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Abstract. The aim of this paper is to study class number relations
over function fields and the intersections of Hirzebruch-Zagier type
divisors on the Drinfeld-Stuhler modular surfaces. The main bridge
is a particular “harmonic” theta series with nebentypus. Using the
strong approximation theorem, the Fourier coefficients of this series
are expressed in two ways; one comes from modified Hurwitz class
numbers and another gives the intersection numbers in question.
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1 Introduction

1.1 Classical story

Given a negative integer d with d ≡ 0 or 1 mod 4, let h(d) be the proper ideal
class number of the imaginary quadratic order Od with discriminant d. Put
w(d) := #(O×

d )/2. The classical Kronecker-Hurwitz class number relation says
that for a non-square n ∈ N,

∑

t∈Z

t2<4n




∑

d∈N

d2|(t2−4n)

h
(
(t2 − 4n)/d2

)

w
(
(t2 − 4n)/d2

)


 =

∑

m∈N

m|n

max(m,n/m). (1.1)

One can derive the above identity via “modular polynomial”, i.e. the defining
equation of the graph of the Hecke correspondence Tn, n ∈ N, on the modular
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curve X of full level (cf. [14]). In particular, the quantity in (1.1) is equal to
the “finite part” of the intersection number of the divisors T1 and Tn on the
surface X × X . Taking the “infinite part” (from cuspidal intersections) into
account, the total intersection number of T1 and Tn becomes

T1 · Tn = 2σ(n),

where σ(n) :=
∑

m|nm is precisely the n-th Fourier coefficient of the weight-
two Eisenstein series (normalized so that the first Fourier coefficient equals
to 1). This provides a very concrete example in the following connections:

{Class numbers} oo //
ii

))❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚

{Intersections}
55

uu❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

{Fourier coefficients}

In the celebrated work of Hirzebruch and Zagier [17], the whole theory on the
ground of the Hilbert modular surfaces associated with real quadratic fields
is well-established. More precisely, they express the intersections of certain
special divisors in terms of Hurwitz class numbers, and show that the generat-
ing function associated with these intersection numbers is actually a particular
Eisenstein series with nebentypus. The interpretations for the Fourier coeffi-
cients of Eisenstein series, which have been generalized to the “Kudla-Millson”
theta integrals (cf. [22] and [24]) on the quotients of symmetric spaces for or-
thogonal and unitary groups, are viewed as geometric Siegel-Weil formula and
have various applications (cf. [20], [6], [23], [21], and [9]). Moreover, connections
with the class numbers make it possible to compute explicitly the intersections
in question (cf. [17] and [9]).
The purpose of this paper is to attempt an exploration of this phenomenon
in the function field setting, and to derive a Hirzebruch-Zagier style geometric
interpretation for the class number relations in the world of positive character-
istic.

1.2 Drinfeld-Stuhler modular curves

Let A = Fq[θ], the polynomial ring with one variable θ over a finite field Fq with
q elements, and let k be the field of fractions of A. Let k∞ be the completion
of k with respect to the “degree valuation” (cf. Section 2.1), and denote by C∞

the completion of a chosen algebraic closure of k∞. The Drinfeld half plane is
H := C∞ − k∞, equipped with the Möbius left action of GL2(k∞). Let B be
a quaternion algebra over k which is split at ∞ (i.e. B ⊗k k∞ ∼= Mat2(k∞)),
and OB be an Eichler A-order in B of type (n+, n−) (cf. Section 2.3). Then
the embedding B× →֒ GL2(k∞) induces an action of Γ(n+, n−) := O×

B on H.
The quotient space

X(n+, n−) := Γ(n+, n−)\H
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is called the Drinfeld-Stuhler modular curve for Γ(n+, n−). When B = Mat2(k),
the group Γ(n+, n−) coincides (up to conjugations) with the congruence sub-
group

Γ0(n
+) :=

{(
a b
c d

)
∈ GL2(A)

∣∣∣∣ c ≡ 0 mod n+
}
,

and the compactification of X(n+, n−) is the so-called Drinfeld modular curve
for Γ0(n

+).

Remark 1.1. As in the classical case, the study of Drinfeld modular polynomi-
als in [1], [2], and [19] give an analogue of the Kronecker-Hurwitz class number
relation for “imaginary” quadratic A-orders (cf. [41] and [36]). Also, the con-
nection with the intersections of the Hecke correspondence on the Drinfeld
modular curves is derived in [41] when q is odd. Moverover, these intersection
numbers appear in the Fourier expansion of the “improper” Eisenstein series on
GL2(k∞) which is introduced by Gekeler (cf. [10] and [11]). Thus, a parallel
story for the Kronecker-Hurwitz case over rational function fields is developed.
We may also expect to see these connections when the base field k is an arbi-
trary global function field.

1.3 Hirzebruch-Zagier-type divisors

From now on, we always assume that q is odd. Fix a monic square-free d ∈ A
with even degree. Then the quadratic field F := k(

√
d) is real over k, (i.e. the

infinite place of k is split in F ). The embedding F →֒ F ⊗k k∞ ∼= k∞ × k∞
induces

GL2(F ) →֒ GL2(k∞)×GL2(k∞),

providing an action of GL2(F ) on HF := H×H. Let OF be the integral closure
of A in F . Given a monic n ∈ A, put

Γ0,F (n) :=

{(
a b
c d

)
∈ GL2(OF )

∣∣∣∣ ad− bc ∈ F×
q and c ≡ 0 mod n

}
.

The Drinfeld-Stuhler modular surface for Γ0,F (n) is

S0,F (n) := Γ0,F (n)\HF ,

which is a coarse moduli scheme for the so-called Frobenius-Hecke sheaves (with
additional “level-n structure”) introduced by Stuhler in [34].

We are interested in the intersections between the “Hirzebruch-Zagier-type di-

visors” on S0,F (n) which are defined as follows. For x =

(
a b
c d

)
∈ Mat2(F ),

we put

x̄ :=

(
d −b
−c a

)
and x′ :=

(
a′ b′

c′ d′

)
,
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where for every α ∈ F , α′ is the conjugate of α under the action of the non-
trivial element in Gal(F/k). Consider the involution ∗ on Mat2(F ) defined
by

x∗ :=

(
0 1/n
1 0

)
x̄′
(
0 1
n 0

)
=

(
a′ −n−1c′

−nb′ d′

)
, ∀x =

(
a b
c d

)
∈Mat2(F ).

