to each prime ideal.

Let P ∈ SpecA and put p := P ∩R. The ring Ap/Pp is a simple right artinian
ring, and hence decomposes as a finite direct sum of copies of a simple right
Ap/Pp-module, where the simple module is unique up to isomorphism ([Lam91,
Theorems (3.3) and (3.10)]). We denote the simple right Ap/Pp-module by
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SA(P ) and its multiplicity in Ap/Pp by nP , that is,

Ap/Pp
∼= SA(P )

nP . (2.2)

By construction, SA(P ) ∼= SAp
(Pp) and SA(P ) is also a simple right Ap-module.

It is often regarded as a right A-module (which is not necessarily simple).
Denote by radA the Jacobson radical of A, which is the intersection of all
annihilators of simple right (or left) A-modules (or equivalently, the intersection
of all maximal right (or left) ideals of A; see [GW04, Proposition 3.16]). In
general, the annihilator of a simple module over an arbitrary ring is a prime
ideal, and any maximal (two-sided) ideal is the annihilator of some simple
module ([GW04, Proposition 3.15]). In particular, the Jacobson radical of a
finite-dimensional algebra over a field (or more generally, a right artinian ring)
equals to the intersection of all maximal ideals ([GW04, Corollary 4.16 and
Proposition 4.19]). The following fact implies that the same characterization
holds for a Noether R-algebra A:

Theorem 2.18. There is a bijection

MaxA ∼−→ { isoclasses of simple right A-modules }

given by P 7→ SA(P ). The inverse map is given by S 7→ AnnA(S).

Proof. For a simple right A-module S, let P := AnnA S and p := P ∩R. Then,
by [GW04, Proposition 9.1(a) and Corollary 9.5], P is a maximal ideal of A
and the right A-module A/P is a finite direct sum of copies of S. Since each
a ∈ R \ p does not annihilate S, it acts as an isomorphism on the simple A-
module S. This means that S is p-local, and hence A/P = Ap/Pp is a finite
direct sum of copies of S. Therefore SA(P ) is isomorphic to S by the definition
of SA(P ).
Let Q ∈ MaxA and q := Q ∩ R. Again by the definition of SA(Q), we have
AnnA SA(Q) = AnnA(Aq/Qq) = Q. This completes the proof.

It follows from Theorem 2.18 that

radA =
⋂

P∈MaxA

P. (2.3)

Given p ∈ SpecR, we have MaxAp = {Pp | P ∈ SpecA, P ∩R = p } by Propo-
sition 2.14. Thus (2.3) implies that

radAp =
⋂

P∈SpecA
P∩R=p

Pp. (2.4)

Proposition 2.19. For every p ∈ SpecR, we have

Ap/ radAp
∼=

⊕

P∈SpecA
P∩R=p

SA(P )
nP

as right A-modules.
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Proof. We have

Ap/ radAp
∼=

∏

P∈SpecA
P∩R=p

Ap/Pp
∼=

⊕

P∈SpecA
P∩R=p

SA(P )
nP ,

where the first isomorphism of rings follows from (2.4) and the Chinese remain-
der theorem ([AF92, §7, Exercise 13]), and the second follows from Proposi-
tion 2.15 and (2.2).

Remark 2.20. By Proposition 2.14(2) and Proposition 2.15, the maximal ide-
als of Ap naturally correspond to those of Ap := A ⊗R κ(p) = Ap/pAp, and
hence the canonical surjection Ap → Ap induces the isomorphism

Ap/ radAp
∼−→ Ap/ radAp

of finite-dimensional κ(p)-algebras.

Now we turn our attention to injective modules. The following remark will be
used later:

Remark 2.21. Let p ∈ SpecR. Injective envelopes, pure-injective envelopes,
cotorsion envelopes, and flat covers in ModAp are those in ModA; see Re-
marks 2.11 and 2.13. In particular, the full subcategory of ModA formed by
p-local modules is closed under taking such envelopes and covers.

Now we assign an indecomposable injective module to each prime ideal of A.
Let P ∈ SpecA and put p := P ∩R. Take injective envelopes A/P → EA(A/P )
and Ap/Pp → EAp

(Ap/Pp) in ModA and ModAp, respectively. As observed
in Remark 2.21, EAp

(Ap/Pp) ∼= EA(Ap/Pp). The canonical A-homomorphism
A/P → Ap/Pp is injective, and it extends to a monomorphism EA(A/P ) →
EA(Ap/Pp), which splits. So EA(A/P ) is p-local. Localizing the injective en-
velope A/P → EA(A/P ), we obtain an essential extension Ap/Pp → EA(A/P )
in ModA. Therefore

EA(A/P ) ∼= EA(Ap/Pp) ∼= EA(SA(P ))
nP , (2.5)

where the second isomorphism follows from (2.2). This fact is essentially ob-
served in the proof of [GN02, Proposition 2.5.2].
We set

IA(P ) := EA(SA(P )),

which is an indecomposable injective right A-module. By construction, it holds
that

IA(P ) ∼= IAp
(Pp), (2.6)

so IA(P ) is p-local. If A = R, then P = p, so IA(P ) = ER(R/p) and IAp
(Pp) =

ERp
(κ(p)).
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Theorem 2.22 ([Gab62, Chapter V, Proposition 8]). There is a bijection

SpecA ∼−→ { isoclasses of indecomposable injective right A-modules }

given by P 7→ IA(P ).

Proof. See [GW04, Lemma 5.14, Proposition 9.1(a), and Theorem 9.15].

2.5 Matlis duality

Completion and Matlis duality play a central role in the proof of our main
results. Here, and also in section A, we collect some basic facts on these
operations.

For an ideal a ⊆ R, define the a-adic completion functor Λa = (−)∧a : ModA→
ModA by

ΛaM =M∧
a := lim

←−
n≥1

M/anM.

We say that a right A-moduleM is a-adically complete (or a-complete for short)
if the canonical A-homomorphism M →M∧

a is an isomorphism. In particular,
M∧

a is a-complete (Proposition A.5). The a-adic completion A∧
a of A naturally

has a ring structure, and the canonical map A→ A∧
a is a ring homomorphism.

Moreover, for each right A-module M , M∧
a has a (unique) right A∧

a -module
structure that is compatible with the right A-module structure on M∧

a (see

Remark A.11 and Proposition A.15). We often write M∧
a as M̂ when M is

p-local and a = p for some p ∈ SpecR. For example, Âp means (Ap)
∧
p .

If M is a finitely generated right A-module, then the canonical A-
homomorphism M ⊗R R∧

a → M∧
a is an isomorphism ([Mat89, Theorem 8.7]),

so M∧
a is finitely generated as an R∧

a -module. The structure homomorphism
R → A induces a ring homomorphism R∧

a → A ⊗R R∧
a
∼= A∧

a whose image is
contained in the center, and R∧

a is a commutative noetherian ring ([Mat89,

Theorem 8.12]). Thus A∧
a is a Noether R∧

a -algebra. In particular, Âp is a

Noether R̂p-algebra for each p ∈ SpecR. Since R∧
a is flat over R ([Mat89,

Theorem 8.8]) and A⊗RR∧
a
∼= R∧

a ⊗RA, A
∧
a is flat as a left and ring A-module.

If R is a-complete, then all finitely generated R-modules are a-complete
([Mat89, Theorem 8.7]), and hence all finitely generated right A-modules are
a-complete.

When R is a local ring with maximal ideal m and residue field k, the m-adic
completion R̂ is a (commutative noetherian) local ring with maximal ideal

m̂ = mR̂, and k = R/m ∼= (R/m)⊗R R̂ ∼= R̂/m̂; see [AM69, Proposition 10.16]

or [Mat89, p. 63]. The completion map R → R̂ is a faithfully flat ring homo-
morphism ([Mat89, Theorem 8.14]), thus a pure monomorphism in ModR by
[Mat89, Theorem 7.5(i)]. Applying −⊗RA to the completion map, we conclude

that Â is faithfully flat right A-module and the completion map A → Â is a
pure monomorphism in ModA.
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Dually, the a-torsion functor Γa : ModA→ ModA is defined by

Γa := lim
−→
n≥1

HomR(R/a
n,−).

For a right A-module M , we have ΓaM =
⋃
n≥1{ x ∈ M | xan = 0 }. We say

that M is a-torsion if the canonical inclusion ΓaM → M is an isomorphism.
It is well known that ER(R/p) is p-torsion for each p ∈ SpecR ([Mat89, Theo-
rem 18.4(v)]), and more generally, IA(P ) is p-torsion for each P ∈ SpecA and
p := P ∩R; see Remark 2.26 below.

Remark 2.23. The a-torsion functor Γa is left exact and commutes with ar-
bitrary direct sums. Moreover, we can regard Γa as a right adjoint to the
inclusion functor from the full subcategory consisting of a-torsion A-modules
to ModA. See also Propositions A.7 to A.9 for analogous facts on Λa.
The a-torsion functor is a typical example of a left exact radical, so the class
of a-torsion A-modules is a hereditary torsion class (localizing subcategory) of
ModA; see [Ste75, Chapter VI, Propositions 1.7 and 3.1].

The following fact relates a-torsion modules with a-complete modules:

Proposition 2.24. Let E be an injective R-module. Then the functor
HomR(−, E) : ModA → ModAop sends a-torsion right A-modules to a-
complete left A-modules.

Proof. If M is an a-torsion right A-module, then it is isomorphic to
lim
−→n≥1

HomR(R/a
n,M), so we have

HomR(M,E) ∼= lim
←−
n≥1

HomR(HomR(R/a
n,M), E)

∼= lim
←−
n≥1

HomR(M,E)⊗R (R/an)

= HomR(M,E)∧a

as left A-modules; see [EJ00, Theorem 3.2.11] for the second isomorphism.
Hence HomR(M,E) is a-complete by Proposition A.5.

In the rest of this section, we assume that R is local, and denote its
maximal ideal and residue field by m and k, respectively. The functor
HomR(−, ER(k)) : ModR → ModR gives rise to a duality, known as Matlis
duality, between the category of finitely generated R-modules and the cat-
egory of artinian R-modules, provided that R is m-adically complete. This
duality naturally extends to the case of Noether algebras over complete local
rings (Theorem 2.27) as shown in [GN02, Proposition 2.6.1]. Let us observe
how the proof goes since techniques therein will be used in later sections. We
refer the reader to [Mat89, Theorem 18.6], [BH98, Proposition 3.2.12 and Theo-
rem 3.2.13], and [ILL+07, Appendix A, §4] for classical results on Matlis duality
for the commutative case; they will be used in the rest of the section.
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First, for every m-torsion right A-module M , there is a canonical isomorphism

M ∼−→M ⊗R R̂ (2.7)

of right A-modules (Lemma A.10). This makesM an m̂-torsion right Â-module

via the isomorphism A ⊗R R̂ ∼= Â. In fact, this is the unique right Â-module
structure on M that is compatible with the right A-module structure (Propo-

sition A.15). Moreover, all A-submodules ofM are also Â-submodules by (2.7)
(and vice versa), so M is artinian (resp. of finite length, simple) as a right
A-module if and only if M is artinian (resp. of finite length, simple) as a right

Â-module; see also Proposition A.12.
A key to Matlis duality is that the injective envelope ER(k) is an artinian
R-module (hence m-torsion). The above arguments applied to A = R makes

ER(k) an artinian R̂-module, and it coincides with the injective envelope of

k ∼= R̂/m̂ in Mod R̂, that is, ER(k) ∼= ER̂(k).
If M is a finitely generated right A-module, then it is, as an R-module, a quo-
tient of a finitely generated free R-module, so its Matlis dual HomR(M,ER(k))
is an R-submodule of a finite direct sum of copies of ER(k). This implies that
HomR(M,ER(k)) is artinian as an R-module. Thus HomR(M,ER(k)) is an
artinian left A-module. Consequently, we obtain a contravariant functor

HomR(−, ER(k)) : modA→ artinAop, (2.8)

where modA is the category of finitely generated right A-modules and artinAop

is the category of artinian left A-modules.
Another key to Matlis duality is that the completion map R→ R̂ is identified
with the canonical ring homomorphismR→ EndR(ER(k)) via the isomorphism

R̂ ∼−→ EndR(ER(k)) given by the action of R̂ on ER(k). For every finitely

generated right A-module M , the standard isomorphisms M ⊗R R̂ ∼= M̂ and
M ⊗R HomR(ER(k), ER(k)) ∼= HomR(HomR(M,ER(k)), ER(k)) of right Â-
modules give a natural isomorphism

M̂ ∼−→ HomR(HomR(M,ER(k)), ER(k)) (2.9)

of right Â-modules.
On the other hand, if a given right A-module M is artinian as an R-module
(we will later show that every artinian right A-module satisfies this), then M

can be regarded as a right Â-module via (2.7). Since such M can be embedded

as an R̂-submodule into a finite direct sum of copies of ER(k) ∼= ER̂(k), the left

Â-module HomR(M,ER(k)) is finitely generated as an R̂-module, and hence as

an Â-module. Matlis duality for R̂ implies that there is a natural isomorphism

M ∼−→ HomR̂(HomR(M,ER(k)), ER̂(k)) (2.10)

of R̂-modules. Since this isomorphism commutes with the action of A, this is
an isomorphism of right Â-modules.
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It remains to see that every artinian A-module is artinian as an R-module. To
this end, we prove the following fact, in which we make use of Theorem 2.18:

Proposition 2.25. Let (R,m, k) be a commutative noetherian local ring and
let A be a Noether R-algebra. For every P ∈MaxA, there is an isomorphism

HomR(SAop(P ), ER(k)) ∼= SA(P )

of right A-modules. This realizes the bijection

{ isoclasses of simple left A-modules }
∼−→ { isoclasses of simple right A-modules }

defined by SAop(P ) 7→ SA(P ).

Proof. Let P ∈ MaxA. Then P ∩ R = m (Lemma 2.12). Recall that
SAop(P ) is of finite length as an R-module since it is a finite-dimensional k-
vector space; see Lemma 2.12 and (2.2). By (2.10), we have an isomorphism

SAop(P ) ∼−→ HomR̂(HomR(SAop(P ), ER(k)), ER̂(k)) of left Â-modules, where
HomR(SAop(P ), ER(k)) is m-torsion. Then HomR(SAop(P ), ER(k)) has to be

simple as a right Â-module, or equivalently, as a right A-module. Thus, by
Theorem 2.18, HomR(SAop(P ), ER(k)) ∼= SA(Q) for some Q ∈ MaxA. Since
the left-hand side is annihilated by P , we have P ⊆ Q. Hence P = Q since P
is also maximal.

Remark 2.26. As shown in [GN02, Proposition 2.5.5], the injective envelope
IA(P ) of SA(P ) is a direct summand of HomR(A,ER(k)). Indeed, there is a
surjection A → SAop(P ) in ModAop by construction, and HomR(−, ER(k))
sends this map to an injection SA(P )→ HomR(A,ER(k)) in ModA by Propo-
sition 2.25. Since HomR(A,ER(k)) is an injective right A-module by Proposi-
tion 2.2(3), it contains IA(P ) as a direct summand.
Consequently, IA(P ) is artinian as an R-module because HomR(A,ER(k)) is
an artinian R-module as we observed before (2.8). In particular, IA(P ) is

m-torsion, and hence becomes a right Â-module, which is artinian as a right
A-module and as a right Â-module.

