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1 Introduction

The elliptic Hall algebra associated to a smooth elliptic curve X over a finite
field is the Drinfeld double of the Hall algebra of the category of coherent
sheaves over X . In [BS12], Burban and Schiffmann gave an explicit realization
of a generic elliptic Hall algebra EH, depending on two formal parameters σ, σ̄,
which specializes to the elliptic Hall algebra for any X . The importance of
the algebra EH is underlined by the fact that versions of it (more precisely, its
“positive half” or central extensions) have appeared in many different contexts
under different names: a generalized quantum affine algebra [DI97], a (q, γ)-
analogue of the W1+∞ algebra [Mik07], the shuffle algebra [FT11, Neg14], the
spherical gl∞ double affine Hecke algebra [SV11, FFJ+11], and the quantum
continuous gl∞ [FFJ+11]. It is also intimately related to the equivariant K-
theory of the Hilbert scheme of points on A2 [SV13, FFJ+11, FT11, Neg15]. In
this paper we show that the elliptic Hall algebra is categorified by the quantum
Heisenberg category defined in [BSW20b]. We then use this categorification to
construct large families of representations of central extensions of the elliptic
Hall algebra.
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Let us explain our results in more detail. We first show that the elliptic Hall al-
gebra has a universal central extension ẼH by a two-dimensional center (Propo-
sition 2.1). Then, to any central charge k ∈ Z, one can define a natural central

reduction EHk. In fact, every central reduction of ẼH is isomorphic to EHk for
some k (Proposition 2.4).
To this same central charge, one can associate a quantum Heisenberg category
Heisk as in [BSW20b]. This is a strict k-linear pivotal monoidal category mod-
elled on the affine Hecke algebras of type A. When k 6= 0, it acts naturally
on the category of modules for cyclotomic Hecke algebras of level |k|. When
k = −1, it extends an earlier q-deformed Heisenberg category introduced in
[LS13]. On the other hand, when k = 0, it is the framed HOMFLYPT skein
category over the annulus and it acts naturally on the category of modules for
Uq(gln).
The trace, or zeroth Hochschild homology, of a small k-linear category is the
k-module

Tr(C) :=

(⊕

X∈C

EndC(X)

)
/ spank{f ◦ g − g ◦ f},

where f and g run through all pairs of morphisms f : X → Y and g : Y → X
in C. The trace can be thought of as a categorical analogue of the cocenter of an
algebra. If C is monoidal, then Tr(C) is naturally an associative k-algebra. The
main result of the current paper (Theorem 7.1) is that there is an isomorphism
of algebras

EHk

∼=
−→ Tr(Heisk). (1.1)

This isomorphism is given explicitly, by specifying the images of the elements
of a natural basis for EHk.
When k = 0, Tr(Heis0) is isomorphic to the skein algebra of the torus. This
skein algebra was identified with EH = EH0 by Morton and Samuelson [MS17].
On the other hand, when k = −1, the q-deformed Heisenberg category of [LS13]
was identified with the positive half of EH−1 by Cautis, Lauda, Licata, Samuel-
son, and Sussan [CLL+18]. This corresponds to the fact that the q-deformed
Heisenberg category can be viewed as “half” of the quantum Heisenberg cat-
egory Heis−1. (See Remark 7.9.) In some sense, Tr(Heisk) can be thought of
as a deformation of the skein algebra of the torus, depending on the central
charge k, that breaks the symmetry between the two directions. This central
charge deformation allows us to categorify arbitrary central reductions EHk.
The split Grothendieck ring K0(Heisk) of the quantum Heisenberg category is
conjecturally isomorphic to the central charge k reduction Heisk of the uni-
versal enveloping algebra of the infinite-rank Heisenberg Lie algebra. (The
corresponding statement for the degenerate Heisenberg category has been
proved; see [BSW, Th. 1.1].) The Chern character map gives a homomor-
phism K0(Heisk) → Tr(Heisk). Assuming the aforementioned conjecture, this
corresponds to a natural inclusion Heisk →֒ EHk. (See Remark 2.3.)
One immediate application of our categorification of EHk is that we obtain
a large number of representations of this algebra. The first family of repre-
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sentations arises from the fact that the trace of a linear pivotal category acts
naturally on its center, which is the endomorphism algebra of the unit object.
For the quantum Heisenberg category, the center is isomorphic to Sym⊗ Sym,
where Sym is the algebra of symmetric functions. Thus, we obtain a natural
family of actions of EHk on Sym⊗ Sym depending on a parameter t in the
ground ring. This generalizes an action of EH = EH0 on Sym⊗ Sym described
in [MS17, §4], corresponding to the action of the skein algebra of the torus
acting on the skein of the annulus.

The second family of representations emerges from the natural action of Heisk
on the category of modules for cyclotomic Hecke algebras. Passing to traces,
this yields an action of EHk on the cocenters of cyclotomic Hecke algebras. We
expect these actions to be related to the geometry of moduli spaces of framed
torsion-free sheaves on P2, extending work of Schiffmann and Vasserot [SV13].
(See Remark 9.4.)

We also expect that the results of the current paper can be generalized by
incorporating a Frobenius superalgebra. More precisely, to every Frobenius
superalgebra A and central charge k ∈ Z, there is a quantum Frobenius Heisen-
berg supercategory, introduced in [BSW22]. The trace of this category should
be isomorphic to a Frobenius superalgebra generalization of EHk. In the degen-
erate setting, the trace of the Frobenius Heisenberg supercategory was related
to a Frobenius superalgebra generalization of the W -algebra W1+∞ in [RS22].
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2 Central extensions of the elliptic Hall algebra

In this section we introduce our main algebra of interest, which is a specializa-
tion of a central extension of the elliptic Hall algebra of Burban and Schiffmann
[BS12]. We give here a direct description of this algebra, and explain the con-
nection to the algebra of Burban and Schiffmann (which is not needed for the
results of the current paper) in Appendix B.

In this section, unless otherwise specified, we work over an arbitrary commu-
tative ring k of characteristic zero, and we fix q ∈ k× such that

{d} := qd − q−d ∈ k× for all d 6= 0. (2.1)

Thus the most generic choice is k = Z[q±1, {d}−1 : d ≥ 1]. Note that {d} is
defined for d = 0, but we only require it to be invertible when d 6= 0. All
algebras and tensor products are over k unless otherwise indicated.
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2.1 Universal central extension

Let

Z := Z2, Z∗ := Z \ {(0, 0)},

Z+ := {(r, n) ∈ Z : n > 0 or n = 0, r > 0}, Z− := −Z+.

Let EH be the Lie algebra over k with basis wx, x ∈ Z∗, and Lie bracket given
by

[wx, wy] = {d}wx+y, where d = det
(
x y

)
. (2.2)

Here
(
x y

)
denotes the 2×2 matrix with columns x and y. We will write wr,n

for w(r,n), and we adopt the convention that w0,0 = 0. It is a straightforward
computation to verify that (2.2) satisfies the axioms of a Lie bracket. It is also
not hard to see that EH is perfect, that is, [EH,EH] = EH. Thus, EH has a
universal central extension, which we now describe.

Let Zk := k⊗Z Z ∼= k2. It is straightforward to check that the k-bilinear map

EH× EH → Zk, (wx, wy) 7→ δx,−yx,

is a 2-cocycle, where we view Zk as a trivial EH-module. Let ẼH be the

corresponding central extension. Thus, ẼH = EH⊕ Zk as k-modules, with Lie
bracket given by the fact that the elements of Zk are central and

[wx, wy] = {d}wx+y + δx,−yx, where d = det
(
x y

)
. (2.3)

Proposition 2.1. The Lie algebra ẼH is the universal central extension of EH.

Since Proposition 2.1 is not directly used elsewhere in the paper, and its veri-
fication is somewhat lengthy, we have relegated the proof to Appendix A.

Corollary 2.2. The second cohomology module H2(EH; k) has rank two, with
basis given by the classes of the two cocycles EH× EH → k defined by

(wx, wy) 7→ δx,−yr, and (wx, wy) 7→ δx,−yn,

for x = (r, n) ∈ Z∗, y ∈ Z∗.

Remark 2.3. The Lie algebra ẼH contains a copy of the infinite-rank Heisen-
berg algebra for every rank one sublattice of Z. More precisely, for x ∈ Z∗, we
have

[wix, wjx] = iδi,−jx, i, j ∈ Z \ {0}, (2.4)

and so spank{wix,x : i ∈ Z \ {0}} is an infinite-rank Heisenberg algebra with
central element x.
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2.2 Central reductions

Let ẼH be the universal enveloping algebra of ẼH. For a Z-linear map λ : Z →
Z, define the corresponding central reduction

EHλ = ẼH/〈x− λ(x) : x ∈ Z〉. (2.5)

For k ∈ Z, let
λk : Z → Z, (r, n) 7→ kn,

and define EHk := EHλk
. Thus, EHk is the associative k-algebra generated by

wx, x ∈ Z∗, and relations

[wx, wy] = {d}wx+y + knδx,−y, where d = det
(
x y

)
, x = (r, n). (2.6)

We will denote the image of wx in EHk again by wx.
The integral general linear group GL2(Z) acts on ẼH by k-algebra automor-
phisms via

ẼH
∼=
−→ ẼH, wx 7→ det(γ)wγx, x 7→ γx, x ∈ Z, γ ∈ GL2(Z). (2.7)

For a Z-linear map λ : Z → Z, this induces isomorphisms

EHλ

∼=
−→ EHλγ−1 , γ ∈ GL2(Z). (2.8)

The importance of the EHk is given by the following result, which says that
every central reduction is isomorphic to some EHk.

Proposition 2.4. For every Z-linear map λ : Z → Z, there exists k ∈ Z such
that EHλ

∼= EHk as algebras.

Proof. Let λ : Z → Z be a Z-linear map. Thus, there exist a, b ∈ Z such that
λ(r, n) = ar+ bn. Let k = gcd(a, b), and choose c, d ∈ Z such that ac+ bd = k.
Define

γ =

(
d −c
a/k b/k

)
∈ GL2(Z), so that γ−1 =

(
b/k c
−a/k d

)
.

Then we have λγ−1 = λk, and the result follows from (2.8).

Remark 2.5. Note that EH0
∼= U(EH). Furthermore, by [MS17, Th. 2, Th. 3],

EH0 is isomorphic to the elliptic Hall algebra of [BS12], specialized at σ̄ =
q2 = σ−1.

Remark 2.6. Being the universal enveloping algebra of a Lie algebra, ẼH
has a natural Hopf algebra structure. For Z-linear maps λ1, λ2 : Z → Z, the
coproduct on ẼH induces an algebra homomorphism Eλ1+λ2 → Eλ1 ⊗Eλ2 . In
particular, if M is an EHk-module and N is an EHl-module, then M ⊗ N is
naturally an EHk+l-module.
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Let EH± be the subalgebra of ẼH generated (both as an algebra and as a k-
module) by wx, x ∈ Z±. Note that, for any k ∈ Z, EH± is also isomorphic
to the subalgebra of EHk generated by the wx, x ∈ Z±. In both cases, the
elements wx, x ∈ Z±. It follows from the PBW theorem that multiplication
induces a linear isomorphism

EH+ ⊗ EH− ∼=
−→ EHk. (2.9)

We have automorphisms

ψ : ẼH
∼=
−→ ẼH, wx 7→ w−x, x 7→ −x, (2.10)

ω : ẼH
∼=
−→ ẼH, wr,n 7→ (−1)n+1wr,−n, (r, n) 7→ (r,−n), (2.11)

and ψ(EH±) = EH∓. (Note that ψ is the automorphism (2.7) for γ equal to
negative the identity matrix.) For k ∈ Z, ψ and ω induce algebra isomorphisms

ψk : EHk

∼=
−→ EH−k, wx 7→ w−x, (2.12)

ωk : EHk

∼=
−→ EH−k, wr,n 7→ (−1)n+1wr,−n. (2.13)

2.3 Biangular presentations

Lemma 2.7. The subalgebra EH± is generated, as an algebra, by the elements
wr,±1, r ∈ Z, and w±r,0, r ≥ 1.

Proof. It suffices to consider EH+, since the result for EH− then follows by
applying the involution ψ from (2.10). Let EH′ be the subalgebra of ẼH gen-
erated by the elements wr,1, r ∈ Z, and wr,0, r ≥ 1. We show by induction on
n ≥ 1 that wr,n ∈ EH′ for all r ∈ Z, from which the lemma follows. The base
case n = 1 holds by definition. Let n ≥ 1, and assume that wr,n ∈ EH′ for all
r ∈ Z. If r 6= 0, then wr,n+1 = {r}−1[wr,n, w0,1] ∈ EH′. Otherwise, if r = 0, we
have w0,n+1 = {n+ 1}−1[w1,n, w−1,1] ∈ EH′.

