
Documenta Math. 1299

Additivity Violation of the

Regularized Minimum Output Entropy
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Abstract. The problem of additivity of the Minimum Output En-
tropy is of fundamental importance in Quantum Information Theory
(QIT). It was solved by Hastings [Has09] in the one-shot case by ex-
hibiting a pair of random quantum channels. However, the initial
motivation was arguably to understand regularized quantities, and
there was so far no way to solve additivity questions in the regularized
case. The purpose of this paper is to give a solution to this problem.
Specifically, we exhibit a pair of quantum channels that unearths ad-
ditivity violation of the regularized minimum output entropy. Unlike
previously known results in the one-shot case, our construction is non-
random, infinite-dimensional, and in the commuting-operator setup.
The commuting-operator setup is equivalent to the tensor-product
setup in the finite-dimensional case for this problem, but their differ-
ence in the infinite-dimensional setting has attracted substantial at-
tention and legitimacy recently in QIT with the celebrated resolutions
of Tsirelson’s and Connes embedding problem [JNV+20]. Likewise, it
is not clear that our approach works in the finite-dimensional setup.
Our strategy of proof relies on developing a variant of the Haagerup
inequality optimized for a product of free groups.
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1 Introduction

A crucial problem in quantum information theory is the problem of additivity
of Minimum Output Entropy (MOE), which asks whether it is possible to find
two quantum channels Φ1,Φ2 such that

Hmin(Φ1 ⊗ Φ2) < Hmin(Φ1) + Hmin(Φ2). (1)
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This problem was stated by King-Ruskai [KR01] as a natural question in the
study of quantum channels. Shor proved in 2004 [Sho04] that a positive answer
to the above question is equivalent to super-additivity of the Holevo informa-
tion, i.e., there exist quantum channels Φ1,Φ2 such that

χ(Φ1 ⊗ Φ2) > χ(Φ1) + χ(Φ2). (2)

Heuristically, the super-additivity of the Holevo information implies that en-
tanglement inputs can be used to increase the transmission rate of classical
information. We refer to Section 2.1 for the definitions of the MOE Hmin

and the Holevo information χ. This question attracted lots of attention, and
Hastings eventually solved it in 2009 [Has09], with preliminary substantial con-
tributions by Hayden, Winter, Werner, see in particular [HW08]. Subsequently,
the mathematical aspects of the proof have been clarified in various directions
by [ASW11, FKM10, BaH10, BCN16, Col18, CFZ15].
All previously known examples of additivity violation of MOE rely on subtle
random constructions. In particular, to date, no deterministic construction of
additivity violation has ever been given. For attempts and partial results in
the direction of non-random techniques, we refer to [WH02, GHP10, BCLY20],
etc.
Note that the above results do not imply anything about the problem of the
additivity of the regularized MOE (see Definition 11 for details). Indeed, ad-
ditivity violation is not known to pertain when the MOE is regularized. More
precisely, the additivity question for the regularized MOE asks whether it is
possible to find two quantum channels Φ1,Φ2 such that

Hmin(Φ1 ⊗ Φ2) < Hmin(Φ1) + Hmin(Φ2). (3)

where Hmin stands for the regularized MOE. This question was raised in
[Fuk14] and the affirmative answer to this implies superadditivity of classical
capacity.
Very few results are known about regularized entropic quantities – see for ex-
ample [Kin02] or [BCLY20] for partial results. In this paper, we focus on the
additivity question of the regularized minimum output entropy, and the tensor
product channel will be understood as a composition of two quantum channels
whose systems of Kraus operators are commuting (see Section 2.2 for details).
In (quantum) information theory, one key paradigm is to allow repeated uses of
a given quantum channel. To do this, we have to analyze a physical system by
separated subsystems. Given quantum strategies for non-local games, there are
two natural models to describe separated subsystems. One is the tensor-product
model, and the other is commuting-operator model. This latter approach is
the object of intense research, see for example [PT15, DP16, CLS17, Slo20,
CCLP18], culminating with the recent resolution [JNV+20] in the negative of
the celebrated Connes Embedding problem whose origin dates back to [Con76].
In our case, commuting systems of Kraus operators correspond to a commuting-
operator model. We refer to Section 2.2 for details on this.
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The main result of this paper is an explicit construction of a pair of quantum
channels Φ1 and Φ2 which have commuting systems of Kraus operators and
satisfy additivity violation of the regularized MOE. Specifically, our main result
can be stated as follows:

Theorem 1.1. There exist systems of operators {Ei}mi=1 and {Fj}nj=1 in B(H)
such that

1. EiFj = FjEi for all 1 ≤ i ≤ m and 1 ≤ j ≤ n,

2.
∑m

i=1 E
∗
i Ei = IdH =

∑n
j=1 F

∗
j Fj ,

3. Φ1,Φ2 : T (H) → T (H) are quantum channels given by

Φ1(ρ) =
m
∑

i=1

EiρE
∗
i and Φ2(ρ) =

n
∑

j=1

FjρF
∗
j , (4)

4. Hmin(Φ1 ◦ Φ2) < Hmin(Φ1) + Hmin(Φ2).

Note that the above discussion for the regularized MOE makes sense since
the given channels are generated by finitely many Kraus operators and given
commuting systems will be chosen as an infinite-dimensional analog of i.i.d.
Haar distributed unitary matrices, which will be explained in Section 2.2 and
Theorem 4.1 in detail. One of the biggest benefits from this shift in perspective
is that the regularized minimum output entropy becomes computable, whereas
for random unitary channels, computing such regularized quantities still seems
to remain totally out of reach at this point.
One of the key ingredients is to extend the Haagerup inequality [Haa79] to
products of free groups (Proposition 3.2), which has numerous applications in
operator algebras, non-commutative harmonic analysis and geometric group
theory [Boż81, DCH85, Jol89, Laf00, Laf02].
This paper is organized as follows. After this introduction, Section 2 gath-
ers some preliminaries about entropic quantities, quantum channels, and the
infinite-dimensional framework. Section 3 contains the proof of a Haagerup-
type inequality for products of free groups and estimates for the regularized
Minimum Output Entropy of our main family of quantum channels. Section
4 explains how we can obtain additivity violation of the regularized MOE in
the commuting operator setup, and Section 5 contains concluding remarks. A
connection with the extended Haagerup inequality and operator space theory
is given in the Appendix.

