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Abstract. In this paper we construct a Ricci DeTurck flow on any
incomplete Riemannian manifold with bounded curvature. The cen-
tral property of the flow is that it stays uniformly equivalent to the
initial incomplete Riemannian metric, and in that sense preserves any
given initial singularity structure. Together with the corresponding
result by Shi for complete manifolds [Shi89], this gives that any (com-
plete or incomplete) manifold of bounded curvature can be evolved by
the Ricci DeTurck flow for a short time.
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1 Introduction and statement of the main result

Consider an n-dimensional, smooth and possibly incomplete Riemannian man-
ifold (M, g̃). We denote the corresponding Riemannian curvature tensor by R̃m

and its pointwise norm with respect to g̃ by |R̃m|. The Ricci DeTurck flow of
(M, g̃) is a smooth family g(t), t ∈ [0, T ], of Riemannian metrics on M , solving
the initial value problem

∂

∂t
gij(t) = −2Ricij(t) +∇iVj(t) +∇jVi(t), g(0) = g̃. (1.1)

where V i(t) = g(t)jk(Γi
jk(g(t))−Γi

jk(g̃)) is the DeTurck vector field defined1 in

terms of Christoffel symbols Γi
jk for g(t) and g̃; (Ricij(t)) is the Ricci curvature

tensor and ∇ the covariant derivative of g(t). Our main theorem is then as
follows.

1We employ the Einstein summation convention.
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Theorem 1.1. Assume |R̃m|2 ≤ k0 for some positive constant k0 > 0. Then
there exists T (n, k0) > 0, depending only on n and k0, such that the initial value
problem (1.1) has a smooth solution g(t) for t ∈ [0, T (n, k0)]. Furthermore, for
any δ > 0 there exists 0 < T (n, k0, δ) ≤ T (n, k0) depending only on n, k0 and δ,
such that

(1 − δ)g̃(x) ≤ g(x, t) ≤ (1 + δ)g̃(x), (1.2)

for all (x, t) ∈ M × [0, T (n, k0, δ)]. Moreover, if we assume that for all m ≥ 1
there exists a constant Cm > 0, such that for all x ∈M , 0 < ρ ≤ 1

|∇̃mR̃m|(x) ≤ C

ρm

whenever B(x, ρ − r) is relatively compact for all r > 0, then there exist con-
stants C′ > 0, C′

m > 0, such that for all x ∈M , t ∈ [0, T ], 0 < ρ ≤ 1

|∇̃mg|(x, t) ≤ C′
m

ρm
, |Rm |(x, t) ≤ C′

ρ2
, |∇m Rm |(x, t) ≤ C′

ρm+2

whenever B(x, ρ− r) is relatively compact for all r > 0.

Remark 1.2. The condition that B(x, ρ − r) is relatively compact in M for
all r > 0 is an intrinsic way to express the distance of a point x ∈ M to the
singular strata of M . It means that this distance is larger or equal to ρ.

We should point out that short-time existence and further properties of a Ricci
DeTurck flow on incomplete manifolds has already been established in the
special case of manifolds with conical or more generally wedge singularities in
varying dimensions.

More specifically, Mazzeo, Rubinstein and Sesum [MRS15] as well as Yin
[Yin10] discuss Ricci flow on surfaces with isolated conical singularities. In
[BaVe14, BaVe16] the second named author jointly with Bahuaud discuss
Yamabe flow on manifolds with wedge singularities. In [Ver21] the second
named author introduces a Ricci DeTurck flow on manifolds with wedge singu-
larities and discusses its short time existence and regularity. In [KrVe19a] the
second named author, jointly with Kröncke discuss stability and convergence
of the Ricci DeTurck flow on manifolds with isolated conical singularities near
Ricci-flat metrics. In these references the flow stays uniformly equivalent to the
initial metric and hence preserves the initial singularity. This list of references
is not exhaustive.

Due to non-uniqueness of the flow in the singular setting, there exist solutions
that are instantaneously complete, cf. Giesen and Topping [GiTo11], as well
as solutions that smooth out the singularity, cf. Simon [Sim13].

The main novelty of the present paper is the assertion that such a Ricci De-
Turck flow, preserving the initial singularity structure, exists on any arbitrary
incomplete manifold of bounded curvature. This includes, but is not restricted
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to, orbifolds or more generally incomplete manifolds with isolated conical sin-
gularities, where the cone has bounded Riemannian curvature. In this setting
we also establish explicit estimates for arbitrary higher derivatives of the metric
and of the Riemann curvature tensor along the flow. We conjecture that this
flow coincides with the Ricci DeTurck flow on wedge manifolds, introduced in
a previous work by the second named author [Ver21].

Our paper is structured as follows. In §2 we review the argument of Shi [Shi89],
which proves short time existence of Ricci DeTurck flow for complete manifolds
of bounded curvature. We break down the argument to those points where
completeness of the manifold is used. In §3 we establish estimates for quantities
in balls which are compactly contained in an incomplete manifold. In the
subsequent §4, §5 and §6 we establish a priori estimates for the first, second
and higher derivatives of the metric along the flow. §5 and 6 also contain a
priori estimates for the Riemann curvature tensor. In the final §7 we adapt the
argument of §2 in order to establish the corresponding result for incomplete
manifolds of bounded curvature as well.

Notation: Let us fix the notation for the discussion below. Let g(t), t ∈ [0, T ]
be a family of Riemannian metrics on an incomplete manifold M . We denote
by ∇ and Γ the covariant derivative and the Christoffel symbols with respect
to g(t). Rm, Ric and R denote the Riemann curvature tensor, the Ricci tensor
and the scalar curvature of g(t), respectively.

Let g̃ be the initial Riemannian metric on M . Quantities with respect to g̃
are marked with an upper tilde. For example we write ∇̃ for the covariant
derivative with respect to g̃. There are the following exceptions to this rule:
We denote by B(x, r) the open ball with radius r > 0 and centre x ∈ M , and
we write B(A, r) := {x ∈ M : dg̃(x,A) < r} for the r-neighborhood of a given
subset A ⊂M , both with respect to the metric g̃. The norm | · | will always be
with respect to g̃. We write dg̃ for the distance function induced by g̃.

2 Review of Shi’s local existence theorem

In this section we review results and proofs from Shi [Shi89] in the complete
setting. Shi established the following short-time existence result for the Ricci
DeTurck flow starting at complete manifolds with bounded curvature. Within
this section, (M, g̃) is always understood to be a complete n-dimensional Rie-
mannian manifold of bounded curvature.

Theorem 2.1 ([Shi89], Theorems 4.3, 2.5). Assume |R̃m|2 ≤ k0 for some
positive constant k0 > 0. Then there exists T (n, k0) > 0 depending only on n
and k0, such that the initial value problem (1.1) has a smooth solution g(t).
Moreover, for any δ > 0 there exists 0 < T (n, k0, δ) ≤ T (n, k0) depending only
on n, k0 and δ, such that

(1− δ)g̃(x) ≤ g(x, t) ≤ (1 + δ)g̃(x) (2.1)
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for all (x, t) ∈M × [0, T (n, k0, δ)].

Remark 2.2. We emphasize that the lower bound on the injectivity radius does
not enter in the definition of the time bounds T (n, k0), T (n, k0, δ) > 0. Indeed,
the local existence result still holds on complete manifolds without a positive
lower bound on the injectivity radius. An obvious instance are manifolds with
hyperbolic cusps, where Theorem 2.1 still holds despite the injectivity radius
tending to zero at the cusp.

The proof of this theorem is based on three main steps. The first is an a priori
estimate for the Ricci DeTurck flow on a relatively compact domain D ⊂ M
with Dirichlet boundary conditions.

Theorem 2.3 ([Shi89], Theorem 2.5). Let D ⊂ M be a relatively compact
domain, whose boundary ∂D is an (n− 1)-dimensional, smooth, compact sub-
manifold. Let g(x, t), t ∈ [0, T ] be a solution of the initial boundary value
problem

∂

∂t
gij(x, t) = (−2Ricij +∇iVj +∇jVi)(x, t), (x, t) ∈ D × [0, T ],

g(x, t) = g̃(x), (x, t) ∈ ∂D × [0, T ],

g(x, 0) = g̃(x), x ∈ D.

(2.2)

where V i = gjk(Γi
jk − Γ̃i

jk) is the DeTurck vector field. Then for any δ > 0
there exists T (n, k0, δ) > 0 depending only on n, k0 and δ, such that

(1− δ)g̃(x) ≤ g(x, t) ≤ (1 + δ)g̃(x) (2.3)

for all (x, t) ∈M × [0,min {T (n, k0, δ), T }].
Proof outline. Shi controls the eigenvalues λk(x, t) of g(x, t) with respect to
g̃(x) (i.e. the eigenvalues of g(x, t) considered as a (1, 1)-tensor using the metric
g̃(x)). Shi defines a function

ϕ(x, t) =
n∑

k=1

λk(x, t)
−m,

where m > 0 is sufficiently large only depending on n and δ. Shi then shows
that ϕ satisfies a differential inequality

∂ϕ

∂t
≤ gαβ∇̃α∇̃βϕ+ 2mn

√
k0 · ϕ1+1/m,

and applies the maximum principle to conclude ϕ(x, t) ≤ 2n for all (x, t) ∈
D × [0, T ]. This leads to the lower bound in (2.3). The upper bound in (2.3)
is then obtained by a similar procedure applied to the function

F (x, t) =

(
1− 1

2n

n∑

k=1

λk(x, t)
m̃

)−1

,

where m̃ > 0 is large enough and only depends on n and δ.
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The second step is the short-time existence of system (2.2).

Theorem 2.4 ([Shi89], Theorem 3.2). Let D ⊂ M be a relatively compact
domain, whose boundary ∂D is an (n− 1)-dimensional, smooth, compact sub-
manifold. Then there exists T (n, k0) > 0 only depending on n and k0, such
that the initial boundary value problem (2.2) admits a unique smooth solution
g(x, t), (x, t) ∈ D × [0, T (n, k0)].

The third step are interior estimates for the derivatives of the metric, only
depending on g̃ and not on any specified boundary conditions.

Lemma 2.5 ([Shi89], Lemma 4.1). Fix 0 < γ, δ, T < ∞, and let g(x, t) be a
smooth solution of the initial value problem

∂

∂t
gij(x, t) = (−2Ricij +∇iVj +∇jVi)(x, t), (x, t) ∈ B(x0, γ + δ)× [0, T ],

g(x, 0) = g̃(x), x ∈ B(x0, γ + δ),

where V i = gjk(Γi
jk − Γ̃i

jk) is the DeTurck vector field. Furthermore, assume
that

(1− ε(n))g̃(x) ≤ g(x, t) ≤ (1 + ε(n))g̃(x)

for ε(n) > 0 sufficiently small, only depending on n, and for all (x, t) ∈
B(x0, γ + δ) × [0, T ]. Then there exists a positive constant c(n, γ, δ, T, g̃) > 0,
depending only on n, γ, δ, T and g̃, such that

|∇̃g(x, t)|2 ≤ c(n, γ, δ, T, g̃)

for all (x, t) ∈ B(x0, γ + δ
2 )× [0, T ].

Proof outline. Shi defines for any (x, t) ∈ B(x0, γ + δ)× [0, T ] the function

ϕ(x, t) = a+

n∑

k=1

λk(x, t)
m0 , (2.4)

where a,m0 are carefully chosen positive constants only depending on n, and
λk(x, t) are the eigenvalues of g(x, t) with respect to g̃(x). Shi then shows that
the function

ψ(x, t) := |∇̃g|2ϕ(x, t) (2.5)

satisfies
∂ψ

∂t
≤ gαβ∇̃α∇̃βψ − 1

16
ψ2 + c0, (2.6)

where c0 > 0 is a constant only depending on n and g̃. Then Shi takes a
nonincreasing cutoff function η ∈ C∞(R) such that η ≡ 1 on (−∞, 0], vanishing
identically on [1,∞) as illustrated in Figure 1.
The crucial property of the function η is the control on its derivatives

|η′′(x)| ≤ 8, |η′(x)|2 ≤ 16η(x), for any x ∈ R. (2.7)
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1

η

0 1

Figure 1: The cutoff function η.

One then defines a Lipschitz continuous bump function ξ ∈ C(M) around any
fixed x0 ∈M by

ξ(x) := η

(
dg̃(x, x0)− (γ + δ/2)

δ/4

)
, (2.8)

where dg̃ is the distance function with respect to the metric g̃. Note that
dg̃(·, x0) is Lipschitz continuous but need not be smooth everywhere, and
hence ξ need not be smooth everywhere. By construction, ξ has the following
properties

ξ(x) = 1, x ∈ B(x0, γ + δ/2),
ξ(x) = 0, x ∈M\B(x0, γ + 3δ/4),

(2.9)

which is illustrated in Figure 2.

