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Abstract. Evert and Helton proved that real free spectrahedra are
the matrix convex hulls of their absolute extreme points. However,
this result does not extend to complex free spectrahedra, and we ex-
amine multiple ways in which the analogous result can fail. We also
develop some local techniques to determine when matrix convex sets
are not (duals of) free spectrahedra, as part of a continued study
of minimal and maximal matrix convex sets and operator systems.
These results apply to both the real and complex cases.
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1 Introduction

In the theory of classical convexity, the Krein-Milman theorem of [27] estab-
lishes that a compact convex set K is the closed convex hull of its set of extreme
points, which we denote ext(K). However, if K is a subset of Rd, then the clo-
sure is not necessary, as shown in Carathéodory’s earlier theorem [6]. These
facts may be expressed in terms of the set of affine functions on K, a function
system which sits inside the continuous functions C(K), and this perspective
leads into the noncommutative point of view [1, 2, 7].

A (concrete) operator system S is a unital subspace of a C∗-algebra that is
closed under the adjoint operation. The underlying structure of S is contained
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in its positive elements a ∈ S and, more importantly, the positive matrices
a = [aij ] ∈ Mn(S) of any size. The morphisms between operator systems are
unital completely positive (UCP) maps, which are linear maps preserving the
unit and positivity of any matrix over S. Operator systems then provide the
context for noncommutative versions of Choquet theory, through the study of
pure UCP maps [34, 18] and boundary representations [13, 4, 10].

From the point of view of operator systems (whether finite-dimensional, sep-
arable, or nonseparable), the most appropriate notion of extreme point is a
boundary representation [1, Definition 2.1.1]. A boundary representation of S
is an irreducible representation π : C∗(S) → B(H) with the property that π
is the unique UCP extension of π|S . By [4, Proposition 2.4] and [3, Proposi-
tion 2.2], π has the unique extension property if and only if π|S is a maximal
UCP map. That is, the only UCP dilations of the map are direct sums. Bound-
ary representations are “successful” extreme points since they are sufficient to
completely norm any operator system by [10, Theorem 3.4]. More specifically,
operator systems are completely normed by their pure UCP maps [34, 18],
and every pure UCP map dilates to a boundary representation. However, this
dilation may replace finite-dimensional maps with infinite-dimensional ones.

Many examples of operator systems arise in finite-dimensional contexts, in
particular, when studying free spectrahedra or their polar duals [16, 21, 15].
In this case, one may be interested in a notion of extreme point that remains
finite-dimensional. This is best illustrated in the setting of matrix convex sets.
For any operator system S, one may consider the collection of UCP maps
from S into Mn(C), where n is arbitrary. For our discussion, S will be finite
dimensional, so we may consider a basis I, T1, T

∗
1 , . . . , Td, T

∗

d (where perhaps
T ∗

d is omitted if Td = T ∗

d ). In this case, we will denote the operator system
by ST , and consider the matrix range [2, §2.4]

W(T ) =

∞
⋃

n=1

Wn(T ) =

∞
⋃

n=1

{(φ(T1), . . . , φ(Td)) : φ : ST → Mn(C) is UCP}.

One may similarly start with a basis of self-adjoints, but this is merely a change
of coordinate system. In any case, W(T ) is a prototypical closed and bounded
matrix convex set over Cd.

Definition 1.1. Let C =
∞
⋃

n=1
Cn be a subset of M(C)d =

∞
⋃

n=1
Mn(C)

d. A matrix

convex combination of points X(i) ∈ Cni
is any expression Y of the form

Y =

k
∑

i=1

V ∗

i X
(i)Vi, Vi ∈ Mni,m(C),

k
∑

i=1

V ∗

i Vi = Im.

The set C is called matrix convex if it is closed under matrix convex combina-
tions.
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Alternatively, C is matrix convex if and only if it is closed under direct sums
and images UCP maps. That is,

• if X ∈ Cn and Y ∈ Cm, then X ⊕ Y ∈ Cn+m, and

• if X ∈ Cn and φ : Mn(C) → Mm(C) is UCP, then φ(X) ∈ Cm.

Matrix ranges W(T ) are always matrix convex, in addition to being closed
and bounded in each level. Conversely, every matrix convex set over Cd that
is closed and bounded takes the form W(T ) for some tuple T ∈ B(H)d of
bounded operators by [9, Proposition 3.5], as part of a larger duality between
operator systems and matrix convex sets [14].

In analogy with classical convexity, matrix convex sets can be studied through
their extreme points. However, there are multiple notions of extreme point. A
matrix extreme point is a point Y ∈ C such that if Y is written as a matrix

convex combination
k
∑

i=1

V ∗
i X

(i)Vi such that each Vi is surjective (which implies

dim(X(i)) ≤ dim(Y )), then each X(i) is unitarily equivalent to Y . Matrix
extreme points are sufficient to generate C as a closed and bounded matrix
convex set by [34, Theorem 4.3], but there can be redundancy in the collection
of matrix extreme points. A stronger notion is an absolute extreme point (see
[26]), a point Y such that any expression of Y as a matrix convex combination
k
∑

i=1

V ∗
i X

(i)Vi with Vi 6= 0 has the property that Y is unitarily equivalent to X(i)

or a summand of X(i). There exist closed and bounded matrix convex sets with
no absolute extreme points by [17, Corollary 1.1] or [28, Example 6.30].

Matrix extreme and absolute extreme points may themselves be viewed in the
language of operator systems. Indeed, if C = W(T ), then a matrix extreme
point is exactly an image of T under a pure UCP map φ : ST → Mn(C) by
[18, Theorem B]. Similarly, an absolute extreme point is exactly an image of T
under a (finite-dimensional) boundary representation π : C∗(ST ) → Mn(C)
by [28, Corollary 6.28]. Thus, if absolute extreme points are insufficient to
generate W(T ), this simply means that ST is not completely normed by its
finite-dimensional boundary representations. Further, applying this dictionary
to [10, Lemma 2.3 and Theorem 2.4] derives [28, Lemma 6.12] – a matrix
extreme point that is not absolute extreme may be nontrivially dilated to an-
other matrix extreme point. Similarly, [16, Theorem 1.1 (3)] states that an
irreducible tuple in C is an absolute extreme point precisely when it admits no
nontrivial dilations in C.