2 Preliminaries

2.1 Minimum output entropy in the infinite-dimensional setting

Let V : HA → HB ⊗ HE be an isometry. Then partial traces on HB and
HE define the following completely positive trace-preserving maps (aka quan-
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tum channels)

Φ : T (HA) → T (HB), ρ 7→ (id ⊗ tr)(V ρV ∗) (5)

Φc : T (HA) → T (HE), ρ 7→ (tr ⊗ id)(V ρV ∗) (6)

where T (H) denotes the space of trace class operators on a Hilbert space H .
The map Φc is called the complementary channel of Φ. The tensor product
channels Φ⊗k : T (H⊗k

A ) → T (H⊗k
B ) are defined in the obvious way. A (quan-

tum) state in H is a positive element of T (H) of trace 1, and for a state ρ, its
Rényi entropy for p ∈ (1,∞) is defined as

Hp(ρ) =
1

1 − p
log (tr(ρp)) . (7)

Its limit as p → 1+ is called the von Neumann entropy, and if λ1(ρ) ≥ λ2(ρ) ≥
. . . are the eigenvalues of ρ (counted with multiplicity), then the von Neumann
entropy is

H(ρ) = −
∑

i

λi(ρ) logλi(ρ). (8)

The Holevo information of a quantum channel is

χ(Φ) = sup

{

H(Φ(
∑

i

λiρi) −
∑

i

λiH(Φ(ρi))

}

, (9)

where the supremum is taken over all probability distributions (pi)i and all fam-
ilies of states (ρi)i. It describes the amount of classical information that can be
carried through a single use of a quantum channel. The ultimate transmission
rate of classical information is described by

C(Φ) = lim
k→∞

1

k
χ(Φ⊗k), (10)

which is called the classical capacity.
For a quantum channel Φ, the Minimum Output Entropy (MOE) and the reg-
ularized MOE are defined as

Hmin(Φ) = inf
ξ
H(Φ(|ξ〉〈ξ|)) and (11)

Hmin(Φ) = lim
k→∞

1

k
Hmin(Φ⊗k). (12)

respectively, where the infimum runs over all unit vectors ξ of HA. If Φ has

finitely many Kraus operators {E1, E2, · · · , EN} satisfying Φ(ρ) =
N
∑

i=1

EiρE
∗
i

(e.g. if HE is finite dimensional), then

Hmin(Φ) + χ(Φ) ≤ log(N) and Hmin(Φ) + C(Φ) ≤ log(N). (13)

Documenta Mathematica 27 (2022) 1299–1320



Additivity Violation of the Regularized MOE 1303

Remark 2.1. In Equation (11), taking the minimum over all states instead
of pure states does not modify the quantity thanks to operator convexity of the
function x log(x), see e.g. [Seg60, NU61].

As in the finite dimensional setting, the following Schmidt decomposition the-
orem tells us that Φ(|ξ〉〈ξ|) and Φc(|ξ〉〈ξ|) have the same eigenvalues for each
pure state |ξ〉〈ξ| ∈ T (H).

Proposition 2.2. Let V : HA → HB ⊗ HE be an isometry and ξ ∈ HA be
a unit vector. For a quantum channel Φ : T (HA) → T (HB) given by Φ(ρ) =
(id⊗TrE)(V ρV ∗), let us suppose that Φ(|ξ〉〈ξ|) has the spectral decomposition
∑

i

λi|ei〉〈ei| with λi > 0, where (ei)i∈I is an orthonormal subset of HB. Then

there exists an orthonormal subset (fi)i∈I of HE satisfying

V |ξ〉 =
∑

i

√

λi|ei〉 ⊗ |fi〉 and Φc(|ξ〉〈ξ|) =
∑

i

λi|fi〉〈fi|. (14)

In particular, H(Φ(|ξ〉〈ξ|)) = H(Φc(|ξ〉〈ξ|)) for each unit vector ξ ∈ HA.

Proof. Since (ei)i is an orthonormal basis of HB, we can write V |ξ〉 as
∑

i

|ei〉⊗

|ηi〉 for a family (ηi)i ⊆ HE . Moreover, the given spectral decomposition of
Φ(|ξ〉〈ξ|) tells us that 〈ηj |ηi〉 = λiδi,j , which is equivalent to that (fi)i :=
(

λ
− 1

2

i ηi

)

i
is an orthonormal subset of HE . Then we have

V |ξ〉 =
∑

i

√

λi|ei〉 ⊗ |fi〉 and Φc(|ξ〉〈ξ|) =
∑

i

λi|fi〉〈fi|. (15)

2.2 Commuting systems of Kraus operators

Let H be a Hilbert space and (aij)(i,j)∈I×J be a family of bounded operators

in B(H) satisfying
∑

i∈I

a∗i,jai,j = IdH for each j ∈ J . We assume that I is finite

and J is arbitary. Let us define a family of quantum channels (Φj)j∈J by

Φj : T (H) → T (H), X 7→
∑

i∈I

aijXa∗ij . (16)

Their complementary channels are given by

Φc
j : T (H) → M|I|(C), X 7→

∑

i,i′∈I

tr(aijXa∗i′j)|i〉〈i′|. (17)

We say that (Φj)j∈J is in the commuting-operator setup if the given channels Φj

have commuting systems of Kraus operators in the sense that aijai′j′ = ai′j′aij
for any i, i′ ∈ I and j, j′ ∈ J such that j 6= j′.
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An example of this is the tensor-product setup, but it is not the only example.
A property is that Φj and Φj′ commute and their products are again quantum
channels. If J is finite and Φ1, · · · ,Φ|J| are in the commuting-operator setup,
then it is natural to ask whether the following additivity property holds when
F is one of Hmin, Hmin, χ, C:

F





∏

j∈J

Φj



 =
∑

j∈J

F (Φj). (18)

In particular, in the case |J | = 2, the product channel Φ1 ◦ Φ2 is called a local
map in the context of [CKLT20].