1

ξ

0 γ γ + δ/2 γ + 3δ/4 d(·, x0)

Figure 2: The bump function ξ.

Below in §4, starting with (4.28), we provide a careful argument differentiating
between the case that ξ is smooth in a neighborhood of x and the case that ξ
is not. The latter case is studied after (4.54) using a trick of Calabi. In case of
smoothness, we have by (2.7) control on derivatives of ξ

|∇̃ξ|2(x) ≤ 162

δ2
ξ(x), x ∈M. (2.10)
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Shi also proves an estimate

∇̃∇̃ξ(x) ≥ − c0(γ, δ, k0)g̃(x), x ∈M, (2.11)

where c0(γ, δ, k0) > 0 is a constant only depending on γ, δ and k0.

The auxiliary bump function ξ is used to define

F (x, t) := ξ(x)ψ(x, t), (x, t) ∈ B(x0, γ + δ)× [0, T ].

By construction, it has the properties

F (x, 0) = 0, x ∈ B(x0, γ + δ),

F (x, t) = 0, (x, t) ∈M\B(x0, γ + 3δ/4)× [0, T ],
(2.12)

In particular, F attains its maximum on B(x0, γ + 3δ/4) × [0, T ], i.e. there
exists (x0, t0) ∈ B(x0, γ + 3δ/4)× [0, T ] such that

F (x0, t0) = max {F (x, t) | (x, t) ∈ B(x0, γ + δ)× [0, T ]}.

Using the evolution inequality (2.6), especially the negative quadratic term
(− 1

16ψ
2), as well as the properties (2.10) and (2.11) of the cutoff function ξ,

Shi concludes by maximum principle arguments that

F (x0, t0) ≤ c(n, γ, δ, T, g̃),

where c(n, γ, δ, T, g̃) > 0 is a constant only depending on n, γ, δ, T, g̃. Thus

ξ(x)ψ(x, t) = F (x, t) ≤ F (x0, t0) ≤ c(n, γ, δ, T, g̃), (2.13)

for any (x, t) ∈ B(x0, γ+δ)× [0, T ]. Since ξ ≡ 1 on B(x0, γ+δ/2), we conclude

|∇̃g|2ϕ(x, t) = ψ(x, t) ≤ c(n, γ, δ, T, g̃), (2.14)

for any (x, t) ∈ B(x0, γ + δ/2)× [0, T ]. Finally, since by definition ϕ(x, t) ≥ a,
the statement follows from

|∇̃g|2(x, t) ≤ 1

a
c(n, γ, δ, T, g̃), (x, t) ∈ B(x0, γ + δ/2)× [0, T ].

Lemma 2.6 ([Shi89], Lemma 4.2). Under the same assumptions as in
Lemma 2.5, there exists a constant c(n,m, γ, δ, T, g̃) > 0 for any m ≥ 0, de-
pending only on n,m, γ, δ, T and g̃, such that

|∇̃mg(x, t)|2 ≤ c(n,m, γ, δ, T, g̃) (2.15)

for all (x, t) ∈ B(x0, γ + δ
m+1 )× [0, T ].
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Proof outline. Lemma 2.6 is proven by induction. Assuming that the statement
holds for any integer 0 ≤ m0 < m, Shi defines the function (cf. (2.5))

Ψ(x, t) = (a0 + |∇̃m−1g(x, t)|2)|∇̃mg(x, t)|2

and proves that, if a0 > 0, depending only on m,n, γ, δ, T, g̃, is chosen appro-
priately, then Ψ satisfies a differential inequality of the form (cf. (2.6))

∂Ψ

∂t
≤ gαβ∇̃α∇̃βΨ− c1Ψ

2 + c0,

on B(x0, γ+ δ/m)× [0, T ], where c0, c1 > 0 only depend on m,n, γ, δ, T and g̃.
Then by the same steps as in the proof of Lemma 2.5, Shi obtains (cf. (2.14))

Ψ(x, t) ≤ c2(m,n, γ, δ, T, g̃), for (x, t) ∈ B(U, δ/(m+ 1))× [0, T ].

Hence, we conclude for all (x, t) ∈ B(x0, δ/(m+ 1))× [0, T ]

|∇̃mg(x, t)|2 ≤ 1

a0
Ψ(x, t) ≤ 1

a0
c2(m,n, γ, δ, T, g̃),

which finishes the proof.

Now Shi completes the proof of Theorem 2.1 as follows. Shi takes an exhaustion
of the manifold M by relatively compact domains Dk ⊂ M , k ∈ N0, with
(n−1)-dimensional, smooth, compact boundary ∂Dk, such that B(x0, k) ⊂ Dk,
for some fixed point x0 ∈ M . By Theorem 2.4 and Theorem 2.3, there exists
T (n, k0) > 0 depending only on n and k0 such that the system (cf. (2.2))

∂

∂t
gij(x, t) = (−2Ricij +∇iVj +∇jVi)(x, t), (x, t) ∈ Dk × [0, T ],

g(x, t) = g̃(x), (x, t) ∈ ∂Dk × [0, T ],

g(x, 0) = g̃(x), x ∈ Dk.

(2.16)

has a unique smooth solution g(k, x, t) on Dk × [0, T (n, k0)] satisfying

(1 − ε(n))g̃(x) ≤ g(k, x, t) ≤ (1 + ε(n))g̃(x) (2.17)

for all (x, t) ∈ Dk× [0, T (n, k0)]. Here, ε(n) > 0 is a sufficiently small constant,
depending only on n, introduced in Lemma 2.5. Now, for any k ≥ 2, the
solution g(k, x, t) is defined on B(x0, 1). By Lemma 2.6, we have for allm ∈ N0

|∇̃mg(k, x, t)|2 ≤ c(n,m, q, T (n, k0), g̃) (2.18)

for all (x, t) ∈ B(x0, 1) × [0, T (n, k0)] and all k ≥ 2. Hence by Arzelà-Ascoli
there exists a subsequence (g(kℓ, x, t))ℓ∈N0

, which converges on B(x0, 1) ×
[0, T (n, k0)] in the C∞ topology to a family of smooth metrics g(x, t).

By the same argument a subsequence of this subsequence converges on
B(x0, 2)× [0, T (n, k0)]. We iterate this argument and consider the diagonal se-
quence. Then, for every fixed q ∈ N, the diagonal sequence converges to g(x, t)
on B(x0, q) × [0, T (n, k0)], and thus converges smoothly locally uniformly to
g(x, t). Thus g(x, t) solves (1.1). The estimate (2.1) follows by restricting the
solutions g(k, x, t) to 0 ≤ t ≤ T (n, k0, δ), where T (n, k0, δ) is from Theorem 2.3.
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3 The geometry of incomplete manifolds

In the following sections we will establish estimates for quantities in balls which
are compactly contained in an incomplete manifold. Since most theorems in
the literature are stated for complete manifolds, in this section we give some
background information on the geometry of incomplete manifolds inside rela-
tively compact balls, and indicate how for example the proof of the Hessian
comparison theorem can be modified to also hold in our setting.

Let (M, g) be a Riemannian manifold. Let p ∈ M . Let Dp ⊂ TpM be the
domain of the exponential map expp. Following [Pet06] we refer to a shortest
geodesic as a segment. Define the segment domain as

seg(p) := {v ∈ Dp | expx0
(tv) : [0, 1] →M is a segment}.

We define the segment “interior”

seg0(p) := {tv | t ∈ [0, 1), v ∈ seg(p)}.

Then, as in the case of complete manifolds, we have

1) expp : seg0(p) →M is injective, and

2) D expp(v) is non-singular for all v ∈ seg0(p)

see [Pet06, Proposition 19, p.139 and Lemma 14, p.140].

Now assume that ρ > 0 such that B(p, ρ − r) ⊂⊂ M for all r > 0. A direct
consequence is

B(0, ρ) ⊂ Dp. (3.1)

Also, by the same steps as in the proof of the Hopf-Rinow theorem in the
complete case (see [Pet06, Theorem 16, p.137]), each y ∈ B(p, ρ) can be
joined to p by a segment. Thus, since

Vp := expp(seg(p)) = {x ∈M | ∃ segment from p to x},

it follows that
B(p, ρ) ⊂ Vp. (3.2)

Furthermore, if x ∈ Vp and v ∈ seg(p) with expp(v) = x, then d(p, x) = |v|.
Hence

expp(B(0, ρ) ∩ seg(p)) = B(p, ρ) ∩ Vp
(3.2)
= B(p, ρ). (3.3)

Now we can characterize the points in seg(p)\seg0(p), which are inside B(0, ρ),
as in the complete case.

Lemma 3.1. If v ∈ (seg(p)\seg0(p)) ∩B(0, ρ), then

1) ∃w(6= v) ∈ seg(p) ∩B(0, ρ) : expp(v) = expp(w), or

Documenta Mathematica 27 (2022) 1169–1212



1178 T. Marxen, B. Vertman

2) D expp(v) is singular.

Proof. Analogous to the proof of the corresponding statement [Pet06,
Lemma 15, p.141] in the complete case.

Remark 3.2. Note that expp(seg(p)\seg0(p)) is the cut locus of p in M .

This gives the following lemma.

Lemma 3.3. seg0(p) ∩B(0, ρ) is open.

Proof. Analogous to the proof of the corresponding statement [Pet06, Propo-
sition 20] in the complete case, using Lemma 3.1 instead of [Pet06, Lemma 15,
p.141].

Letting Up := expp(seg
0(p)), by the above

expp : seg0(p) ∩B(0, ρ) → Up ∩B(p, ρ)

is a diffeomorphism. As
d(p, x) = | exp−1

p (x)|
for x ∈ Up ∩ B(p, ρ), the distance function is smooth on (Up ∩ B(p, ρ))\{p}.
Also, by Lemma 3.1 the distance function is not smooth on B(p, ρ)\Up.

Now we can use the exponential map expp to define geodesic polar coordinates
on Up ∩ B(p, ρ). Then we can argue as in the complete case (cf. [CLN06,
Proof of the Hessian Comparison Theorem 1.141, p.76]) to obtain the following
version of the Hessian comparison theorem on incomplete manifolds.

Theorem 3.4. Assume that the sectional curvatures satisfy sec ≥ K on
B(p, ρ). Then

∇α∇βdg(x, p) ≤
1

n− 1
HK(dg(x, p))gαβ(x)

at all points x ∈ (Up ∩B(p, ρ))\{p}. Here

HK(r) :=





(n− 1)
√
K cot(

√
Kr), if K > 0,

n−1
r , if K = 0,

(n− 1)
√
|K| coth(

√
|K|r), if K < 0.

(3.4)

4 A priori estimates of ∇g along the flow

In this section we establish quantitative estimates for the first derivatives of the
metric under Ricci DeTurck flow on singular manifolds. We assume bounded
curvature at time t = 0 and that the metrics g(t) are uniformly equivalent
and sufficiently close to the initial metric g̃. As a byproduct we also obtain
an estimate on the DeTurck vector field V . We continue in the setting of an
n-dimensional, smooth and possibly incomplete Riemannian manifold (M, g̃)
and prove an analogue of Lemma 2.5.
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Lemma 4.1. Consider x0 ∈ M and fix any2 finite γ, δ, T > 0 with δ ≤ 1. Let
g(x, t) be a smooth solution of the initial value problem

∂

∂t
gij(x, t) = (−2Ricij +∇iVj +∇jVi)(x, t), (x, t) ∈ B(x0, γ + δ)× [0, T ],

g(x, 0) = g̃(x), x ∈ B(x0, γ + δ),

where V i = gjk(Γi
jk − Γ̃i

jk) is the DeTurck vector field. We assume that
B(x0, γ + δ − r) is relatively compact in M for all r > 0. Furthermore, we
assume that for all (x, t) ∈ B(x0, γ + δ)× [0, T ] we have the inequalities

(1− ε(n))g̃(x) ≤ g(x, t) ≤ (1 + ε(n))g̃(x) (4.1)

for ε(n) > 0 sufficiently small, only depending on n. Also assume that

|R̃m|2 ≤ k0

for some constant k0 > 0. Then there exist constants c(n), c(n, k0) > 0, only
depending on the arguments in brackets, such that for all (x, t) ∈ B(x0, γ +
δ
2 )× [0, T ]

|∇̃g|(x, t) ≤ c(n, k0)

δ
+ c(n)c1, where c1 := sup

x∈B(x0,γ+3δ/4)

|∇̃R̃m|(x). (4.2)

Remark 4.2. The restriction δ ≤ 1 is for technical reasons to achieve a simpler
expression for the right-hand side of (4.2). For our purposes this is sufficient
as we are aiming at estimates on an incomplete manifold when we get closer
and closer to the singularity. Also note that the estimates (4.2) are independent
of γ, and only depend on the difference of radia of the smaller ball B(x0, γ+

δ
2 )

and the larger ball B(x0, γ + δ).

