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Abstract. We give a short and streamlined proof of the follow-
ing statement recently proven by the author and M. Zeinalian: the
cobar construction of the dg coassociative coalgebra of normalized
singular chains on a path-connected pointed space is naturally quasi-
isomorphic as a dg associative algebra to the singular chains on the
based loop space. This extends a classical theorem of F. Adams orig-
inally proven for simply connected spaces. Our proof is based on re-
lating the cobar functor to the left adjoint of the homotopy coherent
nerve functor.
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1 Introduction

In 1956, F. Adams described a natural algebraic construction, called the cobar
construction, which passes from a differential graded (dg) coassociative coalge-
bra to a differential graded (dg) associative algebra [Ad56]. Adams showed that
when applied to a suitable chain model of a simply connected space, the cobar
construction yields a chain model for its based loop space. Both the cobar con-
struction and its relationship to the based loop space have been of fundamental
importance in various contexts such as homological algebra, rational homotopy
theory, the theory of operads, symplectic geometry, and representation theory,
to name a few.

In 2016, the author and M. Zeinalian proved that Adams’ theorem extends
to any path-connected space [RiZe16]. This result was then used to explain
the sense in which the algebraic structure of the singular chains determines
the fundamental group and to show that the dg coalgebra of singular chains
detects weak homotopy equivalences between spaces [RiZe18],[RWZ18]. In this
article we provide a short, direct, and streamlined proof of this extension of
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Adams’ theorem, which was obtained in [RiZe16] from deeper categorical and
combinatorial considerations. In particular, in contrast to [RiZe16], in this
article we do not make use of the theory of cubical sets with connections.

Let (X, b) be a pointed topological space. Let (C∗(X), ∂,∆) be the dg coasso-
ciative coalgebra of singular chains on X with Z-coefficents equipped with the
Alexander-Whitney coproduct ∆ : C∗(X)→ C∗(X)⊗ C∗(X). Let C′

∗(X, b) be
the subcomplex of C∗(X) generated by those continuous maps σ : |∆n| → X
that send the vertices of the topological n-simplex |∆n| to b. Let C∗(X, b) be the
quotient of C′

∗(X, b) by the subcomplex of degenerate chains. The chain com-
plex C∗(X, b) inherits a dg coassociative coalgebra structure (C∗(X, b), ∂,∆).
The main theorem of this article, which we prove in section 3, is the following.

Theorem 1. If (X, b) is a path-connected pointed space then the cobar con-
struction of (C∗(X, b), ∂,∆) is naturally quasi-isomorphic as a dg associative
algebra to C∗(ΩbX), the singular chains on the topological monoid of (Moore)
loops in X based at b.

Instead of comparing spectral sequences as in Adams’ original paper, which
required a connectivity hypothesis, we prove the above theorem by relating the
cobar construction to (the left adjoint of) a particular model for the classify-
ing space of a fibrant simplicial groupoid called the homotopy coherent nerve
functor introduced by Cordier in [Co82] and studied in more detail in [Hi07],
[DuSp11], [DuSp211], and [Lu09].

There are other extensions of Adams’ cobar theorem in the literature. Kontse-
vich proposed to formally add strict inverses to all the 1-simplices of a simplicial
complex in the cobar construction of its chains to obtain a chain model for the
based loop space [Ko09]. An explicit relationship between this model and the
Kan loop group construction was established in [HeTo10]. More recently, in
[CHL18], both [RiZe16] and [HeTo10] are placed in the same framework of
derived localizations.

2 Preliminaries

2.1 Cobar construction

We assume all (co)algebras are (co)unital. Let K be a commutative ring with
unit and let ⊗ = ⊗K. A dg coassociative K-coalgebra (C∗, ∂ : C∗ → C∗−1,∆ :
C∗ → C∗⊗C∗) is connected if Ci = 0 for i < 0 and the counit defines an isomor-
phism C0