Let us construct a non-trivial quantum channel within the commuting-operator
setup from the view of abstract harmonic analysis and operator algebra. Let
F∞ be the free group whose generators are g1, g2, · · · and let us define unitary
operators Ui and Vj on ℓ2(F∞) by

(Uif)(x) = f(g−1
i x) and (Vjf)(x) = f(xgj) (19)

for any f ∈ ℓ2(F∞), x ∈ F∞ and i, j ∈ N. Since UiVj = VjUi for all i, j ∈ N, we
have the following quantum channels that have commuting systems of Kraus
operators:

ΦN,l : T (ℓ2(F∞)) → T (ℓ2(F∞)), ρ 7→ 1

N

N
∑

i=1

UiρU
∗
i , (20)

ΦN,r : T (ℓ2(F∞)) → T (ℓ2(F∞)), ρ 7→ 1

N

N
∑

j=1

VjρV
∗
j . (21)

Let J ∈ B(ℓ2(F∞)) be a unitary given by

(Jf)(x) = f(x−1) (22)

for any f ∈ ℓ2(F∞) and x ∈ F∞. Then, since JUiJ = Vi and J2 = Id, the
above channels ΦN,l and ΦN,r are equivalent in the sense that

ΦN,r(ρ) = JΦN,l(JρJ)J (23)

for any ρ ∈ T (ℓ2(F∞)). In particular, Hmin(Φ⊗k
N,l) = Hmin(Φ⊗k

N,r) for any k ∈ N.

Also, in order to express k-fold tensor product quantum channels Φ⊗k
N,l, we will

use the following notation

Um = Um1 ⊗ Um2 ⊗ · · · ⊗ Umk
∈ B(ℓ2(Fk

∞)) (24)

for any m = (m1, · · · ,mk) ∈ Ik, where I = {1, 2, · · · , N}.
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3 Generalized Haagerup inequality and regularized MOE

In this section, we prove that the Haagerup inequality extends naturally to r-
products of free groups F

r
∞. Then we explain how this generalization allows

proving lower bounds of the regularized minimum output entropies (MOE)
for ΦN,l. All the results for ΦN,l in this section are also true for ΦN,r since
they are unitarily equivalent to each other as noted in (23).

3.1 A generalized Haagerup inequality

For any element x in the free group F∞, we call |x| its reduced word length with
respect to the canonical generators and their inverses. We consider products
of free groups Fr

∞ for any r ∈ N. Let us use the following notations Ej =
{x ∈ F∞ : |x| = j} for any j ∈ N0 and Em = Em1 ×Em2 × · · · ×Emr

⊆ Fr
∞ for

any m = (m1, · · · ,mr) ∈ Nr
0.

We view F
r
∞ as an orthonormal basis that generates the Hilbert space ℓ2(Fr

∞).
As an algebraic vector space, Fr

∞ spans C[Fr
∞], on which we may define the

convolution product

(f ∗ g)(s) =
∑

t,u∈Fr
∞:tu=s

f(t)g(u) (25)

and the pointwise product (f · g)(s) = f(s)g(s). For A ⊂ Fr
∞, χA denotes the

indicator function of A. First of all, we can generalize Lemma 1.3 of [Haa79]
as follows:

Lemma 3.1. Let l,m, k ∈ Nr
0 and let f, g be supported on Ek and El respectively.

Then
‖(f ∗ g) · χEm

‖ℓ2(Fr
∞) ≤ ‖f‖ℓ2(Fr

∞) · ‖g‖ℓ2(Fr
∞) (26)

if |kj − lj| ≤ mj ≤ kj + lj and kj + lj−mj is even for all 1 ≤ j ≤ r. Otherwise,
we have ‖(f ∗ g) · χEm

‖ℓ2(Fr
∞) = 0.

Proof. Since Ekj
· Elj ⊆ Ekj+lj ∪ Ekj+lj−2 ∪ · · · ∪ E|kj−lj |, we can see that

(f ∗ g)χEm
6= 0 should imply that mj is one of kj + lj , kj + lj − 2, · · · , |kj − lj |

for all 1 ≤ j ≤ r. From now on, let us suppose that |kj − lj | ≤ mj ≤ kj + lj
and kj + lj −mj is even for all 1 ≤ j ≤ r. Also, it is enough to suppose that
f, g are finitely supported since (f, g) 7→ (f ∗ g) · χEm

is bilinear.
Let us use the induction argument with respect to r ∈ N. The first case r = 1
follows from [Haa79, Lemma 1.3] and let us suppose that (26) holds true for Fr

∞.
Under the notation m = (m0,m

′) ∈ N
r+1
0 , we have

‖(f ∗ g)χEm
‖2
ℓ2(Fr+1

∞ ) =
∑

s∈Em

∣

∣

∣

∣

∣

∣

∑

t,u∈F
r+1
∞ :tu=s

f(t)g(u)

∣

∣

∣

∣

∣

∣

2

(27)

=
∑

s0∈Em0

∑

s′∈Em′

∣

∣

∣

∣

∣

∣

∑

t0,u0∈F∞:t0u0=s0

∑

t′,u′∈Fr
∞:t′u′=s′

f(t0, t
′)g(u0, u

′)

∣

∣

∣

∣

∣

∣

2

. (28)
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(Step 1) First of all, let us suppose that m0 = k0 + l0. Note that, for each
s0 ∈ Em0 , there is a unique choice of t0 ∈ Ek0 and u0 ∈ El0 satisfying t0u0 = s0.
Thus, we have

‖(f ∗ g)χEm
‖2ℓ2(Fr+1

∞ ) =
∑

s0∈Em0

∑

s′∈Em′

∣

∣

∣

∣

∣

∣

∑

t′,u′∈Fr
∞:t′u′=s′

f(t0, t
′)g(u0, u

′)

∣

∣

∣

∣

∣

∣

2

(29)