Lemma 2.8. Suppose g is a Lie algebra with k-module decomposition g = g1 ⊕
g2, where g1, g2 are Lie subalgebras of g. Furthermore, suppose that Si is a set
of generators of gi, as a Lie algebra, for i = 1, 2, and that [x, y] ∈ spank(S1∪S2)
for all x ∈ S1, y ∈ S2. Then

U(g) ∼=
(
U(g1) ⋆ U(g2)

)
/〈xy − yx− [x, y] : x ∈ S1, y ∈ S2〉,

where ⋆ denotes the free product of associative algebras.

Proof. Let I be the ideal 〈xy − yx − [x, y] : x ∈ S1, y ∈ S2〉. Consider the
sequence

U(g1)⊗ U(g2)
f
−→
(
U(g1) ⋆ U(g2)

)
/I

g
−→ U(g),

where f is the k-linear map given by multiplication, and g is the algebra homo-
morphism arising from the universal property of the free product and the fact
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that the given generators of I are zero in U(g). The assumption g = g1 ⊕ g2
implies that g is surjective. Now, elements of U(g1) ⋆ U(g2) can be written as
linear combinations of words in S1 ∪ S2. In the quotient

(
U(g1) ⋆ U(g2)

)
/I,

one can use the given generators of I to move elements of U(g1) to the left
of elements of U(g2) modulo shorter words. This implies that the map f is
surjective. Finally, the composition gf is a linear isomorphism by the PBW
theorem. It follows that g is surjective, and hence an isomorphism.

Proposition 2.9. The algebra ẼH is isomorphic to the free product of the
algebras EH+ ⊗ U(Zk) and EH− modulo the following relations:

[ws,−1, w1,1] = {s+ 1}ws+1,0 − δs,−1(1, 1), s ∈ Z, (2.14)

[ws,±1, w∓r,0] = {r}ws∓r,±1, r ≥ 1, s ∈ Z, (2.15)

[wr,0, w−s,0] = δr,s(r, 0), r, s ≥ 1, (2.16)

[x, wr,−1] = [x, w−s,0] = 0, r ∈ Z, s ≥ 1, x ∈ Z. (2.17)

Proof. Let g = ẼH, g1 = spank{wx,y : x ∈ Z+, y ∈ Z}, g2 = spank{wx :
x ∈ Z−}, S1 = {x, wr,1, ws,0 : x ∈ Z, r ∈ Z, s ≥ 1}, S2 = {wr,−1, w−s,0 : r ∈

Z, s ≥ 1}. Then it follows from Lemmas 2.7 and 2.8 that ẼH is isomorphic to
the free product of the algebras EH+ ⊗ U(Zk) and EH− modulo the relations
(2.15) to (2.17) and

[ws,−1, wr,1] = {r + s}wr+s,0 + δr,−s(s,−1), r, s ∈ Z, (2.18)

which specializes to (2.14) when r = 1.
It remains to show that the relations (2.14) to (2.17) imply (2.18). We first
prove that they imply the r ≥ 1 cases of (2.18) by induction on r. Fix r ≥ 1
and suppose that (2.18) holds for all s ∈ Z. Then, for s ∈ Z, we have

{1}[ws,−1, wr+1,1]
(2.15)
= [ws,−1, [w1,0, wr,1]]

= [[ws,−1, w1,0], wr,1] + [w1,0, [ws,−1, wr,1]]

(2.15)
= {1}[ws+1,−1, wr,1] + {r + s}[w1,0, wr+s,0] + δr,−s[w1,0, (s,−1)]

(2.16)
=

(2.17)
{1}{r+ s+ 1}wr+s+1,0 + {1}δr+1,−s(s+ 1,−1)− {1}δr+1,−s(1, 0)

= {1}{r+ s+ 1}wr+s+1,0 + {1}δr+1,−s(s,−1),

where we used the Jacobi identity in the second equality and the induction
hypothesis in the third and fourth equalities. Dividing both sides by {1}, this
completes the proof of the induction step.
Finally, we prove that (2.14) to (2.17) imply (2.18) for r ≤ 1 by induction on r.
Fix r ≤ 1 and suppose that (2.18) holds for all s ∈ Z. Then, for s ∈ Z, we have

{1}[ws,−1, wr−1,1]
(2.15)
= [ws,−1, [wr,1, w−1,0]]
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= [[ws,−1, wr,1], w−1,0] + [wr,1, [ws,−1, w−1,0]]

(2.15)
= {r + s}[wr+s,0, w−1,0] + δr,−s[(s,−1), w−1,0]− {1}[wr,1, ws−1,−1]

(2.16)
=

(2.17)
{1}δr−1,−s(1, 0) + {1}{r+ s− 1}wr+s−1,0 − {1}δr−1,−s(r, 1)

= {1}{r+ s− 1}wr+s−1,0 + {1}δr−1,−s(s,−1),

where we used the Jacobi identity in the second equality, the induction hy-
pothesis in the third and fourth equalities, and the relation [ws,−1, w−1,0] =
−{1}ws−1,−1 in EH− in the third equality.

Corollary 2.10. For k ∈ Z, the algebra EHk is isomorphic to the free product
of the algebras EH+ and EH− modulo the relations

[ws,−1, w1,1] = {s+ 1}ws+1,0 − δs,−1k, s ∈ Z, (2.19)

[ws,±1, w∓r,0] = {r}ws∓r,±1, r ≥ 1, s ∈ Z, (2.20)

[wr,0, w−s,0] = 0, r, s ≥ 1. (2.21)

Lemma 2.11. For k ∈ Z, EHk is generated, as an algebra, by wr,±1, r ∈ Z.

Proof. Fix k ∈ Z. Let A denote the subalgebra of EHk generated by wr,±1,
r ∈ Z. By Lemma 2.7, it suffices to show that wr,0 ∈ A for all nonzero
r ∈ Z. But this follows easily from the fact that, for r ∈ Z, r 6= 0, we have
[w0,−1, wr,1] = {r}wr,0.

Corollary 2.12. The isomorphism ωk from (2.13) is the unique isomorphism

EHk

∼=
−→ EH−k such that wr,±1 7→ wr,∓1 for r ∈ Z.

3 Trace of a category

In this section we collect some important facts about traces of categories. We
refer the reader to [BGHL14] for a more thorough treatment. Throughout this
section k denotes an arbitrary commutative ring.
Recall that the trace or zeroth Hochschild homology of a small k-linear cate-
gory C is the k-module

Tr(C) :=

(⊕

X∈C

EndC(X)

)
/ spank{f ◦ g − g ◦ f}, (3.1)

where f and g run through all pairs of morphisms f : X → Y and g : Y → X
in C. We let [f ] ∈ Tr(C) denote the class of an endomorphism f ∈ EndC(X).
For f, g ∈

⊕
X∈C EndC(X), we define

f ≡ g ⇐⇒ [f ] = [g]. (3.2)

Thus, for example, we have

fg ≡ gf for all f : X → Y, g : Y → X. (3.3)
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If C is a k-linear monoidal category, then Tr(C) is an associative k-algebra with
multiplication given by

[f ][g] := [f ⊗ g]. (3.4)

A k-linear functor F : C → D induces a linear map on traces:

Tr(F ) : Tr(C) → Tr(D), [f ] 7→ [F (f)], f an endomorphism in C. (3.5)

If C,D are monoidal categories and F is a monoidal functor, then (3.5) is a
homomorphism of associative k-algebras.

If Ci, i ∈ I, are k-linear categories, then we have a canonical isomorphism

Tr

(⊔

i∈I

Ci

)
∼=
⊕

i∈I

Tr(Ci).

If C1, C2 are k-linear subcategories of a k-linear monoidal category C, then the
tensor product ⊗ : C1 × C2 → C induces a linear map

Tr(C1)⊗ Tr(C2) → Tr(C).

For a k-linear category C, let Add(C) denote its additive envelope. If C is
monoidal, then Add(C) inherits a natural monoidal structure.

Lemma 3.1 ([BGHL14, Exercise 9]). If C is a k-linear category, then the inclu-
sion functor C → Add(C) induces a linear isomorphism Tr(C) ∼= Tr(Add(C)).
If C is monoidal, then this is an isomorphism of associative k-algebras.

Proof. Objects of Add(C) are formal direct sums
⊕n

i=1Xi, Xi ∈ C. An en-
domorphism of such an object is a matrix (fij)

n
i,j=1 with fij : Xi → Xj . For

j = 1, . . . , n, we have canonical inclusion and projection maps

Xj

ıj
−֒→

n⊕

i=1

Xi
πj

−→→ Xj .

Then we have

(fij)
n
i,j=1 =

n∑

i,j=1

ıjfijπi ≡

n∑

i,j=1

fijπiıj ≡

n∑

i=1

fii.

Thus the map Tr(C) → Tr(Add(C)) induced by the inclusion functor is surjec-
tive.

Similarly, for morphisms

n⊕

i=1

Xi
f=(fij)
−−−−−→

m⊕

j=1

Yj
g=(gji)
−−−−−→

n⊕

i=1

Xi
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in Add(C), we have

fg − gf =

(
n∑

i=1

filgji

)m

j,l=1

−




m∑

j=1

gjlfij




n

i,l=1

≡
n∑

i=1

m∑

j=1

(fijgji − gjifij).

Hence the map Tr(C) → Tr(Add(C)) induced by the inclusion functor is also in-
jective. As noted above, this map is a homomorphism of associative k-algebras
when C is monoidal.

If S ⊆ Ob(C) is a subset of the set of objects of a small category C, let C|S
denote the full subcategory of C with Ob(C|S) = S.

Lemma 3.2 ([BHLW17, Lem. 2.1]). Suppose C is a k-linear additive category.
Let S ⊆ Ob(C) be a subset such that every object of C is isomorphic to a direct
sum of finitely many copies of objects in S. Then the inclusion functor C|S → C
induces a linear isomorphism Tr(C|S) ∼= Tr(C).

Corollary 3.3. Suppose C is a k-linear (not necessarily additive) category.
Let S ⊆ Ob(C) be a subset such that every object of C is isomorphic in Add(C)
to a direct sum of finitely many copies of objects in S. Then the inclusion
functor C|S → C induces a linear isomorphism Tr(C|S) ∼= Tr(C).

Proof. The inclusion functors C|S
F
−→ C

G
−→ Add(C) induce linear maps

Tr(C|S)
Tr(F )
−−−−→ Tr(C)

Tr(G)
−−−−→ Tr(Add(C)).

The maps Tr(G) ◦ Tr(F ) = Tr(G ◦ F ) and Tr(G) are linear isomorphisms by
Lemma 3.2 and Lemma 3.1, respectively. It follows that Tr(F ) is also a linear
isomorphism.

For the remainder of this section, we assume that C is a small k-linear additive
category with

Ob(C) = {Xn : n ∈ N},

where N denotes the set of nonnegative integers, and we assume that Xn 6=
Xm for n 6= m. Furthermore, suppose that we have subsets Dm,n ⊆
HomC(Xn, Xm), m,n ∈ N, and Dn ⊆ HomC(Xn, Xn), n ∈ N, with the fol-
lowing properties:

(B1) We have Dn,n = {1Xn
} for all n ∈ N, and Bm,n :=

⊔min(m,n)
l=0 Dm,lDlDl,n

is a basis of HomC(Xn, Xm) for each m,n ∈ N. (Part of our assumption
here is that the sets Dm,lDlDl,n are disjoint.)

(B2) For all n ∈ N, Rn := spankDn is a subalgebra of EndC(Xn).

For n ∈ N, let Cn denote k-linear subcategory of C with one object Xn and
EndCn

(Xn) = Rn.
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Proposition 3.4. Under the above assumptions on C, the inclusion⊕
n∈N

Cn → C induces a linear isomorphism

⊕

n∈N

Tr(Cn)
∼=
−→ Tr(C).

Proof. This is proved in [RS22, Prop. 2.11] using the equivalent language of
locally unital algebras.

4 Quantum Heisenberg category

In this section, we recall the definition of the quantum Heisenberg category
introduced in [BSW20b] and state some important relations that will be used
in our computations to follow. Throughout this section we fix a commutative
ring k containing Q (in particular, k is of characteristic zero), and q ∈ k×

satisfying (2.1). Let z = q − q−1 = {1} and choose t ∈ k×. The most generic
choice of ground ring is thus k = Q[q±1, t±1, {d}−1 : d ≥ 1]. Another valid
choice is a field k of characteristic zero, with q, t ∈ k× such that q is not a root
of unity. We also fix a central charge k ∈ Z.