Let Λ be the following A-lattice of rank 4:

Λ := {x ∈ Mat2(OF ) | x∗ = x}

=

{(
a β
−nβ′ d

) ∣∣∣∣ a, d ∈ A, β ∈ OF

}
.

We have a left action of Γ := Γ0,F (n) on Λ by

γ ⋆ x := γxγ∗ · (det γ)−1, γ ∈ Γ0,F (n) and x ∈ Λ.

For each x in Λ with detx 6= 0, let

Bx := {b ∈Mat2(F ) | xb∗ = b̄x} and Γx := B×
x ∩ Γ.

From Lemma 3.11, we know that Bx is an indefinite quaternion algebra over k
(i.e. unramified at the infinite place of k), whence the quotient Cx := Γx\H
becomes the Drinfeld-Stuhler modular curve for Γx. Put

Sx :=

(
0 1
n 0

)
x̄.

The embedding from H into HF defined by (z 7→ (z, Sxz)) gives rise to a (rigid
analytic) morphism fx : Cx → S0,F (n), and we set

Zx := fx,∗(Cx),
the push-forward divisor of fx on S0,F (n). For non-zero a ∈ A, the Hirzebruch-
Zagier divisor of discriminant a is:

Z(a) :=
∑

x∈Γ\Λa

Zx, where Λa := {x ∈ Λ | det(x) = a}.

Notice that by Lemma 3.11 we may identify B1 with the quaternion algebra
(
d, n

k

)
:= k + ki+ kj+ kij with i2 = d, j2 = n, and ji = −ij.

In particular, suppose that n is square-free and coprime to d. Write n = n+ ·n−
and d = d+ · d−, where for each prime factor p of n± (resp. d±) we have the

Legendre quadratic symbol
(

d

p

)
= ±1 (resp.

(
n

p

)
= ±1). Then B1 is ramified

precisely at the prime factors of d−n− and OB1 := B1∩Mat2(OF ) is an Eichler
A-order of type (d+n+, d−n−) in B1. Hence C1 is actually the Drinfeld-Stuhler
modular curve for Γ(d+n+, d−n−). We pick Z1 as our “base” divisor on S0,F (n),
and determine the intersection number of Z1 and Z(a) for non-zero a ∈ A in
the following theorem:
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Theorem 1.2. Given a square-free n ∈ A+ coprime to d, suppose that
deg(d−n−) > 0. The intersection number of Z1 and Z(a) for non-zero a ∈ A
is equal to

Z1 · Z(a) = 2 ·
∑

t∈A

t2−4a�0

Hd
+
n
+,d−

n
−

(d(t2 − 4a)).

Here for d ∈ A, we write d � 0 if d = 0 or k(
√
d) is an “imaginary”

quadratic extension of k (i.e. the infinite place of k does not split in k(
√
d)),

and Hd
+
n
+,d−

n
−

(d) is the modified Hurwitz class number in Definition 2.4 and
Remark 2.6.

We point out that when a ∈ A is a square, the intersection number Z1 · Z(a)
includes the self-intersection Z1 · Z1, which is defined to be an analogue of the
“Euler characteristic” of Z1 in Definition 4.8.

To establish the equality in Theorem 1.2, the main bridge is the theta integral
I(·;ϕΛ) associated with a particular chosen Schwartz function ϕΛ, see (3.5) and
(3.7) in Section 3.1. Our strategy is briefly sketched as follows. Notice that
using adelic language, we may express very naturally the a-th Fourier coefficient
of I(·;ϕΛ) for a given non-zero a ∈ A in terms of the modified Hurwitz class
numbers (cf. Theorem 3.9). On the other hand, the strong approximation
theorem (for the indefinite quaternion algebra ramified precisely at the prime
factors of n−) leads to an alternative expression of the a-th Fourier coefficient of
I(·;ϕΛ) (cf. Theorem 3.14), which enables us to connect the Fourier coefficient
with the intersection number Z1 ·Z(a) (Theorem 4.7 and Corollary 4.10). This
completes the proof.

The theta integral I(·;ϕΛ) has nice invariant property and transformation law
(cf. Proposition 3.7). In particular, the crucial choice of the “infinite compo-
nent” ϕΛ,∞ in (3.7) is a key ingredient in bridging two sides of the equality in
Theorem 1.2. More precisely, as the place∞ of k is non-archimedean, we apply
the Eichler’s theory of local optimal embeddings in Appendix A and B to ensure
that our choice of ϕΛ,∞ kills all the contributions of the Kx in Lemma 3.2 when
Kx is a real quadratic field (cf. the equation (3.12)). This part is completely
different from the classical case. Meanwhile, the choice of ϕΛ,∞ provides as
well the “harmonicity” of I(·;ϕΛ) (cf. Lemma 3.16). This allows us to extend
I(·;ϕΛ) to a “Drinfeld-type” automorphic form on GL2(k∞) (an analogue of
weight-2 modular forms over function fields, see Remark 3.15 and [12]) with

nebentypus character
(
·
d

)
for Γ(1)

0 (dn) := Γ0(dn)∩SL2(A), cf. Proposition 3.17.
In other words, we have the following theorem (cf. Theorem 3.18):

Theorem 1.3. Under the assumptions in Theorem 1.2, there exists a Drinfeld-
type automorphic form ϑΛ on GL2(k∞) with nebentypus character

(
·
d

)
for the

congruence subgroup Γ
(1)
0 (dn) whose Fourier expansion is given as follows: for

Documenta Mathematica 27 (2022) 1321–1368



1326 J.-W. Guo, F.-T. Wei

(x, y) ∈ k∞ × k×∞,

ϑΛ

(
y x
0 1

)
= |y|∞ ·


−vol(Z1) +

∑

06=a∈A
deg a+2≤ord∞(y)

(
Z1 · Z(a)

)
ψ∞(ax)


 .

Here:

• | · |∞ is the absolute value on k∞ normalized so that |θ|∞ = q,

• ψ∞ : k∞ → C× is a fixed additive character on k∞ defined in Sec-
tion 2.1.1,

• vol(Z1) := −2Hd
+
n
+,d−

n
−

(0) (cf. Remark 2.6).

Remark 1.4.

(1) The theory of the geometric interpretation of the Fourier coefficients of
automorphic forms as the corresponding intersection numbers are devel-
oped quite general over number fields (cf. [24] and [9]). One may expect a
similar phenomenon occurs in the positive characteristic world, however,
there are many technical issues needed to be carried out. Since this work
is the first attempt to study the connection between class number rela-
tions and intersection numbers via this approach over the function field
side, we include all the details for the sake of completeness.

