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1 Results

We work in the Euclidean plane R2 with origin centred closed unit ball B = B2

whose boundary is the unit circle S1 = ∂B. We denote the (origin centred)
open unit ball by B◦. We denote by A(·) the area of measurable sets in R

2.
For general information about convex sets we refer to the books by Gruber [11]
and Schneider [21].
For asymptotic inequalities, we use the following common notation: for two
real sequences f, g, we write f ≪ g if there is a positive constant γ such that
|f(n)| ≤ γg(n) for every n ∈ N.
Let K ⊂ R

2 be a convex disc with C2
+ smooth boundary (twice continuously

differentiable with positive curvature κ(x) > 0 at every point x ∈ ∂K). Let
rM = 1/κm, where κm = minx∈∂K κ(x) > 0. It is known (see [21, Theo-
rem 3.2.12 on p. 164]) that K slides freely in a circle of radius rM , that is, for
every x ∈ ∂K, there exists a v ∈ R

2 with x ∈ rMS1 + v and K ⊂ rMB + v (cf.
[21, p. 156]). For r ≥ rM and a set X , let convr(X) denote the intersection of
all radius r closed circular discs that contain X , that is,

convr(X) :=
⋂

v∈R
2,

X⊂rB+v

(rB + v).
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The set convr(X) is called the closed r-spindle convex hull or r-hull of X . It
is known that for X ⊂ K, convr(X) ⊂ K, see Bezdek et al [6]. For more
information about the geometric properties of the r-spindle convex hull see, for
example, [6] and [8] and the references therein.
We investigate the following probability model. Let Xn = {x1, . . . , xn} ⊂ K be
a sample of n i.i.d. random points selected according to the uniform probability
distribution. Let Kr

n := convr(Xn). The set Kr
n is a (uniform) random convex

r-disc-polygon in K whose sides are arcs of radius r circles. The edges, vertices
and angles of Kr

n are defined the usual way. Let f0(K
r
n) denote the number of

vertices of Kr
n. We call A(K \Kr

n) the missed area of Kr
n.

If Kn denotes the (usual) convex hull of Xn, then Kn ⊂ Kr
n ⊂ K for all

r ≥ rM . Since the containment Kn ⊂ Kr
n is strict, Kr

n approximates K better
than Kn from the point of view of area and perimeter. It is also clear that
for fixed Xn, the r-disc-polygons Kr

n tend to Kn in the Hausdorff-metric as
r → ∞. Furthermore, f0(K

r
n) ≤ f0(Kn) for all r ≥ rM .

The geometric properties of the (classical) random polygon Kn have been in-
vestigated extensively. Starting with the seminal papers of Rényi and Sulanke
[18–20] the asymptotic behaviour of the expected number of vertices, area and
perimeter have been determined. For a detailed overview of known results
about the classical model, see for example, the surveys [1, 2, 14] and [22].
Fodor, Kevei and Vı́gh [8, Theorem 1.1 on p. 901] proved the following asymp-
totic formulas: for r > rM , it holds that

lim
n→∞

Ef0(K
r
n) · n−1/3 = 3

√
2

3A(K)
Γ

(
5

3

)
c1(K, r), (1)

lim
n→∞

EA(K \Kr
n) · n2/3 =

3

√
2A2(K)

3
Γ

(
5

3

)
c1(K, r), (2)

where the constant

c1(K, r) =

∫

∂K

(
κ(x) − 1

r

)1/3

dx,

seems to resemble to the affine arc-length although it is unclear what is its
exact geometric meaning. The formulas (1) and (2) are generalizations of the
corresponding results of Rényi and Sulanke for the classical case, see Section 3
of [8]. We also note that in (1) and (2) the condition that r > rM is important.
If K is a disc-polygon of radius r itself, then the order of magnitude of Ef0(K

r
n)

and EA(K \Kr
n) are different, see [9].