A free spectrahedron is a matrix convex set determined by a linear matrix in-
equality (see section 2). Real free spectrahedra, that is, free spectrahedra whose
coefficient matrices from a self-adjoint presentation have real coefficients, are
considered in [15]. In [15, Theorem 1.1], it is shown that real free spectrahedra
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are the matrix convex hulls of their absolute extreme points. This is a success
of the finite-dimensional point of view, in that a finite-dimensional problem has
a finite-dimensional solution. Their result also applies to complex free spec-
trahedra that are closed under entrywise complex conjugation. In particular,
[15, Theorem 1.2] shows that a complex free spectrahedron that is closed un-
der conjugation is associated to a real free spectrahedron in such a way that
preserves the absolute extreme points. However, their result does not apply to
general complex free spectrahedra, as in Remark 2.5.

The purpose of this manuscript is to study absolute extreme points, boundary
representations, and dilation theory without restricting to the real coefficient
field. Section 2 shows that absolute extreme points of complex free spectrahe-
dra are more delicate than their real counterparts, using both examples from
the literature and new examples. Section 3 then includes geometric charac-
terizations that distinguish absolute extreme points of matrix convex sets in
the first level. These results do not depend on the coefficient field R or C, or
equivalently on whether the set is closed under complex conjugation, unlike
similar results such as [16, Proposition 6.1]. We may leverage these conditions
to prove that certain sets are not (duals of) free spectrahedra.

2 Absolute Extreme Points of Complex Free Spectrahedra

A free spectrahedron is a matrix convex set determined by linear matrix in-
equalities, as follows. Given A ∈ Mk(C)

d, one may construct the hermitian
monic linear pencil

LA(Z) := I − Re





d
∑

j=1

Aj ⊗ Zj



 ,

where Re denotes the self-adjoint part of a matrix. Now, LA(Z) may be evalu-
ated at any tuple Z ∈ Mn(C)

d so long as I is interpreted as the identity matrix

of the appropriate size. The free spectrahedronDA =
∞
⋃

n=1
DA(n) is then defined

by
DA(n) = {Z ∈ Mn(C)

d : LA(Z) ≥ 0}. (1)

We note that for this manuscript, the notation DA (with no other specifica-
tions) allows for both complex coefficients and non self-adjoint matrices. It is,
however, common to adjust both of these aspects of free spectrahedra. Using
the identity

Re(Aj ⊗ Zj) = Re(Aj)⊗ Re(Zj)− Im(Aj)⊗ Im(Zj),

one may set a tuple B = (Re(A1),−Im(A1), . . . ,Re(Ad),−Im(Aj)) of self-
adjoints and note that

Z = (X1 + iY1, . . . , Xd + iYd) ∈ DA ⇐⇒ LB(X1, Y1, . . . , Xd, Yd) ≥ 0.
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Thus, one may also set a self-adjoint presentation of free spectrahedra. We
use g to denote the number of self-adjoint matrix variables and note that if
B ∈ Mk(C)

g
sa, then the linear pencil takes a simplified form

LB(X) = I −
g

∑

j=1

Bj ⊗Xj

for inputs X ∈ Mn(C)
g
sa that are also self-adjoint. At this point, one may also

restrict both B and X to self-adjoint matrix tuples that have coefficients in the
real field.

Definition 2.1. Let K be either the real or complex field. Then for a tuple B ∈
Mk(K)gsa of self-adjoint matrices with entries in K, the K-free spectrahedron DK

B

is defined by
DK

B(n) = {X ∈ Mn(K)gsa : LB(X) ≥ 0}.

Remark 2.2. We caution the reader that when we discuss the coefficient field
of a free spectrahedron, or of the coefficient matrices, this refers exclusively to
the self-adjoint presentation. Similarly, it is the self-adjoint presentation that
matters when one asks if a complex free spectrahedron is closed under complex
conjugation in each entry of each matrix. Our main examples of problematic
complex free spectrahedra (that are not real free spectrahedra) are such that a
non self-adjoint form (1) comes from coefficient matrices A1, . . . , Ad with real
coefficients. However, the self-adjoint presentation has coefficient matrices with
non-real entries.

Any self-adjoint matrix X ∈ Mn(C)sa decomposes as X = R + iS where
R,S ∈ Mn(R) are real symmetric and real antisymmetric, respectively. The

natural replacement for R + iS is the real symmetric matrix

[

R S
−S R

]

, but

this fails to distinguish the roles of R+ iS and R− iS.

Lemma 2.3. [15, Lemma 3.3] Let DC

B, B ∈ Mk(C)
g
sa, be a complex free spec-

trahedron of g self-adjoint variables. Then there exists a real free spectrahedron
DR

C , C ∈ M2k(R)
2g
sa, of 2g real symmetric variables such that

(R1, S1, . . . , Rg, Sg) ∈ DR

C ⇐⇒ (R1 + iS1, . . . , Rg + iSg) ∈ DC

B

precisely when DC

B is closed under entrywise complex conjugation.

The resolution of the spanning problem for real free spectrahedra, or equiva-
lently complex spectrahedra closed under complex conjugation, is given by [15,
Theorem 1.1].

Theorem 2.4. [15, Theorem 1.1] Any real free spectrahedron DR

B, or equiv-
alently any complex free spectrahedron closed under entrywise complex conju-
gation, is the matrix convex hull of its absolute extreme points. Moreover,
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the absolute extreme points are a minimal spanning set in the sense that any
closed collection of irreducible matrix tuples whose matrix convex hull is DR

B,
must include the absolute extreme points.

The above theorem is accompanied by explicit dilation algorithms and tight
dimension bounds, and we note that the matrix convex hull does not require a
closure. However, the case of complex free spectrahedra in full generality was
left open. Our first remark is that counterexamples already exist in this case,
without having been noted explicitly, using well-known C∗-algebraic construc-
tions.

Remark 2.5. As in [28, Example 6.30], the operator system generated by Cuntz
isometries S1, ..., Sd, d ≥ 2, cannot have finite-dimensional boundary represen-
tations, as the Cuntz algebra Od has no finite-dimensional representations at
all [8]. Therefore, W(S1, . . . , Sd) has no absolute extreme points, as absolute
extreme points correspond to boundary representations by [26, Theorem 4.2].

On the other hand, it follows from [33, Proposition 2.6] (see also [35, The-
orem 3.8]) that W(S1, S2, . . . , Sd) consists of matrix tuples (T1, ..., Td), with
the Ti not necessarily self-adjoint, such that [T1 T2 . . . Td] is a contraction.
The set of row contractions is known to be a free spectrahedron; for example,
it is an example of a spectraball in [23, §1].

When written in self-adjoint coordinates Tj = Xj + iYj, the set of length d row
contractions has the form







(X1, Y1, . . . , Xd, Yd) ∈ M(C)2dsa :

d
∑

j=1

(Xj + iYj)(Xj − iYj) ≤ I







.