(2) The technical assumption “deg(d−n−) > 0” in Theorem 1.2 implies that
B1 is a division algebra, whence the Drinfeld-Stuhler modular curve C1
has no “cusps”. Therefore there are no contributions of the “cuspidal inter-
sections” to Z1 ·Z(a) in Theorem 1.2 and Theorem 1.3. When d−n− = 1,
this argument would need to be adjusted by “regularizing the theta in-
tegral I(·;ϕΛ)” as in [9], and the cuspidal intersections for Z1 · Z(a) in
a suitable “compactification of the surface S0,F (n)” should be taken into
account. However, due to a lack of studies in the literature for these two
technical issues in the function field context, we make this assumption in
Theorem 1.2 first. The general case will be explored in future work.

1.4 Content

The contents of this paper go as follows:

• (Preliminaries.) In Section 2.1, we set up basic notations used throughout
this paper. The modified Hurwitz class number and the needed properties
are reviewed in Section 2.2. The Tamagawa measures on the groups ap-
pearing in this paper are given in Section 2.1.1, 2.2, and 2.3, respectively.
The definition of the Weil representation and theta series are recalled in
Section 2.4.
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• (Fourier coefficients of theta series.) In Section 3, we take a particular
Schwatz function ϕΛ associated with the A-lattice Λ, and express the
Fourier coefficients of the theta integral I(·;ϕΛ) explicitly in terms of the
modified Hurwitz class numbers in Theorem 3.9. In Section 3.4, we show
the harmonicity of I(·;ϕΛ) and extend it to a Drinfeld-type automorphic
form ϑΛ on GL2(k∞) in Proposition 3.17.

• (Class number relations and intersections.) In Section 4, we first intro-
duce the Hirzebruch-Zagier-type divisors on the Drinfeld-Stuhler mod-
ular surfaces. Pulling back these divisors in the “fine coverings” of the
surfaces, the projection formula in Proposition 4.4 enables us to interpret
the intersection number Z1 · Zx as a a “double-coset summation” in The-
orem 4.7 and Lemma 4.9. Together with the alternative expression of the
Fourier coefficients of I(·;ϕΛ) in Theorem 3.14, we prove Theorem 1.2
and Theorem 1.3 in the end.

• (Appendix: local optimal embeddings.) The needed results in Eichler’s
theory of local optimal embeddings are recalled in Appendix A, and we
express the technical local integrals used in Theorem 3.9 by the number
of local optimal embeddings in Appendix B.
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2 Preliminaries

2.1 Basic settings

Let Fq be a finite field with q elements. Throughout this paper, we always
assume q to be odd. Let A := Fq[θ], the polynomial ring with one variable θ
over Fq, and k := Fq(θ), the field of fractions of A. Let ∞ be the infinite place
of k, i.e. the place corresponding to the “degree” valuation ord∞ defined by

ord∞

(a
b

)
:= deg b− deg a, ∀a, b ∈ A with b 6= 0.
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The associated absolute value on k is normalized by |α|∞ := q− ord∞(α) for
every α ∈ k. Let k∞ be the completion of k with respect to | · |∞, which can
be identified with the Laurent series field Fq((θ

−1)). Put ̟ := θ−1, a fixed
uniformizer at ∞, and O∞ := Fq[[̟]], the valuation ring in k∞.
Let A+ be the set of monic polynomials in A. By abuse of notations, we identify
A+ with the set of non-zero ideals of A. In particular, for a ∈ A+ we put

‖a‖ := #(A/a) (= |a|∞).

Given a non-zero prime ideal p of A, the normalized absolute value associated
with p is:

|α|p := ‖p‖− ordp(α), ∀α ∈ k.
Here ordp(α) is the order of α at p for every α ∈ k. The completion of k with
respect to | · |p is denoted by kp, and put Op the valuation ring in kp. We also
refer the non-zero prime ideals of A to the finite places of k.

Let kA :=
∏′

v kv, the adele ring of k. The maximal compact subring of kA is
denoted by OA. The adelic norm | · |A on the idele group k×A is:

|(αv)v|A :=
∏

v

|αv|v, ∀(αv)v ∈ k×A .

2.1.1 Additive character and Tamagawa measure

Let p be the characteristic of k and ψ∞ : k∞ → C× be the additive character
defined by: for

∑
i ai̟

i ∈ k∞,

ψ∞

(
∑

i

ai̟
i

)
:= exp

(
2π
√
−1
p

· TraceFq/Fp
(−a1)

)
.

The conductor of ψ∞ is ̟2O∞ and ψ∞(A) = 1. Since

kA = k +

(
k∞ ×

∏

p

Op

)
and k ∩

(
∏

p

Op

)
= A,

we may extend ψ∞ uniquely to an additive character ψ : kA → C× so that
ψ(α) = 1 for all α ∈ k +

(
(̟2O∞)×∏

p
Op

)
and ψ

∣∣
k∞

= ψ∞. Put ψp := ψ
∣∣
kp

for each finite place p of k, which is a non-trivial additive character on kp with
trivial conductor.

For each place v of k, let dxv be the “self-dual” Haar measure on kv with respect
to ψv, i.e.

vol(Op, dxp) = 1 for each finite place p of k, and vol(O∞, dx∞) = q.

Define the Haar measure d×xv on k×v by

d×xp :=
‖p‖
‖p‖ − 1

· dxp|xp|p
and d×x∞ :=

q

q − 1
· dx∞|x∞|∞

.

The Tamagawa measure on k×A (with respect to ψ) is d×x =
∏

v d
×xv.
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2.2 Imaginary quadratic fields and class numbers

A quadratic field extension K/k is called imaginary if the infinite place of k
does not split in K. Let KA := K ⊗k kA and TK/k := KA → kA be the trace
map induced by the field trace map. Then the Tamagawa measure on K×

A

(with respect to the additive character ψ ◦ TK/k) and the one on k×A induce a
Haar measure d×α on the quotient groupK×

A /k
×
A . More precisely, let OK (resp.

OK∞) be the integral closure of A (resp. O∞) in K (resp. K∞ := K⊗kk∞). For
each non-zero prime ideal p of A, put Kp := K ⊗k kp and OKp

:= OK ⊗A Op.
We normalize the Haar measure d×αv on K×

v /k
×
v for each place of v by

vol(O×
Kp
/O×

p ) = ‖p‖−1+1/ep(K/k) and vol(O×
K∞

/O×
∞) = q1/e∞(K/k). (2.1)

Here ev(K/k) is the ramification index of the place v of k in K. Then d×α =∏
v d

×αv.