In the case when K = B, it is proved in [8, Theorem 1.3 on p. 902] that for
r = 1, it holds that

lim
n→∞

Ef0(B
1
n) =

π2

2
,

lim
n→∞

EA(B \B1
n) · n =

π3

2
.
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Significantly less is known about the higher moments of these quantities.
In the classical case, Reitzner [15,16] proved the following upper bounds for the
variance of the number of j-dimensional faces and the volume of the random
polytopes in smooth convex bodies in dimension d:

Var(Vol(Kn)) ≪ n−(d+3)/(d+1),

Var(fj(Kn)) ≪ n(d−1)/(d+1).

Here Kn denotes the (classical) convex hull of n i.i.d. random points selected
from the d-dimensional convex body K ⊂ R

d with C2
+ smooth boundary. The

symbol Vol(·) denotes the volume of Lebesgue measurable sets in R
d and fj(·)

is the number of j-dimensional faces. The implied constants depend only on K
and the dimension. The upper bounds also imply strong laws of large numbers
for these quantities.
Reitzner [17] gave matching lower bounds for the variance in case K is smooth:

Var(Vol(Kn)) ≫ n−(d+3)/(d+1),

Var(fj(Kn)) ≫ n(d−1)/(d+1).

Using these lower bounds Reitzner [17] established central limit theorems for
the number of j-dimensional faces and the volume for smooth convex bodies.
Pardon [13] proved central limit theorems for the missed area and number of
vertices of uniform random polygons in arbitrary convex discs in the plane.
Upper and lower bounds, laws of large numbers and central limit theorems were
extended for the case when K ⊂ R

d is a polytope by Bárány and Reitzner [4].
Bárány and Steiger [3] proved asymptotic upper bounds and strong laws for
the missed area and the number of vertices in the classical random model for
arbitrary convex discs in R

2 without any smoothness condition.
Fodor and Vı́gh [10] proved asymptotic upper bounds for the variance of the
vertex number and the missed area of uniform random disc-polygons in C2

+

smooth convex discs: For any r > rM it holds that

Var(f0(K
r
n)) ≪ n1/3, (3)

Var(A(Kr
n)) ≪ n−5/3, (4)

where the implied constants depend only onK and r. In the case whenK = B2,
they proved [10] that

Var(f0(K
r
n)) ≈ 1, (5)

Var(A(Kr
n)) ≪ n−2. (6)

where the implied constants are universal. Note that the lower bound in (5)
follows from the fact that the expected number of vertices Ef0(Kn) is a non-
integer constant. Formulas (3), (4) and (5) imply laws of large number for the
corresponding quantities, see [10].
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1018 F. Fodor, B. Grünfelder, V. Vı́gh

In this paper we prove matching lower bounds for the variance of the vertex
number and the missed area for the case when r > rM . Our main results are
summarized in the following theorem.

Theorem 1. 1 Let K be a convex disc whose boundary is of class C2
+. For any

r > rM it holds that

Var(f0(K
r
n)) ≫ n

1

3 , (7)

Var(A(Kr
n)) ≫ n− 5

3 , (8)

where the implied constants depend only on K and r.

We achieve these results using a modified version of the method of Reitzner
[16] which had already been used in adapted forms in several different settings,
see, for example, [7, 23, 24]. In the disc-polygonal setting, the difficulty lies in
the intrinsic geometry of the model.
The lower bounds in Theorem 1 may open the road towards quantitative central
limit theorems, similarly as in [5, 23, 24] using normal approximation bounds
from Stein’s method.
The layout of the paper is the following: in Section 2 we collect some necessary
preparatory material. Section 3 contains the proof of (8) and Section 4 contains
the outlines of the changes necessary for the proof of (7).