4.1 Definition

Definition 4.1 ([BSW20b, Def. 4.1]). The quantum Heisenberg category Heisk
is the strict k-linear monoidal category generated by objects ↑, ↓ and morphisms

, : ↑ ⊗ ↑ → ↑ ⊗ ↑, : ↑ → ↑,

: 1 → ↓ ⊗ ↑, : ↑ ⊗ ↓ → 1, : 1 → ↑ ⊗ ↓, : ↓ ⊗ ↑ → 1,

subject to relations that we now describe. First, we require , which we call a
dot, to be invertible. For r ∈ Z, we let r denote the composition of r dots
if r ≥ 0 and the composition of |r| inverse dots if r < 0. We then impose the
following additional relations:

= = , = , (4.1)

− = z , (4.2)

= , = , (4.3)

= , = , (4.4)

= − t−1z + z2
∑

r,s>0

−r−s+

r

s

, (4.5)
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= + tz + z2
∑

r,s>0

−r−s +

r

s

, (4.6)

= δk,0t
−1 if k ≥ 0, r =

δr,0t− δr,kt
−1

z
1
1

if 0 ≤ r ≤ k, (4.7)

= δk,0t if k ≤ 0, r =
δr,−kt− δr,0t

−1

z
1
1

if 0 ≤ r ≤ −k. (4.8)

(In fact, the second relation in (4.3) is redundant, since it follows from the first
relation in (4.3) and the first two equalities in (4.1).) In the above relations we
have used right and left crossings defined by

:= , := , := , := , (4.9)

and (+)-bubbles defined by

r+ := r , r + := r , r > 0, (4.10)

and

r−k+ := tr+1zr−1 det
(

k+i−j+1

)
i,j=1,...,r

, r ≤ k, (4.11)

r+k + := −t−r−1zr−1 det
(
− −k+i−j+1

)
i,j=1,...,r

, r ≤ −k, (4.12)

where we interpret the determinants as δr,0 when r ≤ 0. In particular, note
that the sums appearing in (4.5) and (4.6) are finite. When we wish to make the
parameters z and t explicit, we will write Heisk(z, t) for Heisk. This completes
the definition of Heisk.

As explained in the proof of [BSW20b, Th. 4.2], the defining relations of Heisk
imply that we have the isomorphisms
(

· · · k−1

)T
: ↑ ⊗ ↓ → ↓ ⊗ ↑ ⊕1⊕k if k ≥ 0,

(
· · · −k−1

)
: ↑ ⊗ ↓ ⊕1⊕(−k) → ↓ ⊗ ↑ if k ≤ 0,

(4.13)

in Add(Heisk), where Add denotes the additive envelope.

4.2 Additional relations

We now recall some additional relations that hold in Heisk. It follows from the
defining relations that

= if k < 0, = if k > 0,

= if k = 0, = if k = 0.

(4.14)
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(See [BSW20b, (4.14)–(4.16)].)

Note that (4.4) implies that ↓ is right dual to ↑. We also have (see [BSW20b,
Lem. 3.7])

= , = , (4.15)

so that ↓ is also left dual to ↑. In fact Heisk is strictly pivotal, with duality
functor defined on morphisms by rotating diagrams through 180°; see [BSW20b,
(3.2.1)]. Thus, for example, we can define downward crossings and dots by

:= = , := = , := = ,

and we have right, left, and downwards skein relations,

− = z , − = z , − = z . (4.16)

as well as right, left, and downward versions of (4.3). In what follows, we
will freely use the pivotal structure, referring to a relation by equation number
even when we use a rotated version of it. In addition, it follows from the
pivotal structure on Heisk that dots slide over cups and caps. Therefore, we
will sometimes draw dots at the critical points of cups or caps, since this causes
no ambiguity.

It follows from repeated use of (4.2) and (4.3) that the following relations hold
for r ∈ Z:

r
=





r
− z

∑

a+b=r
a,b>0

a b if r > 0,

r
+ z

∑

a+b=r
a,b≤0

a b if r ≤ 0;

r
=





r
+ z

∑

a+b=r
a,b≥0

a b if r ≥ 0,

r
− z

∑

a+b=r
a,b<0

a b if r < 0;

(4.17)
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r
=





r
+ z

∑

a+b=r
a,b>0

a b if r > 0,

r
− z

∑

a+b=r
a,b≤0

a b if r ≤ 0;

r
=





r
− z

∑

a+b=r
a,b≥0

a b if r ≥ 0,

r
+ z

∑

a+b=r
a,b<0

a b if r < 0.

(4.18)

We define (−)-bubbles (see [BSW20b, (2.18)]) by

r− := r − r+ , r − := r − r + , r ∈ Z. (4.19)

We then have the infinite grassmannian relations ([BSW20b, Lem. 3.4])

∑

r+s=n r

+

s

+ =
∑

r+s=n r

−

s

− = −δn,0z
−21

1

, n ∈ Z, (4.20)

and the relations

r

+ = δr,−ktz
−11

1

, r ≤ −k,
r

+ = −δr,kt
−1z−11

1

, r ≤ k, (4.21)

r

− = δr,0tz
−11

1

, r ≥ 0,
r

− = −δr,0t
−1z−11

1

. r ≥ 0. (4.22)

It will useful to express some our relations in terms of generating functions in
an indeterminate u. Define

+ (u) := t−1z
∑

r∈Z r

+ u−r ∈ uk1
1

+ uk−1 EndHeisk(1)Ju
−1K, (4.23)

+ (u) := −tz
∑

r∈Z r

+ u−r ∈ u−k1
1

+ u−k−1 EndHeisk
(1)Ju−1K, (4.24)

− (u) := −tz
∑

r∈Z r

− u−r ∈ 1
1

+ uEndHeisk(1)JuK, (4.25)

− (u) := t−1z
∑

r∈Z r

− u−r ∈ 1
1

+ uEndHeisk
(1)JuK. (4.26)

Then (4.20) can be restated as

+ (u) + (u) = − (u) − (u) = 1
1

. (4.27)
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The following curl relations hold for all r ∈ Z ([BSW20b, Lem. 4.4]):

r = z
∑

a≥0

a

r−a

+ − z
∑

a>0

−a

r+a

− ,

r = z
∑

a>0

a

r−a

+ − z
∑

a≥0

−a

r+a

− ,

(4.28)

r = z
∑

a≥0

−a

r+a

− − z
∑

a>0

a

r−a

+ ,

r = z
∑

a>0

−a

r+a

− − z
∑

a≥0

a

r−a

+ .

(4.29)

By [BSW20b, Lem. 4.5] (see [BSW22, Lem. 5.7] for a proof, taking A = k

there) we have the following braid relation for alternating crossings:

− =
∑

r,s≥0
a>0

+−r−s−a

r

s
a if k ≥ 0, (4.30)

− =
∑

r,s≥0
a>0

+ −r−s−a

r

s
a if k ≤ 0. (4.31)

For all other orientations of the strands, the usual braid relation holds.

4.3 The center

Recall that the center of a monoidal category C is the endomorphism algebra
EndC(1) of the unit object. In this subsection, we describe the center of the
quantum Heisenberg category and how elements of the center slide past strands.
Let Sym denote the ring of symmetric functions with coefficients in k. For
r ∈ N, let hr, er, and pr denote the r-th complete homogeneous, elementary,
and power sum symmetric functions, respectively. For f ∈ Sym, define the
following elements of Sym⊗ Sym:

f+ := f ⊗ 1, f− := 1⊗ f. (4.32)

Proposition 4.2. We have an isomorphism

β : Sym⊗ Sym → EndHeisk(1), (4.33)

given by, for r ≥ 1,

h+r 7→ −tz
r+k

+ , h−r 7→ t−1z
−r

− , (4.34)
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e+r 7→ (−1)rt−1z
r−k

+ , e−r 7→ (−1)r−1tz
−r

− , (4.35)

p+r 7→ z2
∑

s∈Z

s
s

+

r−s

+ , p−r 7→ z2
∑

s∈Z

s
−s

−

s−r

− . (4.36)

Proof. The fact that we have an isomorphism β given by (4.34) and (4.35) was
first shown in [BSW20b, Cor. 10.2], although we use here the sign conventions
of [BSW22, Cor. 9.3] (where the Frobenius algebra A there is k). For the
power sums, recall that pr =

∑r
s=0(−1)s−1seshr−s; see [Mac95, p. 33]. Also

note that the maps (4.34) to (4.36) are valid for r = 0 when we adopt the usual
conventions that h0 = e0 = 1 and p0 = 0. The image of p−r given in (4.36)
follows immediately. For the image of p+r , we have

p+r 7→ z2
∑

s∈Z

s
s−k

+

r−s+k

+ = z2
∑

s∈Z

(s+ k)
s

+

r−s

+
(4.20)
= z2

∑

s∈Z

s
s

+

r−s

+ .

Next we recall how bubbles slide past strings. The precise relation is easiest
to state using the generating functions (4.23) to (4.26) and dots labelled by
formal power series. We define

xr := r , r ∈ Z.

Then, expanding linearly, we can also label dots by polynomials anx
n + · · ·+

a1x + a0 ∈ k[x], or even by Laurent series in k[x]((u−1)) or k[x]((u)). For
example, expanding in k[x]((u−1)), we have

xu(u−x)−2 = u−1 + 2u−2
2 + 3u−3

3 + 4u−4
4 + · · · .

We adopt the convention that, in any equation involving the generating func-
tions (4.25) and (4.26), we expand all rational functions as Laurent series in
k[x]((u)). In all other equations, we expand rational functions as Laurent series
in k[x]((u−1)). With these conventions, we have the following bubble slides :

± (u) = ± (u)1−z2xu(u−x)−2 ,

± (u) = ± (u) 1−z2xu(u−x)2 .

(4.37)

(See [BSW20b, Lem. 4.6] for the statement and [BSW22, Lem. 5.6] for a proof,
taking A = k there.) In fact, as we see in the next result, the bubble slides
are simpler when using the images under β of the power sums. For r ∈ Z, we
define the following element of EndHeisk

(1):

r :=





−{r}−1β(p+r ) if r > 0,

0 if r = 0,

−{r}−1β(p−−r) if r < 0.

(4.38)
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It follows that the center of Heisk is a polynomial algebra in the r , r 6= 0:

EndHeisk
(1) = k

[
r : r ∈ Z, r 6= 0

]
, (4.39)

and we have

β(Sym⊗1) = k
[

r : r > 0
]
, β(1⊗ Sym) = k

[
r : r < 0

]
. (4.40)

Proposition 4.3. For r ∈ Z, we have

r = r + {r} r . (4.41)

Proof. The statement is trivial for r = 0. Now suppose r > 0 and consider the
generating functions

H+(u) :=
∑

r≥0

h+r u
−r, E+(u) :=

∑

r≥0

e+r u
−r, P+(u) :=

∑

r≥1

p+r u
1−r. (4.42)

Then we have

H+(u)E+(−u) = 1,

P+(u) = −u2H ′
+(u)/H+(u) = −u2H ′

+(u)E+(−u).
(4.43)

(See, for example, [Mac95, (I.2.6) and (I.2.10)] setting the t there equal to u−1.)
Furthermore,

β(H+(u)) = uk + (u), β(E+(−u)) = u−k
+ (u), (4.44)

Let f(u) = 1 − z2xu(u − x)−2 be the rational function appearing in (4.37).
Then we have

β(H+(u))
(4.37)
= f(u) β(H+(u)).

Differentiating with respect to u gives

β(H ′
+(u)) = f(u) β(H ′

+(u)) + f ′(u) β(H+(u)).

Multiplying on the left by −u2β(E+(−u)⊗ 1) and using (4.37) again, we have

β(P+(u)) = β(P+(u)) + −u2f ′(u)/f(u) .

Now, noting that f(u) = (u−q2x)(u−q−2x)
(u−x)2 , we have
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f ′(u)

f(u)
=

∂

∂u
ln(f(u)) =

(
1

u− q2x
+

1

u− q−2x
−

2

u− x

)

= u−1
∑

r≥0

((
q2x

u

)r

+

(
q−2x

u

)r

− 2
(x
u

)r)
=
∑

r≥1

{r}2xru−r−1.

Thus we have

β(P+(u)) = β(P+(u))−
∑

r≥1

{r}2u1−r
r ,

and (4.41) follows after dividing both sides by −{r} and equating coefficients
of u. The case r < 0 is similar, except that we work with power series in u, as
opposed to u−1.

4.4 Basis theorem

We now recall the important basis theorem for the morphism spaces of Heisk.
Let X = Xr⊗· · ·⊗X1 and Y = Ys⊗· · ·⊗Y1 be objects of Heisk for Xi, Yj ∈ {↑
, ↓}. An (X,Y )-matching is a bijection between {i : Xi =↑} ⊔ {j : Yj =↓} and
{i : Xi =↓} ⊔ {j : Yj =↑}. A reduced lift of an (X,Y )-matching is a diagram
representing a morphism X → Y such that

• the endpoints of each string are points corresponding under the given
matching;

• there are no floating bubbles and no dots on any string;

• there are no self-intersections of strings and no two strings cross each
other more than once.

Fix a set B(X,Y ) consisting of a choice of reduced lift for each of the (X,Y )-
matchings. Let B◦(X,Y ) be the set of all morphisms that can be obtained from
the elements of B(X,Y ) by adding dots labelled with integer multiplicities near
to the terminus of each string. Using the morphism β of Proposition 4.2, we
can make the morphism space HomHeisk(X,Y ) into a right Sym⊗ Sym-module:

φθ := φ⊗ β(θ), φ ∈ HomHeisk
(X,Y ), θ ∈ Sym⊗ Sym .

Theorem 4.4 ([BSW20b, Th. 10.1]). For any objects X,Y ∈ Heisk, the mor-
phism space
HomHeisk

(X,Y ) is a free right Sym⊗ Sym-module with basis B◦(X,Y ).