Proposition 2.1. Let K be an imaginary quadratic field over k, and OK be
the integral closure of A in K. Let ∆(OK/A) be the discriminant ideal of OK

over A, h(OK) be the class number of OK , and put w(OK ) := #(O×
K)/(q− 1).

We have

vol(K×\K×
A /k

×
A ) =

h(OK)

w(OK )
· e∞(K/k) ·

∏

v

vol(O×
Kv
/O×

v )

=
h(OK)

w(OK )
· e∞(K/k) · q1/e∞(K/k) · ‖∆(OK/A)‖−1/2.

Proof. As A is a principal ideal domain, one gets

k×A = k× · (k×∞ ×
∏

p

O×
p ).

Thus the exact sequence

1 −→ O×
K

F×
q
−→

K×
∞ ×

∏
p
O×

Kp

k×∞ ×
∏

p
O×

p

→
K× · (K×

∞ ×
∏

p
O×

Kp
)

K× · (k×∞ ×
∏

p
O×

p )
−→ 1

implies

vol(K×\K×
A /k

×
A ) = vol

(
K×\K×

A /(k
×
∞ ×

∏

p

O×
p )
)

=
#
(
K×\K×

A /(K
×
∞ ×

∏
p
O×

Kp
)
)

#(O×
K/F

×
q )

· vol

(
K×

∞ ×
∏

p
O×

Kp

k×∞ ×
∏

p
O×

p

)
.

The result then follows from

#
(
K×\K×

A /(K
×
∞ ×

∏
p
O×

Kp
)
)

#(O×
K/F

×
q )

=
h(OK)

w(OK)
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and

vol

(
K×

∞ ×
∏

p
O×

Kp

k×∞ ×
∏

p
O×

p

)
= vol(K×

∞/k
×
∞) ·

∏

p

vol(O×
Kp
/O×

p )

= e∞(K/k) · q1/e∞(K/k) · ‖∆(OK/A)‖−1/2.

The last equality follows from (2.1) and

vol(K×
∞/k

×
∞) = e∞(K/k) · vol(O×

K∞/O
×
∞), ∆(OK/A) =

∏

prime p⊳A
ramified in K

p.

Remark 2.2. Let ςK : k×\k×A → {±1} be the quadratic Hecke character associ-
ated with K/k, and let L(s, ςK) be the L-function of ςK . It is known that (cf.
[4, Section 2.2], see also [31, Theorem 5.9])

L(1, ςK) =
#(O×

K)

#(F×
q )
· q ·

(
q(1−e∞(K/k))/2 · ‖∆(OK/A)‖−1/2

)
· h(OK)

2/e∞(K/k)
.

The above proposition says in particular that

vol(K×\K×
A /k

×
A ) = 2 · L(1, ςK).

Recall the following fact (cf. [28, section I (12.12) Theorem]):

Lemma 2.3. For each A-order O in an imaginary quadratic extension K of k,
let h(O) be the proper ideal class number of O and w(O) := #(O×)/(q − 1).
Then

h(O)
w(O) =

h(OK)

w(OK)
·
∏

p

#

(
O×

Kp

O×
p

)
.

Here Op := O ⊗A Ap for every non-zero prime ideal p of A.

For d ∈ A, we write d ≺ 0 if the quadratic extension k(
√
d) is imaginary

over k. Given d ∈ A with d ≺ 0, denote by Od := A[
√
d], h(d) := h(Od), and

w(d) := w(Od).

Definition 2.4. For square-free n+, n− ∈ A+ with gcd(n+, n−) = 1, recall the
following modified Hurwitz class number

Hn
+,n−

(d) :=
∑

c∈A+

c2|d

h(d/c2)

w(d/c2)
·
∏

p|n+

(
1 +

{
d/c2

p

}) ∏

p|n−

(
1−

{
d/c2

p

})
.

Here
{
d

p

}
:=





1, if either p split in k(
√
d) or p2 | d;

−1, if p is inert in k(
√
d) and ordp(d) = 0;

0, if ordp(d) = 1.
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Write
d = d0 ·

∏

p

p2cp ,

where d0 ∈ A is square-free (and cp = 0 for almost all irreducible p ∈ A+). For
each irreducible p ∈ A+ and integer ℓp with 0 ≤ ℓp ≤ cp, put

en
+,n−

p (ℓp) :=




1±

{
d0p

2ℓp

p

}
, if p | n±;

1, otherwise.
(2.2)

We provide the following expression for the modified Hurwitz class numbers in
later use:

Proposition 2.5. Given d ∈ A with d ≺ 0, write d = d0
∏

p
p2cp. Then

Hn
+,n−

(d) =
h(d0)

w(d0)
·
∏

p



∑

0≤ℓp≤cp

#

(
O×

d0,p

O×
d0p

2ℓp ,p

)
· en

+,n−

p (ℓp)


 .

Proof. For ℓ = (ℓp)p ∈
∏

p
Z with 0 ≤ ℓp ≤ cp, put

d0(ℓ) := d0
∏

p

p2ℓp .

Then {
d0(ℓ)

p

}
=

{
d0p

2ℓp

p

}
and Od0(ℓ),p = Od0p

2ℓp ,p.

Therefore

Hn
+,n−

(d) =
∑

ℓ∈
∏

p Z

0≤ℓp≤cp

h(d(ℓ))

w(d(ℓ))
·
∏

p|n+

(
1 +

{
d(ℓ)

p

})
·
∏

p|n−

(
1−

{
d(ℓ)

p

})

=
h(d0)

w(d0)
·
∑

ℓ∈
∏

p Z

0≤ℓp≤cp

[
∏

p

#

(
O×

d0,p

O×
d0p

2ℓp ,p

)
·
∏

p

en
+,n−

p (ℓp)

]

=
h(d0)

w(d0)
·
∏

p


 ∑

0≤ℓp≤cp

#

(
O×

d0,p

O×
d0p

2ℓp ,p

)
· en

+,n−

p (ℓp)


 .

Remark 2.6. For convention, we put

Hn
+,n−

(0) := − 1

q2 − 1
·
∏

p|n+

(‖p‖+ 1)
∏

p|n−

(‖p‖ − 1).