We remind the reader that placing a free spectrahedron in its self-adjoint pre-
sentation is necessary in order to consider the coefficient field. There are many
examples that show this free spectrahedron is not closed under complex conju-
gation, such as

([

0 1/2
1/2 0

]

,

[

0 −i/2
i/2 0

]

,

[

0 0
0 1

]

,

[

0 0
0 0

]

, . . .

)

. (2)

This example comes from writing the non self-adjoint pair (T1, T2) =
(E1,2, E2,2) into self-adjoint coordinates. In this case, since each Tj has real
coefficients, its decomposed pieces have purely real/imaginary coefficients, such
that complex conjugation corresponds to the mapping Tj 7→ T ∗

j . However, tak-
ing the coordinatewise adjoint of a row contraction does not always result in a
row contraction.

The above example is distinct from the self-adjoint matrix ball,

Bg =

{

X ∈ M(C)gsa :

g
∑

k=1

X2
k ≤ I

}

,
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which is closed under complex conjugation and hence fits into [15, Theorem 1.1].
Our main object of study for this section is the free spectrahedron that results
from combining the matrix ball with the set of row contractions. That is,
we consider row contractions where some, but not all, of the coordinates are
self-adjoint.

Definition 2.6. Given d ≥ 0 and g ≥ 0, not both zero, let Md,g(n) denote the
set of all tuples (T1, . . . , Td, X1, . . . , Xg) of n × n complex matrices such that

each Xk is self-adjoint and
d
∑

j=1

TjT
∗
j +

g
∑

k=1

X2
k ≤ I.

Note that regardless of d and g, Md,g is a free spectrahedron for precisely the
same reasons that apply to previous examples. Namely, writing Tj = Vj + iWj

in self-adjoint coordinates gives that

d
∑

j=1

(Vj + iWj)(Vj − iWj) +

g
∑

k=1

X2
k ≤ I

⇐⇒ ||
[

V1 + iW1 . . . Vd + iWd X1 . . . Xg

]

|| ≤ 1

⇐⇒ −I ≤

























0 V1 + iW1 . . . Vd + iWd X1 . . . Xg

V1 − iW1

...
Vd − iWd

X1

...
Xg

























≤ I

⇐⇒
d

∑

j=1

Vj ⊗Aj +

d
∑

j=1

Wj ⊗Bj +

g
∑

k=1

Xj ⊗ Ck ≤ I,

where

Aj = (E1,j+1 + Ej+1,1)⊕ (−E1,j+1 − Ej+1,1),

Bj = (i E1,j+1 − i Ej+1,1)⊕ (−i E1,j+1 + i Ej+1,1),

Ck = (E1,k+d+1 + Ek+d+1,1)⊕ (−E1,k+d+1 − Ek+d+1,1).

Moreover, the set Md,g is closed under complex conjugation in precisely two
cases: if d = 0 and g is arbitrary, or if d = 1 and g = 0. In all other cases, one
may construct tuples similar to (2). As such, we will only consider when d ≥ 1,
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in which case we are interested in finding the maximal elements of Md,g. That
is, we seek elements (T1, . . . , Td, X1, . . . , Xg) of Md,g with the property that
the only dilations

([

T1 ∗
∗ ∗

]

, . . . ,

[

Td ∗
∗ ∗

]

,

[

X1 ∗
∗ ∗

]

, . . . ,

[

Xg ∗
∗ ∗

])

that remain in Md,g are the trivial dilations, namely, direct sums. Follow-
ing [11], we occasionally refer to d-tuples of infinite-dimensional operators as
members of “level infinity” of the matrix convex set.

First, we need the following lemma, which has a straightforward proof.

Lemma 2.7. Fix d ≥ 1 and T1, . . . , Td ∈ B(H). The following are equivalent.

1. Each Ti is injective, and the ranges of the Ti are linearly independent
subspaces.

2. The only solution to
d
∑

i=1

TiWi = 0 is to have each Wi = 0.

Theorem 2.8. Fix d ≥ 1 and g ≥ 0, and consider Md,g. An operator tuple
(possibly infinite-dimensional) (Ti, Xj) = (T1, . . . , Td, X1, . . . , Xg) ∈ Md,g is
maximal if and only if all of the following conditions are met.

1.
d
∑

i=1

TiT
∗
i +

g
∑

j=1

X2
j = I.

2. Each Ti is injective.

3. The ranges of the Ti are linearly independent subspaces.

Proof. Suppose the three conditions hold, and that

([

Ti Ai

Bi Ci

]

,

[

Xj Yj

Y ∗
j Zj

])

is

a dilation of (Ti, Xj) that remains in Md,g. Computing the sum-square of this
tuple (which must be a contraction) and examining the top-left block shows
that

∑

AiA
∗
i +

∑

YjY
∗
j = 0, so each Ai and Yj is zero. We now know that the

sum-square is of the form









I
d
∑

i=1

TiB
∗
i

d
∑

i=1

BiT
∗
i ∗









,

and since this operator must still be a contraction, we have
d
∑

i=1

TiB
∗
i = 0.

Lemma 2.7 then implies that each Bi is zero. We have shown the dilation is
trivial, so (Ti, Xj) is maximal.
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To prove the conditions are all necessary, consider them separately. If condi-

tion 1 fails, let A =
√

I −∑

TiT ∗
i −∑

X2
j 6= 0, and note that the nontrivial

dilation

([

T1 A
0 0

]

,

[

T2 0
0 0

]

, . . . ,

[

Xg 0
0 0

])

remains in Md,g.

If either condition 2 or 3 fails, then using Lemma 2.7, we may find B1, . . . , Bd ∈
B(H), at least one of which is nonzero, such that

d
∑

i=1

TiB
∗
i = 0. Using scalar

multiplication if necessary, we may suppose
d
∑

i=1

BiB
∗
i ≤ I. Direct computation

then shows that the sum-square of

([

Ti 0
Bi 0

]

,

[

Xj 0
0 0

])

is still a contraction,

so the tuple is a nontrivial dilation.

Remark 2.9. If d ≥ 2 and g ≥ 1, the operators Ti in a maximal tuple
(Ti, Xj) ∈ Md,g need not be isometric, and this can be shown by direct con-
struction whenever X1 6= 0.