∼= K. Let dgCoalg0
K
be the category of connected dg coassociative

K-coalgebras and let dgAlg
K
be the category of dg associativeK-algebras. The

cobar construction is a functor

Ω : dgCoalg0
K
→ dgAlg

K

defined as follows. For any (C∗, ∂,∆) ∈ dgCoalg0
K
define the underlying graded

K-algebra of Ω(C∗, ∂,∆) to be the graded tensor algebra

T (s−1C∗>0) = K⊕ s−1C∗>0 ⊕ (s−1C∗>0)
⊗2 ⊕ (s−1C∗>0)

⊗3 ⊕ ... ,
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where C∗>0 is the quotient of K-modules C∗/C0 and s−1 is the shift functor,
defined by (sjM)i := Mi−j for any integer j and any graded K-module M.
The generators of T (s−1C∗>0) are monomials which will be denoted by
[s−1σ1|s−1σ2|...|s−1σk], where σi ∈ C∗>0. Multiplication is given by concate-
nation of monomials. The differential of Ω(C∗, ∂,∆) is defined by extending
the linear map

−s−1◦∂◦s+1+(s−1⊗s−1)◦∆◦s+1 : s−1C∗>0 → s−1C∗>0⊕(s
−1C∗>0⊗s

−1C∗>0)

as a derivation (by the Leibniz rule) to all monomials to obtain a linear map
of degree −1

D : T (s−1C∗>0)→ T (s−1C∗>0).

The compatibility of ∂ and ∆, the coassociativity of ∆, and ∂2 = 0, together
imply D2 = 0.

Remark 2. The cobar functor does not send quasi-isomorphisms of dg coal-
gebras to quasi-isomorphisms of dg algebras. A counterexample is discussed in
Proposition 2.4.3 of [LoVa12].

2.2 Rigidification and homotopy coherent nerve

Let sSet and sCat be the categories of simplicial sets and categories enriched
over the monoidal category of simplicial sets with cartesian product, respec-
tively. We call the objects of sCat simplicial categories.. Denote by ∆n ∈ sSet

the standard n-simplex. We recall the definition of the rigidification functor

C : sSet→ sCat.

following [Lu09]. Given integers 0 ≤ i ≤ j denote by Pi,j the category whose
objects are all the subsets of {i, i+ 1, ..., j} containing both i and j and mor-
phisms are inclusions. For each integer n ≥ 0 define C(∆n) ∈ sCat to have the
set {0, ..., n} as objects and if i ≤ j, define C(∆n)(i, j) := N(Pi,j), where N is
the ordinary nerve functor.1 If j < i, C(∆n)(i, j) := ∅. The composition law
in C(∆n) is induced by the functor Pj,k × Pi,j → Pi,k given by union of sets.
The assignment [n] 7→ C(∆n) defines a cosimplicial object in sCat. For any
S ∈ sSet define

C(S) := colim
∆n→S

C(∆n).

The functor C is the left adjoint of the homotopy coherent nerve functor

N : sCat→ sSet,

which is given by
N(C)n = HomsCat(C(∆

n),C).

1Note there is a natural isomorphism of simplicial sets C(∆n)(i, j) ∼= (∆1)×(j−i−1) if
i < j and C(∆n)(i, i) ∼= ∆0.
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We recall a description of the mapping spaces C(S)(x, y) given in [DuSp11]. By
a necklace we mean a simplicial set of the form T = ∆n1 ∨ ... ∨∆nk obtained
from an ordered sequence of standard simplices, which we call the beads of T ,
with ni > 0 by gluing the final vertex of one to the first vertex of its successor.
Define the dimension of a necklace by dim(T ) := n1 + ...+ nk − k. Denote by
αT and ωT the first and last vertices of T using the natural ordering on the
set vertices. We declare ∆0 to be a necklace of dimension 0. Necklaces form a
category Nec with morphisms being maps of simplicial sets f : T → T ′ such
that f(αT ) = αT ′ and f(ωT ) = ωT ′ . For S ∈ sSet and x, y ∈ S0 denote by
(Nec ↓ S)x,y the full subcategory of the over category Nec ↓ S consisting of
those maps f : T → S such that f(αT ) = x and f(ωT ) = y. The category Nec

has a (non-symmetric) monoidal structure

∨ : Nec×Nec→ Nec

given by concatenation of necklaces with identity object ∆0.