We will prove the lemma below and first note its consequence − estimates on
the first derivatives of the metric for Ricci DeTurck flow. More specifically,
assuming additionally that |∇̃R̃m| = O(ρ−1), where ρ > 0 is the distance to

the singularity, a natural condition in case |R̃m| is bounded, we obtain that

|∇̃g| = O(ρ−1) and |V | = O(ρ−1) uniformly in t ∈ [0, T ].

Corollary 4.3. Let (M, g̃) be a (possibly incomplete) smooth Riemannian
manifold of dimension n. Fix 0 < T < ∞ and let g(x, t) be a smooth solution
of

∂

∂t
gij(x, t) = (−2Ricij +∇iVj +∇jVi)(x, t), (x, t) ∈ M × [0, T ],

g(x, 0) = g̃(x), x ∈ M,

2Below, in Corollary 4.3 we will set γ = δ > 0 sufficiently small.
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where V is the DeTurck vector field as above. Assume that for all (x, t) ∈
M × [0, T ]

(1− ε(n))g̃(x) ≤ g(x, t) ≤ (1 + ε(n))g̃(x)

for ε(n) > 0 sufficiently small, only depending on n, and also assume that there
exist constants k0, C > 0, such that

|R̃m|2 ≤ k0

and that for all x ∈M , 0 < ρ ≤ 1

|∇̃R̃m|(x) ≤ C

ρ

whenever B(x, ρ − r) is relatively compact for all r > 0. Then there exists
C′ > 0 only depending on k0, C and n such that for all x ∈ M , t ∈ [0, T ],
0 < ρ ≤ 1

|∇̃g|(x, t) ≤ C′

ρ
, |V |(x, t) ≤ C′

ρ

whenever B(x, ρ− r) is relatively compact for all r > 0.

Remark 4.4. The (technical) condition B(x, ρ− r) is relatively compact in M
for all r > 0 is a way to express the distance of a point x ∈M to the singular
strata of M intrinsically. It means that this distance is larger or equal to ρ.

Proof of Corollary 4.3. Consider x0 ∈ M and ρ ≤ 1 such that B(x0, ρ − r) is
relatively compact in M for all r > 0. Then by Lemma 4.1 (choosing γ, δ in
Lemma 4.1 as equal to ρ/2) we obtain

|∇̃g|(x0, t) ≤
c(n, k0)

ρ
+ c(n)c1,

where the constant c1 can be estimated as follows

c1 = sup
x∈B(x0,7ρ/8)

|∇̃R̃m|(x) ≤ 8C

ρ
,

since for all x ∈ B(x0, 7ρ/8) we have that B(x, ρ/8 − r) is relatively compact

for all r > 0. This proves the estimate for |∇̃g|. The estimate of the DeTurck
vector field V follows from this and

V = g−1 ∗ ∇̃g,

see [Shi89, p. 266, formula (32)].

We can now proceed with proof of Lemma 4.1.
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Proof of Lemma 4.1. Our strategy is a careful analysis of the proof of [Shi89,
Lemma 4.1], which is written out here in Lemma 2.5, while making the de-
pendencies of various constants explicit. For the convenience of the reader and
to keep our argument here self-contained, we repeat the steps from [Shi89,
Lemma 4.1] here.

In the following, c(n) and c(n, k0) denote constants only depending on n
and n, k0, respectively. The constants may vary from estimate to estimate.

As in [Shi89, Proof of Lemma 4.1, p.247 (5)] we have

∂

∂t
|∇̃g|2 =gαβ∇̃α∇̃β |∇̃g|2 − 2gαβ∇̃α∇̃g · ∇̃β∇̃g

+ R̃m ∗ g−2 ∗ g ∗ ∇̃g ∗ ∇̃g + g−1 ∗ g ∗ ∇̃R̃m ∗ ∇̃g
+ g−2 ∗ ∇̃g ∗ ∇̃g ∗ ∇̃∇̃g + g−3 ∗ ∇̃g ∗ ∇̃g ∗ ∇̃g ∗ ∇̃g.

(4.3)

Here the product A∗B of two tensors A and B denotes a linear combination of
terms which are obtained as follows: Starting from the tensor product A⊗B,
perform an arbitrary number of the following operations: taking contractions,
raising, lowering or permuting indices. The important consequence in our case
here is that it will always be possible to estimate

|A ∗B| ≤ c(n)|A| · |B|,

where c(n) depends on the specific form of the product. Since by assumption,

the closure B(x0, γ + 3
4δ) ⊂M is compact, we conclude (c1 is defined in (4.2))

|∇̃R̃m| ≤ c1 on B(x0, γ +
3

4
δ). (4.4)

Furthermore, by (4.1) we have

1

2
g̃(x) ≤ g(x, t) ≤ 2g̃(x) on B(x0, γ + δ). (4.5)

Hence

R̃m ∗ g−2 ∗ g ∗ ∇̃g ∗ ∇̃g ≤ c(n, k0)|∇̃g|2,
g−1 ∗ g ∗ ∇̃R̃m ∗ ∇̃g ≤ c(n)c1|∇̃g|

(4.6)

on B(x0, γ+3δ/4)× [0, T ]. Also, whenever we use the bound (4.4) on ∇̃R̃m it is
understood that the estimate, which follows, holds on B(x0, γ + 3δ/4)× [0, T ].
As in [Shi89, Proof of Lemma 4.1, p.247 (9)] we have

g−2 ∗ g̃ ∗ ∇̃g ∗ ∇̃∇̃g ≤ 72n5|∇̃g|2|∇̃2g|,
g−3 ∗ ∇̃g ∗ ∇̃g ∗ ∇̃g ∗ ∇̃g ≤ 160n6|∇̃g|4.

(4.7)
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This gives

∂

∂t
|∇̃g|2 ≤gαβ∇̃α∇̃β |∇̃g|2 − |∇̃2g|2 + c(n, k0)|∇̃g|2 + c(n)c1|∇̃g|

+ 72n5|∇̃g|2|∇̃2g|+ 160n6|∇̃g|4.
(4.8)

Estimating as in [Shi89, Proof of Lemma 4.1, p.247]

72n5|∇̃g|2|∇̃2g|+ 160n6|∇̃g|4 ≤ 1

2
|∇̃2g|2 + 3200n10|∇̃g|4,

c(n)c1|∇̃g| ≤
(c(n)c1)

2

2
+

|∇̃g|2
2

,

(4.9)

we obtain from (4.8) after an appropriate change of constants c(n, k0) and c(n)

∂

∂t
|∇̃g|2 ≤ gαβ∇̃α∇̃β |∇̃g|2 −

1

2
|∇̃2g|2 + 3200n10|∇̃g|4

+ c(n, k0)|∇̃g|2 + c(n)c21.

(4.10)

As in [Shi89, Proof of Lemma 4.1, p.248], we fix a small constant ε ≡ ε(n) :=
(256000n10)−1, such that the inequality (4.1) now reads as

1− ε(n) ≤ λk(x, t) ≤ 1 + ε(n), (4.11)

for any k = 1, 2, . . . , n, where λk(x, t) refers to the eigenvalues of g(x, t) with
respect to g̃(x). Sometimes we use a rougher estimate 1

2 ≤ λk(x, t) ≤ 2 instead.
We also set

m := 25600n10, a := 6400n10 (4.12)

and define (we simplify notation by writing λk ≡ λk(x, t))

ϕ(x, t) := a+

n∑

k=1

λmk , (x, t) ∈ B(x0, γ + δ)× [0, T ]. (4.13)

Following [Shi89, Proof of Lemma 4.1, p.248 (16)] we obtain

∂ϕ

∂t
=mλm−1

k gαβ∇̃α∇̃βgkk

+mλm−1
k ∗ (R̃m ∗ g−1 ∗ g + g−2 ∗ ∇̃g ∗ ∇̃g).

(4.14)

We now proceed as in Lemma 2.5 along the following steps.

Step 1: Derive an evolution inequality for ψ := ϕ · |∇̃g|2 as in (2.6).

Step 2: Estimate ∇̃∇̃ξ from below as in (2.11).

Step 3: Estimate ξψ from above as in (2.13) and conclude the proof.
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Step 1: Derive an evolution inequality for ψ := ϕ · |∇̃g|2 as in (2.6).

We estimate the individual terms on the right hand side of (4.14)

mλm−1
k ∗ R̃m ∗ g−1 ∗ g ≤ c(n, k0),

mλm−1
k ∗ g−2 ∗ ∇̃g ∗ ∇̃g ≤ 10n3m(1 + ε)m−1|∇̃g|2.

(4.15)

As in [Shi89, Proof of Lemma 4.1, p.248] we have

gαβ∇̃α∇̃βϕ = mλm−1
k gαβ∇̃α∇̃βgkk

+m(λm−2
i + λm−3

i λj + · · ·+ λm−2
j ) · gαβ∇̃αg · ∇̃βg

≥ mλm−1
k gαβ∇̃α∇̃βgkk +

m(m− 1)

2
(1 − ε)m−2|∇̃g|2.

(4.16)

This yields

∂ϕ

∂t
≤gαβ∇̃α∇̃βϕ− m(m− 1)

2
(1− ε)m−2|∇̃g|2

+ c(n, k0) + 10n3m(1 + ε)m−1|∇̃g|2.
(4.17)

As in [Shi89, p.249 (20),(21),(22)], we easily check

10n3m(1 + ε)m−1 ≤ m2

16
,

m(m− 1)

2
(1− ε)m−2 ≥ m2

4
(1− ε)m−2 ≥ 3

16
m2,

(4.18)

such that (4.17) reduces to

∂ϕ

∂t
≤gαβ∇̃α∇̃βϕ+ c(n, k0)−

m2

8
|∇̃g|2. (4.19)

From (4.10) and (4.19) it follows that

∂

∂t
(ϕ · |∇̃g|2) ≤gαβ∇̃α∇̃β(ϕ · |∇̃g|2)− 2gαβ∇̃αϕ∇̃β |∇̃g|2 −

ϕ

2
|∇̃2g|2

+ 3200n10ϕ|∇̃g|4 + c(n, k0)ϕ|∇̃g|2 + c(n)c21ϕ

+ c(n, k0)|∇̃g|2 −
m2

8
|∇̃g|4.

(4.20)

We estimate some of the terms on the right hand side of (4.20). As in [Shi89,
Proof of Lemma 4.1, p.249 (26), p.250 (28)] we find for the fourth term on the
right hand side of (4.20)

3200n10ϕ|∇̃g|4 ≤ 3200n10(a+ n(1 + ε)m)|∇̃g|4 ≤ m2

16
|∇̃g|4. (4.21)
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The second term on the right hand side of (4.20) is estimated as follows.

−2gαβ∇̃αϕ∇̃β |∇̃g|2 = −2gαβ∇̃α

(
n∑

k=1

λmk

)
· ∇̃β |∇̃g|2

= −4gαβ ·
(
mλm−1

k · ∇̃αλk

)
· ∇̃β |∇̃g|2

≤ 8mn5(1 + ε)m−1|∇̃g|2|∇̃2g|

≤
√
φ |∇̃2g| ·

(
16mn5|∇̃g|2√

φ

)

≤ ϕ

2
|∇̃2g|2 + 128m2n10

ϕ
|∇̃g|4.

(4.22)

Plugging these estimates back into (4.20) yields

∂

∂t
(ϕ · |∇̃g|2) ≤gαβ∇̃α∇̃β(ϕ · |∇̃g|2) + 128m2n10

ϕ
|∇̃g|4 − m2

16
|∇̃g|4

+ c(n, k0)ϕ|∇̃g|2 + c(n)c21.

(4.23)

Since ϕ(x, t) ≥ a, with a = 6400n10, we have

128m2n10

ϕ
≤ m2

32
,

such that (4.23) reduces to

∂

∂t
(ϕ · |∇̃g|2) ≤gαβ∇̃α∇̃β(ϕ · |∇̃g|2)− m2

32
|∇̃g|4

+ c(n, k0)ϕ|∇̃g|2 + c(n)c21.

(4.24)

Using (4.11) and the first estimate of (4.18) in the second inequality, we find

m2

32
|∇̃g|4 ≡ m2

32ϕ
|∇̃g|4ϕ ≥ m2

32(a+ n(1 + ε)m)2
|∇̃g|4ϕ2 ≥ 1

8
|∇̃g|4ϕ2. (4.25)

Thus we obtain from (4.24), using the inequality ab ≤ 1
2a

2 + 1
2b

2 and adapting
the constant c(n, k0) > 0 accordingly in the last estimate

∂

∂t
(ϕ · |∇̃g|2) ≤ gαβ∇̃α∇̃β(ϕ · |∇̃g|2)− 1

8
|∇̃g|4ϕ2

+ c(n, k0)ϕ|∇̃g|2 + c(n)c21

≤ gαβ∇̃α∇̃β(ϕ · |∇̃g|2)− 1

16
|∇̃g|4ϕ2

+ c(n, k0) + c(n)c21.