However, if d ≥ 2 and g = 0, the above theorem must produce only Cuntz
isometries as the maximal elements, as this case is already known from [33]
and [35]. The equivalence follows from some algebra: if T1, . . . , Td are injective
operators with linearly independent ranges such that T1T

∗
1 +. . .+TdT

∗

d = I, then
right multiplying by T1 and rearranging shows that T1(T

∗
1 T1 − I) + T2(T

∗
2 T1) +

. . . + Td(T
∗

dT1) = 0. By Lemma 2.7, T ∗
1 T1 − I = 0 and T ∗

j T1 = 0 for j 6= 1.
Applying the same trick to any Ti in place of T1 shows each Ti is an isometry,
and the ranges of these isometries are orthogonal.

Finally, if d = 1 and g ≥ 0, the range condition 3 is automatic. In particular, if
d = 1 and g = 0, then M1,0 is the set of contractions, and the maximal contrac-
tions are known to be the unitaries. This is again recovered from Theorem 2.8:
the first two conditions imply that T1 is an injective (left invertible) operator
with T1T

∗
1 = I. Since that equation shows T1 is surjective, we have that T1

is actually invertible, and T ∗
1 is its inverse. That is, T1 is unitary. Note that

in this case, the boundary representations of the corresponding operator system
are 1-dimensional.

Since absolute extreme points correspond to finite-dimensional, irreducible,
maximal elements, Theorem 2.8 implies that there exists a complex free spectra-
hedron that admits a Krein-Milman theorem but not a Carathéodory theorem
for absolute extreme points.

Corollary 2.10. If d = 1 and g ≥ 1, then M1,g is the closed matrix convex
hull, but not the matrix convex hull, of its absolute extreme points. Conse-
quently, the corresponding operator system is completely normed by its finite-
dimensional boundary representations.
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Proof. It suffices to prove the claims about absolute extreme points. Suppose

an arbitrarymatrix tuple (T,X1, . . . , Xg) ofM1,g is given, so TT
∗+

g
∑

k=1

X2
k ≤ I.

We may first approximate the tuple to arbitrary precision in order to assume

that TT ∗ +
g
∑

k=1

X2
k ≤ (1 − ε)I, after which we may approximate further to

assume that T is an invertible matrix. Next, write TT ∗ +
g
∑

k=1

X2
k = I − AA∗,

and consider dilations of the form

(S, Y1, . . . , Yg) =

([

T A
B C

]

,

[

X1 0
0 D

]

,

[

X2 0
0 0

]

, . . . ,

[

Xg 0
0 0

])

.

Let C be a positive invertible matrix, chosen small enough in norm that B∗ :=
−T−1AC∗ satisfies BB∗ + CC∗ ≤ I. Since T and C are both invertible, it
follows that

SS∗ =

[

TT ∗ +AA∗ TB∗ +AC∗

BT ∗ + CA∗ BB∗ + CC∗

]

=

[

TT ∗ +AA∗ 0
0 BB∗ + CC∗

]

dominates a positive multiple of the identity and is therefore invertible. That
is, the matrix S is invertible. Setting D :=

√
I −BB∗ − CC∗, which is self-

adjoint, gives that SS∗ +
g
∑

k=1

Y 2
k = I. It follows from Theorem 2.8 that

(S, Y1, . . . , Yk) is maximal, hence it is a direct sum of absolute extreme points.
All together, we have that M1,g is the closed matrix convex hull of its absolute
extreme points.

On the other hand, consider (0, . . . , 0, 1) ∈ M1,g, and suppose this point is a
matrix convex combination of absolute extreme points G(i) of dimension ni.
Write

(0, . . . , 0, 1) =

k
∑

i=1

V ∗

i G(i) Vi (3)

where the Vi are ni × 1 matrices with
k
∑

i=1

V ∗
i Vi = 1 ∈ C. Now, each Vi is just

a contractive vector, so (3) is a convex combination of vector states applied to
G(i). Since the first level of M1,g is a Euclidean ball, (0, . . . , 0, 1) is an extreme
point of that set, so the above convex combination gives that (0, . . . , 0, 1) is
the compression of a single absolute extreme point G(i) to a 1-dimensional
subspace.

After a change of basis, we may write some absolute extreme point

(S, Y1, . . . , Yg) of M1,g as S =

[

0 α
β W

]

, Yk =

[

0 γk
γ∗

k Pk

]

for 1 ≤ k ≤ d− 1, and

Yd =

[

1 γd
γ∗

d Pd

]

. Since SS∗ +
g
∑

k=1

Y 2
k = I, the top left corner of the square sum
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implies that α = 0 and γk = 0 for all k. However, this means that S has a
row of zeroes and is not invertible. Since S acts on a finite-dimensional space,
it is not injective. This contradicts Theorem 2.8, since every absolute extreme
point is a maximal element.

The results [28, Theorem 6.8] and [20, Theorem 1.10] imply that for any closed
and bounded matrix convex set C = W(T ) over Cd, the closure in the Webster-
Winkler Krein-Milman theorem [34, Theorem 4.3] is not necessary. That is, C
is the matrix convex hull of its matrix extreme points, which are exactly the
images of T under pure matrix states. Since every pure UCP map of ST dilates
to a boundary representation by [10], this implies that every point of C is a ma-
trix convex combination of finite-dimensional compressions of expressions π(T ),
where π ranges over (perhaps infinite-dimensional) boundary representations.
That is, the closure in Corollary 2.10 is needed only because the boundary
representations being considered are finite-dimensional.

When d ≥ 2, regardless of g, Md,g follows a similar pattern as the row con-
tractions. In particular, these are examples of complex free spectrahedra with
no Krein-Milman theorem for absolute extreme points.

Corollary 2.11. If d ≥ 2 and g ≥ 0, then Md,g has no absolute extreme
points.

Proof. Any two injective operators T1 and T2 on a finite-dimensional space are
automatically surjective, and hence their ranges cannot be linearly indepen-
dent.

However, the C∗-envelope is not simple, unlike the Cuntz algebra.

Corollary 2.12. If d ≥ 0 and g ≥ 1, then the C∗-envelope of the operator
system corresponding to Md,g is not simple.

Proof. The case d = 0, g ≥ 1 is trivial. Otherwise, realize the operator system
as concretely spanned by operators Ti,Xj . The conditions in Theorem 2.8 allow
(possibly infinite-dimensional) maximal elements (Ti, Xj) such that ‖Xj‖ can
take any value between 0 and 1. However, a maximal element is the image of
(Ti,Xj) under a representation, so not all of these representations are norm-
preserving.

