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Abstract. A k-differential on a Riemann surface is a section of the
k-th power of the canonical bundle. Loci of k-differentials with pre-
scribed number and multiplicities of zeros and poles form a natural
stratification for the moduli space of k-differentials. The classification
of connected components of the strata of k-differentials was known for
holomorphic differentials, meromorphic differentials and quadratic dif-
ferentials with at worst simple poles by Kontsevich–Zorich, Boissy and
Lanneau, respectively. Built on their work we develop new techniques
to study connected components of the strata of k-differentials for gen-
eral k. As an application, we give a complete classification of con-
nected components of the strata of quadratic differentials with arbi-
trary poles. Moreover, we distinguish certain components of the strata
of k-differentials by generalizing the hyperelliptic structure and spin
parity for higher k. We also describe an approach to determine explic-
itly parities of k-differentials in genus zero and one, which inspires an
amusing conjecture in number theory. A key viewpoint we use is the
notion of multi-scale k-differentials introduced by Bainbridge–Chen–
Gendron–Grushevsky–Möller for k = 1 and extended by Costantini–
Möller–Zachhuber for all k.
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1 Introduction

Let g ≥ 0 and k ≥ 1 be integers and µ = (k1, . . . , kn) be an integral partition of
k(2g−2). The stratum of k-differentials ΩkMg(µ) parameterizes sections of the
k-th power of the canonical bundle on genus g Riemann surfaces with n distinct
zeros or poles of order specified by the signature µ. It is known that ΩkMg(µ)
is a complex orbifold (see e.g. [BCGGM19a]), but it can be disconnected for
special µ. Thus to understand the topology of ΩkMg(µ), an important question
is the classification of its connected components.

For abelian differentials (i.e. k = 1), connected components of the strata
are classified by [KZ03] for holomorphic differentials and by [Boi15] for mero-
morphic differentials. In this case, there can exist extra components due to
hyperelliptic and spin structures for certain signatures µ. For quadratic differ-
entials with at worst simple poles (i.e. k = 2 and ki ≥ −1 for all entries of µ),
connected components of the strata are classified by [Lan08]. In this case, ex-
tra components are caused by the hyperelliptic structure only, except in genus
three and four where several sporadical components exist due to a strange
mod 3 parity [CM14]. Built on the strategies of these works, we develop in this
paper a framework and new techniques towards solving the remaining cases.

Note that connected components of the strata of k-differentials are known in
genus zero and one for all k. For g = 0 and µ = (k1, . . . , kn), the (projec-
tivized) stratum is isomorphic to the moduli space of n-pointed P1, hence it
is irreducible. For g = 1, since the canonical bundle is trivial on a torus, the
stratum is isomorphic to the corresponding stratum of abelian differentials with
the same signature, hence the result of [Boi15, Section 4] applies for all k (see
Theorem 3.12). Therefore, we can concentrate on the case of g ≥ 2.

A k-differential is called primitive if it is not a power of a lower-order differ-
ential. By taking powers, connected components of the strata of lower-order
differentials give connected components of the corresponding loci in the strata
of higher-order differentials, hence we can further restrict our study to the loci
of primitive k-differentials. We use ΩkMg(µ)

prim to denote the primitive locus
in the stratum ΩkMg(µ). Note that given a partition µ of k(2g−2) with g ≥ 2
and k ≥ 3, it was shown in [GT17, Theorem 1.4] that the locus ΩkMg(µ)

prim

is non-empty.

The results of Kontsevich–Zorich, Boissy and Lanneau for abelian and
quadratic differentials were proven by induction on the genus and on the num-
ber of singularities. Two important operations they used in this process are
breaking up a zero into lower-order zeros and bubbling a handle at a zero so as to
increase the genus by one. In order to extend these operations to k-differentials
for general k, we use as a key tool the theory of multi-scale k-differentials, which
was introduced for abelian differentials in [BCGGM19b] and extended for all k
in [CMZ19]. The moduli space of multi-scale k-differentials provides a smooth
and functorial compactification for the strata of k-differentials. In particular,
smoothing a multi-scale k-differential from the boundary of a stratum into the
interior singles out a unique connected component of the stratum, for otherwise
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different components of the stratum would intersect in the boundary which vi-
olates the smoothness of the moduli space of multi-scale k-differentials. Using
this principle together with other techniques, we obtain a number of results
towards the classification of connected components of the strata as follows.
We first generalize the hyperelliptic structure from the case of k ≤ 2 to all k.
The precise definition of a hyperelliptic component of k-differentials is given
in Section 4. Roughly speaking, it arises from the locus of k-differentials on
hyperelliptic Riemann surfaces with zeros and poles at some Weierstrass points
and hyperelliptic conjugate pairs such that the dimension of this locus is equal
to the dimension of the ambient stratum. The following result gives a complete
classification of such hyperelliptic components for all k.

Theorem 1.1. Let µ = (2m1, . . . , 2mr, l1, l1, . . . , ls, ls) be a partition of
k(2g − 2) (with possibly negative entries). Then the stratum ΩkMg(µ) has
a hyperelliptic component if and only if µ is one of the following types:

• µ = (2m1, 2m2) with one of the mi being negative, or m1,m2 > 0 and
k ∤ gcd(m1,m2),

• µ = (2m, l, l) with m or l negative, or m, l > 0 and k ∤ gcd(m, l),

• µ = (l1, l1, l2, l2) with some li < 0, or l1, l2 > 0 and k ∤ gcd(l1, l2),

• µ = (k(2g − 2)),

• µ = (k(g − 1), k(g − 1)).

These components give rise to extra components of the strata for every g ≥ 2
and k ≥ 2. Indeed we prove in Corollary 4.4 that for each of these signatures
there always exists at least one primitive non-hyperelliptic component.
Next we generalize the spin parity from the case of k ≤ 2 to all k. Recall
that the parity of an abelian differential ω with singularities of even order only
can be defined by using the mod 2 dimension of the space of sections of the
half-canonical divisor div(ω)/2. To define the parity for a k-differential (X, ξ)

of signature µ for k ≥ 2, we consider the canonical cover (X̂, ω̂) of (X, ξ), that

is the minimal cover π : X̂ → X such that the pullback of ξ by π to X̂ equals
the k-th power ω̂k of an abelian differential ω̂. If the abelian differential ω̂ has
singularities of even order only, then we say that µ is of parity type and define
the parity of ξ by using the parity of ω̂. In particular for odd k, a signature µ
is of parity type if and only if every entry of µ is odd (see Proposition 5.1 for
a numerical description of parity type in general).
It is known that this parity can distinguish connected components of the strata
for k = 1 (see [KZ03]) but not for k = 2 (see [Lan04]). Below we show that
this dependence on the parity of k holds in general.

Theorem 1.2. Let µ be a signature of parity type for k-differentials with g ≥ 1.
If k is even, then the parity is an invariant of the entire primitive stratum
ΩkMg(µ)

prim. If k is odd, then there exist components of ΩkMg(µ)
prim with

distinct parities, except for the special stratum Ω3M2(6)
prim which is connected.
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Note that in general the locus of k-differentials with the same parity in
ΩkMg(µ)

prim can possibly be disconnected, as there might be some other struc-
tures to further distinguish its components such as the hyperelliptic structure.
It would be interesting to know whether the generalized hyperelliptic and par-
ity structures are sufficient to classify all connected components of the strata.
We provide an evidence by using these structures to classify connected com-
ponents of the strata of quadratic differentials with at least one pole of higher
order (i.e. quadratic differentials of infinite area).

Theorem 1.3. For genus g ≥ 2 and at least one pole of order ≥ 2, connected
components of the strata Ω2Mg(µ)

prim of primitive quadratic differentials can
be described as follows:

(i) If µ is one of the following types:

• (2n,−2l),

• (2n,−l,−l),

• (n, n,−2l),

• (n, n,−l,−l),

in all of which n and l are positive and not both even, then Ω2Mg(µ)
prim

has two connected components, one being hyperelliptic and the other non-
hyperelliptic.

(ii) For all other µ the primitive stratum Ω2Mg(µ)
prim is connected.

A more comprehensive statement of the above result including connected com-
ponents arising from squares of abelian differentials can be found in Theo-
rem 7.1 and Table 1.

Applications

Besides obvious relations with surface dynamics and Teichmüller theory, con-
nected components of the strata of differentials can be used to study the
birational geometry and tautological rings of various moduli spaces (see
e.g. [Mul17, Mul18, Bar18, BHPSS20]). In particular, Mullane used our classi-
fication of connected components of the strata of meromorphic quadratic dif-
ferentials to construct extremal and rigid cycles in the moduli space of stable
curves with marked points (see [Mul21]). Moreover, Masur–Veech volumes
for the strata of abelian and quadratic differentials can be generalized to all
k-differentials of finite area (see [Ngu19]), hence knowing connected compo-
nents of the strata of k-differentials can provide refined information for rele-
vant volume and intersection calculations (see e.g. [CMSZ20] for volumes of
hyperelliptic and spin components of abelian differentials). In addition, con-
nected components of the strata of k-differentials can provide interesting loci
in the strata of abelian differentials via the canonical cover, and higher-order
differentials (e.g. cubic differentials) often correspond to other geometrically
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meaningful structures (e.g. real projective structures). We thus expect that
the results and techniques in this paper can motivate new discoveries along this
circle of ideas.

Organization

This paper is organized as follows. In Section 2 we review the notion of multi-
scale k-differentials in [CMZ19] and interpret it from our viewpoint. In Sec-
tion 3 we generalize two important constructions in the classification of con-
nected components known for the case k ≤ 2 to all k ≥ 3. In Section 4 we
define hyperelliptic components and characterize the strata of k-differentials
that possess a hyperelliptic component, thus proving Theorem 1.1. In Sec-
tion 5 we define parity and show that there exist components of certain strata
of k-differentials which are distinguished by this parity invariant, thus proving
Theorem 1.2. In Section 6 we study adjacency of the strata of quadratic dif-
ferentials from the viewpoint of merging zeros or poles. In Section 7 we study
quadratic differentials with arbitrary poles and prove Theorem 1.3 about the
classification of connected components of the corresponding strata. Finally in
the Appendix we describe an approach to compute the parity of k-differentials
in genus zero and one, which motivates a number-theoretic question of inde-
pendent interest (see Conjecture A.10).

Notations

We identify (compact) Riemann surfaces with smooth (complex algebraic)
curves and freely interchange our terminology between them. Let ξ be a k-
differential on a Riemann surface. A singularity of order m ≥ 0 (resp. m < 0)
is called an analytic zero (resp. analytic pole) of η. A singularity of order
m > −k (resp. m ≤ −k) is called a metric zero (resp. metric pole) of ξ. A
metric zero (resp. metric pole) has a neighborhood of finite (resp. infinite) area
under the flat metric induced by ξ. For convenience we also use −m as the
order for an analytic pole of orderm, e.g., a pole of order −1 is a simple pole. If
a stratum has a singularity of order zero (i.e. an ordinary marked point), then
its connected components correspond to bijectively those of the stratum by for-
getting this ordinary point. Hence we can assume that all entries of a signature
are nonzero. Similarly there is a bijection between connected components of
a stratum with singularities labeled or not labeled. For convenience we con-
sider labeled singularities. We will often use ΩkMg(n1, . . . , nr,−l1, . . . ,−ls)
to denote the stratum of k-differentials with (analytic) zeros and poles of or-
der ni and lj respectively, and we will specify in the context when we treat a
singularity under the metric sense.
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2 Multi-scale and marked k-differentials

In this section we review the notion of multi-scale k-differentials together with
an important ingredient called (prong) marked k-differentials.

2.1 Multi-scale k-differentials

For the case of abelian differentials (k = 1) the notion of multi-scale differentials
was introduced in [BCGGM19b], and it was extended to the case of k ≥ 2 in
[CMZ19]. The importance of this notion comes from the fact that the moduli
space of multi-scale k-differentials gives a smooth compactification of the strata
of k-differentials. For the reader’s convenience, below we review their basic
properties and interpret them from our viewpoint.

Definition 2.1. A multi-scale k-differential (X, z, ξ,4, σ) of type µ consists of

(i) a stable pointed curve (X, z) with an enhanced level structure 4 on the
dual graph Γ of X ,

(ii) a twisted k-differential (X, z, ξ) of type µ with a k-prong-matching σ
compatible with the enhanced level structure.

Recall that the dual graph of a stable curve is the graph whose vertices corre-
spond to the irreducible components and the edges correspond to the nodes.
The enhanced level structure on a dual graph consists of two pieces of data.
First, there is a (weak) full order 4 on the set of vertices that is reflexive, tran-
sitive, and such that for any two vertices v1, v2 at least one of the statements
v1 4 v2 or v2 4 v1 holds. Moreover, it assigns a positive integer κe for every
vertical edge e of the level graph such that a twisted k-differential (compatible
with the enhanced level structure) has a singularity of order κe − k on the
higher end of e and a singularity of order −κe − k on the lower end of e.
We remark that the idea of twisted differentials (without prong-matching)
was known earlier (see [FP18, Gen18, Che17, BCGGM18]). The notion of
prong-matching is relatively new and plays a key role for the smoothness of
the moduli space of multi-scale k-differentials. In particular, the compatibil-
ity condition in (ii) requires a k-prong-matching to satisfy a global k-residue
condition (see [BCGGM19a, Definition 1.4]) so that the resulting multi-scale
k-differential can be smoothed into the interior of the corresponding stratum
of k-differentials. For the purpose of our applications, we mainly focus on the
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explanation of k-prong-matching (see [BCGGM19b, Section 5.4] and [CMZ19,
Section 3.2] for more details).
Let ξ be a k-differential on a Riemann surface X which locally near a point p
is put in standard form under a local chart φ as follows:

φ∗(ξ) =





zκ
(
dz
z

)k
if κ > 0 or k ∤ κ,(

sdz
z

)k
if κ = 0,(

zκ/k + s
)k (dz

z

)k
if κ < 0 and k | κ

(2.1)

where s ∈ C (and s 6= 0 in the case κ = 0). In particular, ξ has a zero or pole
of order κ− k at p. The k-residue of ξ at p is defined as Reskp ξ = sk in the last
two cases and zero in the first case. In the case κ 6= 0, we define the (incoming)
k-prongs by the |κ| tangent vectors e2πij/|κ| ∂

∂z and the (outgoing) k-prongs by

−e2πij/|κ| ∂
∂z for j = 0, . . . , |κ| − 1. At a pole of order k (i.e. κ = 0), we do not

need to define k-prongs. Note that in the case of κ < 0 and k | κ, the choice of
a k-prong σ gives a consistent way to choose a k-th root of the k-residue. More
precisely, we define the k-th root induced by σ as the k-th root s of Reskp ξ such
that the k-prong σ is horizontal under the flat metric induced by the k-th root(
zκ/k + s

)
dz
z of the standard form of ξ.

There exists a canonical cover π : X̂ → X of degree k such that π∗ξ = ω̂k for
an abelian differential ω̂ on X̂. For any primitive k-th root of unity ζ, there is
a deck transformation τ : X̂ → X̂ such that τ∗ω̂ = ζω̂ and the map π is given
by taking the quotient of X̂ by the group action generated by τ . Consider a
singularity p of ξ which has order 6= −k (i.e. κ 6= 0). For a k-prong σ of ξ at p,
define the pullback of σ as the set of k equivariant tangent vectors at π−1(p)
which project to σ. In particular, there is exactly one vector in the pullback
for each direction 2jπ/k for j = 0, . . . , k − 1 under the flat metric. Moreover,
there are gcd(k, κ) preimages of p and at each preimage there are k/ gcd(κ, k)
preimages of σ in the pullback.
Given a vertical edge e of the enhanced level graph Γ, define a (local) k-prong-
matching σe to be a cyclic order-reversing bijection between the k-prongs at
the upper and lower ends of e. A (global) k-prong-matching is a collection
σ = (σe)e∈E(Γ)v of local k-prong-matchings at every vertical edge.

Next we define a prong-matched twisted differential (X̂, ω̂, σ̂) associated to a

prong-matched twisted k-differential (X, ξ, σ) via the cover π : X̂ → X . Let
(Xv, ξv) be the restriction of ξ to each irreducible component Xv represented

by a vertex v of the dual graph, with the canonical cover (X̂v, ω̂v). We want to

glue the preimages of the nodes of X to form (X̂, ω̂) and then define the prong-

matching σ̂ for X̂ . For each horizontal node of X , we glue its preimages in a
way such that the sum of the residues of ω̂ at the two branches of each preimage
node is equal to zero. For each vertical node of X , we glue its preimages that
have the pullback of σ in the same directions. The prong-matching σ̂ of X̂
is then given by identifying the prongs in the same direction. In other words
(as in [CMZ19, Section 3.2]), σ̂ is a prong-matching for the twisted abelian
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differential ω̂ which is equivariant with respect to the action τ and consistent
with the k-prong-matching σ via the cover π. In particular, σ̂ and σ determine
each other.
We summarize the above discussion in the following notion.

Definition 2.2. Let (X, z, ξ 4, σ) be a multi-scale k-differential of type µ
on X . Then the (associated) canonical cover is the multi-scale differential

(X̂, ẑ, ω̂, 4̂, σ̂) together with the map π : X̂ → X such that (X̂, ω̂, σ̂) and

π : X̂ → X is defined as in the previous paragraph, ẑ is the preimage of z
under π and 4̂ is the order such that X̂i4̂X̂j if and only if Xi 4 Xj.

Note that a prong-matching σ of X gives a welded surface Xσ by using σ to
identify isometrically the boundary circles out of the real oriented blowup at
each vertical node of X (as explained in [BCGGM19b, Section 5.3]). We say

that Xσ is of abelian type if the canonical cover X̂ consists of k connected
components, which means (X̂, ω̂, σ̂) is the k-th power of a multi-scale (abelian)
differential.
There is a natural action on multi-scale k-differentials that do not modify the
associated welded surfaces. Choose a level, and multiply all differentials at
that level by a nonzero complex number c as well as rotate all prongs of these
differentials by the argument of c (see [BCGGM19b, Section 6.1] for a detailed
discussion). This induces naturally an equivalence relation on the set of k-
prong-matchings of a multi-scale k-differential, and two k-prong-matchings are
equivalent if and only if they are in the same orbit of the action. In the following
we will use σ to denote an equivalence class of k-prong-matchings.
The above action can be defined both for multi-scale k-differentials and for their
canonical covers. In [CMZ19] the authors considered the action on canonical
covers while here we consider the action directly on multi-scale k-differentials.
The two viewpoints are related as follows. Given a multi-scale k-differential ξ,
the canonical cover of the multi-scale k-differential obtained by the action of c
on ξ coincides with the one obtained by the action of ck on the canonical cover
of ξ.
There is a crucial global k-residue condition (see [BCGGM19a, Definition 1.4])
that justifies when a k-prong-matched twisted differential is compatible with
the enhanced level graph (i.e. when a k-prong-matched twisted differential
can be smoothed into the interior of the corresponding stratum). Below we
reformulate the global k-residue condition from our viewpoint.

Proposition 2.3. Let (X, z, ξ 4, σ) be a multi-scale k-differential of type µ
on X. The k-prong-matching σ is compatible with the enhanced level graph if
and only if it satisfies the global k-residue condition. Namely, for every level L
and every connected component Y of Γ>L, one of the following conditions holds:

(i) Y contains a marked pole of ξ.

(ii) Y contains a vertex v such that ξv is not a k-th power of an abelian
differential.
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(iii) (“Horizontal criss-cross in Y ”) For every vertex v of Y the k-
differential ξv is the k-th power of an abelian differential ωv. Moreover,
for every choice of a collection of k-th roots of unity {ζv : v ∈ Y } there
exists a horizontal edge e in Y where the differentials {ζvωv}v∈Y do not
satisfy the matching residue condition.

(iv) (“Compatibility of the k-prong-matching”) For every Y such that the
welded surface Yσ is of abelian type, the k-residues at the edges e1, . . . , eN
joining Y to Γ=L satisfy the equation

N∑

i=1

si = 0 (2.2)

where si is the k-th root of Resk
q−ei
ξv−(ei) induced by the k-prong-

matching σ.

Note that the left-hand side of Equation (2.2) is a factor of the polynomial
Pn,k defined in [BCGGM19a, Equation (1.1)]. Moreover, our items (i)–(iii)
are identical to the corresponding items of [BCGGM19a, Definition 1.4], while
our item (iv) combines both items (iv) and (v) therein, rephrased in terms of
k-prong-matching.

2.2 Marked k-differentials and k-prong-matchings.

We will show that in some cases there is a unique equivalence class of k-prong-
matchings. To do this, we first study k-differentials together with some choices
of prongs.
A k-differential with a choice of k-prongs at some singularities is called a (par-
tially) marked k-differential, which is an important ingredient in the notion of
multi-scale k-differentials. In this section we generalize some results of [Boi20]
in the classification of connected components of the strata of (partially) marked
k-differentials.
Given a stratum of k-differentials, we first consider the case when a unique
singularity (of order 6= −k) is marked with a k-prong.

Lemma 2.4. Let C be a connected component of a stratum of k-differentials.
Then the component Cmarked parameterizing k-differentials in C marked with a
k-prong at a uniquely chosen singularity is connected.

Proof. Since C is connected, it suffices to show that we can join any two
fiber points in Cmarked over a k-differential (X, ξ) via a continuous path in C.
This can be done by using the continuous family of marked k-differentials
(X, eitξ, e−it/κ(v)) for t ∈ R, where κ − k is the order of the singularity, v
is the marked k-prong and e−it/κ(v) means turning the tangent vector v in
the reverse direction by the angle t/κ under the flat metric. In particular for
t = 2π, the k-differential turns back but the k-prong turns to the next one.
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Next we consider the case when two singularities of relatively prime orders are
marked with prongs.

Lemma 2.5. Let C be a connected component of a stratum of k-differentials.
Then the component Cmarked parameterizing k-differentials in C marked with
prongs at two chosen singularities whose orders plus k are relatively prime is
connected.

Note that the relatively prime assumption is necessary in Lemma 2.5
(see [Gen18, Corollary 7.9]).

Proof. The proof is similar to the one of Lemma 2.4, taking into account that
the element (1, 1) generates the group Z/κ1 × Z/κ2 for κ1 and κ2 relatively
prime, where κi − k is the order of each singularity.

From the proofs of Lemmas 2.4 and 2.5 we can deduce two useful consequences
as follows.

Corollary 2.6. Given a twisted k-differential with two levels and a unique
edge between them, all k-prong-matchings are equivalent on this twisted k-
differential.

Corollary 2.7. Given a twisted k-differential with two levels and two edges
of prong numbers κ1 and κ2 between them, if gcd(κ1, κ2) = 1, then all k-prong-
matchings are equivalent on this twisted k-differential.

3 Basic operations on k-differentials

In this section we generalize two operations, called breaking up a (metric) zero
and bubbling a handle, originally due to Kontsevich–Zorich [KZ03] for holomor-
phic differentials and further studied by Lanneau [Lan08] for quadratic differen-
tials with metric zeros and by Boissy [Boi15] for meromorphic differentials. To
do this we mix the viewpoints of flat geometry with algebraic geometry, as these
operations correspond to smoothing certain multi-scale k-differentials reviewed
in Section 2. Then we study in detail the properties of these operations.

3.1 Breaking up a metric zero

Recall that a metric zero of a k-differential has singularity order > −k. We
would like to break up a metric zero of order n0 into r distinct metric zeros of
order n1, . . . , nr where n0 = n1 + · · ·+ nr.
Let (X1, ξ1) be a k-differential with a metric zero z0 of order n0. Take another
k-differential (P1, ξ2) in the stratum ΩkM0(n1, . . . , nr,−n0−2k). Identifying z0
with the pole p0 of order−n0−2k of ξ2, we obtain a twisted k-differential (X, ξ),
as illustrated in Figure 1. The multi-scale k-differential is obtained by taking
the unique equivalence class of k-prong-matchings σ at the node (as shown in
Corollary 2.6). Then we define the operation of breaking up the metric zero z0
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n1

nr

...