(4.26)
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Defining ψ(x, t) := (ϕ · |∇̃g|2)(x, t) this inequality reads

∂ψ

∂t
≤ gαβ∇̃α∇̃βψ − 1

16
ψ2 + c(n, k0) + c(n)c21. (4.27)

Step 2: Estimate ∇̃∇̃ξ from below as in (2.11).

Next, as in [Shi89, Proof of Lemma 4.1, p.251 (36),(37)] we take a cutoff
function η ∈ C∞(R) as in (2.7), illustrated in Figure 1. Then we define the
cutoff function ξ ∈ C(M)

ξ(x) = η

(
dg̃(x, x0)− (γ + δ/2)

δ/4

)
, (4.28)

where dg̃ is the distance function with respect to the metric g̃. Note that
dg̃(·, x0) is Lipschitz continuous but need not be smooth everywhere, and
hence ξ need not be smooth everywhere. From the properties of η we have

ξ(x) = 1, x ∈ B(x0, γ + δ/2),

ξ(x) = 0, x ∈M\B(x0, γ + 3δ/4),

0 ≤ ξ(x) ≤ 1, x ∈M.

(4.29)

If dg̃(·, x0) is smooth in a neighborhood of a point x, then we also have

∇̃βξ(x) =
4

δ
η′
(
dg̃(x, x0)− (γ + δ/2)

δ/4

)
∇̃βdg̃(x, x0) (4.30)

∇̃α∇̃βξ(x) =
4

δ
η′
(
dg̃(x, x0)− (γ + δ/2)

δ/4

)
∇̃α∇̃βdg̃(x, x0)

+
16

δ2
η′′
(
dg̃(x, x0)− (γ + δ/2)

δ/4

)
∇̃αdg̃(x, x0)∇̃βdg̃(x, x0).

(4.31)

Since |∇̃dg̃(x, x0)| = 1, it follows using |η′|2 ≤ 16η that

|∇̃ξ(x)|2 ≤ 16

δ2
(η′)2

(
dg̃(x, x0)− (γ + δ/2)

δ/4

)
≤ 256

δ2
ξ(x). (4.32)

Furthermore, note that

∇̃αdg̃(x, x0)∇̃βdg̃(x, x0) ≤ g̃αβ(x), (4.33)

such that, using |η′′| ≤ 8, we can estimate from below

16

δ2
η′′
(
dg̃(x, x0)− (γ + δ/2)

δ/4

)
∇̃αdg̃(x, x0)∇̃βdg̃(x, x0) ≥ −128

δ2
g̃αβ(x).

(4.34)
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By assumption, |R̃m|2 ≤ k0 and thus the sectional curvature is in particular
bounded from below sec ≥ −

√
k0. From the Hessian comparison theorem

Theorem 3.4, applied in a relatively compact ball, we conclude

∇̃α∇̃βdg̃(x, x0) ≤ 4
√
k0 coth

(
4
√
k0dg̃(x, x0)

)
g̃αβ(x). (4.35)

Using 0 ≥ η′(s) ≥ −4 η1/2(s) ≥ − 4 for all s ∈ R, it follows that

4

δ
η′
(
dg̃(x, x0)− (γ + δ/2)

δ/4

)
∇̃α∇̃βdg̃(x, x0)

≥ −16

δ
4
√
k0 coth

(
4
√
k0dg̃(x, x0)

)
g̃αβ(x).

(4.36)

We now obtain from (4.31), combined with (4.34) and (4.36)

∇̃α∇̃βξ(x) ≥ −
(
128

δ2
+

16

δ
4
√
k0 coth

(
4
√
k0dg̃(x, x0)

))
g̃αβ(x). (4.37)

Step 3: Estimate ξψ from above as in (2.13) and conclude the proof.

Next we simplify notation by writing as in the proof of Lemma 2.5

F (x, t) := ξ(x)ψ(x, t), (x, t) ∈ B(x0, γ + δ)× [0, T ].

Since |∇̃g|2(x, 0) = 0, we have

F (x, 0) = 0, x ∈ B(x0, γ + δ). (4.38)

Since ξ(x) = 0 for x ∈ B(x0, γ + δ)\B(x0, γ + 3
4δ), it follows that

F (x, t) = 0, (x, t) ∈ B(x0, γ + δ)\B(x0, γ +
3

4
δ)× [0, T ]. (4.39)

Thus there exists a point (y0, t0) ∈ B(x0, γ+
3
4δ)× [0, T ] with t0 > 0 such that

F (y0, t0) = max {F (x, t) | (x, t) ∈ B(x0, γ + δ)× [0, T ]} (4.40)

unless F ≡ 0 on B(x0, γ + δ)× [0, T ].

In the following, as already alluded to in the proof of Lemma 2.5, we distinguish
three cases, first case where ξ ≡ 1 in a neighborhood of y0, second case where ξ
is not identically 1, but smooth in a neighborhood of y0, and third case, where ξ
is not smooth and a trick needs to be applied.

Case 1. y0 ∈ B(x0, γ + δ/2)

Then ξ ≡ 1 near y0, such that F = ψ near (y0, t0), and we have by (4.27)

0 ≤ (
∂

∂t
− gαβ∇̃α∇̃β)ψ(y0, t0) ≤ − 1

16
ψ2(y0, t0) + c(n, k0) + c(n)c21, (4.41)
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and thus we conclude

1

16
F 2(y0, t0) =

1

16
ψ2(y0, t0) ≤ c(n, k0) + c(n)c21. (4.42)

This estimate is better than the one we will obtain in Case 2.

Case 2. y0 /∈ B(x0, γ + δ/2) and y0 is not in the cut locus of x0

Then the distance function dg̃(·, x0), and hence also ξ, is smooth in a neigh-
borhood of y0 and it follows that

0 ≤ ∂F

∂t
(y0, t0) = ξ(y0)

∂ψ

∂t
(y0, t0),

0 = ∇̃αF (y0, t0) = (ξ∇̃αψ + ψ∇̃αξ)(y0, t0),

0 ≥ gαβ∇̃α∇̃βF (y0, t0) = (ξgαβ∇̃α∇̃βψ + ψgαβ∇̃α∇̃βξ

+ 2gαβ∇̃αξ∇̃βψ)(y0, t0).

(4.43)

Using (4.27) in the final step, we obtain at the point (y0, t0)

0 ≤
(
∂F

∂t
− gαβ∇̃α∇̃βF

)
(y0, t0)

≤ ξ(y0)

(
∂ψ

∂t
− gαβ∇̃α∇̃βψ

)
(y0, t0)

−
(
ψgαβ∇̃α∇̃βξ + 2gαβ∇̃αξ∇̃βψ

)
(y0, t0)

≤
(
− 1

16
ξψ2 − ψgαβ∇̃α∇̃βξ − 2gαβ∇̃αξ∇̃βψ

)
(y0, t0)

+ ξ(y0)
(
c(n, k0) + c(n)c21

)
.

Thus we conclude at the point (y0, t0)

1

16
ξψ2 ≤ −ψgαβ∇̃α∇̃βξ − 2gαβ∇̃αξ∇̃βψ + ξ(c(n, k0) + c(n)c21). (4.44)

From the second identity in (4.43) in the first step, and using (4.32) in the
second estimate, we obtain at (y0, t0)

−2gαβ∇̃αξ∇̃βψ =
2ψ

ξ
gαβ∇̃αξ∇̃βξ ≤

1024

δ2
ψ, (4.45)

Furthermore, we obtain from (4.37) at (y0, t0)

−ψgαβ∇̃α∇̃βξ ≤ 2n

(
128

δ2
+

16

δ
4
√
k0 coth

(
4
√
k0γ(y0, x0)

))
ψ. (4.46)
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We estimate the coth-term: Since y0 /∈ B(x0, γ+δ/2) and coth is monotonically
decreasing on the positive real axis, coth( 4

√
k0γ(y0, x0)) ≤ coth( 4

√
k0δ/2). Also,

since z coth z ≤ 1 + Cz for z > 0 and since δ ≤ 1

4
√
k0 coth(

4
√
k0δ/2) =

2

δ
4
√
k0
δ

2
coth( 4

√
k0δ/2) ≤

2

δ
(1 + C 4

√
k0
δ

2
) ≤ c(n, k0)

δ
.

(4.47)

Thus we obtain at (y0, t0)

−ψgαβ∇̃α∇̃βξ ≤
c(n, k0)

δ2
ψ. (4.48)

Plugging (4.45) and (4.48) into (4.44), leads to

1

16
ξψ2 ≤ c(n, k0)

δ2
ψ + ξ(c(n, k0) + c(n)c21). (4.49)

Multiplying this inequality with ξ and using 0 ≤ ξ ≤ 1 we obtain

F (y0, t0)
2 ≤ c(n, k0)

δ2
F (y0, t0) + c(n, k0) + c(n)c21. (4.50)

Thus

F (y0, t0) ≤
c(n, k0)

δ2
+ c(n, k0) + c(n)c21

≤ c(n, k0)

δ2
+ c(n)c21,

(4.51)

assuming c(n, k0) ≥ 1 if necessary. Thus

F (x, t) ≤ F (y0, t0) ≤
c(n, k0)

δ2
+ c(n)c21 (4.52)

for all (x, t) ∈ B(x0, γ + δ)× [0, T ]. Since

F (x, t) = ξ(x)ϕ(x, t)|∇̃g|2(x, t),
ξ(x) = 1 for x ∈ B(x0, γ + δ/2),

ϕ(x, t) ≥ a = 6400n10 for (x, t) ∈ B(x0, γ + δ)× [0, T ],

we obtain

|∇̃g|2(x, t) ≤ 1

6400n10

(
c(n, k0)

δ2
+ c(n)c21

)

=
c(n, k0)

δ2
+ c(n)c21

(4.53)

for all (x, t) ∈ B(x0, γ + δ/2)× [0, T ]. Hence

|∇̃g|(x, t) ≤ c(n, k0)

δ
+ c(n)c1 (4.54)
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for all (x, t) ∈ B(x0, γ + δ/2)× [0, T ].

Case 3. y0 /∈ B(x0, γ + δ/2) and y0 is in the cut locus of x0

Then we apply Calabi’s trick (see e. g. [CLN06, p.395]). Let c :
[0, dg̃(x0, y0)] → M be a minimal geodesic from x0 to y0. Note that since
y0 ∈ B(x0, γ+

3
4δ) the assumption B(x0, γ+ δ− r) ⊂⊂M for all r > 0 ensures

that such a minimal geodesic exists. Fix ε > 0 sufficiently small and define

ξε(x) := η

(
dg̃(x, c(ε)) + ε− (γ + δ/2)

δ/4

)
, Fε(x, t) := ξε(x)ψ(x, t).

Since dg̃(x, x0) ≤ dg̃(x, c(ε))+ ε by the triangle inequality and since η is mono-
tonically decreasing, we have

ξε(x) ≤ ξ(x)

for all x ∈M . As dg̃(y0, x0) = dg̃(y0, c(ε)) + ε, we have ξε(y0) = ξ(y0). Hence

Fε(x, t) ≤ F (x, t) ∀x ∈ B(x0, γ + δ)× [0, T ],

Fε(y0, t0) = F (y0, t0),
(4.55)

such that Fε has a maximum at (y0, t0) as well.

The point now is that dg̃(·, c(ε)) is smooth in a neighborhood of y0. This can
be seen as follows. First, c(ε) is not conjugate to y0 along c (more precisely
running backwards from y0 to c(ε) along c), in the sense that there exists no
non-trivial Jacobi field vanishing at y0 and c(ε). Hence y0 is not conjugate to
c(ε) along c. Letting v := (dg̃(x0, y0)−ε)ċ(ε), such that expc(ε) v = y0, we thus
have that D expc(ε) is non-singular at v.

We claim that v ∈ seg0(c(ε)). If v ∈ seg(c(ε))\seg0(c(ε)), by Lemma 3.1 there
exists w (6= v) ∈ seg(c(ε)) with expc(ε)(w) = expc(ε)(v). Note that Lemma 3.1

can be applied since |v| = dg̃(c(ε), y0) < γ+ 3
4δ and B(c(ε), γ+ 3

4δ) ⊂ B(x0, γ+
7
8δ) ⊂⊂ M . Hence t → expc(ε)(tw) is another minimizing geodesic from c(ε)
to y0. Following c from x0 to c(ε) and then this curve from c(ε) to y0 then
gives a non-smooth minimizing curve from x0 to y0, which is a contradiction.
Hence v ∈ seg0(c(ε)), such that y0 = expc(ε)(v) is not in the cut locus of c(ε).

Thus Fε is smooth in a neighborhood of (y0, t0) and we can apply the same
steps as in Case 2 to Fε. Letting ε→ 0, we obtain (4.51), i.e.