3 Geometry of Absolute Extreme Points

If C is a closed and bounded matrix convex set, then certain extreme points of
C1 = K are absolute extreme points of C. In an extreme case, [16, Proposi-
tion 6.1] implies that every real free spectrahedron, equivalently every complex
free spectrahedron that is closed under complex conjugation, has the property
that all extreme points of the first level are actually absolute extreme. (Again,
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we caution the reader that these results require the free spectrahedron to be
given in self-adjoint coordinates before discussing complex conjugation of the
entries.) However, for sets that are not spectrahedra, the situation is quite

different. The first level of the matrix range of

([

1 0
0 −1

]

,

[

0 1
1 0

])

is the unit

disk (see [30, (4.11)] and the references discussed nearby), but none of the ex-
treme points of the disk are absolute extreme for this matrix range. Namely,
the anticommuting pair above is a nontrivial dilation of every point of the unit
circle.

In the general setting, we seek a geometric method to pick out certain absolute
extreme points that are contained in the first level. From [31, Proposition 4.3],
we have that isolated extreme points of K = C1 are absolute extreme points
of C. More generally, this result applies to any λ ∈ K that is the vertex of
some polytope P that contains K. In this section, we significantly generalize
[31, Proposition 4.3] and use the new results to detect when certain sets are
not polar duals of spectrahedra. Our point of view differs from that of [16]
in two ways. First, we focus on the polar dual of spectrahedra instead of
the spectrahedra themselves, and second, we do not need to restrict to real
coefficients in any way. We denote the polar dual of C by C◦, which has each
level determined by

C◦

n =







(A1, . . . , Ag) ∈ Mn(C)
g
sa : for all X ∈ C,

g
∑

j=1

Aj ⊗Xj ≤ I







.

See [22] for an extensive study of the polar dual in the real coefficient setting.
Note that our choice to recoordinatize tuples to contain self-adjoints in proofs
is only for convenience, and once a self-adjoint presentation is specified, it does
not matter if the matrices have real or complex coefficients.

Given a compact convex set K ⊆ Rg, there are minimal and maximal matrix
convex sets over K, denoted Wmin(K) and Wmax(K), respectively [9, §4]. The
disparity between these two objects can be used to measure to what extent the
first level of a matrix convex set C, given as C1 = K, determines the properties
of C. Note that while the operations of Wmin and Wmax in [9] are direct
analogues of OMIN and OMAX for operator systems [29], a focus on matrix
convex sets opens comparison problems up to a geometric point of view. The
only compact convex sets K ⊆ Rg with Wmin(K) = Wmax(K) are simplices:
see [19, Theorem 4.7], [32, Theorem 4.1], [25, Theorem 1], and [5, Corollary 2],
which are roughly in increasing order of generality.

We will use the notation AEP(C) for the absolute extreme points of C, ext(K)
for the Euclidean extreme points of K, and IK for the isolated Euclidean
extreme points of K. Note that a set of the form Wmin(K) has the property
that any extreme point ofK is an absolute extreme point. Much more generally,
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[28, §6] implies that if C is generated by its nth level, then any matrix extreme
point in level n is an absolute extreme point. Motivated by [31, Proposition 4.3],
we give the following definitions.

Definition 3.1. Let K be a compact convex set in Euclidean space. Then
λ ∈ K is a simplex-bounded point of K if there exists a simplex ∆ ⊇ K such
that λ is a vertex of ∆. Equivalently, there exists a polytope P ⊇ K such that
λ is a vertex of P . In this case, we write λ ∈ SB(K).

Definition 3.2. Let C be a closed and bounded matrix convex set, with C1 = K.
Then λ ∈ K is a commuting extreme point of C if there exists a compact convex
set L such that C ⊆ Wmin(L) and λ is an extreme point of L. In this case, we
write λ ∈ CEP(C).

In this language, [31, Proposition 4.3] and its proof give that the containments

IK ⊆ SB(K) ⊆ CEP(C) ⊆ AEP(C) ∩K (4)

hold. Note that a priori, SB(K) only depends on the first level, but CEP(C)
takes other levels into account. Among all C with C1 = K, the smallest col-
lection of commuting extreme points occurs when C = Wmax(K). Further, if
one considers multiple commuting extreme points, the choice of L may vary.
Namely, if λ1 and λ2 are commuting extreme points of C, it is not expected
that there must be a single L such that C ⊆ Wmin(L) and both λ1 and λ2 are
extreme points of L.

It is of interest to us under what circumstances the containments in (4) are or
are not equalities. We first show that all of these sets coincide when C = W(A)
for a matrix tuple A. Note that C = W(A) is the bounded polar dual of a
free spectrahedron, as in the natural adjustment of [22, Theorem 4.6] to the
complex setting (see [9, Proposition 3.1 and Lemma 3.2]).

Proposition 3.3. Let A be a tuple of matrices and set C = W(A), K = C1.
Then

IK = SB(K) = CEP(C) = AEP(C) ∩K.

Proof. It suffices to prove that AEP(C) ∩ K ⊆ IK . If λ ∈ K is an absolute
extreme point ofW(A), then by [12, Corollary 3.8], λ is a crucial matrix extreme
point ofW(A) in the sense of [31, Definition 2.4]. This implies that λ is isolated
in the extreme points of K.

Proposition 3.3 is easily applied to the identification of free spectrahedra,
through the polar dual. If C admits an absolute extreme point in level one
that is not isolated among the Euclidean extreme points of level one, then C is
not the matrix range of a matrix tuple. Consequently, it is not the polar dual
of a free spectrahedron.
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The containment (4) also provides a different interpretation of results such as
[9, Example 7.22], which shows that the shifted unit disk K = (1, 0)+D is not
scalable. That is,

∀C ∈ (0,∞), Wmax(K) 6⊆ C · Wmin(K).

This example was subsequently generalized in [32, Theorem 5.6 and Corol-
lary 5.7] to a characterization of all containments Wmax(K1) ⊆ Wmin(K2)
where K1 and K2 are shifted and scaled closed Euclidean balls – there always
exists a simplex ∆ with K1 ⊆ ∆ ⊆ K2. However, nonscalability of the shifted
disk also follows from the next result, which uses a well-known fact about
numerical ranges.

Corollary 3.4. No point of the Euclidean ball Bg
2 in dimension g ≥ 2 is a

commuting extreme point of Wmax(Bg
2).

Proof. Let F = (F1, . . . , Fg) be the g-tuple of universal self-adjoint, anticom-

muting, unitary matrices. Then W(F ) ⊆ Wmax(Bg
2). Since any extreme point

of the ball is a compression of F to a non-reducing subspace, no λ ∈ B
g
2 is

an absolute extreme point of Wmax(Bg
2). By (4), AEP(Wmax(Bg

2)) ∩ B
g
2 = ∅

implies that no λ ∈ B
g
2 is a commuting extreme point of Wmax(Bg

2).