X1

P1

n0

−n0 − 2k

Figure 1: The multi-scale k-differential used in the operation of breaking up a
metric zero.

as the smoothing of the multi-scale k-differential (X, ξ, σ) into the respective
stratum of k-differentials.

By the global k-residue condition (X, ξ, σ) is always smoothable except for
one case. This exceptional case occurs when ξ1 is the k-th power of a holo-
morphic (abelian) differential and the k-residue of ξ2 at p0 is nonzero. By
[GT17, Théorème 1.10] the stratum ΩkM0(n1, . . . , nr,−n0−2k) does not con-
tain any k-differential ξ2 with zero k-residue at p0 if and only if it is of the
type ΩkM0(n1, n2,−n0 − 2k) with k | n0 but k ∤ ni for i = 1, 2. Therefore, we
obtain the following conclusion.

Proposition 3.1. The only non-realizable case of breaking up a metric zero is
for breaking up a zero of the k-th power of a holomorphic differential into two
zeros of order not divisible by k.

3.2 Bubbling a handle

This operation allows us to increase the genus of a k-differential by one. It
adds 2k to the order of a metric zero and keeps the other singularity orders
unchanged.

Let (X1, ξ1) be a k-differential in ΩkMg(n0, . . . , nr,−l1, . . . ,−ls), where z0 is
the metric zero of order n0. Let X2 be an irreducible rational one-nodal curve
with a k-differential ξ2 having a metric pole p0 of order −n0 − 2k, a metric
zero z of order n0 + 2k, and two poles of order −k at the two branches N1

and N2 of the node such that the k-residues R1 and R2 of ξ2 at N1 and N2

satisfy the matching residue condition

R1 = (−1)kR2. (3.1)

Identifying the pole p0 with the zero z0 and putting the unique k-prong-
matching equivalence class σ at the resulting node, we obtain a multi-scale
k-differential (X, ξ, σ) which is illustrated in Figure 2. The operation of
bubbling a handle at the metric zero z0 is the smoothing of the multi-
scale k-differential (X, ξ, σ) into the stratum of genus g + 1 k-differentials
ΩkMg+1(n0 + 2k, n1, . . . , nr,−l1, . . . ,−ls).
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z

z0
p0

N1 ∼ N2

X1

X2

Figure 2: The multi-scale k-differential used in the operation of bubbling a
handle.

By the global k-residue condition (X, ξ, σ) is always smoothable except for the
case when ξ1 is the k-th power of a holomorphic (abelian) differential and the
k-residue of ξ2 at p0 is nonzero. Therefore, we obtain the following conclusion.

Proposition 3.2. If the underlying k-differential is not the k-th power of a
holomorphic differential, then bubbling a handle at a metric zero is always
realizable.

Let us explain the exceptional case, which will be important in Section 3.3.
If ξ1 is the k-th power of a holomorphic differential, then n0 is divisible by k.
Consequently the order of every singularity of ξ2 is divisible by k. This implies
that ξ2 is the k-th power of a meromorphic differential ω2 onX2. By the residue
theorem, the k-residue of ξ2 = ωk

2 at p0 is zero if and only if the residues of ω2

at N1 andN2 are opposite (i.e. ω2 is a stable differential of the nodal curveX2).
However, this condition is not automatically implied by the matching residue
condition of Equation (3.1) (as rk1 = (−r2)

k does not imply that r1 + r2 = 0
for k > 1). Hence in this case the realizability of bubbling a handle depends on
the situation of (X2, ω2), which will be discussed in detail in Proposition 3.7.

3.3 Local properties of the operations

We start with an observation for both operations.

Lemma 3.3. Let C be a connected component of ΩkMg(n0, . . . , nr,−l1, . . . ,−ls)
with a metric zero z0 of order n0. Then the connected component C′ which
contains a k-differential obtained by breaking up z0 or by bubbling a handle
at z0 depends only on the choice of (X2, ξ2) in the operation.

In other words, this lemma says that given the connected component containing
(X1, ξ1) and given (X2, ξ2), the resulting connected components out of the two
operations do not depend on any other choices in the smoothing process. We
remark that the cases of k = 1 and k = 2 were known in [KZ03] and [Lan08]
respectively.

Proof. According to [CMZ19], the moduli space of multi-scale k-differentials is
a smooth compactification of the corresponding stratum. Hence two connected
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components of the stratum cannot contain respectively two boundary points
which can be joined by a continuous path in the boundary, for otherwise the
total space would be singular.

Recall for breaking up a metric zero, if the underlying k-differential (X1, ξ1)
is not the k-th power of a holomorphic differential, then there is no k-residue
constraint imposed on (X2, ξ2), hence we can continuously vary the choice of
(X2, ξ2) in the connected stratum ΩkM0(n1, . . . , nr,−n0 − 2k). Combining
with Lemma 3.3 and using the same proof, we thus obtain the following result.

Lemma 3.4. Suppose we break up a metric zero whose underlying k-differential
(X1, ξ1) is not the k-th power of a holomorphic differential. Then the connected
component after this operation depends only on the connected component con-
taining (X1, ξ1) and does not depend on the choice of (X2, ξ2).

On the contrary, we will discuss how the choice of ξ2 affects the connected
component C′ obtained after bubbling a handle. In this operation the (pro-
jectivized) stratum PΩkM0(n0 + 2k,−k,−k,−n0 − 2k) containing ξ2 (after
normalizing X2 as P1) is one-dimensional. Hence the matching k-residue con-
dition R1 = (−1)kR2 at the two poles N1 and N2 of order −k determines
finitely many choices of ξ2 up to scale. For such a k-differential (X2, ξ2), the
homology group H1(X2 \ {p0, N1, N2}, z0) is generated by two simple closed
curves γ1 and γ2 turning around N1 and N2 respectively. Without loss of gen-
erality we can assume that γ1 and γ2 are “horizontal” (self) saddle connections
of the unique metric zero z0 (where being “horizontal” is up to a k-th root of
unity). They give a partition of the cone angle (n0 + 3k)2πk at z0 into four
angular sectors of respective angle π, s1

2π
k , π and s2

2π
k , where s1 and s2 satisfy

that

1 ≤ si ≤ n0 + 2k − 1 and s1 + s2 = n0 + 2k. (3.2)

An example of this partition is illustrated in Figure 3. Conversely given such
parameters s1 and s2, one can recover ξ2 by using broken half-planes as ba-
sic domains for the construction of meromorphic differentials as in [Boi15]
(and using broken 1

2k -planes as basic domains for general k, see Section 2.3
of [BCGGM19a]).

Definition 3.5. If (X1, ξ1) belongs to a connected component C, we denote
by C ⊕ s1 the connected component that contains the differentials obtained by
bubbling a handle using the differential (X2, ξ2) with invariant s1 as above.

This notation ⊕ was originally introduced in [Lan08] for quadratic differentials.

Remark 3.6. If d | n0 and d | k, then the operation ⊕dℓ at a metric zero
of order n0 of a k-differential ξ = ηd is the same as the operation ⊕ℓ at the
corresponding metric zero of order n0

d of the k
d -differential η. This is due to

ξ2 = ηd2 in the respective strata of genus zero used in the operations with
s1 = dℓ for ξ2 and s1 = ℓ for η2.
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Figure 3: Two differentials in ΩM0(4,−1,−1,−4) with zero residue at the
pole of order −4, where k = 1, n0 = 2, and γ1 and γ2 are labelled by 1 and 2
respectively. The invariants (s1, s2) are (1, 3) or (3, 1) for the differential on
the left and (2, 2) for the differential on the right.

This remark together with Proposition 3.2 and the discussion after it leads to
the following characterization of realizable cases of bubbling a handle.

Proposition 3.7. If ξ1 is not the k-th power of a holomorphic differential,
then all the operations ⊕s for s ∈ {1, . . . , n0 + 2k − 1} are realizable. If ξ1
is the k-th power of a holomorphic differential, then the realizable cases of
bubbling a handle at a zero of order n0 = km0 are the operations ⊕kℓ for
ℓ ∈ {1, . . . ,m0 + 1}.

A technical tool that we will use to bound the number of connected components
of the strata is the following generalization of [Lan08, Proposition 2.9] (see
also [Boi15, Lemma 3.2 and Remark 3.3]).

Proposition 3.8. Consider the stratum ΩkMg(n, n1, . . . , nr,−l1, . . . ,−ls)
with a metric zero of order n and let C be a connected component. Then the
following statements hold:

(i) If 1 ≤ s ≤ n+ 2k − 1, then

C ⊕ s = C ⊕ (n+ 2k − s).

(ii) If 1 ≤ s1, s2 ≤ n+ 2k − 1 and s1 + s2 < n+ 3k, then

C ⊕ s1 ⊕ s2 = C ⊕ s2 ⊕ s1.

(iii) If 1 ≤ s1 ≤ n+ k − 1 and k + 1 ≤ s2 ≤ n+ 2k − 1, then

C ⊕ s1 ⊕ s2 = C ⊕ (s2 − k)⊕ (s1 + k).
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(iv) If 1 ≤ s1 ≤ n+ 2k − 1, 1 ≤ s2 ≤ n+ 4k − 1 and s2 − s1 ≥ 2k, then

C ⊕ s1 ⊕ s2 = C ⊕ (s2 − 2k)⊕ s1.

Proof. The claim (i) is clear due to the symmetry of s and n + 2k − s in the
definition of the operation ⊕. In particular, this implies that it suffices to
consider the range 1 ≤ s ≤ [n+2k

2 ] in order to obtain all connected components
of the type C ⊕ s.
For the remaining claims, we first explain the idea of the proof from the view-
point of algebraic geometry. Let (X1, ξ1) be the k-differential that we want to
bubble at the metric zero z0 of order n. We construct a multi-scale k-differential
(X, ξ, σ) by gluing a twisted k-differential (X2, ξ2) to (X1, ξ1) at z0. The curve
X2 has geometric genus zero and has two non-separating nodes Ni ∼ N ′

i for
i = 1, 2. The twisted k-differential ξ2 has poles of order k at the two nodes, a
pole at the point glued to X1 and a zero in the smooth locus, with invariant si
for the (horizontal) saddle connection configuration enclosing the pole Ni ∼ N ′

i

for i = 1, 2. The k-prong-matching σ is the unique one up to equivalence at the
separating node joining X1 and X2. The resulting curve X is illustrated on the
left of Figure 4. We further degenerate this twisted k-differential (X, ξ) into two
different multi-scale k-differentials as illustrated on the right of Figure 4. These
two degenerations (and the inverse smoothing) correspond to respectively the
bubbling operation C ⊕ s1 ⊕ s2 on one side and the bubbling operation on the
other side of the desired equalities.

X1

z

X2

degeneration

z

X1

Figure 4: Twisted k-differentials underlying the proof of Proposition 3.8.

In order to prove (ii), consider the operation C ⊕ s1 ⊕ s2 for a multi-scale k-
differential illustrated on the right of Figure 4. As in the previous paragraph,
we denote the intermediate lower level twisted k-differential that we obtain
by (X2, ξ2) illustrated on the left of Figure 4. Let γi and γ′i be the saddle
connections enclosing the poles Ni and N

′
i of X2 respectively for i = 1, 2. After

the total operation C ⊕ s1 ⊕ s2, consider the following list of (outgoing and
incoming) rays emanating from the new zero starting from γ1 in cyclic order:

γ1, . . . , γ
′
1, γ

′
1, . . . , γ2, γ2, . . . , γ

′
2, γ

′
2, . . . , γ1,

where the angle between γ1, γ
′
1 is s1

2π
k , the angle between γ2, γ

′
2 is s2

2π
k , and

the angle between any two adjacent γi, γi or γ
′
i, γ

′
i is π. Let a1

2π
k and a2

2π
k be
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the remaining angles between γ′1, γ2 and between γ′2, γ1, respectively. Then the
total angle at the new zero is (s1 + s2 + a1 + a2)

2π
k + 4π = (n+ 5k)2πk , which

implies that s1 + s2 + a1 + a2 = n+ 3k. Note that this list of rays can exist if
and only if a1 + a2 > 0, namely, s1 + s2 < n+ 3k. Figure 5 illustrates such an
example in the case of k = 2.

γ′1

γ1
γ2

γ′2

2

3

2

3

γ′1

γ1

γ′2

γ2

Figure 5: A twisted quadratic differential (X2, ξ2) used in the proof of the
equality C ⊕ 1⊕ 2 = C ⊕ 2⊕ 1 for the case of k = 2, n = 2, s1 = 2, s2 = 5, and
a1 = a2 = 1

2 .

Under the same cyclic order we can rewrite this list of rays as

γ2, . . . , γ
′
2, γ

′
2, . . . , γ1, γ1, . . . , γ

′
1, γ

′
1, . . . , γ2,

which corresponds to the other operation C⊕s2⊕s1. Therefore, to verify (ii) it
remains to show that we can shrink γi and γ

′
i to zero for both i = 1, 2 in either

order without creating unexpected singularities caused by self crossing, which
in principle could occur in the situation of Figure 6 as therein γ2 can cross γ′2
when shrinking γ1 and γ′1. In contrast, by elementary plane geometry if the
sum of the angles between γ2, γ

′
1, between γ

′
1, γ1 and between γ1, γ

′
2 is bigger

than 2π, i.e. if (a1 + a2 + s1)
2π
k > 2π, then this crossing issue does not occur.

Using a1 + a2 + s1 + s2 = n+ 3k, this inequality is equivalent to s2 < n+ 2k.
Note that s1 < n + 2k holds automatically by the assumption on its range.
This thus verifies (ii).
Next we consider (iii) and use the same notation as in the proof of (ii). For the
operation C ⊕ s1⊕ s2, consider the following list of rays when going around the
zero of ξ2 in cyclic order:

γ1, . . . , γ2, γ2, . . . , γ
′
1, γ

′
1, . . . , γ

′
2, γ

′
2, . . . , γ1.

By the assumption on the ranges of s1 and s2, such a list can exist. Indeed since
k+1 ≤ s2, the saddle connections γ2 and γ′2 are outside of the infinite annulus
cut out by γ1 and γ′1 (as a neighborhood of the pole N1 ∼ N ′

1 of order −k),
and vice versa. Note that the sector corresponding to

(γ1, . . . , γ2, γ2, . . . , γ
′
1)
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1

1

γ 2

γ ′
1 γ 1

γ ′
2

1

1

Figure 6: Shrinking γ1 and γ′1 can make γ2 and γ′2 cross when s2 ≥ n + 2k.
The case represented is k = 4, n = −2, s1 = 1 and s2 = 7. Here we omit the
four half-infinite cylinders glued to γi and γ

′
i.

has angle s1
2π
k +2π = (s1+k)

2π
k , where we gain π from the half-infinite cylinder

bounded by γ2 and another π from the special half-disk sectors adjacent to it (in
the sense of [EMZ03, Fig. 8]). Moreover, by definition the sector corresponding
to

(γ2, . . . , γ
′
1, γ

′
1, . . . , γ

′
2)

has angle s2
2π
k . If we first shrink γ1 and γ′1 to zero, then the angle of this

sector becomes s2
2π
k − 2π = (s2 − k)2πk , as we lose π for the half-infinite

cylinder bounded by γ′1 as well as another π from the special half-disk sectors
adjacent to it. This thus verifies the equality claimed in (iii).
Similarly for (iv), consider the following list of rays going around the zero of ξ2
in cyclic order:

γ2, . . . , γ1, γ1, . . . , γ
′
1, γ

′
1, . . . , γ

′
2, γ

′
2, . . . γ2.

Again by assumption such a list can exist. The sector corresponding to
(γ1, . . . , γ

′
1) has angle s1

2π
k . Moreover, the sector corresponding to

(γ2, . . . , γ1, γ1, . . . , γ
′
1, γ

′
1, . . . , γ

′
2)

has angle s2
2π
k . If we first shrink γ1 and γ′1 to zero, then the angle of this

sector becomes s2
2π
k −4π = (s2−2k)2πk . This thus verifies the equality claimed

in (iv).

We now discuss some consequences of Proposition 3.8. For the operation C ⊕
s1 ⊕ s2, by using (i) we can restrict to the range 1 ≤ s1 ≤

[
n+2k

2

]
and 1 ≤

s2 ≤
[
n+4k

2

]
. Consider first the case n > 0. In this case as long as (s1, s2) 6=

(n+2k
2 , n+4k

2 ) (when n is even), we have s1 + s2 < n + 3k. Since
[
n+4k

2

]
≤

n+ 2k − 1 (as n > 0), we can interchange the order of s1 and s2 by using (ii).
In contrast for (s1, s2) = (n+2k

2 , n+4k
2 ), (ii) does not apply (as s1+s2 = n+3k),

(iv) does not apply (as s2−s1 = k < 2k), while (iii) applies with (s2−k, s1+k) =
(s1, s2) which does not change the pair. Next consider the case −k < n ≤ 0.
If s2 ≤ n + 2k − 1, then s1 + s2 ≤

[
n+2k

2

]
+ n + 2k − 1 < n + 3k (as n ≤ 0),

hence we can interchange the order of s1 and s2 by using (ii). In contrast
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for n + 2k ≤ s2 ≤
[
n+4k

2

]
, it is outside of the allowed ranges in (ii) and (iii).

Moreover for (iv), s2 − 2k ≤
[
n+4k

2

]
− 2k ≤ 0 (as n ≤ 0), hence (iv) does not

apply. Summarizing the above discussion, we make the following definition to
isolate the types of (s1, s2) for which Proposition 3.8 does not help simplify the
related operations.

Definition 3.9. The parameters (s1, s2) in the operation C ⊕ s1 ⊕ s2 are
called of balanced type if (s1, s2) = (n+2k

2 , n+4k
2 ) for n > 0 and even, and if

n+ 2k ≤ s2 ≤
[
n+4k

2

]
(and 1 ≤ s1 ≤

[
n+2k

2

]
) for −k < n ≤ 0.

Next we give a useful application of Proposition 3.8.

Corollary 3.10. Let C and C0 be two connected components with a unique
metric zero satisfying that C = C0 ⊕ s1 ⊕ · · · ⊕ sn. Then there exist a sequence
1 ≤ s′1 ≤ · · · ≤ s′n such that C = C0 ⊕ s′1 ⊕ · · · ⊕ s′n.

Proof. Suppose there are two adjacent si and si+1 such that si > si+1. Let n
be the order of the unique metric zero of the differentials in C0⊕s1⊕· · ·⊕si−1.
Then by Proposition 3.8 (i) we can assume that si ≤ [n2 ]+ k, hence si+ si+1 <
2si ≤ n+2k, and then we can exchange si and si+1 by Proposition 3.8 (ii).

Note that the assumption of a unique zero in the above is not essential. As
long as we keep performing the operations ⊕ for a designated zero, the same
argument and conclusion still hold.

Since we often focus on primitive k-differentials, the following fact is useful to
know.

Remark 3.11. Suppose we break up a metric zero or bubble a handle for a
primitive k-differential (X, ξ). Then the k-differentials we obtain remain to be
primitive. This is because a (multi-scale) k-differential is primitive if and only
if its canonical cover is connected. If after smoothing we obtain a non-primitive
k-differential, then the canonical cover of the multi-scale k-differential used in
the operations is disconnected, which contains a disconnected canonical cover
over the component (X, ξ), thus contradicting that (X, ξ) is primitive.

3.4 Global properties of the operations

The classification of connected components of the strata of meromorphic
abelian differentials in genus one was given in [Boi15, Theorem 4.1] (see [CC14,
Section 3.2] for another viewpoint). Since the canonical bundle of a genus one
curve is trivial, the same classification holds for connected components of the
strata of k-differentials in genus one for all k.
We first generalize the rotation number description in [Boi15, Section 4.2] to
meromorphic k-differentials on genus one curves for all k. Let (X, ξ) be a k-
differential in a stratum ΩkM1(n1, . . . , nr,−l1, . . . ,−ls) for X of genus one.
Suppose γ : S1 → X is a simple closed curve such that γ does not contain any
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singularity of ξ. Define a map

Γ: S1 → S1/
〈
exp(2πik )

〉
by t 7→

γ′(t)

|γ′(t)|

where a unit tangent vector is taken with respect to the flat metric induced
by ξ. We quotient the target S1 by

〈
exp(2πik )

〉
, as the holonomy of the 1

k -
translation structure induced by ξ is contained in this group. Regarding the
target of Γ still as S1, this map Γ thus defines the index Ind(γ) of γ in the
usual way. Let (a, b) be a symplectic basis of H1(X,Z), and choose (α, β)
as arc-length representatives of (a, b) that avoid the singularities of ξ. As in
[Boi15, Definition 4.2], we define the rotation number of a k-differential (X, ξ)
by

rot(X, ξ) = gcd(Ind(α), Ind(β), n1, . . . , nr, l1, . . . , ls).

This invariant allows us to describe geometrically the classification of connected
components of the strata of k-differentials in genus one, thus generalizing the
viewpoint of [Boi15, Theorem 4.3] from k = 1 to all k.

Theorem 3.12. Let S = ΩkM1(n1, . . . , nr,−l1, . . . ,−ls) be a stratum of k-
differentials on genus one curves. Then the rotation number is an invariant
for any connected component of S.

Let d be a positive divisor of gcd(n1, . . . , nr, l1, . . . , ls). Then d can be realized
as a rotation number for a unique connected component of S, except that d = n
does not occur for the stratum ΩkM1(n,−n).

Moreover when
∑r

i=1 ni > k, any connected component of S can be realized by
the operations of bubbling a handle and breaking up a zero.

Proof. The proof of the first claim that the rotation number is an invariant
for any connected component of S is the same as in [Boi15]. Indeed it suffices
to observe that when crossing a singularity of order ni the index of a simple
closed curve changes by adding ±ni.

Next we prove the remaining claims about the realization of rotation num-
bers. For n ≥ k + 1 and 1 ≤ t ≤ n − 1, apply the operation of bubbling a
handle ⊕t to a k-differential in the stratum ΩkM0(n − 2k,−l1, . . . ,−ls) with
n = l1+ · · ·+ ls. We then obtain a k-differential in ΩkM1(n,−l1, . . . ,−ls). We
can construct a symplectic basis for the first homology group of the underlying
torus as follows. Take α to be the core curve of the bubbled cylinder and β
to be the curve that goes through the non-separating node and turns around
the newborn metric zero of order n. The indices of α and β are respectively
equal to 0 and t (or n − t). Now we break up the zero of order n to r metric
zeros of order n1, . . . , nr. The indices of α and β change continuously, and
hence they remain unchanged. By taking t to be any positive divisor d of
gcd(n1, . . . , nr, l1, . . . , ls) (with d < n), we thus obtain a k-differential of rota-
tion number d in ΩkM1(n1, . . . , nr,−l1, . . . ,−ls) when n =

∑r
i=1 ni > k. Note

that the rotation number n never arises in this way.
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For the case n = k one can check it directly by using Figure 7, where α
and β can be chosen as closed paths connecting the middle points of the saddle
connections 1 and 2 respectively and both have index d for any 1 ≤ d < k
and d | k. Similarly by using Figure 8 one can check it directly for the case
2 ≤ n < k.

1

2

1

2

3 3

d2π
k

Figure 7: A k-differential in ΩkM1(k,−k) of rotation number d.

1
2
1

2

3

3

d2π
k

n 2π
k

Figure 8: A k-differential in ΩkM1(n,−n) of rotation number d for 2 ≤ n < k.