F (y0, t0) ≤
c(n, k0)

δ2
+ c(n)c21,

and we can finish the proof as in Case 2.
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5 A priori estimates of ∇2g along the flow

In this section we utilize the arguments in the proof of Lemma 4.1 to obtain
a priori estimates of the second derivatives of g and the Riemann curvature
tensor along the Ricci DeTurck flow.

Lemma 5.1. Under the same assumptions as in Lemma 4.1, there exists a
constant c(n, k0) > 0 depending only on n and k0, such that

|∇̃2g|(x, t) ≤ c(n, k0)

(
1

δ2
+ c21 +

c
1/3
2

δ2/3
+ c

1/3
2 c

2/3
1

)
(5.1)

for all (x, t) ∈ B(x0, γ + δ/3)× [0, T ], where

c1 = sup
x∈B(x0,γ+3δ/4)

|∇̃R̃m|(x), c2 = sup
x∈B(x0,γ+3δ/4)

|∇̃2R̃m|(x).

We will prove this result below and first note an immediate consequence:
Assuming additionally that |∇̃R̃m| = O(ρ−1) and |∇̃2R̃m| = O(ρ−2), with

ρ > 0 being the distance to the singularity, we obtain |∇̃2g| = O(ρ−2) and
|Rm | = O(ρ−2) uniformly in t ∈ [0, T ].

Corollary 5.2. Let (M, g̃) be a (possibly incomplete) manifold. Fix 0 < T <
∞ and let g(x, t) be a smooth solution of the initial value problem

∂

∂t
gij(x, t) = (−2Ricij +∇iVj +∇jVi)(x, t), (x, t) ∈ M × [0, T ],

g(x, 0) = g̃(x), x ∈ M,

where V i = gjk(Γi
jk − Γ̃i

jk) is the DeTurck vector field. We assume that

(1− ε(n))g̃(x) ≤ g(x, t) ≤ (1 + ε(n))g̃(x)

for ε(n) > 0 sufficiently small, only depending on n, and for all (x, t) ∈ M ×
[0, T ]. Also assume that

|R̃m|2 ≤ k0

for some constant k0 > 0, and that there exists a constant C > 0 such that for
all x ∈M , 0 < ρ ≤ 1

|∇̃R̃m|(x) ≤ C

ρ
, |∇̃2R̃m|(x) ≤ C

ρ2

whenever B(x, ρ − r) is relatively compact for all r > 0. Then there exists
a constant C′ > 0 only depending on k0, C and n such that for all x ∈ M ,
t ∈ [0, T ], 0 < ρ ≤ 1

|∇̃2g|(x, t) ≤ C′

ρ2
, |Rm |(x, t) ≤ C′

ρ2

whenever B(x, ρ− r) is relatively compact for all r > 0.
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Proof of Corollary 5.2. Let x0 ∈ M and ρ ≤ 1 such that B(x0, ρ − r) ⊂ M
relatively compact for all r > 0. Then by Lemma 5.1 (choosing γ, δ equal
to ρ/2)

|∇̃2g|(x, t) ≤ c(n, k0)

(
1

ρ2
+ c21 +

c
1/3
2

ρ2/3
+ c

1/3
2 c

2/3
1

)
(5.2)

with the constants estimated by

c1 = sup
x∈B(x0,7ρ/8)

|∇̃R̃m|(x) ≤ 8C

ρ
, c2 = sup

x∈B(x0,7ρ/8)

|∇̃2R̃m|(x) ≤ 8Ĉ

ρ2
,

since for all x ∈ B(x0, 7ρ/8) we have that B(x, ρ/8−r) ⊂M relatively compact
for all r > 0. The estimate of the Riemannian curvature tensor follows from
this, Corollary 4.3 and

Rm = R̃m ∗ g̃−1 ∗ g + ∇̃2g + g−1 ∗ ∇̃g ∗ ∇̃g,

see [Shi89, p. 276, formula (83)].

Proof of Lemma 5.1. In the following all estimates and inequalities are sup-
posed to hold on B(x0, γ + δ/2)× [0, T ], when nothing else is mentioned. Dif-
ferentiating the equation for the metric g from [Shi89, Lemma 2.1] m times we
obtain

∂

∂t
∇̃mg =gαβ∇̃α∇̃β∇̃mg

+
∑

0≤k1,k2,...,km+2≤m+1
k1+k2+···+km+2≤m+2

∇̃k1g ∗ ∇̃k2g ∗ · · · ∗ ∇̃km+2g ∗ Pk1k2...km+2

+
∑

0≤l1,l2,...,lm,s≤m
l1+l2+···+lm+s=m

∇̃sR̃m ∗ ∇̃l1g ∗ ∇̃l
2g ∗ · · · ∗ ∇̃lmg ∗Ql1l2...lms,

(5.3)

where Pk1k2...km+2
and Ql1l2...lms are polynomials of g, g−1. Hence

∂

∂t
|∇̃mg|2 =

gαβ∇̃α∇̃β |∇̃mg|2 − 2gαβ∇̃α∇̃mg · ∇̃β∇̃mg

+
∑

0≤k1,k2,...,km+2≤m+1
k1+k2+···+km+2≤m+2

∇̃k1g ∗ ∇̃k2g ∗ · · · ∗ ∇̃km+2g ∗ ∇̃mg ∗ Pk1k2...km+2

+
∑

0≤l1,l2,...,lm,s≤m
l1+l2+···+lm+s=m

∇̃sR̃m ∗ ∇̃l1g ∗ ∇̃l
2g ∗ · · · ∗ ∇̃lmg ∗ ∇̃mg ∗Ql1l2...lms,

(5.4)

Documenta Mathematica 27 (2022) 1169–1212



1192 T. Marxen, B. Vertman

For m = 2 this gives, together with 2gαβ∇̃α∇̃2g · ∇̃β∇̃2g ≥ |∇̃3g|2,

∂

∂t
|∇̃2g|2 ≤gαβ∇̃α∇̃β |∇̃2g|2 − |∇̃3g|2

+ c(n)|∇̃2g|(|∇̃3g||∇̃g|+ |∇̃2g|2 + |∇̃2g||∇̃g|2 + |∇̃g|4)
+ c(n)|∇̃2g|(|∇̃2R̃m|+ |∇̃R̃m||∇̃g|+ |R̃m||∇̃2g|+ |R̃m||∇̃g|2).

(5.5)

It follows that

∂

∂t
|∇̃2g|2 ≤gαβ∇̃α∇̃β |∇̃2g|2 − 1

2
|∇̃3g|2

+ c(n)(|∇̃2g|2|∇̃g|2 + |∇̃2g|3 + |∇̃2g||∇̃g|4 + c2|∇̃2g|
+ c1|∇̃2g||∇̃g|+

√
k0|∇̃2g|2 +

√
k0|∇̃2g||∇̃g|2),

(5.6)

on B(x0, γ + 3δ/4)× [0, T ], where

c1 = sup
x∈B(x0,γ+3δ/4)

|∇̃R̃m|(x), c2 = sup
x∈B(x0,γ+3δ/4)

|∇̃2R̃m|(x),

and where we used |∇̃2g||∇̃3g||∇̃g| ≤ 1
2 |∇̃3g|2 + 1

2 |∇̃2g|2|∇̃g|2. From (4.8) and
(4.9) we have

∂

∂t
|∇̃g|2 ≤gαβ∇̃α∇̃β |∇̃g|2 −

1

2
|∇̃2g|2 + c(n, k0)|∇̃g|2 + c(n)c1|∇̃g|

+ 3200n10|∇̃g|4.
(5.7)

Now as in [Shi89, Proof of Lemma 4.2, p.256 (80)] let

ψ(x, t) = (a+ |∇̃g|2)|∇̃2g|2, (5.8)

where a > 0 is a constant which is chosen later. Then
(
∂

∂t
− gαβ∇̃α∇̃β

)
ψ =

(
∂

∂t
− gαβ∇̃α∇̃β

)
(a+ |∇̃g|2) · |∇̃2g|2

+ (a+ |∇̃g|2)
(
∂

∂t
− gαβ∇̃α∇̃β

)
|∇̃2g|2

− 2gαβ∇̃α|∇̃g|2∇̃β |∇̃2g|2.

(5.9)

We proceed as before in Lemmas 2.5 and 4.1 along the following steps.

Step 1: Derive an evolution inequality for ψ.

Step 2: Estimate ∇̃∇̃ξ from below.
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Step 3: Estimate ξψ from above and conclude the proof.

Step 1: Derive an evolution inequality for ψ.

Together with (5.6) and (5.7) we obtain

∂

∂t
ψ ≤gαβ∇̃α∇̃βψ − 1

2
|∇̃2g|4 + c(n, k0)|∇̃g|2|∇̃2g|2 + c(n)c1|∇̃g||∇̃2g|2

+ c(n)|∇̃g|4|∇̃2g|2 − 1

2
(a+ |∇̃g|2)|∇̃3g|2

+ c(n, k0)(a+ |∇̃g|2)(|∇̃2g|2|∇̃g|2 + |∇̃2g|3 + |∇̃2g||∇̃g|4 + c2|∇̃2g|
+ c1|∇̃2g||∇̃g|+ |∇̃2g|2 + |∇̃2g||∇̃g|2)
− 2gαβ∇̃α|∇̃g|2∇̃β |∇̃2g|2.

(5.10)

We estimate the last term as

−2gαβ∇̃α|∇̃g|2∇̃β |∇̃2g|2 ≤ 16|∇̃g||∇̃2g|2|∇̃3g|
≤ 16C1|∇̃2g|2|∇̃3g|

≤ 1

2
a|∇̃3g|2 + 1

2a
· 256C2

1 |∇̃2g|4

=
1

2
a|∇̃3g|2 + 1

4
|∇̃2g|4,

(5.11)

where C1 := c(n,k0)
δ + c(n)c1 is the bound on |∇̃g| from (4.2) and we chose

a = 512C2
1 . This gives

∂

∂t
ψ ≤gαβ∇̃α∇̃βψ − 1

4
|∇̃2g|4 + c(n, k0)C

2
1 |∇̃2g|2 + c(n)c1C1|∇̃2g|2

+ c(n)C4
1 |∇̃2g|2 + c(n, k0)C

2
1 (C

2
1 |∇̃2g|2 + |∇̃2g|3 + C4

1 |∇̃2g|
+ c2|∇̃2g|+ c1C1|∇̃2g|+ |∇̃2g|2 + C2

1 |∇̃2g|).

(5.12)

Now by definition of ψ we have

|∇̃2g|2 =
ψ

a+ |∇̃g|2
≤ ψ

a
=

ψ

512C2
1

(5.13)

and

|∇̃2g|2 =
ψ

a+ |∇̃g|2
≥ ψ

a+ C2
1

=
ψ

513C2
1

(5.14)
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This yields

∂

∂t
ψ ≤

gαβ∇̃α∇̃βψ − 1

4

ψ2

5132C4
1

+ c(n, k0)(ψ +
c1
C1
ψ + C2

1ψ)

+ c(n, k0)(C
2
1ψ +

ψ3/2

C1
+ C5

1ψ
1/2 + c2C1ψ

1/2 + c1C
2
1ψ

1/2 + ψ + C3
1ψ

1/2)

= gαβ∇̃α∇̃βψ − 1

4

ψ2

5132C4
1

+ c(n, k0)

(
ψ3/2

C1
+ (C2

1 +
c1
C1

+ 1)ψ + (C5
1 + C3

1 + c1C
2
1 + c2C1)ψ

1/2

)

≤ gαβ∇̃α∇̃βψ − 1

4

ψ2

5132C4
1

+ c(n, k0)

(
ψ3/2

C1
+ C2

1ψ + (C5
1 + c2C1)ψ

1/2

)
,

(5.15)

where in the last step we used that C1 = c(n,k0)
δ + c(n)c1 ≥ c1 and that,

assuming c(n, k0) ≥ 1, C1 ≥ 1.

Step 2: Estimate ∇̃∇̃ξ from below.

Now let η ∈ C∞(R) be the cutoff function as before and define the cutoff
function ξ ∈ C(M) as

ξ(x) = η

(
dg̃(x, x0)− (γ + δ/3)

δ/12

)
, (5.16)

where dg̃ denotes the distance function with respect to the metric g̃. Then we
have

ξ(x) = 1, x ∈ B(x0, γ + δ/3),

ξ(x) = 0, x ∈M\B(x0, γ + 5δ/12),

0 ≤ ξ(x) ≤ 1, x ∈M.

(5.17)

If dg̃(·, x0) is smooth in a neighborhood of a point x, we have by a calculation
analogous to (4.32)

|∇̃ξ(x)|2 ≤ 2304

δ2
ξ(x) (5.18)

and

∇̃α∇̃βξ(x) ≥ −
(
1152

δ2
+

48

δ
4
√
k0 coth

(
4
√
k0dg̃(x, x0)

))
g̃αβ(x). (5.19)

Step 3: Estimate ξψ from above and conclude the proof.
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Let
F (x, t) := ξ(x)ψ(x, t), (x, t) ∈ B(x0, γ + δ)× [0, T ].