Let us finally verify that every artinian right A-module M is artinian as an
R-module. The socle socAM is a finite direct sum of simple A-modules and it
is an essential A-submodule ofM . Thus EA(M) ∼= EA(socAM), and the right-
hand side is a finite direct sum of copies of indecomposable injective modules
IA(P ) for various P ∈ MaxA; see Theorem 2.18. Hence EA(M) is artinian as
a right R-module by Remark 2.26, and so is M . Therefore,

artinA = {M ∈ ModA |M is artinian as an R-module }, (2.11)

where the inclusion “⊇” is trivial. We have observed that there is a contravari-
ant functor

HomR(−, ER(k)) : artinAop → mod Â. (2.12)
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Combining (2.8)–(2.12), we obtain Matlis duality for a Noether algebra over a
complete local ring:

Theorem 2.27. Let (R,m, k) be a commutative noetherian complete local ring
and let A be a Noether R-algebra. Then the contravariant functors modA →
artinAop and artinAop → modA induced by HomR(−, ER(k)) are mutually
quasi-inverse equivalences.

3 Decomposition of flat cotorsion modules into local complete

modules

Let A be a Noether R-algebra. In this section, we show that every flat cotorsion
right A-module is decomposed as a direct product of p-local p-complete flat
cotorsion modules for various p ∈ SpecR (Proposition 3.7).
The argument in this section is based on Enochs’ idea that was used to describe
flat cotorsion modules over a commutative noetherian ring ([Eno84, p. 183]).
However, we present our generalized proof in a more precise manner for the
sake of clarity.
As the first step, we prove the following lemma. Note that for a moduleM and
a set B, we denote by M (B) (resp. MB) the direct sum (resp. direct product)
of B-indexed copies of M .

Lemma 3.1. A right A-module M is flat cotorsion if and only if M is a direct
summand of ∏

P∈SpecA

HomR(IAop(P ), ER(R/p)
(BP )) (3.1)

for some family of sets {BP }P∈SpecA, where p := P ∩R in each component.

Proof. Since R is noetherian, the direct sum ER(R/p)
(BP ) of injec-

tive R-modules is again injective and, by Proposition 2.2(4), each
HomR(IAop(P ), ER(R/p)

(BP )) is a flat cotorsion right A-module. It is
straightforward to see that the product (3.1) is cotorsion, and it is also flat be-
cause A is left coherent (see [Cha60, Theorem 2.1] or [EJ00, Theorem 3.2.24]).
Therefore every direct summand of (3.1) is flat cotorsion.
Conversely, suppose that M is flat cotorsion. As in the proof of Proposi-
tion 2.3, M is a direct summand of HomR(I, E) for an injective cogenerator E
in ModR, where I := HomR(M,E) is an injective left A-module. Since A is
left noetherian, I decomposes as a direct sum of indecomposable injective left
A-modules ([Mat58, Theorem 2.5]). Hence, using Theorem 2.22, we have

I ∼=
⊕

P∈SpecA

IAop(P )(CP ) (3.2)

for some family of sets {CP }P∈SpecA. Then

HomR(I, E) ∼=
∏

P∈SpecA

HomR(IAop(P ), E)CP ∼=
∏

P∈SpecA

HomR(IAop(P ), ECP )
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as right A-modules. Now fix P ∈ SpecA and let p := P ∩ R. Since IAop(P ) is
p-local by (2.6), we have IAop(P ) ∼= IAop(P )⊗R Rp, and hence

HomR(IAop(P ), ECP ) ∼= HomR(IAop (P )⊗R Rp, E
CP )

∼= HomR(IAop (P ),HomR(Rp, E
CP )).

Notice that HomR(Rp, E
CP ) is an injective R-module by Proposition 2.2(3).

Since it is p-local, it cannot contain any q-torsion submodule unless q ⊆ p.
Therefore we have

HomR(Rp, E
CP ) ∼=

⊕

q∈SpecR
q⊆p

ER(R/q)
(Cq

P
)

for some family of sets {Cq
P }q⊆p. Then

HomR(IAop (P ), ECP ) ∼= HomR(IAop(P ),
⊕

q∈SpecR
q⊆p

ER(R/q)
(Cq

P
))

∼= HomR(IAop(P ), ER(R/p)
(Cp

P
)),

where the last isomorphism follows from Remark 2.23 (and Remark 3.4(1)
below) because IAop (P ) is p-torsion (Remark 2.26) and each ER(R/q) is q-local.
Setting BP := Cp

P , we conclude that HomR(I, E) is of the form (3.1).

Remark 3.2. Each component HomR(IAop (P ), ER(R/p)
(BP )) in (3.1) is p-

local and p-complete, by Propositions 2.14 and 2.24, (2.6), and Remark 2.26.
Moreover, we can rewrite (3.1) as

∏
p∈SpecRM(p), where M(p) is

⊕

P∈SpecA
P∩R=p

HomR(IAop (P ), ER(R/p)
(BP )),

which is a finite direct sum due to Proposition 2.15.

By Lemma 3.1 and Remark 3.2, every flat cotorsion right A-module M is a
direct product of p-local p-complete flat cotorsion modules for various p ∈
SpecR. The next result shows that the isoclass of the component at p is
uniquely determined by M .

Lemma 3.3. Let M(p) be a p-local p-complete right A-module for each p ∈
SpecR, and let M :=

∏
p∈SpecRM(p).

(1) For every ideal a ⊆ R, the canonical morphism M → ΛaM is a split
epimorphism, and

ΛaM =
∏

p∈SpecR
a⊆p

M(p)

as quotient modules of M , where the right-hand side is regarded as a
quotient module via the projection.
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(2) For every multiplicatively closed set S ⊆ R, the canonical morphism
HomR(S

−1R,M)→ HomR(R,M) ∼−→M is a split monomorphism, and

HomR(S
−1R,M) =

∏

p∈SpecR
p∩S=∅

M(p)

as submodules of M , where the right-hand side is regarded as a submodule
via the inclusion.

In particular, for every q ∈ SpecR,

HomR(Rq,M) =
∏

p∈SpecR
p⊆q

M(p).

(3) Let q ∈ SpecR, and let ιq : M(q) → M and πq : M → M(q) be the
inclusion and the projection, respectively. Then Λq HomR(Rq, ιq) and
Λq HomR(Rq, πq) are isomorphisms, and

Λq HomR(Rq,M) ∼=M(q).

Proof. (1): Since Λa commutes with arbitrary direct products (Proposi-
tion A.8), the canonical morphism M → ΛaM can be naturally identified with
the direct product of the canonical morphismsM(p)→ ΛaM(p) for p ∈ SpecR.
If a ⊆ p, then the p-complete module M(p) is also a-complete (Remark A.6),
so the canonical morphism M(p)→ ΛaM(p) is an isomorphism. If a 6⊆ p, then
anM(p) =M(p) for all n ≥ 1 because M(p) is p-local, so ΛaM(p) = 0.
(2): Similarly, since the functor HomR(S

−1R,−) commutes with arbitrary
direct products, the canonical morphism HomR(S

−1R,M) → M can be
naturally identified with the direct product of the canonical morphisms
HomR(S

−1R,M(p)) → M(p) for p ∈ SpecR. If p ∩ S = ∅, then
(S−1R)p ∼= Rp so we can deduce from Remark 2.13 that HomR(S

−1R,M(p)) ∼=
HomRp

(Rp,M(p)) ∼= M(p). If p ∩ S 6= ∅, then ΛpS−1R = 0, so
HomR(S

−1R,M(p)) ∼= HomR(Λ
pS−1R,M(p)) = 0 by Proposition A.9 since

M(p) is p-complete.
(3): This follows from (1) and (2).

There is a dual statement of Lemma 3.3 for a direct sum of local torsion mod-
ules. We state it as a remark because the proof is immediate in view of Re-
mark 2.23.

Remark 3.4. Let M(p) be a p-local p-torsion right A-module for each p ∈
SpecR, and let M :=

⊕
p∈SpecRM(p).

(1) For every ideal a ⊆ R, the canonical morphism ΓaM → M is a split
monomorphism, and

ΓaM =
⊕

p∈SpecR
a⊆p

M(p)
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as submodules ofM , where the right-hand side is regarded as a submodule
via the inclusion.

(2) For every multiplicatively closed set S ⊆ R, the canonical morphism
M →M ⊗R S−1R is a split epimorphism, and

M ⊗R S
−1R =

⊕

p∈SpecR
p∩S=∅

M(p)

as quotient modules of M , where the right-hand side is regarded as a
quotient module via the projection.

In particular, for every q ∈ SpecR,

Mq =
⊕

p∈SpecR
p⊆q

M(p).

(3) Let q ∈ SpecR, and let ιq : M(q) → M and πq : M → M(q) be
the inclusion and the projection, respectively. Then Γq(ιq ⊗R Rq) and
Γq(Rq, πq ⊗R Rq) are isomorphisms, and

Γq(M ⊗R Rq) ∼=M(q).

Lemma 3.3 above and Lemma 3.5 below are shown in [Tho19, Lemma 2.2] and
[Tho19, Lemma 3.1], respectively, but those were for direct products of p-local
p-complete flat R-modules for various p ∈ SpecR.

Lemma 3.5. Let M(p) and N(p) be p-local p-complete right A-modules for each
p ∈ SpecR. For an A-homomorphism f :

∏
p∈SpecRM(p) →

∏
p∈SpecRN(p),

the following are equivalent:

(1) f is an isomorphism.

(2) Λq HomR(Rq, f) is an isomorphism for all q ∈ SpecR.

(3) The composition

M(q)
∏

p∈SpecRM(p)
∏

p∈SpecRN(p) N(q)
f

is an isomorphism for all q ∈ SpecR, where the first morphism is the
inclusion and the last one is the projection.

Proof. (1)⇒(2) is obvious. (2) and (3) are equivalent by Lemma 3.3. The proof
of (3)⇒(1) is parallel to that of [Tho19, Lemma 3.1] with Tp and T ′

p replaced
by M(p) and N(p), respectively; [Tho19, (3.2)] is replaced by the fact that, for
every p ∈ SpecR,

HomA(
∏

q∈SpecR
p 6⊆q

M(q), N(p)) = 0, (3.3)

which follows from Proposition A.9 and Lemma 3.3(1).
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The next lemma recovers and generalizes [Xu96, Theorem 4.1.14], which
deals with direct products of p-local p-complete flat R-modules for various
p ∈ SpecR.

Lemma 3.6. Let M(p) be a p-local p-complete right A-module for each p ∈
SpecR. If we have a decomposition

∏

p∈SpecR

M(p) ∼=M1 ⊕M2,

then there are right A-modules Mi(p), indexed by p ∈ SpecR and i = 1, 2, such
that

Mi
∼=

∏

p∈SpecR

Mi(p)

and M(p) ∼=M1(p)⊕M2(p) for each p ∈ SpecR.

Proof. Let M :=
∏

p∈SpecRM(p). For each q ∈ SpecR, we have a canonical
split monomorphism HomR(Rq,M) → M and a canonical split epimorphism
HomR(Rq,M) → Λq HomR(Rq,M), which both become isomorphisms upon
application of Λq HomR(Rq,−); see Lemma 3.3. Since M ∼= M1 ⊕ M2, the
same holds for M1 and M2. For each i = 1, 2, let hqi be the composition

Mi HomR(Rq,Mi) ΛqHomR(Rq,Mi) =:Mi(q),
gq
i

where gqi is an arbitrary splitting of the canonical split monomorphism
fq
i : HomR(Rq,Mi) → Mi. Since ΛqHomR(Rq, f

q
i ) is an isomorphism, so is

Λq HomR(Rq, g
q
i ).

Let hi : Mi →
∏

p∈SpecRMi(p) be the morphism induced by the fam-

ily {hpi }p∈SpecR. If we show that h1 ⊕ h2 : M1 ⊕ M2 →
(∏

pM1(p)
)
⊕

(∏
pM2(p)

)
=

∏
p(M1(p) ⊕ M2(p)) is an isomorphism, then so are h1 and

h2, and thus the desired conclusion follows since

M(p) ∼= ΛpHomR(Rp,M) ∼= Λp HomR(Rp,M1 ⊕M2) ∼=M1(p)⊕M2(p)

by Lemma 3.3(3).
By Lemma 3.5, it suffices to show that Λq HomR(Rq, h1⊕h2) is an isomorphism
for each q ∈ SpecR. Consider the commutative diagram

M1 ⊕M2

∏

p∈SpecR

(M1(p)⊕M2(p))

HomR(Rq,M1 ⊕M2)

Λq HomR(Rq,M1 ⊕M2) M1(q)⊕M2(q),

gq1⊕g
q

2

h1⊕h2

projection
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where the vertical morphisms become isomorphisms upon application of
Λq HomR(Rq,−). Therefore Λq HomR(Rq, h1 ⊕ h2) is an isomorphism.

Proposition 3.7. A right A-module M is flat cotorsion if and only if M ∼=∏
p∈SpecRM(p), where each M(p) is some p-local p-complete flat cotorsion

module. The isoclass of M(p) is uniquely determined by M .

Proof. The “if” part is clear; see the proof of Lemma 3.1. The “only if” part
follows from Lemma 3.1, Remark 3.2, and Lemma 3.6. The uniqueness ofM(p)
follows from Lemma 3.3(3).

4 Local complete flat modules as flat covers

Let A be a Noether R-algebra. In section 3, we observed that every flat cotor-
sion module is uniquely decomposed as a direct product of p-local p-complete
ones. The purpose of the present section is to realize each p-local p-complete
flat module as a flat cover of a semisimple Ap-module (Theorem 4.9).
The key result in this section is Proposition 4.5. The next three results are
necessary steps for this; Lemmas 4.1 and 4.2 are inspired by [NT20, Lemma 1.1],
and Proposition 4.4(1) is a generalization of [Xu96, Proposition 4.1.6].

Lemma 4.1. Let J ⊆ A be a nilpotent ideal.

(1) For every flat right A-module F , the canonical morphism F → F ⊗A
(A/J) is right minimal in ModA.

(2) For every injective right A-module I, the canonical morphism
HomA(A/J, I)→ I is left minimal in ModA.

Proof. This proof works for an arbitrary ring A.
(1): Denote the canonical morphism by f and let g ∈ EndA(F ) such that
fg = f . Since f ⊗A (A/J) is an isomorphism, so is g ⊗A (A/J). Applying
−⊗A (A/J) to the exact sequence

F F Cok g 0,
g

we obtain (Cok g)⊗A (A/J) = 0. Hence Cok g = (Cok g)J = (Cok g)J2 = · · · ,
but J is nilpotent, so Cok g = 0. Applying −⊗A (A/J) to

0 Ker g F F 0,
g

we obtain (Ker g)⊗A (A/J) = 0 since F is flat. Hence Ker g = 0 by the same
argument.
(2): Given a right A-module M , HomA(A/J,M) = 0 if and only if
HomA(A/J

n,M) = 0 for every n ≥ 1, since HomA(A/J
n,M) = {x ∈ M |

xJn = 0 }. Thus HomA(A/J,M) = 0 implies M = 0, as J is nilpotent. The
rest of the proof is parallel to (1).
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Lemma 4.2. Let a ⊆ R be an ideal such that R/a is an artinian ring. For every
a-complete flat right A-module F , the canonical morphism F → F ⊗R (R/a) is
a flat cover in ModA.