The previous discussion provides at least as many connected components as
the number given in [Boi15, Theorem 4.1]. Therefore, we conclude that each
rotation number is realizable by a unique connected component, which more-
over can be realized by the operations of bubbling a handle and breaking up
the resulting zero when the total zero order n > k.

We remark that connected components of the strata in genus one can also be
classified by another invariant from the algebraic viewpoint (see [CC14, Sec-
tion 3.2]). To define it, let (X, ξ) be a k-differential in a stratum ΩkM1(µ)
with µ = (m1, . . . ,mn) such that

∑n
i=1mi = 0. Denote by gcd(µ) =

gcd(m1, . . . ,mn). Let d be a positive divisor of gcd(µ) (except that d = n
is not allowed for µ = (n,−n)). We say that (X, ξ) has torsion number d, if d
is the largest integer such that

∑n
i=1(mi/d)zi ∼ 0 in X (i.e.

∑n
i=1(mi/d)zi

represents the trivial divisor class). Then there is a one-to-one correspondence
between the connected components of ΩkM1(µ) and the loci of (X, ξ) with
fixed torsion numbers.
It is natural to ask whether the torsion number coincides with the rotation
number. This was indeed confirmed in [Tah18, Section 3.4] for abelian differ-
entials. Herein we adapt the same argument and generalize it to higher k.
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Proposition 3.13. The rotation number coincides with the torsion number for
k-differentials on genus one curves.

Proof. If gcd(µ) = 1, then the stratum ΩkM1(µ) is irreducible, and by defini-
tion the rotation number and the torsion number are both equal to 1 in this
case. In general, suppose that (X, ξ) ∈ ΩkM1(µ) has torsion number d. It im-
plies that there exists a k-differential (X, ξ′) in the stratum ΩkM1(µ/d) with
the same underlying pointed curve X . Moreover, up to scaling we can write
ξ′ = f(z)(dz)k and ξ = f(z)d(dz)k with f a locally meromorphic function. By
Cauchy’s argument principle, the indices of α and β relative to the metric in-
duced by ξ is d times the indices of these cycles relative to the metric induced
by ξ′. It implies that the rotation number of (X, ξ) is d times the rotation
number of (X, ξ′), and hence the rotation number of (X, ξ) is divisible by its
torsion number. The desired claim then follows from the fact that there is a
unique connected component of ΩkM1(µ) for each d, regardless of d being the
rotation number or the torsion number.

As a corollary of Theorem 3.12 we obtain the following useful result, which
generalizes [Boi15, Proposition 4.4].

Lemma 3.14 (The gcd-trick). Let S = ΩkM0(n,−l1, . . . ,−ls) be a stratum of
genus zero k-differentials with a metric zero of order n. If gcd(s1, l1, . . . , ls) =
gcd(s2, l1, . . . , ls), then S ⊕ s1 = S ⊕ s2.

Proof. Take two k-differentials out of the two bubbling operations respectively.
Take α to be the core curve of the bubbled cylinder and β to be the curve that
goes through the non-separating node and turns around the newborn metric
zero of order n+ 2k. The indices of α and β are respectively equal to 0 and si
(or n+2k−si =

∑s
j=1 lj−si). Hence by the gcd assumption both k-differentials

after the two bubbling operations have the same rotation number. The claim
thus follows from Theorem 3.12.

In the same vein, the following result will be useful for classifying connected
components of the strata.

Lemma 3.15. Let C be a connected component of ΩkMg(n,−l1, . . . ,−ls) with
a metric zero of order n and s ≥ 1. If gcd(s1, n+ 2k) = gcd(s2, n+ 2k), then
C ⊕ s1 = C ⊕ s2.

Proof. In the bubbling operation (see Figure 2), we can first smooth the non-
separating node of (X2, ξ2) to obtain a genus one k-differential (X ′

2, ξ
′
2) in

ΩkM1(n+2k,−n−2k). By the gcd assumption, such k-differentials (X ′
2, ξ

′
2) for

the operations ⊕si for i = 1, 2 have the same rotation number. Hence they be-
long to the same connected component of the stratum ΩkM1(n+2k,−n,−2k).
Moreover, since the top level components (X1, ξ1) contain poles, they are not
k-th powers of holomorphic differentials. Hence the global k-residue condition
is satisfied, which implies that these multi-scale k-differentials are smoothable.
Therefore, the k-differentials obtained by smoothing further the separating
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node between X1 and X ′
2 can be connected by a continuous path in the space

of multi-scale k-differentials of signature (n + 2k,−l1, . . . ,−ls). This implies
that they belong to the same connected component of the corresponding stra-
tum.

4 Hyperelliptic components of the strata of k-differentials

In this section we define and classify hyperelliptic components of the strata
of k-differentials. We begin with extending the known definition of hyperel-
liptic components from the case of abelian and quadratic differentials to all
k-differentials.

Definition 4.1. A k-differential (X, ξ) is called hyperelliptic if X is a hyper-
elliptic curve and ξ is (−1)k-invariant under the hyperelliptic involution. A
connected component of the strata of k-differentials is called a hyperelliptic
component if every k-differential (X, ξ) in this component is hyperelliptic.

In affine coordinates a hyperelliptic curve X of genus g can be represented by
the equation x2 = (y−y1) · · · (y−y2g+2) with y1, . . . , y2g+2 distinct fixed points.
The map (x, y) 7→ y is the hyperelliptic double cover and (x, y) 7→ (−x, y) is
the hyperelliptic involution ι. The points wi = (0, yi) for i = 1, . . . , 2g + 2
give the 2g + 2 Weierstrass points of X . For a k-differential ξ on X satisfying
that ι∗ξ = (−1)kξ, if p is a singularity of ξ which is not a Weierstrass point,
then clearly the conjugate p′ = ι(p) has to be a singularity of ξ with the same
order. If a Weierstrass point is a singularity of order n, since ι∗xn(dx)k =
(−1)n+kxn(dx)k, for ξ to be (−1)k-invariant we conclude that n must be even.
Therefore, the associated k-canonical divisor of a hyperelliptic k-differential
(X, ξ) is of the form

r∑

i=1

2miwi +

s∑

j=1

lj(pj + p′j)

where pj and p′j are hyperelliptic conjugates. Conversely, such a k-canonical
divisor determines a hyperelliptic k-differential up to a scalar multiple.
Note that the locus of hyperelliptic k-differentials with a given signature can be
a lower dimensional subspace in the corresponding stratum. In order to obtain
a hyperelliptic component, we need to check that the dimension of the locus of
hyperelliptic k-differentials with a given signature equals the total dimension
of the corresponding stratum. Using this strategy we can classify hyperelliptic
components of the strata of k-differentials as follows, thus proving Theorem 1.1.

Theorem 4.2. Let µ = (2m1, . . . , 2mr, l1, l1, . . . , ls, ls) be a partition of
k(2g − 2) (with possibly negative entries). Then the stratum ΩkMg(µ) has
a hyperelliptic component if and only if µ is one of the following types:

• µ = (2m1, 2m2) with one of the mi being negative, or m1,m2 > 0 and
k ∤ gcd(m1,m2),
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• µ = (2m, l, l) with m or l negative, or m, l > 0 and k ∤ gcd(m, l),

• µ = (l1, l1, l2, l2) with some li < 0, or l1, l2 > 0 and k ∤ gcd(l1, l2),

• µ = (k(2g − 2)),

• µ = (k(g − 1), k(g − 1)).

Proof. We first assume that g ≥ 2. Consider the space Hypk(µ) parameterizing
genus g hyperelliptic curves with k-canonical divisors of the form

r∑

i=1

2miwi +

s∑

j=1

lj(pj + p′j)

where wi are Weierstrass points and pj, p
′
j are hyperelliptic conjugates. It is

easy to see that Hypk(µ) is irreducible with dimension

dimHypk(µ) = 2g − 1 + s.

Since every connected component of PΩkMg(µ) has dimension ≥ 2g−3+r+2s

(see e.g. [BCGGM19a, Theorem 1]), if Hypk(µ) gives a connected component
of PΩkMg(µ), then we have

2g − 1 + s ≥ 2g − 3 + r + 2s.

It implies that r + s ≤ 2. We now treat each case separately.
Consider the case r = 2 and s = 0, i.e., µ = (2m1, 2m2) where m1 + m2 =
k(g − 1). If at least one of m1 and m2 is negative, or if m1,m2 > 0 and
k ∤ gcd(m1,m2), then

dimPΩkMg(2m1, 2m2) = 2g − 1 = dimHypk(2m1, 2m2).

Hence Hypk(2m1, 2m2) gives rise to a connected component. If m1,m2 > 0
and k | gcd(m1,m2), then PΩkMg(2m1, 2m2) has some component of di-
mension 2g arising from the k-th powers of abelian differentials of signature
(2m1/k, 2m2/k). In this case any differential in Hypk(2m1, 2m2) is also the
k-th power of an abelian differential, because (m1/k)(2w1) + (m2/k)(2w2) is
a canonical divisor. Since the dimension of Hypk(2m1, 2m2) is 2g − 1 < 2g,
Hypk(2m1, 2m2) does not give a component. We remark that if (2m1, 2m2) =
(k(g−1), k(g−1)), then there is a hyperelliptic component, but in our notation
it is for the case r = 0 and s = 1 to be discussed later.
Consider s = 2 and r = 0, i.e., µ = (l1, l1, l2, l2). If some li < 0, or if l1, l2 > 0
and k ∤ gcd(l1, l2), then

dimPΩkMg(l1, l1, l2, l2) = 2g + 1 = dimHypk(l1, l1, l2, l2).

Hence the locus Hypk(l1, l1, l2, l2) gives rise to a connected component. If
l1, l2 > 0 and k | gcd(l1, l2), then PΩkMg(l1, l1, l2, l2) has some compo-
nent of dimension 2g + 2 arising from the k-th powers of abelian differ-
entials of signature (l1/k, l1/k, l2/k, l2/k). In this case any differential in
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Hypk(l1, l1, l2, l2) is also the k-th power of an abelian differential, because the
divisor (l1/k)(p1+p

′
1)+ (l2/k)(p2+p

′
2) is canonical. By comparing dimensions

it implies that Hypk(l1, l1, l2, l2) does not give a component in this case.
Consider s = r = 1, i.e., µ = (2m, l, l). If m or l is negative, or if m, l > 0 and
k ∤ gcd(m, l), then

dimPΩkMg(2m, l, l) = 2g = dimHypk(2m, l, l).

Hence Hypk(2m, l, l) gives rise to a connected component. If m, l > 0 and k |
gcd(m, l), then PΩkMg(2m, l, l) has some component of dimension 2g+1 arising
from the k-th powers of abelian differentials of signature (2m/k, l/k, l/k). In
this case any differential in Hypk(2m, l, l) is also the k-th power of an abelian
differential, because the divisor (m/k)(2w) + (l/k)(p+ p′) is canonical. Hence
Hypk(2m, l, l) does not give a component.
Consider r = 1 and s = 0, i.e., µ = (k(2g − 2)). In this case a differential
in Hypk(k(2g − 2)) is the k-th power of an abelian differential of signature
(2g − 2), because (2g − 2)w is a canonical divisor. Hence Hypk(k(2g − 2)) can
be identified with the hyperelliptic component of PΩMg(2g − 2), giving rise to
a connected component.
Consider s = 1 and r = 0, i.e., µ = (k(g − 1), k(g − 1)). In this case any
differential in Hypk(k(g−1), k(g−1)) is the k-th power of an abelian differential
of signature (g− 1, g− 1), because (g− 1)(p+ p′) is a canonical divisor. Hence
Hypk(k(g − 1), k(g − 1)) can be identified with the hyperelliptic component of
PΩMg(g − 1, g − 1), giving rise to a connected component.
For the case g = 1, Weierstrass points can be interpreted as fixed points under
the elliptic involution (i.e. 2-torsion points on curves of genus one), and in
this sense the above proof goes through without any change. Finally for the
case g = 0, a double cover from P1 to P1 can be determined by specifying
two ramification points in the domain, or one ramification point with a pair
of conjugate points, or two pairs of conjugate points, which correspond to the
types of signatures in the claim.

Recall the operation ⊕ introduced in Definition 3.5. We conclude this section
by analyzing when this operation gives hyperelliptic components.

Lemma 4.3. Let S be the hyperelliptic component of the stratum
ΩkMg−1(2m1, 2m2) or ΩkMg−1(2m1, l, l) listed in Theorem 4.2 such that
the singularity of order 2m1 is a metric zero. Then the hyperelliptic component
of the stratum ΩkMg(2m1 +2k, 2m2) or ΩkMg(2m1 +2k, l, l) can be given by
S ⊕ (m1 + k).

Proof. Let (X, ξ) be a hyperelliptic k-differential of genus g obtained by the
operation ⊕s of bubbling a genus one differential (X2, ξ2) at the metric zero
of order 2m1 of a genus g − 1 hyperelliptic differential (X1, ξ1) (see Figure 2).
The hyperelliptic involution ι acts on both (Xi, ξi). Take a homology class α
in X2 represented by a closed path that goes through the sector of angle s 2πk
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and the bubbled cylinder, so that the index of α is s. One can represent
−α by another closed path that goes through the complementary sector of
angle (2m1 + 2k − s)2πk and the bubbled cylinder, so that the index of −α is
2m1 + 2k − s. Since ι∗α = −α, we conclude that s = 2m1 + 2k − s, hence
s = m1 + k.
For the converse, it suffices to show that a k-differential obtained by applying
the bubbling operation ⊕(m1 + k) to a hyperelliptic k-differential of genus
g − 1 has an involution with 2g + 2 fixed points. This can be verified for
the twisted k-differential (X, ξ) as the nodal union of (Xi, ξi) in the definition
of bubbling a handle, and the smoothing process preserves this property (see
[Gen18, Section 6] for more details). In particular, 2g − 1 of the fixed points
together with the separating node correspond to the Weierstrass points of X1.
The remaining three fixed points come from the zero of ξ2, the center of the
bubbled cylinder, and the middle point of the saddle connection transversal to
the boundary of the cylinder.

As a consequence of Lemma 4.3 we obtain the following result.

Corollary 4.4. Given any g, k ≥ 2 and a strata ΩkMg(µ) with a hyperelliptic
component, there exists a primitive non-hyperelliptic component in ΩkMg(µ).

Proof. If the hyperelliptic component is non-primitive, the result follows from
the fact that the primitive locus of the stratum is non-empty (see [GT17, Theo-
rem 1.4]). Suppose that the hyperelliptic component is primitive. If the stratum
has a unique zero of order 2m1 + 2k, then one can apply the operation ⊕a to
a primitive k-differential of genus g − 1 with a 6= m1 + k. If the stratum has
two zeros, one can break the unique zero of the non-hyperelliptic k-differential
we just obtained.

5 Parity of the strata of k-differentials

In this section we define a parity for k-differentials and characterize in Theo-
rem 5.2 the strata of k-differentials that have components distinguished by this
parity invariant.

5.1 The parity

Recall from [KZ03] (and [Boi15] in the meromorphic case) that for a stratum
ΩMg(2m1, . . . , 2mn) of abelian differentials with singularities of even order
only, we can define an invariant in the following way. Given (X,ω) in this
stratum, the parity of ω is defined as

Φ(ω) := h0
(
X, 1

2div (ω)
)

(mod 2). (5.1)

Alternatively, let (α1, . . . , αg, β1, . . . , βg) be a symplectic basis of H1(X,Z/2)
which does not meet the singularities of ω. Then the parity of ω can also be
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defined as the parity of the Arf-invariant

Φ(ω) :=

g∑

i=1

(Indω(αi) + 1)(Indω(βi) + 1) (mod 2). (5.2)

The notion of parity was extended to quadratic differentials in [Lan04, Sec-
tion 3.2], and we now generalize it to k-differentials for all k. Let ΩkMg(µ)
be a stratum of k-differentials with µ = (m1, . . . ,ms,−l1, . . . ,−lr). Given a

(primitive) k-differential (X, ξ) in this stratum, we denote by (X̂, ω̂) the (con-
nected) canonical k-cover of (X, ξ) (see [BCGGM19a]). For any integer m, we
define m̂ = m+k

gcd(m,k) − 1. A singularity of ξ of order m gives rise to gcd(m, k)

singularities of order m̂ of ω̂. If m̂i and −̂lj are even for all i and j, then the

parity Φ(ξ) of (X, ξ) is defined to be the parity of the canonical cover (X̂, ω̂).
The following result describes when the canonical cover of a k-differential has
singularities of even order only. The proof is an easy computation left to the
reader. We use the 2-adic valuation of n as the highest exponent v2(n) such
that 2v2(n) divides n.

Proposition 5.1. Let (X, ξ) be a k-differential in the stratum ΩkMg(µ). Then
the canonical cover of (X, ξ) has only even order singularities if and only if the
2-adic valuation of every entry of µ is not equal to v2(k).

The strata satisfying the hypotheses of Proposition 5.1 are called of parity
type. We now state the main result of this section, which combining with
Theorem 5.11 about the special strata in genus two refines Theorem 1.2 in the
introduction.

Theorem 5.2. Let S = ΩkMg(µ)
prim be a stratum of primitive k-differentials

of parity type with g ≥ 1. If k is even or S = Ω3M2(6)
prim, then the parity is

an invariant of the entire stratum S. If k is odd and S 6= Ω3M2(6)
prim, then

there exist components of S with distinct parity invariants.

Note that in Theorem 5.2 we do not claim that the parity is enough to dis-
tinguish all connected components of the strata of parity type, as there might
be some other invariants such as hyperelliptic structures. In other words, the
locus with the same parity invariant in a stratum of parity type may still be
disconnected.
We separate the proof of Theorem 5.2 in three steps. In Section 5.2 we treat
the case of even k and in Section 5.3 the case of odd k, except several sporadic
strata in genus two which are treated in Section 5.4.
Before starting the proof of Theorem 5.2, we make some remarks. The first
one generalizes the definition of parity to non-primitive k-differentials.

Remark 5.3. For our applications it will be useful to consider parities for
non-primitive k-differentials as well. Suppose ξ = ηd where η is a primitive
(k/d)-differential of parity type. Then we define Φ(ξ) := dΦ(η). In this case
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the canonical cover X̂ of ξ consists of d connected components, each of which is
a (connected) canonical cover of η. Therefore, we can still apply Equations (5.1)

and (5.2) to compute Φ(ξ), replacing X by the disconnected cover X̂. Note
that if k is odd (and hence d is odd), the definition reduces to Φ(ξ) = Φ(η).

The next remark is related to a construction of Boissy.

Remark 5.4. In [Boi15, Section 5.3], Boissy defines a parity for meromorphic
abelian differentials in the strata ΩMg(2m1, . . . , 2mn,−1,−1) with mi ≥ 1 for
all i. For such differentials ω, by the residue theorem ω has opposite residues
at the two simple poles. Hence one can construct a stable differential by iden-
tifying the two poles as a node. The parity of ω is then defined as the parity
of (the smoothing of) this stable differential of (arithmetic) genus g+1, which
can have distinct parities in general.

One can try to adapt this construction to the strata of k-differentials of anal-
ogous types. However, some direct generalizations do not work. For instance,
consider the strata ΩkMg(m1, . . . ,mn,−k,−k) with two poles of order k. Iden-
tify the two poles as before. Note that for k > 1, there is no k-residue theorem.
Hence the resulting nodal k-differential may not satisfy the matching k-residue
condition at the node, and consequently it may fail to be a smoothable stable
k-differential.

Alternatively, consider the strata of type ΩkMg(m1, . . . ,mn,−k, . . . ,−k)
with k even and v2(mi) 6= v2(k) for all i. Given such a k-differential (X, ξ),

let (X̂, ω̂) be the canonical cover of (X, ξ). We can form a stable differen-

tial by identifying pairwise the preimages of the poles of order k in (X̂, ω̂)
that have opposite residues (since k is even). Then the parity of (X, ξ)
can be defined as the parity of (the smoothing of) this stable differential.
Note that the deck transformation τ of the canonical cover extends to the
(equivariant) smoothing, hence the quotient is a k-differential in the stra-
tum ΩkMg(m1, . . . ,mn,−k/2, . . . ,−k/2) of parity type, where each pole of
order k in ξ yields a pair of poles of order k/2 arising from the two invo-
lution fixed points of the finite cylinder after truncating the infinite cylin-
der neighborhood of a polar node of order k (i.e. smoothing a simple polar
node of the abelian differential ω̂ in the cover). From the algebraic view-
point, splitting a pole of order −k into two poles of order −k/2 can also be
seen by attaching a rational k-differential of signature (−k,−k/2,−k/2) with
matching k-residue and then smoothing the resulting multi-scale k-differential.
By Theorem 5.2, nevertheless, there is a unique parity of k-differentials in
ΩkMg(m1, . . . ,mn,−k/2, . . . ,−k/2) for k even. Hence this construction does
not provide distinct parities either.

Finally another definition of parity was introduced recently in [CSS21]. Al-
though the two definitions can lead to different parity labelings for a connect
component, below we explain that they are expected to induce the same de-
composition of the strata.
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Remark 5.5. Let (X, ξ) be a k-differential parameterized in a stratum
ΩkMg(µ) where k is odd and µ = (2m1, . . . , 2mn) has only even entries. De-
note by x1, . . . , xn the zeros and poles of ξ where xi has order 2mi. Consider

the line bundle L = ω
⊗(−k+1)/2
X ⊗ OX(

∑n
i=1mixi). Note that by definition

L⊗2 = ωX . Then the parity of h0(X,L) (mod 2) is a deformation invariant,
which was defined to be the parity of (X, ξ) in [CSS21, Section 1.3]. To distin-
guish it from our definition, we call it the algebraic parity. In particular, the
stratum ΩkMg(µ) can be decomposed into a disjoint union of odd and even
subspaces by using the algebraic parity or by using our parity.
Under a reasonable hypothesis we show that the two decompositions given re-
spectively by our parity and by the algebraic parity coincide, even though their
labelings for some connected components can be different. For g = 0, each stra-
tum is connected, hence any parity definition induces the same decomposition
consisting of the entire stratum. In this case the algebraic parity is even since
L = OP1(−1), while our parity depends on µ (see Section A.2). For g = 1, the
algebraic parity of a component of rotation number d is given by d+1 (mod 2)
since L = OX(

∑n
i=1mixi) is of degree zero which has a non-trivial section if

and only if it is the trivial bundle, i.e., when 2mi/d divides mi and hence d is
even, while our parity is given by d+ 1 + δ(µ) (mod 2) where δ only depends
on µ (see Section A.3). Hence the two parity decompositions of the strata of
genus one coincide (with possibly different parity labelings). For g ≥ 2, we
make an extra hypothesis that every connected component can be obtained
by bubbling a handle and breaking up a zero. By Lemma 5.8 our parity of
the resulting k-differential out of these operations is equal to the sum of the
parities of the sub-differentials used in the constructions, while the algebraic
parity is also equal to the sum of the algebraic parities of the sub-differentials
by [Cor89]. Hence by induction the two definitions of parity would give rise to
the same decomposition of the strata (again with possibly different labelings).

5.2 The case of even k

In this section we study the strata of k-differentials of parity type when k is
even.

Proposition 5.6. Let ΩkMg(m1, . . . ,mn)
prim be a primitive stratum of k-

differentials with v2(k) 6= v2(mi) for all i. If k is even, then the parity is an
invariant of the stratum.

We remark that it was known in [Lan04] that the parity is an invariant for any
primitive stratum of quadratic differentials of parity type. Moreover, although
it was stated for the case of quadratic differentials with metric zeros only,
the same argument therein works for meromorphic quadratic differentials with
arbitrary poles.