Since |∇̃2g|2(x, 0) = 0, we have

F (x, 0) = 0, x ∈ B(x0, γ + δ). (5.20)

Since ξ(x) = 0 for x ∈ B(x0, γ + δ)\B(x0, γ + 5
12δ), it follows that

F (x, t) = 0, (x, t) ∈ B(x0, γ + δ)\B(x0, γ +
5

12
δ)× [0, T ]. (5.21)

Thus there exists a point (y0, t0) ∈ B(x0, γ+
5
12δ)× [0, T ] with t0 > 0 such that

F (y0, t0) = max {F (x, t) | (x, t) ∈ B(x0, γ + δ)× [0, T ]} (5.22)

unless F ≡ 0 on B(x0, γ + δ)× [0, T ].

Next, as previously in Lemma 4.1, we distinguish three cases, first case where
ξ ≡ 1 in a neighborhood of y0, second case where ξ is not identically 1, but
smooth in a neighborhood of y0, and third case, where ξ is not smooth and a
trick needs to be applied.

Case 1. y0 ∈ B(x0, γ + 5
12δ)

Then ξ ≡ 1 in a neighborhood of y0, such that F = ψ near (y0, t0), and we
have

0 ≤ (
∂

∂t
− gαβ∇̃α∇̃β)ψ(y0, t0) (5.23)

≤ −1

4

ψ2(y0, t0)

5132C4
1

+ c(n, k0)

(
ψ3/2

C1
+ C2

1ψ + (C5
1 + c2C1)ψ

1/2

)
(y0, t0)

(5.24)

and thus

1

4

F 2(y0, t0)

5132C4
1

≤ c(n, k0)

(
F 3/2

C1
+ C2

1F + (C5
1 + c2C1)F

1/2

)
(y0, t0) (5.25)

which is a better estimate than the one below in Case 2, and thus Case 1
follows from Case 2.

Case 2. y0 /∈ B(x0, γ + 5
12δ) and y0 is not in the cut locus of x0

Then the distance function dg̃(·, x0) is smooth in a neighborhood of y0 and it
follows that

0 ≤ ∂F

∂t
(y0, t0) = ξ(y0)

∂ψ

∂t
(y0, t0),

0 = ∇̃αF (y0, t0) = (ξ∇̃αψ + ψ∇̃αξ)(y0, t0),

0 ≥ gαβ∇̃α∇̃βF (y0, t0) = (ξgαβ∇̃α∇̃βψ + ψgαβ∇̃α∇̃βξ

+ 2gαβ∇̃αξ∇̃βψ)(y0, t0).

(5.26)
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Together with (5.15) we obtain at the point (y0, t0)

1

4

ψ2

5132C4
1

ξ ≤ ξgαβ∇̃α∇̃βψ + ξc(n, k0)

(
ψ3/2

C1
+ C2

1ψ + (C5
1 + c2C1)ψ

1/2

)

≤ −ψgαβ∇̃α∇̃βξ − 2gαβ∇̃αξ∇̃βψ

+ ξc(n, k0)

(
ψ3/2

C1
+ C2

1ψ + (C5
1 + c2C1)ψ

1/2

)
.

(5.27)

From (6.29) we have at (y0, t0)

−2gαβ∇̃αξ∇̃βψ =
2ψ

ξ
gαβ∇̃αξ∇̃βξ ≤

9216

δ2
ψ, (5.28)

where the last inequality follows from (4.5). Furthermore, from (5.19) and an
estimate analogous to (4.47) we obtain at (y0, t0)

−ψgαβ∇̃α∇̃βξ ≤
c(n, k0)

δ2
ψ. (5.29)

This yields the following intermediate inequality

1

4

ψ2

5132C4
1

ξ ≤c(n, k0)
δ2

ψ + ξc(n, k0)

(
ψ3/2

C1
+ C2

1ψ + (C5
1 + c2C1)ψ

1/2

)
.

(5.30)

Multiplying this inequality with ξ, using 0 ≤ ξ ≤ 1 and adjusting the constants
c(n, k0) > 0 appropriately, we obtain

F (y0, t0)
2

C4
1

≤ c(n, k0)

(
F (y0, t0)

3/2

C1
+ C2

1F (y0, t0) + (C5
1 + c2C1)F (y0, t0)

1/2

)

+
c(n, k0)

δ2
F (y0, t0).

(5.31)

Now we use the following elementary estimate: If x ≥ 0 satisfies

x2 ≤ ax3/2 + bx+ cx1/2 (5.32)

with constants a, b, c ≥ 0, then

x ≤ max{a2, b, c2/3}.

This reduces (6.35) to the following estimate

F (y0, t0) ≤ c(n, k0)

(
C6

1 +
C4

1

δ2
+ (C9

1 + c2C
5
1 )

2/3

)

≤ c(n, k0)
(
C6

1 + (C9
1 + c2C

5
1 )

2/3
)
,

(5.33)
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since 1
δ ≤ C1. It follows that for all (x, t) ∈ B(x0, γ + δ)× [0, T ]

F (x, t) ≤ F (y0, t0) ≤ c(n, k0)
(
C6

1 + (C9
1 + c2C

5
1 )

2/3
)
.

Since F (x, t) = ξ(x)ψ(x, t) and ξ(x) = 1 for x ∈ B(x0, γ + δ/3), we obtain

ψ(x, t) ≤ c(n, k0)
(
C6

1 + (C9
1 + c2C

5
1 )

2/3
)

∀(x, t) ∈ B(x0, γ + δ/3)× [0, T ].

As ψ(x, t) = (a+ |∇̃g|2)|∇̃2g|2 and a = 512C2
1 we have

|∇̃2g|2(x, t) = ψ(x, t)

(a+ |∇̃g|2)(x, t)
≤ ψ(x, t)

a
≤ c(n, k0)

(
C4

1 + (C6
1 + c2C

2
1 )

2/3
)

for all (x, t) ∈ B(x0, γ + δ/3)× [0, T ]. Thus

|∇̃2g|(x, t) ≤ c(n, k0)
√
C4

1 + (C6
1 + c2C2

1 )
2/3

≤ c(n, k0)(C
2
1 + (C6

1 + c2C
2
1 )

1/3)

≤ c(n, k0)(C
2
1 + c

1/3
2 C

2/3
1 )

≤ c(n, k0)

((
1

δ
+ c1

)2

+ c
1/3
2

(
1

δ
+ c1

)2/3
)

≤ c(n, k0)

(
1

δ2
+ c21 +

c
1/3
2

δ2/3
+ c

1/3
2 c

2/3
1

)

(5.34)

for all (x, t) ∈ B(x0, γ + δ/3)× [0, T ], where we used

3
√
a+ b ≤ 3

√
a+

3
√
b, (a+ b)2 ≤ 2a2 + 2b2

for real numbers a, b ≥ 0.

Case 3. y0 /∈ B(x0, γ + 5
12δ) and y0 is in the cut locus of x0

Then we again apply Calabi’s trick, see Case 3 in the Proof of Lemma 4.1.

6 A priori estimates of ∇mg along the flow

In this section prove we prove a priori estimates for all higher derivatives of g
and the Riemann curvature tensor along the Ricci DeTurck flow. We treated
the case of the second derivatives ∇̃2g separately, since the evolution inequality
(5.7) for |∇̃g|2 which goes into the estimate of the time-derivative of ψ (see the
proof of Lemma 5.1 above) differs from the corresponding one (6.16) below that

will be obtained for the higher derivatives |∇̃m−1g|2.
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Lemma 6.1. Under the same assumptions as in Lemma 4.1 we set for k, s ∈ N0

Ck := sup
x∈B(x0,γ+δ/(k+1))

|∇̃kg|, cs := sup
x∈B(x0,γ+3δ/4)

|∇̃sR̃m|, (6.1)

and define for any integer p ≥ 1 the following constants

Kp :=
∑

0≤k1,...,kp+2≤p−1
k1+···+kp+2≤p+2

Ck1
· · ·Ckp+2

,

Lp :=
∑

0≤l1,...,lp,s≤p−1
l1+···+lp+s=p

csCl1 · · ·Clp .
(6.2)

Then we find for m ≥ 3 and for all (x, t) ∈ B(x0, γ + δ
m+1 )× [0, T ]

|∇̃mg|2(x, t) ≤ max {A,B} (6.3)

where for some constants c(n,m, k0), c(n,m) > 0

A := c(n,m, k0)C
2
m−1

(
1

δ2
+ C2

1 + C2 +
√
k0 +

Km−1 + Lm−1 + cm−1

Cm−1

)
,

B := c(n,m)
1

C2
m−1

(C5
m−1(Km + Lm + cm))2/3.

(6.4)

We first prove a corollary of that result and later provide the proof of the lemma
above. We point out that with more effort it would be possible to obtain an
even more explicit bound of |∇̃mg|2 analogous to the one in Lemma 5.1, but
since our main interest is in the behaviour of the derivatives of the metric and
the Riemann curvature tensor when approaching the singular strata, the bound
above is sufficient for our purposes.

Corollary 6.2. Let (M, g̃) be a (possibly incomplete) manifold. Fix 0 < T <
∞ and let g(x, t) be a smooth solution of the initial value problem

∂

∂t
gij(x, t) = (−2Ricij +∇iVj +∇jVi)(x, t), (x, t) ∈ M × [0, T ],

g(x, 0) = g̃(x), x ∈ M,

where V i = gjk(Γi
jk − Γ̃i

jk) is the DeTurck vector field. We assume that

(1− ε(n))g̃(x) ≤ g(x, t) ≤ (1 + ε(n))g̃(x)

for ε(n) > 0 sufficiently small, only depending on n, and for all (x, t) ∈ M ×
[0, T ]. Also assume that

|R̃m|2 ≤ k0
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for some constant k0 > 0, and that for all m ≥ 1 there exists a constant
Cm > 0, such that for all x ∈M , 0 < ρ ≤ 1

|∇̃mR̃m|(x) ≤ Cm

ρm

whenever B(x, ρ − r) is relatively compact for all r > 0. Then there exists a
constant C′

m > 0 only depending on k0, C1, . . . , Cm, m and n such that for
all x ∈M , t ∈ [0, T ], 0 < ρ ≤ 1

|∇̃mg|(x, t) ≤ C′
m

ρm
, |∇m Rm |(x, t) ≤ C′

m

ρm+2

whenever B(x, ρ− r) is relatively compact for all r > 0.

Proof. We start with the estimates of the derivatives of the metric g. The cases
m = 1, 2 have already been proven, so assume that m ≥ 3. By induction, we
can assume that there exists a constant C′ > 0 such that for all k = 1, . . . ,m−1,
(x, t) ∈M × [0, T ], ρ ≤ 1, r > 0

|∇̃kg|(x, t) ≤ C′

ρk

whenever B(x, ρ − r) ⊂ M is relatively compact. Let x0 ∈ M and ρ ≤ 1 such
that B(x0, ρ − r) ⊂ M relatively compact for all r > 0. Then by Lemma 5.1
(choosing γ, δ equal to ρ/2)

|∇̃mg|2(x, t) ≤ max {A,B} (6.5)

for all t ∈ [0, T ]. Recall the explicit form of A and B

A = c(n,m, k0)C
2
m−1

(
1

δ2
+ C2

1 + C2 +
√
k0 +

Km−1 + Lm−1 + cm−1

Cm−1

)
,

B = c(n,m)
1

C2
m−1

(C5
m−1(Km + Lm + cm))2/3.

(6.6)

The individual constants can be estimated as follows:

Ck = sup
x∈B(x0,ρ/2+ρ/2/(k+1))

|∇̃kg| ≤ sup
x∈B(x0,3ρ/4)

|∇̃kg| ≤ 4kC′

ρk
(6.7)

for k = 1, . . . ,m− 1, since for all x ∈ B(x0, 3ρ/4) we have that B(x, ρ/4− r) ⊂
M relatively compact for all r > 0,

cs = sup
x∈B(x0,ρ/2+3ρ/2/4)

|∇̃sR̃m| = sup
x∈B(x0,7ρ/8)

|∇̃sR̃m| ≤ 8sC

ρs
(6.8)
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for s = 1, . . . ,m, since for all x ∈ B(x0, 7ρ/8) we have that B(x, ρ/8− r) ⊂M
relatively compact for all r > 0. Thus

Km ≤ C

ρm+2
, Lm ≤ C

ρm
, Km−1 ≤ C

ρm+1
, Lm−1 ≤ C

ρm−1
(6.9)

with the constant C > 0 only depending on m and the constants C′, C from
above. Plugging this in gives

|∇̃mg|2(x0, t) ≤
C

ρ2m

for all t ∈ [0, T ], with C > 0 only depending onm,n, k0 and the constants C′, C
from above. This completes the proof for the derivatives of the metric.