2 Preparations

Without loss of generality, we may assume that r = 1 and prove Theorem 1
for the case when rM < 1, since the general statements follow by a scaling
argument. For simplicity, we write Kn for K1

n.
For p ∈ R

2, the set K \ (B◦+ p) is called a disc-cap (of radius 1) of K. We use
the notations from [8]. Let x and y be two points inK. The two unit circles that
pass through these points, determine two disc-caps of K, denoted by D−(x, y)
and D+(x, y), respectively, such that A(D−(x, y)) ≤ A(D+(x, y)). Briefly, we
write A−(x, y) = A(D−(x, y)) and A+(x, y) = A(D+(x, y)). Lemma 4.3 in [8]
states that if the boundary of K is of class C2

+ (rM < 1), then there exists a
δ > 0 (depending only on K) with the property that for any x, y ∈ intK it
holds that A+(x, y) > δ.
We need some further technical statements about general disc-caps. Denote
the (unique) outer unit normal to K at the boundary point x by ux ∈ S1, and
the unique boundary point with outer unit normal u ∈ S1 by xu ∈ ∂K. It is
proved in Lemma 4.1 of [8] that if K is a convex disc with C2

+ boundary and
κm > 1, and D = K \ (B◦ + p) is a non-empty disc-cap, then there exists a
unique point x0 ∈ ∂K ∩ ∂D such that p = x0 − (1 + t)ux0

for some t ≥ 0. The
point x0 is the vertex and the number t is the height of D.

1We note that Theorem 1 is contained in the Master thesis of B. Grünfelder [12], and also
in his Hungarian OTDK student competition paper.
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Variance Bounds for Disc-Polygons 1019

Let us denote the disc-cap with vertex xu ∈ ∂K and height t by D(u, t). To
simplify the notation, we write A(u, t) = A(D(u, t)), and let ℓ(u, t) denote
the arc-length of ∂D(u, t) ∩ (∂B + xu − (1 + t)u). The latter also exists since
for each u ∈ S1, there exists a maximal positive constant t∗(u) such that
(B + xu − (1 + t)u) ∩K 6= ∅ for all t ∈ [0, t∗(u)].
The following limit relations for A(u, t) and ℓ(u, t) are proved (in a more precise
form) in [8, p. 905, Lemma 4.2]:

ℓ(ux, t) ≈ t1/2, A(ux, t) ≈ t3/2, (9)

as t → 0+, where the implied constants depend only on K.
Let D be a disc-cap of K with vertex x. For a line e ⊂ R

2 perpendicular
to ux, let e+ denote the closed half plane that contains x. Then there exists
a maximal cap C−(D) = K ∩ e+ that is fully contained in D, and a minimal
cap C+(D) = e′+ ∩K containing D. We recall [10, Claim 1 on p. 1146], that
gives a relation between classical caps and disc-caps, as follows: There exists
a constant ĉ depending only on K such that if the height of the disc-cap D is
sufficiently small, then

C−(D)− x ⊃ ĉ(C+(D)− x). (10)

The relation (10) means that the area of a disc-cap can be bounded by two
classical caps such that one of them is an enlarged image of the other one by a
constant.
Let xi, xj (i 6= j) be two points of Xn, and let B(xi, xj) be one of the unit discs
containing xi and xj on its boundary. The arc ∂B(xi, xj) ∩K forms an edge
of Kn if the entire set Xn is contained in B(xi, xj). It may happen that the
pair xi, xj determines two edges of Kn if the above condition holds for both
unit discs that contain xi and xj on its boundary.

3 Proof of (8) in Theorem 3

The proof is based on the ideas of Reitzner [16]: we give small (disc-)caps
which contribute to the variance geometrically independently and show that
the variance in these caps is already sufficiently large.
For every x ∈ ∂K and t ∈ (0, 1) consider the disc-cap D(x, t) of vertex x and
height t. Let the Euclidean cap of vertex x and height t be C(x, t). Let the
line cutting off the cap C(x, t) be H(x, t). Clearly, D(x, t) ⊃ C(x, t).
In the following we use large values of n, thus by an inequality of type ≪ we
always assume that t is sufficiently small.
Denote the intersections of ∂K and the line H(x, t) by w1 and w2, and let
w0 = x. For the triangle ∆ = [w0, w1, w2] we have

∆ ⊂ C(x, t) ⊂ D(x, t).