Proof. Denote the canonical morphism by f . We first show that it is a flat
precover. Let h : G → F ⊗R (R/a) be an A-homomorphism from a flat right
A-module G. Then h naturally factors through an A-homomorphism h : G⊗R
(R/a)→ F⊗R(R/a). Set g1 := h. For each n ≥ 1, G⊗R(R/an) is a flat A/anA-
module and it is actually projective since A/anA is right artinian (Remark 2.9).
Thus, there exist A-homomorphisms gn : G⊗R (R/an)→ F ⊗R (R/an), for all
n ≥ 2, such that the diagram

· · · G⊗R (R/a3) G⊗R (R/a2) G⊗R (R/a)

· · · F ⊗R (R/a3) F ⊗R (R/a2) F ⊗R (R/a)

g3 g2 g1 (4.1)

commutes, where the horizontal maps are the canonical ones. Defining g to
be the composition of lim←−n≥1

gn : G
∧
a → F∧

a and the canonical isomorphism

F∧
a
∼= F , we have a commutative diagram

G∧
a G⊗R (R/a)

F F ⊗R (R/a),

g g1

f

where the horizontal map in the first row is the canonical one. The composition
of the completion map G → G∧

a and g : G∧
a → F is a lifting of h : G → F ⊗R

(R/a) because g1 = h. This shows that f is a flat precover.
Next we show that f is right minimal. Take an arbitrary g ∈ EndA(F ) such
that the diagram

F

F ⊗R (R/a)

F

g

f

f

commutes. Letting gn := g⊗R(R/an) = g⊗A(A/anA) for each n ≥ 1, we obtain
a diagram of the form (4.1) with G = F and g1 = idF/aF . Letting An := A/anA
and Jn := aA/anA ⊆ An, we have gn ⊗An

(An/Jn) = gn ⊗A (A/aA) = idF/aF .
Thus Lemma 4.1(1), applied to Jn ⊆ An, implies that gn is an isomorphism
for every n ≥ 2. Then g is an isomorphism as g = lim

←−n≥1
gn. This concludes

that f is a flat cover.

Remark 4.3. The assumption on a in Lemma 4.2 is satisfied if and only if the
Zariski closed subset V (a) := { p ∈ SpecR | a ⊆ p } consists of only (necessarily
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finitely many) maximal ideals of R. If this is the case, then the a-adic comple-
tion functor Λa decomposes as the finite direct product

∏
m∈V (a) Λ

m. Indeed,

setting b :=
⋂

m∈V (a) m, we have bn ⊆ a ⊆ b for some positive integer n, so the

proof goes in a similar way to that of [Mat89, Theorem 8.15].

Proposition 4.4. Let p ∈ SpecR.

(1) For every p-local p-complete flat right A-module F , the canonical mor-
phism F → F ⊗R κ(p) is a flat cover in ModA.

(2) For every p-local p-torsion injective right A-module I, the canonical mor-
phism HomR(κ(p), I)→ I is an injective envelope in ModA.

Proof. By Remarks 2.13 and 2.21 along with the standard isomorphism F ⊗R
κ(p) ∼= F ⊗Rp

κ(p), we may assume that (R,m, k) is a local ring and p = m.
Then (1) follows from Lemma 4.2. To prove (2), notice that the canonical map
R→ κ(p) = k is surjective and it induces an injection HomR(k, I)→ I, which
is clearly an injective preenvelope in ModA. As I is m-torsion by assumption,
every nonzero A-submodule M of I satisfies HomR(k,M) 6= 0. This implies
that the morphism HomR(k, I)→ I is an essential monomorphism, so it is an
injective envelope in ModA.

Proposition 4.5. Let p ∈ SpecR.

(1) Let F be a p-local p-complete flat right A-module. Then the canonical
morphism

F → F ⊗A (Ap/ radAp)

is a flat cover in ModA.

(2) Let I be a p-local p-torsion injective right A-module. The canonical mor-
phism

HomA(Ap/ radAp, I)→ I

an injective envelope in ModA.

Proof. As we observed in the proof of Proposition 4.4, we may assume that
(R,m, k) is a local ring and p = m. Put J := radA. Since J is the intersection
of all maximal ideals of A and P ∩R = m for all P ∈ MaxA (see Lemma 2.12
and (2.3)), we have mA ⊆ J . Consequently, for every right A-module M , the
canonical morphismM ⊗R k ∼=M⊗A (A/mA)→M ⊗A (A/J) is surjective and
the canonical morphism HomA(A/J,M) → HomA(A/mA,M) ∼= HomR(k,M)
is injective.

(1): Denote the given morphism by f . First we show that it is a flat precover.
Let h : G → F ⊗A (A/J) be a morphism from a flat right A-module G. It
naturally factors through a morphism h : G⊗A (A/J)→ F ⊗A (A/J). By the
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projectivity of G ⊗R k in Mod(A ⊗R k), there exists a morphism g such that
the diagram

G⊗R k G⊗A (A/J)

F ⊗R k F ⊗A (A/J)

g h

commutes. Furthermore, by Proposition 4.4(1), there exists a morphism g such
that the diagram

G G⊗R k G⊗A (A/J)

F F ⊗R k F ⊗A (A/J)

g g h

commutes, where unadorned morphisms are the canonical ones. The compo-
sition of the morphisms in the first row together with h is h, so the diagram
shows that h factors through the second row, which is f . Hence f is a flat
precover.
Next, for every s ∈ EndA(F ) such that fs = f , we have a commutative diagram

F F ⊗R k

F ⊗A (A/J),

F F ⊗R k

s s⊗Rk

where unadorned morphisms are the canonical ones. Here s⊗R k is an isomor-
phism by Lemma 4.1(1) as J/mA = rad(A⊗Rk) (see Remark 2.20) is nilpotent.
Therefore Proposition 4.4(1) implies that s is an isomorphism. This concludes
that f is a flat cover.
(2): The injection HomA(A/J, I) → I is clearly an injective preenvelope. The
rest of the proof is parallel to (1). Use Lemma 4.1(2) and Proposition 4.4(2)
instead.

Lemma 4.6. Let a be an ideal of R and let M be a right A-module.

(1) If M is an a-complete right A-module, then its flat cover FA(M) is a-
complete.

(2) If M is an a-torsion right A-module, then its injective envelope EA(M)
is a-torsion.

Proof. (1): Let f : FA(M) → M be the flat cover. Since M is a-complete, we
may identify M with ΛaM . Then f is factorized as the composition of the
completion map FA(M)→ ΛaFA(M) and Λaf : ΛaFA(M)→M . By Proposi-
tion A.3, ΛaFA(M) is flat. Since f is a flat cover, there exists a morphism g
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such that the diagram

FA(M) ΛaFA(M) FA(M)

M
f

Λaf

g

f

commutes. The right minimality of f implies that g is a split epimorphism,
so FA(M) is a direct summand of ΛaFA(M). Since ΛaFA(M) is a-complete
(Proposition A.5), the direct summand FA(M) is also a-complete.
(2): Let g : M → EA(M) be the injective envelope. Since A is right noetherian,
EA(M) decomposes as a direct sum of copies of IA(P ) for various P ∈ SpecA;
see (3.2). The a-torsion A-submodule ΓaEA(M) of EA(M) is injective by
Remark 3.4(1), and the induced map Γag : M → ΓaEA(M) is a monomorphism
as Γa is left exact (Remark 2.23). Thus we have ΓaEA(M) = EA(M).

Remark 4.7. Let p ∈ SpecA. Recall that Ap/ radAp is a semisimple ring
(see Proposition 2.19). Hence every module over this ring is a direct sum of
simple modules, and each simple module is isomorphic to SA(P ) for some P ∈
SpecA with P ∩R = p. Moreover, the category Mod(Ap/ radAp) is naturally
equivalent to the subcategory of ModAp (or ModA) formed by semisimple
Ap-modules (see Proposition 2.14(2) and Theorem 2.18).

With this remark, we obtain the following result:

Proposition 4.8. Let p ∈ SpecR and let M be a semisimple right Ap-module.

(1) Let f : FA(M) → M be a flat cover in ModA. Then FA(M) is p-local
and p-complete. Moreover, the morphism f induces an isomorphism

FA(M)⊗A (Ap/ radAp) ∼−→M.

(2) Let g : M → EA(M) be an injective envelope in ModA. Then EA(M) is
p-local and p-torsion. Moreover, the morphism g induces an isomorphism

M ∼−→ HomA(Ap/ radAp, EA(M)).

Proof. We only prove (1) because the dual argument proves (2).
Note that the semisimple Ap-module M is p-complete as pnM = 0 for every
n ≥ 1 (see Remark 4.7). Hence FA(M) is p-local p-complete by Remark 2.21
and Lemma 4.6(1). We have a commutative diagram

FA(M) M

FA(M)⊗A (Ap/ radAp) M ⊗A (Ap/ radAp),

u

f

≀

h
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where the vertical morphisms are canonical and h := f ⊗A (Ap/ radAp).
By Proposition 4.5(1), u is a flat cover. Since h is an epimorphism be-
tween semisimple Ap-modules, it is a split epimorphism. Thus the flat cover
FA(Kerh) → Kerh is a direct summand of the flat cover u. Since FA(Kerh)
is in the kernel of f , it should be zero by the right minimality of f . Therefore
Kerh = 0.

Theorem 4.9. For every p ∈ SpecR, we have the following one-to-one corre-
spondences:

{ isoclasses of p-local p-complete flat right A-modules }

{ isoclasses of semisimple right Ap-modules }

{ isoclasses of p-local p-torsion injective right A-modules },

−⊗A(Ap/ radAp) ≀ FA(−)

EA(−) ≀ HomA(Ap/ radAp,−)

where the maps between the first and the second classes (resp. between the
second and the third classes) are mutually inverse.

Proof. This follows from Propositions 4.5 and 4.8 and Remark 4.7.

Let p ∈ SpecR. As we observed in Remark 4.7, every semisimple right Ap-
module M decomposes as

M ∼=
⊕

P∈SpecA
P∩R=p

SA(P )
(BP ) (4.2)

for some family of sets {BP }P , where {P ∈ SpecA | P ∩R = p } is a finite set
(Proposition 2.15). Proposition 4.10 (resp. Proposition 4.13) below shows that
a flat cover (resp. injective envelope) of SA(P )

(BP ) in ModA can be obtained
by applying a variant of Matlis dual to an injective envelope (resp. flat cover)
of SAop(P ) in ModAop.

Proposition 4.10. Let P ∈ SpecA and p := P ∩ R. For every set B, the
injective envelope SAop(P )→ IAop(P ) induces a flat cover

HomR(IAop(P ), ER(R/p)
(B))→ HomR(SAop(P ), ER(R/p)

(B)) ∼= SA(P )
(B)

(4.3)
in ModA.

Proof. We first recall that each HomR in (4.3) can be replaced by
HomRp

; see Remark 2.13 and (2.6). Moreover, the p-local right A-module

HomR(IAop(P ), ER(R/p)
(B)) is p-complete and flat as well; see Lemma 3.1

and Remark 3.2.
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Next, notice that the functor HomRp
(SAop(P ),−) : ModRp → ModA com-

mutes with arbitrary direct sums, because SAop(P ) is finitely generated over
Rp. So the isomorphism in (4.3) follows from Proposition 2.25. Since SA(P ) ∼=
SA(P ) ⊗A (Ap/ radAp) by construction and we have Proposition 4.5(1), it
only remains to show that (4.3) becomes an isomorphism upon application of
−⊗A (Ap/ radAp).
To this end, we remark that there is a canonical isomorphism

HomR(−, ER(R/p)
(B))⊗A (Ap/ radAp)

∼= HomR(HomAop(Ap/ radAp,−), ER(R/p)
(B))

(4.4)

of functors ModAop
p → ModA (see [EJ00, Theorem 3.2.11]), because HomR,

HomAop , and ⊗A can be replaced by HomRp
, HomAop

p
, and ⊗Ap

, respectively.

Under (4.4) and the natural isomorphism HomAop(Ap/ radAp, SAop(P )) ∼−→
SAop(P ), application of − ⊗A (Ap/ radAp) to the first map in (4.3) yields a
morphism

HomR(HomAop(Ap/ radAp, IAop(P )), ER(R/p)
(B))

→ HomR(SAop(P ), ER(R/p)
(B))

of right A-modules. This is an isomorphism since it is induced by the isomor-
phism

SAop(P ) ∼−→ HomAop(Ap/ radAp, IAop(P ))

obtained by applying Proposition 4.8(2) to the injective envelope SAop(P ) →
IAop(P ).

Proposition 4.10 leads us to the following definition, which is essential for the
main results of this paper:

Definition 4.11. Let P ∈ SpecA and p := P ∩R. We define

TA(P ) := HomR(IAop(P ), ER(R/p)),

which is a flat cover of SA(P ) in ModA by Proposition 4.10, that is,

TA(P ) = FA(SA(P ))

as isoclasses of right A-modules. As we recalled in the proof of Proposition 4.10,
TA(P ) is p-local and p-complete. Moreover, by Proposition 2.2(1), TA(P ) is
pure-injective, hence cotorsion.

Remark 4.12. In (4.3) and Definition 4.11, each HomR can also be replaced
by Hom

R̂p
; see (2.6), Proposition A.12 (applied to A = R), and Remark 2.26.

On the other hand, the second Hom
R̂p

in (4.5) below cannot be replaced either

by HomR or by HomRp
. To see this, consider the case where (R,m, k) is local,

A = R, P = m, and B is a set consisting of one element. Then TR(m) ∼= R̂,
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and ER(k) naturally becomes an R̂-module (see section 2.5), so we have a

canonical injection f : ER(k) = HomR̂(R̂, ER(k)) → HomR(R̂, ER(k)). This
injection is not surjective as far as R is not m-complete, because the surjection
g : HomR(R̂, ER(k)) → HomR(R,ER(k)) = ER(k) induced by the completion

map R→ R̂ is not injective, and gf is the identity map.
It should also be noticed that the last isomorphism of (4.5) shows that TA(P )
is indecomposable.

Proposition 4.13. Let P ∈ SpecA and p := P ∩R. For every set B, the flat
cover TA(P )→ SA(P ) induces an injective envelope

SAop(P )(B) ∼= Hom
R̂p

(SA(P ), ER(R/p)
(B))

→ Hom
R̂p

(TA(P ), ER(R/p)
(B)) ∼= IAop(P )(B)

(4.5)

in ModAop.

Proof. The first isomorphism in (4.5) follows from Proposition 4.10 and Re-
mark 4.12.
Let (−)∗ := Hom

R̂p
(−, ER(R/p)). Since IAop(P ) is an artinian left Âp-module

(see (2.6) and Remark 2.26), TA(P ) = (IAop (P ))∗ is a finitely generated right

Âp-module by Theorem 2.27, and thus we have a canonical isomorphism

(TA(P )
∗)(B) ∼−→ Hom

R̂p
(TA(P ), ER(R/p)

(B)).

Theorem 2.27 also yields a canonical isomorphism

IAop(P )(B) ∼−→ (IAop(P )∗∗)(B) = (TA(P )
∗)(B)

of left A-modules. Therefore the last isomorphism in (4.5) holds.
Recall that IAop(P )(B) is a p-local p-torsion injective left A-
module (see Remark 2.26). Since we have Proposition 4.5(2) and
HomAop(Ap/ radAp, SAop(P )(B)) ∼= SAop(P )(B), it suffices to show that
the morphism in (4.5) becomes an isomorphism upon application of
HomAop(Ap/ radAp,−). By the tensor-hom adjunction, we have a canon-
ical isomorphism

HomAop(Ap/ radAp,HomR̂p
(−, ER(R/p)

(B)))

∼= Hom
R̂p

(− ⊗A (Ap/ radAp), ER(R/p)
(B))

of functors Mod Âp → ModAop. In addition, the flat cover TA(P ) → SA(P )
induces an isomorphism TA(P )⊗A (Ap/ radAp) ∼−→ SA(P )⊗A (Ap/ radAp) ∼=
SA(P ) by Proposition 4.8(1). Therefore application of HomAop(Ap/ radAp,−)
makes the morphism in (4.5) an isomorphism.