To estimate the derivatives of the curvature tensor, we start by the following
general identities for any (say (1, 2)-tensor) A

∇lA
i
jk =

∂

∂xl
Ai

jk +Am
jkΓ

i
ml −Ai

mkΓ
m
jl −Ai

jmΓm
kl,

∇̃lA
i
jk =

∂

∂xl
Ai

jk +Am
jkΓ̃

i
ml −Ai

mkΓ̃
m
jl −Ai

jmΓ̃m
kl.

Thus ∇ and ∇̃, acting on (1, 2)-tensors, differ by the following expression

∇lA
i
jk = ∇̃lA

i
jk +Am

jk(Γ
i
ml − Γ̃i

ml)−Ai
mk(Γ

m
jl − Γ̃m

jl )−Ai
jm(Γm

kl − Γ̃m
kl). (6.10)

In normal coordinates at a point p ∈ M with respect to the metric g̃ we have
Γ̃k
ij = 0 and ∂

∂xi gjk = ∇̃igjk at the point p, such that

Γk
ij − Γ̃k

ij =
1

2
gkm(∇̃jgim + ∇̃igjm − ∇̃mgij)

at p. But since this is an identity of tensors, it actually holds for all points in
any coordinate system. Using the ∗-notation we can write this shorter as

Γ− Γ̃ = g−1 ∗ ∇̃g.

Hence (6.10) takes the form

∇A = ∇̃A+A ∗ g−1 ∗ ∇̃g.

By induction, together with the product rule

∇̃(A ∗B) = ∇̃A ∗B +A ∗ ∇̃B,

and the covariant derivative of the inverse metric tensor given by

∇̃(g−1) = g−1 ∗ g−1 ∗ ∇̃g,
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we obtain for all k ≥ 1

∇kA =
∑

0≤k1,...,kr≤k
k1+···+kr=k

∇̃k1A ∗ ∇̃k2g ∗ · · · ∗ ∇̃krg ∗ Pk1...kr
, (6.11)

where Pk1...kr
is a polynomial in g−1. Now from the identity for the Riemann

curvature tensor

Rm = R̃m ∗ g̃−1 ∗ g + ∇̃2g + g−1 ∗ ∇̃g ∗ ∇̃g,

see [Shi89, p. 276, formula (83)], we obtain by induction for all k ≥ 1

∇̃k Rm =
∑

0≤s,k1,...,kr≤k
s+k1+···+kr=k

∇̃sR̃m ∗ ∇̃k1g ∗ · · · ∗ ∇̃krg ∗Qsk1...kr

+
∑

0≤l1,...,ls≤k+2
l1+···+ls=k+2

∇̃l1g ∗ · · · ∗ ∇̃lsg ∗Rl1...ls ,
(6.12)

where Q,R are polynomials in g, g−1 and g̃−1. Plugging (6.12) into (6.11) gives

∇k Rm =
∑

0≤s,k1,...,kr≤k
s+k1+···+kr=k

∇̃sR̃m ∗ ∇̃k1g ∗ · · · ∗ ∇̃krg ∗ Ssk1...kr

+
∑

0≤l1,...,ls≤k+2
l1+···+ls=k+2

∇̃l1g ∗ · · · ∗ ∇̃lsg ∗ Tl1...ls ,
(6.13)

where S, T are polynomials in g, g−1 and g̃−1, and thus

|∇k Rm | ≤ C(n, k)×

×




∑

0≤s,k1,...,kr≤k
s+k1+···+kr=k

|∇̃sR̃m||∇̃k1g| · · · |∇̃krg|+
∑

0≤l1,...,ls≤k+2
l1+···+ls=k+2

|∇̃l1g| · · · |∇̃lsg|


 .

Now the claim follows from the estimates of the derivatives of g.

Proof of Lemma 6.1. Let m ≥ 2. From (5.4) and since

2gαβ∇̃α∇̃mg · ∇̃β∇̃mg ≥ |∇̃m+1g|2,
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we have the following differential inequality

∂

∂t
|∇̃mg|2 ≤ gαβ∇̃α∇̃β |∇̃mg|2 − |∇̃m+1g|2

+ c(n)|∇̃mg|
∑

0≤k1,...,km+2≤m+1
k1+···+km+2≤m+2

|∇̃k1g| · · · |∇̃km+2g|

+ c(n)|∇̃mg|
∑

0≤l1,...,lm,s≤m
l1+···+lm+s=m

|∇̃sR̃m||∇̃l1g| · · · |∇̃lmg|

≤ gαβ∇̃α∇̃β |∇̃mg|2 − |∇̃m+1|2

+ c(n,m)|∇̃mg| · [|∇̃m+1g||∇̃g|+ |∇̃mg||∇̃2g|+ |∇̃mg||∇̃g|2

+
∑

0≤k1,...,km+2≤m−1
k1+···+km+2≤m+2

Ck1
· · ·Ckm+2

]

+ c(n,m)|∇̃mg| · [|R̃m||∇̃mg|+ |∇̃mR̃m|
+

∑

0≤l1,...,lm,s≤m−1
l1+···+lm+s=m

csCl1 · · ·Clm ]

(6.14)

on B(x0, γ + δ/m)× [0, T ], where we have set as before

cs := sup
x∈B(x0,γ+3δ/4)

|∇̃sR̃m|, Ck := sup
x∈B(x0,γ+δ/(k+1))

|∇̃kg|.

The following estimates also hold on B(x0, γ+ δ/m)× [0, T ], when nothing else
is mentioned. With the abbreviations

Km :=
∑

0≤k1,...,km+2≤m−1
k1+···+km+2≤m+2

Ck1
· · ·Ckm+2

, Lm :=
∑

0≤l1,...,lm,s≤m−1
l1+···+lm+s=m

csCl1 · · ·Clm

and using |∇̃mg||∇̃m+1g||∇̃g| ≤ 1
2 |∇̃m+1g|2 + 1

2 |∇̃mg|2|∇̃g|2 we obtain

∂

∂t
|∇̃mg|2 ≤ gαβ∇̃α∇̃β |∇̃mg|2 − 1

2
|∇̃m+1|2

+ c(n,m) · [|∇̃g|2|∇̃mg|2 + |∇̃2g||∇̃mg|2 +Km · |∇̃mg|
+
√
k0|∇̃mg|2 + cm|∇̃mg|+ Lm · |∇̃mg|]

≤ gαβ∇̃α∇̃β |∇̃mg|2 − 1

2
|∇̃m+1|2

+ c(n,m) ·
(
|∇̃mg|2(C2

1 + C2 +
√
k0)
)

+ c(n,m) ·
(
|∇̃mg|(Km + Lm + cm)

)
.

(6.15)
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Assume from now on that m ≥ 3. Then we can replace m by m− 1 and obtain

∂

∂t
|∇̃m−1g|2 ≤ gαβ∇̃α∇̃β |∇̃mg|2 − 1

2
|∇̃m|2

+ c(n,m− 1) ·
(
C2

m−1(C
2
1 + C2 +

√
k0)

+ Cm−1(Km−1 + Lm−1 + cm−1)) .

(6.16)

We define similar to (5.8)

ψ(x, t) = (a+ |∇̃m−1g|2)|∇̃mg|2,

where a > 0 is a constant to be chosen later. Exactly as before in we proceed
in the following three steps:

Step 1: Derive an evolution inequality for ψ.

Step 2: Estimate ∇̃∇̃ξ from below.

Step 3: Estimate ξψ from above and conclude the proof.

Step 1: Derive an evolution inequality for ψ.

From (6.15) and (6.16) we obtain

(
∂

∂t
− gαβ∇̃α∇̃β

)
ψ

=

(
∂

∂t
− gαβ∇̃α∇̃β

)
(a+ |∇̃m−1g|2) · |∇̃mg|2

+ (a+ |∇̃m−1g|2)
(
∂

∂t
− gαβ∇̃α∇̃β

)
|∇̃mg|2

− 2gαβ∇̃α|∇̃m−1g|2∇̃β |∇̃mg|2

≤ −1

2
|∇̃mg|4 + c(n,m− 1)|∇̃mg|2·

· [C2
m−1(C

2
1 + C2 +

√
k0) + Cm−1(Km−1 + Lm−1 + cm−1)]

+ (a+ |∇̃m−1g|2)(−1

2
|∇̃m+1g|2 + c(n,m)[|∇̃mg|2(C2

1 + C2 +
√
k0)

+ |∇̃mg|(Km + Lm + cm)])

− 2gαβ∇̃α|∇̃m−1g|2∇̃β |∇̃mg|2.
(6.17)
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We estimate the last term on the right-hand side

− 2gαβ∇̃α|∇̃m−1g|2∇̃β |∇̃mg|2

≤ 16|∇̃m−1g||∇̃mg|2|∇̃m+1g|
≤ 16Cm−1|∇̃mg|2|∇̃m+1g|

≤ 1

2
a|∇̃m+1g|2 + 1

2a
· 256C2

m−1|∇̃mg|4.

(6.18)

Now choosing a := 512C2
m−1 yields

(
∂

∂t
− gαβ∇̃α∇̃β

)
ψ

≤ −1

4
|∇̃mg|4 + c(n,m− 1)|∇̃mg|2·

· [C2
m−1(C

2
1 + C2 +

√
k0) + Cm−1(Km−1 + Lm−1 + cm−1)]

+ c(n,m)C2
m−1[|∇̃mg|2(C2

1 + C2 +
√
k0) + |∇̃mg|(Km + Lm + cm)].

(6.19)

Since

|∇̃mg|2 =
ψ

a+ |∇̃m−1g|2
≤ ψ

a
=

ψ

512C2
m−1

and

|∇̃mg|2 =
ψ

a+ |∇̃m−1g|2
≥ ψ

(512 + 1)C2
m−1

it follows that
(
∂

∂t
− gαβ∇̃α∇̃β

)
ψ

≤ −1

4

ψ2

5132C4
m−1

+ c(n,m− 1)[C2
1 + C2 +

√
k0 +

Km−1 + Lm−1 + cm−1

Cm−1
]ψ

+ c(n,m)(C2
1 + C2 +

√
k0)ψ

+ c(n,m)Cm−1(Km + Lm + cm)
√
ψ.

(6.20)

Step 2: Estimate ∇̃∇̃ξ from below.

Let η ∈ C∞(R) be the cutoff function as before and define ξ ∈ C(M) to be the
cutoff function

ξ(x) = η




dg̃(x, x0)−
(
γ + δ

m+1

)

δ ·
(

1
2

(
1

m+1 + 1
m

)
− 1

m+1

)


 , (6.21)
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where dg̃ denotes the distance function with respect to the metric g̃. Then

ξ(x) = 1, x ∈ B(x0, γ +
δ

m+ 1
),

ξ(x) = 0, x ∈ B(x0, γ + δ)\B(x0, γ + δ · 1
2

(
1

m+ 1
+

1

m

)
),

0 ≤ ξ(x) ≤ 1, x ∈M.

(6.22)

If dg̃(·, x0) is smooth in a neighborhood of a point x, we obtain by estimates
analogous to (4.32)

|∇̃ξ(x)|2 ≤ c(m)

δ2
ξ(x) (6.23)

and

∇̃α∇̃βξ(x) ≥ −
(
c(m)

δ2
+
c(m)

δ
4
√
k0 coth

(
4
√
k0dg̃(x, x0)

))
g̃αβ(x). (6.24)

Step 3: Estimate ξψ from above and conclude the proof.

Let
F (x, t) = ξ(x)ψ(x, t), (x, t) ∈ B(x0, γ + δ)× [0, T ].

Since |∇̃mg|2(x, 0) = 0, we have

F (x, 0) = 0, x ∈ B(x0, γ + δ). (6.25)

Since ξ(x) = 0 for x ∈ B(x0, γ+ δ)\B(x0, γ+ δ · 1
2

(
1

m+1 + 1
m

)
), it follows that

F (x, t) = 0, (x, t) ∈ B(x0, γ + δ)\B
(
x0, γ + δ · 1

2

(
1

m+ 1
+

1

m

))
× [0, T ].

Thus there exists a point (y0, t0) ∈ B(x0, γ + δ · 1
2

(
1

m+1 + 1
m

)
) × [0, T ] with

t0 > 0 such that

F (y0, t0) = max {F (x, t) | (x, t) ∈ B(x0, γ + δ)× [0, T ]} (6.26)

unless F ≡ 0 on B(x0, γ + δ)× [0, T ].

Now as before in Lemma 4.1, we distinguish three cases, first case where ξ ≡ 1
in a neighborhood of y0, second case where ξ is not identically 1, but smooth in
a neighborhood of y0, and third case, where ξ is not smooth and a trick needs
to be applied.