Let us define for j = 0, 1, 2 the small triangles

∆j = ∆j(x, t) = wj +
1

20
([w0, w1, w2]− wj),
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i.e. we shrink the ∆ from each of its vertices by a factor of 1/20. It follows

from (10) that A(∆j(x, t)) ≈ t
3

2 , since the order of magnitude of the height of
triangle ∆ is t and of its base is

√
t.

Let x, t and the points z1 ∈ ∆1(x, t) and z2 ∈ ∆2(x, t) be fixed. For z0 ∈
∆0(x, t) let Â(z0) denote the area of the non-convex triangular region ∆̃(z0)
we obtain by joining z0 with z1 and z2 by circular arcs of radius 1 that are
outside of the triangle z0z1z2, and also joining z1 and z2 such that the arc
intersects the interior of z0z1z2.

Figure 1: Splitting ∆m

Lemma 1. Let Z be a uniform random point in ∆0(x, t). Then

Var(Â(Z)) ≫ t3.

Proof. Let w denote the midpoint of the side opposite to x in the triangle
∆0(x, t). Let

∆
(1)
0 (x, t) = x+

1

3
(∆0(x, t)− x)

and

∆
(2)
0 (x, t) = w +

1

3
(∆0(x, t) − w),

i.e. in the triangle ∆0(x, t) we take two smaller triangles which are the shrunk

images of ∆0(x, t) by a factor of 1/3 from x and w. The area of ∆
(1)
0 and ∆

(2)
0

is one-ninth of that of ∆0, respectively.

For every Z1 ∈ ∆
(1)
0 and Z2 ∈ ∆

(2)
0 , it holds that ∆̃(Z1) ⊃ ∆̃(Z2), therefore

Â(Z1) > Â(Z2). Let ∆
m = ∆̃(Z1) \ ∆̃(Z2). We need A(∆m).

Cut ∆m by a segment trough Z1 perpendicular to the line H , and denote the
other intersection point of this segment with ∂∆m by a. Then d(Z1, a) ≈ t.
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Variance Bounds for Disc-Polygons 1021

Figure 2: Angle of circular arcs and chords

Suppose that after the cut Z2 is contained in the set that has z2 on its boundary,
see Figure 1.

Consider the Euclidean triangle [Z1, a, z1], and let γ denote the angle at the
vertex z1. The radius of the circumscribed circle of this triangle is of order

√
t.

Thus, since the side opposite to the angle γ is of order t, the law of sines gives
that sin γ ≈

√
t. By the smallness of t, the angle γ has the same order of

magnitude as sin γ.

After that, we translate a along ∂∆m into a point a′ such that d(z1, a
′) =

d(z1, Z1) holds. (In case a′ has reached Z2 and the distances are still not equal,
we translate Z1 closer to z1.) By this, for the angle at z1 we have γ′ ≥ γ.

Since d(z1, a
′) = d(z1, Z1), the angle between the two circular arcs of radius 1

corresponding to the two segments is γ′ as well, see Figure 2. By the angle
between two circular arc we mean the angle between their tangent lines.

Consider the sector-like shape determined by z1, a
′ and Z1, whose legs are

circular arcs of radius 1. This is a part of a circular disc of radius ̺ = d(z1, Z1),
by which, rotating around the centre, we can cover the whole disc. The area
of a shape of this property is proportional to the central angle and the square
of the radius. Here we have ̺ ≈

√
t and the order of magnitude of the angle is

at least
√
t, therefore the area of this shape is at least of order t3/2.