By [BSW20b, Th. 3.2], there is a unique isomorphism of k-linear monoidal
categories

Ωk : Heisk(z, t)
∼=
−→ Heis−k(z, t

−1)op (4.45)
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given on the generating morphisms by

7→ − , 7→ − , 7→ ,

7→ , 7→ , 7→ − , 7→ − .
(4.46)

The isomorphism Ωk acts on bubbles as

r

± 7→ −
r

± ,
r

± 7→ −
r

± , s 7→ − s , (4.47)

for r, s ∈ Z, s 6= 0.

5 Partial quantum Heisenberg categories

In this short section we define certain subcategories of Heisk, which we call
partial quantum Heisenberg categories. Roughly speaking, our aim is to split
Heisk in half in such a way that, when we later identify its trace with the elliptic
Hall algebra EHk, the two halves correspond to EH+ and EH−. Throughout
this section we continue with the assumptions on k, q, z, t, and k made at the
beginning of Section 4.

Definition 5.1. Define Heis
+
to be the strict k-linear monoidal category gen-

erated by the object ↑ and morphisms

, : ↑ ⊗ ↑ → ↑ ⊗ ↑, : ↑ → ↑, r : 1 → 1, r > 0,

subject to the relations (4.1) to (4.3), relation (4.41) for r > 0, and the relation

that the dot is invertible. Define Heis
−

to be the strict k-linear monoidal
category generated by the object ↓ and morphisms

, : ↓ ⊗ ↓ → ↓ ⊗ ↓, : ↓ → ↓, r : 1 → 1, r < 0,

subject to the 180° rotation of relations (4.1) to (4.3) and (4.41) for r < 0, and
the relation that the dot is invertible.

Note that the definition of Heis
±

does not involve k.

Proposition 5.2. For k ∈ Z, we have faithful k-linear monoidal functors

Ψ±
k : Heis

±
→ Heisk,

mapping the generating objects and morphisms of Heis
±

to the objects and
morphisms in Heisk denoted by the same symbols.

Proof. We give the proof for Ψ+
k , since the proof for Ψ−

k is analogous. Because

all generating morphisms of Heis
+
are endomorphisms, we have HomHeis+(↑

⊗n

, ↑⊗m) = 0 for n 6= m. Since the defining relations of Heis
+

hold in Heisk, the
functor is well defined.
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Fix n ∈ N define B0(↑
⊗n, ↑⊗n) as before Theorem 4.4. Let BSym be the basis of

Sym consisting of the power sum symmetric functions pλ = pλ1 · · · pλl
, where

λ = (λ1, . . . , λl) is a partition. A standard straightening argument shows that
the morphisms

φ⊗ β(f ⊗ 1), φ ∈ B◦(↑
⊗n, ↑⊗n), f ∈ BSym,

span HomHeis+(↑
⊗n, ↑⊗n). (See for example, the proof of [BSW20b, Th. 10.1].)

By Theorem 4.4, the images of these morphisms under Ψ+
k are linearly inde-

pendent in Heisk.

For k ∈ Z, define
Heis

±
k := Ψ±

k (Heis
±
).

It follows that elements of β(Sym⊗1) are morphisms in Heis
+
k , while elements

of β(1 ⊗ Sym) are morphisms in Heis
−
k . It also follows from Proposition 5.2

that we have isomorphisms of k-linear monoidal categories

Heis
±
k
∼= Heis

±
l , k, l ∈ Z. (5.1)

6 Skein algebra of the torus

In this section we recall the definition of the skein algebra of the torus and
identify it with the trace of the quantum Heisenberg category of central charge
zero. Throughout this section we work over an arbitrary commutative ground
ring k and z, t ∈ k×. (Although we introduced Heisk in Section 4 under more
restrictive assumptions on k, all the results used in the current section hold
more generally, as shown in [BSW20b].)
Consider the annulus

A = [0, 1]2/ ∼, (6.1)

where ∼ is the relation given by (0, b) ∼ (1, b) for all b ∈ [0, 1]. We will denote
points in A by representatives of the equivalence classes under ∼. In order to
make the categories we are about to describe strict, we fix a countable number
of points in A, which will be the possible endpoints of tangles. We choose the
points

Pn =
(
1− 1

2n ,
1
2

)
∈ A, n ∈ Z>0. (6.2)

Up to isomorphism, our categories will not depend on the particular choice of
points. We will typically draw them as equally spaced, or adjust the spacing
to the particular tangle we draw.
We let FOT (A) be the category of framed oriented tangles over A. Its objects
are finite sequences (ε1, . . . , εn) of elements of {↑, ↓}. The unit object 1 is the
empty sequence. Morphisms in FOT (A) from (ε1, . . . , εm) to (ε′1, . . . , ε

′
n) are

framed oriented tangles in A× [0, 1], up to ambient isotopy, with endpoints

({P1, . . . , Pm} × {0}) ∪ ({P1, . . . , Pn} × {1})
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such that the orientation of the tangle at each Pi × {0} agrees with εi, the
orientation at each P ′

i×{1} agrees with ε′i, and the framing at the point Pi×{0}
(respectively, Pi × {1}) points towards Pi+1 × {0} (respectively, Pi+1 × {1}).
We allow tangles to have closed components. For example,

∈ HomFOT (A)(↑ ⊗ ↑ ⊗ ↓, ↑ ⊗ ↓ ⊗ ↑ ⊗ ↓ ⊗ ↑), (6.3)

where we adopt the convention of blackboard framing (i.e. the framing is par-
allel to the page) and we identify the dashed vertical edges. We always isotope
tangles so that they intersect the cut transversely. The composite f ◦ g is
given by placing f above g and rescaling the vertical coordinate. The category
FOT (A) is a strict monoidal category. Viewing A × [0, 1] as the cylinder, the
tensor product f ⊗ g is given by placing the cylinder for g inside the cylinder
for f , then rescaling and isotoping the endpoints of the tangles so that the
endpoints of g are to the right of those of f (preserving the relative order of
the endpoints in f and the endpoints in g). In terms of diagrams as in (6.3),
this corresponds to placing the diagram of g to the right of the diagram of f ,
and then extending all strands of f exiting the right side of its diagram to pass
over the diagram for g and extending all strands of g exiting the left side of its
diagram to pass under the diagram for f . For example,

⊗ = .

Let FOT (A)k denote the k-linearization of FOT (A). Thus, the morphisms in
FOT (A)k are formal k-linear combinations of morphisms in FOT (A), with
composition and tensor product extended by linearity. The framed HOM-
FLYPT skein category OS(A; z, t) over the annulus is the category obtained
from FOT (A)k by imposing the relations

− = z , = t−1 , =
t− t−1

z
1
1

. (6.4)

Note that these are precisely the relations (4.2) and (4.7) with k = 0. In fact,
we have the following result, which states that the framed HOMFLYPT skein
category over the annulus is the quantum Heisenberg category at central charge
zero.

Proposition 6.1 ([MS21, Cor. 7.7]). We have an isomorphism of monoidal
categories

Heis0
∼=
−→ OS(A; z, t). (6.5)
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This isomorphism sends the generators , , , , , and to the

tangles with the same diagrams, and the image of the dots are

7→ , 7→ .

Now consider the torus

T 2 = [0, 1]2/ ≈ (6.6)

where≈ is the relation given by (0, b) ≈ (1, b) for all b ∈ [0, 1], and (a, 0) ≈ (a, 1)
for all a ∈ [0, 1]. We let Sk(T 2; z, t) be the skein algebra of the torus. As
a k-module, this is space of k-linear combinations of framed oriented links in
T 2×[0, 1], up to isotopy, modulo the relations (6.4). The product in Sk(T 2; z, t)
is defined as follows. Consider the two embeddings

ı1 : T
2 × [0, 1] →֒ T 2 × [0, 1], (a, b) 7→ (a, (b+ 2)/3),

ı2 : T
2 × [0, 1] →֒ T 2 × [0, 1], (a, b) 7→ (a, b/3).

Then, for x, y ∈ Sk(T 2; z, t), we define xy := ı1(x) ⊔ ı2(x). Intuitively, the
product xy is given by stacking x above y.

Proposition 6.2. We have an isomorphism of algebras

Tr(OS(A; z, t)) ∼= Sk(T 2; z, t).

Proof. Consider the natural surjection A ։ T 2 sending the equivalence
class of (a, b) under ∼ to the equivalence class of (a, b) under ≈. Under
this surjection, any endomorphism in OS(A; z, t) can be viewed as an ele-
ment of Sk(T 2; z, t) by identifying the top and bottom of the string dia-
grams in OS(A; z, t). This clearly descends to an algebra homomorphism
f : Tr(OS(A; z, t)) → Sk(T 2; z, t). Conversely, we can isotope framed oriented
tangles in T 2 so that they intersect the circle {(a, 0) : a ∈ [0, 1]} = {(a, 1) :
a ∈ [0, 1]} ⊆ T 2 transversely. Then, cutting along this circle gives a map
g : Sk(T 2; z, t) → Tr(OS(A; z, t)); the trace condition (3.3) ensures that this
map is well-defined. It is straightforward to verify that f and g are mutually
inverse.

Corollary 6.3. We have an isomorphism of algebras

Sk(T 2; z, t)
∼=
−→ Tr(Heis0).

Proof. This follows immediately from Propositions 6.1 and 6.2.

7 Trace of the quantum Heisenberg category

In this section, we prove our main result (Theorem 7.1). Namely, we describe
an algebra isomorphism from EHk to the trace of the quantum Heisenberg
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category. Throughout this section we continue with the assumptions on k, q,
z, t, and k made at the beginning of Section 4.
Let Heisk be the quantum Heisenberg category introduced in Section 4. Before
stating our main result, we introduce some notation. For i, j ∈ N, define

σi,j :=
· · ·

· · ·
∈ EndHeisk(↑

⊗(i+j+1)), (7.1)

σ−i,−j := · · ·
· · ·

∈ EndHeisk(↓
⊗(i+j+1)), (7.2)

where the strand crossing all the others passes over i strands and under j
strands. Then define

σn :=
z

{n}

n−1∑

i=0

σi,n−i−1, σ−n :=
z

{n}

n−1∑

i=0

σ−i,i−n+1, n ≥ 1. (7.3)

Note that σ1 = 1↑ and σ−1 = 1↓.
For r ∈ Z, n ∈ Z>0, define

χr,n :=
{r}

{rn}

(
· · ·r + · · ·r + · · ·+ · · · r

)
(7.4)

∈ EndHeisk
(↑⊗n),

χr,−n :=
{r}

{rn}

(
· · ·r + · · ·r + · · ·+ · · · r

)
(7.5)

∈ EndHeisk(↓
⊗n),

where we adopt the convention that {r}
{rn} = 1

n when r = 0, so that χ0,n = 1⊗n
↑

and χ0,−n = 1⊗n
↓

Theorem 7.1. For k ∈ Z, there is a unique isomorphism of algebras

ϕk : EHk

∼=
−→ Tr(Heisk)

such that
wr,1 7→

[
r
]
, wr,−1 7→

[
r
]
, r ∈ Z. (7.6)

Under ϕk, we also have

wr,0 7→
[

r
]
, r ∈ Z, r 6= 0, (7.7)

wr,n 7→ [χr,nσn], r, n ∈ Z, n 6= 0. (7.8)

The proof of Theorem 7.1 is given at the end of this section, after some prepara-
tory results. Note that the definition of EHk and the isomorphism of Theo-
rem 7.1 are independent of t, even though the definition of quantum Heisenberg
category Heisk involves t.
Recall the notation ≡ from (3.2), which we will use frequently in this section.
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Proposition 7.2. The k = 0 case of Theorem 7.1 holds.

Proof. It follows from Corollary 6.3 and [MS17, Th. 2] that we have an isomor-
phism

ϕ0 : EH0

∼=
−→ Tr(Heis0) (7.9)

satisfying (7.6). (Recall that our q and t are the s and v−1 of [MS17], respec-
tively. While [MS17] works over the ground ring k = C[q±1, t±, {d}−1 : d ≥ 1],
the result we use here holds more generally; see Remark 7.4.) More precisely,
under the isomorphism of Corollary 6.3, we have

7→
[

r
]
, 7→

[
r
]
.

where we identify the vertical dashed edges with each other and the horizontal
dashed edges with each other, and the curves wrap r times in the horizontal
direction (we have drawn the case r = 3). Since ±1 is coprime to r (see [MS17,
p. 810]), under the isomorphism of [MS17, Th. 2] we have

wr,1 7→ , wr,−1 7→ ,

where again the curves wrap r times in the horizontal direction. (Note that
the skein of the torus Sk(T 2; z, t) is denoted H(T 2) in [MS17].) On the other
hand, by Lemma 2.11, the isomorphism ϕ0 is uniquely determined by where it
maps wr,±1, r ∈ Z.
To show (7.7), it suffices to prove that, for r ∈ Z, r 6= 0,

− {r}
[

r
]
=
[

r
]
−
[

r
]
, (7.10)

since then the result follows after applying ϕ0 and using (2.2) and (7.6). We
prove the equality in (7.10) for r > 0, since the proof for r < 0 is analogous.
For r > 0, we have

r
(4.14)
=

r

(4.17)
≡ r − z

∑

a+b=r
a,b>0

a

b

(4.2)
≡

(4.14)
r − z

∑

a+b=r
a≥0, b>0

a

b

.