Let us define functions ft0(t′) = f(t0, t
′) and gu0(u′) = g(u0, u

′) on Fr
∞. Then

‖(f ∗ g)χEm
‖ℓ2(Fr+1

∞ ) is upper estimated by

‖(f ∗ g)χEm
‖2ℓ2(Fr+1

∞ ) =
∑

s0∈Em0

∥

∥(ft0 ∗ gu0)χEm′

∥

∥

2

ℓ2(Fr
∞)

(30)

≤
∑

s0∈Em0

‖ft0‖2ℓ2(Fr
∞) ‖gu0‖2ℓ2(Fr

∞) (31)

≤
∑

t0∈Ek0

∑

u0∈El0

‖ft0‖2ℓ2(Fr
∞) ‖gu0‖2ℓ2(Fr

∞) = ‖f‖2ℓ2(Fr+1
∞ ) ‖g‖

2
ℓ2(Fr+1

∞ ) . (32)

Here, the first inequality comes from the induction hypothesis. Furthermore,
the same idea applies whenever mj = kj + lj for some 0 ≤ j ≤ r.

(Step 2) Let us suppose that mj < kj + lj and put qj =
kj + lj −mj

2
for all

0 ≤ j ≤ r. Also, denote by q = (q0, · · · , qr) and define two functions F and G

on Fr+1
∞ as follows:

F (x) =







(

∑

v∈Eq
|f(xv)|2

)
1
2

for any x ∈ Ek−q

0 otherwise
(33)

G(y) =







(

∑

v∈Eq

∣

∣g(v−1y)
∣

∣

2
)

1
2

for any y ∈ El−q

0 otherwise
(34)

Note that F and G are supported on Ek−q and El−q respectively with

‖F‖2ℓ2(Fr+1
∞ ) =

∑

x∈Ek−q

∑

v∈Eq

|f(xv)|2 = ‖f‖2ℓ2(Fr+1
∞ ) and (35)

‖G‖2ℓ2(Fr+1
∞ ) =

∑

v∈Eq

∑

y∈El−q

|g(v−1y)|2 = ‖g‖2ℓ2(Fr+1
∞ ) . (36)

Then we can show that the convolution F ∗G dominates |f ∗g| on Em. Indeed,
for any s ∈ Em, there exists a unique (x, y) ∈ Ek−q × El−q such that s = xy
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and we have

|(f ∗ g)(s)| =

∣

∣

∣

∣

∣

∣

∑

t,u∈F
r+1
∞ :tu=s

f(t)g(u)

∣

∣

∣

∣

∣

∣

(37)

=

∣

∣

∣

∣

∣

∣

∑

t∈Ek,u∈El:tu=s

f(t)g(u)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

v∈Eq

f(xv)g(v−1y)

∣

∣

∣

∣

∣

∣

(38)

≤





∑

v∈Eq

|f(xv)|2




1
2




∑

v∈Eq

|g(v−1y)|2




1
2

= F (x)G(y) = (F ∗G)(s) (39)

Finally, since F and G are supported on Ek−q and El−q respectively with
m = (k − q) + (l − q), we can apply the conclusion from (Step 1) to show

‖(f ∗ g)χEm
‖ℓ2(Fr+1

∞ ) ≤ ‖(F ∗G)χEm
‖ℓ2(Fr+1

∞ ) (40)

≤ ‖F‖ℓ2(Fr+1
∞ ) ‖G‖ℓ2(Fr+1

∞ ) = ‖f‖ℓ2(Fr+1
∞ ) ‖g‖ℓ2(Fr+1

∞ ) . (41)

Then we can generalize the Haagerup inequality to products of free groups Fr
∞

as follows:

Proposition 3.2. Let n = (n1, · · · , nr) ∈ Nr
0 and f be supported on En ⊆ Fr

∞.
Then

‖Lf‖ ≤ (n1 + 1) · · · (nr + 1) ‖f‖ℓ2(Fr
∞) , (42)

where Lf is the convolution operator on ℓ2(Fr
∞) given by g 7→ f ∗ g.

Proof. By density arguments, we may assume that f is finitely supported and
it is enough to consider finitely supported functions to evaluate the norm of
the associated convolution operator Lf . Let g ∈ ℓ2(Fr

∞) be finitely supported

and define gk = g · χEk
for each k ∈ Nr

0. Then g =
∑

k∈Nr
0

g · χEk
and we have

h := f ∗ g =
∑

k∈Nr
0

f ∗ gk. (43)

Then, by Lemma 3.1, we have the following estimate for hm = h · χEm
with

m = (m1, · · · ,mr) ∈ Nr
0 as follows:

‖hm‖ℓ2(Fr
∞) =

∥

∥

∥

∥

∥

∥

∑

k∈Nr
0

(f ∗ gk) · χEm

∥

∥

∥

∥

∥

∥

ℓ2(Fr
∞)

(44)

≤
∑

k∈Nr
0

‖(f ∗ gk) · χEm
‖ℓ2(Fr

∞) ≤
∑

k∈N
r
0

nj+kj−mj:even
|nj−kj |≤mj≤nj+kj

‖f‖ℓ2(Fr
∞) ‖gk‖ℓ2(Fr

∞) =: Am

(45)
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Writing kj = mj + nj − 2lj for all 1 ≤ j ≤ r, we obtain

Am = ‖f‖ℓ2(Fr∞)

∑

l1,··· ,lr

0≤lj≤min{mj ,nj}

‖gm+n−2l‖ℓ2(Fr∞) (46)

≤‖f‖
ℓ2(Fr∞)

√

(1 + n1) · · · (1 + nr)











∑

l1,··· ,lr

0≤lj≤min{mj ,nj}

‖gm+n−2l‖
2
ℓ2(Fr∞)











1
2

(47)

by the Cauchy-Schwarz inequality. Therefore,

‖h‖2
ℓ2(Fr∞) =

∑

m∈Nr
0

‖hm‖2
ℓ2(Fr∞) ≤

∑

m∈Nr
0

A
2
m (48)

≤ (1 + n1) · · · (1 + nr) ‖f‖
2
ℓ2(Fr∞)