This simple result recovers nonscalability of the tangential ball K = ~v + B
g
2

where g ≥ 2 and ||~v||2 = 1 immediately: if Wmax(K) ⊆ C · Wmin(K), then
the extreme point 0 of K is still an extreme point of C · K, and hence 0 is
a commuting extreme point of K by Definition 3.2. However, shifting the set
shows −~v is a commuting extreme point of Bg

2, which is a contradiction. Note
that Corollary 3.4 is a fundamentally distinct generalization of nonscalability
than [32, Theorem 5.6 and Corollary 5.7], in that neither result obviously im-
plies the other. A quick look at the proof also shows that the argument can be
replaced with a local version, as follows.

Corollary 3.5. Let K be a compact convex set, and suppose λ ∈ K is such
that there exists a closed Euclidean ball B with B ⊆ K and λ ∈ B. Then λ
is not an absolute extreme point of Wmax(K), hence it is not a commuting
extreme point of K.

Corollary 3.5 applies in particular to ℓp-balls for p ≥ 2, but not for p < 2. So,
we use ℓp behavior for p < 2 to shed light on the containments in (4). To this
end, we define the compact convex set Kp ⊆ R

2 as

Kp := {(x, y) ∈ R
2 : |x|p ≤ y ≤ 1}. (5)

If 1 < p < 2, then the extreme point (0, 0) of Kp is not simplex-bounded, but
Corollary 3.5 does not apply, so it is not immediately obvious if it is an absolute
extreme point.
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Example 3.6. Fix 1 < p < 2. Then (0, 0) ∈ Kp is an absolute extreme point
of Wmax(Kp) that is not a simplex-bounded point of Kp.

Proof. It is immediate that (0, 0) is not simplex-bounded since F (x) := |x|p
has F ′(0) = 0, so we need only show that (0, 0) is an absolute extreme point of
Wmax(Kp). Consider an arbitrary 2× 2 dilation

(X,Y ) =

([

0 a
a b

]

,

[

0 c
c d

])

∈ Wmax(Kp).

By definition, the numerical range of (X,Y ) is in Kp, so Y ≥ 0. This immedi-
ately gives that c = 0 and d ≥ 0, so

(X,Y ) =

([

0 a
a b

]

,

[

0 0
0 d

])

.

Further, for any unit vector v = (v1, v2) ∈ C2, it holds that

|〈Xv, v〉|p ≤ 〈Y v, v〉 ≤ 1,

and in particular

|2Re(av2v1) + b |v2|2|p ≤ d |v2|2.

Choosing the arguments of v1 and v2 carefully, we have that for any t ∈ (0, 1),

∣

∣

∣
2|a|t

√

1− t2 + b t2
∣

∣

∣

p

≤ dt2.

The equivalent expression

∣

∣

∣2|a|t1−2/p
√

1− t2 + b t2−2/p
∣

∣

∣

p

≤ d

holds, so the left hand side is bounded as t decreases a zero. This causes a
contradiction if a 6= 0, since 1 − 2/p < 0 and 2 − 2/p > 0. We conclude that
a = 0, and hence the arbitrary dilation (X,Y ) was trivial. It follows from [16,
Theorem 1.1] that (0, 0) is an absolute extreme point of Wmax(K).

To generalize the example, we will need some preparation. Given a convex
body K in real or complex Euclidean space and an extreme point λ of K,
recoordinatize K so that λ = ~0 ∈ K and K ⊆ Rg−1 × [0,∞). Since K is a
convex body, we also insist that the set

D := {~x ∈ R
g−1 : ∃y ≥ 0, (~x, y) ∈ K} (6)

has ~0 ∈ R
g−1 in the interior. If all of these conditions are satisfied, we say

that K has been put in a (non-unique) standard position around λ.
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If K is in a standard position around the extreme point ~0, define the function
F : D → [0,+∞) by

F (~x) = min{y ≥ 0 : (~x, y) ∈ K}, (7)

that is,

(~x, y) ∈ K =⇒ F (~x) ≤ y. (8)

We will use the decay rate of F (~x) as ~x approaches ~0 to generalize Example 3.6.
Note that placing C1 = K in standard form means we have recoordinatized K
into real coordinates, and hence broken up the matrices of C into self-adjoint
coordinates, but this difference is only bookkeeping.

Theorem 3.7. Let K be a convex body in Euclidean space, with λ ∈ K an

extreme point, and put K in a standard position around λ. If lim
~x→0

F (~x)

||~x||2 = +∞,

then λ is an absolute extreme point of any closed and bounded matrix convex
set C with C1 = K.

Proof. We prove the contrapositive. Suppose that λ = ~0 is not an absolute
extreme point, so there is a nontrivial 2× 2 dilation

(X1, . . . , Xg−1, Y ) =

([

0 a1
a1 b1

]

, . . . ,

[

0 ag−1

ag−1 bd−1

]

,

[

0 α
α β

])

∈ C2.

We note that using standard form has recoordinatized C so that each Xi is
self-adjoint and Y ≥ 0, which immediately gives that α = 0 and β ≥ 0. The
dilation is by assumption nontrivial, so at least one ai is nonzero, and WLOG
we assume a1 6= 0. If v = (v1, v2) is an arbitrary unit vector, v2 6= 0, then the
image of (X1, . . . , Xg−1, Y ) under this vector state belongs to K, and hence (8)
gives that

F (〈X1v, v〉, . . . , 〈Xg−1v, v〉) ≤ 〈Y v, v〉. (9)

Set v2 = t ∈ (0, 1], and choose v1 such that

〈X1v, v〉 = 2Re(a1v2v1) + b1|v2|2 = 2|a1|t
√

1− t2 + b1t
2.

If ~x(t) := (〈X1v, v〉, . . . , 〈Xg−1v, v〉) ∈ D, then (9) implies that
F (~x(t))

t2
≤ β.

Since a1 6= 0, we have that

lim sup
t→0+

t2

||~x(t)||2 ≤ lim sup
t→0+

t2

|x1(t)|2

= lim sup
t→0+

t2
∣

∣2|a1|t
√
1− t2 + b1t2

∣

∣

2 =
1

4|a1|2
,
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so we conclude

lim sup
t→0+

F (~x(t))

||~x(t)||2 ≤ β

4|a1|2
.

Finally, there is a path of points ~x = ~x(t) approaching 0 such that
F (~x)

||~x||2 remains

bounded, and lim inf
~x→~0

F (~x)

||~x||2 < +∞.