Hence

r − r
(4.29)
≡ −z2

∑

a+b=r
a≥0, b>0


∑

c>0 b−c a+c

− −
∑

c≥0 b+c a−c

+




(4.10)
=

(4.21)
(4.22)

z2
∑

a+b=r
a≥0, b>0

a∑

c=0 b+c

+

a−c

+
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= z2
∑

s∈Z

s
s

+

r−s

+
(4.36)
= β(p+r ) = −{r} r ,

as desired.
It remains to prove (7.8). By [MS17, Def. 2.5], we have

ϕ0(w0,n) = [σn], n 6= 0.

Thus, for r, n ∈ Z \ {0}, we have

ϕ0(wr,n) = {rn}−1ϕ0([wr,0, w0,n])

(7.7)
= {rn}−1

[
r ⊗ σn − σn ⊗ r

] (4.41)
= [χr,nσn].

Remark 7.3. As we see from the proof of Proposition 7.2, we use the results
of [MS17] to prove the k = 0 case of Theorem 7.1. The proof of [MS17, Th. 1]
involves induction on det

(
x y

)
, starting with the base cases

[[
r
]
,
[ ]]

= {r}
[

r
]
,
[[ ]

, r
]
= {r}

[
r
]
, r ∈ Z \ {0}. (7.11)

In [MS17], the proof of the first equation in (7.11) relies on [Mor02, Th. 4.2],
while the proof of the second involves direct skein manipulation. Note that the
first equation in (7.11) is precisely the bubble slide relation (4.41), while the
second equation in (7.11) is (7.10). Thus, in order to make the arguments of
the current paper independent of the results of [MS17], one would only need
to include the inductive argument of [MS17, §3.2]; this is a purely algebraic
argument, involving no skein theory.

Remark 7.4. Remark 7.3 allows us to see that [MS17, Th. 1 & 2] hold over
the more arbitrary ground ring k considered in this section. The assumption
that k contains Q is needed in the proof of [MS17, Lem. 3.1], since this proof
uses [Tur88, Th. 1], which involves the σn,0 (denoted An,0 in [MS17]), whereas
[MS17, Lem. 3.1] involves the σn (denoted Pn in [MS17]); solving for the σn,0
in terms of the σn requires division by n (see [MS17, Rem. 2.4]). Essentially,
at issue is the fact that the power sums generate Sym over Q, but not over Z;
see (4.38). The inductive argument of [MS17, §3.2] only requires division by
{d}, d ≥ 1.

Remark 7.5. In the case k = 0, our explicit description (7.7) and (7.8) of
the image of the isomorphism ϕk differs from that given in [MS17, Def. 2.5],
which involves decorated framed oriented curves. There is no contradiction
here, as the presence of the skein relations (6.4) means that different linear
combinations of classes of framed oriented tangles can be equal in the framed
HOMFLYPT skein algebra of the torus.

Proposition 7.6. If Theorem 7.1 holds for central charge k, then it holds for
central charge −k.
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Proof. Suppose Theorem 7.1 holds for some k ∈ Z. Recall the isomorphisms Ωk

and ωk from (4.45) and (2.13), respectively. Consider the following diagram:

EHk Tr(Heisk(z, t
−1))

EH−k Tr(Heis−k(z, t))

ϕk

Tr(Ωk)ω−k

ϕ−k

We use here the fact that, for any small k-linear category C, there is a canonical

isomorphism Tr(Cop)
∼=
−→ Tr(C), [f ] 7→ [f ]. By assumption, ϕk is an isomor-

phism of algebras. Since Tr(Ωk) and ω−k are also isomorphisms, there is an

algebra isomorphism ϕ−k : EH−k

∼=
−→ Tr(Heis−k(z, t)) making the above dia-

gram commute. For r ∈ Z, we have

ϕ−k (wr,1) = Tr(Ωk) ◦ ϕk ◦ ω−k(wr,1) =
[

r
]

and

ϕ−k (wr,−1) = Tr(Ωk) ◦ ϕk ◦ ω−k(wr,−1) =
[

r
]
.

Thus the first statement in Theorem 7.1 holds for central charge −k.

To prove that (7.7) also holds for central charge −k, we compute, for r 6= 0,

ϕ−k(wr,0) = Tr(Ωk) ◦ ϕk ◦ ω−k(wr,0) =
[

r
]
.

Finally, to prove that (7.8) also holds for central charge −k, we compute, for
n 6= 0,

ϕ−k(wr,n) = Tr(Ωk) ◦ ϕk ◦ ω−k(wr,n)

= (−1)n+1 Tr(Ωk)([χr,−nσ−n]) = [σnχr,n] = [χr,nσn],

where we use the fact that Ωk(σ−n) = (−1)nσn and Ωk(χr,−n) = −χr,n.

In light of Propositions 7.2 and 7.6, it suffices to prove Theorem 7.1 for central
charge k < 0. Thus,

for the remainder of this section we assume k < 0.

The proof of the following proposition is inspired by that of [RS22, Prop. 6.2].

Proposition 7.7. The tensor product

Heis
+
k × Heis

−
k

⊗
−→ Heisk

induces a linear isomorphism

Tr(Heis
+
k )⊗ Tr(Heis

−
k )

∼=
−→ Tr(Heisk).
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Proof. Since k < 0, it follows from (4.13) that every object of Add(Heisk) is
isomorphic to a direct sum of objects of the form ↑⊗m ⊗ ↓⊗n, m,n ∈ N. Let C
be the full subcategory of Heisk whose objects are ↑⊗m ⊗ ↓⊗n, m,n ∈ N. Then,
by Corollary 3.3, the inclusion functor C → Heisk induces a linear isomorphism
Tr(C) ∼= Tr(Heisk).
For m ∈ Z, let C(m) be the full subcategory of Heisk whose objects are
↑⊕(m+n) ⊗ ↓⊗n for n ≥ max(0,−m). Then there are no morphisms be-
tween objects of C(m) and C(n) for m 6= n. Thus C =

⊔
m∈Z

C(m), and so

Tr(C) =
⊕

m∈Z
Tr(C(m)).

Fix m ∈ Z for the remainder of the proof. For n ∈ Z with n ≥ max(0,−m), let

Xn :=↑⊗(m+n) ⊗ ↓⊗n .

Recall the definition of a reduced lift given above Theorem 4.4, and let BSym be
a basis of Sym (e.g. we can takeBSym to be the set of Schur functions). Fix a set
D(n2, n1) consisting of a choice of reduced lift for each (Xn1 , Xn2)-matching.
Then, for n, n1, n2 ≥ max(0,−m), define the following:

• If n1 > n2, let Dn2,n1 denote the set of all morphisms obtained from
elements ofD(n2, n1) containing no cups by adding to each string involved
in a cap an integer number of dots near the terminus of the string.

• If n1 < n2, let Dn2,n1 denote the set of all morphisms obtained from
elements ofD(n2, n1) containing no caps by adding to each string involved
in a cup an integer number of dots near the terminus of the string.

• Let Dn,n = {1Xn
}.

• Let Dn denote the set of all morphisms that can be obtained from the
elements ofD(n, n) containing no cups or caps by adding to each string an
integer number of dots near the terminus of the string, and then placing
an element of β(BSym ⊗ 1) in between the downward and upward strings
(i.e. to the right of all downward strings and to the left of all upward
strings), and then placing an element of β(1 ⊗ BSym) to the right of all
strings.

We claim that the sets Dn2,n1 , Dn satisfy the conditions (B1) and (B2) of
Section 3, where

Rn = End
Heis

+
k
(↑⊗(m+n))⊗ End

Heis
−

k
(↓⊗n).

Given the claim, the current proposition then follows from Proposition 3.4.
It remains to prove the claim. Condition (B2) is clear. To see that (B1)
is satisfied, we need to verify that, for each m,n ∈ N, the set Bn2,n1 =⊔min(n1,n2)

l=0 Dn2,lDlDl,n1 is a basis of HomC(Xn1 , Xn2). The difference between
the elements of Bn2,n1 and the elements described in Theorem 4.4 is that
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2 + 3 −−5

−4

2

2 +

3 −

−5

−4

2

Figure 1: Typical basis elements for m = −1, n1 = 3, n2 = 4.

• for strings connecting the top and bottom of the diagram, the basis ele-
ments in Theorem 4.4 have dots near the termini of the strands, whereas
the dots on such strands in the elements of Bn2,n1 are in the middle of
the diagram;

• the basis elements in Theorem 4.4 have all bubbles on the right side of
the diagram, whereas the (+)-bubbles appearing in elements of Bn2,n1

are in the middle of the diagram.

Using (4.2) and (4.3), dots slide through crossings modulo diagrams with fewer
total crossings. Similarly, by (4.37), bubbles slide through strands modulo
diagrams with fewer total dots. For example, in Figure 1, the left-hand diagram
is a typical element of D4,2D2D2,3, while the right-hand diagram is a typical
element of the basis from Theorem 4.4. The left-hand diagram is equal to
the right-hand diagram modulo diagrams with fewer total crossings. Thus the
claim follows by a standard triangularity argument.

Proposition 7.8. We have a linear isomorphism

ϕk : EHk

∼=
−→ Tr(Heisk)

satisfying (7.6) to (7.8). Furthermore, the restriction of ϕk to EH±
k yields

isomorphism of algebras

EH±
k

∼=
−→ Tr(Heis

±
k ).

Proof. The map ϕk is the composite of linear isomorphisms

EHk

∼=
−→ EH+ ⊗ EH− (see (2.9))
∼=
−→ EH0 (see (2.9))
∼=
−→ Tr(Heis0) (Proposition 7.2)
∼=
−→ Tr(Heis

+
0 )⊗ Tr(Heis

−
0 ) (Proposition 7.7)

∼=
−→ Tr(Heis

+
k )⊗ Tr(Heis

−
k ) (see (5.1))

∼=
−→ Tr(Heisk).
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It follows from Propositions 7.2 and 7.7 that restriction of ϕ0 to EH±
0 yields

isomorphisms of algebras

EH±
0

∼=
−→ Tr(Heis

±
0 ).

Thus, restriction of ϕk to EH±
k yields the following composite of algebra iso-

morphisms:

EH±
k

∼=
−→ EH±

0

∼=
−→ Tr(Heis

±
0 )

∼=
−→ Tr(Heis

±
k ).

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. By Propositions 7.2 and 7.6, it suffices to give the proof
for the case k < 0, which we assume for the remainder of the proof. By
Proposition 7.8, we have a homomorphism of algebras

EH+
k ⋆ EH

−
k → Tr(Heisk)

(recall that ⋆ denotes the free product of algebras) satisfying

wr,1 7→
[

r
]
, wr,−1 7→

[
r
]
, ws,0 7→

[
s
]
, r, s ∈ Z, s 6= 0.

By Corollary 2.10, if we verify that the images of the relations (2.19) to (2.21)
hold in Tr(Heisk), it follows that we have an induced algebra homomorphism
EHk → Tr(Heisk), which is equal to the linear isomorphism ϕk of Proposi-
tion 7.8.
It is clear the image of (2.21) holds in Tr(Heisk) since Tr(β(Sym⊗ Sym)) is a
commutative subalgebra of Tr(Heisk). To verify that the image of (2.20) holds,
we compose all morphisms in (4.41) with s to see that

r s = s r + {r} s+r .

Passing to Tr(Heisk) gives the desired relations.
It remains to verify that the image of (2.19) is satisfied. More precisely, we
must show that

[
s
]
=
[

s
]
− {s+ 1}

[
s+1

]
+ δs,−1k. (7.12)

(Recall our convention that 0 = 0; see (4.38).)
We first prove (7.12) for s ≥ 0. In this case we have

s
(4.14)
=

s

(4.3)
=

s

(4.17)
≡ s − z

∑

a+b=s
a,b≥0

a

b+1

≡
s

− z
∑

a+b=s
a,b≥0

a

b+1
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(4.6)
=

(4.29)
s + tz

s+1

+ z2
∑

a>0

a
s+a+1 −a

+

− z2
∑

a+b=s
a,b≥0


∑

c≥0 b−c+1 a+c

− −
∑

c>0 b+c+1 a−c

+




(4.19)
(4.21)
=

(4.22)
s + z2

∑

a>0

a
s+a+1

+

−a

+ + z2
∑

a+b=s
a,b≥0

∑

c>0 b+c+1

+

a−c

+

= s + z2
∑

r>s

(r − s)
r+1

+

s−r

+ + z2
s∑

r=1

r
r+1

+

s−r

+ + z2
∑

r>s

s
r+1

+

s−r

+

= s + z2
∑

r≥1

r
r+1

+

s−r

+
(4.20)
=

(4.21)
s + z2

∑

r∈Z

r
r

+

s+1−r

+

(4.36)
= s − {s+ 1} s+1 .