Proposition 3. (Proposition 4.3 [DuSp11]) For any S ∈ sSet and x, y ∈ S0,
there are natural isomorphisms of simplicial sets

C(S)(x, y) ∼= colim
(f :T→S)∈(Nec↓S)x,y

C(T )(αT , ωT ) ∼= colim
(f :T→S)∈(Nec↓S)x,y

(∆1)×dim(T )

The composition map C(S)(y, z) × C(S)(x, y) → C(S)(x, z) is given by [(f ′ :
T ′ → S), σ′] × [(f : T → S), σ] 7→ [(f ∨ f ′ : T ∨ T ′ → S), σ × σ′], where the
notation [(f : T → S), σ] ∈ C(S)(x, y) denotes the equivalence class of the pair
((f : T → S), σ) in the colimit.

Remark 4. The second isomorphism in the above proposition, as explained in
Corollary 3.8 of [DuSp11], is induced by a natural isomorphism

φT : C(T )(αT , ωT ) ∼= (∆1)×dim(T ).

An essential feature of φ is that if ι : T ′ →֒ T is an injection in Nec and
dim(T ′) = dim(T )− 1 then the induced map of simplicial cubes

φT ◦ C(ι) ◦ φ
−1
T ′ : (∆1)×dim(T )−1 → (∆1)×dim(T )

is a cubical face inclusion, namely, (∆1)×dim(T )−1 is mapped injectively into
one of the boundary faces of (∆1)×dim(T ). Moreover, all cubical face inclusions
are realized by maps of necklaces in this way.

Remark 5. The adjunction given by the functors C : sSet → sCat and
N : sCat→ sSet defines a Quillen equivalence between the Joyal model struc-
ture on sSet and the Bergner model structure on sCat. This is proven in
Chapter 2 of [Lu09] and a different proof is given in [DuSp211]. The Quillen
model structure on sSet is a Bousfield localization of the Joyal model struc-
ture. In particular, a weak homotopy equivalence between simplicial sets which
are fibrant objects in the Quillen model structure (Kan complexes) is a weak
equivalence in the Joyal model structure. This is proven directly in Proposi-
tion 17.2.8 of [Ri14].
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We recall Corollary 2.6.3 of [Hi07] where the relationship between homotopy
coherent nerve N and the classifying space functor was established. A fibrant
groupoid C is a simplicial category such that for all x, y ∈ C, C(x, y) is a Kan
complex and each σ ∈ C(x, y)0 is invertible up to homotopy. For any C ∈ sCat,
let B(C) be the simplicial set determined by the diagonal of the bisimplicial
set obtained by applying (level-wise) the ordinary nerve to C.

Proposition 6. [Hi07] There is a natural map B(C)→ N(C) which is a weak
homotopy equivalence when C is a fibrant groupoid.

The functor B is a model for the classifying space functor of a simplicial monoid,
as discussed in [Se68] and p. 86 of [Qu73].

3 Proof of the main theorem

Let sSet0 be the full subcategory of sSet consisting of simplicial sets with a
single vertex and let sMon be the category of simplicial monoids. For any
K ∈ sSet0, the simplicial category C(K) has a single object so, for simplicity,
we will consider C(K) as an object in sMon. Denote by | · | : sSet→ Top the
geometric realization functor and by Sing : Top → sSet the singular complex
functor. In this section we deduce Theorem 1 as a consequence of several
results.

Proposition 7. If K ∈ sSet0 is a Kan complex with K0 = {x}, the simplicial
monoids C(K) and Sing(Ωx|K|) are naturally weakly homotopy equivalent.

Proof. Since Sing(Ωx|K|) is a fibrant groupoid, by Proposition 5 there is a
natural weak homotopy equivalence

B(Sing(Ωx|K|))
≃
−→ N(Sing(Ωx|K|)).

We know there is a natural weak homotopy equivalence of Kan complexes

K
≃
←− B(Sing(Ωx|K|)),

which follows from the well known natural weak homotopy equivalence relating
the classifying space functor and the based loop space functor, see Lemma 15.4
of [Ma75] for an explicit formula. Note that N(Sing(Ωx|K|)) is a Kan com-
plex since it is a quasi-category whose homotopy category is a groupoid. By
Remark 5, the functor C : sSet → sCat sends weak homotopy equivalences
between Kan complexes to weak equivalences of simplicial categories. Hence
by applying C we obtain natural weak equivalences of simplicial categories

C(K)
≃
←− C(B(Sing(Ωx|K|)))

≃
−→ C(N(Sing(Ωx|K|))).