∑

m∈Nr
0

∑

l1,··· ,lr

0≤lj≤min{mj ,nj}

‖gm+n−2l‖
2
ℓ2(Fr∞) (49)

= (1 + n1) · · · (1 + nr) ‖f‖
2
ℓ2(Fr∞)

∑

l1,··· ,lr
0≤lj≤nj

∑

m1,··· ,mr
lj≤mj<∞

‖gm+n−2l‖
2
ℓ2(Fr∞) (50)

= (1 + n1) · · · (1 + nr) ‖f‖
2
ℓ2(Fr∞)

∑

l1,··· ,lr
0≤lj≤nj

∑

k1,··· ,kr
nj−lj≤kj<∞

‖gk‖
2
ℓ2(Fr∞) (51)

≤ (1 + n1) · · · (1 + nr) ‖f‖
2
ℓ2(Fr∞)

∑

l1,··· ,lr
0≤lj≤nj

∑

k∈Nr
0

‖gk‖
2
ℓ2(Fr∞) (52)

= (1 + n1)
2 · · · (1 + nr)

2 ‖f‖2
ℓ2(Fr∞) ‖g‖

2
ℓ2(Fr∞) , (53)

which gives us, since h = Lf(g),

‖Lf‖ ≤ (1 + n1) · · · (1 + nr) ‖f‖ℓ2(Fr
∞) . (54)

3.2 A norm estimate

In this subsection, we investigate the operator norm of the following elements
∑

v,w∈Ek

av,w(Uv)∗Uw with avw ∈ C, (55)

where E = {g1, g2, · · · } is the set of generators of F∞ and Ek = E × · · · ×E ⊆
E(1,··· ,1). This estimate will be needed to evaluate the regularized MOE in
Section 3.3. Our estimate is as follows:

Theorem 3.3. For any a = (avw)v,w∈Ek ∈ MNk(C) such that tr(a) = 0, we
have

∥

∥

∥

∥

∥

∥

∑

v,w∈Ek

avw(Uv)∗Uw

∥

∥

∥

∥

∥

∥

≤ N
k
2

√

(1 + 9N−1)k − 1 ‖a‖2 . (56)
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Proof. Now we are summing over (Nk)2 elements and we have to split the sum
according to whether there are some cancellations to compute the reduced word
of v−1

i wi. To do this, for any subset K of {1, 2, · · · , k}, we define

EK =
{

(v, w) ∈ Ek × Ek : vi = wi if and only if i ∈ K
}

. (57)

Note that Ek × Ek = ⊔K⊂{1,··· ,k}EK and K = {1, 2, · · · , k} implies EK =
{

(v, v) ∈ Ek × Ek : v ∈ Ek
}

. Then, by the triangle inequality, we have

∥

∥

∥

∥

∥

∥

∑

v,w∈Ek

avw(Uv)∗Uw

∥

∥

∥

∥

∥

∥

≤
∑

K⊂{1,··· ,k}

∥

∥

∥

∥

∥

∥

∑

(v,w)∈EK

avw(Uv)∗Uw

∥

∥

∥

∥

∥

∥

(58)

=

k
∑

s=0

∑

K⊂{1,··· ,k}
|K|=s

∥

∥

∥

∥

∥

∥

∑

(v,w)∈EK

avw(Uv)∗Uw

∥

∥

∥

∥

∥

∥

. (59)

Note that |K| = k implies
∑

(v,w)∈EK

avw(Uv)∗Uw =
∑

v∈Ek

avv = 0. From now

on, let us suppose that |K| = s < k. Then EK can be identified with the set
{

(z, x, y) ∈ Es × Ek−s × Ek−s : xj 6= yj ∀1 ≤ j ≤ k − s
}

for each K. Under
this notation, (avw) can be written as (aK,z

x,y ) and we have

∑

K⊂{1,··· ,k}
|K|=s

∥

∥

∥

∥

∥

∥

∑

(v,w)∈EK

avw(Uv)∗Uw

∥

∥

∥

∥

∥

∥

(60)

≤
∑

K⊂{1,··· ,k}
|K|=s

∑

z∈Es

∥

∥

∥

∥

∥

∥

∥

∥

∥

∑

(x,y)∈Ek−s×Ek−s

xj 6=yj

aK,z
x,y (Ux)∗Uy

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (61)

Moreover, Proposition 3.2 tells us that

∥

∥

∥

∥

∥

∥

∥

∥

∥

∑

(x,y)∈Ek−s×Ek−s

xj 6=yj

aK,z
x,y (Ux)∗Uy

∥

∥

∥

∥

∥

∥

∥

∥

∥

≤ 3k−s











∑

(x,y)∈Ek−s×Ek−s

xj 6=yj

|aK,z
x,y |2











1
2

, (62)
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which implies

∑

K⊂{1,··· ,k}
|K|=s

∥

∥

∥

∥

∥

∥

∑

(v,w)∈EK

avw(Uv)∗Uw

∥

∥

∥

∥

∥

∥

(63)

≤
∑

K⊂{1,··· ,k}
|K|=s

∑

z∈Es

3k−s









∑

(x,y)∈Ek−s×Ek−s

xj 6=yj

|aK,z
x,y |2









1
2

. (64)

Then, since we are summing Ns
(

k
s

)

elements, the Cauchy-Schwarz inequality
tells us that the above is upper bounded by

3k−sN
s
2

(

k

s

)
1
2











∑

K⊂{1,··· ,k}
|K|=s

∑

z∈Es

∑

(x,y)∈Ek−s×Ek−s

xj 6=yj

|aK,z
x,y |2











1
2

(65)

= 3k−sN
s
2

(

k

s

)
1
2









∑

K⊂{1,··· ,k}
|K|=s

∑

(u,v)∈EK

|avw|2









1
2

. (66)

To summarize, we have
∥

∥

∥

∥

∥

∥

∑

v,w∈Ek

avw(Uv)∗Uw

∥

∥

∥

∥

∥

∥

≤
k−1
∑

s=0

∑

K⊂{1,··· ,k}
|K|=s

∥

∥

∥

∥

∥

∥

∑

(v,w)∈EK

avw(Uv)∗Uw

∥

∥

∥

∥

∥

∥

(67)