Proof. Given a k-differential (X, ξ), recall that the canonical cover πk : X̂ → X
associated to ξ is the k-cyclic cover of X obtained by taking a k-th root ω̂ of ξ
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(see e.g. [BCGGM19a, Section 2.1]). Suppose k = dk′ with 1 < d, k′ < k. Then
we can similarly construct an intermediate canonical d-cyclic cover πd : Y → X
by taking a d-th root of ξ, that is, π∗

dξ = ηd for a k′-differential η on Y . We can

further take the canonical k′-cyclic cover πk′ : Ŷ → Y such that π∗
k′η = η̂k

′

for

an abelian differential η̂ on Ŷ . By the universal property of canonical covers,
we have the following commutative diagram

(Ŷ , η̂) (X̂, ω̂)

(Y, η)

(X, ξ)

φ

π
k′

πd

πk

(5.3)

where φ : Ŷ → X̂ is an isomorphism such that φ∗(ω̂) = ζη̂ with ζ a k-th root
of unity.
Now for even k = 2d, consider any k-differential (X, ξ) in a primitive stratum S
of parity type. In the above setting we can take the canonical d-cover (Y, η)
where η is a primitive quadratic differential of parity type. Note that the parity
of (Y, η) is an invariant of the respective stratum of quadratic differentials
according to [Lan04]. It then follows from the commutative diagram (5.3) that
the parity of (X, ξ) is an invariant of the stratum S, since the parity of ξ equals
the parity of η (both equal to the parity of η̂ by definition).

Remark 5.7. For a primitive stratum Ω2Mg(m1, . . . ,mn)
prim of quadratic

differentials of parity type, the parity can be computed by [Lan04, Theorem 4.2]
as

n+ − n−

4
(mod 2)

where n+ is the number of mi ≡ 1 (mod 4) and n− is the number of mi ≡ 3
(mod 4). Now consider (X, ξ) in a primitive stratum ΩkMg(m1, . . . ,mn)

prim

of k-differentials of parity type for even k = 2d. Note that a singularity of
order m in ξ has r = gcd(m, d) preimages under πd, each of order m+k

r − 2 in
the quadratic differential η. Combining with the above formula it thus gives
the parity of the stratum ΩkMg(m1, . . . ,mn)

prim.

5.3 The case of odd k

In this section we construct k-differentials of both parities for k odd and all sin-
gularity orders even, except the strata Ω3M2(6), Ω

3M2(4, 2) and Ω3M2(2, 2, 2)
which will be treated in Section 5.4. The construction goes as follows. We first
find some explicit examples in the minimal strata. Then we extend to all strata
using certain multi-scale k-differentials built on these examples. In order to
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compute the parity of the k-differentials obtained by smoothing the multi-scale
k-differentials, we first prove the following result.

Lemma 5.8. For i = 0, 1 let (Xi, ξi) be two k-differentials of parity type such
that ξi = ηdi

i with ηi a primitive (k/di)-differential. Denote by (X, ξ) a smooth-
ing of the multi-scale k-differential (X ′, ξ′, σ′) obtained by gluing a singularity
of ξ0 to a singularity of ξ1. Then (X, ξ) is of parity type and

Φ(ξ) = d0Φ(η0) + d1Φ(η1). (5.4)

Proof. Let X̂ ′ be the canonical cover of the multi-scale k-differential ξ′ as de-
fined in Definition 2.2 and let (X̂, ω̂) be the canonical cover of the smoothing

(X, ξ) of (X̂ ′, ξ′). Note that X̂ degenerates to X̂ ′ by shrinking the vanishing

cycles that become the nodes of X̂ ′. The k-differential ξ is of parity type since
the orders of singularities in the smooth locus of the multi-scale k-differential
are preserved in the smoothing process.
Next we construct a symplectic basis of H1(X̂,Z/2). Let X̂i be the canonical

cover of (Xi, ηi) for i = 0, 1. Then X̂ ′ contains d0 copies of X̂0 and d1 copies

of X̂1. We can take a symplectic basis of each copy of H1(X̂i,Z/2) for i = 0, 1

so that they span a symplectic subspace H ′
1 of H1(X̂,Z/2). To extend them

to a full symplectic basis of H1(X̂,Z/2), it suffices to take a basis of vanishing

cycles of X̂ together with their dual cycles. More precisely, let Γ be the dual
graph of X̂ ′. Then by [ACG11, (9.24)] we know that H1(X̂,Z/2) ∼= H ′

1 ⊕
H1(Γ,Z/2) ⊕ H1(Γ,Z/2), where H

1(Γ,Z/2) can be identified with the group
generated by the vanishing cycles which is dual to the group of loops in Γ under
the intersection paring. Moreover, it is easy to see that the intersection numbers
are zero for any two (not necessarily distinct) vanishing cycles, for any two (not
necessarily distinct) loops in Γ, and for any vanishing cycles or any loops with
any elements in H ′

1. Therefore, we can take a basis αi of H
1(Γ,Z/2) and their

dual cycles βi as a basis of H1(Γ,Z/2) to complete the desired symplectic basis

of H1(X̂,Z/2).

Now we can compute the parity of (X̂, ω̂) by using the above symplectic basis

of H1(X̂,Z/2) and the Arf-invariant in the definition of parity. From the part
of H ′

1 the contribution to the parity is already d0Φ(η0) + d1Φ(η1) as claimed
in Equation (5.4). Since the operation of plumbing a multi-scale k-differential
does not change the indices of any closed paths away from a neighborhood of
the nodes, it suffices to show that the cycles αi and βi constructed above do
not contribute to the parity. Denote by m the order of the singularity q of ξ0 at
the node joining X0 and X1. Note that the indices of the αi cycles are all equal
to m̂+ 1, where m̂ is the singularity order of each preimage of q in X̂0. Since
by assumption ξ0 and ξ1 are of parity type, it implies that m̂ is even, and hence
the index of each αi is odd. It follows that (Indω̂(αi) + 1)(Indω̂(βi) + 1) ≡ 0
(mod 2), which does not contribute to the parity.

We now construct primitive k-differentials with distinct parities in the minimal
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strata ΩkMg(k(2g − 2))prim for k odd, except the stratum Ω3M2(6)
prim. The

key tool for the construction is the following result.

Lemma 5.9. For k ≥ 3 odd and n ≥ 1, there exist k-differentials in the primitive
stratum ΩkM1(2kn,−2kn)prim with zero k-residue at the pole. Moreover for
k ≥ 5 odd, there exist such differentials with both parities.

Proof. We first exhibit a primitive k-differential (X1, ξ1) in ΩkM1(2k,−2k)prim

with zero k-residue at the pole in Figure 9. Take a symplectic basis (α, β) of

1
2

2
1(k−2ai)π

k

β α

Figure 9: A primitive k-differential with zero k-residue at the pole in
ΩkM1(2k,−2k)prim for ai ∈

{
1, . . . , ⌊k

2⌋
}

relatively prime to k. We rotate
the edges 1 and 2 on the left clockwise by angle 2aiπ/k and then identify them
respectively with the edges 1 and 2 on the right via translation.

H1(X1,Z/2) as in the figure. By elementary geometry the total angle variation
of the tangent vectors to α is equal to 2π− 2ai

k π, hence the index of α is k− ai
by using the definition in Section 3.4. Similarly the index of β is also equal
to k − ai. Moreover, since the edge identifications are made by rotation of
angle 2aiπ/k, the corresponding k-differential is primitive if and only if ai is
relatively prime to k.
Let (α̂, β̂) be the preimages of (α, β) in the canonical cover (X̂1, ω̂1). Since
the index k − ai of α is relatively prime to k, the preimage α̂ is connected by
gluing k copies of α consecutively. The total angle variation of the tangent
vectors to α̂ is thus k times that of α, hence the index of α̂ (with respect to
the abelian differential ω̂1) is k− ai which is equal to the index of α. Similarly

the index of β̂ is also k − ai, equal to the index of β. If k is odd, (α̂, β̂) form

a symplectic basis of H1(X̂1,Z/2) as they intersect at k points, and hence in
this case the parity of the k-differential ξ1 given in Figure 9 is equal to the
parity of ai. This concludes the proof for the case n = 1, since for k = 3 we
can choose ai = 1 and for odd k ≥ 5 we can choose ai to be 1 or 2.
To prove for general n, we can modify the above construction as follows. In
Figure 9, take a vertical half-infinite ray starting from the middle bullet point
and going up, and cut the plane open along this ray. Take n−1 ordinary planes
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and cut each of them open in the same way. Then we can glue these planes
together consecutively along the edges of the half-infinite rays. The resulting
k-differential belongs to ΩkM1(2kn,−2kn). Moreover, the cycles α, β, and
their indices are unchanged in this process. Hence the claim follows from the
same analysis as in the previous paragraph.

Remark 5.10. Note that in the above proof if α and β have indices k − ai
with ai and k relatively prime, then the rotation number is gcd(2kn, k − ai).
Hence in this case the component of ΩkM1(2kn,−2kn) with rotation number
gcd(2kn, k−ai) has parity equal to the parity of ai. In particular, this confirms
a special case of Theorem A.17 in the Appendix, where we will study the parities
of general strata of k-differentials in genus zero and one.

We now apply Lemma 5.8 to construct k-differentials in ΩkMg(k(2g − 2))prim

with distinct parities for the following cases:

(i) k ≥ 3 odd and g ≥ 4,

(ii) k ≥ 5 odd and g ≥ 2,

(iii) Ω3M3(12)
prim.

We first explain the idea of the construction. As in the notation of Lemma 5.8,
we take a k-differential (X0, ξ0) in the stratum ΩkMg−1(k(2g − 4)) and a k-
differential (X1, ξ1) in the stratum ΩkM1(k(2g − 2),−k(2g − 2))prim. Then
we form a multi-scale k-differential by gluing the zero of ξ0 to the pole of ξ1.
Choosing ξ0 and ξ1 carefully will lead to k-differentials with distinct parities
after smoothing the multi-scale k-differentials.
In case (i), we choose ξ0 to be the k-th power of an abelian differential in the
stratum ΩMg−1(2g − 4). For g ≥ 4, there exist such differentials ξ00 and ξ10
with distinct parities (see [KZ03]). The construction then follows from Equa-
tion (5.4) by gluing to both ξ00 and ξ10 the same primitive k-differential ξ1 in
ΩkM1(k(2g−2),−k(2g−2))prim with zero k-residue at the pole, which exists by
Lemma 5.9. Since ξ1 is primitive, after smoothing the multi-scale k-differentials
we thus obtain two primitive k-differentials of distinct parities.
In case (ii), we choose any ω0 ∈ ΩMg−1(2g−4) and take as before ξ0 = ωk

0 . By
Equation (5.4), we can obtain two distinct parities for ξ by taking two ξ1 with
distinct parities. This is possible for every k ≥ 5 odd according to Lemma 5.9.
In case (iii), we start from a primitive cubic differential in Ω3M2(6)

prim and
form a multi-scale 3-differential by gluing to it the third power of an abelian
differential (X1, ω1) in ΩM1(4,−4). According to Lemma 5.8, we can obtain
two distinct parities out of the smoothing by altering the parity of (X1, ω1),
which indeed can have two distinct parities according to [Boi15].
Using the minimal holomorphic strata, we now construct both parities
in the general strata of k-differentials of parity type for odd k. Let
ΩkMg(m1, . . . ,mn) be a stratum of genus g ≥ 2. Take a k-differential (X0, ξ0)
in the stratum of genus zero differentials ΩkM0(m1, . . . ,mn,−2kg). We can
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construct a multi-scale k-differential (X, ξ) by gluing ξ0 to a primitive k-
differential (X1, ξ1) in ΩkMg(k(2g − 2))prim. According to Lemma 5.8 and
the case of the minimal strata above, the smoothing of such multi-scale k-
differentials can give primitive k-differentials with both parities in the stratum
ΩkMg(m1, . . . ,mn)

prim if (g, k) 6= (2, 3), by choosing two ξ1 with distinct par-
ities.

It remains to treat the strata in genus two for k = 3. Note that a stratum of
cubic differentials is of parity type if and only if every singularity has even order.
In what follows we deal with the strata of meromorphic cubic differentials of
parity type in genus two, and postpone the discussion of the remaining three
holomorphic strata to Section 5.4.

We start with the strata Ω3M2(2n + 6,−2n)prim. Take a multi-scale 3-
differential by gluing the zero of a 3-differential (X0, ξ0) in Ω3M1(2n,−2n)prim

with the pole of a 3-differential (X1, ξ1) in Ω3M1(2n+ 6,−2n− 6)prim. Such
multi-scale 3-differentials are always smoothable by the primitivity assumption
on ξ0 and ξ1. By Corollary A.18 we can choose two (X1, ξ1) with distinct par-
ities. Then after smoothing the multi-scale 3-differentials we can obtain both
parities in the stratum Ω3M2(2n+ 6,−2n)prim by Lemma 5.8.

Next we consider the meromorphic strata Ω3M2(2n + 6,−2ℓ1, . . . ,−2ℓs)
prim

with a unique (analytic) zero. Take a multi-scale 3-differential by gluing the
pole of a 3-differential (X1, ξ1) in Ω3M2(2n + 6,−2n)prim with the zero of a
3-differential (X0, ξ0) in the genus zero stratum Ω3M0(2n−6,−2ℓ1, . . . ,−2ℓs).
Since the top level differential ξ0 is either primitive or contains a met-
ric pole, such a multi-scale 3-differential is smoothable. By the preced-
ing paragraph we can choose two (X1, ξ1) with distinct parities. Then af-
ter smoothing the multi-scale 3-differentials we thus obtain both parities in
Ω3M2(2n+ 6,−2ℓ1, . . . ,−2ℓs)

prim by Lemma 5.8.

Finally for the meromorphic strata Ω3M2(2n1, . . . , 2nr,−2ℓ1, . . . ,−2ℓs)
prim,

let n =
∑r

i=1 ni. Take a multi-scale 3-differential by gluing the zero of a
3-differential (X1, ξ1) in Ω3M2(2n,−2ℓ1, . . . ,−2ℓs)

prim with the pole of a 3-
differential (X0, ξ0) in the genus zero stratum Ω3M0(2n1, . . . , 2nr,−2n − 6).
By the preceding paragraph we can choose two (X1, ξ1) with distinct parities.
Then after smoothing the multi-scale 3-differentials we thus obtain both parities
in Ω3M2(2n1, . . . , 2nr,−2ℓ1, . . . ,−2ℓs)

prim by Lemma 5.8.

5.4 The strata Ω3M2(6), Ω
3M2(4, 2) and Ω3M2(2, 2, 2).

In this section we study the remaining holomorphic strata of parity type in
g = 2 and k = 3, which are Ω3M2(6), Ω

3M2(4, 2) and Ω3M2(2, 2, 2). Note
that Ω3M2(6) contains a hyperelliptic component arising from the third power
of abelian differentials in ΩM2(2), and its complement Ω3M2(6)

prim param-
eterizes primitive cubic differentials. On the other hand, Ω3M2(4, 2) and
Ω3M2(2, 2, 2) parameterize primitive cubic differentials only, as their zero or-
ders are not divisible by three. Moreover, each of them contains a hyperelliptic
component by Theorem 4.2.
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We can describe connected components of these strata as well as their parities
explicitly as follows.

Theorem 5.11. The primitive stratum Ω3M2(6)
prim is connected and has even

parity. The strata Ω3M2(4, 2) and Ω3M2(2, 2, 2) both have two connected com-
ponents, one being hyperelliptic and the other non-hyperelliptic. Moreover,
Ω3M2(4, 2)

hyp has odd parity and Ω3M2(4, 2)
nonhyp has even parity, while

Ω3M2(2, 2, 2)
hyp has even parity and Ω3M2(2, 2, 2)

nonhyp has odd parity.

Proof. We first show that the stratum Ω3M2(6)
prim is irreducible, and hence

has a unique parity. Suppose (X, ξ) is in this stratum with divisor div (ξ) =
6z ∼ 3K where K is the canonical class of X . Since X is hyperelliptic, the
point z has a hyperelliptic conjugate which we denote by z′. Note that z′ 6= z,
for otherwise 2z ∼ K would contradict the primitivity assumption. Since
z+z′ ∼ K, the previous condition on z is equivalent to 3z ∼ 3z′, i.e., K+2z ∼
3z + z′ ∼ 4z′. Consider the linear system |K + 2z| which maps X to a plane
quartic curve C. Since h0(X,K + z) = h0(X,K), the image of z (still denoted
by z for simplicity) is a cusp of C, and the cuspidal tangent line L at z cuts
out 3z + z′ in C due to K + 2z ∼ 3z + z′. Moreover, since 4z′ ∼ K + 2z, the
tangent line to C at z′ cuts out 4z′ (i.e. z′ is a hyperflex). An example of such
curves is illustrated in Figure 10 (where the coefficients aij will be introduced
later in the proof).

Figure 10: A plane cuspidal quartic given by the choice of coefficients
(a30, a21, a12, a03, a04) = (1, 0, 0, 1,−2), where the cuspidal tangent line (the
x-axis) intersects the rest of the curve at a hyperflex.

Conversely, suppose C is a plane cuspidal quartic satisfying that the cuspidal
tangent line L at the cusp z cuts out 3z + z′ with z′ 6= z and that the tangent
line L′ to C at z′ cuts out the hyperflex 4z. As long as C has no other
singularities besides the cusp z, we can recover (X, ξ) ∈ Ω3M2(6)

prim (up to
scale) by taking X to be the normalization of C and z to be the unique zero
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of ξ. It is thus sufficient to show that the locus of such special quartics C in
the total space of plane quartics is irreducible.
Let x and y be the affine coordinates of P2. Without loss of generality, we can
choose z = (0, 0), z′ = (1, 0), L : y = 0 and L′ : x−1 = 0, since different choices
of such points and lines satisfying the same configuration are equivalent under
the automorphisms of P2. Let

f(x, y) =
∑

i+j≤4

aijx
iyj

be the defining equation for a plane quartic curve C. In other words, the
coefficients aij give (homogeneous) coordinates for the parameter space P14 of
plane quartics. The condition that C has a cusp (or a further degeneration)
at z with L as the cuspidal tangent line is equivalent to that f belongs to the
ideal generated by y2 and (x, y)3, i.e.,

a00 = a10 = a01 = a20 = a11 = 0.

The condition that L′ ∩C = 4z′ is equivalent to that f(1, y) is divisible by y4,
i.e.,

a30 + a40 = a21 + a31 = a02 + a12 + a22 = a03 + a13 = 0.

Note that if a02 = 0, then f ∈ (x, y)3 and consequently C would have a triple
point at z (i.e., a singularity worse than an ordinary cusp). Hence we can
assume that up to scale a02 = 1. In this case f(x, y) reduces to

y2+a30(x
3−x4)+a21(x

2y−x3y)+a12xy
2−(a12+1)x2y2+a03(y

3−xy3)+a04y
4

which is parameterized by the five independent coefficients a30, a21, a12, a03, a04.
One checks that a generic choice of these parameters gives rise to a de-
sired cuspidal curve (with no other singularities), whose normalization to-
gether with the cusp determines (X, z) ∈ PΩ3M2(6)

prim. We thus con-
clude that PΩ3M2(6)

prim is the image of a dense open subset of C5 =
{(a30, a21, a12, a03, a04)}, hence is irreducible. Alternatively, one checks that
the subgroup of the automorphism group of P2 that fixes z, z′, L, L′ is 3-
dimensional, and since dimPΩ3M2(6)

prim = 2, it implies that the locus of
the corresponding plane quartics must be 5-dimensional, thus filling a dense
subset of the parameter space C5.
Similarly we can show that the non-hyperelliptic locus Ω3M2(4, 2)

nonhyp is
irreducible, thus giving rise to a connected component of the stratum. Suppose
(X, z1, z2) is contained in this locus with 4z1+2z2 ∼ 3K such that z1 and z2 are
not Weierstrass points by the non-hyperelliptic assumption. The condition is
equivalent to that K+2z′1 ∼ 2z1+2z2. In this case the linear system |K+2z′1|
maps X to a plane quartic C with a cusp at z′1 such that the cuspidal tangent
line L1 cuts out 3z′1 + z1 with C and the tangent line L2 to C at z1 cuts out
2z1 + 2z2 (i.e. L2 is a bitangent line). Using the above affine coordinates, we
can choose z′1 = (0, 0), z1 = (1, 0), z2 = (1, 1), L1 : y = 0 and L2 : x − 1 = 0,
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and different choices of such points and lines satisfying the same configuration
are equivalent under the automorphisms of P2. Then the coefficients of the
defining equation f(x, y) =

∑
i+j≤4 aijx

iyj of C satisfy that

a00 = a10 = a01 = a20 = a11 = 0,

a30 + a40 = a21 + a31 = 0,

a02 + a12 + a22 − a04 = a03 + a13 + 2a04 = 0.

As before we can assume that up to scale a02 = 1. In this case f(x, y) can
be parameterized by the five independent coefficients a30, a21, a12, a22, a03. We
thus conclude that the non-hyperelliptic locus in PΩ3M2(4, 2) is the image of a
dense open subset of C5 = {(a30, a21, a12, a22, a03)}, hence is irreducible. Alter-
natively, one checks that the subgroup of the automorphism group of P2 that
fixes z1, z

′
1, z2, L1, L2 is 2-dimensional, and since dimPΩ3M2(4, 2) = 3, it im-

plies that the locus of the corresponding plane quartics must be 5-dimensional,
thus filling a dense subset of the parameter space C5.
Next we show that the non-hyperelliptic locus Ω3M2(2, 2, 2)

nonhyp is irre-
ducible. Suppose (X, z1, z2, z3) is contained in this locus with 2z1+2z2+2z3 ∼
3K such that none of the zi is a Weierstrass point by the non-hyperelliptic as-
sumption. The condition is equivalent to thatK+z1+z2 ∼ z′1+z

′
2+2z′3. In this

case the linear system |K+z1+z2| maps X to a plane nodal quartic C where z1
and z2 coincide at the node. Moreover, the two tangent lines L1 and L2 to the
two branches of the node respectively cut out 2z1 + z2 + z′1 and 2z2 + z1 + z′2
in X , and the line L3 spanned by z′1 and z

′
2 is tangent to C at z′3. We can choose

z1 = z2 = (0, 0), z′1 = (1, 0), z′2 = (0, 1), z′3 = (12 ,
1
2 ), L1 : y = 0, L2 : x = 0

and L3 : x+ y − 1 = 0, and different choices of such points and lines satisfying
the same configuration are equivalent under the automorphisms of P2. The
coefficients of the defining equation f(x, y) =

∑
i+j≤4 aijx

iyj of C satisfy that

a00 = a10 = a01 = a20 = a02 = a30 + a40 = a03 + a04 = 0,

a30 + a21 + a31 − (a03 + a12 + a13) = 0,

4a11 + a12 + a21 + a22 + 2(a30 + a21 + a31) = 0.

Up to scale there are five independent parameters. Moreover, the subgroup of
the automorphism group of P2 that fixes the above choice of points and lines
is 1-dimensional. Therefore, we conclude that PΩ3M2(2, 2, 2)

nonhyp gives rise
to a 4-dimensional connected component of the (projectivized) stratum.
Now we show that the irreducible stratum Ω3M2(6)

prim has even parity.
The idea is to construct cubic differentials parameterized in this stratum
by smoothing a multi-scale cubic differential formed by gluing the third
power of an abelian differential in the stratum ΩM1(0) with a primitive cu-
bic differential in Ω3M1(6,−6)prim which has a zero 3-residue at the pole.
Note that Ω3M1(6,−6)prim has two connected components Ω3M1(6,−6)1 and
Ω3M1(6,−6)2, which parameterize respectively the difference z− p of the zero
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and the pole of the differentials (E, ξ) being respectively a primitive 6-torsion
and a 3-torsion in the underlying elliptic curve E. By Lemma 5.9 and Re-
mark 5.10 (for k = 3, n = 1 and ai = 1), the component Ω3M1(6,−6)2 of rota-
tion number two contains cubic differentials with zero 3-residue at the pole and
with odd parity. We thus conclude that the irreducible stratum Ω3M2(6)

prim

arises from smoothing the aforementioned multi-scale cubic differential formed
by using the component Ω3M1(6,−6)2, and after smoothing the parity being
even follows from Lemma 5.8 and the fact that ΩM1(0) has odd parity.