Note that the hypothesis of Theorem 3.7 implies that xg = 0 is a separat-

ing hyperplane for λ = ~0, so λ is actually an exposed point. Theorem 3.7
improves [31, Proposition 4.3] in that we may determine some λ ∈ K is an
absolute extreme point of any matrix convex set over K using a weaker geo-
metric assumption. However, we do not reach any information on whether λ is
a commuting extreme point, which was implicit in [31, Proposition 4.3]. Com-
bining Theorem 3.7 and Proposition 3.3 also improves the previous discussion
about identifying free spectrahedra. If an exposed point λ of K is not isolated
extreme, but the defining function of K near λ decays more slowly than the
norm squared, then K is not the polar dual of a spectrahedron. Our next result
concerns the opposite type of behavior: if C = W(A), where A is a tuple of
matrices, then no defining function F (~x) near an exposed point decays strictly
faster than the norm squared.

Theorem 3.8. Let K be a convex body in Euclidean space, and let λ be an
exposed point of K that is separated by a hyperplane Q. If K = W1(A) for
some matrix tuple A, then K is contained in a paraboloid with vertex λ that
opens away from Q. That is, when K is put in standard position around λ with
separating hyperplane xg = 0, there is some M > 0 with F (~x) ≥ M‖x‖2 for all
~x ∈ D.

Proof. Put K in standard position with respect to λ, so that the separating
hyperplane Q corresponds to xg = 0. This implies that the function F of (7)

is such that for ~x 6= ~0, F (~x) > 0.

Suppose W1(A) = K for a matrix tuple A. Then the final matrix Ag is positive
semidefinite, since K is in standard form. Note that Ag is not the zero matrix,
as Ag = 0 would imply that every point of K has xg = 0. Similarly, Ag is not

positive definite, since ~0 ∈ W1(A). Apply a simultaneous unitary conjugation

to A so that Ag =

[

0 0
0 D

]

, where D ≥ εI is positive definite.

Since λ = ~0 is exposed in K and separated by the hyperplane Q : xg = 0, any
state that maps Ag 7→ 0 must map Ai 7→ 0 for all i. Therefore, since the unitary
conjugation above has produced a zero block corner for Ag, the other Ai must
have zero blocks in the same place. That is,

Ai =

[

0 Bi

B∗
i Ci

]

, 1 ≤ i ≤ g − 1, Ag =

[

0 0
0 D

]

.
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Applying an arbitrary vector state corresponding to (v1, v2), ‖v1‖2+‖v2‖2 = 1,
we obtain a point x = (x1, . . . , xg) ∈ K where

xi = 2Re (〈Biv2, v1〉) + 〈Ci v2, v2〉, 1 ≤ i ≤ g − 1, xg = 〈D v2, v2〉. (10)

Since xg = 〈D v2, v2〉 and D ≥ εI, we have that xg ≥ ε‖v2‖2, equivalently

||v2|| ≤
√
xg√
ε
. It is also trivial that ||v1|| ≤ 1 and ||v2|| ≤ 1, so we may bound

the other coordinates xi, 1 ≤ i ≤ g − 1, by the estimate

|xi| = |2Re (〈Biv2, v1〉) + 〈Ci v2, v2〉|

≤ 2 ||Bi|| ||v2|| ||v1||+ ||Ci|| ||v2||2

≤ (2||Bi||+ ||Ci||) ||v2||

≤ 2||Bi||+ ||Ci||√
ε

· √xg.

Letting M−1 =
g−1
∑

i=1

(2||Bi||+ ||Ci||)2
ε

shows that any image (x1, . . . , xg) of A

from a vector state satisfies
g−1
∑

i=1

x2
i ≤ M−1xg, or rather xg ≥ M

g−1
∑

i=1

x2
i . Since

the inequality given determines a paraboloid, which is convex, it follows that
W1(A) = K is contained in the same set. In other words, we have F (~x) ≥
M ||~x||2.

Since the unit disk is W1(A) for a pair A of 2 × 2 matrices, the convex hull
of two disks is W1(A ⊕ B) for two pairs A and B of 2 × 2 matrices. This set
has an extreme point that is not exposed. On the other hand, the vertex of
any paraboloid is certainly an exposed point, so Theorem 3.8 cannot have its
hypothesis weakened to apply to general extreme points.

Example 3.9. Let Bg
p denote the closed real ℓp ball in dimension g ≥ 2. By [24,

Theorems 2.2 and 3.1], if p 6∈ {1, 2,∞}, then B
g
p cannot be a spectrahedron (see

also [24, Example 2]). For most values of p, Bg
p is not an algebraic interior:

there is no polynomial P (x) such that a connected component of {x : P (x) > 0}
has closure equal to B

g
p. In all other cases, the region fails the rigid convexity

condition defined in [24, §3.1], as a generic line through the origin will not

cross the unit ball the necessary number of times for B
g
p to be defined by a

linear matrix inequality.

We note that the failure of Bg
p to be a spectrahedron may also be seen through

local information in the polar dual. If 1 < p < ∞ with p 6= 2, and we assume
B
g
p = DA(1) for some A ∈ Mn(C)

g , then the polar dual and [9, Proposition 3.1

and Lemma 3.2] show B
g
q = W1(A), where 1/p+1/q = 1. If 1 < q < 2, then the
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point (1, 0, . . . , 0) of Bg
q is an absolute extreme point of W(A) by Theorem 3.7,

but it is not an isolated extreme point of Bg
q , which contradicts Proposition 3.3.

On the other hand, if 2 < q < ∞, then (1, 0, . . . , 0) is exposed in B
g
q , but

there is no paraboloid containing B
g
q for which (1, 0, . . . , 0) is the vertex, which

contradicts Theorem 3.8.

We close with some further discussion of (4). We know that for matrix ranges
of matrix tuples, the four sets coincide, and in the general case we have found
an absolute extreme point in level one that is not simplex-bounded. That is,
in general AEP(C) ∩ K and SB(K) need not be equal. We still do not know
whether either of these sets is equal to the set of commuting extreme points.

Question 3.10. Let C = Wmax(K). Does there exist a choice of K such that
both of the equalities SB(K) = CEP(C) and AEP(C) ∩K = CEP(C) fail?

The potential equality of the simplex-bounded points of K and the commuting
extreme points ofWmax(K) would be an interesting “local” version of the claim
that Wmax(K) = Wmin(K) if and only if K is a simplex. The set

Kp = {(x, y) ∈ R
2 : |x|p ≤ y ≤ 1}

remains of interest for 1 < p < 2, as it has an absolute extreme point (0, 0) that
is not simplex-bounded, but that point has not been classified as a commuting
extreme point or not. Following the discussion after Corollary 3.4, we consider
a simpler question: is Kp scalable?