≤
k−1
∑

s=0

3k−sN
s
2

(

k

s

)
1
2









∑

K⊂{1,··· ,k}
|K|=s

∑

(u,v)∈EK

|avw|2









1
2

(68)

and, applying the Cauchy-Schwartz inequality once more, the above is upper
bounded by

(

k−1
∑

s=0

9k−sNs

(

k

s

)

)

1
2





∑

K⊂{1,··· ,k}

∑

(u,v)∈EK

|avw|2




1
2

(69)

=
√

(N + 9)k −Nk ‖a‖2 = N
k
2

√

(1 + 9N−1)k − 1 ‖a‖2 . (70)

Here, the first equality is thanks to the binomial expansion (N + 9)k =
k
∑

s=0

9k−sNs

(

k

s

)

.
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3.3 The regularized minimum output entropy of ΦN

Recall that the quantum channel ΦN,l : T (ℓ2(F∞)) → T (ℓ2(F∞)) is given by

ΦN,l(ρ) =
1

N

N
∑

i=1

UiρUi (71)

where Ui is a unitary acting on ℓ2(F∞) by (Uif)(x) = f(g−1
i x) and g1, g2, · · ·

are the generators of F∞. Let us simply write ΦN = ΦN,l in this section.
Theorem 3.3 enables us to show that for any density operator S

∥

∥

∥

∥

(Φc
N )⊗k(S) − 1

Nk
Id⊗k

N

∥

∥

∥

∥

2

(72)

is sufficiently small with respect to the Hilbert-Schmidt norm. This generalizes
[Col18, Theorem 3.1]. Specifically, we prove the following theorem:

Theorem 3.4. Let ΦN be a quantum channel of the form (71). For each k ∈ N,
we have

sup
S

∥

∥

∥

∥

(Φc
N )⊗k(S) − 1

Nk
Id⊗k

N

∥

∥

∥

∥

2

≤
√

(1 + 9N−1)k − 1

N
k
2

, (73)

where S runs over all density operators in T (ℓ2(Fk
∞)).

Proof. Let X = (xi,j)i,j∈Ik = (Φc
N )⊗k(S)− 1

Nk
Id⊗k

N . Since tr(X) = 0, we have

tr(X2) = tr((Φc
N )⊗k(S)X) − 1

Nk
tr(X) (74)

= tr([(Φc
N )⊗k(S)] ·X) − 0 = tr(S · [

(

(Φc
N )⊗k

)∗
(X)]) (75)

where
(

(Φc
N )⊗k

)∗
denotes the adjoint map of (Φc

N )⊗k. Since

(Φc
N )⊗k(A) =

1

Nk

∑

i,j∈Ik

tr(UiAU
∗
j )|i〉〈j| (76)

for any A ∈ T (ℓ2(F∞)) where I = {1, 2, · · · , N}, the above
(

(Φc
N )⊗k

)∗
(X) is

given by

(

(Φc
N )⊗k

)∗
(X) =

1

Nk

∑

i,j∈Ik

xj,iU
∗
j Ui =

1

Nk

∑

i,j∈Ik

i6=j

xj,iU
∗
j Ui. (77)

Here, tr(X) = 0 is used for the second equality. Thus, we have

tr(X2) = tr(S((Φc
N )⊗k)∗(X)) ≤

∥

∥((Φc
N )⊗k)∗(X)

∥

∥ =
1

Nk

∥

∥

∥

∥

∥

∥

∥

∥

∑

i,j∈Ik

i6=j

xi,jU
∗
i Uj

∥

∥

∥

∥

∥

∥

∥

∥

(78)
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and, according to Theorem 3.3, we get

‖X‖22 = tr(X2) ≤ N
k
2

√

(1 + 9N−1)k − 1 ‖X‖2
Nk

, (79)

as claimed.

This allows us to estimate the regularized minimum output entropies of ΦN as
follows:

Theorem 3.5. Let ΦN be a quantum channel of the form (71). For any k ∈ N

we have

Hmin(Φ⊗k
N ) ≥ k log(N) − 2 log(1 +

√

(1 + 9N−1)k − 1). (80)

In particular, we have the following estimate for the regularized MOE

Hmin(ΦN ) ≥ log(N) − log

(

1 +
9

N

)

≥ log(N) − 9

N
. (81)

Proof. Thanks to the fact that the von Neumann entropy is greater than or
equal to the Rényi entropy of order α = 2 [MLDS+13], we have

H((Φc
N )⊗k(S)) ≥ α

1 − α
log
(∥

∥(Φc
N )⊗k(S)

∥

∥

α

)

(82)

≥ −2 log

(

N−k
2 (1 +

√

(1 + 9N−1)k − 1)

)

(83)

= k log(N) − 2 log

(

1 +
√

(1 + 9N−1)k − 1

)

(84)

for any density operator S ∈ T (ℓ2(Fk
∞)) by Theorem 3.4. In particular, we

have

Hmin(Φ⊗k
N ) ≥ k log(N) − 2 log(1 +

√

(1 + 9N−1)k − 1) (85)

and the last conclusion follow from the following computation with L’Hôpital’s
rule:

lim
k→∞

log(1 +
√

(1 + 9N−1)k − 1)

k
(86)

= lim
k→∞

(1+ 9
N

)k log(1+ 9
N

)

2
√

(1+ 9
N

)k−1

1 +
√

(1 + 9
N

)k − 1
=

1

2
log

(

1 +
9

N

)

. (87)
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4 Additivity violation of the regularized MOE

In this section, we choose two copies of ΦN as ΦN,l and ΦN,r. Indeed, these
two quantum channels ΦN,l and ΦN,r are unitarily equivalent as explained in
Section 2.2 and are in the commuting-operator setup.
Then we can obtain the following additivity violation of the regularized MOE
by generalizing the Winter-Holevo-Hayden-Werner trick for ΦN,l ◦ ΦN,r:

Theorem 4.1. For quantum channels ΦN,l and ΦN,r of the form (20) and (21)
respectively, the regularized MOE is not additive: For any N > e18, we have

Hmin(ΦN,l ◦ ΦN,r) < Hmin(ΦN,l) + Hmin(ΦN,r). (88)

Proof. Note that under notations from Subsection 2.2,

(ΦN,l ◦ ΦN,r)(ρ) =
1

N2

N
∑

i,j=1

UiVjρV
∗
j U

∗
i . (89)

Since |e〉〈e| is an invariant for UiVi, we have

(ΦN,l ◦ ΦN,r)(|e〉〈e|) =
1

N
|e〉〈e| +

1

N2

∑

1≤i,j≤N :
i6=j

|gig−1
j 〉〈gig−1

j | (90)

where g1, g2, · · · are the generators of F∞. This implies

Hmin(ΦN,l ◦ ΦN,r) ≤ Hmin(ΦN,l ◦ ΦN,r) ≤ H((ΦN,l ◦ ΦN,r)(|e〉〈e|)) (91)

=
log(N)

N
+ (N2 −N) · log(N2)

N2
= 2 log(N) − log(N)

N
. (92)

Moreover, ΦN,l and ΦN,r are copies of ΦN , so that we have

2 log(N) − log(N)

N
< 2 log(N) − 18

N
≤ Hmin(ΦN,l) + Hmin(ΦN,r) (93)

by Theorem 3.5 if N > e18 (⇔ − log(N)
N

< − 18
N

).

5 Concluding remarks

(1) Various versions of C∗-tensor products can be used to obtain commuting
systems of operators. For example, let A,B be unital C∗-algebras and take
families of operators (Ei)

m
i=1 ⊆ A and (Fj)

n
j=1 ⊆ B. Also, suppose that A⊗max

B ⊆ B(K). Then
{Ei ⊗ 1B}mi=1 and {1A ⊗ Fj}nj=1 (94)

give us commuting systems of operators in B(K). Moreover, if we suppose that
C∗

r (F∞)⊗maxC
∗
r (F∞) ⊆ B(K) where C∗

r (F∞) is the reduced group C∗-algebra
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of the free group F∞, then commuting systems {Ui ⊗ Id}i and {Id ⊗ Uj}j give
another example of additivity violation in the commuting-operator setup.
(2) Since Haagerup type inequalities exist for other groups (e.g., hyperbolic
groups [dlH88]) or certain reduced free products of C∗-algebras [Boż91], it is
natural to expect that similar results should hold and will yield other examples
of additivity violation phenomena.
(3) It is worthwhile to compare the main results of this paper and the cases of
random unitary channels. On the side of random unitary channels, the regu-
larized MOE is unknown, whereas our Theorem 3.5 gives us a strong estimate
for the regularized MOE of ΦN .
(4) One might wonder if we can evaluate the classical capacity of Φc

N whose
output space is finite-dimensional. Thanks to Theorem 3.5 and a standard
argument, the classical capacity of Φc

N is upper bounded by

C(Φc
N ) ≤ log(N) −Hmin(Φc

N ) ≤ 9

N
. (95)

However, unlike in the tensor-product setup [Fuk14, Theorem 6.1], it is not clear
whether additivity violation of the regularized MOE implies super-additivity of
the classical capacity within the commuting-operator framework, so the ques-
tion of the additivity of the classical capacity remains open.
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Appendix

In this section, we present two alternative proofs of Proposition 3.2 using oper-
ator space theory, while the proof in Section 3 is more elementary for readers.
See [Pis03] for more details and the basics of operator space theory.
For the free group F∞ with generators g1, g2, · · · , we denote by Ux =
U t1
s1
U t2
s2

· · ·U tk
sk

if x = gt1s1g
t2
s2
· · · gtksk in a reduced word. Recall that En =

{x ∈ F∞ : |x| = n} has a natural embedding into Ek×En−k for any 0 ≤ k ≤ n,
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which we denote by x = (xk,1, xk,2), and the operator space structure of
span {Ux : x ∈ En} was analyzed in [Buc99]. More precisely, the following

operator-valued matrix
∑

x∈En

Ax ⊗ Ux ∈ B(H) ⊗min C∗
r (F∞) is identified with

∑

x∈En

Ax ⊗ |xk,1〉〈xk,2| ∈ B(H) ⊗min M|Ek|,|En−k|(C) (A.1)

and [Buc99] states that
∥

∥

∥

∥

∥

∑

x∈En

Ax ⊗ Ux

∥

∥

∥

∥

∥

B(H)⊗minC∗
r (F∞)

≤ (1 + n) · max
0≤k≤n

∥

∥

∥

∥

∥

∑

x∈En

Ax ⊗ |xk,1〉〈xk,2|
∥

∥

∥

∥

∥

.

(A.2)

The above inequality can be interpreted as follows in view of operator space
theory. A natural operator space structure on span {Ux : |x| = n} is given by

∥

∥

∥

∥

∥

∑

x∈En

Ax ⊗ Ux

∥

∥

∥

∥

∥

B(H)⊗minDn

= max
0≤k≤n

∥

∥

∥

∥

∥

∑

x∈En

Ax ⊗ |xk,1〉〈xk,2|
∥

∥

∥

∥

∥

, (A.3)

where the associated operator space Dn is understood as a subspace of
n
⊕

k=0

Ck ⊗min Rn−k. Then (A.2) implies that the completely bounded norm

of the formal identity from Dn into C∗
r (F∞) is less than or equal to 1 + n.