Finally, since C and N define a Quillen equivalence between model categories
and Sing(Ωx|K|) is a fibrant simplicial category, it follows that the counit of
the adjunction induces a weak equivalence of simplicial categories

C(N(Sing(Ωx|K|)))
≃
−→ Sing(Ωx|K|).
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Thus C(K) and Sing(Ωx|K|) are naturally weakly equivalent as simplicial cat-
egories.

Let ChZ be the category of chain complexes of abelian groups and C∗ : sSet→
ChZ the normalized chains functor. The Eilenberg-Zilber natural transforma-
tion C∗(S)⊗C∗(S

′)→ C∗(S×S′) makes C∗ : sSet→ ChZ into a lax monoidal
functor. Thus, there is an induced functor C∗ : sMon → dgAlg

Z
. More

precisely, if M ∈ sMon we have natural maps

C∗(M)⊗ C∗(M)
EZ
−−→ C∗(M ×M)→ C∗(M),

where the first map is induced by the Eilenberg-Zilber shuffle map and the
second one by the monoid structure ofM , making C∗(M) into a dg associative
algebra.
Since the normalized chains functor sends weak homotopy equivalences to
quasi-isomorphisms, Proposition 6 implies the following

Corollary 8. If K ∈ sSet0 is a Kan complex, the dg associative algebras
C∗(C(K)) and Csing

∗ (Ωx|K|) are naturally quasi-isomorphic.

We now describe C∗(C(K)) in more detail. Since the normalized chains functor
commutes with colimits, by Proposition 3 there is a natural isomorphism of
chain complexes

C∗(C(K)) ∼= colim
(f :T→K)∈Nec↓K

C∗((∆
1)×dim(T )).

Therefore, any element of Cn(C(K)) is given by the equivalence class [f, σ] of a
pair (f : T → K,σ) where (f : T → K) ∈ Nec ↓ K and σ ∈ Cn((∆

1)×dim(T )).
The differential ∂ : C∗(C(K))→ C∗−1(C(K)) is given by ∂[f, σ] = [f, ∂σ]. The
algebra structure

C∗(C(K))⊗ C∗(C(K))→ C∗(C(K))

may be described on any two classes [g, σ] and [g′, σ′] by

[g, σ]⊗ [g′, σ′] 7→ [g′ ∨ g, EZ(σ′, σ)],

where ∨ denotes the concatenation (or wedge) product of necklaces and
EZ : C∗(S) ⊗ (S′) → C∗(S × S′) the Eilenberg-Zilber map. The class
u := [s0(x), ∗] ∈ C0(C(K)) is the unit for this product, where s0(x) : ∆

1 → K
is the degenerate 1-simplex at x and ∗ ∈ C0(∆

0) the unique generator.

The Alexander-Whitney coproduct ∆ : C∗(K)→ C∗(K)⊗C∗(K) is defined by

∆(σ) =
n∑

i=0

σ|[0,...,i] ⊗ σ|[i,...,n]
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for any σ ∈ Cn(K), where σ|[0,...,i] ∈ Ci(S) and σ|[i,...,n] ∈ Cn−i(S) denote the
simplices obtained by restricting σ to its first i-dimensional face and its last
(n − i)-dimensional face, respectively. If K ∈ sSet0, then (C∗(K), ∂,∆) is a
connected dg coassociative coalgebra.

Theorem 9. For any K ∈ sSet0, the dg associative algebras Ω(C∗(K), ∂,∆)
and C∗(C(K)) are naturally quasi-isomorphic.

Proof. Define a functor F : Nec→ ChZ as follows. On objects, F is given by
setting F (∆0) = C�

∗ (�0) and, on all other neckalces T ∈ Nec,

F (T ) = C�
∗ (�dim(T )),

where C�
∗ (�n) denotes the chain complex of normalized cubical chains on the

standard n-cube �
n considered as a cubical set, or equivalently, the cellular

chains on the topological n-cube with its standard (cubical) cell structure. We
now define F on morphisms. The morphisms in Nec are generated via the
monoidal structure ∨ : Nec×Nec → Nec by the following types of necklace
maps.