Thus (7.12) holds.
Finally, we prove (7.12) for s < 0. In this case we have

s
(4.14)
=

s

(4.3)
=

s

(4.17)
≡ s + z

∑

a+b=s
a,b<0

a

b+1

≡
s

+ z
∑

a+b=s
a,b<0

a

b+1

(4.6)
=

(4.29)
s + tz

s+1

+ z2
∑

a,b>0 s+a+b+1 −a−b

+

+ z2
∑

a+b=s
a,b<0


∑

c≥0 b−c+1 a+c

− −
∑

c>0 b+c+1 a−c

+




(4.19)
=

(4.21)
s + tz

s+1

+ z2
∑

r>0

(r − 1)
s+r+1 −r

+

+ z2
∑

a+b=s
a,b<0


∑

c≥0 b−c+1

−

a+c

− −
∑

c>0 b+c+1

−

a−c

+


 ,

where, in the final sum above, we used the fact that
m

+

n

+ = 0 whenever
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m+ n < 0, by (4.21). Now,

∑

r>0

(r − 1)
s+r+1 −r

+
(4.19)
=
∑

r>0

(r − 1)
s+r+1

+

−r

+ +
∑

r>0

(r − 1)
s+r+1

−

−r

+

(4.20)
=

(4.21)
δs,−1(k + 1)z−21

1

+
∑

r>0

(r − 1)
s+r+1

−

−r

+

and

∑

a+b=s
a,b<0

∑

c>0 b+c+1

−

a−c

+ =

−s−1∑

a=1

∑

c>0 s+a+c+1

−

−a−c

+

=
∑

a,c>0 s+a+c+1

−

−a−c

+ =
∑

r>0

(r − 1)
s+r+1

−

−r

+ ,

where the second equality follows from the fact that, when a ≥ −s and c > 0,
we have s+ a+ c+ 1 > 0. Thus

s − s = δs,−1(k + 1)1
1

+ tz
s+1

+ z2
∑

a+b=s
a,b<0

∑

c≥0 b−c+1

−

a+c

−

(4.19)
=

(4.21)
(4.22)

δs,−1(k + 1)1
1

+ z2

s+1

−

0

− + z2
0∑

b=s+2

∑

c≤0 b+c

−

s+1−b−c

−

(4.22)
= δs,−1(k + 1)1

1

+ z2
0∑

b=s+1

∑

c≤0 b+c

−

s+1−b−c

−

(4.22)
= δs,−1(k + 1)1

1

+ z2
∑

r∈Z

(r + 1)
−r

−

r+s+1

−

(4.20)
= δs,−1k11 + z2

∑

r∈Z

r
−r

−

r+s+1

−
(4.36)
= δs,−1k − {s+ 1} s+1 .

This completes the proof of (7.12).

Remark 7.9. When k = −1, Theorem 7.1 can be seen as an extension of
[CLL+18, Th. 6.3], which gives an isomorphism between “half” of EH−1 and
the trace of the q-deformed Heisenberg category of [LS13], which is isomorphic
to the monoidal subcategory of Heis−1(z,−z

−1) consisting of all objects and all
morphisms not involving negative dots (which thus can be viewed as “half” of
Heis−1). Note that, even in the case k = −1, the approach of the current paper
has significant advantages. In particular, the extension of the isomorphism
to the full EHk allows one to work with the simpler presentation given in
Corollary 2.10. This allows one, for example, to avoid many of the lengthy and
technical arguments of [CLL+18, §4], such as [CLL+18, Prop. 4.10].
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8 Action on symmetric functions

There is a natural action of the trace Tr(Heisk) on the center EndHeisk(1), which
we now explore. Throughout this section we continue with the assumptions
on k, q, z, t, and k made at the beginning of Section 4. Let us depict an
endomorphism f ∈ EndHeisk(X) by

f ,

where the thick vertical strand is a horizontal juxtaposition of upward and
downward strands corresponding to 1X . Then we define the action of Tr(Heisk)
on EndHeisk

(1) by

[
f

]
· g = f g , f ∈ EndHeisk(X), X ∈ Heisk, g ∈ EndHeisk(1), (8.1)

and extend by linearity.
There is a unique map ρ : EHk ⊗ Sym⊗2 → Sym⊗2 making the diagram

EHk ⊗ Sym⊗2 Sym⊗2

Tr(Heisk)⊗ EndHeisk
(1) EndHeisk

(1)

ϕk⊗β∼=

ρ

β∼= (8.2)

commute, where the bottom horizontal map is given by the action (8.1). The
map ρ gives an action of EHk on Sym⊗2 and our goal is to give an explicit
description of this action. We will use the notation a · θ for ρ(a⊗ θ), a ∈ EHk,
θ ∈ Sym⊗2.
Recall that, for r ≥ 1, hr, er, and pr denote the degree r complete homo-
geneous symmetric function, elementary symmetric function, and power sum,
respectively. We also adopt the conventions

h0 = e0 = 1, p0 = 0 and hr = er = pr = 0 for r < 0.

Recall also the notation f± for f ∈ Sym given in (4.32). Then (4.34) to (4.36)
are valid for all r ∈ Z.

Lemma 8.1. We have

w±r,0 · θ = ∓{r}−1p±r θ, r ≥ 1, θ ∈ Sym⊗2, (8.3)

wr,1 · 1 = −t−1z−1h+r−k + tz−1h−−r, r ∈ Z, (8.4)

wr,−1 · 1 = (−1)r+ktz−1e+r+k + (−1)r−1t−1z−1e−−r, r ∈ Z. (8.5)

Proof. Equation (8.3) follows from (4.38) and (7.7). To see (8.4) and (8.5), we
compute
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wr,1 · 1 = β−1
(

r
)

(4.19)
= β−1

(
r + + r −

) (4.34)
= −t−1z−1h+r−k + tz−1h−−r,

and

wr,−1 · 1 = β−1
(

r
) (4.19)

= β−1
(

r+ + r−
)

(4.35)
= (−1)r+ktz−1e+r+k + (−1)r−1t−1z−1e−−r.

Let P be the set of all (λ−ℓ− , . . . , λ−2, λ−1, λ1, λ2, . . . , λℓ+) ∈ Zℓ−+ℓ+ , ℓ−, ℓ+ ∈
N, satisfying

λ−ℓ− ≤ · · · ≤ λ−1 < 0 < λ1 ≤ · · · ≤ λℓ+ . (8.6)

For such an element λ ∈ P , we define

ℓ±(λ) := ℓ±, ℓ(λ) := ℓ+ + ℓ−, Iλ := {−ℓ−, . . . ,−1, 1, . . . , ℓ+}, (8.7)

|λ| :=
∑

i∈Iλ

λi, {λ} :=
∏

i∈Iλ

{λi}, λ :=
∏

i∈Iλ

λi , (8.8)

Pλ :=
1

{λ}2




ℓ+∏

i=1

p+λi






ℓ−∏

i=1

p−−λi


 . (8.9)

We think of elements of P as partitions whose parts can be either positive or
negative. We allow ℓ− or ℓ+ (or both) to be zero. In particular, the empty
partition ∅ is an element of P . It follows from Proposition 4.2 and (4.38) that

{Pλ : λ ∈ P} is a basis for Sym⊗ Sym and

{ λ : λ ∈ P} is a basis for EndHeisk
(1).

Furthermore, it follows from (4.38) that

β(Pλ) =
(−1)ℓ(λ)

{λ} λ , λ ∈ P . (8.10)

For λ, µ ∈ P we define

µ E λ ⇐⇒ µ = (λia , . . . , λi1 , λj1 , . . . , λjb)

for some − ℓ−(λ) ≤ ia < · · · < i1 < 0 < j1 < . . . < jb ≤ ℓ+(λ). (8.11)

In other words, µ E λ if µ is obtained from λ by deleting some of its parts
(allowing also µ = λ).

Lemma 8.2. For λ ∈ P, we have

λ = {λ}
∑

µEλ

1

{µ}
|λ|−|µ| µ ,

λ = {λ}
∑

µEλ

(−1)ℓ(λ)−ℓ(µ)

{µ}
|λ|−|µ| µ .

(8.12)
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Proof. This follows from Proposition 4.3 by induction on ℓ(λ).

Theorem 8.3. The action ρ in (8.2) is the unique action of EHk on Sym⊗ Sym
given by

wr,1 · Pλ = z−1
∑

µEλ

(
−t−1h+r+|λ|−|µ|−k + th−−r−|λ|+|µ|

)
Pµ,

wr,−1 · Pλ

= z−1
∑

µEλ

(−1)r+ℓ(λ)−ℓ(µ)+|λ|+|µ|
(
(−1)kte+r+|λ|−|µ|+k − t−1e−−r−|λ|+|µ|

)
Pµ,

for r ∈ Z, λ ∈ P. Furthermore, Sym⊗ Sym is a cyclic EHk-module generated
by 1 ∈ Sym⊗ Sym.

Proof. The given expressions for wr,±1 ·Pλ follow from (8.4), (8.5), and (8.12).
The uniqueness follows from the fact that EHk is generated by wr,±1, r ∈ Z; see
Lemma 2.11. The fact that the module is generated by 1 follows from (8.3).

Remark 8.4. When k = 0, the action described in Theorem 8.3 is essentially
the action described in [MS17, Th. 4.1]. The precise connection is as follows.
Let

γ =

(
0 −1
1 0

)
∈ GL2(Z),

ξ : Sym⊗2 → Sym⊗2, ξ(Pλ) = (−1)ℓ(λ){λ}Pλ, λ ∈ P .

Then we have a commutative diagram

EH0 ⊗ Sym⊗2 Sym⊗2

EH0 ⊗ Sym⊗2 Sym⊗2

ρ

γ⊗ξ ξ ,

where γ : EH0 → EH0 is the isomorphism (2.8) and the bottom horizontal
arrow is the action of [MS17, Th. 4.1].

Note that, even though the definition of EHk does not depend on t, its action
on Sym⊗ Sym does. So we obtain a family of modules depending on the
parameter t. In addition, the following result shows that the cyclic vector
1 ∈ Sym⊗ Sym is an eigenvector for many of the w0,n, with the eigenvalues
depending on t.

Proposition 8.5. We have

w0,n · 1 =
tn − t−n

{n}
if k = 0, n 6= 0,

w0,n · 1 =
tn

{n}
if k, n > 0 or k, n < 0.

(8.13)
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Proof. First suppose k = 0. Then we have

= t , = t−1 , = t , = t−1 . (8.14)

This can be seen by using the fact that Heis0 is the framed HOMFLYPT skein
category (Proposition 6.1) or by using (4.21), (4.22), (4.28), and (4.29).
If n > 0, we have

w0,n · 1
(7.8)
=

z

{n}

n−1∑

i=0

[σi,n−i−1] · 1
(8.14)
=

(4.7)

z

{n}

n−1∑

i=0

tn−2i−1 t− t−1

z
=
tn − t−n

{n}
.

The case n < 0 is analogous
Now suppose n, k > 0. Then, by (4.21), (4.22), (4.28), and (4.29), we have

= t , = 0. (8.15)

Thus

w0,n · 1
(7.8)
=

z

{n}

n−1∑

i=0

[σi,n−i−1] · 1
(8.15)
=

(4.7)

z

{n}
tn−1 t

z
=

tn

{n}
.

The case n, k < 0 can be proved directly in an analogous manner, or obtained
from the n, k > 0 case by applying the isomorphism Ωk from (4.45).

9 Action on cocenters of cyclotomic Hecke algebras

In this final section, we describe the action of Tr(Heisk) on traces of cyclotomic
quotients of Heisk or, equivalently, on cocenters of cyclotomic Hecke algebras.
Throughout this section we assume that k is a field of characteristic zero and
q, t ∈ k×, with q not a root of unity.
If C and D are k-linear categories, we let C ⊠ D be the k-linear category with
objects that are pairs (X,Y ) of objects X ∈ C and Y ∈ D, and morphisms
given by

HomC⊠D((X1, Y1), (X2, Y2)) := HomC(X1, X2)⊗k HomD(Y1, Y2).

Composition of morphisms in C⊠D is given by (e⊗f)◦(g⊗h) := (e◦g)⊗(f ◦h),
extended by linearity. It is straightforward to verify that we have a linear
isomorphism

Tr(C)⊗ Tr(D)
∼=
−→ Tr(C ⊠D), [f ]⊗ [g] 7→ [f ⊗ g].

Amodule category over a k-linear monoidal category C is a k-linear categoryM,
together with a k-linear functor C⊠M → M satisfying the usual associativity
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and unity axioms. Equivalently, it is a k-linear category M together with a
strict k-linear monoidal functor C → End k(M), where End k(M) denotes the
strict k-linear monoidal category whose objects are k-linear endofunctors of M
and whose morphisms are natural transformations.
If M is a module category over C with action functor F : C ⊠M → M, then
we have an induced action of Tr(C) on Tr(M) given by

Tr(C)⊗ Tr(M)
∼=
−→ Tr(C ⊠M)

Tr[F ]
−−−→ Tr(M). (9.1)

The goal of this section is to use this fact to construct EHk-modules from
certain module categories over the quantum Heisenberg category.
For n ∈ Z≥1, let Hn denote the Iwahori–Hecke algebra of type An−1. This is
the associative k-algebra with generators τ1, . . . , τn−1 and relations

τiτj = τjτi, 1 ≤ i, j ≤ n− 1, |i − j| > 1,

τiτi+1τi = τi+1τiτi+1, 1 ≤ i ≤ n− 2,

τ2i = zτi + 1, 1 ≤ i ≤ n− 1.