In general, the character dual of a flat precover over an arbitrary ring is an
injective preenvelope; see Proposition 2.2(3) and Remark 2.4. Conversely, if
the ring is right coherent, then the character dual of an injective preenvelope
of a right module is a flat precover; see [EJ00, Proposition 5.3.5].
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5 Descriptions of local complete flat modules

In this section, we give various descriptions of local complete flat right mod-
ules over a Noether algebra. We first look back to some classical facts for a
commutative noetherian ring R.

Let p ∈ SpecR. Gruson and Raynaud [RG71, Part II, Proposition 2.4.3.1]
showed that every p-local p-complete flat R-module is isomorphic to the p-adic
completion of some free Rp-module. More precisely, it is shown that, given a flat

R-module F , there is an isomorphism F̂p
∼= (R

(B)
p )∧p , where B := dimκ(p) F ⊗R

κ(p) (see also [EJ00, Lemma 6.7.4]). It is also shown that (R
(B)
p )∧p is a flat R-

module ([RG71, Part II, (2.4.2)]). Furthermore, Enochs pointed out in [Eno84,

p. 181, Example] that (R
(B)
p )∧p is isomorphic to HomR(E(R/p), E(R/p)(B))

(see also [EJ00, Theorem 3.4.1(7)]). In particular, (R
(B)
p )∧p is a flat cotorsion

R-module (Proposition 2.2(4)). It then follows that the following conditions
are equivalent for an arbitrary R-module M :

(1) M is a p-local p-complete flat R-module.

(2) M is a p-local p-complete flat cotorsion R-module.

(3) M is isomorphic to the p-adic completion of a free Rp-module.

The term “free Rp-module” in (3) can be replaced by “projective Rp-module”,

“free R̂p-module”, or “projective R̂p-module” because Rp and R̂p are local

rings and (R
(B)
p )∧p

∼= (R̂p

(B)
)∧p by Lemma A.4.

This section is devoted to generalizing these classical facts to an arbitrary
Noether R-algebra A. We start with the next lemma, which slightly refines
[GN02, Proposition 2.5.5] and is known when A is commutative (see [Rah09,
Theorem 1.1]). Recall that nP for each P ∈ SpecA is the number defined
by (2.2).

Lemma 5.1. For every p ∈ SpecR, there is an isomorphism

HomR(A,ER(R/p)) ∼=
⊕

P∈SpecA
P∩R=p

IAop(P )nP

of left A-modules.

Proof. By Proposition 2.2(3), HomR(A,ER(R/p)) is an injective left A-
module. As ER(R/p) ∼= ERp

(κ(p)) by (2.6), the functor HomR(−, ER(R/p))
sends finitely generated right A-modules to p-local p-torsion left A-
modules; see Remark 2.13 and (2.8). Thus, Proposition 4.5(2) ap-
plied to I := HomR(A,ER(R/p)) implies that the canonical morphism
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HomAop(Ap/ radAp, I)→ I is an injective envelope in ModAop. Now we have

HomAop(Ap/ radAp, I) ∼= HomR(A⊗A (Ap/ radAp), ER(R/p))

∼= HomR(
⊕

P∈SpecA
P∩R=p

SA(P )
nP , ER(R/p))

∼=
⊕

P∈SpecA
P∩R=p

SAop(P )nP ,

where the second isomorphism follows from Proposition 2.19, and the third
follows from Propositions 2.15 and 2.25. Since each IAop(P ) is the injective
envelope of SAop(P ), we obtain the desired isomorphism.

Proposition 5.2. For every p ∈ SpecR, there is an isomorphism

Âp
∼=

⊕

P∈SpecA
P∩R=p

TA(P )
nP

of right A-modules.

Proof. By Remark 2.13, (2.6), and (2.9), there is a canonical isomorphism

Âp
∼−→ HomR(HomR(A,ER(R/p)), ER(R/p)) (5.1)

of right Âp-modules. Thus the result follows from Proposition 2.15 and
Lemma 5.1.

Remark 5.3. By Remark 2.13 and Proposition A.14, all A-homomorphism
between p-local p-complete right A-modules are Âp-homomorphisms. The iso-

morphism in Proposition 5.2 is therefore an isomorphism of right Âp-modules.

This implies that each TA(P ) is a projective right Âp-module.
Similarly, by Remark 2.13 and Proposition A.12, all A-homomorphism between
p-local p-torsion right A-modules are also Âp-homomorphisms. So the isomor-

phism in Lemma 5.1 is an isomorphism of left Âp-modules.

We will observe in Remark 7.4 that a direct sum of infinite copies of TA(P )
is not necessarily cotorsion, but its p-adic completion is cotorsion by the next
result.

Proposition 5.4. Let P ∈ SpecA and p := P ∩ R. For every set B, there
exists a canonical isomorphism

(TA(P )
(B))∧p

∼−→ HomR(IAop (P ), ER(R/p)
(B)).

of A-modules. In particular, (TA(P )
(B))∧p is flat and pure-injective, that is, flat

cotorsion.
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Proof. Let SAop(P ) → IAop(P ) be the injective envelope. Ap-
plying HomR(−, ER(R/p)) to this, we obtain the flat cover
HomR(IAop(P ), ER(R/p)) → HomR(SAop(P ), ER(R/p)) by Proposition 4.10.
Taking the direct sum of B-indexed copies of the flat cover, we obtain the first
row of the following diagram:

TA(P )
(B) HomR(IAop(P ), ER(R/p))

(B) HomR(SAop(P ), ER(R/p))
(B)

(TA(P )
(B))∧p HomR(IAop(P ), ER(R/p)

(B)) HomR(SAop(P ), ER(R/p)
(B))

≀

The vertical morphisms are canonical ones, and the third is an isomorphism
by the proof of Proposition 4.10. The first morphism in the second row
is the unique morphism making the left square commutative; this exists
since HomR(IAop(P ), ER(R/p)

(B)) is p-complete; see Remark 3.2 and Propo-
sition A.9. The second morphism in the second row is the one induced by the
injective envelope SAop(P )→ IAop(P ), so it is a flat cover by Proposition 4.10.
Moreover, the right square is commutative as well.
If we apply − ⊗A (Ap/ radAp) to the above commutative diagram, then
the second morphism in each row becomes an isomorphism by the proof of
Proposition 4.10, and the first vertical morphism becomes an isomorphism by
Lemma A.4 and Remark 2.20, so the other morphisms in the diagram are also
isomorphisms, where the third vertical morphism remains the same morphism.
Therefore, it follows from Proposition 4.5(1) that the second row of the above
diagram is a flat cover because (TA(P )

(B))∧p is a p-local p-complete flat right
A-module; see Definition 4.11 and Propositions A.3 and A.5.

Remark 5.5. Let p ∈ SpecR and let B be a set. We can recover the known
isomorphism

(R
(B)
p )∧p

∼= HomR(E(R/p), E(R/p)(B)) (5.2)

from Propositions 5.2 and 5.4. Indeed, Proposition 5.2 applied to A = R sim-
ply identifies R̂p with TR(p) = HomR(ER(R/p), ER(R/p)), and then Proposi-
tion 5.4 gives an isomorphism

(R̂p

(B)
)∧p
∼−→ HomR(ER(R/p), ER(R/p)

(B)),

where the left-hand side coincides with (R
(B)
p )∧p by Lemma A.4.

This isomorphism can be generalized to A. Applying the functor − ⊗R A to
(5.2) and using Proposition A.2, we obtain an isomorphism

(A
(B)
p )∧p

∼−→ HomR(HomR(A,ER(R/p)), ER(R/p)
(B)),

as we deduced (2.9). In particular, it follows that (A
(B)
p )∧p is a p-local p-complete

flat cotorsion right A-module; see Propositions A.5 and 2.2.
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Theorem 5.6. Let p ∈ SpecR. For a right A-module M , the following are
equivalent:

(1) M is a p-local p-complete flat right A-module.

(2) M is a p-local p-complete flat cotorsion right A-module.

(3) M is a direct summand of (A
(B)
p )∧p for some set B.

(4) M is isomorphic to ⊕

P∈SpecA
P∩R=p

(TA(P )
(BP ))∧p

for some family of sets {BP }P .

The cardinality of each BP in (4) is uniquely determined by M .

Proof. Assume (1). By Proposition 4.5(1), M is a flat cover of M ⊗A
(Ap/ radAp) in ModA, where

M ⊗A (Ap/ radAp) ∼=
⊕

P∈SpecA
P∩R=p

S(P )(BP )

for a family of sets {BP }P ; see Remark 4.7 and (4.2). Then (4) follows from the
above decomposition and Propositions 4.10 and 5.4, along with Proposition 2.15
and the elementary fact that a finite direct sum of flat covers is a flat cover
([Xu96, Theorem 1.2.10]).
Assume (4). We first show the uniqueness of each BP . By Propositions 4.10
and 5.4, (TA(P )

(BP ))∧p is the flat cover of SA(P )
(BP ). By Theorem 4.9, we have

an isomorphism (TA(P )
(BP ))∧p ⊗A (Ap/ radAp) ∼= SA(P )

(BP ). It then follows
that

M ⊗A (Ap/ radAp) ∼=

( ⊕

P∈SpecA
P∩R=p

(TA(P )
(BP ))∧p

)
⊗A (Ap/ radAp)

∼=
⊕

P∈SpecA
P∩R=p

SA(P )
(BP ).

Therefore, the cardinality of each BP is uniquely determined by M , due to
the Krull-Remak-Schmidt-Azumaya theorem; see [Pre09, Theorem E.1.24] for
example.
Let us next show that (4) implies (3). We know from Proposition 5.2 that

TA(P )
(BP ) is a direct summand of Âp

(BP )
, so (TA(P )

(BP ))∧p is a direct sum-

mand of (Âp

(BP )
)∧p , which is isomorphic to (A

(BP )
p )∧p by Lemma A.4. Let B be

the disjoint union of all BP . Then

(A
(B)
p )∧p

∼=
⊕

P∈SpecA
P∩R=p

(A
(BP )
p )∧p ,
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so (3) holds.
The implication (3) ⇒ (2) is clear in view of the last sentence of Remark 5.5.
The remaining implication (2) ⇒ (1) is trivial.

Remark 5.7. By Proposition 5.2, Remarks 5.3 and 5.5, and Theorem 5.6, the
following conditions are equivalent for a right A-module M :

(1) M is a p-local p-complete flat right A-module.

(2) M is a p-local p-complete flat cotorsion right A-modules.

(3) M is isomorphic to the p-adic completion of a projective Âp-module.

If this is the case, then the projective Âp-module in (3) can be taken as a direct

sum of indecomposable projective Âp-modules.
Let F be a flat right A-module. Then its localization Fp is also a flat right A-

module, so its p-adic completion F̂p is a p-local p-complete flat right A-module
(see Propositions A.3 and A.5). Thus Theorem 5.6 yields an isomorphism

F̂p
∼=

⊕
P∈SpecA
P∩R=p

(TA(P )
(BP ))∧p , and the proof of the theorem shows that the

index sets BP are determined by a decomposition

F ⊗A (Ap/ radAp) ∼= F̂p ⊗A (Ap/ radAp) ∼=
⊕

P∈SpecA
P∩R=p

S(P )(BP ),

where the first isomorphism follows from Remark 2.20 and F̂p ⊗R κ(p) ∼=
F ⊗R κ(p) (see Lemma A.4). If A = R, then the left-most side is F ⊗R κ(p).
Therefore, all the classical facts mentioned at the beginning of this section have
been generalized to Noether algebras.

Remark 5.8. Contrary to the classical case, the term “projective Âp-module”
in Remark 5.7(3) cannot be replaced either by “free Ap-module”, “projective

Ap-module”, or “free Âp-module”, even if A is commutative. We give a counter-
example to all of these at the same time.
Let k be a field and R := k[x, y]/(y2−x2(x+1)). The ring R can be embedded
into the polynomial ring A := k[t] by x 7→ t2 − 1 and y 7→ t(t2 − 1). Then
R and k[t] have the same quotient field k(t), and k[t] is the integral closure of
R in the quotient field k(t). Note that A = k[t] is a Noether R-algebra since
A = R+Rt.
Consider the maximal ideal m := (x, y) ⊆ R. We have mnA = (n1n−1)

n

for each n ≥ 1, where ni = (t − i) ∈ MaxA. The m-adic completion of

Am has a decomposition Âm = A∧
m
∼= A∧

n1
× A∧

n−1
as a ring (Remark 4.3).

Letting M := A∧
n1
, we have M = Ân1

∼= TA(n1), so this is an indecomposable

flat cotorsion A-module and also is an indecomposable projective Âm-module,
which is m-complete. ThusM satisfies the equivalent conditions in Remark 5.7,
setting p := m.
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However,M is not isomorphic to the m-adic completion of any free Âm-module
since such a completion is a direct sum of copies of A∧

n1
× A∧

n−1
(which is

decomposable or zero). We also show that M is not isomorphic to the m-adic
completion of any projective Am-module, either. Given a nonzero projective
Am-module P , we have P∧

m
∼= P∧

n1
⊕ P∧

n−1
(Remark 4.3). Since

⋂
n≥1 n

n
i F = 0

for every free Am-module F (see [Mat89, Theorem 8.10]), the canonical map
F → F∧

ni
is injective, so the same holds for P . Therefore each P∧

ni
is nonzero,

and hence P∧
m is not indecomposable.

6 Structure of flat cotorsion modules

Let us now complete the proof of the structure theorem for flat cotorsion mod-
ules (Theorem 1.1):

Theorem 6.1. Let A be a Noether R-algebra. A right A-module M is flat
cotorsion if and only if M is isomorphic to

∏

P∈SpecA

(TA(P )
(BP ))∧P∩R (6.1)

for some family of sets {BP}P∈SpecA. The cardinality of each BP is uniquely
determined by M .

Proof. This follows from Proposition 3.7 and Theorem 5.6.

Consequently, we obtain a complete description of indecomposable flat cotor-
sion modules (Corollary 1.2):

Corollary 6.2. Let A be a Noether R-algebra. Then there is a bijection

SpecA ∼−→ { isoclasses of indecomposable flat cotorsion right A-modules }

given by P 7→ TA(P ) = HomR(IAop(P ), ER(R/P ∩R)).

Proof. By Remark 4.12, TA(P ) is indecomposable. The uniqueness of the cardi-
nalities of BP in Theorem 6.1 implies that the map in the statement is injective.
To observe the surjectivity, take an indecomposable flat cotorsion right A-
module M . By Theorem 6.1, M is isomorphic to (TA(P )

(B))∧p for some P ∈
SpecA and a nonempty set B, where p := P ∩R. Since TA(P ) ∼= TA(P )

∧
p is a

direct summand of (TA(P )
(B))∧p , the indecomposability of M implies that the

cardinality of B is one, and hence M ∼= TA(P ).