Next we show that the stratum Ω3M2(4, 2) has both parities. A cubic differ-
ential in the stratum Ω3M2(4, 2) can be obtained by smoothing the multi-scale
cubic differential obtained by gluing a cubic differential (X1, ξ1) in the stratum
Ω3M1(2,−2) with a cubic differential (X2, ξ2) in the stratum Ω3M1(4,−4)
at their poles. Since ξ1 and ξ2 are primitive, the global 3-residue condition
holds automatically. Moreover, Ω3M1(2,−2) is irreducible and has even par-
ity by Theorem A.17. It is easy to see that any cubic differential with torsion
number two in Ω3M1(4,−4)2 admits a double cover of P1 ramified at the zero
and the pole, and hence the smoothing of the corresponding multi-scale cubic
differential leads to the hyperelliptic component. Moreover by Theorem A.17
the parities of Ω3M1(4,−4)2 and Ω3M1(4,−4)1 are odd and even respectively.
We thus conclude that Ω3M2(4, 2)

hyp and Ω3M2(4, 2)
nonhyp have odd and even

parity respectively by using Lemma 5.8.

To obtain both parities in the stratum Ω3M2(2, 2, 2), it suffices to break the
zero of order four of two cubic differentials in Ω3M2(4, 2) with distinct parities
into two double zeros. According to Proposition 3.1 this operation is realizable
and preserves (non-)hyperellipticity in this case.

Finally we show that the (non-)hyperelliptic component of Ω3M2(2, 2, 2)
has parity different from the corresponding (non-)hyperelliptic component of
Ω3M2(4, 2). By Lemma 5.8 it suffices to show that cubic differentials (P1, ξ0)
in the connect stratum Ω3M0(2, 2,−10) used in the preceding operation of
breaking up the zero have odd parity, which is verified in the Appendix (see
Proposition A.7 and Remark A.11).

Remark 5.12. Although in the above proof we do not use the component
Ω3M1(6,−6)1 in which z − p is a primitive 6-torsion, to supplement our un-
derstanding, one can show that every cubic differential in Ω3M1(6,−6)1 has
a nonzero 3-residue at the pole. If this is not the case, then the irreducible
stratum Ω3M2(6)

prim would also arise from smoothing a multi-scale cubic dif-
ferential formed by gluing the third power of an abelian differential in ΩM1(0)
with a cubic differential in Ω3M1(6,−6)1. Since the parity of Ω3M1(6,−6)1 is
even by Theorem A.17, it would imply that the parity of Ω3M2(6)

prim is odd,
which contradicts Theorem 5.11.
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6 Adjacency of the strata of quadratic differentials

The notion of adjacency was used by [Boi15] for abelian differentials and by
[Lan08] for quadratic differentials of finite area. In this section we extend their
results to the case of quadratic differentials of infinite area (i.e., allowing metric
poles).
First we extend the notion of adjacency to k-differentials for all k.

Definition 6.1. Let C ⊂ ΩkMg(µ) and C0 ⊂ ΩkMg(ν) be two connected
components of strata of k-differentials. We say that C is adjacent to C0 and
denote it by C ⊃ C0, if there is a k-differential in C which can be obtained by
breaking up a metric zero of a k-differential in C0.

Meromorphic abelian differentials have flat geometric representations in terms
of (broken) half-planes and half-cylinders as basic domains, as shown in Sec-
tion 3.3 of [Boi15], which provides a powerful tool in the study of meromorphic
differentials. Below we show that the same type of basic domain decomposition
holds for quadratic differentials with metric poles.

Lemma 6.2. Let q be a quadratic differential with at least one pole of order
≥ 2. Then q can be obtained by gluing (broken) half-planes and half-cylinders
with polygonal boundaries.

Proof. Up to multiplying q by a complex number of norm one (i.e., up to
rotation), we can assume that q has no vertical saddle connections. Then by
the description of Section 11.4 of [Str84] every vertical trajectory is either an
infinite line or a half ray emanating from a conical singularity. The vertical
flow decomposes the surface into half-planes or infinite strips, each of which
has a single conical point on every boundary vertical line. Take a horizontal
ray emanating from the boundary conical point of each half-plane to cut these
half-planes into 1

4 -planes. Now the desired (broken) half-planes are obtained
by gluing the vertical rays in the boundary of the 1

4 -planes. Finally, cut each
vertical infinite strips along the saddle connection joining the two conical points
on the boundary of the strip, and glue the resulting half-infinite strips to form
the desired half-cylinders according to adjacency of the vertical boundary rays.

According to [Boi15, Proposition 6.1] each connected component of a stratum
of meromorphic abelian differentials contains differentials that are obtained
by the bubbling operation. We generalize the result to the case of quadratic
differentials.

Proposition 6.3. Let µ = (n,−l1, . . . ,−ls) be a partition of 4g−4 with g ≥ 1,
n ≥ 3, li ≥ 1 and at least one lj ≥ 2 (i.e., with a unique analytic zero and
at least one metric pole). Then every connected component C of the stratum
Ω2Mg(µ) contains quadratic differentials obtained by bubbling a handle from a
quadratic differential of genus g − 1.
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Proof. Let (X, q) be a quadratic differential in C. Up to rotation, we can assume
that q does not admit vertical saddle connections, hence it has a basic domain
decomposition by (broken) half-planes and half-cylinders as in Lemma 6.2.
Local coordinates of C at q are given by 2g+ s− 1 saddle connections γi at the
boundary of the basic domains.

We first show that the endpoints of each γi cannot be two simple poles. Other-
wise, since there is no vertical saddle connection, analyzing vertical trajectories
in the basic domain decomposition implies that this case can occur if and only
if the stratum is Ω2M0(−1,−1,−2), which contradicts the assumption that
g ≥ 1. Therefore, each γi either joins the unique (analytic) zero z to itself or
joins z to a simple pole. Since the span of all γi contains the absolute homol-
ogy H1(X,Z), let γ1, . . . , γm be those boundary saddle connections joining z
to itself which generate H1(X,Z). The intersection number between any two
such closed paths is either 0 or ±1. Since γ1, . . . , γm generate H1(X,Z), there
exist γi and γj such that their intersection number is ±1. Shrink γi and γj until
they are very short compared to the other γk which stay unchanged. Then a
small neighborhood enclosing the saddle connections γi and γj is isometric to
the complement of a neighborhood of the pole for a flat surface of genus one in
Ω2M1(n,−n). To see it, note that in the shrinking process the zero remains to
be of order n. Since the intersection number of γi and γj is ±1, the boundary
of this neighborhood is connected. It implies that the resulting differential has
a unique pole. Since it has two saddle connections, the genus must be one.

Summarizing the above discussion, we conclude that the limit of shrinking γi
and γj to zero gives rise to a multi-scale 2-differential consisting of a quadratic
differential of genus g − 1 attached to the quadratic differential of genus one
at the pole of order −n. We can further replace the (smooth) differential
of genus one by a rational nodal differential (X2, η2) as in Figure 2. Note
that the resulting multi-scale 2-differential remains smoothable even if the 2-
residue at the separating node is nonzero, since the top level component of
genus g − 1 contains a pole and hence the global 2-residue condition is trivial.
Thus the smoothing of this multi-scale 2-differential gives the desired bubbling
operation.

In [Boi15, Proposition 7.1] an adjacency property for the strata of meromorphic
abelian differentials is described by merging zeros. We generalize the result to
the case of quadratic differentials.

Proposition 6.4. Let C be a connected component of the stratum of quadratic
differentials Ω2Mg(n1, . . . , nr,−1a,−l1, . . . ,−ls) with ni ≥ 0, lj ≥ 2 and s > 0
(i.e., with at least one metric pole). Then for any 0 ≤ b ≤ a, there exists a
connected component C0 of Ω2Mg(

∑r
i=1 ni − b,−1a−b,−l1, . . . ,−ls) such that

C0 ⊂ C.

The notation −1a stands for the signature of a simple poles. The above result
says that we can merge all analytic zeros together with any specified number
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of simple poles. We remark that it is possible that a primitive component C is
adjacent to a non-primitive component C0.

Proof. The claim obviously holds for g = 0, since any stratum of differentials of
genus zero is connected and hence one can merge any two singularities. From
now on we assume that g ≥ 1. Let (X, q) be a quadratic differential in the
component C. Up to rotation, we can assume that q does not have vertical
saddle connections, hence q admits a basic domain decomposition given by
Lemma 6.2. Since X is connected, there exist two (broken) half-plane or half-
cylinder basic domains D1 and D2 such that they contain the same saddle
connection γ joining two distinct metric zeros on their boundary. Note that D1

and D2 are not necessarily distinct, and if they are identical, then γ appears
twice on the boundary of the same basic domain.
As we have seen in the proof of Proposition 6.3, the endpoints of γ cannot be
two simple poles for g ≥ 1. Next suppose the endpoints of γ consist of a simple
pole p and an analytic zero z. Since the total angle at p is π, then γ appears
twice on the boundary of the same basic domain D. If there is no other analytic
zero besides z, we can choose to shrink γ (or choose not to), and continue this
process for the other simple poles. If there are some other analytic zeros,
then besides γ there must exist another saddle connection on the boundary of
two basic domains. Iterate this procedure until we find a saddle connection
joining two analytic zeros. Then we can shrink it to be arbitrarily short and
consequently merge the two endpoint zeros. During the shrinking process all
the other boundary segments are fixed, hence the resulting surface remains to
be smooth and connected. By induction we can thus merge together all analytic
zeros. Finally by the same argument as before, each of the remaining simple
poles pi joins the totally merged zero by a boundary saddle connection γi for
i = 1, . . . , a. We can choose to shrink b of the γi for any b ≤ a, thus proving
the result.

Besides merging (metric) zeros, one can also merge poles together as given in
the following companion result.

Proposition 6.5. Let C be a connected component of the stratum of quadratic
differentials Ω2Mg(n1, . . . , nr,−1a,−l1, . . . ,−ls) with ni ≥ 0, lj ≥ 2 and s > 0
(i.e., with at least one metric pole). Then for any 0 ≤ b ≤ a, there exists a
connected component C0 of the stratum Ω2Mg(n1, . . . , nr,−1a−b,−

∑s
i=1 li−b)

such that C0 ⊂ C.

In other words, the above result says that we can merge all metric poles together
with any specified number of simple poles.

Proof. Let (X, q) be a meromorphic quadratic differential in C. If q has at least
two metric poles, then there exist two metric poles p1 and p2 such that they
share a saddle connection γ on the boundary of their basic domains D1 and D2.
Take a ray ℓi emanating from the middle point of γ into Di such that ℓi does
not meet other singularities of q for i = 1, 2. Then we can stretch each side
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of γ to be arbitrarily long (i.e., push each side of Di far away from ℓi), which
merges the poles p1 and p2 in the limit.
Next suppose we have reduced q to have a unique metric pole p with some
simple poles zi for i = 1, . . . , a. A metric neighborhood of zi is a half-disk with
either a boundary ray or a saddle connection γi. If γi extends as a boundary
ray of a half-plane, then the stratum is Ω2M0(−1,−3) and there is nothing
to prove. Suppose γi is a saddle connection. Take a general ray ℓi emanating
from zi to p such that it does not meet the other singularities of q. Cut the
basic domain along ℓi and push zi to infinity from both sides of ℓi. Then zi
and p are merged in the limit. We can choose b of the a simple poles and merge
them one by one with p, thus proving the claim.

Using the above results, we can show that the number of connected components
of a stratum of quadratic differentials does not increase when metric zeros
are merged together. This generalizes [Lan08, Corollary 2.7] to the case of
quadratic differentials with metric poles. Below we adapt the same notation
from Proposition 6.4.

Proposition 6.6. Let C1 and C2 be two connected components of the
stratum of quadratic differentials Ω2Mg(n1, . . . , nr,−1a,−l1, . . . ,−ls), and
let C0 be a connected component of the stratum Ω2Mg(n,−1a−b,−l1, . . . ,−ls)
with n = n1 + · · · + nr − b. If C0 is contained in both C1 and C2,
then C1 = C2. In particular, the number of connected components of
Ω2Mg(n1, . . . , nr,−1a,−l1, . . . ,−ls) is bounded above by the number of con-
nected components of Ω2Mg(n,−1a−b,−l1, . . . ,−ls).

Proof. By assumption, there exist quadratic differentials in Ci for each i = 1, 2
obtained by breaking up the singularity of order n of quadratic differen-
tials in C0 into metric zeros of order n1, . . . , nr,−1b. Since C0 is connected,
it suffices to check that the parameter space of quadratic differentials in
Ω2M0(−n − 2k, n1, . . . , nr,−1b) with a prong marking at the pole of order
−n − 2k is connected, and this holds by Lemma 2.4. Moreover, by Proposi-
tion 6.4 each connected component of Ω2Mg(n1, . . . , nr,−1a,−l1, . . . ,−ls) is
adjacent to at least one connected component of Ω2Mg(n,−1a−b,−l1, . . . ,−ls).
Hence the number of connected components of the former stratum is bounded
by the latter.

By a completely analogous argument we can obtain the following result for
merging poles. We adapt the same notation from Proposition 6.5.

Proposition 6.7. Let C1 and C2 be two connected components of the stratum
of quadratic differentials Ω2Mg(n1, . . . , nr,−1a,−l1, . . . ,−ls), and let C0
be a connected component of the stratum Ω2Mg(n1, . . . , nr,−1a−b,−l)
with l =

∑s
j=1 lj + b. If C0 is contained in both C1 and C2, then

C1 = C2. In particular, the number of connected components of
Ω2Mg(n1, . . . , nr,−1a,−l1, . . . ,−ls) is bounded above by the number of
connected components of Ω2Mg(n1, . . . , nr,−1a−b,−l).
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Remark 6.8. We expect that similar adjacency results by merging zeros or
poles hold for the strata of k-differentials for general k. However, an ana-
logue of vertical trajectories and the resulting basic domain decomposition for
(meromorphic) quadratic differentials seems not available for k-differentials in
general, although some weak form of decomposition by using (broken) 1

k -planes,
half-infinite cylinders and some finite core parts of the surface might exist. We
leave it as an interesting question to investigate in future work.

7 Quadratic differentials with metric poles

In this section we focus on quadratic differentials with at least one metric pole,
i.e. a pole of order at least 2. They correspond to half-translation surfaces
of infinite area. Let µ = (n1, . . . , nr,−l1, . . . ,−ls) be a partition of 4g − 4
with negative entries −li, where at least one li ≥ 2. For notation simplicity, we
denote by Q(µ) the corresponding stratum of quadratic differentials. Note that
our definition of Q(µ) is slightly different from the setting of [Lan08], as we
also include quadratic differentials arising from squares of abelian differentials.
We begin by introducing some notions to distinguish components of Q(µ).
Let C be a connected component of Q(µ). In Section 4 we have introduced and
classified the hyperelliptic components. If C parameterizes squares of abelian
differentials, we say that C is of abelian type. If furthermore C parameterizes
fourth powers of (non-hyperelliptic) theta characteristics (i.e. half-canonical
divisors), then according to their parity we say that C is of abelian-even or
abelian-odd type. We will write hyp, ab, ab-even, and ab-odd for brevity.
A (possibly disconnected) component which is not of hyp (resp. ab) type
is denoted by nonhyp (resp. nonab). These types characterize all possible
connected components of the strata Q(µ) for g ≥ 2.
With these notations the goal of this section is to prove the following equivalent
result of Theorem 1.3 (see also the summary in Table 1).

Theorem 7.1. Suppose Q(µ) is a stratum of quadratic differentials with genus
≥ 2 and at least one metric pole. Then the following statements hold:

(1a) If µ is (4n,−4l), (4n, 4n,−4l), (4n,−4l,−4l), (4n, 4n,−4l,−4l),
(4n,−2,−2), or (4n, 4n,−2,−2) (except (8,−4), (4, 4,−4), (8,−2,−2)
and (4, 4,−2,−2)), then Q(µ) has four connected components, which are
of hyp, ab-even, ab-odd, and nonab-nonhyp type.

(1b) If µ is (8,−4), (4, 4,−4), (8,−2,−2), or (4, 4,−2,−2), then Q(µ) has
three connected components, where the hyperelliptic component coincides
with the ab-odd component in the first two cases and with the ab-even
component in the last two cases.

(2) If µ is (2n,−2l), (2n, 2n,−2l), (2n,−2l,−2l) or (2n, 2n,−2l,−2l), in all
of which l > 1 and n, l are not both even, or if µ is (2n, 2n,−2,−2) with
n odd, then Q(µ) has three connected components, which are of hyp, ab,
and nonab-nonhyp type.
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(3) If µ is (4n1, . . . , 4nr,−4l1, . . . ,−4ls) with r ≥ 3 or s ≥ 3, or
(4n1, 4n2,−4l1,−4l2) with n1 6= n2 or l1 6= ℓ2, or (4n,−4l1,−4l2) with
l1 6= l2, or (4n1, 4n2,−4l) with n1 6= n2, or (4n1, . . . , 4nr,−2,−2) with
r ≥ 3, or (4n1, 4n2,−2,−2) with n1 6= n2, then Q(µ) has three connected
components, which are of ab-even, ab-odd, and nonab-nonhyp type.

(4) If µ is (2n,−l,−l), (n, n,−2l) or (n, n,−l,−l), in all of which n and l are
both odd, or if µ is (2n,−2) or (2n, 2n,−2), then Q(µ) has two connected
components, which are of hyp and nonhyp type.

(5) If µ is either (2n1, . . . , 2nr,−2l1, . . . ,−2ls) with s ≥ 3 or r ≥ 3 (except
the partitions (2n1, . . . , 2nr,−2)), or (2n1, 2n2,−2l1,−2l2) with n1 6= n2

or l1 6= l2, or (2n,−2l1,−2l2) with l1 6= l2, or (2n1, 2n2,−2l) with n1 6=
n2 and l > 1, in all of which ni and lj are not all even, or if µ is
(2n1, . . . , 2nr,−2,−2) with ni not all even, then Q(µ) has two connected
components, which are of ab and nonab-nonhyp type.

(6) If µ is non of the above, i.e., µ contains at least one odd entry and is not
of type (4), or µ is of the form (2n1, . . . , 2nr,−2) and not of type (4),
then Q(µ) is connected (and is of nonab-nonhyp type).

To prove the theorem we will follow closely the strategy in [Boi15] and remark
on comparable results. Let us first review some notations and preparations.
Recall that a quadratic differential in Q(µ) corresponds to a half-translation
surface that has a basic domain decomposition as in [Boi15], where parallel
edges can be identified by reflection besides translation, including the half-
infinite boundary rays of each basic domain. Note that simple poles of a
quadratic differential correspond to conical singularities of angle π under the
induced flat metric, and in our notation they are both analytic poles and met-
ric zeros. In this section we will view these singularities as analytic poles with
one exception, which is in genus zero when the singularity of highest order is a
simple pole but viewed as a metric zero. In this sense we always have at least
one metric zero for every stratum Q(µ). If r = 1, i.e., when there is a unique
analytic zero, we say that Q(µ) is a minimal stratum. Note that Proposition 6.3
implies that any minimal stratum contains a half-translation surface obtained
from the operation of bubbling a handle.
We begin the proof of Theorem 7.1 by bounding the number of connected
components of the minimal strata.

Proposition 7.2 ([Boi15, Proposition 6.2]). Let Q(n,−l1, . . . ,−ls) be a min-
imal stratum of quadratic differentials in genus g ≥ 2 with at least one li ≥ 2.
Then the following statements hold:

(i) If n is odd, then Q(n,−l1, . . . ,−ls) is connected.

(ii) If n is even, then Q(n,−l1, . . . ,−ls) has at most four connected compo-
nents.
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Label µ # CC Type of Components
(4n,−4l), (4n, 4n,−4l,−4l), hyp

(1a) (4n,−4l,−4l), (4n, 4n,−4l), 4 ab-even
(4n,−2,−2), (4n, 4n,−2,−2), ab-odd
but not of type (1b) nonab-nonhyp
(8,−4), (4, 4,−4), hyp = ab-odd, ab-even

(1b) (8,−2,−2), (4, 4,−2,−2) 3 hyp = ab-even, ab-odd
nonab-nonhyp

(2n,−2l), (2n,−2l,−2l), (2n, 2n,−2l,−2l), hyp
(2) in all of which l > 1 and n, l are not both even, 3 ab

(2n, 2n,−2,−2) with n odd nonab-nonhyp
(4n1, . . . , 4nr,−4l1, . . . ,−4ls) with r ≥ 3 or s ≥ 3,
(4n1, 4n2,−4l1,−4l2) with n1 6= n2 or l1 6= ℓ2, ab-even

(3) (4n,−4l1,−4l2) with l1 6= l2, 3 ab-odd
(4n1, 4n2,−4l) with n1 6= n2, nonab-nonhyp
(4n1, . . . , 4nr,−2,−2) with r ≥ 3,
(4n1, 4n2,−2,−2) with n1 6= n2

(2n,−l,−l) with l odd,
(4) (n, n,−2l) with n odd, 2 hyp

(n, n,−l,−l) with n and l not both even, nonhyp
(2n,−2), (2n, 2n,−2)
(2n1, . . . , 2nr,−2l1, . . . ,−2ls) with s ≥ 3 or r ≥ 3
but not of type (2n1, . . . , 2nr,−2),
(2n1, 2n2,−2l1,−2l2) with n1 6= n2 or l1 6= l2, ab

(5) (2n,−2l1,−2l2) with l1 6= l2, 2 nonab-nonhyp
(2n1, 2n2,−2l) with n1 6= n2 and l > 1,
in all of which ni and lj are not all even,
(2n1, . . . , 2nr,−2,−2) with ni not all even
µ has at least one odd entry,

(6) (2n1, . . . , 2nr,−2), 1 nonab-nonhyp
both not of type (4)

Table 1: Connected components of the strata of quadratic differentials with at
least one metric pole.

(iii) If n is even and at least one li is odd, then Q(n,−l1, . . . ,−ls) has at most
two connected components.