Let AHn denote the affine Hecke algebra of rank n. Thus AHn = Hn ⊗k

k[x±1
1 , . . . , x±n

n ] as k-modules, with the two factors being subalgebras, and

τixi = xi+1τ
−1
i , 1 ≤ i ≤ n− 1.

We adopt the convention that H0 = AH0 = k.
It follows from (4.1) to (4.3) that we have an algebra homomorphism

AHn → EndHeisk(↑
⊗n), (9.2)

sending xi to a dot on the i-th string and τi to a positive crossing of the

i-th and (i + 1)-st strings, where we number strings 1, 2, . . . , n from right to
left. In fact, it follows from Theorem 4.4 that this map is injective.
Fix a nonnegative integer l and a polynomial

f(u) = f0u
l + f1u

l−1 + · · ·+ fl ∈ k[u], f0 = 1, fl = t2. (9.3)

(Note that this forces t = ±1 if l = 0.) The cyclotomic Hecke algebra Hf
n of

level l associated to the polynomial f(u) is the quotient of AHn by the two-

sided ideal generated by f(x1). By convention Hf
0 = k. The basis theorem

proved in [AK94, Th. 3.10] states that

{xr11 · · ·xrnn τg : 0 ≤ r1, . . . , rn < l, g ∈ Sn}

is a basis for Hf
n as a free k-module, where τg denotes the element of the

finite Hecke algebra defined from a reduced expression for the element g of the
symmetric group Sn.
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Define the tower of cyclotomic Hecke algebras associated to f to be the k-linear
category H f with objects Xn, n ∈ N, and

HomH f (Xn, Xm) =

{
Hf

n if m = n,

0 if m 6= n.

Note that H f is not naturally a monoidal category. As we will now explain
the tower H f can also be realized as a cyclotomic quotient of the quantum
Heisenberg category.
Let I(f) be the left tensor ideal generated by the morphism f( ). The cyclo-
tomic quantum Heisenberg category associated to the polynomial f(u) is the
quotient category

H (f) := Heis−l/I(f). (9.4)

Note that H (f) is a k-linear category, but it does not inherit the monoidal
structure from Heis−l. However, it is a left module category over Heis−l.

Proposition 9.1. The map (9.2) induces algebra isomorphisms

Hf
n

∼=
−→ EndH (f)(↑

⊗n), n ∈ N. (9.5)

Furthermore, the functor H f → H (f) given on objects by Xn 7→ ↑⊗n and on
morphisms by (9.5) is an equivalence of k-linear categories.

Proof. This is shown in [BSW20a, Lem. 5.13] and [BSW20b, Th. 9.5].

Remark 9.2. As shown in [BSW20b, Th. 9.5], the equivalence of Proposi-
tion 9.1 induces an equivalence of k-linear categories

Kar(H (f)) →
⊕

n≥0

Hf
n-pmod,

where Kar(H (f)) denotes the additive Karoubi envelope of H (f) and Hf
n-pmod

denotes the category of finitely-generated projective left Hf
n-modules. Under

this isomorphism, the natural action of Heis−l on H (f) corresponds to an action
of Heis−l on

⊕
n≥0 H

f
n-pmod, with the objects ↑ and ↓ acting by induction and

restriction, respectively. We refer the reader to [BSW20b, §6] for details.

For an associative k-algebra A, its cocenter is

C(A) := A/ spank{ab− ba : a, b ∈ A}.

Note that this is the same as the trace of A considered as a monoidal category
with one object. By Proposition 9.1 and Theorem 7.1, we have an action of
EH−l

∼= Tr(Heis−l) on

Vf := Tr(H (f)) ∼=
⊕

n≥0

C(Hf
n). (9.6)

Denote this action by ·, and let vf denote the unit element in C(Hf
0 )

∼= k.
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Proposition 9.3. The EH−l-module Vf is cyclic, generated by vf . Further-
more, we have

wr,n · vf = 0, r ∈ Z, n < 0, (9.7)

wr,1 · vf = −

l∑

i=1

fiwr−i,1 · vf , r ∈ Z, (9.8)

∑

r≥1

u1−r{r}wr,0 · vf =
(
u2f ′(u)f(u)−1 − lu

)
vf , (9.9)

∑

r≥1

ur−1{r}w−r,0 · vf =
(
f ′(u)f(u)−1

)
vf , (9.10)

where (9.9) and (9.10) are equalities of Laurent series in k((u−1)) and k((u)),
respectively.

Proof. The fact that Vf is cyclic, generated by vf , follows from the fact that
this module is a quotient of Tr(Heis−l). The equalities (9.7) and (9.8) also
follow immediately from the definition of I(f).
It is shown in [BSW20b, Lem. 9.2] that the ideal I(f) contains the morphism
and the coefficients of the series

+ (u) − f(u)−1, − (u) − t2f(u)−1,

+ (u) − f(u), − (u) − t−2f(u),
(9.11)

where the first and second occurrences of f(u)−1 are interpreted as Laurent
series in u−1 and u, respectively; cf. (4.23) and (4.25). Thus, recalling the
series defined in (4.42), we have

∑

r≥1

u1−r{r}wr,0 · vf
(7.7)
=

(4.38)
−β (P+(u)) · vf

(4.43)
= u2β(H ′

+(u)/H+(u)) · vf
(4.44)
=

(9.11)

(
u2f ′(u)f(u)−1 − lu

)
· vf .

This proves (9.9); the proof of (9.10) is similar.

It follows from Proposition 9.3 that the cyclic vector vf generates a one-
dimensional subspace under the action of the commutative subalgebra of EH−l

generated by the wr,0, r ∈ Z \ {0}, and that vf is annihilated by the elements
wr,n, r ∈ Z, n < 0. In this way, Vf is somewhat like a lowest weight module.
As for the action on the center described in Section 8, the action of EH−l

on Vf depends on t (since f can involve t) even though EH−l does not. Propo-
sition 9.3 is not a complete algebraic description of the action of EH−l on Vf
since it only describes the action of certain elements on the cyclic vector vf . To
give a complete algebraic description of the action, one would need to give an
explicit description of the images of the elements xri ∈ AHn in the cyclotomic
quotients Hf

n.
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Remark 9.4. When l = 1, we have Hf
n
∼= Hn, with the xi being sent to the

Jucys–Murphy elements. In this case, explicit formulas are known, and the
action on Vf ∼= Sym (for t = −z−1 and f(u) = u + z−2) was computed in
[CLL+18, §7] for “half” of EH−1; see Remark 7.9. The action computed in
[CLL+18, §7] is a twist of the polynomial representation defined in [SV13, §1],
where it is also realized in terms of the K-theory of the Hilbert scheme of A2.
It is natural to expect that, for higher level l, the modules Vf are related to
the K-theory of the moduli space of framed torsion-free sheaves on P2, which
can be viewed as higher rank analogues of the Hilbert scheme; see [SV13, §8].

For the remainder of this subsection, we assume that k is an algebraically closed
field of characteristic zero. Let I be the union of the orbits of the roots of f(u)
under the maps i 7→ q±2i, i ∈ k. It follows from our assumption (2.1) that
the map i 7→ q2i defines oriented edges making the set I into a quiver with
connected components of type A∞. Let g denote the Kac–Moody Lie algebra
associated to this quiver, and let U(g) be the corresponding Kac–Moody 2-
category, as defined in [KL10, Rou08]. (See also [Bru16], which unified the two
approaches.)
For i ∈ I, let µi be the multiplicity of i as a root of f(u). Then let
µ :=

∑
i∈I µiΛi be the corresponding dominant integral weight of g, where Λi

denotes the fundamental weight corresponding to i ∈ I. By [BSW20a, Th. B],
H (f) is isomorphic (as a locally unital algebra) to the cyclotomic quotient
H (µ) of U(g) corresponding to µ. As for the case of the quantum Heisenberg
category discussed above, this implies that we have an action of Tr(U(g)) on
Tr(H (µ)) ∼= Tr(H (f)) ∼= Vf .
To any symmetrizable Kac–Moody algebra g, one can associate a Lie algebra
Cg (denoted Lg in [SVV17, Def. 3.24] and, when g is simply laced, Cg in
[BHLW17, §3.2]). The Lie algebra Cg is isomorphic to the current algebra
g ⊗ k[t] when g is of finite type ADE, but is larger in general; see [SVV17,
Rem. 3.26]. If g is of finite type A, then it follows from [SVV17, Th. 1] and
[BHLW17, Th. A, B], that Tr(U(g)) is isomorphic to an idempotented form
of the universal enveloping algebra U(Cg) and that the induced action on
cyclotomic quotients realizes its Weyl modules. While [SVV17, BHLW17] do
not treat type A∞, we expect that one should be able to take an appropriate
limit to handle this case. In this way one would identify Vf as both a Weyl
module for the current algebra and a module for the elliptic Hall algebra.

Remark 9.5. In general, one associates a generalized cyclotomic quotient
H (f |g) to a pair (f, g) of monic polynomials. If f and g are of degrees l
and m, respectively, then H (f |g) is a module category over Heism−l. We have
restricted our attention here to the case where g = 1, and hence to central
charge k = −l < 0. As we saw in Proposition 9.3, this gives rise to a negative-
central-charge module Vf generated by an eigenvector vf for EH−. If we in-
stead considered the case where f = 1, we would obtain positive-central-charge
modules generated by an eigenvector for EH+. Alternatively these positive-
central-charge modules can be obtained from the Vf by twisting by the auto-
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morphism Ωk from (4.45). The general case, of arbitrary f and g, would yield
a tensor product of these positive- and negative-central-charge modules; see
Remark 2.6. We refer the reader to [BSW20b, §9] for further details on the
more general H (f |g).

A Universal central extension

In this section we prove Proposition 2.1 using an argument inspired by the one
in [LT05]. We make the same assumptions on the ground ring k as given at
the beginning of Section 2.
Let

0 → Z → ÊH
π̂
−→ EH → 0 (A.1)

be an arbitrary central extension of EH. We must show that there exists a

unique homomorphism of Lie algebras ζ : ẼH → ÊH such that π̂ζ = π̃, where

π̃ : ẼH → EH, wx 7→ wx, z 7→ 0, x ∈ Z∗, z ∈ Zk.

Fix a linear map (not necessarily a homomorphism of Lie algebras) ζ1 : EH →

ÊH such that π̂ζ1 = idEH. Then define

ϑ : EH× EH → Z, ϑ(x, y) = [ζ1(x), ζ1(y)]− ζ1([x, y]), x, y ∈ EH. (A.2)

It follows immediately from the fact that the Lie bracket on EH is alternating
and satisfies the Jacobi identity that

ϑ(x, y) = −ϑ(y, x), ϑ(x, x) = 0, (A.3)

ϑ([x, y], z) + ϑ([y, z], x) + ϑ([z, x], y) = 0, (A.4)

for all x, y, z ∈ EH.

Lemma A.1. The function

Z → Z, x 7→

{
ϑ(wx, w−x) if x 6= 0,

0 if x = 0,

is a homomorphism of additive groups.

Proof. Suppose x,y ∈ Z∗ satisfy det
(
x y

)
6= 0, that is, x and y are not

collinear. Taking x = wx, y = wy, z = w−x−y in (A.4), and letting z = −x−y,
we have

{det
(
x y

)
}ϑ(wx+y, w−x−y) + {det

(
y z

)
}ϑ(w−x, wx)

+ {det
(
z x

)
}ϑ(w−y, wy) = 0.

(A.5)

The determinants appearing in (A.5) are all equal, and so, also using (A.3), we
have

ϑ(wx+y, w−x−y) = ϑ(wx, w−x) + ϑ(wy, w−y).
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On the other hand, if x and y are collinear, choose z that is not collinear with x

(equivalently, not collinear with y). Then, using the non-collinear case proved
above, we have

ϑ(wx+y, w−x−y) = ϑ(wx+z, w−x−z) + ϑ(wy−z, w−y+z)

= ϑ(wx, w−x) + ϑ(wz, w−z) + ϑ(wy, w−y) + ϑ(w−z, wz)

(A.3)
= ϑ(wx, w−x) + ϑ(wy, w−y),

completing the proof.

Lemma A.2. We have

ϑ(wr,0, ws,0) = 0 = ϑ(w0,m, w0,n), r, s,m, n ∈ Z \ {0}, r 6= −s, m 6= −n.