1. ∂j : ∆
n →֒ ∆n+1 for j = 1, . . . , n,

2. ∆[j],[n+1−j] : ∆
j ∨∆n+1−j →֒ ∆n+1 for j = 1, . . . , n,

3. sj : ∆
n+1

։ ∆n for j = 0, . . . , n and n > 0, and

4. s0 : ∆
1
։ ∆0.

Maps of type (1) are the codimension 1 injective maps between necklaces of
length 1 given by simplicial co-face maps between standard simplices. Maps
of type (2) are the codimension 1 injective maps from a necklace of length 2
to a necklace of length 1 given by the first j-th coface and last (n + 1 − j)-th
coface maps of standard simplices. Maps (3) and (4) are the surjective maps
of necklaces given by the corresponding simplicial co-degeneracy maps between
standard simplicies.
We define

F (∂j) = C�

∗ (δ0s ) : C
�

∗ (�n−1)→ C�

∗ (�n), 1 ≤ s ≤ n

and

F (∆[j],[n+1−j]) = C�

∗ (δ1s) : C
�

∗ (�n−1)→ C�

∗ (�n), 1 ≤ s ≤ n,

where δ0s : �n−1 →֒ �
n and δ1s : �n−1 →֒ �

n, for 1 ≤ s ≤ n are the cubical co-
face inclusion maps given by inserting 0 or 1 in the s coordinate, respectively.
Finally, define F to be the trivial map on morphisms of type (3) and the
identity map on morphisms of type (4). These definitions completely determine
a monoidal functor F : Nec→ ChZ.
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Now consider the functor F�
∗ : sSet0 → dgAlg

Z
induced by F as follows. The

underlying chain complex is

F�
∗ (K) := colim

(f :T→K)∈Nec↓K
F (T ) = colim

(f :T→K)∈Nec↓K
C�

∗ (�dim(T )).

Any generator of F�
n (K), other than u = [s0(x), ι0] ∈ F�

0 (K), is an equivalence
class which may be represented uniquely as [f, ιn], where:

• (f : T → K) ∈ Nec ↓ K has the property that the image of every bead
of T under f is a non-degenerate simplex of K, dim(T ) = n, and

• ιn ∈ C�
n (�n) is the generator corresponding to the unique top dimen-

sional non-degenerate n-cube of �n.

Any object (f : ∆n1 ∨ ... ∨∆nk → K) ∈ Nec ↓ K is equivalent to an ordered
monomial (f1 ∨ ... ∨ fk) where fi ∈ Kni

is the ni-simplex determined by the
restriction of f to the i-th bead ∆ni . Using this identification, any class in
F�
n (K) may be written uniquely as [(f1 ∨ ... ∨ fk), ιn], where each fi ∈ Kni

is
non-degenerate and n1 + ...+ nk − k = n.
The differential ∂� : F�

∗ (K) → F�
∗−1(K), which is given by ∂�[(f1 ∨ ... ∨

fk), ιn] = [(f1 ∨ ... ∨ fk), ∂�ιn], may now be described as:

∂�[(f1 ∨ ... ∨ fk), ιn] =
k∑

i=1

ni−1∑

j=1

±[(f1 ∨ ... ∨ fi|[0,...,j] ∨ fi|[j,...,ni] ∨ ... ∨ fk), ιn−1]

−
k∑

i=1

ni−1∑

l=1

±[(f1 ∨ .... ∨ fi|[0,...,l̂,...,ni]
∨ ... ∨ fk), ιn−1].