Proof. Let C be a connected component of Q(n,−l1, . . . ,−ls). By Propo-
sition 6.3, if Q(n,−l1, . . . ,−ls) 6= Q(4g − 2,−2), then there exist integers
s1, . . . , sg such that

C = C0 ⊕ s1 ⊕ · · · ⊕ sg,

where C0 is the connected stratum Q(n− 4g,−l1, . . . ,−ls) of quadratic differ-
entials of genus zero, and 1 ≤ si ≤ n−4g+4i−1. In the case of Q(4g−2,−2),
there exist integers s1, . . . , sg−1 such that

C = C0 ⊕ s1 ⊕ · · · ⊕ sg−1,

where C0 is the connected stratum Q(2,−2) of quadratic differentials in genus
one, and 1 ≤ si ≤ 4i+ 1.
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By Corollary 3.10 we can assume that si ≤ si+1 for all i. By Proposition 3.8 (iv)
we can further assume that si ≤ si+1 ≤ si + 3. Next suppose two adjacent si
and si+1 are not of balanced type (see Definition 3.9). If si ≥ 3, then apply
Proposition 3.8 (ii), (iii), (iv) and (ii) (in this order) so that we can reduce
si⊕ si+1 to (si− 2)⊕ (si+1 − 2). Hence we can assume that si ≤ 2 for all i < g
and sg ≤ sg−1 + 3. In addition, Proposition 3.8 (iii) implies that 1⊕ 4 = 2⊕ 3
and 2 ⊕ 5 = 3 ⊕ 4, where the latter is further equal to 1 ⊕ 2 as we have just
seen. Moreover, Q(2,−2)⊕ 5 = Q(2,−2)⊕ 1 by Proposition 3.8 (i). Therefore,
we conclude that C is given by one of the following cases:

(1) C0 ⊕ 1⊕ · · · ⊕ 1⊕ 2⊕ · · · ⊕ 2;

(2) C0 ⊕ 1⊕ · · · ⊕ 1⊕ 2⊕ · · · ⊕ 2⊕ 3;

(3) C0 ⊕ 1⊕ · · · ⊕ 1⊕ 2⊕ · · · ⊕ 2⊕ 4;

(4) C0 ⊕ (n2 − 2g + 2)⊕ (n2 − 2g + 4)⊕ · · · ⊕ n
2 if g ≥ 2 and n is even,

where the numbers of 1 and 2 in the sequences are allowed to be zero and the
last case corresponds to the balanced type in Definition 3.9. We remark that
the zero order n in the above differs from the one used in Proposition 3.8, as
herein the zero order we bubble with parameter si varies with the index i in
each step. Below we split the discussion into various cases.

(1) Consider first when n is odd. Note that in this case the only balanced type
is (s1, s2) = (1, 3) when we bubble a metric zero of order −1 (i.e., k = 2
and n = −1 in Definition 3.9), hence it is a special case of (2). The strata
of genus zero with a simple pole (and at least one metric pole) we start
with can only be Q(−1,−1,−2) and Q(−1,−3), hence after the operation
⊕1 ⊕ 3 they lead to the two special strata Q(7,−1,−2) and Q(7,−3) in
genus two that will be treated separately. Since n is odd, we can assume,
using the gcd-trick of Lemma 3.14, that there is no ⊕2 in any of the cases
(1) to (3). Therefore, case (1) reduces to

C0 ⊕ 1⊕ · · · ⊕ 1.

For case (2), Proposition 3.8 (i) allows us to change ⊕3 by ⊕(n−3) as long
as C0 is not one of the two connected strata Q(−1,−1,−2) and Q(−1,−3)
(as applying ⊕s to a metric zero of order −1 requires s ≤ 2 by (3.2)).
Keeping subtracting 4 by Proposition 3.8 (iv), case (2) reduces to case (1)
or (3).

In case (3), gcd(4, l1, . . . , ls) = gcd(2, l1, . . . , ls) = 1 (as n being odd implies
that some li must be odd), hence case (3) reduces to case (1). It remains to
prove that the two special strata Q(7,−1,−2) and Q(7,−3) are connected.
By Corollary 2.6 the loci of multi-scale 2-differentials obtained by identify-
ing the marked zero of a quadratic differential respectively in Q(3,−1,−2)
or in Q(3,−3) to the marked pole of a quadratic differential in Q(7,−7)
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are connected. Using Proposition 6.3, this implies that Q(7,−1,−2) and
Q(7,−3) are connected.

In summary, we conclude that for n odd and g ≥ 2 every connected com-
ponent of the stratum Q(n,−l1, . . . ,−ls) can be obtained by the operation
⊕1 ⊕ · · · ⊕ 1, and hence Q(n,−l1, . . . ,−ls) is connected in this case, thus
proving part (i) of Proposition 7.2.

(2) Next consider when n is even and g ≥ 2.

(a) We first discuss the balanced types. Note that the balanced types
(s1, s2) = (1, 4) and (2, 4) (when we bubble an ordinary point, i.e., a
zero of order zero) are special cases of (3). Moreover, the balanced
type

C0 ⊕ (a+ 2)⊕ (a+ 4)⊕ · · · ⊕ (a+ 2g)

with a = n−4g
2 cannot be reduced in general by using Proposition 3.8.

The strata of genus zero that parameterize quadratic differentials with
a zero of order zero and at least one metric pole are the following

Q(0,−4), Q(0,−2,−2), Q(0,−1,−3) and Q(0,−1,−1,−2). (7.1)

We would like to break the balanced type C0⊕ 1⊕ 4 for C0 being any
one of the above four strata and break the balanced type C0 ⊕ 2 ⊕ 4
for C0 being any one of the last two of the four strata. Since the last
two strata listed in (7.1) both contain a singularity of odd order, we
can break the balanced type ⊕2⊕ 4 for them by using the gcd-trick in
Lemma 3.14. The break of ⊕1 ⊕ 4 will be done explicitly later in the
proof (see Figure 13 and the paragraphs surrounding it).

Summarizing this discussion, we have shown that all the balanced
types different from C0⊕ (a+2)⊕ (a+4)⊕· · ·⊕ (a+2g) with a = n−4g

2
can be reduced to one of the cases (1) to (3).

(b) From now on we consider when n is even and the direct sum is not of
balanced type, i.e., cases (1) to (3). First assume that n ≡ 0 (mod 4).
For case (3), if there is a ⊕1, then 1 ⊕ 4 = 2 ⊕ 3, hence it reduces to
case (2). Moreover, changing ⊕3 by ⊕(n − 3) can reduce case (2) to
case (1). Therefore, we only need to consider the two cases

C0 ⊕ 1⊕ · · · ⊕ 1⊕ 2⊕ · · · ⊕ 2,

C0 ⊕ 2⊕ · · · ⊕ 2⊕ 4.

Next consider the case when n ≡ 2 (mod 4). For case (3), if we change
⊕4 to ⊕(n− 4) and keep subtracting 4, then we can reduce it to case
(1). For case (2), if there is a ⊕2, then we can use 2 ⊕ 3 = 1 ⊕ 4 and
the same method to reduce it to case (1). Therefore, we only need to
consider

C0 ⊕ 1⊕ · · · ⊕ 1⊕ 2⊕ · · · ⊕ 2,
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C0 ⊕ 1⊕ · · · ⊕ 1⊕ 3.

If n is even and at least one li is odd, then gcd(s1, l1, . . . , ls) =
gcd(2s1, l1, . . . , ls). Hence we have

C0 ⊕ 2 = C0 ⊕ 4 = C0 ⊕ 1,

C0 ⊕ 3⊕ 1 = C0 ⊕ 6⊕ 1 = C0 ⊕ 2⊕ 1,

where we used the gcd-trick and the last equality follows from applying
Proposition 3.8 (ii) and (iv). It implies that in this case we only need
to consider

C0 ⊕ 1⊕ · · · ⊕ 1

besides a possible balanced type (which leads to a hyperelliptic com-
ponent in some cases), thus verifying part (iii) of Proposition 7.2.

Finally consider the case when n and all li are even. We claim that
in this case

C0 ⊕ 1⊕ 1 = C0 ⊕ 1⊕ 2 = C0 ⊕ 1⊕ 3.

This claim can be checked by degenerating quadratic differentials in
each connected component in the above to a multi-scale 2-differential
on a 2-nodal union of a genus one curve X1 with a rational curve
X2 (see Figure 11), in such a way that the locus of such multi-scale 2-
differentials is irreducible. We will first prove the claim for those strata
with a unique metric pole. Then for strata with arbitrary numbers
of analytic poles the claim follows from combining Propositions 6.5
and 6.7 that deal with merging analytic poles (including at least one
metric pole) to a single metric pole.

zX2

p
X1

q1 q2

Figure 11: The pointed curve underlying the multi-scale 2-differential used in
the proof of C0 ⊕ 1⊕ 1 = C0 ⊕ 1⊕ 2 = C0 ⊕ 1⊕ 3 when n and all li are even.

More precisely, a quadratic differential in Q(2m,−2m− 4) ⊕ 1 ⊕ 1
can be represented by gluing half-planes where one of them has a finite
polygonal boundary of type 12123434 with every segment identified by
translation and reflection as shown on the left of Figure 12. Similarly,
a quadratic differential in Q(2m,−2m− 4)⊕ 1⊕ 2 can be represented
by 12123434 with the difference that the segments labeled by 3 and 4
are identified by translation as shown on the right of Figure 12.

We first consider the special stratum Q(6,−2), for which we will
show the equality Q(2,−2) ⊕ 1 = Q(2,−2) ⊕ 2 (as Q(2,−2) cannot
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1 2

1 2

3 4

3 4

5 6

5 6
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1 2
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4 3
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Figure 12: Quadratic differentials in Q(2m,−2m − 4) ⊕ 1 ⊕ 1 (left) and
Q(2m,−2m− 4)⊕ 1⊕ 2 (right) for m = 0.

be further realized as bubbling Q(−2,−2) because −2 is not a met-
ric zero). Quadratic differentials obtained on each side of the desired
equality can be represented similarly as in Figure 12, by deleting the
top half-plane and replacing the lower half-plane by a half cylinder
whose bottom segments are identified in the same way. If we shrink
the saddle connection labeled by 1 to zero, then quadratic differentials
on both sides degenerate to a multi-scale 2-differential on a 2-nodal
curve as illustrated in Figure 11, which is the union of a differential in
Q(−2, 3,−1) and a differential in Q(6,−7,−3), where singularities of
orders (3,−7) and (−1,−3) are glued together respectively to form the
two nodes. According to Corollary 2.7 such multi-scale 2-differentials
have a unique 2-prong-matching, hence this locus is irreducible. The
fact that the moduli space of multi-scale 2-differentials is smooth im-
plies that Q(2,−2)⊕ 1 = Q(2,−2)⊕ 2.

Next we consider the other cases starting from Q(2m,−2m−4) with
m ≥ 0. In both casesQ(2m,−2m−4)⊕1⊕1 andQ(2m,−2m−4)⊕1⊕2
we shrink the saddle connection labeled by 1 to zero. The pointed
curve underlying the resulting multi-scale 2-differential is pictured in
Figure 11 and the quadratic differentials on the two components of
the curve are parameterized by Q(−2m− 4, 2m+ 5,−1) in genus one
and Q(2m + 8,−2m − 9,−3) in genus zero respectively. It follows
from Corollary 2.7 that the locus of such multi-scale 2-differentials
is irreducible. Since the moduli space of multi-scale 2-differentials is
smooth, we conclude that Q(2m,−2m − 4) ⊕ 1 ⊕ 1 = Q(2m,−2m −
4)⊕ 1⊕ 2.

It remains to prove that Q(2m,−2m− 4) ⊕ 1 ⊕ 1 = Q(2m,−2m−
4)⊕ 1⊕ 3 for m ≥ 0. The pattern for ⊕1⊕ 3 is given by 12341234 with
every segment identified by translation and reflection when modifying
the surface on the left of Figure 12. If we shrink the segment labeled
by 4 to zero, then we obtain the same multi-scale 2-differential as in
the preceding paragraphs. This proves that Q(2m,−2m− 4)⊕ 1⊕ 1 =
Q(2m,−2m− 4)⊕ 1⊕ 3 in the same way as before.

(c) Finally we verify that C0 ⊕ 1⊕ 1 = C0 ⊕ 1⊕ 4 for the four strata listed
in (7.1) as claimed earlier. We first give a detailed proof for the case

Documenta Mathematica 27 (2022) 1031–1100



Components of the Strata of k-Differentials 1079

C0 = Q(0,−4). For a quadratic differential obtained by ⊕1 ⊕ 1 and
represented on the left of Figure 12, we degenerate it by shrinking the
segment labeled by 1. We then obtain a banana curve as pictured
in Figure 11 with one irreducible component in Q(5,−1,−4) and the
other in Q(8,−3,−9). A quadratic differential obtained by ⊕1 ⊕ 4 is
illustrated on the left of Figure 13. We cut and paste part of the surface
(the triangle 233′ on the left) to obtain the new representation of this
quadratic differential on the right of Figure 13. Then we shrink the
segment labeled by 3′ to zero. One checks that this degeneration leads
to the same locus of multi-scale 2-differentials as before. It follows
from Corollary 2.7 that this locus is irreducible, thus proving that
Q(0,−4)⊕ 1⊕ 1 = Q(0,−4)⊕ 1⊕ 4.

1 2
3

4 1 2 3

4
5 6

5 6

3′

1©

1

3′

4 1 23
′

2 4
5 6

5 6
2©

Figure 13: The deformation in the case Q(0,−4)⊕ 1⊕ 4.

For the other three strata listed in (7.1), one can easily verify the exis-
tence of such a saddle connection 3′ for quadratic differentials obtained
from ⊕1⊕4. Then a similar construction leads to the degenerations to
a banana curve with one irreducible component in Q(5,−1,−3,−1),
Q(5,−1,−2,−2) or Q(5,−1,−2,−1,−1), respectively, and the other
in Q(8,−3,−9). Again the irreducibility of the corresponding loci of
multi-scale 2-differentials implies that C0 ⊕ 1⊕ 1 = C0 ⊕ 1⊕ 4 for these
cases.

Summarizing the above discussions, in the direct sum if 1 and 2 both appear,
we can replace them by 1 and 1. Similarly if 1 and 3 both appear, we can also
replace them by 1 and 1. In the end the remaining types are

C0 ⊕ (n2 − 2g + 2)⊕ (n2 − 2g + 4)⊕ · · · ⊕ n
2 ,

C0 ⊕ 2⊕ · · · ⊕ 2,

C0 ⊕ 2⊕ · · · ⊕ 2⊕ 4,

C0 ⊕ 1⊕ · · · ⊕ 1,

thus verifying part (ii) of Proposition 7.2.

Remark 7.3. The above proof indeed gives more information compared to the
statement of Proposition 7.2, as it describes explicitly the possible bubbling
operations that give rise to various connected components of the strata.
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We next show that the existence of suitable pole orders can eliminate some of
the potential connected components listed in Proposition 7.2.

Proposition 7.4 ([Boi15, Proposition 6.3]). Let Q(n,−l1, . . . ,−ls) be a min-
imal stratum of quadratic differentials of genus g ≥ 2 with s ≥ 2, n and all li
even and at least one li ≥ 2. Let C0 denote the (connected) genus zero stratum
Q(n− 4g,−l1, . . . ,−ls). Then the following statements hold:

(1) If some li is not divisible by 4 and
∑s

i=1 li > 4, then

C0 ⊕ 2⊕ · · · ⊕ 2 = C0 ⊕ 2⊕ · · · ⊕ 2⊕ 4.

(2) If s > 2 or l1 6= l2, then

C0 ⊕ (n2 − 2g + 2)⊕ (n2 − 2g + 4)⊕ · · · ⊕ n
2 = C0 ⊕ 2⊕ · · · ⊕ 2⊕ t

for some t ∈ {2, 4}.

Proof. The upshot behind this result is that under the assumption of (1) the ab-
parity type is not available and under the assumption of (2) the hyperelliptic
type is not available. The proof is the same as [Boi15, Proposition 6.3] by
multiplying each summand in the direct sums therein by two.

Using Propositions 7.2 and 7.4 we can classify the connected components of
the minimal strata of quadratic differentials, which generalizes [Boi15, Theo-
rem 6.4] to the case of quadratic differentials and proves Theorem 7.1 in the
case of the minimal strata.

Theorem 7.5. Let µ be a signature of quadratic differentials for g ≥ 2 with a
unique analytic zero and at least one metric pole. Then the connected compo-
nents of the minimal stratum Q(µ) can be described as follows:

(1a) If µ is (4n,−4l), (4n,−4l,−4l), or (4n,−2,−2) (except (8,−4) and
(8,−2,−2)), then Q(µ) has four connected components, which are of hyp,
ab-even, ab-odd, and nonab-nonhyp type.

(1b) If µ is (8,−4) or (8,−2,−2), then Q(µ) has three connected components,
where the hyperelliptic component coincides with the ab-odd component
in the first case and with the ab-even component in the second case.

(2) If µ is (2n,−2l) with l > 1 odd or (2n,−2l,−2l) with l > 1 odd, then Q(µ)
has three connected components, which are of hyp, ab, and nonab-nonhyp
type.

(3) If µ is (4n,−4l1, . . . ,−4ls) with s ≥ 3 or (4n,−4l1,−4l2) with l1 6= l2,
then Q(µ) has three connected components, which are of ab-even, ab-odd,
and nonab-nonhyp type.

(4) If µ is (2n,−l,−l) with l odd or (2n,−2), then Q(µ) has two connected
components, which are of hyp and nonhyp type.
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(5) If µ is (2n,−2l1, . . . ,−2ls) with s ≥ 3 or (2n,−2l1,−2l2) with l1 6= l2, in
both of which n, l1, . . . , ls are not all even, then Q(µ) has two connected
components, which are of ab and nonab-nonhyp type.

(6) If µ is non of the above, i.e., µ contains at least one odd entry and is not
of type (4), then Q(µ) is connected (and is of nonab-nonhyp type).

Proof. If the unique analytic zero of µ has odd order, the claim follows from
Proposition 7.2 (i). Hence we can assume that the unique zero has even order.
Let C be a connected component of Q(µ) and C0 be the connected genus zero
stratum of quadratic differentials Q(2n − 4g,−l1, . . . ,−ls). As pointed out
in Remark 7.3, the proof of Proposition 7.2 shows that C is given by one of the
following four cases:

(a) C = C0 ⊕ (n− 2g + 2)⊕ (n− 2g + 4)⊕ · · · ⊕ n,

(b) C = C0 ⊕ 2⊕ · · · ⊕ 2,

(c) C = C0 ⊕ 2⊕ · · · ⊕ 2⊕ 4,

(d) C = C0 ⊕ 1⊕ · · · ⊕ 1.

When µ is (4n,−4l), (4n,−4l,−4l) or (4n,−2,−2) (except (8,−4) and
(8,−2,−2)), it is easy to see that the four types all occur and are distinct.
More precisely, case (a) corresponds to the hyperelliptic component as proved
in Lemma 4.3. Cases (b) and (c) correspond to the squares of even and odd
abelian differentials respectively, which follows from the fact that the operation
⊕2s contributes s+1 (mod 2) to the parity (see [KZ03, Lemma 11]). Case (d)
corresponds to a connected component of primitive quadratic differentials, as
the operation ⊕1 requires gluing by rotation of angle π. We have thus verified
(1a).
For µ = (8,−4) in g = 2, cases (a) and (c) are both equal to C0 ⊕ 2⊕ 4. Let z
be the zero and p be the pole. In the hyperelliptic component given by (a),
both z and p are Weierstrass points in X . Since h0(X, 2z − p) = h0(X, p) = 1
is odd, in this case the hyperelliptic component coincides with the ab-odd
component. Similarly for µ = (8,−2,−2) in g = 2, cases (a) and (c) are both
equal to C0 ⊕ 2⊕ 4. Let z be the zero and p1, p2 be the two poles. Recall that
the abelian parity in this case arises from gluing p1, p2 as a node to form an
irreducible nodal curve X ′ of (arithmetic) genus three. If z is a Weierstrass
point in X and p1, p2 are hyperelliptic conjugates (i.e., 2z ∼ p1 + p2 in X),
we have h0(X ′, 2z) = 2 is even, hence in this case the hyperelliptic component
coincides with the ab-even component. We have thus verified (1b).
When µ is (2n,−2l) or (2n,−2l,−2l), both with l > 1 odd, by Proposition 7.4
(1) we have

C0 ⊕ 2⊕ · · · ⊕ 2 = C0 ⊕ 2⊕ · · · ⊕ 2⊕ 4,

hence Q(µ) has at most three connected components. It is easy to see that this
operation gives a connected component which is different from the components
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given by the other two operations. More precisely, case (a) corresponds to
hyp, case (b)=(c) corresponds to ab, and case (d) corresponds to nonab, thus
verifying (2).
When µ is (4n,−4l1, . . . ,−4ls) with s ≥ 3 or s = 2 and l1 6= l2, by Proposi-
tion 7.4 (2) we have

C0 ⊕ (2n− 2g + 2)⊕ (2n− 2g + 4)⊕ · · · ⊕ 2n = C0 ⊕ 2⊕ · · · ⊕ 2⊕ t

for some t ∈ {2, 4}. Hence Q(µ) has at most three connected components. It is
easy to see that there are three connected components, as case (b) corresponds
to ab-even, case (c) corresponds to ab-odd, and case (d) corresponds to nonab,
thus verifying (3).
When µ = (2n,−l,−l) with l ≥ 3 odd, by Proposition 7.4 (1) we can identify
case (b) with case (c). Moreover, gcd(1, l, l) = gcd(2, l, l) = 1, hence we can
further identify case (b) with case (d) by Lemma 3.14. Therefore, if l ≥ 3 is
odd, then Q(2n,−l,−l) has at most two connected components. It is easy to
see that both cases (a) and (d) occur, which correspond to hyp and nonhyp
respectively.
The case µ = (2n,−2) is special since we start the bubbling operation from
the (connected) stratum Q(2,−2) of genus one (not zero) . We have checked
in the proof of Theorem 7.2 that Q(2,−2) ⊕ 1 = Q(2,−2) ⊕ 2, both giving
the same non-hyperelliptic connected component of Q(6,−2). This identifies
(b), (c) and (d) together. Therefore, Q(2n,−2) has at most two connected
components. Indeed, case (a) is hyp and case (d) is nonhyp, hence Q(2n,−2)
has exactly two connected components. Combining this with the preceding
paragraph thus verifies (4).
When µ = (2n,−2l1, . . . ,−2ls) with n, l1, . . . , ls not all even and s ≥ 3 or
s = 2 but l1 6= l2, it implies that some li is odd, hence Proposition 7.4 (1) and
(2) both apply. It follows that Q(µ) has at most two connected components.
It is easy to see that in this case there are exactly two connected components
corresponding to nonab in case (d) and ab in the other cases, thus verifying (5).
Finally if the unique zero is of even order and we are not in one of the previous
cases, then at least one analytic pole is of odd order, which implies that

gcd(1, l1, . . . , ls) = gcd(2, l1, . . . , ls) = gcd(4, l1, . . . , ls) = 1.

Moreover, in this case we have s ≥ 3 or s = 2 but l1 6= l2. Hence combining
Lemma 3.14 with Proposition 7.4 implies that all the cases (a)–(d) give rise to
the same connected component, thus completing the proof of (6).

We now use Theorem 7.5 and the results in Section 6 to study non-minimal
strata of genus g ≥ 2. We first bound the number of connected components of
a general stratum by using adjacency to the corresponding minimal stratum,
which generalizes [Boi15, Proposition 7.2] to the case of quadratic differentials.
Next we construct paths in the closure of certain strata that join a hyperelliptic
component with a non-hyperelliptic component in the boundary strata, which
generalizes [Boi15, Proposition 7.3 (2)].
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Proposition 7.6. Let Q = Q(2n,−2l) (resp. Q(2n,−l,−l)) be a genus g ≥ 2
minimal stratum that contains a hyperelliptic component. For any n1 6= n2

satisfying the equation n1 + n2 = 2n, there exists a path γ(t) ∈ Q(n1, n2,−2l)
(resp. Q(n1, n2,−l,−l)) such that γ(0) is in the hyperelliptic component of Q
and γ(1) is in a non-hyperelliptic component of Q.

We remark that the closure notation herein means taking the closure of a
stratum in the corresponding moduli space of multi-scale 2-differentials.

Proof. By Lemma 4.3 the hyperelliptic component of Q can be obtained as
C ⊕n where C is a hyperelliptic component in genus g− 1, and any component
given by C ⊕ s with s 6= n is non-hyperelliptic. The idea of the proof is to use
this fact and reduce to the case of genus one.