We have estimated the area Â(Z1) − Â(Z2) we are looking for from below,
examining its subset. This gives us the following lower estimate:

Â(Z1)− Â(Z2) ≫ t3/2. (11)

Let Z, Z ′
1 and Z ′

2 be i.i.d uniform random points in ∆0(x, t). Using (11), we
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obtain the desired lower bound:

Var(Â(Z)) =
1

2
E

[
(Â(Z ′

1)− Â(Z ′
2))

2
]
≥

≥ 1

2
E

[(
Â(Z ′

1)− Â(Z ′
2)
)2

1(Z ′
1 ∈ ∆1, Z

′
2 ∈ ∆2)

]
≫

≫ t3E [1(Z ′
1 ∈ ∆1, Z

′
2 ∈ ∆2)] ≫ t3.

We may assume that n > n0 for some suitable n0, since it is sufficient to prove
the lower bound of variance for large n. In the following, we consider disc-caps
of height tn for

tn = n− 2

3 . (12)

Choose a maximal set of points y1, . . . , ym on ∂K such that |yi−yj| ≥ 2
√
c2
√
tn

for any i, j ∈ {1, . . . ,m} for some constant c2 that we specify later. Then

m ≫ n
1

3 . (13)

Assume that c2 is so large that the disc-caps D(yj , tn) are pairwise disjoint,
and consider the previously defined triangles ∆(yj , tn) in them, for j ∈ [m]. For
each ∆(yj , tn), also construct the small triangles ∆i(yj , tn), for i = 0, 1, 2. Let
Ej be the event that each of the small triangles ∆i(yj , tn) contains exactly one
of the random points x1, . . . , xn and that D(yj , c2tn) contains no other random
point. By (9) we have

A(D(yj , c2tn)) ≪
1

n
,

and for i = 0, 1, 2

A(∆i(yj , tn)) ≫
1

n
.

We have for every j ∈ [m]

P(Ej) ≫
(
n

3

)(
1

n

)3 (
1− 1

n

)n−3

≫ 1,

thus

E




m∑

j=1

1(Ej)


 =

m∑

j=1

P(Ej) ≫ m. (14)

In the case the event Ej occurs, let the random point in ∆0(yj , tn) be denoted
by Zj .

Lemma 2. Assume that J ⊂ [m] and Ej occurs for every j ∈ J . Then

A(Kn) = A (convr (Xn \ {Z1, . . . Zj})) +
∑

j∈J

Â(Zj).
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Variance Bounds for Disc-Polygons 1023

Proof. Our goal is to show that if for indices j, k ∈ J , j 6= k, Zj and Zk

are the random points in triangles ∆0(yj , tn) and ∆0(yk, tn), then Zj and Zk

are vertices of Kn and there is no edge between them. This means that the
contributions of Zi and Zj to the area of Kn are geometrically ”independent”.

For this, we need that for every j, the circular arc of radius 1 determined by
the two random points in triangles ∆0(yj , tn) and ∆i(yj , tn) (i ∈ {1, 2}), meets
the boundary of K without intersecting any other disc-cap D(yk, tn).

For simplicity take a fixed disc-cap of height t and vertex x, and the triangles
∆0 and ∆1 in it. Orient the cap in such a way that the outer normal at x points
in the positive direction of the y-axis. The intersection with ∂K has minimal
y-coordinate in case the random point in ∆0 lies at the bottom corner, nearest
to ∆1, and the random point in ∆1 is in the point farthest from the boundary,
see Figure 3. Let us denote these points by a0 and a1, respectively.

In the case when K is a circle of radius r, we can exactly compute the y-
coordinate of the intersection for a fixed r. The depth will be smaller than c3t
for a suitable constant c3 depending only on K. This c3 is bounded as r is
strictly smaller than 1. Now we can specify the constant c2 to be as large such
that the disc-caps D(yk, tn) are far apart enough and the observed intersection
point is not contained in any other disc-cap. The constant c2 depends only
on K. Therefore the statement of the Lemma is true for circles.