Example 6.3. Let R be a commutative noetherian ring and let A be the 2× 2
lower triangular matrix algebra over R, that is,

A =

(
R 0
R R

)
.
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Then A is a Noether R-algebra. We describe all isoclasses of simple, inde-
composable injective, and indecomposable flat cotorsion right A-modules. The
algebra A has a decomposition

A =
(
R 0

)
⊕
(
R R

)

as a right A-module, where the action of A is matrix multiplication. For each
p ∈ SpecR,

P1(p) :=

(
p 0
R R

)
and P2(p) :=

(
R 0
R p

)

are prime ideals of A, and varying p, these are all the prime ideals of A (see
Proposition 2.15). The simple right Ap-modules are

SA(P1(p)) =
(
κ(p) 0

)
and SA(P2(p)) =

(
κ(p) κ(p)

)
(
κ(p) 0

) .

By (2.2), nPi(p) = 1 for i = 1, 2. On the other hand, the algebra A has a
decomposition

A =

(
R
R

)
⊕

(
0
R

)

as a left A-module, and we have

HomR(A,ER(R/p)) ∼=
(
ER(R/p) ER(R/p)

)
⊕

(
ER(R/p) ER(R/p)

)
(
ER(R/p) 0

)

as right A-modules. Hence, by Lemma 5.1,

IA(P1(p)) =
(
ER(R/p) ER(R/p)

)
and IA(P2(p)) =

(
ER(R/p) ER(R/p)

)
(
ER(R/p) 0

)

because each IA(Pi(p)) should have SA(Pi(p)) as a right A-submodule. Simi-
larly, by Proposition 5.2,

TA(P1(p)) =
(
R̂p 0

)
and TA(P2(p)) =

(
R̂p R̂p

)

since each TA(Pi(p)) should have SA(Pi(p)) as a quotient A-module.

Remark 6.4. Let us consider the case where R = k is a field, that is, A is
a finite-dimensional k-algebra. As mentioned in Remark 2.9, all flat right A-
modules are projective and all right A-modules are cotorsion. Thus the flat
cotorsion right A-modules are precisely the projective right A-modules. For
every P ∈ SpecA,

TA(P ) = Homk(IAop (P ), k)

is the projective cover of SA(P ) (see Proposition 4.10), and the product in
Theorem 6.1 can be written as

⊕

P∈SpecA

TA(P )
(BP )

since SpecA is a finite set by Proposition 2.15 and P ∩ k = 0 for each P ∈
SpecA.
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7 Flat cotorsion modules as flat covers and pure-injective en-

velopes

Let A be a Noether R-algebra. In this section, we prove Theorem 7.6, which
gives other descriptions of each flat cotorsion right A-module in terms of a flat
cover and a pure-injective envelope.

Lemma 7.1. For each p ∈ SpecR, let f(p) : F (p) → M(p) be a flat cover in
ModA such that F (p) is p-local and p-complete. Then the product

∏

p∈SpecR

f(p) :
∏

p∈SpecR

F (p)→
∏

p∈SpecR

M(p)

is a flat cover.

Proof. Denote the product of morphisms by f : F →M , where F is a flat right
A-module since A is left noetherian. For every flat right A-module F ′, the mor-
phism HomA(F

′, f(p)) is an epimorphism since f(p) is a flat (pre)cover. Hence
the product HomA(F

′, f) =
∏

p∈SpecR HomA(F
′, f(p)) is also an epimorphism.

This shows that f is a flat precover.
It remains to show that f is right minimal. Let g ∈ EndA(F ) such that fg = f .
For each q ∈ SpecR, we have a commutative diagram

F (q) F F F (q)

M

M(q) M(q).

f(q)

inclusion

f

g projection

f

f(q)
projectioninclusion

Since f(q) is a flat cover, the composition in the first row is an isomorphism.
Therefore, g is an isomorphism by Lemma 3.5.

A special case of Lemma 7.1 is discussed in the third paragraph of the proof of
[Eno84, p. 183, Theorem].
The assumption in Lemma 7.1 that each F (p) is p-local and p-complete is satis-
fied if eachM(p) is p-local and p-complete, by Remark 2.21 and Lemma 4.6(1).

Proposition 7.2. Let M be a right A-module that is finitely generated or
projective. Then the morphism M →

∏
m∈MaxRM

∧
m induced by the completion

maps M →M∧
m is a pure-injective envelope.

When A = R, this is shown in [EJ00, Proposition 6.7.3 and Remark 6.7.12].
Let us first recall an elementary fact before giving a proof.

Remark 7.3. For every right A-module M , the morphism g : M →∏
m∈MaxRMm induced by the localization maps M →Mm is a pure monomor-

phism, or equivalently, g⊗A N is a monomorphism in ModR for every finitely
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generated (presented) left A-module N (see [GT12, Lemma 2.19]). Indeed, the
functor − ⊗A N commutes with arbitrary direct products (see [EJ00, Theo-
rem 3.2.22]) and the localization functors (−)m, so the morphism g ⊗A N can
be written as M ⊗R N →

∏
m∈MaxR(M ⊗R N)m. This is a monomorphism,

because if a given element x of M ⊗R N becomes zero in (M ⊗R N)m for all
m ∈MaxR, then x is zero in M ⊗R N ; see [Mat89, Theorem 4.6].
It is also seen from the above argument that, given a family {Mb}b∈B of right
A-modules, the canonical inclusion

⊕
b∈BMb →֒

∏
b∈BMb is a pure monomor-

phism ([Pre09, Lemma 2.1.10]).

Proof of Proposition 7.2. Denote by f the morphism M →
∏

m∈MaxRM
∧
m. To

see that f is left minimal, it suffices, by (3.3), to show that each morphism
M → M∧

m is left minimal for all m ∈ MaxR (since M∧
m is m-local and m-

complete), and this follows from the adjoint property of the m-adic completion
functor (Proposition A.9).
It remains to check that f is a pure-injective preenvelope. If M is finitely
generated, then each M∧

m is pure-injective by Proposition 2.2(1), Remark 2.21,
and (2.9). IfM is projective, then

∏
m∈MaxRM

∧
m is flat cotorsion (Remark 5.7)

and hence pure-injective by Proposition 2.3. Therefore, it suffices to check
that f is a pure monomorphism; see Proposition 2.5(1). By Remark 7.3, we only
need to check that the completion map Mm → M∧

m is a pure monomorphism
for each m ∈ MaxR, so we may assume that A is a Noether algebra over a
local ring R with maximal ideal m.
IfM is finitely generated, then the completion mapM → M̂ is a pure monomor-
phism since it coincides with the map induced by the pure monomorphism
R→ R̂; see section 2.5.
If M is projective, then we may replace it by a free module A(B) with basis B.
The inclusion g : A(B) →֒ AB and the canonical morphism η : idModA → Λm of
functors ModA→ ModA yield a commutative diagram:

A(B) Λm(A(B))

AB Λm(AB).

g

η(A(B))

Λmg

η(AB)

The functor Λm commutes with arbitrary direct products (Proposition A.8), so
Λm(AB) ∼= (ΛmA)B and η(AB) is identified with η(A)B .
Now, g is a pure monomorphism (Remark 7.3). The completion map

η(A) : A → ΛmA = Â is also a pure monomorphism as we recalled above,
and hence so is η(A)B = η(AB) (because tensoring with a finitely generated
module commutes with arbitrary direct products; see Remark 7.3). Therefore
the commutative diagram above implies that η(A(B)) is a pure monomorphism,
as desired.

As a consequence of Proposition 7.2, we obtain the following remark:

Documenta Mathematica 27 (2022) 1101–1167



1142 R. Kanda, T. Nakamura

Remark 7.4. Let P ∈ SpecA and p := P∩R. Recall that TA(P ) is a projective

right Âp-module (Remark 5.3). It then follows from Proposition 7.2 that the
completion map

f : TA(P )
(B) → (TA(P )

(B))∧p

is a pure-injective envelope in Mod Âp, for every set B. Hence the cokernel of

this map is a flat right Âp-module (see Proposition 2.8 and Lemma 2.7). The

cokernel is also a flat right A-module, as the canonical maps A → Ap → Âp

are flat ring homomorphisms. This shows that f is a pure monomorphism in
ModA as well. Moreover, f is left minimal in ModA by Proposition A.9, and
(TA(P )

(B))∧p is pure-injective in ModA by Proposition 5.4. Therefore, f is a
pure-injective envelope in ModA.

Let us consider the case where A = R is a local ring and P = m is its maximal
ideal. Then TR(m) ∼= R̂, so the pure-injective envelope of R̂(B) (which is also

the cotorsion envelope) is the completion map f : R̂(B) → R̂(B). If B is an
infinite set and the Krull dimension of R is greater than 0, then f is not an
isomorphism. This shows that a direct sum of copies of TA(P ) is neither pure-
injective nor cotorsion in general.

Lemma 7.5. For each p ∈ SpecR, let g(p) : M(p) → H(p) be a pure-injective
envelope in ModA such that H(p) is p-local and p-complete. Then the mor-
phism

g :
⊕

p∈SpecR

M(p)→
∏

p∈SpecR

H(p)

induced by {g(p)}p∈SpecR is a pure-injective envelope.

Proof. We first remark that g is factorized as the composition of the direct sum

⊕

p∈SpecR

g(p) :
⊕

p∈SpecR

M(p)→
⊕

p∈SpecR

H(p)

and the canonical map
⊕

p∈SpecRH(p) →
∏

p∈SpecRH(p), where the former
map is evidently a pure monomorphism, and so is the latter by Remark 7.3.
It follows from the definition of pure-injective modules that the direct prod-
uct

∏
p∈SpecRH(p) is pure-injective. Thus, g is a pure monomorphism into a

pure-injective module, that is, g is a pure-injective preenvelope; see Proposi-
tion 2.5(1).

It remains to show the left minimality of g : M → H , where M :=⊕
p∈SpecRM(p) and H :=

∏
p∈SpecRH(p). Let h ∈ EndA(H) with hg = g.
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For each q ∈ SpecR, we have a commutative diagram

M(q) M(q)

M

H(q) H H H(q).

g(q)
inclusion

g(q)

g g

projection

inclusion h projection

Since g(q) is a pure-injective envelope, the composition in the second row is an
isomorphism. Therefore, h is an isomorphism by Lemma 3.5.

We can now prove the main result in this section. Recall that, for a right A-
module M , its pure-injective envelope and cotorsion envelope are denoted by
HA(M) and CA(M), respectively.

Theorem 7.6. For every family of sets {BP }P∈SpecA, we have isomorphisms
of right A-modules

FA(
∏

P∈SpecA

SA(P )
(BP )) ∼=

∏

P∈SpecA

(TA(P )
(BP ))∧P∩R

∼= HA(
⊕

P∈SpecA

TA(P )
(BP )),

where HA can be replaced by CA.

Proof. For every P ∈ SpecA, we have a flat cover

f(P ) : (TA(P )
(BP ))∧P∩R → SA(P )

(BP )

and a pure-injective envelope

g(P ) : TA(P )
(BP ) → (TA(P )

(BP ))∧P∩R

by Proposition 4.10, Proposition 5.4, and Remark 7.4. Fix p ∈ SpecR, and
define f(p) : F (p) → M(p) and g(p) : N(p) → H(p) as the direct sum of f(P )
and the direct sum of g(P ), respectively, for all P ∈ SpecA with P ∩ R = p.
Since there are only finitely many such P (Proposition 2.15), f(p) and g(p) are a
flat cover and a pure-injective envelope, respectively (see [Xu96, Theorems 1.2.5
and 1.2.10]). Moreover, F (p) = H(p) is p-local and p-complete. Thus the
first and the second isomorphisms in the theorem follow from Lemma 7.1 and
Lemma 7.5, respectively. Proposition 2.8 shows thatHA can be replaced by CA.

Remark 7.7. It is known that each pure-injective right module M over an

arbitrary ring A has a decomposition M ∼= HA(
⊕

c∈CM
(Bc)
c ) ⊕ N , where
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{Mc}c∈C is a family of indecomposable pure-injective modules such that Mc 6∼=
Mc′ whenever c 6= c′, {Bc}c∈C is a family of sets, and N is a superdecomposable
module, that is, a module having no indecomposable direct summands. The
cardinality of each Bc and the isoclass of N are uniquely determined by M .
See [Pre09, Theorem 4.4.2].
For a flat cotorsion right module M over a Noether R-algebra A, this fact has
been explicitly realized as

M ∼= HA(
⊕

P∈SpecA

TA(P )
(BP ))

by Theorem 6.1 and the second isomorphism in Theorem 7.6. Note that the
superdecomposable summand N is interpreted as the zero module.

Remark 7.8. Another general fact we should mention is that every flat right
module over an arbitrary ring admits a pure monomorphism into a direct prod-
uct of indecomposable flat cotorsion right modules; this was shown by Guil
Asensio and Herzog [GAH07, Corollary 10]. In particular, if the ring is left co-
herent, then this result implies that every flat cotorsion right module is a direct
summand of a direct product of indecomposable flat cotorsion right modules,
as flat cotorsion right modules are pure-injective (see Remark 2.4).
In the case of a Noether R-algebra A, we can recover the result ([GAH07,
Corollary 10]) as follows: Given a flat right A-module M , the pure-injective
envelope M → HA(M) is a pure monomorphism into a flat cotorsion module
(see Propositions 2.5 and 2.8 and Lemma 2.7), so we may assume that M itself
is flat cotorsion, and thus

M ∼=
∏

P∈SpecA

(TA(P )
(BP ))∧P∩R

by Theorem 6.1. We show that the canonical morphism
∏

P∈SpecA

(TA(P )
(BP ))∧P∩R →

∏

P∈SpecA

(TA(P )
BP )∧P∩R (7.1)

is a pure monomorphism. As we observed in Remark 7.3, it suffices to see that
− ⊗A N applied to (7.1) is a monomorphism for every finitely generated left
A-module N . We also observed that −⊗A N commutes with direct products.
Since TA(P )

(BP ) and TA(P )
BP are flat, Proposition A.2 implies that − ⊗A N

applied to (7.1) becomes

∏

P∈SpecA

((TA(P )⊗A N)(BP ))∧P∩R →
∏

P∈SpecA

((TA(P )⊗A N)BP )∧P∩R,

which is clearly a monomorphism. Thus (7.1) is a pure monomorphism. Since
completion commutes with direct products (Proposition A.8) and each TA(P )
is (P ∩R)-complete, the right-hand side of (7.1) is

∏
P∈SpecA TA(P )

BP , which
is a direct product of indecomposable flat cotorsion right A-modules.
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8 Ziegler spectra and elementary duality

Let A be a Noether R-algebra. Combining Theorem 2.22 and Corollary 6.2, it
follows that there exists a one-to-one correspondence between the isoclasses of
indecomposable injective left A-modules and the isoclasses of indecomposable
flat cotorsion right A-modules, given by IAop (P ) 7→ TA(P ) for each P ∈ SpecA.
In this section, we observe that this one-to-one correspondence is compatible,
and is actually induced from, elementary duality between the Ziegler spectrum
of Aop and that of A (Theorem 8.14).
For a while, let A be an arbitrary ring. Denote by fp(modA,Ab) the cat-
egory of finitely presented additive functors modA → Ab, where modA is
the category of finitely presented right A-modules and Ab is the category of
abelian groups. Each functor F ∈ fp(modA,Ab) admits a unique extension
−→
F : ModA → Ab (up to isomorphism) that commutes with (filtered) direct

limits. By definition, there exists an exact sequence HomA(M,−)
HomA(f,−)
−−−−−−−→