Case 1. y0 ∈ B(x0, γ + δ · 1
2

(
1

m+1 + 1
m

)
)
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Then ξ ≡ 1 in a neighborhood of y0, such that F = ψ near (y0, t0), so that

0 ≤
(
∂

∂t
− gαβ∇̃α∇̃β

)
ψ

≤ −1

4

ψ2

5132C4
m−1

+ c(n,m− 1)[C2
1 + C2 +

√
k0 +

Km−1 + Lm−1 + cm−1

Cm−1
]ψ

+ c(n,m)(C2
1 + C2 +

√
k0)ψ

+ c(n,m)Cm−1(Km + Lm + cm)
√
ψ

(6.27)

and hence

1

4

F 2(y0, t0)

5132C4
m−1

≤

c(n,m− 1)[C2
1 + C2 +

√
k0 +

Km−1 + Lm−1 + cm−1

Cm−1
]F (y0, t0)

+ c(n,m)(C2
1 + C2 +

√
k0)F (y0, t0)

+ c(n,m)Cm−1(Km + Lm + cm)
√
F (y0, t0),

(6.28)

which again is a better estimate than the one below in Case 2, and hence
Case 1 follows from Case 2.

Case 2. y0 /∈ B(x0, γ + δ
2

(
1

m+1 + 1
m

)
) and y0 is not in cut locus of x0

Then the distance function dg̃(·, x0) is smooth in a neighborhood of y0 and we
have

0 ≤ ∂F

∂t
(y0, t0) = ξ(y0)

∂ψ

∂t
(y0, t0),

0 = ∇̃αF (y0, t0) = (ξ∇̃αψ + ψ∇̃αξ)(y0, t0),

0 ≥ gαβ∇̃α∇̃βF (y0, t0) = (ξgαβ∇̃α∇̃βψ + ψgαβ∇̃α∇̃βξ

+ 2gαβ∇̃αξ∇̃βψ)(y0, t0).

(6.29)

Together with (6.20) we obtain at the point (y0, t0)

1

4

ψ2

5132C4
m−1

ξ ≤ ξgαβ∇̃α∇̃βψ + ξ · A

≤ −ψgαβ∇̃α∇̃βξ − 2gαβ∇̃αξ∇̃βψ + ξ · A
(6.30)

with

A := c(n,m− 1)[C2
1 + C2 +

√
k0 +

Km−1 + Lm−1 + cm−1

Cm−1
]ψ

+ c(n,m)(C2
1 + C2 +

√
k0)ψ

+ c(n,m)Cm−1(Km + Lm + cm)
√
ψ.

(6.31)
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Using (6.29), (6.23) and (4.5) we have at (y0, t0)

−2gαβ∇̃αξ∇̃βψ =
2ψ

ξ
gαβ∇̃αξ∇̃βξ ≤

c(m)

δ2
ψ. (6.32)

Also (6.24) and an estimate analogous to (4.47) yields at (y0, t0)

−ψgαβ∇̃α∇̃βξ ≤
c(n,m, k0)

δ2
ψ. (6.33)

Plugging (6.32) and (6.33) into (6.30) leads to

1

4

ψ2

5132C4
m−1

ξ ≤c(n,m, k0)
δ2

ψ + ξ · A. (6.34)

Multiplying by ξ while using 0 ≤ ξ ≤ 1 and adjusting the constants
c(n,m, k0) > 0 we obtain

F (y0, t0)
2

C4
m−1

≤ c(n,m− 1)[C2
1 + C2 +

√
k0 +

Km−1 + Lm−1 + cm−1

Cm−1
]F (y0, t0)

+ c(n,m)(C2
1 + C2 +

√
k0)F (y0, t0)

+ c(n,m)Cm−1(Km + Lm + cm)
√
F (y0, t0)

+
c(n,m, k0)

δ2
F (y0, t0).

(6.35)

Now we use the elementary estimate (5.32) with a = 0, namely: If x ≥ 0
satisfies

x2 ≤ bx+ cx1/2

with constants b, c ≥ 0, then

x ≤ max{b, c2/3}.
This reduces (6.35) to

F (y0, t0) ≤

max{c(n,m, k0)C4
m−1

(
1

δ2
+ C2

1 + C2 +
√
k0 +

Km−1 + Lm−1 + cm−1

Cm−1

)
,

c(n,m)(C5
m−1(Km + Lm + cm))2/3}.

(6.36)

Hence for all (x, t) ∈ B(x0, γ + δ)× [0, T ]

F (x, t) ≤ F (y0, t0) ≤

max{c(n,m, k0)C4
m−1

(
1

δ2
+ C2

1 + C2 +
√
k0 +

Km−1 + Lm−1 + cm−1

Cm−1

)
,

c(n,m)(C5
m−1(Km + Lm + cm))2/3}.

(6.37)
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As F (x, t) = ξ(x)ψ(x, t) and ξ(x) = 1 for x ∈ B(x0, γ + δ
m+1 ), we conclude

ψ(x, t) ≤

max{c(n,m, k0)C4
m−1

(
1

δ2
+ C2

1 + C2 +
√
k0 +

Km−1 + Lm−1 + cm−1

Cm−1

)
,

c(n,m)(C5
m−1(Km + Lm + cm))2/3}

(6.38)

for all (x, t) ∈ B(x0, γ+
δ

m+1 )×[0, T ]. Now since ψ(x, t) = (a+|∇̃m−1g|2)|∇̃mg|2
and a = 512C2

m−1 we finally obtain

|∇̃mg|2(x, t) = ψ(x, t)

(a+ |∇̃g|2)(x, t)
≤ ψ(x, t)

a

≤ max{c(n,m, k0)C2
m−1

(
1

δ2
+ C2

1 + C2 +
√
k0 +

Km−1 + Lm−1 + cm−1

Cm−1

)
,

c(n,m)
1

C2
m−1

(C5
m−1(Km + Lm + cm))2/3}

(6.39)

for all (x, t) ∈ B(x0, γ + δ
m+1 )× [0, T ].

Case 3. y0 /∈ B(x0, γ + δ
2

(
1

m+1 + 1
m

)
) and y0 is in the cut locus of x0

Here we again apply Calabi’s trick, see Case 3 in the Proof of Lemma 4.1.

7 Proof of the main existence and regularity result

In this section we describe the necessary modifications of the proofs in Section 2
for the case of incomplete manifolds. Despite incompleteness, we still continue
under the assumption of bounded geometry |R̃m|2 ≤ k for some positive con-
stant k > 0.

7.1 Validity of Theorems 2.3 and 2.4 in the incomplete case

We start by observing that, due to the relative compactness of the domain D,
Theorem 2.3 and Theorem 2.4 are also valid in case the initial manifold (M, g̃) is
incomplete. Indeed, we can follow the same steps as in the proof of Theorem 2.3
outlined above. To give just one example from the proof of Theorem 2.4, the
compactness of the closure of the domainD still gives a positive lower bound for
the injectivity radius on D, which is needed for the estimate (7) in Lemma 3.1
in [Shi89].

Notice that the injectivity radius on D can become small in the case of incom-
plete manifolds when D is close to the singularity, but that smallness of the
injectivity radius can also happen in the complete case, e.g. on manifolds with
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hyperbolic cusps. At this point we emphasize once again. cf. Remark 2.2, that
the lower bound for the injectivity radius on D does not enter the existence
times T (n, k0) and T (n, k0, δ). This is a crucial point, as we will later take
an exhaustion of the manifold M by such domains which then get closer and
closer to the singularity.

7.2 Extension of Lemmas 2.5 and 2.6 to the incomplete case

Next we formulate and prove interior estimates for the derivatives of the met-
ric, corresponding to Lemma 2.5 and Lemma 2.6. Let U ⊂ M be open and
relatively compact, such that ∂U is an (n − 1)-dimensional, smooth, compact

submanifold. Choose δ > 0 small enough, that B(U, δ) ⊂ M is compact and
that the function dg̃(·, U) : M → R giving the distance to U is smooth on
B(U, δ)\U . The latter is possible, since dg̃(x, U) = dg̃(x, ∂U) for all x ∈M\U ,
and dg̃(·, ∂U) is smooth in a neighborhood of ∂U by [Foo84, Theorem 1 and
Remark (1)]. The following result is an extension of Lemmas 2.5 and 2.6 to
the incomplete case.

Lemma 7.1. Fix U, δ as above, and a finite T > 0. Let g(x, t) be a smooth
solution of the initial value problem

∂

∂t
gij(x, t) = (−2Ricij +∇iVj +∇jVi)(x, t), (x, t) ∈ B(U, δ)× [0, T ],

g(x, 0) = g̃(x), x ∈ B(U, δ),

where V i = gjk(Γi
jk − Γ̃i

jk) is the DeTurck vector field. Furthermore, assume
that

(1− ε(n))g̃(x) ≤ g(x, t) ≤ (1 + ε(n))g̃(x)

for ε(n) > 0 sufficiently small only depending on n and for all (x, t) ∈ B(U, δ)×
[0, T ]. Then for all m ∈ N0 there exists c(n,m,U, δ, g̃) > 0 depending only
on n,m,U, δ and g̃, such that for all (x, t) ∈ B(U, δ

m+1 )× [0, T ]

|∇̃mg(x, t)|2 ≤ c(n,m,U, δ, g̃).

Proof. By compactness of B(U, δ/(m+ 1)) we can cover it by finitely many
balls B(xi, δ/(m + 1) + δ/4), i = 1, . . . , N with xi ∈ U and where N =
N(U,m, g̃). Now by the derivative estimates for the metric Lemma 4.1,
Lemma 5.1, Lemma 6.1 we obtain

|∇̃mg|2(x, t) ≤ ci(n,m, δ, g̃), (x, t) ∈ B(xi,
δ

m+ 1
+
δ

4
)× [0, T ]

for i = 1, . . . , N , implying the desired estimate.
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7.3 Proof of Theorem 1.1 by exhaustion

Now we can finish the proof of Theorem 1.1. Let {Uk}k∈N, be an exhaustion
of M by n-dimensional, smooth, compact manifolds with boundary, i.e. Uk ⊂
M is open, Uk ⊂M is compact, ∂Uk is an (n−1)-dimensional, smooth, compact
submanifold, Uk ⊂ Uk+1 for all k ∈ N and

⋃
k∈N

Uk = M . By Theorem 2.3 and

Theorem 2.4 there exists T (n, k0) > 0, such that the system (cf. (2.16))

∂

∂t
gij(x, t) = (−2Ricij +∇iVj +∇jVi)(x, t), (x, t) ∈ Uk × [0, T (n, k0)],

g(x, t) = g̃(x), (x, t) ∈ ∂Uk × [0, T (n, k0)],

g(x, 0) = g̃(x), x ∈ Uk.

(7.1)

where V i = gjk(Γi
jk − Γ̃i

jk) is the DeTurck vector field, has a unique smooth
solution g(k, x, t) on 0 ≤ t ≤ T (n, k0) for all k ∈ N, satisfying the estimate

(1 − ε(n))g̃(x) ≤ g(k, x, t) ≤ (1 + ε(n))g̃(x) (7.2)

for all (x, t) ∈ Uk× [0, T (n, k0)] and for ε(n) > 0 sufficiently small only depend-
ing on n. Note that Uk from the exhaustion above need not be connected, but
since it is compact, it has at most finitely many connected components, so that
Theorem 2.3 and Theorem 2.4 can be applied to each component.

Choose δk > 0 sufficiently small, such that the closure of B(Uk, δk) ⊂M is com-
pact and such that the function dg̃(·, Uk) : M → R is smooth on B(Uk, δk)\Uk.
By compactness of the closure of B(U1, δ1), there exists N ∈ N, such that the
solution g(k, x, t) is defined on B(U1, δ1) for all k ≥ N . By Lemma 7.1

|∇̃mg(k, x, t)|2 ≤ c(n,m,Uk, δk, g̃),

for all k ≥ N , m ∈ N0, and (x, t) ∈ U1 × [0, T (n, k0)]. Then by Arzelà-Ascoli
there exists a subsequence (g(kℓ, x, t))ℓ∈N, which converges on U1× [0, T ] in the
C∞ topology to a family of C∞ metrics g(x, t).

Similarly a subsequence of the subsequence converges on U2 × [0, T ], etc. Now
the diagonal sequence converges on every Uk× [0, T ] to g(x, t). As the sequence
(Uk) eventually contains any given compact subset ofM , the diagonal sequence
converges smoothly locally uniformly to g(x, t). Then g(x, t) solves (1.1). The
estimate (1.2) follows by restricting the solutions g(k, x, t) to t ∈ [0, T (n, k0, δ)],
where T (n, k0, δ) is from Theorem 2.3.

8 Open problems and future research directions

We intend to discuss the following questions in the subsequent publications.
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1. Does the Ricci DeTurck flow, presented here, and the flow constructed
by the second author in [Ver21], coincide in the setting of incomplete
manifolds of bounded geometry with wedge singularities?

2. Can we extend the tensor maximum principle to the incomplete setting?

3. Is there a way to define a flow of arbitrary incomplete manifolds with-
out assuming bounded curvature, for instance imposing bounded Ricci
curvature only?
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