Proof. We prove the first equality, since the proof of the second is similar. Since
the case r = s follows immediately from (A.3), suppose r 6= s. Taking x = w0,1,
y = w0,−1, z = wr+s,0 in (A.4), and then dividing by {r + s}, we have

ϑ(wr+s,−1, w0,1) + ϑ(wr+s,1, w0,−1) = 0. (A.6)

Next, take x = ws,−1, y = w0,1, z = wr,0 in (A.4) to get

{s}ϑ(ws,0, wr,0)− {r}ϑ(wr,1, ws,−1)− {r}ϑ(wr+s,−1, w0,1) = 0. (A.7)

Then take x = wr,1, y = w0,−1, z = ws,0 in (A.4) to get

− {r}ϑ(wr,0, ws,0) + {s}ϑ(ws,−1, wr,1) + {s}ϑ(wr+s,1, w0,−1) = 0. (A.8)

Subtracting {s} times (A.7) from {r} times (A.8), then using (A.3) and (A.6),
we have

0 = ({s}2 − {r}2)ϑ(wr,0, ws,0) = {s+ r}{s− r}ϑ(wr,0, ws,0).

Since r 6= ±s, the result follows.

Define

ζ2 : EH → Z, ζ2(wr,n) =





1
{rn}ϑ(wr,0, w0,n) if r, n 6= 0,
1

{n}ϑ(w1,n, w−1,0) if r = 0, n 6= 0,
1

{r}ϑ(w0,−1, wr,1) if r 6= 0, n = 0.

(A.9)

Lemma A.3. We have

ϑ(wx, wy) = ζ2([wx, wy]), x,y ∈ Z∗, x+ y 6= 0. (A.10)
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Proof. Let x = (r, n), y = (s,m). If n = m = 0 or r = s = 0, then the result
holds by Lemma A.2. If s = n = 0, then we have

ϑ(wr,0, w0,m)
(A.9)
= {rm}ζ2(wr,m)

(2.2)
= ζ2([wr,0, w0,m]).

The case r = m = 0 then follows by using the fact that both sides of (A.10) are
antisymmetric in the arguments wx and wy. We have now proved that (A.10)
holds when at least two of r, s,m, n are zero. Therefore, for the remainder of
the proof, we assume that at most one of these is zero.
Suppose that m = 0 and r + s 6= 0. Taking x = w−s,n, y = ws,0, z = wr+s,0 in
(A.4), we have

−{sn}ϑ(w0,n, wr+s,0) + {(r + s)n}ϑ(wr,n, ws,0) = 0.

Thus, we have

ϑ(wr,n, ws,0) =
{sn}

{(r + s)n}
ϑ(w0,n, wr+s,0)

(A.9)
= −{sn}ζ2(wr+s,n)

(2.2)
= ζ2(wr,n, ws,0).

On the other hand, if m = 0 = r + s, then, taking x = w−1,0, y = wr+1,n,
z = w−r,0 in (A.4), we have

−{n}ϑ(wr,n, w−r,0) + {rn}ϑ(w1,n, w−1,0) = 0.

Therefore

ϑ(wr,n, w−r,0) =
{rn}

{n}
ϑ(w1,n, w−1,0)

(A.9)
= {rn}ζ2(w0,n)

(2.2)
= ζ2([wr,n, w−r,0]).

This completes the proof of (A.10) when m = 0. The case n = 0 then follows
by using the fact that both sides of (A.10) are antisymmetric in the arguments
wx and wy. The cases r = 0 and s = 0 are similar.
It remains to consider the case where r, s,m, n are all nonzero. In this case,
taking x = ws,m, y = wr,0, z = w0,n in (A.4) gives

−{rm}ϑ(wr+s,m, w0,n) + {rn}ϑ(wr,n, ws,m)− {sn}ϑ(ws,m+n, wr,0) = 0.

Thus

ϑ(wr,n, ws,m) =
{rm}

{rn}
ϑ(wr+s,m, w0,n) +

{sn}

{rn}
ϑ(ws,m+n, wr,0)

=
{rm}

{rn}
ζ2([wr+s,m, w0,n]) +

{sn}

{rn}
ζ2([ws,m+n, wr,0])

=

(
{rm}

{rn}
{(r + s)n} −

{sn}

{rn}
{r(m+ n)}

)
ζ2(wr+s,m+n)
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= {rm− sn}ζ2(wr+s,m+n)

(2.2)
= ζ2([wr,n, ws,m]),

where, in the second equality, we used the previous cases.

Define the linear map ζ : ẼH → ÊH by

ζ(x) = ζ1(x) + ζ2(x), x ∈ EH,

ζ((a, b)) = aϑ(w1,0, w−1,0) + bϑ(w0,1, w0,−1), (a, b) ∈ Zk.
(A.11)

Lemma A.4. The map ζ is a homomorphism of Lie algebras.

Proof. To avoid potential confusion with the Lie bracket on EH, we denote the

Lie bracket on ẼH by [·, ·]′ in this proof. If x, y ∈ ẼH with x ∈ Zk or y ∈ Zk,
then

ζ([x, y]′) = 0 = [ζ(x), ζ(y)].

It remains to show that ζ([wx, wy]) = [ζ(wx), ζ(wy)] for x,y ∈ Z∗. We have

ζ([wx, wy]
′)

(2.3)
= ζ([wx, wy]+δx,−yx) = ζ1([wx, wy])+ζ2([wx, wy])+δx,−yζ(x).

If x+ y 6= 0, then, by Lemma A.3, we have

ζ([wx, wy]
′) = ζ1([wx, wy]) + ϑ(wx, wy)

(A.2)
= [ζ1(wx), ζ1(wy)] = [ζ(wx), ζ(wy)],

where the last equality follows from the fact that the image of ζ2 is contained

in Z, and hence in the center of ÊH. On the other hand, if x + y = 0, with
x = (r, n), then

ζ([wx, w−x]
′) = ζ(x)

= rϑ(w1,0, w−1,0) + nϑ(w0,1, w0,−1)

= ϑ(wx, w−x) (by Lemma A.1)

(A.2)
= [ζ1(wx), ζ1(w−x)]

= [ζ(wx), ζ(w−x)],

where the last equality again follows from the fact that the image of ζ2 is
contained in Z.

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. Suppose we have a central extension as in (A.1). By
Lemma A.4, the map ζ defined by (A.11) is a homomorphism of Lie algebras.
For x ∈ Z∗ and z ∈ Zk, we have

(π̂ζ)(wx) = π̂(ζ1(wx) + ζ2(wx)) = (π̂ζ1)(wx) = wx = π̃(wx),

(π̂ζ)(z) = 0 = π̃(z).
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Hence π̂ζ = π̃, and so ζ is a morphism of extensions, as desired.
It remains to show uniqueness of ζ. Suppose we have another homomorphism

of Lie algebras ζ′ : ẼH → ÊH such that π̂ζ′ = π̃. Let z ∈ ẼH. Since ẼH is

easily seen to be perfect (that is, [ẼH, ẼH] = ẼH), there exist x, y ∈ ẼH such
that z = [x, y]. Then we have

ζ′(x)− ζ(x), ζ′(y)− ζ(y) ∈ ker(π̂) = Z.

Since Z is contained in the center of ÊH, this implies that

ζ′(z) = [ζ′(x), ζ′(y)] = [ζ(x), ζ(y)] = ζ(z).

Thus ζ′ = ζ, as desired.

B Relation to the elliptic Hall algebra of Burban and Schiff-

mann

In this section we show (in Proposition B.1) how the central reductions defined
in Section 2.2 are specializations of a central extension of the elliptic Hall alge-
bra of Burban and Schiffmann [BS12]. This relationship is not used elsewhere
in the paper. The fundamental ingredient here is the work of Morton and
Samuelson [MS17], who described an isomorphism between the HOMFLYPT
skein algebra of the torus and the elliptic Hall algebra. This corresponds to
the case of central charge k = 0. The case k = −1 was treated in [CLL+18];
see Remark B.2.
We work here over the field C(v, q) of rational functions in two indeterminates.

We first recall from [BS12, Def. 6.4] the definition of the central extension B̃S

of the elliptic Hall algebra. This central extension is denoted ẼK in [BS12],
where K = C(v, q). Our v and q are denoted σ1/2 and σ̄1/2 in [BS12]. For
x,y ∈ Z∗, we define

ǫx =

{
1 if x ∈ Z+,

−1 if x ∈ Z−,
and

ǫx,y = sign(det
(
x y

)
) ∈ {±1}, if x,y are not collinear.

For a ∈ C(v, q)× and d ∈ Z, define

{d}a := ad − a−d and [d]a :=
{d}a
{1}a

=
ad − a−d

a− a−1
.

These are both elements of Z[a±1] ⊆ C(v, q). Note also that [d]1 = d. For
d ≥ 1, we define

αd :=
1

d
(1 − v2d)(1− q2d)(1 − (vq)−2d) =

1

d
{d}v{d}q{d}vq.
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Define B̃S to be the C(v, q)-algebra with generators

κx, x ∈ Z, ux, x ∈ Z∗,

modulo the following relations:

(a) The κx are central, and we have

κ(0,0) = 1, κxκy = κx+y.

(b) If x,y ∈ Z∗ are collinear, then

[uy, ux] = δx,−y

κx − κ−1
x

αgcd(x)
,

where gcd(x) denotes the greatest common denominator of the compo-
nents of x.

(c) If x,y ∈ Z∗ are not collinear, gcd(x) = 1, and the triangle in Z with
vertices {(0, 0),x,x+ y} has no element of Z in its interior, then

[uy, ux] = ǫx,yκα(x,y)
θx+y

α1
,

where

α(x,y) =

{
ǫx(ǫxx+ ǫyy − ǫx+y(x+ y))/2 if ǫx,y = 1,

ǫy(ǫxx+ ǫyy − ǫx+y(x+ y))/2 if ǫx,y = −1,

and where the elements θz, z ∈ Z∗, are determined by

∑

i≥1

θix0w
i = exp


∑

r≥1

αrurx0w
r




for any x0 ∈ Z∗ such that gcd(x0) = 1. Here w is a formal variable.

The relations imply that the C(v, q)-subalgebra K generated by the κx, x ∈ Z,
is isomorphic to the group algebra, over C(v, q), of the abelian group Z, and

that B̃S is naturally a K-algebra.
Fix a Z-linear map λ : Z → Z and define B̃Sλ to be the C(v, q)-algebra obtained

from B̃S by imposing the additional relations

κx = (vq)λ(x), x ∈ Z.

Now define the following elements of B̃Sλ:

wx := {gcd(x)}vux, x ∈ Z∗.

Let B̃S
′

λ be the C[v, q, {d}−1
v , {d}−1

q : d ≥ 1]-subalgebra of B̃Sλ generated by

the wx, x ∈ Z∗. Thus B̃S
′

λ is the C[v, q, {d}−1
v , {d}−1

q : d ≥ 1]-algebra generated
by wx, x ∈ Z∗, subject to the following relations:
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(a) If x,y ∈ Z∗ are collinear, then

[wy, wx] = δx,−yd
{d}v
{d}q

[
λ(x)

d

]

(vq)d
, where d = gcd(x).

(b) If x,y ∈ Z∗ are such that gcd(x) = 1 and the triangle in Z with vertices
{(0, 0),x,x+ y} has no interior lattice point, then

[wy, wx] = ǫx,yκα(x,y){1}v{gcd(y)}v
θx+y

α1
.

Now, by [MS17, Lem. 5.4], we have, for x ∈ Z∗,

θx
α1

= ([gcd(x)]v)
2
ux = −

[gcd(x)]q
{1}q

wx when q = v−1.

(Note that our v and q are the q1/2 and t−1/2 of [MS17], respectively.) Let

BSλ := B̃Sλ/(vq−1). Thus, setting k = C[q±1, {d}−1 : d ≥ 1], we see that BSλ
is the k-algebra generated by wx, x ∈ Z∗, subject to the following relations:

(a) If x,y ∈ Z∗ are collinear, then

[wx, wy] = δx,−yλ(x). (B.1)

(b) If x,y ∈ Z∗ are such that gcd(x) = 1 and the triangle in Z with vertices
{(0, 0),x,x+ y} has no element of Z in its interior, then

[wx, wy] = ǫx,y{gcd(y)}q[gcd(x+ y)]qwx+y. (B.2)

Proposition B.1. We have an isomorphism of k-algebras

EHλ

∼=
−→ BSλ, wx 7→ wx, x ∈ Z∗.

Proof. When λ = 0, this is precisely [MS17, Th. 5.6] after recalling that the
s, v, q, t of [MS17] are q, t−1, v2, q−2 in our notation. To prove the result for
general λ, we make the dependence on λ explicit by letting [·, ·]λ denote the
bracket on BSλ given by (B.1) and (B.2). Then we have

[wx, wy]λ = [wx, wy]0 + δx,−yλ(x). (B.3)

Comparing to (2.3) and (2.5), we see that this is precisely the relationship
between the bracket in EH0 and the one in EHλ.

Remark B.2. When λ = 0, EH0 is the elliptic Hall algebra (no central exten-
sion) denoted Eσ,σ̄ in [BS12], specialized at σ−1/2 = q = σ̄1/2. When λ = λ−1,
EH−1 is the algebra denoted E in [CLL+18, Def. 4.4].
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