HomA(L,−) → F → 0 in fp(modA,Ab), where f : L → M is a morphism in

modA, and the extension
−→
F can be defined as the cokernel of the same mor-

phism HomA(M,−)
HomA(f,−)
−−−−−−−→ HomA(L,−) but regarded as a morphism of

functors ModA→ Ab; see [Pre09, Corollary 10.2.42].
Denote by ZgA the Ziegler spectrum of A, which is a topological space whose
points are the isoclasses of indecomposable pure-injective rightA-modules (they
actually form a small set; see [Pre09, Corollary 4.3.38]). The topology on ZgA
is defined so that { (F ) | F ∈ fp(modA,Ab) } is an open basis, where

(F ) := {N ∈ ZgA |
−→
F (N) 6= 0 }

for each F ∈ fp(modA,Ab); see [Pre09, Corollary 10.2.45].
Although this definition of the topology is convenient, it should be mentioned
that the topology was originally introduced in terms of model theory for mod-
ules, and such a viewpoint helps us to understand elementary duality, particu-
larly via Lemma 8.3. For this reason, we interpret the topology on the Ziegler
spectrum via model theoretic language.
Let l, m, and n be nonnegative integers. Let H and H ′ be matrices whose
entries are elements of A, where H is an n × l matrix and H ′ is an m × l
matrix. A pp-formula (positive primitive formula) φ for right A-modules is a
formula of the form ∃y(xH = yH ′), where x = (x1, . . . , xn) is a tuple of free
variables and y = (y1, . . . , ym) is a tuple of variables bound by the existential
quantifier. So n is referred to as the number of free variables in φ.
For each right A-module M , the pp-formula φ defines an abelian subgroup of
Mn as

Fφ(M) := { x ∈Mn | there exists y ∈Mm such that xH = yH ′ },

where x and y are regarded as row vectors. A subgroup of Mn of this form
(for some l and m) is called a subgroup of Mn pp-definable in M . For every
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morphism f : M → N in ModA, the direct sum fn : Mn → Nn restricts to a
homomorphism Fφ(M)→ Fφ(N) of abelian groups. So we obtain an additive
functor Fφ : ModA→ Ab.
Let φ and ψ be pp-formulas for right A-modules, and suppose that they have
the same number, say n, of free variables. Then both Fφ(M) and Fψ(M) are
subgroups ofMn for eachM ∈ModA. We write φ ≤ ψ if Fφ(M) ⊆ Fψ(M) for
all right A-modules M . Moreover, φ and ψ are said to be equivalent if φ ≤ ψ
and φ ≥ ψ, in which case we have equality of functors Fφ = Fψ .
A pp-pair φ/ψ is a pair of pp-formulas with φ ≥ ψ. Each pp-pair φ/ψ defines an
additive functor Fφ/ψ : ModA→ Ab by the assignment M 7→ Fφ(M)/Fψ(M).
The following remarkable fact allows us to understand the topology on ZgA via
pp-pairs.

Theorem 8.1. Let A be a ring. For each pp-pair φ/ψ, the functor
Fφ/ψ : ModA → Ab commutes with direct limits and its restriction to modA
belongs to fp(modA,Ab). Conversely, for each F ∈ fp(modA,Ab), there exists

a pp-pair φ ≥ ψ such that
−→
F ∼= Fφ/ψ as functors ModA→ Ab.

Proof. See [Pre09, Lemma 1.2.31 and Remark 10.2.29] for the first statement,
and [Pre09, Proposition 10.2.43] for the second.

In fact, the category fp(modA,Ab) is equivalent to the category of pp-pairs for
right A-modules; see [Pre09, Theorem 10.2.30].
It follows from Theorem 8.1 that

{ (Fφ/ψ) | φ/ψ is a pp-pair for right A-modules }

is an open basis for ZgA.
We now explain elementary duality, first in terms of pp-formulas. Let φ be a pp-
formula ∃y(xH = yH ′) for right A-modules, where H is an n× l matrix and H ′

is an m× l matrix. Regarding the transposes Ht and H ′t as matrices over Aop,
we can define the pp-formula Dφ for right Aop-modules to be ∃z(xK = zK ′),
where x = (x1, . . . , xn) is a tuple of free variables, z = (z1 . . . , zl) is a tuple of
bound variables, K :=

(
I 0

)
, K ′ :=

(
Ht H ′t

)
, I is the n×n identity matrix,

and 0 is the n ×m zero matrix. The pp-formula Dφ is called the elementary
dual of φ. For each right Aop-module M ,

FDφ(M) = { x ∈Mn | there exists z ∈M l such that xK = zK ′ }

= { x ∈Mn | there exists z ∈M l such that x = zHt and zH ′t = 0 }.

If we regard M as a left A-module and x and z as column vectors, then the
equations in the second line can be written as x = Hz and H ′z = 0.
We can apply the same construction to Dφ and obtain the pp-formula D2φ =
DDφ for right A-modules. Elementary duality claims that D2φ is equivalent
to φ, and moreover, two pp-formulas φ and ψ satisfy φ ≥ ψ if and only if
Dψ ≥ Dφ. Denote by ppnA the poset of equivalent classes of pp-formulas in n
free variables for right A-modules. In fact, this is a modular lattice; see [Pre09,
§1.1.3].
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Theorem 8.2 (Elementary duality of pp-formulas). Let A be a ring. The
operator D is an anti-isomorphism from ppnA to ppnAop for each n ≥ 0.

Proof. See [Pre09, Proposition 1.3.1].

The following fact is the key to describe elementary duality of Ziegler spectra:

Lemma 8.3. Let A be a ring and let M be a right A-module. Fix a ring
homomorphism S → EndA(M) from a ring S. Let E be an injective cogenerator
in ModSop and set M∗ := HomSop(M,E) ∈ ModAop. For each pp-pair φ/ψ,
we have Fφ/ψ(M) = 0 if and only if FDψ/Dφ(M

∗) = 0.

Proof. See [Pre09, Theorem 1.3.15].

Let U be an open subset of ZgA such that U = (Fφ/ψ) for some pp-pair φ/ψ for
right A-modules. Since Dψ/Dφ is a pp-pair for right Aop-modules, (FDψ/Dφ)
is an open subset of ZgAop , which does not depend on the choice of the pp-pair
φ/ψ for U . Indeed, for eachN ∈ ZgAop , Lemma 8.3 (applied to S := EndAop(N)
and arbitrary E) implies that

N ∈ (FDψ/Dφ) ⇐⇒ FDψ/Dφ(N) 6= 0 ⇐⇒ Fφ/ψ(N
∗) 6= 0 ⇐⇒ N∗ ∈ U.

Therefore we can write DU := (FDψ/Dφ). Then D
2U = U by Theorem 8.2, so

this gives an order-preserving bijection between open bases of ZgA and ZgAop ,
so it extends uniquely to an order-preserving bijection between all open subsets
of ZgA and those of ZgAop . We summarize these facts in the next theorem,
which was originally shown by Herzog [Her93, Proposition 4.4].

Theorem 8.4 (Elementary duality of Ziegler spectra). For every ring A, there
is an order-preserving bijection

D : { open subsets of ZgA }
∼−→ { open subsets of ZgAop },

which sends (Fφ/ψ) to (FDψ/Dφ) for each pp-pair φ/ψ.

Proof. See [Pre09, Theorem 5.4.1].

We may also interpret elementary duality as an order-preserving bijection be-
tween the closed subsets of ZgA and those of ZgAop in an obvious way; that is,
given a closed subset C ⊆ ZgA, its complement Cc = ZgA \ C is open, so send
C to DC := (D(Cc))c = ZgAop \ D(Cc). Note that, if C is also open, then
elementary duality for open subsets and that for closed subsets send C to the
same open closed subset of ZgAop . Thus we can safely denote both bijections
by D.

Remark 8.5. Elementary duality does not mean that there is a homeomor-
phism between ZgA and ZgAop . This is due to the fact that the Ziegler spectrum
is not necessarily a T0-space, that is, it may contain topologically indistinguish-
able points (see [Pre09, p. 267]). It is not known in general whether ZgA is
homeomorphic to ZgAop ; see [Pre09, Question 5.4.8].
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We next explain how elementary duality is interpreted in terms of finitely pre-
sented functors.

Theorem 8.6 (Auslander-Gruson-Jensen duality). For every ring A, there is
a duality of categories

d : fp(modA,Ab) ∼−→ fp(modAop,Ab)

given by F 7→ dF , where (dF )(L) := Hom(F,− ⊗A L) for L ∈ modAop. Its
quasi-inverse is given by G 7→ dG, where (dG)(M) := Hom(G,M ⊗A −) for
M ∈ modA.

Proof. [Pre09, Theorem 10.3.4].

It is known that the equivalence d in Theorem 8.6 sends Fφ/ψ to FDψ/Dφ for
each pp-pair φ/ψ; see [Pre09, Corollary 10.3.8] and its proof. Thus the bijection
in Theorem 8.4 can also be written as (F ) 7→ (dF ) for F ∈ fp(modA,Ab).
It would be worth noting that there is an order-preserving bijection between
the open subsets of ZgA and the Serre subcategories of fp(modA,Ab) ([Her97,
Theorem 3.8] and [Kra97, Theorem 4.2]). Hence the bijection in Theorem 8.4
induces a bijection between the Serre subcategories of fp(modA,Ab) and those
of fp(modAop,Ab); this also follows from Theorem 8.6.
On the other hand, there is an order-preserving bijection between the closed
subsets of ZgA and the definable subcategories of ModA, that is, full subcate-
gories of ModA closed under direct limits, direct products, and pure submod-
ules (see [Pre09, Corollary 5.1.6]). Typical examples are the subcategory of
injective right A-modules when A is right noetherian and the subcategory of
flat right A-modules when A is left coherent (see [Pre09, Theorem 3.4.28(a)
and Theorem 3.4.24]). Given a definable subcategory, its corresponding closed
subset is obtained by collecting the isoclasses of indecomposable pure-injective
modules in the subcategory.
Now let A be a Noether R-algebra. Denote by injA (resp. flcotA) the set
of isoclasses of indecomposable injective (resp. indecomposable flat cotorsion)
right A-modules. As we observed in Propositions 2.1 and 2.3, the flat cotorsion
right A-modules are precisely the flat pure-injective right A-modules. So injA
and flcotA are closed subsets of ZgA by the above observation. We endow injA
and flcotA with the topologies induced from ZgA.

Lemma 8.7. Let A be a Noether R-algebra and let P ∈ SpecA. For each open
subset U ⊆ ZgAop , we have IAop(P ) ∈ U if and only if TA(P ) ∈ DU .

Proof. Since elementary duality D is order-preserving and ZgAop has an open
basis {(Fφ/ψ)}, we may assume that U = (Fφ/ψ) for some pp-pair φ/ψ for right
Aop-modules, and hence DU = (FDψ/Dφ).
Let p := P ∩R. Since IAop(P ) is p-local by (2.6), there is a ring homomorphism
Rp → EndAop(IAop (P )) given by scalar multiplication. Moreover, ER(R/p) ∼=
ERp

(κ(p)) is an injective cogenerator in ModRp ([ILL+07, Lemma A.27]),
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and by definition TA(P ) = HomR(IAop(P ), ER(R/p)). Thus, it follows from
Lemma 8.3 that Fφ/ψ(IAop (P )) 6= 0 if and only if FDψ/Dφ(TA(P )) 6= 0. There-
fore IAop(P ) ∈ U if and only if TA(P ) ∈ DU .

Theorem 8.8. Let A be a Noether R-algebra. Then the bijection injAop
∼−→

flcotA given by IAop (P ) 7→ TA(P ) is a homeomorphism.

Proof. Lemma 8.7 implies that, for each open subset U ⊆ ZgAop , the bijection
injAop

∼−→ flcotA restricts to a bijection U ∩ injAop
∼−→ DU ∩ flcotA. Hence the

result follows.

We can deduce from Lemma 8.7 that

D(injAop) = flcotA. (8.1)

for a Noether R-algebra A. Indeed, setting U := (injAop)c, we obtain DU ∩
flcotA = ∅ from Lemma 8.7, and hence D(injAop) = (DU)c ⊇ flcotA. On the
other hand, setting O := (flcotA)

c and applying Lemma 8.7 to DO ⊆ ZgAop ,
we obtain DO ∩ injAop = ∅. This implies that injAop ⊆ (DO)c = D(flcotA),
and hence D(injAop) ⊆ D2(flcotA) = flcotA. Therefore (8.1) holds.
In fact, (8.1) holds for an arbitrary left coherent ring A ([Her93, Theorem 9.3]).
Moreover, Herzog proved that elementary duality “constitutes” a homeomor-
phism injAop

∼−→ flcotA for a class of rings A, including all left noetherian rings
([Her93, Corollary 9.6]). In the rest of this section, we prove that our home-
omorphism in Theorem 8.8 coincides with Herzog’s one when A is a Noether
R-algebra.
Recall that a generic point of a topological space X is a point x ∈ X whose
closure is the whole space X .

Definition 8.9. Let A be a ring. A point N ∈ ZgA is called reflexive if its
closure {N} has a unique generic point (which is necessarily N) and if the
elementary dual D{N} of {N} also has a unique generic point. In this case,
the generic point of D{N} is denoted by DN and called the elementary dual
of N .

If N ∈ ZgA is reflexive, then DN is also reflexive and D2N = N by definition.
Thus we have a bijection between the reflexive points in ZgA and those in
ZgAop given by N 7→ DN . Herzog’s homeomorphism injAop

∼−→ flcotA (for
a left noetherian ring A) is realized as a restriction of this bijection based
on the fact that all points of injAop and flcotA are reflexive; see [Her93, the
last paragraph of §4 and the paragraph preceding Corollary 9.6], where the
definition of reflexivity (see [Her93, the paragraph preceding Theorem 4.10]) is
stronger than ours following [Pre09, p. 271]. The dual of a reflexive point N in
the former sense is actually DN defined as above; see [Pre09, Theorems 5.3.2
and 5.4.12].
Therefore, to see that Herzog’s homeomorphism coincides with ours for a
Noether algebra A, it is enough to show that each TA(P ) is the elementary
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dual of IAop(P ); this will be done in Theorem 8.14. We also give an explicit
proof for the reflexivity of points in injAop and flcotA.
For this purpose, we describe the topology on injA in terms of prime ideals
of A. The description is merely a paraphrase of known results.

Definition 8.10. Let A be a Noether R-algebra. For a right A-module M ,
define the support of M to be

SuppAM := {P ∈ SpecA | HomA(M, IA(P )) 6= 0 }.

This support coincides with the classical one in commutative algebra. Indeed,
by (2.6) and Remark 2.13,

HomA(M, IA(P )) ∼= HomAp
(Mp, IA(P )), (8.2)

where p := P ∩R. If A = R, then IA(P ) = ER(R/p) is an injective cogenerator
in ModRp. It should also be mentioned that Definition 8.10 just imitates
the description of an open basis for injA given by Herzog and Krause; see
Remark 8.12 below.
Let us state an auxiliary proposition. We say that a subset Φ ⊆ SpecA is
specialization-closed (resp. generalization-closed) if, for every pair P ⊆ Q in
SpecA, P ∈ Φ implies Q ∈ Φ (resp. Q ∈ Φ implies P ∈ Φ).

Proposition 8.11. Let A be a Noether R-algebra.

(1) For every short exact sequence 0→ L→M → N → 0 of right A-modules,

SuppAM = SuppA L ∪ SuppAN.