This number is related to a volume quantity with respect to the “Tamagawa
measure” on quaternion algebras in the next subsection.
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2.3 Tamagawa measure on quaternion algebras

Let B be an indefinite quaternion algebra over k (i.e. B∞ := B ⊗k k∞ is not
division). Put BA := B ⊗k kA. Let Tr : BA → kA be the reduced trace map.
Choose a Haar measure db =

∏
v dbv on BA which is self-dual with respect to

the additive character ψ ◦ Tr. More precisely, for each non-zero prime ideal p
of A, let Rp be a maximal Op-order in Bp := B ⊗k kp. Then

vol(Rp, dbp) =

{
1/‖p‖, if B is ramified at p;

1, otherwise.

Let OB∞ be a maximal O∞-order in B∞. Then vol(OB∞ , db∞) = q4.

Let Nr : B×
A → k×A be the reduced norm map. For each non-zero prime ideal p

of A, we take the Haar measure d×bp on B×
p defined by

d×bp :=
‖p‖
‖p‖ − 1

· dbp
|Nr(bp)|p

.

In particular, the following lemma holds:

Lemma 2.7.

vol(R×
p , d

×bp) =

(
1− 1

‖p‖2
)
·
{
1/(‖p‖ − 1), if B is ramified at p;

1, otherwise.

Proof. Suppose p is ramified in B, we may take π̃p ∈ Rp so that π̃p is a maximal
two-sided ideal of Rp, and Rp/π̃pRp is a quadratic field extension of Fp. Hence

vol(R×
p , d

×bp) = (‖p‖2 − 1) · vol(1 + π̃pRp, d
×bp)

= (‖p‖2 − 1) · ‖p‖‖p‖ − 1
· vol(π̃pRp, dbp)

= (‖p‖2 − 1) · ‖p‖‖p‖ − 1
· ‖p‖−3

=

(
1− 1

‖p‖2
)
· 1

‖p‖ − 1
.

When p is unramified in B, we may identify Bp with Mat2(kp) and Rp with
Mat2(Op). In particular, one has

R×
p /(1 + pRp) ∼= GL2(Fp).
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Therefore

vol(R×
p , d

×bp) = (‖p‖2 − 1)(‖p‖2 − ‖p‖) · vol(1 + pRp, d
×bp)

= (‖p‖2 − 1)(‖p‖2 − ‖p‖) · ‖p‖‖p‖ − 1
· vol(pRp, dbp)

= (‖p‖2 − 1)(‖p‖2 − ‖p‖) · ‖p‖‖p‖ − 1
· ‖p‖−4

= 1− 1

‖p‖2 .

Similarly, put

d×b∞ :=
q

q − 1
· db∞
|Nr(b∞)|∞

.

Then following the same argument in the above lemma, we get

vol(O×
B∞

, d×b∞) = q4 − q2.

The Tamagawa measure d×b on B×
A is the Haar measure satisfying that for

every compact open subgroup K =
∏

v Kv of B×
A , one has

vol(K, d×b) =
∏

v

vol(Kv, d
×bv).

Let n− ∈ A+ be the product of the primes at which B is ramified and n+ ∈ A+

be a square-free polynomial coprime to n−. Let OB be an Eichler A-order of
type (n+, n−) in B, i.e. OB is an A-order in B satisfying that for each non-zero
prime p of A, OBp

:= OB⊗AOp is the unique maximal Op-order in Bp if p | n−;
and

OBp

∼=
{(

a b
c d

)
∈ Mat2(Op)

∣∣∣∣ c ≡ 0 mod pordp(n
+)

}
if p ∤ n−.

Let OBA
:=
∏

v OBv . Then:

Lemma 2.8. The Tamagawa measures on B×
A and k×A induces a Haar measure

on B×
A /k

×
A so that

vol(O×
BA
/O×

A ) =
(q − 1)(q2 − 1)∏

p|n+(‖p‖+ 1)
∏

p|n−(‖p‖ − 1)
= − q − 1

Hn+,n−(0)
.

Proof. For each non-zero prime ideal p of A, let Rp be a maximal Op-order
containing OBp

. As n+ is square-free, we have

#(R×
p /O

×
Bp

) =

{
‖p‖+ 1, if p | n+;

1, otherwise.
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Thus

vol(O×
Bp

) =

(
1− 1

‖p‖2
)
·





1/(‖p‖ − 1), if p | n−;

1/(‖p‖+ 1), if p | n+;

1, otherwise.

Notice that
∏

p

(
1− 1

‖p‖s
)−1

=
1

1− q1−s
, Re(s) > 1.

Therefore we obtain

∏

p

(
1− 1

‖p‖2
)

= 1− q1−2 =
q − 1

q
,

and

vol(O×
BA
/O×

A ) =
vol(O×

B∞
)

vol(O×
∞)
·
∏

p

vol(O×
Bp

)

vol(O×
p )

=
q4 − q2
q

·
∏

p

(
1− 1

‖p‖2
) ∏

p|n+

(
1

‖p‖+ 1

) ∏

p|n−

(
1

‖p‖ − 1

)

=
(q − 1)(q2 − 1)∏

p|n+(‖p‖+ 1)
∏

p|n−(‖p‖ − 1)

= − q − 1

Hn+,n−(0)
.

The last equality follows directly from the definition of Hn
+,n−

(0) in Re-
mark 2.6.

Remark 2.9. The Haar measure on B×
A /k

×
A induced by the Tamagawa measures

on B×
A and on k×A satisfies (cf. [40, Theorem 3.3.1])

vol(B×\B×
A /k

×
A ) = 2.

2.4 Weil representation and theta series

Let (V,QV ) be a non-degenerat quadratic space over k, and suppose that n :=
dimk(V ) is even. For each place v of k, let V (kv) := V ⊗k kv and S(V (kv)) be
the space of Schwartz function on V (kv).

Definition 2.10. The Weil representation ωV,v of SL2(kv) × O(V )(kv) on
S(V (kv)), where O(V ) is the orthogonal group of (V,QV ), is given by (cf.
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[13, Theorem 2.22]): for φ ∈ S(V (kv)),

(1) ωV,v(h)φ(x) = φ(h−1x), h ∈ O(V )(kv);

(2) ωV,v

(
1 u
0 1

)
φ(x) = ψv(uQV (x)) · φ(x), u ∈ kv;

(3) ωV,v

(
av 0
0 a−1

v

)
φ(x) = |av|

n
2
v · χV,v(av) · φ(avx), av ∈ k×v ;

(4) ωV,v

(
0 1
−1 0

)
φ(x) = εv(V ) · φ̂(x).