Question 3.11. Fix p ∈ (1, 2) and let Kp = {(x, y) ∈ R2 : |x|p ≤ y ≤ 1}. Does
there exist a constant M such that Wmax(Kp) ⊆ M · Wmin(Kp)?

We have a partial answer to this question: for p > 4/3, Kp is not scalable, and
we prove this using disks inside Kp that approach the origin.

Lemma 3.12. Fix p ∈ (1, 2) and the set Kp = {(x, y) : |x|p ≤ y ≤ 1}. For

sufficiently small c > 0, the closed disk of radius c− (pc)
p

2−p centered at (0, c)
is contained in Kp.

Proof. Kp is convex, so we need only prove containment of the boundary circle.
The disk of radius r > 0 centered at (0, c) is contained in Kp precisely when

x2 + (y − c)2 = r2 =⇒ |x|p ≤ y ≤ 1.

The claim |x|p ≤ y is the same as x2 ≤ y2/p. If x2 + (y − c)2 = r2, this means
r2 − (y − c)2 ≤ y2/p. This gives us the equivalent implication

x2 + (y − c)2 = r2 =⇒ 0 ≤ y ≤ 1 and y2/p + (y − c)2 ≥ r2.

The right hand side is independent of x, so we may focus on y and r. We need
r > 0 such that r ≤ c and c+ r ≤ 1, such that

c− r ≤ y ≤ c+ r =⇒ y2/p + (y − c)2 ≥ r2. (11)
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The function f(y) := y2/p + (y − c)2 has f ′(y) = 2
py

2/p−1 + 2(y − c). Since

1 < p < 2 implies 2/p − 1 > 0, f ′ is increasing on [0,+∞). To find a region
where f ′(y) ≥ 0, we forgo solving f ′(y) = 0 and instead ignore the linear term.

Solving 2
py

2/p−1 − 2c = 0 gives y = (pc)
p

2−p , so we now have

y ≥ (pc)
p

2−p =⇒ f ′(y) ≥ f ′((pc)
p

2−p ) = 2(pc)
p

2−p > 0,

and hence f is increasing for y ≥ (pc)
p

2−p . We conclude that if δ := (pc)
p

2−p ,
then

y ≥ δ =⇒ f(y) ≥ f(δ) ≥ (δ − c)2 = (c− δ)2. (12)

Since p
2−p > 1, it holds that for sufficiently small c, 0 < δ < c and 2c < 1. If

r := c− δ = c− (pc)
p

2−p , then we have that 0 < r < c and c+ r < 1, and finally

(11) holds as a consequence of (12). That is, the disk of radius r = c− (pc)
p

2−p

centered at (0, c) is contained in Kp.

Theorem 3.13. Fix p ∈ (43 ,∞). Then Kp = {(x, y) ∈ R2 : |x|p ≤ y ≤ 1} is
not scalable. That is, there is no M > 0 such that Wmax(Kp) ⊆ M ·Wmin(Kp).

Proof. If p ≥ 2, then (0, 0) is not a commuting extreme point of Kp by Corol-
lary 3.4, so Kp is not scalable. We may assume 4/3 < p < 2.

With p fixed, Lemma 3.12 shows that for sufficiently small c > 0, if r :=
c− (pc)

p

2−p , then (0, c) + rD ⊆ Kp. We also have that since p < 2, Kp ⊆ K2 ⊆
(0, 1) + D. If Kp is scalable, then we may fix M > 0 such that Wmax(Kp) ⊆
M · Wmin(Kp), which implies that

Wmax((0, c) + rD) ⊆ Wmin((0,M) +MD).

The disk is a Euclidean ball of real dimension d = 2, so applying [32, Theo-
rem 5.6] shows that

M ≥
√

(M − c)2 + r2 + r,

which simplifies to

M ≥ c2

2(c− r)
=

c2

2(pc)
p

2−p

.

Now, 4/3 < p < 2 is fixed, so p
2−p > 2, which implies that the right hand side

grows arbitrarily large as c decreases to 0. This is a contradiction, since the
inequality must hold for sufficiently small c.

It is not known whether Kp is scalable for 1 < p < 4/3.
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maps between spectrahedra and spectraballs, J. Funct. Anal. 278:11 (2020),
108472, 61 pp.

[24] J.W. Helton and V. Vinnikov, Linear matrix inequality representation of
sets, Comm. Pure Appl. Math. 60:5 (2007), 654–674.

[25] B. Huber and T. Netzer, A note on non-commutative polytopes and poly-
hedra, Adv. Geom. 21:1 (2021), 119–124.

[26] C. Kleski, Boundary representations and pure completely positive maps, J.
Operator Theory 71 (2014), 45–62.

[27] M. Krein and D. Milman, On extreme points of regular convex sets, Studia
Mathematica 9 (1940), 133–138.

[28] T. Kriel, An introduction to matrix convex sets and free spectrahedra, Com-
plex Anal. Oper. Theory 13:7 (2019), 3251–3335.

[29] V. I. Paulsen, I. G. Todorov, and M. Tomforde, Operator system structures
on ordered spaces, Proc. Lond. Math. Soc. (3) 102:1 (2011), 25–49.

[30] B. Passer, Shape, scale, and minimality of matrix ranges, Trans. Amer.
Math. Soc. 372:2 (2019), 1451–1484.

[31] B. Passer and O.M. Shalit, Compressions of compact tuples, Linear Alge-

Documenta Mathematica 27 (2022) 1275–1297



Complex Free Spectrahedra 1297

bra Appl. 564 (2019), 264–283.

[32] B. Passer, O.M. Shalit and B. Solel, Minimal and maximal matrix convex
sets, J. Funct. Anal. 274:11 (2018), 3197–3253.

[33] G. Popescu, Isometric dilations for infinite sequences of noncommuting
operators, Trans. Amer. Math. Soc. 316 (1989) 523–536.

[34] C. Webster and S. Winkler, The Krein-Milman theorem in operator con-
vexity, Trans. Amer. Math. Soc. 351:1 (1999), 307–322.

[35] D. Zheng, The operator system generated by Cuntz isometries. Preprint,
2014, arXiv:1410.6950.

Benjamin Passer
Department of Mathematics
United States Naval Academy
572C Holloway Road
Chauvenet Hall
Annapolis, Maryland 21401
United States of America
passer@usna.edu

Documenta Mathematica 27 (2022) 1275–1297



1298

Documenta Mathematica 27 (2022)