(2) For every P ∈ SpecA, SuppA(A/P ) = {Q ∈ SpecA | P ⊆ Q }, which is
the smallest specialization-closed subset of SpecA containing P .

(3) For every right A-module M , SuppAM is specialization-closed.

Proof. (1): Applying the exact functor HomA(−, IA(P )), for each P ∈ SpecA,
to the given short exact sequence, we obtain the result.
(2): Let Q ∈ SpecA. First assume that P ⊆ Q. We have canonical morphisms
A/P ։ A/Q →֒ EA(A/Q). Since EA(A/Q) is a finite direct sum of copies
of IA(Q) by (2.5), there exists a nonzero morphism A/P → IA(Q). Thus
Q ∈ SuppA(A/P ).
Conversely, assume that Q ∈ SuppA(A/P ). Then there exists a nonzero mor-
phism f : A/P → EA(A/Q). Since A/Q is an essential submodule of EA(A/Q),
the intersection Im f ∩ (A/Q) is nonzero. This means that A/Q has a nonzero
submodule annihilated by P . Therefore P ⊆ Q by the definition of prime
ideals.
(3): Let P ⊆ Q in SpecA and P ∈ SuppAM . Then there exists a nonzero
morphism g : M → IA(P ). Let N := Im g. Since IA(P ) is p-local by (2.6), Np is
a nonzero Ap-submodule of IA(P ) = EA(SA(P )), and hence Np contains SA(P )

Documenta Mathematica 27 (2022) 1101–1167



Flat Cotorsion Modules over Noether Algebras 1151

as an Ap-submodule. Thus, by [GN02, Lemma 2.5.1], there is a monomorphism
from A/P to a finite direct sum of copies of N . Therefore Q ∈ SuppA(A/P ) ⊆
SuppAN ⊆ SuppAM by (1) and (2).

Remark 8.12. It is known (for any ring A) that there is a bijection from ZgA
to the set of isoclasses of indecomposable injective objects in (modAop,Ab),
the category of additive functors modAop → Ab, given by M 7→ M ⊗A −
([Pre09, Corollary 12.1.9]). Extending this viewpoint, Herzog [Her97] and
Krause [Kra97] studied the spectrum formed by isoclasses of indecomposable
injective objects for an arbitrary locally coherent Grothendieck category. In
particular, when A is a Noether R-algebra (or more generally, when A is a
right coherent ring), their work provides another way to think of injA as a
topological space, with open basis consisting of all subsets of the form

(M) := { I ∈ injA | HomA(M, I) 6= 0 }

for some finitely presented right A-module M ; see [Her97, Corollary 3.5] or
[Kra97, Corollary 4.6]. It follows from [Pre09, Theorem 5.1.11] and [Kra97,
Corollary 4.3] that this topology coincides with the induced topology on injA
as a (closed) subset of ZgA.

Proposition 8.13. Let A be a Noether R-algebra. There is an order-preserving
bijection

{ specialization-closed subsets of SpecA } ∼−→ { open subsets of injA }

given by Φ 7→ { IA(P ) | P ∈ Φ }.

Proof. We show that the bijection in Theorem 2.22 induces the desired bi-
jection. By the above observation, injA (with topology induced from ZgA)
has an open basis consisting of all subsets of the form (M) for some finitely
presented right A-module M . Furthermore, each subset (M) ⊆ injA corre-
sponds to SuppAM by the bijection in Theorem 2.22. So it suffices to show
that a subset Φ ⊆ SpecA is specialization-closed if and only if Φ is the union
of subsets of the form SuppAM for some M ∈ modA. The “if” part fol-
lows from Proposition 8.11(3). Conversely, if Φ is specialization-closed, then
Φ =

⋃
P∈Φ SuppA(A/P ) by Proposition 8.11(2).

By Theorem 8.8 and Proposition 8.13, we obtain an order-preserving bijection

{ specialization-closed subsets of SpecA } ∼−→ { open subsets of flcotA } (8.3)

given by Φ 7→ {TA(P ) | P ∈ Φ }.
The following is the main theorem in this section:

Theorem 8.14. Let A be a Noether R-algebra. Then all points in injAop and
flcotA are reflexive. For each P ∈ SpecA, the elementary dual of IAop(P ) is
TA(P ).
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Proof. By Proposition 8.13 and (8.3), the generalization-closed subsets of
SpecA bijectively correspond to the closed subsets of injAop and the closed sub-
sets of flcotA. Let P ∈ SpecA, I := IAop(P ) ∈ injAop , and T := TA(P ) ∈ flcotA.
The generalization-closed subset Ψ := {Q ∈ SpecA | Q ⊆ P } corresponds
to the closures {I} ⊆ injAop and {T } ⊆ flcotA, and none of the proper
generalization-closed subsets of Ψ contains P . Hence I and T are the unique
generic points of {I} and {T }, respectively. Consequently, I and T are reflexive.
It remains to show that D{I} = {T }. This follows from the next lemma.

Lemma 8.15. Let A be a Noether R-algebra. For every closed subset C ⊆ injAop ,
we have

DC = {TA(P ) ∈ flcotA | P ∈ SpecA, IAop(P ) ∈ C }.

For every P ∈ SpecA, it follows that D{IAop(P )} = {TA(P )}.

Proof. Since injAop is closed in ZgAop , the subset C is also closed in ZgAop

and DC ⊆ D(injAop) = flcotA by (8.1). Moreover, Lemma 8.7 implies that
IAop(P ) ∈ injAop \ C if and only if TA(P ) ∈ flcotA \DC for each P ∈ SpecA.
In other words, IAop (P ) ∈ C if and only if TA(P ) ∈ DC for each P ∈ SpecA.
Thus we obtain the desired description of DC. The last statement of the lemma
follows because Proposition 8.13 and (8.3) show that the closures of IAop(P )
and TA(P ) both correspond to the generalization closure of P .

Example 8.16. Consider the algebra A in Example 6.3. For two prime ideals
Pi(p) and Pj(q) of A, we have Pi(p) ⊆ Pj(q) if and only if i = j and p ⊆ q.
So we have an order-preserving bijection from SpecA to the disjoint union
SpecR ∐ SpecR given by Pi(p) 7→ (p in the ith SpecR). Every specialization-
closed subset of SpecA is of the form Φ1∐Φ2, where each Φi is a specialization-
closed subset of the ith SpecR. Hence, by (8.3), all open subsets of flcotA are
of the form

{TA(P1(p)) | p ∈ Φ1 } ∪ {TA(P2(p)) | p ∈ Φ2 },

where Φ1 and Φ2 are specialization-closed subsets of SpecR. The closure of
each TA(Pi(q)) in flcotA is

{TA(Pi(p)) | q ⊆ p }.

Although (8.3) describes the induced topology on flcotA explicitly, it is also
possible to give an open basis for flcotA in a similar way to Remark 8.12:

Proposition 8.17. The set of subsets of flcotA of the form

{TA(P ) ∈ flcotA | TA(P )⊗AM 6= 0 }

for some finitely generated left A-module M is an open basis for flcotA.

Proof. Recall that IAop(P ) ∼= Hom
R̂p

(TA(P ), ER(R/p)), where p := P ∩ R

(Proposition 4.13). Using this isomorphism and the tensor-hom adjunction, we
obtain

HomAop(M, IAop(P )) ∼= Hom
R̂p

(TA(P )⊗AM,ER(R/p))
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for every left A-module M . Since ER(R/p) ∼= E
R̂p

(κ(p)) is an injective cogen-

erator in Mod R̂p, we have

SuppAop M = {P ∈ SpecA | TA(P )⊗AM 6= 0 }.

Thus the desired conclusion follows from (8.3) and Proposition 8.11.

Appendix A Ideal-adic completion

Let R be a commutative noetherian ring and A a Noether R-algebra. This
appendix provides basic facts on a-adic completion of right A-modules, where
a is an ideal of R. All results here are generalizations or restatements of known
results for R. Although the proofs resemble those for the commutative case,
we provide a precise proof to each result for the reader’s sake.
We denote by ModA (resp. modA) the category of all (resp. finitely generated)
right A-modules, and interpret ModAop as the category of all left A-modules,
where Aop is the opposite ring. The a-adic completion functor Λa : ModA →
ModA is defined by

Λa := lim
←−
n≥1

(−⊗R R/a
n).

The functor Λa is often written as (−)∧a . A right A-module M is called a-
complete if the canonical morphism M →M∧

a is an isomorphism.
We start with the following lemma, which follows from the Artin-Rees lemma
over R and an intersection property of a flat right A-module.

Lemma A.1. Let F be a flat right A-module and let a ⊆ R be an ideal. Then
the functor

(F ⊗A −)
∧
a : modAop → ModR

is exact.

Proof. Let 0 → L → M → N → 0 be an exact sequence of finitely generated
left A-modules. This is sent by the functor F ⊗A − to an exact sequence of
R-modules

0→ F ⊗A L→ F ⊗AM → F ⊗A N → 0.

We regard L (resp. F ⊗AL) as a submodule ofM (resp. F ⊗AM). By [Mat89,
Theorem 8.1], it is enough to see that the a-adic topology on F ⊗A L coincides
with the topology induced from the a-adic topology on F ⊗AM .
Let n ≥ 1 be an integer. Since F is flat, the inclusion anM →֒ M induces a
canonical injection F ⊗A (anM) →֒ F ⊗AM , and

F ⊗A (anM) = an(F ⊗AM) (A.1)

as R-submodules of F ⊗AM .
By the Artin-Rees lemma [Mat89, Theorem 8.5], there is an integer c > 0 such
that

anL ⊆ (anM) ∩ L ⊆ an−cL,
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for every n > c. Application of F ⊗A − to this sequence yields

F ⊗A (anL) ⊆ F ⊗A ((anM) ∩ L) ⊆ F ⊗A (an−cL), (A.2)

where the middle term coincides with

(F ⊗A (anM)) ∩ (F ⊗A L)

because the exact functor F⊗A− preserves intersections of submodules. Hence,
using (A.1), we can rewrite (A.2) as

an(F ⊗A L) ⊆ (an(F ⊗AM)) ∩ (F ⊗A L) ⊆ an−c(F ⊗A L),

and this shows that the a-adic topology on F ⊗AL coincides with the topology
induced from the a-adic topology on F ⊗AM , as desired.

Proposition A.2. Let F be a flat right A-module and let a ⊆ R be an ideal.
Then there is a canonical isomorphism

F∧
a ⊗A −

∼−→ (F ⊗A −)
∧
a

of functors modAop → ModR.

Proof. By Lemma A.1, the functor (F ⊗A−)
∧
a is right exact, so the Eilenberg-

Watts theorem ([Wat60, Theorem 2]) gives a canonical isomorphism (F ⊗A
A)∧a ⊗A−

∼−→ (F ⊗A−)∧a . The desired isomorphism follows from the canonical
isomorphism F ⊗A A ∼−→ F of right A-modules.

Proposition A.3. Let F be a flat right A-module and let a ⊆ R be an ideal.
Then F∧

a is a flat right A-module.

Proof. By Lemma A.1 and Proposition A.2, the functor F∧
a ⊗A − is exact on

modAop. This implies that F∧
a is a flat right A-module (see [Ste75, Proposi-

tion I.10.6], for example).

In the case where A = R, Proposition A.3 was shown by Gruson and Raynaud
[RG71, Part II, (2.4.2) and Proposition 2.4.3.1] when a ⊆ R is a maximal ideal,
and by Bartijn [Bar85, Chapter 1, Corollary 4.7] for arbitrary a. Another
proof was given by Schenzel and Simon [SS18, Theorem 2.4.4]. See [Yek18,
Theorem 1.6] for a certain generalization to non-noetherian commutative rings.
Our proof of Proposition A.3 is essentially the same as Gabber and Ramero
[GR03, Lemma 7.1.6] but the settings are different.
Schenzel and Simon [SS18, Theorem 2.4.4] also showed the flatness of F∧

a over
R∧

a . This will be generalized to Noether algebras in Proposition A.13.
The next two results are often used by experts implicitly.

Lemma A.4. Let a, b ⊆ R be ideals such that an ⊆ b for some n > 0 and
let M be a right A-module. Then the canonical morphism M → M∧

a induces
an isomorphism M ⊗R (R/b) ∼−→M∧

a ⊗R (R/b).
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Proof. It suffices to prove this by regarding M as just an R-module, so the
proof can be found in [Bar85, Chapter I, Theorem 3.1] or [Str90, Theorem 2.2.5],
which deals with completion with respect to a finitely generated ideal of a (pos-
sibly non-noetherian) commutative ring. Note that, in [Str90, Theorem 2.2.5],
a result like Proposition A.2 is implicitly used at the end of the proof. Another
proof can be found in [SS18, Theorem 2.2.2].

Proposition A.5. Let a be an ideal of R. Denote by η : idModA → Λa

the canonical morphism of functors ModA → ModA. For every right A-
module M , the morphisms Λa(ηM) : ΛaM → ΛaΛaM and η(ΛaM) : ΛaM →
ΛaΛaM are isomorphisms. In particular, ΛaM =M∧

a is a-complete.

Proof. Lemma A.4 applied to b = an (n ≥ 1) yields the isomorphism fn : M⊗R
(R/an) ∼−→M∧

a ⊗R (R/an) induced from the completion map M →M∧
a . This

implies that Λa(η(M)) is an isomorphism.
Applying −⊗R R/a

n to the canonical map M∧
a →M ⊗R (R/an) appearing in

the definition of the inverse limit, we obtain gn : M
∧
a ⊗R(R/a

n)→M⊗R(R/an).
As mentioned in the proofs of [Bar85, Chapter I, Proposition 2.3] and [Str90,
Theorem 2.2.5], it is easy to see that gnfn is the identity map, so gn = f−1

n is
also an isomorphism. One can also check that the composition

M∧
a → lim

←−
n≥1

M∧
a ⊗R (R/an) ∼−→ lim

←−
n≥1

M ⊗R (R/an) =M∧
a

of η(ΛaM) and the isomorphism induced by (gn)n is the identity map, so
η(ΛaM) is also an isomorphism.

Remark A.6. Let a and b be ideals of R with a ⊆ b. Then every b-complete
right A-module M is a-complete. Indeed, the composition of the completion
maps M → M∧

a and M∧
a → (M∧

a )
∧
b is an isomorphism since (M∧

a )
∧
b
∼= M∧

b

by Lemma A.4. Thus M is a direct summand of M∧
a . This implies that M is

a-complete by Proposition A.5.

Let a be an ideal of R. The functor Λa : ModA → ModA is not necessarily
left exact or right exact (even if A = R; see [AM69, Chapter 10, Exercise 1],
for example) so it is not isomorphic to − ⊗A A

∧
a . However, Propositions A.7

and A.8 below show some basic properties of Λa.

Proposition A.7. The functor Λa : ModA→ ModA preserves epimorphisms.

Proof. The structure homomorphism ϕ : R → A induces the scalar restriction
functor ϕ∗ : ModA→ ModR. Since a morphism f in ModA is an epimorphism
if and only if ϕ∗(f) is an epimorphism in ModR, it suffices to treat the case
where A = R. Thus the result follows from [Mat89, Theorem 8.1(ii)] because
the a-adic topology of a quotient module M/N coincides with the topology
induced from the a-adic topology of M .