For a general convex disc K with C2
+ boundary, we estimate the y-coordinate

of the intersection point as follows. Consider the osculating circle of K at the
point x with radius (R0(x) =)R0 < 1. There exists an ε > 0, such that in any
neighbourhood of radius less than ε of x, for the circles of radii R0 + ε and
R0−ε having the same tangent line as K at x, it is true that K is locally inside
of the larger circle and the smaller circle is inside of K.

The line H(x, t) meets these circles in p1, p2 and q1, q2, where the points with
the same indices are close to each other. Then for i = 1, 2,

d(pi, qi) =
√
(2R0 + 2ε− t)t−

√
(2R0 − 2ε− t)t

=
√
t
(√

2R0 + 2ε− t−
√
2R0 − 2ε− t

)

=
√
t

(
4ε√

2R0 + 2ε− t+
√
2R0 − 2ε− t

)
. (15)

Since t → 0, we may assume that t < ε, thus we can estimate (15) from above
as follows.

√
t

(
4ε√

2R0 + 2ε− t+
√
2R0 − 2ε− t

)
≤ 4√

2R0

ε
√
t ≤ c4ε

√
t,

where c4 = maxx∈∂K 4/
√
2R0(x).

Let β denote the length of the side of ∆0 opposite to x. Then the distance
between the intersection of ∂K with the line H and a1 is also β. The order of
magnitude of β is

√
t. We may assume that β = c5

√
t for some constant c5.
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1024 F. Fodor, B. Grünfelder, V. Vı́gh

Figure 3: K bounded between circles

Consider the unique point of H ∩ K which is at distance 3/2β from p1. The
circular arc of radius 1 determined by this point and a0, meets the outer circle
at a computable, bounded depth depending on (R0+ε). In the case c4 ·ε < c5/2,
the circular arc incident with a0 and a1 meets the outer circle less deeply. For
this, we need that

ε <
c5
2c4

.

Note that constant on the right-hand side of the inequality depends only on K.
Since t → 0, ε can be chosen smaller than that. The only restriction on ε is
that K has to be locally between the two circles, that is, the intersection point
c6t deep is in this range. Therefore, we can choose ε arbitrary small.

Thus for every K, the circular arc determined by the points a0 and a1 meets
the boundary of K in a depth of order t. Therefore this arc will not intersect
any other disc-cap D(yj , tn).

Let F denote the σ-algebra generated by the events Ej . Consider the condi-
tional variance on F . By the Law of Total Variance,

VarA(Kn) = EVar(A(Kn) | F) + VarE(A(Kn) | F)

≥ EVar(A(Kn) | F). (16)

For the set of indices J ⊆ [m], let E(J) be the event that the event Ej occurs
for exactly the indices j ∈ J , and does not occur for the other indices in [m].
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Variance Bounds for Disc-Polygons 1025

Then the conditional variance on F can be expanded in the following form:

Var(A(Kn) | F) = E

∑

J⊆[m]

Var(A(Kn) | E(J)) · 1(E(J)). (17)

By Lemma 2, in case the event E(J) occurs, the area of Kn can be written as
the sum of Â(Zj) and the area of the hull of the remaining points:

Var(A(Kn) | E(J)) =

= Var
[
A (convr (Xn \ {Z1, . . . Zj})) +

∑
j∈J Â(Zj) | E(J)

]
. (18)

Let the points of Xn \ {Z1, . . . Zj} be fixed. Then the first term on the right-
hand side of (18), the area of the r-hull of the remaining points is constant,
thus we can omit it. The other terms are independent since the contributions of
the points Zj are geometrically independent, therefore we can take the variance
term-by-term.
This holds for every fixed set of points Xn \ {Z1, . . . Zj}, thus we have the
following inequality. The variance VarZj

means that the variance is taken only
for the corresponding variable.