The above formula follows from the cubical boundary formula

∂�ιn =

n∑

s=1

(−1)s(C�
∗ (δ1s)(ιn−1)− C

�
∗ (δ0s)(ιn−1))

together with the fact that, given (f1 ∨ .... ∨ fk) : T → K, the cubical co-
face maps C�

∗ (δ0s ) and C
�
∗ (δ1s) are realized uniquely through the functor F by

inclusion maps in Nec ↓ K

(f1 ∨ ... ∨ fi|[0,...,j] ∨ fi|[j,...,ni] ∨ ... ∨ fk) →֒ (f1 ∨ ... ∨ fi ∨ ... ∨ fk)

and
(f1 ∨ .... ∨ fi|[0,...,l̂,...,ni]

∨ ... ∨ fk) →֒ (f1 ∨ ... ∨ fi ∨ ... ∨ fk).

The graded associative algebra structure on F�
∗ (K) is

[(f1 ∨ ... ∨ fk), ιn]⊗ [(g1 ∨ ... ∨ gl), ιm] 7→ [(f1 ∨ ... ∨ fk ∨ g1 ∨ ... ∨ gl), ιn+m],

with unit u = [s0(x), ι0]. It is clear that the construction of F�
∗ (K) is

functorial with respect to maps in sSet0. The theorem will follow from the
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following claims:

Claim 1 : There is a natural quasi-isomorphism of dg algebras

ψ : F�

∗ (K)
≃
−→ C∗(C(K)).

Claim 2 : There is a natural isomorphism of dg algebras

ϕ : F�
∗ (K)

∼=
−→ Ω(C∗(K), ∂,∆).

Proof of Claim 1: Define ψ on any generator [(f1 ∨ .... ∨ fk), ιn] ∈ F�
n (K)

where the fi ∈ Kni
are non-degenerate simplices and n1 + ...+ nk − k = n by

ψ[(f1 ∨ .... ∨ fk), ιn] := [(f1 ∨ .... ∨ fk), e
×n],

where e×n ∈ C∗((∆
1)×n) denotes e × ... × e (n-times) for e ∈ C1(∆

1) the
unique non-degenerate generator and × is the Eilenberg-Zilber map. It is easily
checked that ψ is a map of differential graded algebras. The fact that ψ is a
quasi-isomorphism follows from a standard application of the Acyclic Models
Theorem in the following set up. Let [Necop,Set] be the category whose
objects are functors Necop → Set and morphisms are natural transformations.
Let Y : sSet∗,∗ → [Necop,Set] be defined on any double pointed simplicial set
(S, x, y) ∈ sSet∗,∗ by

Y(S, x, y)(T ) := sSet∗,∗((T, αT , ωT ), (S, x, y)).

The underlying chain complex of F�
∗ (K) is precisely F(Y(K,x, x)), where

F : [Necop,Set]→ ChZ

is the functor defined by

F(X) := colim
(Y(T,αT ,ωT )→X)∈Nec↓X

C�

∗ (�dim(T )).

Similarly, the underlying chain complex of C∗(C(K)) is precisely G(Y(K,x, x)),
where

G : [Necop,Set]→ ChZ

is the functor defined by

G(X) := colim
(Y(T,αT ,ωT )→X)∈Nec↓X

C∗((∆
1)×dim(T )).

We may now use {Y(T, αT , ωT )}T∈Nec as a collection of models in
[Necop,Set], which are acyclic for both F and G, to conclude that
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ψ : F(Y(K,x, x))→ G(Y(K,x, x)) is a quasi-isomorphism. �

Proof of Claim 2: Let
ϕ[s0(x), ι0] := 1.

If f1 ∈ K1 is non-degenerate, let

ϕ[f1, ι0] := [s−1f̄1]− 1

where f̄1 ∈ C1(K) denotes the class of f1 ∈ K1 in the normalized chain complex
of K. For any f1 ∈ Kn with n > 1, let

ϕ[f1, ιn−1] := [s−1f̄1].

Extend the above as an algebra map to define ϕ on any generator
[(f1∨ ...∨fk), ιn] ∈ F�

n (K). It follows from the formula for ∂�[(f1∨ ...∨fk), ιn]
that ϕ is compatible with differentials. It is easily checked that ϕ is an
isomorphism. �

Proof of Theorem 1. The main theorem now follows by applying Corol-
lary 7 and Theorem 8 to K = Sing(X, b), the sub Kan complex of Sing(X)
consisting of continuous maps σ : |∆n| → X which send the vertices of |∆n| to
b ∈ X .
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