Proposition A.8. The functor Λa : ModA→ ModA commutes with arbitrary
direct products.
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Proof. The R-module R/anR is finitely presented for each n ≥ 1, so a standard
argument shows that the functor − ⊗R R/anR : ModA → ModA commutes
with arbitrary direct products (see [EJ00, Theorem 3.2.22]). Hence the functor
Λa = lim

←−n≥1
(−⊗R R/anR) commutes with arbitrary direct products.

Let a be an ideal of R. The a-torsion functor Γa : ModA→ ModA is defined
by

Γa := lim
−→
n≥1

HomR(R/a
n,−).

A right A-module M is called a-torsion if the canonical morphism ΓaM →M
is an isomorphism.
The functor Γa from ModA to its full subcategory consisting of all a-torsion
modules is a right adjoint to the inclusion functor (Remark 2.23). A similar
result holds for Λa:

Proposition A.9. The functor Λa from ModA to its full subcategory consist-
ing of all a-complete modules is a left adjoint to the inclusion functor.

Proof. This follows from Proposition A.5 and the general theory of categories;
see [KS06, Proposition 4.1.3(iii)].

Lemma A.10 and Proposition A.12 below are essentially stated in [ILL+07,
Remark A.30(7) and (8)] for the case A = R.

Lemma A.10. Let M be an a-torsion right A-module. Then the canonical
morphism M →M ⊗A A∧

a is an isomorphism of right A-modules.

Proof. If N is a right A-module such that anN = 0 for some n > 0, then
N ∼= N ⊗R R/an, so

N⊗AA
∧
a
∼= (N⊗RR/a

n)⊗AA
∧
a
∼= N⊗A(A

∧
a⊗RR/a

n) ∼= N⊗A(A⊗RR/a
n) ∼= N

as right A-modules, where the third isomorphism follows from Lemma A.4.
Now, if M is a-torsion, then M is canonically isomorphic to
lim
−→n≥1

HomR(R/a
n,M). The above argument shows that each

HomR(R/a
n,M) satisfies the property in the statement. Since − ⊗A A∧

a

commutes with direct limits, so does M .

Remark A.11. For a right A-moduleM , its a-adic completionM∧
a is naturally

realized as a right A-submodule of
∏
n≥1M/anM . In particular, we may in-

terpret A∧
a as a subring of

∏
n≥1A/a

nA. So the componentwise action defines
a canonical right A∧

a -module structure on M∧
a . Moreover, taking the a-adic

completion sends each A-homomorphism M → N to an A∧
a -homomorphism

M∧
a → N∧

a , so we may regard (−)∧a as a functor ModA→ ModA∧
a .

For a finitely generated right A-module M , Proposition A.2 gives a canonical
isomorphism M ⊗A A

∧
a → M∧

a of right A-modules. It is easily seen from the
proof that this is an isomorphism of right A∧

a -modules as well.
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Note that a right A∧
a -module is aA∧

a -complete (resp. aA∧
a -torsion) if and only

if it is a-complete (resp. a-torsion) as a right A-module.

Proposition A.12. The functor − ⊗A A∧
a : ModA → ModA∧

a induces an
equivalence from the full subcategory of a-torsion right A-modules to the full
subcategory of a-torsion right A∧

a -modules. Its quasi-inverse is given by the
scalar restriction functor.

Proof. IfM is an a-torsion right A-module, then we have the canonical isomor-
phism M ∼−→ M ⊗A A

∧
a of right A-modules by Lemma A.10, and this means

that the composition of −⊗AA∧
a : ModA→ ModA∧

a and the scalar restriction
functor ModA∧

a → ModA induces an autoequivalence on the full subcategory
of a-torsion right A-modules.
Let N be an a-torsion right A∧

a -module. We only need to check that the
canonical morphism N ⊗A A∧

a → N of right A∧
a -modules is an isomorphism.

This also follows from Lemma A.10 because the composition of the canonical
maps N ∼−→ N ⊗A A∧

a → N is the identity map.

Proposition A.13. For every flat right A-module F , its a-adic completion F∧
a

is a flat right A∧
a -module.

Proof. If L is an a-torsion left A∧
a -module, then L ∼= A∧

a⊗AL as left A∧
a -modules

by Proposition A.12, so

−⊗A∧

a
L ∼= −⊗A∧

a
(A∧

a ⊗A L)
∼= −⊗A L (A.3)

as functors ModA∧
a → ModR∧

a . Similarly to the proof of Lemma A.1, we show
that the functor

(F∧
a ⊗A∧

a
−)∧a : modA∧

a

op
→ ModR∧

a

is exact. By Lemma A.4 and (A.3),

(F∧
a ⊗A∧

a
−)∧a = lim

←−
n≥1

(F∧
a ⊗A∧

a
−)⊗R (R/an)

∼= lim
←−
n≥1

(F ⊗A −)⊗R (R/an) = (F ⊗A −)
∧
a

as functors modA∧
a
op → ModR∧

a . The exactness of the functor (F ⊗A −)∧a
can be shown in the same way as Lemma A.1, using the Artin-Rees lemma
for finitely generated left R∧

a -modules. Hence the functor (F∧
a ⊗A∧

a
−)∧a is also

exact. In the same way as in the proofs of Propositions A.2 and A.3, we have
F∧
a ⊗A∧

a
− ∼= (F∧

a ⊗A∧

a
−)∧a , so F

∧
a is a flat right A∧

a -module.

The following result is analogous to Proposition A.12.

Proposition A.14. The functor (−)∧a : ModA→ ModA∧
a induces an equiva-

lence from the full subcategory of a-complete right A-modules to the full subcat-
egory of a-complete right A∧

a -modules. Its quasi-inverse is given by the scalar
restriction functor.
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Proof. If M is an a-complete right A-module, then by definition we have the
canonical isomorphism M ∼−→ M∧

a of right A-modules, and this means that
the composition of Λa : ModA → ModA∧

a and the scalar restriction functor
ModA∧

a → ModA induces an autoequivalence on the full subcategory of a-
complete right A-modules.
Let N be an a-complete right A∧

a -module. Then, by definition, we have an iso-
morphism N → N∧

a of right A-modules. We show that this is an isomorphism
of right A∧

a -module, where the A∧
a -module structure on N∧

a is the one defined
in Remark A.11. The embedding f : N →֒

∏
n≥1N/a

nN induced by the pro-
jections N ։ N/anN is an A∧

a -homomorphism if we regard
∏
n≥1N/a

nN as
the product of right A∧

a -modules N/anN . On the other hand, we observed
in Remark A.11 that the natural embedding N∧

a →֒
∏
n≥1N/a

nN is an A∧
a -

homomorphism, but here A∧
a acts on the product componentwise. Since these

embeddings are identified via the isomorphism N → N∧
a , it suffices to prove

that those two A∧
a -module structures on

∏
n≥1N/a

nN coincides. In other
words, it suffices to prove that, for each n ≥ 1, the A∧

a -module structure on
N/anN induced from that of N is the same as the A∧

a -module structure on
N/anN obtained from the A/anA-module structure of N/anN via the canon-
ical map A∧

a → A/anA. The former structure factors through the A∧
a /a

nA∧
a -

structure on N/anN . As we observed in the proof of Proposition A.5, the map
A∧

a → A/anA induces an isomorphism A∧
a /a

nA∧
a
∼−→ A/anA. So we have a

commutative diagram

A A/anA

A∧
a A∧

a /a
nA∧

a ,

≀

where all maps are canonical ones. This means that each A∧
a -module structures

on N/anN is determined by the induced A-module structure on N/anN via
the canonical map A → A∧

a . Since the induced A-module structures are the
same, so are the A∧

a -module structures. This completes the proof.

The following fact is shown in [SS18, Proposition 2.1.15(a)] for a-torsion R-
modules.

Proposition A.15. Every a-torsion (resp. a-complete) right A-module has a
unique right A∧

a -module structure that is compatible with the right A-module
structure via the canonical map A→ A∧

a .

Proof. This follows from Proposition A.12 (resp. Proposition A.14). In-
deed, such a structure exists since every a-torsion (resp. a-complete) right
A-module M belongs to the essential image of the scalar restriction functor
ModA∧

a → ModA. If N1 and N2 are right A∧
a -modules that are equal to M

as right A-modules, then they are a-torsion (resp. a-complete), and the scalar
restriction functor gives a bijection HomA∧

a
(N1, N2) → HomA(M,M). There-

fore the identity map M → M gives the equality of N1 and N2 as right A∧
a -

modules.
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Assume that an ideal a ⊆ R is contained by the Jacobson radical of R (which
is by definition the intersection of all maximal ideals of R). Then the ring
homomorphism R → R∧

a is faithfully flat ([Mat89, Theorem 8.14]), and hence
the induced map SpecR∧

a → SpecR is surjective by [Mat89, Theorem 7.3(i)].
It is natural to ask whether this holds for a Noether R-algebra A. Under the
same assumption on a ⊆ R, it follows that the canonical ring homomorphism
A→ A∧

a is a pure monomorphism in ModA (since R→ R∧
a is a pure monomor-

phism by [Mat89, Theorem 7.5(i)] and A∧
a = A ⊗R R∧

a ). Thus the following
proposition gives an affirmative answer to the question:

Proposition A.16. Let R be a commutative ring and let A and B be rings.
Let ϕ : R → A and f : A → B be ring homomorphisms such that ϕ(R) and
f(ϕ(R)) are contained in the centers of A and B, respectively (that is, f is
an R-algebra homomorphism). Assume that A is finitely generated as an R-
module, B is a centralizing extension of f(A), and f is a pure monomorphism
in ModA. Then the induced map SpecB → SpecA is surjective.

Proof. Let P ∈ SpecA and p := P ∩ R, which belongs to SpecR by Re-
mark 2.17. Since B is a centralizing extension of f(A), BP = PB is a (two-
sided) ideal of B. We have a commutative diagram

A B

Ap/Pp Bp/PBp

f

of canonical ring homomorphisms, where the second horizontal map is injective
since it can be identified with f ⊗A (Ap/Pp) and f is a pure monomorphism in
ModA. By Remarks 2.16 and 2.17, the diagram induces the following commu-
tative diagram of maps:

SpecA SpecB

Spec(Ap/Pp) Spec(Bp/PBp).

Since the ring Bp/PBp is nonzero, it has at least one maximal (hence prime)
ideal Q. By Proposition 2.15 along with Remark 2.16, Spec(Ap/Pp) =
Spec((A/P )⊗Rκ(p)) consists of only the zero ideal, and it is sent to P ∈ SpecA
by the left vertical map in the diagram. By the commutativity of the last dia-
gram, the image of Q in SpecB is sent to P by the map SpecB → SpecA.

Let f : A→ A∧
a be the canonical ring homomorphism. Then the induced map

SpecA∧
a → SpecA given by Q 7→ f−1(Q) is surjective by Proposition A.16.

The next proposition shows that, when R is local and a is its maximal ideal,
the correspondence of maximal ideals can be understood well. The completion
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functor with respect to the maximal ideal of R is written as (̂−). Recall that, for
each maximal ideal P of A, SA(P ) is the corresponding simple right A-module
and IA(P ) is the injective envelope of SA(P ); see section 2.4.

Proposition A.17. Assume that (R,m, k) is a commutative noetherian local

ring, and let f : A→ Â be the canonical ring homomorphism.

(1) Let I ⊆ Â be an ideal. Then I ∈ Max Â if and only if f−1(I) ∈ MaxA. If

this is the case, then I = f̂−1(I), and f : A→ Â induces an isomorphism

A/f−1(I) ∼−→ Â/I of rings.

(2) The canonical surjection Spec Â → SpecA restricts to a bijection

Max Â ∼−→ MaxA between the sets of maximal ideals, and Max Â = { P̂ |
P ∈MaxA }.

(3) For every P ∈ MaxA, we have isomorphisms SA(P ) ∼= SÂ(P̂ ) and

IA(P ) ∼= IÂ(P̂ ) in Mod Â (and also in ModA).

Proof. (1): Let J := f−1(I). We have a commutative diagram

R/(J ∩R) R̂/(I ∩ R̂)

A/J Â/I,
f

in which all maps are canonical ones. If J ∈ MaxA, then J ∩ R ∈ MaxR by
Lemma 2.12, and hence J ∩R = m and R/(J ∩R) = k. This means that A/J
is a finite-dimensional k-algebra. In particular, A/J is of finite length as an

R-module, so it is m-complete. On the other hand, Â/I is also m-complete

as it is finitely generated R̂-module (see the third paragraph of section 2.5).
Thus f is canonically identified with its completion Λmf . By Lemma A.1,
Λm(A/J) ∼= Â/Ĵ , so Λmf is the ring homomorphism Â/Ĵ → Â/I, which is

surjective. It then follows that f = Λmf is an isomorphism and Ĵ = I. The
isomorphism f : A/J ∼−→ Â/I of rings implies that I is a maximal ideal of Â
since J is maximal. This proves the “if” part of the first claim and the second
claim of (1).

Conversely, if I ∈ Max Â, then I ∩ R̂ = m̂ ∈ Max R̂ by Lemma 2.12. Since the
preimage of I ∩ R̂ by the canonical map R→ R̂ is J ∩R (see the commutative
diagram above), we have J∩R = m ∈ MaxR. Thus J ∈MaxA by Lemma 2.12
again.
(2): It follows from the first claim of (1) that the canonical surjection Spec Â→

SpecA restricts to a surjection Max Â→ MaxA, and this must be injective by
the second claim of (1).
(3): For every P ∈ MaxA, A/P is a finite direct sum of copies of SA(P ) as
a right A-module; see (2.2). By Proposition A.12, this decomposition can be
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regarded as that of right Â-modules, and SA(P ) is a simple Â-module. Since

A/P ∼= Â/P̂ by (1) and (2), and Â/P̂ is a finite direct sum of copies of SÂ(P̂ )

as a right Â-module, we obtain an isomorphism SA(P ) ∼= SÂ(P̂ ) of right Â-
modules.

By this isomorphism, the injective envelope EÂ(SA(P )) of SA(P ) coincides

with the injective envelope IÂ(P̂ ) = EÂ(SÂ(P̂ )) of SÂ(P̂ ) in Mod Â. As

IÂ(P̂ ) is m̂-torsion (Remark 2.26), it is m-torsion, so the essential extension

SA(P ) →֒ EÂ(SA(P ))
∼= IÂ(P̂ ) in Mod Â is also an essential extension in

ModA by Proposition A.12. Moreover, EÂ(SA(P )) is injective as a right A-

module, because Â is a flat left A-module by Proposition A.3 and

HomA(−, EÂ(SA(P )))
∼= HomA(−,HomÂ(Â, EÂ(SA(P ))))

∼= HomÂ(−⊗A Â, EÂ(SA(P )))

by the tensor-hom adjunction. Therefore SA(P ) →֒ EÂ(SA(P )) is an injective
envelope in ModA as well, and hence IA(P ) = EA(SA(P )) ∼= EÂ(SA(P )) =

IÂ(P̂ ) in ModA. This is also an isomorphism in Mod Â by Proposition A.12.

References

[AB89] Maurice Auslander and Ragnar-Olaf Buchweitz, The homological
theory of maximal Cohen-Macaulay approximations, Colloque en
l’honneur de Pierre Samuel (Orsay, 1987), Mém. Soc. Math. France
(N.S.) 38 (1989), 5–37. MR 1044344

[AF92] Frank W. Anderson and Kent R. Fuller, Rings and categories of
modules, second ed., Graduate Texts in Mathematics, 13. Springer,
New York, 1992. MR 1245487
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