The hyperelliptic component Q(2n − 4,−2n) ⊕ n of the stratum Q(2n,−2n)
in genus one has rotation number gcd(2n, n) = n. Break up the metric zero of
order 2n to two metric zeros of order n1 and n2. Since n1+n2 = 2n and ni 6= n
for i = 1, 2, we have gcd(n1, n2, 2n) = s < n. Therefore, as shown in the proof
of Theorem 3.12 there exists a path in Q(n1, n2,−2n) (in the closure of the
component of rotation number s) that joins the component Q(2n− 4,−2n)⊕n
to the component Q(2n− 4,−2n)⊕ s.

Now fix a quadratic differential (Xg−1, ηg−1) in the hyperelliptic component of
the stratumQ(2n−4,−2l) in genus g−1. For a quadratic differential (X1, η1) ∈
Q(2n,−2n) in genus one, we construct a multi-scale 2-differential by gluing the
pole of η1 to the zero of ηg−1 and putting the unique equivalence class of 2-
prong-matchings at the node. After smoothing this multi-scale 2-differential
we obtain a quadratic differential (X, η) ∈ Q(2n,−2l). Similarly we can carry
out the same construction by using (X1, η1) ∈ Q(n1, n2,−2n) and obtain a
quadratic differential (X, η) ∈ Q(n1, n2,−2l) after smoothing. Therefore, the
desired path can be obtained by smoothing the corresponding path in genus
one, constructed in the preceding paragraph, that joins a quadratic differential
(X1, η1) in the hyperelliptic component to a quadratic differential (X1, η1) in
a non-hyperelliptic component.

The case Q(2n,−l,−l) is completely analogous.

Next we construct paths in the closure of certain strata that join a component
of ab-even type with a component of ab-odd type in the boundary strata.

Proposition 7.7 ([Boi15, Proposition 7.3 (1)]). Let Q = Q(4n,−4l1, . . . ,−4ls)
(resp. Q(4n,−2,−2)) be a genus g ≥ 2 minimal stratum. For any n1, n2

satisfying the equality n1 + n2 = 4n and not divisible by 4, there exists a path
γ(t) ∈ Q(n1, n2,−4l1, . . . ,−4ls) (resp. Q(n1, n2,−2,−2)) such that γ(0) is in
the ab-even component of Q and γ(1) is in the ab-odd component of Q.

Proof. The same proof as in [Boi15] works by multiplying each summand of
the bubbling operations therein by two.
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Similarly we construct paths in the closure of certain strata that join a com-
ponent of ab-nonhyp type with a component of nonab type in the boundary
strata.

Proposition 7.8. Let Q = Q(2n,−2l1, . . . ,−2ls) be a genus g ≥ 2 minimal
stratum such that if s = 1 then l1 > 1. For any n1, n2 odd with n1 + n2 = 2n,
there exists a path γ(t) ∈ Q(n1, n2,−2l1, . . . ,−2ls) such that γ(0) is in an
ab-nonhyp component of Q and γ(1) is in a nonab component of Q.

Proof. Let C0 = Q(2n − 4g,−2l1, . . . ,−2ls) be the corresponding minimal
stratum of genus zero. Then the connected components of Q given by
C0 ⊕ 2 ⊕ · · · ⊕ 2 ⊕ 2 and C0 ⊕ 2 ⊕ · · · ⊕ 2 ⊕ 1 are of type ab-nonhyp and
nonab respectively. We write these two components as Cg−1 ⊕ 2 and Cg−1 ⊕ 1,
where Cg−1 = C0 ⊕ 2 ⊕ · · · ⊕ 2 is a connected component of the stratum
Q(2n− 4,−2l1, . . . ,−2ls) in genus g − 1.
Fix a quadratic differential (Xg−1, ηg−1) in Cg−1. For any (X1, η1) ∈
Q(2n,−2n) in genus one, we can smooth the multi-scale 2-differential ob-
tained by gluing the zero of ηg−1 to the pole of η1 with the unique 2-prong-
matching at the node. This way we obtain a quadratic differential (X, η)
in the stratum Q(2n,−2l1, . . . ,−2ls). Similarly we can carry out the same
procedure for (X ′

1, η
′
1) ∈ Q(n1, n2,−2n) and obtain a quadratic differential

(X ′, η′) ∈ Q(n1, n2,−2l1, . . . ,−2ls), where (X ′
1, η

′
1) arises from breaking up

the zero of (X1, η1) into two zeros of order n1 and n2 respectively.
Note that a quadratic differential in the connected componentQ(2n−4,−2n)⊕2
of the stratum Q(2n,−2n) has rotation number gcd(2n, 2) = 2. After breaking
up the zero of order 2n into two zeros of odd order n1 and n2, the rotation
number becomes gcd(n1, n2, 2) = 1. Hence there is a path in Q(n1, n2,−2n)
that joins Q(2n − 4,−2n) ⊕ 2 to Q(2n − 4,−2n) ⊕ 1. Using this path, the
existence of the desired path in the genus g stratum Q(n1, n2,−2l1, . . . ,−2ls)
thus follows from the construction described in the preceding paragraph.

After all these preparations, we can finally classify the connected components
of the strata of quadratic differentials in general.

Proof of Theorem 7.1. Denote by Q = Q(n1, . . . , nr,−l1, . . . ,−ls) a stratum of
quadratic differentials of genus g ≥ 2, with at least one li ≥ 2. Denote by

Qmin = Q(n,−l1, . . . ,−ls)

the corresponding minimal stratum, where n = n1+· · ·+nr. By Proposition 6.6
the number of connected components of Q is bounded above by the number of
connected components of Qmin.
If n is odd, i.e., if l1+ · · ·+ ls is odd, then Qmin is connected by Proposition 7.2,
hence Q is connected.
From now on we assume that n is even. Let us recall some related terminology
first. We say that the set of zero orders (resp. pole orders) is of hyperelliptic
type if it is {n, n} or {2n} (resp. {−l,−l} or {−2l}), i.e., it is the set of
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zero orders (resp. pole orders) of a hyperelliptic component. We say that the
partition is of abelian type if every entry is even (and in the case where s = 1
then we require l1 > 2), as the corresponding stratum contains a connected
component parameterizing global squares of abelian differentials. If every entry
is a multiple of four or the polar part of µ is (−2,−2) (except for µ = (8,−4) or
(8,−2,−2) which we have treated already in Theorem 7.5 and for µ = (4, 4,−4)
or (4, 4,−2,−2) which will be treated separately at the end of the proof), we say
that it is of abelian-parity type, because the corresponding stratum of abelian
differentials contains connected components of spin parity type, respectively.
We now give a lower bound on the number of connected components. First
consider the following cases:

• If the stratum is Q(n, n,−2l) (resp. Q(n, n,−l,−l)), then it contains a
hyperelliptic component. The corresponding minimal stratumQ(2n,−2l)
(resp. Q(2n,−l,−l)) contains one hyperelliptic component and at least
one non-hyperelliptic component. Breaking up the zero of order 2n in
a non-hyperelliptic quadratic differential gives a quadratic differential in
a non-hyperelliptic component. Hence the stratum Q(n, n,−2l) (resp.
Q(n, n,−l,−l)) contains one hyperelliptic component and at least one
non-hyperelliptic component.

• If the stratum is of abelian type, then the corresponding minimal stratum
has at least two non-hyperelliptic components, at least one of which arises
from squares of abelian differentials (or more if it is also of abelian-parity
type), and has possibly a hyperelliptic component if it is in addition of
hyperelliptic type.

We can use the above discussion to give a lower bound on the number of
connected components of Q. If the set of zero and pole orders of Q is of both
hyperelliptic and abelian-parity type (hence of abelian type), then Q has at
least four connected components: hyp, ab-odd, ab-even, and nonab-nonhyp.
This implies that such strata, described in Theorem 7.1 (1a), have exactly
four connected components, as the lower and upper bounds on the number of
connected components coincide in this case (both equal to four). Moreover, if
the set of zero and pole orders of Q is of abelian-parity type, then Q has at
least three connected components: nonab, ab-odd, and ab-even. Similarly if it
is of both abelian and hyperelliptic types, then Q has at least three connected
components: hyp, ab, and nonab-nonhyp. Finally, if the set of zero and pole
orders is of hyperelliptic or abelian type, then Q has at least two connected
components.
Next we give a refined upper bound for the number of connected components
of Q as follows:

(1) Suppose the set of poles of Q is of both hyperelliptic and abelian-parity
types. In this case the minimal stratum has four connected components
which we denote by Qhyp

min, Q
nonab
min , Qab-even

min and Qab-odd
min . Let Chyp, Cnonab,
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Cab-even and Cab-odd be the connected components of Q that are adjacent
to the respective connected components of the minimal stratum.

(a) Suppose that the set of zeros of Q is not of hyperelliptic type, we can
choose an entry nj such that nj 6=

∑
i6=j ni. Note that for any 1 ≤ j ≤

r, the stratum Q(nj ,
∑

i6=j ni,−l1, . . . ,−ls) is adjacent to Qmin. By

Proposition 7.6 there is a path in Q(nj ,
∑

i6=j ni,−l1, . . . ,−ls) joining

Qhyp
min to a non-hyperelliptic component of Qmin. Breaking up the zero

of order
∑

i6=j ni along this path into zeros of order (ni)i6=j , we obtain

a path in Q that joins a neighborhood of Qhyp
min to a neighborhood of a

non-hyperelliptic component of Qmin. Hence C
hyp coincides with one of

the non-hyperelliptic components Cnonab, Cab-even or Cab-odd. It follows
that in this case the number of connected components of Q is at most
three.

(b) If the set of zeros of Q is not of abelian-parity type, there exists
an nj not divisible by four. By Proposition 7.7 there is a path
in Q(nj ,

∑
i6=j ni,−l1, . . . ,−ls) joining Qab-even

min to Qab-odd
min . Hence

Cab-even = Cab-odd, and in this case the number of connected com-
ponents of Q is at most three.

(c) Suppose the set of zeros of Q is not of abelian type (hence not of
abelian-parity type). We have seen that Cab-even = Cab-odd. Moreover,
we can choose an nj which is odd. By Proposition 7.8 there is a path
in Q(nj ,

∑
i6=j ni,−l1, . . . ,−ls) joining Qab

min to Qnonab
min , which implies

that Cnonab coincides with one of Chyp and Cab-even = Cab-odd. Hence
in this case the number of connected components of Q is at most two.

(d) If the set of zeros of Q is neither of hyperelliptic type nor of abelian
type, then all conclusions in the preceding paragraphs hold. Combining
with Proposition 7.8 (which joins ab-nonhyp to nonab) implies that Q
has exactly one connected component.

(2) Suppose the set of poles of Q is of both hyperelliptic and abelian types
but not of abelian-parity type. In this case the minimal stratum has three
connected components, denoted by Qhyp

min, Qab
min and Qnonhyp-nonab

min . Let
Chyp, Cab and Cnonhyp-nonab be the connected components of Q that are
adjacent to the respective connected components of the minimal stratum.

(a) If the set of zeros of Q is not of hyperelliptic type, we can choose an
nj such that nj 6=

∑
i6=j ni. By Proposition 7.6 there is a path in

Q(nj ,
∑

i6=j ni,−l1, . . . ,−ls) joining Qhyp
min to a non-hyperelliptic com-

ponent of Qmin. Hence C
hyp coincides with one of the non-hyperelliptic

components Cab and Cnonhyp-nonab. It follows that in this case the num-
ber of connected components of Q is at most two.
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(b) If the set of zeros of Q is not of abelian type, we can choose an
nj such that nj is odd. By Proposition 7.8 there is a path in
Q(nj ,

∑
i6=j ni,−l1, . . . ,−ls) joiningQ

ab
min toQ

nonab
min , which implies that

Cab coincides with one of Chyp and Cnonhyp-nonab. Hence in this case
the number of connected components of Q is at most two.

(c) If the set of zeros of Q is neither of hyperelliptic type nor of abelian
type, then all conclusions in the preceding paragraphs hold. Com-
bining with Proposition 7.8 implies that Q has exactly one connected
component.

(3) Suppose the set of poles of Q is of abelian-parity type but not of hyperellip-
tic type. In this case the minimal stratum has three connected components,
denoted by Qab-even

min , Qab-odd
min and Qnonab

min . Let Cab-even, Cab-odd and Cnonab

be the connected components of Q that are adjacent to the respective con-
nected components of the minimal stratum.

(a) If the set of zeros of Q is of abelian type but not of abelian-parity type,
we can choose an nj not divisible by four. By Proposition 7.7 there
is a path in Q(nj ,

∑
i6=j ni,−l1, . . . ,−ls) joining Qab-even

min to Qab-odd
min .

Hence Cab-even = Cab-odd, and in this case the number of connected
components of Q is at most two.

(b) Suppose the set of zeros of Q is not of abelian type (hence not of
abelian-parity type). We have seen that Cab-even = Cab-odd. More-
over, we can choose an odd nj . By Proposition 7.8 there is a path
in Q(nj ,

∑
i6=j ni,−l1, . . . ,−ls) joining Qab

min to Qnonab
min , which implies

that Cnonab coincides with Cab-even = Cab-odd. Hence in this case Q has
exactly one connected component.

(4) Suppose the set of poles of Q is of hyperelliptic type but not of abelian
type. In this case the minimal stratum has two connected components,
denoted by Qhyp

min and Qnonhyp
min . Let Chyp and Cnonhyp be the connected

components of Q that are adjacent to the respective connected components
of the minimal stratum.

(a) If the set of zeros of Q is not of hyperelliptic type, we can choose
an nj such that nj 6=

∑
i6=j ni. By Proposition 7.6 there is a path

in Q(nj ,
∑

i6=j ni,−l1, . . . ,−ls) joining Qhyp
min to Qnonhyp

min . Hence Chyp

coincides with Cnonhyp. It follows that in this case Q is connected.

(5) Suppose the set of poles of Q is of abelian type but not of hyperelliptic
type nor of abelian-parity type. In this case the minimal stratum has two
connected components, denoted by Qab

min and Qnonab
min . Let Cab and Cnonab

be the connected components of Q that are adjacent to the respective
connected components of the minimal stratum.
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(a) If the set of zeros of Q is not of abelian type, we can choose an odd nj .
By Proposition 7.8 there is a path in Q(nj ,

∑
i6=j ni,−l1, . . . ,−ls) join-

ing Qab
min to Qnonab

min , which implies that Cab coincides with Cnonab. It
follows that in this case Q is connected.

(6) For the remaining cases µ = (4, 4,−4) or (4, 4,−2,−2) in g = 2, by
Theorem 7.5 (1b) the corresponding minimal strata have only three con-
nected components, as the hyperelliptic component coincides with one
of the abelian-parity components. Therefore, the same argument as
in (1a) implies that both strata have exactly three connected compo-
nents. In particular, we conclude that Q(4, 4,−4)hyp = Q(4, 4,−4)odd and
Q(4, 4,−2,−2)hyp = Q(4, 4,−2,−2)even.

Finally Theorem 7.1 follows from matching case by case with the above discus-
sion, comparing the (same) upper and lower bounds on the number of connected
components for each case.

A Parity of k-differentials in genus zero and one

Recall that for even k (and any genus) the parity of k-differentials of parity
type can be determined by using Remark 5.7. Nevertheless for odd k > 1,
determining the parity explicitly can be challenging even for genus zero and
one, despite that the classification of connected components of the strata of
k-differentials is known in these low genus cases. Recall also that for odd k,
a k-differential is of parity type if and only if the signature µ consists of even
entries only (see Proposition 5.1).
For g = 0, any k-differential (X, ξ) is determined up to scale by the positions
of the underlying singularities, which implies that ΩkM0(µ) is a C∗-bundle
over M0,n and hence is irreducible. For k = 1, since the canonical bundle of
P1 has degree −2, the parity of any (meromorphic) abelian differential with
singularities of even order on P1 is always even. However for higher k, the
canonical cover X̂ can have positive genus, hence determining the parity can
be a non-trivial problem.
For g = 1 and µ = (2m1, . . . , 2mn), each connected component of ΩkM1(µ) pa-
rameterizes (X, ξ) such that the underlying divisor satisfies

∑n
i=1(2mi/d)zi ∼ 0

in X for a positive divisor d of gcd(2m1, . . . , 2mn) (except d 6= 2m for
µ = (2m,−2m)) and such that any other torsion relation of the zi must be
a multiple of this one for generic (X, ξ) in the component. Recall that this
number d is called the torsion number or equivalently the rotation number (see
Proposition 3.13), and we denote by ΩkM1(µ)

d the corresponding component.
For k = 1, the dimension h0(X,

∑n
i=1mizi) is either one or zero, depending on

whether
∑n

i=1mizi ∼ 0 or not. Hence the parity of ΩkM1(µ)
d is odd if and

only if d is even. However for higher k, similarly the canonical cover X̂ can
have genus greater than or equal to two, hence determining the parity is again
a non-trivial problem.
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Our goal is thus to explicitly determine the parities of ΩkM0(µ) and ΩkM1(µ)
d

for odd k > 1. The strategy is to first study the base cases for k-differentials
of genus zero with three singularities and k-differentials of genus one with
two singularities, and then apply induction to the number of singularities by
smoothing certain multi-scale k-differentials.
We begin with introducing several technical results which will be used in the
subsequent parity calculations.

A.1 Technical tools

Let (X, ξ) be a k-differential of type µ = (2m1, . . . , 2mn). Recall that for the

canonical cover π : X̂ → X with π∗ξ = ω̂k, there is a deck transformation τ such
that τ∗ω̂ = ζω̂ for a primitive k-th root of unity ζ. The singularities z1, . . . , zn
of ξ are the only (possible) branch points of π. Let ri = gcd(mi, k), ni = mi/ri
and ℓi = k/ri. Then over zi there are ri distinct preimages xi,1, . . . , xi,ri , each
with multiplicity ℓi. The singularity order of ω̂ at each xi,j is 2ni + ℓi − 1. We
denote by xi =

∑ri
j=1 xi,j the reduced sum of the fiber points over zi.

We first study certain τ -invariant divisors and their effective sections.

Lemma A.1. Let D be a τ-invariant divisor in X̂. Then H0(X̂,D) has a basis
given by (possibly meromorphic) functions f such that each underlying divisor
(f) is τ-invariant. Moreover if degD < k, then the support of the effective
divisor D+(f) for any f in this basis is a subset of {xi,j} for i = 1, . . . , n and
j = 1, . . . , ri.

Proof. Since τk = Id and τ∗D = D, there is an eigenspace decomposition
H0(X̂,D) =

⊕k
i=1H

0(X̂,D)i under the action of τ , where f ∈ H0(X̂,D)i

satisfies that τ∗f = ζif . It implies that (f) = (τ∗f) = τ∗(f) give the same

underlying divisor, hence this eigenbasis provides a desired basis for H0(X̂,D).
Next suppose degD < k. Then D + (f) is an effective τ -invariant divisor of
degree smaller than k. Suppose D+ (f) = p1 + · · ·+ pj for j < k (where some
pi can coincide). Then τ∗(p1 + · · ·+ pj) = p1 + · · ·+ pj . Note that τ permutes
points in the same fiber of π, and away from the zi every fiber consists of k
distinct points permuted cyclicly by τ . It implies that the pi must belong to
the special fibers over the zi.

Next we describe how to push down certain linear equivalence relations from
X̂ to X .

Lemma A.2. If
∑n

i=1 aixi ∼ 0 holds in X̂, then
∑n

i=1(airi)zi ∼ 0 holds in X.

Proof. By assumption, there exists a meromorphic function f on X̂ such that
the divisor of f is (f) =

∑n
i=1 aixi. Let h =

∏k
j=1(τ

j)∗f . Then h is τ -invariant,

hence it can also be regarded as a function on X . Note that zi =
∏ri

j=1 x
ℓi
i,j

under π (where we abuse notation to use the same symbol for both a point and
a suitable local coordinate). Hence the factor

∏ri
j=1 x

aik
i,j in h corresponds to

zairi
i . It follows that the divisor (h) in X is equal to

∑n
i=1(airi)zi.
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Similarly we describe certain linear equivalence relations between the xi for the
canonical cover of a k-differential of genus zero.

Lemma A.3. Let (X, ξ) be a k-differential in the stratum ΩkM0(2m1, . . . , 2mn)
of genus zero. Then the linear equivalence relations ℓ1x1 ∼ · · · ∼ ℓnxn ∼
−
∑n

i=1 nixi hold in the canonical cover X̂.

Proof. The relation ℓixi ∼ ℓjxj follows from pulling back zi ∼ zj from X ∼= P1

to the canonical cover. To see the last relation, we give an explicit construction
of the canonical cover. Consider the cyclic cover π : X̂ → X modeled on

xk = (z − z1)
m1+k

n∏

i=2

(z − zi)
mi (A.1)

that maps (x, z) to z (after normalization if necessary to make X̂ smooth),
where z is the (affine) coordinate of X ∼= P1 and we assume that the zi are
away from ∞. Since

∑n
i=1mi = −k, the exponents on the right-hand side of

Equation (A.1) sum to zero, hence the map is unramified over ∞. Note that
gcd(m1 + k, k) = gcd(m1, k), the map has the correct ramification profile. To
justify that it gives the canonical cover, it suffices to show that

∑n
i=1(2ni +

ℓi − 1)xi ∼ KX̂ , which would then give the canonical divisor associated to an
abelian differential as a k-th root of π∗ξ. To see this, note that by Riemann-
Hurwitz KX̂ ∼ π∗KX +

∑n
i=1(ℓi−1)xi, hence it reduces to show that π∗KX ∼∑n

i=1 2nixi. Since X ∼= P1, its canonical divisor class can be represented by
KX ∼ −2z1, and pulling it back via π gives π∗KX ∼ −2ℓ1x1. Moreover, the
associated divisor of x (as a meromorphic function on X̂) is (n1 + ℓ1)x1 +∑n

i=2 nixi ∼ 0. Therefore, we conclude that
∑n

i=1 nixi ∼ −ℓ1x1 and (X̂, π) is
the desired canonical cover.

Remark A.4. In Equation (A.1) one can replace the exponents of the (z− zi)
by any a1, . . . , an such that ai ≡ mi (mod k) for all i. Then by the same
argument it still gives the canonical cover up to isomorphism. The divisor (x)
will differ from the above by adding some ℓixi and subtracting some other ℓjxj ,
which gives the same relation as above since ℓixi ∼ ℓjxj for any i and j.

A.2 Parity of k-differentials of genus zero

Let ξ be a k-differential on X ∼= P1 of type µ = (2m1, . . . , 2mn) for k odd. If ξ
is not primitive, then by definition its parity is equal to the parity of a primitive
root differential. Note that ξ is primitive if and only if gcd(m1, . . . ,mn, k) = 1,
which is equivalent to gcd(m1, . . . ,mn) = 1 since

∑n
i=1mi = −k.

We first consider k-differentials of genus zero with three singularities. Let
(X, ξ) be a k-differential in the stratum ΩkM0(2m1, 2m2, 2m3) with m1+m2+
m3 = −k for k odd. Recall the notation that gcd(mi, k) = ri, k = riℓi and

mi = rini. In the canonical cover X̂, we have π∗ξ = ω̂k with the underlying
canonical divisor given by (ω̂) =

∑3
i=1(2ni + ℓi − 1)xi, where xi =

∑ri
j=1 xi,j
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with π−1(zi) = {xi,j} for i = 1, 2, 3. Our goal is to evaluate the parity Φ(ξ) =

h0(X̂, (ω̂)/2) (mod 2).
We first treat an easy case when some mi is divisible by k.

Proposition A.5. If some mi is divisible by k, then the parity of
ΩkM0(2m1, 2m2, 2m3) is even.

Proof. As remarked before we can assume that the stratum is primitive. Sup-
pose m1 is divisible by k. Since gcd(m1,m2,m3) = 1 and m1+m2+m3 = −k,

it implies that r2 = r3 = 1. Then the genus of the canonical cover X̂ is zero.
In this case deg(ω̂)/2 = −1, hence h0(X̂, (ω̂)/2) = 0 is even.