Var(A(Kn) | E(J)) ≥
∑

j∈J

VarZj

(
Â(Zj) | Ej

)
,

Substituting it in (17), we obtain that

∑
J⊆[m]Var(A(Kn) | E(J)) · 1(E(J)) ≥

≥ ∑
J⊆[m] 1(E(J))

∑
j∈J VarZj

(
Â(Zj) | Ej

)
. (19)

Rearrange the right-hand side of (19) such that the sum is according to the

index of VarZj

(
Â(Zj) | Ej

)
:

∑

J⊆[m]

1(E(J))
∑

j∈J

VarZj

(
Â(Zj) | Ej

)
=

=

m∑

j=1

VarZj

(
Â(Zj) | Ej

) ∑

{J:j∈J}

1(E(J)) =

=

m∑

j=1

VarZj

(
Â(Zj) | Ej

)
1(Ej).

Thus, we have

Var(A(Kn) | F) ≥
m∑

j=1

VarZj

(
Â(Zj) | Ej

)
1(Ej). (20)
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By Lemma 1 together with (12)-(14), (16), and (20),

VarA(Kn) ≥ E




m∑

j=1

VarZj

(
Â(Zj) | Ej

)
1(Ej)


 ≫ E




m∑

j=1

t3n1(Ej)


 ≫

≫ n−2


E

m∑

j=1

1(Ej)


 ≫ n−2m ≫ n− 5

3 ,

which is (8) of Theorem 1, thus we have finished the proof.

4 The variance of the number of vertices

We give the outline of the necessary changes in the previous argument to prove
(7) of Theorem 1, the lower bound of the variance of the number of vertices,
see also Reitzner [17].
Let the disc-capsD(yj , tn) be defined as before, and also the triangles ∆(yn, tn)
together with the small triangles ∆i(yn, tn), where j ∈ [m] and i ∈ {0, 1, 2}.
Let Fj denote the event that ∆1(yn, tn) and ∆2(yn, tn) each contain exactly one
of the random points x1, . . . , xn, ∆0(yn, tn) contains exactly two of x1, . . . , xn,
and there is no other random point in the disc-cap D(yj , c2tn). The probability
of Fj is

P(Fj) ≫
(
n

4

)(
1

n

)4 (
1− 1

n

)n−4

≫ 1,

thus, similar to (14), we have

E




m∑

j=1

1(Fj)



 ≫ m. (21)

If the event Fj occurs, denote the random points in ∆0(yj , tn) by Yj and Zj . It
follows from the proof of Lemma 2, that in this case each one of the triangles
∆i(yn, tn) (i ∈ {0, 1, 2}) contains a vertex of Kn. Either only one of the points
Yj and Zj is a vertex of the Kn, or both of them are. Therefore the disc-cap
D(yj , tn) contains either 3 or 4 vertices, both of these events have positive
probability. It follows, taking the variance for only these two points, that

VarYj ,Zj

(
f̂0([Yj , Zj , zj,1, zj,2]) | Fj

)
≫ 1, (22)

where f̂0([Yj , Zj , zj,1, zj,2] denotes the number of vertices contained in the j-th
disc-cap.
Let G be the σ-algebra generated by the events Fj . Similar to the proof of
Lemma 2, it holds here as well, that the number of vertices in one of the disc-
caps does not affect how many vertices are there in an other disc-cap D(yj , tn).

Documenta Mathematica 27 (2022) 1015–1029



Variance Bounds for Disc-Polygons 1027

Using this fact, together with (13),(16) and (21)-(22), we get

Var f0(Kn) ≥ EVar(f0(Kn) | G)

≥ E




m∑

j=1

VarYj ,Zj

(
f̂0([Yj , Zj , zj,1, zj,2]) | Fj

)
1(Fj)




≫ E




m∑

j=1

1(Fj)


 ≫ m ≫ n

1

3 ,

which is the statement of (7) of Theorem 1, thus we have finished the proof.
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[5] F. Besau, D. Rosen, and C. Thäle, Random inscribed polytopes in projective
geometries, Math. Ann. 381 (2021), no. 3-4, 1345–1372.
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