Here:

• χV,v := (·, (−1)n/2 detV )v is the quadratic character associated with V ,
where (·, ·)v is the Hilbert quadratic symbol,

detV := det(〈xi, xj〉1≤i,j≤n) ∈ k×/(k×)2 ((k×)2 := {a2 | a ∈ k×})

for any basis {x1, ..., xn} of V and 〈·, ·〉V is the bilinear form on V asso-
ciated with QV ;

• εv(V ) is the following Weil index :

εv(V ) :=

∫

Lv

ψv(QV (x)) dx,

where Lv is a sufficiently large Ov-lattice in V (kv), and the Haar measure
dx is self-dual with respect to the pairing

(x, y) 7→ ψv(〈x, y〉V ), ∀x, y ∈ V (kv);

• φ̂(x) is the Fourier transform of φ (with respect to the self-dual Haar
measure):

φ̂(x) :=

∫

V (kv)

φ(y)ψv(〈x, y〉V ) dy.

The (global) Weil representation of SL2(kA)×O(V )(kA) on the Schwartz space
S(V (kA)), where V (kA) := V ⊗k kA, is

ωV := ⊗vωV,v.

Remark 2.11. For each place v of k, one has that εv(V )2 = χV,v(−1). Moreover,
the Weil reciprocity says that (cf. [38, Proposition 5]):

∏

v

εv(V ) = 1.
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Given ϕ ∈ S(V (kA)), the theta series associated with ϕ is:

Θ(g, h;ϕ) :=
∑

x∈V

(
ωV (g, h)ϕ

)
(x), ∀(g, h) ∈ SL2(kA)×O(V )(kA). (2.3)

Then for every γ ∈ SL2(k), g ∈ SL2(kA) h ∈ O(V )(kA), and ϕ ∈ S(V (kA)) we
have

Θ(γg, h;ϕ) = Θ(g, h;ϕ).

Given a ∈ k and y ∈ k×A , let:

Θ∗(a, y;h;ϕ) :=

∫

k\kA

Θ

((
y uy−1

0 y−1

)
, h;ϕ

)
ψ(−au) du,

where the Haar measure du is normalized so that vol(k\kA, du) = 1. For u ∈ kA,
one has the following Fourier expansion (cf. [39, p. 19])

Θ

((
y uy−1

0 y−1

)
, h;ϕ

)
=
∑

a∈k

Θ∗(a, y;h;ϕ)ψ(au).

We shall focus on particular quadratic spaces with degree 4 coming from quater-
nion algebras, and study the Fourier coefficients of the theta integrals associated
with special Schwartz functions.

3 Theta series with nebentypus

Fix a square-free d ∈ A+ with deg d even. Let F = k(
√
d). For each α ∈ F , the

Galois conjugate of α (over k) is denoted by α′. Given x =

(
a b
c d

)
∈Mat2(F ),

put

x̄ :=

(
d −b
−c a

)
and x′ :=

(
a′ b′

c′ d′

)
.

Given n ∈ A+, let ∗ be the involution on Mat2(F ) defined by: for x ∈Mat2(F ),

x∗ :=

(
0 1/n
1 0

)
x̄′
(
0 1
n 0

)
=

(
a′ −c′/n
−nb′ d′

)
.

Let
V := {x ∈ Mat2(F ) | x∗ = x} and QV := det

∣∣
V
.

Then (V,QV ) is a quadratic space with degree 4 over k. In concrete terms, we
have

V =

{(
a β
−nβ′ d

) ∣∣∣∣ a, d ∈ k, β ∈ F
}
. (3.1)

In particular, take the following basis of V :
{(

1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
−n 0

)
,

(
0

√
d

n
√
d 0

)}
,
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one gets detV = 16n2d = d ∈ k×/(k×)2. As dimk(V ) = 4, for each place v of k
one has that

χV,v(av) = (av, d)v, ∀av ∈ k×v .
From now on, we make the following assumptions:

Assumption 3.1.

(1) The polynomial n ∈ A+ is square-free and coprime to d.

(2) Write n = n+ · n− (resp. d = d+ · d−), where each prime factor p of n±

(resp. d±) satisfies that the Legendre quadratic symbol
(

d

p

)
= ±1 (resp.

(
n

p

)
= ±1). Then deg(d−n−) > 0.

Let

B1 := {b ∈Mat2(F ) | b∗ = b̄} =
{(

α β
nβ′ α′

) ∣∣∣∣ α, β ∈ F
}
. (3.2)

We may identify B1 with the quaternion algebra
(
d, n

k

)
:= k + ki+ kj+ kij, where i2 = d, j2 = n, ij = −ji,

where i corresponds to

(√
d 0

0 −
√
d

)
and j corresponds to

(
0 1
n 0

)
. Under

Assumption 3.1, we observe that B1 is the indefinite division quaternion algebra
over k ramified precisely at prime factors of d−n−.

Consider the following left exact sequence

1 −→ k× −→ B×
1 −→ SO(V ),

where the map from B×
1 into SO(V ) is defined by

b 7−→ hb := (x 7→ bxb−1), ∀b ∈ B×
1 .

Given ϕ ∈ S(V (kA)), we are interested in the following theta integral:

I(g;ϕ) :=

∫

B×
1 \B×

1,A/k
×
A

Θ(g, hb;ϕ) d
×b, ∀g ∈ SL2(A). (3.3)

For a ∈ k and y ∈ k×A , let (the a-th Fourier coefficient of I)

I∗(a, y;ϕ) :=

∫

k\kA

I

((
y uy−1

0 y−1

)
;ϕ

)
ψ(−au) du.

Put
Va := {x ∈ V | QV (x) = a}.

We obtain that:
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Lemma 3.2. For a ∈ k and y ∈ A×, we have

I∗(a, y;ϕ) = |y|2A · (y, d)A ·
∑

x∈B×
1 \Va

(
vol(K×

x \K×
x,A/k

×
A )

·
∫

K×
x,A\B

×
1,A

ϕ(yb−1xb) d×b

)
.

Here (y, d)A :=
∏

v(yv, d)v when we write y = (yv)v ∈ k×A , Kx is the centralizer
of x in B1, and Kx,A = Kx ⊗k kA.

Proof. By definition, we get

I∗(a, y;ϕ)

=

∫

k\kA

[∫

B×
1 \B×

1,A/k
×
A

Θ

((
y uy−1

0 y−1

)
, hb;ϕ

)
d×b

]
ψ(−au) du

=

∫

B×
1 \B×

1,A/k
×
A

[ ∫

k\kA

(
∑

x∈V

(
ωV

(
y uy−1

0 y−1

)
ϕ

)
(b−1xb)

)
ψ(−au)du

]
d×b.