Next we consider the case when m1, m2 and m3 are relatively prime to k. In
order to describe the parity explicitly, we introduce the following definition.

Definition A.6. For k odd andm1+m2+m3 = −k, we define Nk(m1,m2,m3)
to be the number of integral tuples (c1, c2, c3) such that

c1, c2, c3 ≥ 0, c1 + c2 + c3 = (k − 3)/2 and

3∑

i=1

cixi ∼

3∑

i=1

(mi + (k − 1)/2)xi

modulo the linear equivalence relations kx1 ∼ kx2 ∼ kx3 ∼ −
∑3

i=1mixi in X̂ .

Proposition A.7. Suppose m1, m2 and m3 are relatively prime to k. Then
the parity of ΩkM0(2m1, 2m2, 2m3) is equal to the parity of Nk(m1,m2,m3).

Proof. The linear equivalence relations kx1 ∼ kx2 ∼ kx3 ∼ −
∑3

i=1mixi are
already given in Lemma A.3. We show that any other relations between the
xi must be generated by these. Suppose first there is a relation between xi
and xj , say, ax1 ∼ ax2 for an integer a not divisible by k. Combining with
kx1 ∼ kx2, we can assume that a | k and 0 < a < k. Set z1 = 0 and z2 = ∞ in
X ∼= P1. Then the canonical cover π corresponds to a meromorphic function
f on X̂ such that (f) = kx1 − kx2 and f is totally branched at z3 (besides

z1 and z2). Since ax1 − ax2 ∼ 0, there is another function h on X̂ such that
(h) = ax1 − ax2. Therefore, up to scale f = hb, where b = k/a > 1. In other

words, π factors through an intermediate cover X̂ → P1 → P1 where the first
map is x 7→ y = h(x) and the second map is y 7→ z = yb. Since b > 1, this
contradicts that π is totally branched at z3, as the second map is only branched
at 0 and ∞.
Next suppose there is a relation a1x1+a2x2 ∼ (a1+a2)x3. Since gcd(mi, k) = 1,
there exists wi such that miwi ≡ 1 (mod k). Hence multiplying the known
relation m1x1 +m2x2 ∼ (m1 +m2)x3 by a1w1 leads to a1x1 + a1w1m2x2 ∼
a1(1+w1m2)x3. Combining these relations we conclude that (a1w1m2−a2)x2 ∼
(a1w1m2 − a2)x3. By the preceding paragraph, it implies that a2 ≡ a1w1m2

(mod k), and hence the relation a1x1 + a2x2 ∼ (a1 + a2)x3 is a multiple of
the relation x1 + w1m2x2 ∼ (1 + w1m2)x3. This last relation follows from
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the known relation m1x1 +m2x2 ∼ (m1 +m2)x3 by multiplying by w1 (and
subtracting the same amount of equivalent kxi on both sides).

Finally we calculate h0(X̂, (ω̂)/2). Since deg(ω̂)/2 = (k − 3)/2 < k, by

Lemma A.1 the vector space H0(X̂, (ω̂)/2) has a basis of meromorphic func-

tions {f1, . . . , fN} such that (fi) +
∑3

i=1(mi + (k − 1)/2)xi =
∑3

i=1 cixi for

ci ≥ 0 and c1 + c2 + c3 = (k − 3)/2, i.e.,
∑3

i=1 cixi is an effective divisor lin-

early equivalent to
∑3

i=1(mi+(k−1)/2)xi. Moreover, two distinct such tuples
(c1, c2, c3) and (c′1, c

′
2, c

′
3) must have ci 6= c′i for all i. Indeed if say c3 = c′3,

then we would have a relation (c1 − c′1)x1 ∼ (c1 − c′1)x2 for 0 < |c1 − c′1| < k,
contradicting the established fact that it should be generated by the relation
kx1 ∼ kx2. It follows that the sections associated to such effective divisors have
mutually distinct zero or pole orders at x1, hence they are linearly independent.
In summary, we thus conclude that h0(X̂, (ω̂)/2) = Nk(m1,m2,m3).

Based on numerical evidence for small values of k (see Example A.12), we
make the following conjecture, which can be of independent interest in number
theory.

Conjecture A.8. Suppose k is odd, m1 +m2 +m3 = −k and m1,m2,m3 are
relatively prime to k. Then Nk(m1,m2,m3) ≡ ⌊k+1

4 ⌋ (mod 2).

Remark A.9. Note that the relationm1x1+m2x2 ∼ (m1+m2)x3 is equivalent
to the relation x1+nx2 ∼ (1+n)x3, where n ≡ m2w1 (mod k) with m1w1 ≡ 1
(mod k). It follows that Nk(m1,m2,m3) = Nk(1, n,−k − 1 − n). Hence to
prove the conjecture, it suffices to consider the tuple (1, n,−k − 1 − n) with
gcd(n, k) = gcd(n+ 1, k) = 1.

In the above let yi = xi−x3 be a divisor of degree zero for i = 1, 2. Then we have
ky1 ∼ ky2 ∼ m1y1+m2y2 ∼ 0 in X̂. The condition

∑3
i=1 cixi ∼

∑3
i=1(mi+(k−

1)/2)xi and c1, c2, c3 ≥ 0 is equivalent to ((k−1)/2−c1)y1+((k−1)/2−c2)y2 ∼
0, c1, c2 ≥ 0 and c1+c2 ≤ (k−3)/2 (as c3 = (k−3)/2−c1−c2 ≥ 0). Denote by
bi = (k− 1)/2− ci for i = 1, 2. Combining with Remark A.9, we can formulate
Conjecture A.8 in the following equivalent form.

Conjecture A.10. For k odd and gcd(n, k) = gcd(n+1, k) = 1, let Nk(n) be
the number of pairs (b1, b2) such that b1, b2 ≤ (k − 1)/2, b1 + b2 ≥ (k + 1)/2
and b2 ≡ nb1 (mod k). Then Nk(n) ≡ ⌊k+1

4 ⌋ (mod 2).

We provide some evidence and observation to this conjecture as follows.

Remark A.11. We can directly verify Conjecture A.10 (and hence the equiv-
alent Conjecture A.8) for small values of k or n. For instance for n = 1,
Nk(1) is the number of integers b such that (k + 1)/4 ≤ b ≤ (k − 1)/2. It is
straightforward to check that Nk(1) ≡ ⌊k+1

4 ⌋ (mod 2).
Moreover, let n′ satisfy that nn′ ≡ 1 (mod k). Then (n′+1)n ≡ 1+n (mod k),
hence gcd(n′, k) = gcd(n′ + 1, k) = 1. The condition b2 = nb1 (mod k) is
equivalent to b1 = n′b2 (mod k), which implies that Nk(n) = Nk(n

′).
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Example A.12. We verify Conjecture A.10 (and hence the equivalent Conjec-
ture A.8) for k up to 21. According to Remark A.11, in Table 2 we skip the
case n = 1 and combine the cases of n with its reciprocal n′ (mod k).

k n n′ Nk(n) ⌊k+1
4 ⌋

5 2 3 1 1
7 2 4 0 2
7 3 5 2 2
9 4 7 2 2
11 2 6 1 3
11 3 4 1 3
11 5 9 3 3
11 7 8 1 3
13 2 7 1 3
13 3 9 3 3
13 4 10 1 3
13 5 8 1 3
13 6 11 3 3
15 7 13 4 4
17 2 9 2 4
17 3 6 2 4

k n n′ Nk(n) ⌊k+1
4 ⌋

17 4 13 2 4
17 5 7 2 4
17 8 15 4 4
17 10 12 2 4
17 11 14 2 4
19 2 10 1 5
19 3 13 3 5
19 4 5 3 5
19 6 16 1 5
19 7 11 3 5
19 8 12 1 5
19 9 17 5 5
19 14 15 3 5
21 4 16 1 5
21 10 19 5 5
21 13 13 3 5

Table 2: Verification of Conjecture A.10 for small values of k, where nn′ ≡ 1
(mod k). The last two columns have the same parity as predicted by the
conjecture.

Assuming Conjecture A.8 (or equivalently Conjecture A.10), we can indeed
describe the parity of any k-differential in genus zero explicitly. We first
introduce a parity function as follows. For k odd, consider the prime fac-
torization k = ph1

1 · · · phs

s qℓ11 · · · qℓtt where each pi is an odd prime such that
⌊(pi + 1)/4⌋ is even and each qi is an odd prime such that ⌊(qi + 1)/4⌋ is
odd, namely, pi ≡ ±1 and qi ≡ ±3 (mod 8). For a prime q and an integer
m, denote by νq(m) the q-adic evaluation given by the highest exponent ν
such that qν divides m. For the collection of primes q = {q1, . . . , qt} in

the factorization of k, define νq(m) =
∑t

i=1 min{νqi(m), νqi(k)}. Note that

νq(k) =
∑t

i=1 νqi(k) ≡ ⌊(k + 1)/4⌋ (mod 2).
We can now introduce the number which will allows us to compute the parity
of strata in genus zero. We remark that in Definition A.13 and Lemma A.14
below, we do not require that µ is a partition of −k.

Definition A.13. For k odd and µ = (m1, . . . ,mn), define nk(µ) to be the
number of entries mi in µ such that νq(mi) 6≡ νq(k) (mod 2).

The following properties of nk(µ) will be useful for our applications.
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Lemma A.14. Let k = ph1

1 · · · phs

s qℓ11 · · · qℓtt as above and µ = (m1, . . . ,mn).

(1) If ℓi = 0 for all i, then nk(µ) ≡ 0 (mod 2) for all µ.

(2) The parity of nk(µ) only depends on the remainders of m1, . . . ,mn

(mod k).

(3) For µ = (m1,m2,m3) such that m1, m2 and m3 are relatively prime to k,
we have nk(µ) ≡ νq(k) (mod 2).

(4) If k and all entries of µ are divisible by d, then nk/d(µ/d) ≡ nk(µ) (mod 2).

(5) nk(µ1) + nk(µ2) ≡ nk(µ1, µ2) (mod 2).

(6) nk(±ℓ, ℓ, µ) ≡ nk(µ) (mod 2).

Proof. If ℓi = 0 for all i, then νq(mi) = νq(k) = 0 for all mi. Hence

nk(µ) = 0, thus verifying item (1). Item (2) follows from the fact that
min{νqi(m), νqi(k)} = min{νqi(m + k), νqi(k)}. For item (3), if m1, m2 and
m3 are relatively prime to k, then νq(mi) = 0 for all i. Hence nk(µ) = 0 if

νq(k) is even and nk(µ) = 3 if νq(k) is odd. Item (4) follows from the fact

that multiplying d to mi/d and to k/d changes the respective νq by the same

amount. For items (5) and (6), they follow directly from Definition A.13.

We first consider when k is an odd prime. In this case, if ⌊(k+1)/4⌋ is odd, i.e.
if k = q1, then by definition nk(µ) is the number of entries in µ not divisible
by k. If ⌊(k + 1)/4⌋ is even, i.e. if k = p1, then nk(µ) is even by Lemma A.14
(1).

Theorem A.15 (Conditional to Conjecture A.8). Suppose k is an odd prime.
Then the parity Φ(2µ) of ΩkM0(2µ) is equal to nk(µ) (mod 2).

Proof. First suppose ⌊(k + 1)/4⌋ is odd. For µ = (m1,m2,m3), either non of
the mi is divisible by k, or exactly one of them is divisible by k, or all of them
are divisible by k. In the first case since k is prime, all mi are relatively prime
to k, hence assuming Conjecture A.8 the parity is odd, which coincides with
the parity of nk(µ) = 3. In the second case by Proposition A.5 the parity
is even, which coincides with the parity of nk(µ) = 2. In the last case the
k-differential is a k-th power of an abelian differential, hence the parity is even,
which coincides with the parity of nk(µ) = 0.
Next we apply induction to the number of entries of µ. Suppose the claim
holds for any µ with at most n − 1 entries. For µ = (m1, . . . ,mn), if all the
entries are divisible by k, then the parity is even and nk(µ) = 0. Otherwise,
there must be at least two entries, say m1 and m2, that are not divisible by k.
By Proposition 3.1 and Lemma 5.8 we can break up a zero of order 2m1+2m2

in a (meromorphic) k-differential of genus zero into two zeros of order 2m1 and
2m2 respectively and obtain the following parity relation (mod 2)

Φ(2µ) ≡ Φ(2m1, 2m2,−2k − 2m1 − 2m2) + Φ(2m1 + 2m2, 2m3, . . . , 2mn).
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If m1 + m2 is not divisible by k, then Φ(2µ) ≡ 3 + (nk(µ) − 2 + 1) ≡ nk(µ)
(mod 2) holds by induction. If m1 +m2 is divisible by k, then we obtain by
induction the relation Φ(2µ) ≡ 2 + (nk(µ)− 2) ≡ nk(µ) (mod 2).

Next suppose ⌊(k + 1)/4⌋ is even. Again for µ = (m1,m2,m3), either non
of the mi is divisible by k, or exactly one of them is divisible by k, or all of
them are divisible by k. The corresponding parities are all even (assuming
Conjecture A.8 for the first case). Next we apply induction to the number of
entries of µ. Suppose the claim holds for any µ with at most n − 1 entries.
For µ = (m1, . . . ,mn), if all the entries are divisible by k, then the parity is
even. Otherwise, there must be at least two entries, say m1 and m2, that are
not divisible by k. By Proposition 3.1, Lemma 5.8 and using induction we
conclude that (mod 2)

Φ(2µ) ≡ Φ(2m1, 2m2,−2k − 2m1 − 2m2) + Φ(2m1 + 2m2, 2m3, . . . , 2mn) ≡ 0.

Now we can show that nk(µ) is the desired parity function for general k (as-
suming Conjecture A.8).

Theorem A.16 (Conditional to Conjecture A.8). The parity of ΩkM0(2µ) is
given by nk(µ) (mod 2).

Proof. We apply induction to the exponents in the prime factorization of k.
The claim holds for the base case when k is an odd prime by Theorem A.15.
Suppose it holds for any exponents smaller than (h1, . . . , hs, ℓ1, . . . , ℓt) (in the
sense of multi-indices).
Consider first the case of three singularities µ = (m1,m2,m3). If
gcd(m1,m2,m3) = d > 1, then passing to a canonical d-cover and using induc-
tion, we have by Lemma A.14 (4) that Φk(2µ) ≡ Φk/d(2µ/d) ≡ nk/d(µ/d) ≡
nk(µ) (mod 2), thus verifying the claim in this case.
Next suppose gcd(m1,m2,m3) = 1. If m1, m2 and m3 are relatively prime
to k, then assuming Conjecture A.8, Φk(2µ) ≡ ⌊(k + 1)/4⌋ ≡ νq(k) ≡ nk(µ)

(mod 2) by Lemma A.14 (3). Otherwise, there must be a prime factor d of k
that divides one of the mi but not the other two, say, d divides m1 but not m2

and m3. Then we can pass to a canonical d-cover, which implies that

Φk(2µ) = Φk/d(2m1/d, . . . , 2m1/d︸ ︷︷ ︸
d

, 2m2 + k − k/d, 2m3 + k − k/d).

Using induction combined with Lemma A.14, the parity of this stratum is equal
to nk/d(2m1/d, 2m2, 2m3) ≡ nk(2m1, 2m2d, 2m3d) (mod 2). Hence it suffices
to show that nk(2m1, 2m2d, 2m3d) ≡ nk(2m1, 2m2, 2m3) (mod 2), which is
equivalent to show that nk(2m2d, 2m3d) ≡ nk(2m2, 2m3) (mod 2). If d is equal
to some prime pi, then nk(2m2pi, 2m3pi) = nk(2m2, 2m3) as pi is irrelevant to
define nk in Definition A.13. If d is equal to some prime qi, then since m2

and m3 are not divisible by qi, it implies that νq(m2qi) = νq(m2) + 1 and
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νq(m3qi) = νq(m3) + 1. Therefore, the difference between nk(2m2qi, 2m3qi)

and nk(2m2, 2m3) is even, thus verifying that they have the same parity.
Now we can apply another round of induction to the number of singularities.
Suppose the claim holds for µ with at most n − 1 entries for some n > 3.
Then for µ = (m1, . . . ,mn) with

∑n
i=1mi = −k, combining Proposition 3.1,

Lemma 5.8 and Lemma A.14 we thus conclude that

Φk(2µ) ≡ Φk(−2k − 2m1 − 2m2, 2m1, 2m2) + Φk(2m1 + 2m2, 2m3, . . . , 2mn)

≡ nk(m1 +m2,m1,m2) + nk(m1 +m2,m3, . . . ,mn)

≡ nk(m1 +m2,m1 +m2,m1,m2,m3, . . . ,mn)

≡ nk(m1, . . . ,mn) (mod 2).

A.3 Parity of k-differentials of genus one

We first consider k-differentials in genus one with two singularities. Recall from
Section 3.4 that the connected component ΩkM1(2m,−2m)d parameterizes k-
differentials of torsion number d, where d is a divisor of 2m and d 6= 2m.

Theorem A.17. For odd k, the parity of the component ΩkM1(2m,−2m)d is
given by d+ 1 (mod 2).

Proof. Let (X, ξ) be a k-differential in the connected component
ΩkM1(2m,−2m)d. Since the torsion number of ξ is d, we know that
(2m/d)(z1 − z2) ∼ 0 in X and no relation of lower order holds. Re-
call the notation gcd(m, k) = r, k = rℓ and m = rn. In the canon-

ical cover X̂, we have π∗ξ = ω̂k with the underlying canonical divi-
sor (ω̂) = (2n + ℓ − 1)x1 + (−2n + ℓ − 1)x2 being τ -invariant, where
xi =

∑r
j=1 xi,j with π−1(zi) = {xi,j}

r
j=1 for i = 1, 2. Our goal is to evaluate

Φ(ξ) = h0(X̂, (ω̂)/2) (mod 2).

Since deg(ω̂)/2 = ℓ − 1 < k, Lemma A.1 implies that H0(X̂, (ω̂)/2) has a
basis {f1, . . . , fN} such that (fi) + (n+ (ℓ − 1)/2)x1 + (−n+ (ℓ − 1)/2)x2) =
ci,1x1 + ci,2x2 for ci,1, ci,2 ≥ 0 and ci,1 + ci,2 = ℓ − 1. Note that the Riemann-
Hurwitz formula gives the linear equivalence relation KX̂ ∼ (ℓ − 1)(x1 + x2),
hence (ω̂) ∼ (ℓ− 1)(x1 + x2) and 2nx1 ∼ 2nx2. Therefore, the divisor class

(n+(ℓ− 1)/2)x1+(−n+(ℓ− 1)/2)x2 ∼ (n+(ℓ− 1)/2)x2+(−n+(ℓ− 1)/2)x1

is invariant when interchanging x1 and x2. It implies that ci,1x1 + ci,2x2 is an
effective section in the basis if and only if (ℓ − 1 − ci,1)x1 + (ℓ − 1 − ci,2x2)

is. Therefore, the dimension h0(X̂, (ω̂)/2) is an odd number if and only if the
linear equivalence relation (ℓ−1)x1/2+(ℓ−1)x2/2 ∼ (n+(ℓ−1)/2)x1+(−n+
(ℓ − 1)/2)x2 holds, i.e., if and only if nx1 ∼ nx2.
Next we show that nx1 ∼ nx2 if and only if d is even. If nx1 ∼ nx2, then by
Lemma A.2 we have mz1 ∼ mz2, hence 2m/d divides m by the assumption on
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the rotation number, which is equivalent to d being even. Conversely if d is
even, then mz1 ∼ mz2, which implies that mℓx1 ∼ mℓx2 by pulling back via π.
Note that we have shown that 2nx1 ∼ 2nx2 in the preceding paragraph. Since
m = nr and ℓ, r are odd, we have gcd(2n,mℓ) = n. Combining the two linear
equivalence relations of x1 and x2, we thus conclude that nx1 ∼ nx2.

Theorem A.17 implies the following result which was previously used in Sec-
tion 5.

Corollary A.18. For k odd and every m ≥ 2, there exist cubic differentials
in the primitive locus ΩkM1(2m,−2m)prim with distinct parities.

Proof. A connected component ΩkM1(2m,−2m)d with torsion number d pa-
rameterizes primitive k-differentials if and only if gcd(k, d) = 1. Since m ≥ 2,
we can choose d to be 1 and 2, both relatively prime to k. Then primitive
k-differentials in the two connected components with torsion number one and
two respectively have distinct parities according to Theorem A.17.

Next we apply induction to the number of singularities and show that the
question reduces to determine the parity of k-differentials of genus zero.

Proposition A.19. Let µ = (2m1, . . . , 2mn) be a signature of k-differentials
in genus one. Let d be a common divisor of entries of µ such that d 6=
±2mn. Then for k odd and n ≥ 3, the parity of the connected component
ΩkM1(2m1, . . . , 2mn)

d is equal to the sum of the parities of the connected com-
ponent ΩkM1(2mn,−2mn)

d and the stratum ΩkM0(2m1, . . . , 2mn−1, 2mn −
2k).

Proof. Let ξ1 be a k-differential of genus one in ΩkM1(2mn,−2mn)
d (which

exists by the assumption that d 6= ±2mn). Let ξ0 be a k-differential of genus
zero in the connected stratum ΩkM0(2m1, . . . , 2mn−1, 2mn − 2k). We can
construct a multi-scale k-differential by gluing the singularity of ξ1 with order
−2mn to the singularity of ξ0 with order 2mn − 2k. Then the claim follows
from Lemma 5.8.

If we choose d = 1 in Proposition A.19, then there is no restriction on mn,
and obviously we can also use any other mi instead of mn. It thus implies the
following relation for the strata of k-differentials in genus zero.

Corollary A.20. The parity of the strata ΩkM0(2m1, . . . , 2mn) in genus zero
only depends on the remainders of m1, . . . ,mn (mod k).

Note that Corollary A.20 coincides with our expectation in Lemma A.14 (2).
Finally using the (conjectural) parity description of k-differentials in genus zero,
we can determine the parity of k-differentials in genus one. Recall the function
nk(µ) introduced in Definition A.13.

Theorem A.21 (Conditional to Conjecture A.8). The parity of the connected
component ΩkM1(2µ)

d is given by nk(µ) + d+ 1 (mod 2).
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Proof. For µ = (m1, . . . ,mn), if there exists some mi such that d 6= ±2mi,
then the claim follows from combining Proposition A.19, Theorem A.16 and
Theorem A.17.
If d = 2|mi| for all i, then µ = (m, . . . ,m︸ ︷︷ ︸

h

,−m, . . . ,−m︸ ︷︷ ︸
h

) for some h ≥

2 and d = 2m. By a similar argument as in the proof of Proposi-
tion A.19, the parity of ΩkM1(2µ)

2m is equal to the sum of the parities of
the connected component ΩkM1(2m, 2m,−4m)2m and the connected stratum
ΩkM0(2m, . . . , 2m︸ ︷︷ ︸

h−2

,−2m, . . . ,−2m︸ ︷︷ ︸
h

, 4m − 2k). The former has parity given

by nk(m,m,−2m) + 1 as shown in the preceding paragraph. The latter
has parity given by nk(m, . . . ,m︸ ︷︷ ︸

h−2

,−m, . . . ,−m︸ ︷︷ ︸
h

, 2m) using Theorem A.16 and

Lemma A.14 (2). Finally by Lemma A.14 (5) and (6), their sum has parity
equal to the parity of nk(µ) + 1, thus completing the proof. Indeed in this
special case since there are even number of entries all of which have the same
absolute value, by Lemma A.14 (6) the parity of nk(µ) is even.

Remark A.22. Theorem A.21 holds unconditionally for those small values of k
verified in Example A.12.
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