From now on, let us explain how we reach the conclusion of Proposition 3.2 via
two different ways using operator space techniques.
(Proof 1) One natural way is to consider tensor products of the above formal
identities at the level of operator spaces. Then

id ⊗ · · · ⊗ id : Dn1 ⊗min · · · ⊗min Dnr
→ En1 ⊗min · · · ⊗min Enr

(A.4)

has the completely bounded norm less than or equal to (1 + n1) · · · (1 + nr),
which implies
∥

∥

∥

∥

∥

∥

∑

x∈En1×···×Enr

f(x)Ux1 ⊗ · · · ⊗ Uxr

∥

∥

∥

∥

∥

∥

C∗
r (F∞)⊗min···⊗minC∗

r (F∞)

(A.5)

≤ (1 + n1) · · · (1 + nr) ·

∥

∥

∥

∥

∥

∥

∑

x∈En1×···×Enr

f(x)Ux1 ⊗ · · · ⊗ Uxr

∥

∥

∥

∥

∥

∥

Dn1⊗min···⊗minDnr

(A.6)

for any n = (n1, · · · , nr) ∈ Nr
0 and finitely supported f : En1 × · · · ×Enr

→ C.
Hence, the only remaining part is to check whether

∥

∥

∥

∥

∥

∥

∑

x∈En1×···×Enr

f(x)Ux1 ⊗ · · · ⊗ Uxr

∥

∥

∥

∥

∥

∥

Dn1⊗min···⊗minDnr

(A.7)
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is less than or equal to





∑

x∈En1×···×Enr

|f(x)|2




1
2

. Indeed, it follows from basic

operator space theory since

⊕

0≤k≤n

Ck1 ⊗min Rn1−k1 ⊗min · · · ⊗min Ckr ⊗min Rnr−kr (A.8)

∼=
⊕

0≤k≤n

Ck1+···+kr ⊗min Rn1+···+nr−(k1+···+kr) (A.9)

where 0 ≤ k ≤ n means 0 ≤ kj ≤ nj for all j = 1, 2, · · · , r and

∥

∥

∥

∥

∥

∥

∑

x∈En1×···×Enr

f(x)|xk1,1 · · ·xkr ,1〉〈xk1,2 · · ·xkr ,2|

∥

∥

∥

∥

∥

∥

(A.10)

≤

∥

∥

∥

∥

∥

∥

∑

x∈En1×···×Enr

f(x)|xk1,1 · · ·xkr ,1〉〈xk1,2 · · ·xkr ,2|

∥

∥

∥

∥

∥

∥

HS

. (A.11)

Then the right hand side is given by





∑

x∈En1×···×Enr

|f(x)|2




1
2

.

(Proof 2) Let us elaborate on an operator-valued version of Proposition 3.2.
More precisely, let us prove the following inequality
∥

∥

∥

∥

∥

∥

∑

x∈En1×···×Enr

f(x)⊗ Ux1 ⊗ · · · ⊗ Uxr

∥

∥

∥

∥

∥

∥

Ml(C)⊗minC∗
r (F∞)⊗min···⊗minC∗

r (F∞)

(A.12)

≤ (1 + n1) · · · (1 + nr) ·





∑

x∈En1×···×Enr

‖f(x)‖2
HS





1
2

(A.13)

for any finitely supported matrix-valued functions f : En1 ×· · ·×Enr
→ Ml(C)

by induction. If r = 1, then a direct application of [Buc99] tells us that
∥

∥

∥

∥

∥

∑

x∈En

f(x)⊗ Ux

∥

∥

∥

∥

∥

Ml(C)⊗minC∗
r (F∞)

≤ (1 + n) · max
0≤k≤n

∥

∥

∥

∥

∥

∑

x∈En

f(x)⊗ |xk,1〉〈xk,2|

∥

∥

∥

∥

∥

(A.14)

≤ (1 + n) ·

∥

∥

∥

∥

∥

∑

x∈En

f(x)⊗ |xk,1〉〈xk,2|

∥

∥

∥

∥

∥

HS

(A.15)

= (1 + n) ·

(

∑

x∈En

‖f(x)‖2
HS

) 1
2

. (A.16)
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Now, let us suppose that the above inequality extends naturally to En =
E(n1,··· ,nr). Then for any finitely supported f : E(n1,··· ,nr+1) → Ml(C) we
have
∥

∥

∥

∥

∥

∥

∑

x∈En

∑

y∈Enr+1

f(x, y)⊗ Ux1 ⊗ · · · ⊗ Uxr ⊗ Uy

∥

∥

∥

∥

∥

∥

(A.17)

=

∥

∥

∥

∥

∥

∥

∑

y∈Enr+1

(

∑

x∈En

f(x, y)⊗ Ux1 ⊗ · · · ⊗ Uxr

)

⊗ Uy

∥

∥

∥

∥

∥

∥

(A.18)

≤ (1 + nr+1) max
0≤k≤nr+1

∥

∥

∥

∥

∥

∥

∑

y∈Enr+1

(

∑

x∈En

f(x, y)⊗ Ux1 ⊗ · · · ⊗ Uxr

)

⊗ |yk,1〉〈yk,2|

∥

∥

∥

∥

∥

∥

(A.19)

= (1 + nr+1) max
0≤k≤nr+1

∥

∥

∥

∥

∥

∥

∑

x∈En





∑

y∈Enr+1

f(x, y)⊗ |yk,1〉〈yk,2|



⊗ Ux1 ⊗ · · · ⊗ Uxr

∥

∥

∥

∥

∥

∥

.

(A.20)

Here,
∑

y∈Enr+1

f(x, y) ⊗ |yk,1〉〈yk,2| can be understood as a function

Fk : En → Ml(C) ⊗M|Ek|,|Enr+1−k|(C) (A.21)

given by Fk(x) =
∑

y∈Enr+1

f(x, y) ⊗ |yk,1〉〈yk,2|. Then, from the inductive as-

sumption, we have

∥

∥

∥

∥

∥

∥

∑

x∈En

∑

y∈Enr+1

f(x, y) ⊗ Ux1 ⊗ · · · ⊗ Uxr
⊗ Uy

∥

∥

∥

∥

∥

∥

(A.22)

≤ (1 + n1) · · · (1 + nr+1) max
0≤k≤nr+1

(

∑

x∈En

‖Fk(x)‖2HS

)
1
2

(A.23)

= (1 + n1) · · · (1 + nr+1)





∑

x∈En

∑

y∈Enr+1

‖f(x, y)‖2HS





1
2

. (A.24)

Hence, we can prove an operator-valued extension of Proposition 3.2.
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