For x ∈ V and b ∈ B×
1,A, it is straightforward to check that

(
ωV

(
y uy−1

0 y−1

)
ϕ

)
(b−1xb) = ψ(uQV (x)) · (y, d)A · |y|2A · ϕ(y · b−1xb).

Since
∫

k\kA

ψ
(
uQV (x)

)
· ψ(−au)du =

{
1, if QV (x) = a;

0, otherwise,

we have that

∫

k\kA

(
∑

x∈V

(
ωV

(
y uy−1

0 y−1

)
ϕ

)
(b−1xb)

)
ψ(−au) du

= |y|2A · (y, d)A ·
∑

x∈Va

ϕ(y · b−1xb),

where Va := {x ∈ V | QV (x) = a}. Therefore,

I∗(a, y;ϕ) = |y|2A · (y, d)A ·
∫

B×
1 \B×

1,A/k
×
A

(
∑

x∈Va

ϕ(y · b−1xb)

)
d×b. (3.4)

Note that for x ∈ Va, the stablizer of x in B×
1 under the conjugation is K×

x .
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Hence

I∗(a, y;ϕ) = |y|2A · (y, d)A ·
∑

x∈B×
1 \Va

∫

K×
x \B×

1,A/k
×
A

ϕ(y · b−1xb) d×b

= |y|2A · (y, d)A ·
∑

x∈B×
1 \Va

(
vol(K×

x \K×
x,A/k

×
A )

·
∫

K×
x,A\B

×
1,A

ϕ(y · b−1xb) d×b

)
,

and the proof is complete.

Remark 3.3. Suppose ϕ is a pure-tensor, i.e. ϕ = ⊗vϕv, where ϕv ∈ S(V (kv)).
Then for x ∈ V , the following equality holds:

∫

K×
x,A\B

×
1,A

ϕ(yb−1xb) d×b =
∏

v

∫

K×
x,v\B

×
1,v

ϕv(yvb
−1
v xbv) d

×bv.

We shall choose a particular pure-tensor Schwartz function ϕΛ = ⊗vϕΛ,v ∈
S(V (kA)) so that the associated Fourier coefficients can be expressed in terms
of modified Hurwitz class numbers.

3.1 Particular Schwartz function

Recall the definitions of V in (3.1) and B1 in (3.2), and note that the trace
map Tr : Mat2(F ) → F restricting to V gives a k-linear functional on V . For
x ∈ V , put

x♮ :=

(
x− Tr(x)

2

)
·
√
d ∈ Bo

1 ,

where Bo
1 is the space of of pure quaternions in B1, i.e.

Bo
1 = {b ∈ B | Tr(b) = 0}.

Then the centralizer of x in B1 is

Kx =

{
k(x♮), a quadratic field over k if x♮ 6= 0;

B1, otherwise.

Lemma 3.4. For a ∈ k, two elements x1 and x2 in Va belong to the same orbit
of B×

1 (under the conjugation action) if and only if Tr(x1) = Tr(x2).

Proof. It is clear that Tr(x1) = Tr(x2) if x1 and x2 belong to the same orbit of
B×

1 . Conversely, suppose Tr(x1) = Tr(x2). As

a = QV (x) =
Tr(x)2

4
− (x♮)2

d
, ∀x ∈ Va,
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the condition Tr(x1) = Tr(x2) says that (x♮1)
2 = (x♮2)

2 ∈ k. Thus there exists
an isomorphism over k between two subfields k(x♮1) and k(x♮2) of B1 sending
x♮1 to x♮2. Extending this isomorphism to an inner automorphism of B1, there
exists b ∈ B×

1 so that bx♮1b
−1 = x♮2. Therefore

bx1b
−1 = b

(
Tr(x1)

2
+
x♮1√
d

)
b−1 =

Tr(x2)

2
+
x♮2√
d
= x2.

Take

Λ := Mat2(OF ) ∩ V =

{(
a β
−β′n d

) ∣∣∣∣ a, d ∈ A, β ∈ OF

}

and

OB1 := Mat2(OF ) ∩B1 =

{(
α β
β′n α′

) ∣∣∣∣ α, β ∈ OF

}
.

It is direct to check that OB1 is an Eichler A-order in B1 of type (d+n+, d−n−)
and u−1xu ∈ Λ for every x ∈ Λ and u ∈ O×

B1
. For each non-zero prime ideal p

of A, put Λp := Λ⊗A Op and Λ♮
p := Oo

B1,p
= {b ∈ OB1,p | Tr(b) = 0}. Then:

Lemma 3.5. For xp ∈ V (kp) with QV (xp) ∈ Op, we have that

xp ∈ Λp if and only if Tr(xp) ∈ Op and x♮p ∈ Λ♮
p.

Proof. It is straightforward to check that when xp ∈ Λp, one has Tr(xp) ∈ Op

and x♮p ∈ Λ♮
p. Conversely, suppose Tr(xp) ∈ Op and x♮p ∈ Λ♮

p. Write

x♮p =

(
a
√
d β

β′n −a
√
d

)
with a ∈ Op and β ∈ OF,p := OF ⊗A Op,

and t = Tr(xp) ∈ Op. Then

QV (xp) =
t2

4
− (x♮p)

2

d
=
t2

4
+
ad+NrF/k(β)n

d
∈ Op.

Since n is coprime to d, we obtain that NrF/k(β)/d ∈ Op and so β =
√
d · β̃ for

some β̃ ∈ OF,p (as d is square-free). Therefore

xp =
t

2
+
x♮p√
d
=

(
t/2 + a β̃

−β̃n t/2− a

)
∈ Λp.
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We choose two special Schwartz functions for each place of k as follows. For
each non-zero prime ideal p of A we take

ϕΛ,p := 1Λp
∈ S(V (kp)) and ϕ♮

p := 1Λ♮
p

∈ S(Bo
1,p). (3.5)

The above lemma says that for xp ∈ V (kp) with QV (xp) ∈ Op, we have

ϕΛ,p(xp) = 1 if and only if Tr(x) ∈ Op and ϕ♮
p(x

♮
p) = 1. (3.6)

As d is monic with even degree, the field F is real over k, i.e. the infinite
place ∞ of k splits in F . Fix an embedding F →֒ k∞, which induces a k∞-
algebra isomorphism

B1,∞ = B1 ⊗k k∞ ∼= Mat2(k∞).

As the natural decomposition

V = k ⊕ 1√
d
· Bo

1 ⊂Mat2(F ), x =
Tr(x)

2
+

x♮√
d

induces an isomorphism V (k∞) ∼= B1,∞ (as quadratic spaces over k∞). Take

L∞ := ̟ ·Mat2(O∞) and L′
∞ :=

{(
a b
c d

)
∈ L∞

∣∣∣∣ c ∈ ̟
2O∞

}
.

Via the identification V (k∞) ∼= B1,∞
∼= Mat2(k∞), we may view L∞ and L′

∞

as two O∞-lattices in V (k∞). Choose

ϕΛ,∞ := 1L∞ −
q + 1

2
· 1L′

∞
∈ S(V (k∞) (3.7)

and

ϕ♮
∞ := 1Lo

∞
− q + 1

2
· 1L′,o

∞
∈ S(Bo

1,∞),

where Lo
∞ = L∞ ∩Bo

1,∞ and L′,o
∞ = L′

∞ ∩Bo
1,∞. It is straightforward to check

that:

Lemma 3.6. For x ∈ V (k∞), one has that

ϕΛ,∞(x) = 1̟O∞(Tr(x)) · ϕ♮
∞

(
x♮√
d

)
.

Our particular Schwartz function ϕΛ ∈ S(V (kA)) is chosen to be:

ϕΛ := (⊗pϕΛ,p)⊗ ϕΛ,∞ ∈ S(V (kA)).

Let

K1
0(dn∞) :=

{(
a b
c d

)
∈ SL2(OA)

∣∣∣∣ c ≡ 0 mod dn∞
}
, (3.8)
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and let χd : K1
0(dn∞) → {±1} be the quadratic character defined as follows:

for each κ =

(
a b
c d

)
∈ K1

0(dn∞) with d = (dv)v ∈ OA (and so dp ∈ O×
p for

each prime factor p of d),

χd(κ) :=
∏

p|d

(
dp
p

)
.

The following transformation law of the corresponding theta integral I(·;ϕΛ)
holds:

Proposition 3.7. Given γ ∈ SL2(k), g ∈ SL2(kA) and κ ∈ K1
0(dn∞), we have

I(γgκ;ϕΛ) = χd(κ) · I(g;ϕΛ).

Proof. From the definition of the theta integral in (3.3) and the theta series in
(2.3), we have that for γ ∈ SL2(k), g ∈ SL2(kA) and κ ∈ K1

0(dn∞),

I(γgκ;ϕΛ) =

∫

B×
1 \B×

1,A/k
×
A

Θ(γgκ, hb;ϕ)d
×b

=

∫

B×
1 \B×

1,A/k
×
A

Θ
(
g, hb;ωV (κ)ϕ

)
d×b

= I
(
g;ωV (κ)ϕΛ

)
.

It suffices to show that ωV (κ)ϕΛ = χd(κ) · ϕΛ for every κ = (κv)v ∈ K1
0(dn∞).

As ϕΛ is a pure-tensor, this can be checked “locally”, i.e. for each place v of k,

write κv =

(
av bv
cv dv

)
and we need

ωV,v(κv)ϕΛ,v = ϕΛ,v ·
{(

dp

p

)
, if v = p | d;

1, otherwise.
(3.9)

Given a place v of k, notice that SL2(Ov) is generated by

(
0 1
−1 0

)
and

(
1 uv
0 1

)
, uv ∈ Ov. Hence for

(
av bv
cv dv

)
∈ SL2(Ov) with cv ≡ 0 mod v,

one has dv ∈ O×
v and

(
av bv
cv dv

)
=

(
1 bvd

−1
v

0 1

)(
d−1
v 0
0 dv

)(
0 1
−1 0

)(
1 −d−1

v cv
0 1

)(
0 −1
1 0

)
.

Dealing with the case when v | dn∞ and v ∤ dn∞ separately, the equality (3.9)
then follows from straightforward calculations.

This transformation law implies in particular that for a ∈ k, y ∈ k×A , α ∈ k×,
ε ∈ O×

A , and u ∈ OA, we have

(ε, d)A · I∗(α−2a, αyε;ϕΛ) = I∗(a, y;ϕΛ) = I∗(a, y;ϕΛ) · ψ(ay2u). (3.10)
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Since A = Fq[θ] is a principal ideal domain, one has that

k×A = k× · (k×∞ ×
∏

p 6=∞

O×
p ).

From the first equality in (3.10), it suffices to consider I∗(a, y;ϕΛ) for y ∈ k×∞.
In this case, the second equality in (3.10) (when varying u in OA) implies that

I∗(a, y;ϕΛ) = 0 unless a ∈ A with deg a+ 2 ≤ 2 ord∞(y).

Next, we shall express I∗(a, y;ϕΛ) in terms of the modified Hurwitz class num-
bers.

3.2 Fourier coefficients of I(g;ϕΛ)

Let y ∈ k×∞ and a ∈ A with deg a + 2 ≤ 2 ord∞(y). As d is monic with even
degree, one gets that (y, d)∞ = 1. By Lemma 3.2 and Remark 3.3, we have
that

I∗(a, y;ϕΛ) = |y|2∞ ·
∑

x∈B×
1 \Va

[
vol(K×

x \K×
x,A/k

×
A ) (3.11)

·
(∏

p

∫

K×
x,p\B

×
1,p

ϕΛ,p(b
−1
p xbp) d

×bp

)
·
∫

K×
x,∞\B×

1,∞

ϕΛ,∞(yb−1
∞ xb∞) d×b∞

]
.

For x ∈ Va with Tr(x) = t ∈ A, one has that

(x♮)2 = d

(
t2

4
− a
)
.

Thus

Kx =

{
k(x♮) ∼= k(

√
d(t2 − 4a)), if x /∈ k;

B1, otherwise.

As the Eichler A-order OB1 is of type (d+n+, d−n−), applying Eichler’s theory
of local optimal embeddings in Appendix A and B we obtain that:

Proposition 3.8. Given a ∈ A and y ∈ k×∞ with deg a+ 2 ≤ 2 ord∞(y). Take
x ∈ Λa and put t = Tr(x) ∈ A. We have that (recall Definition 2.4)

vol(K×
x \K×

x,A/k
×
A ) ·

(
∏

p

∫

K×
x,p\B

×
1,p

ϕΛ,p(b
−1
p xbp) d

×bp

)

·
∫

K×
x,∞\B×

1,∞

ϕΛ,∞(yb−1
∞ xb∞) d×b∞.

= vol(O×
B1,A

/O×
A ) ·

{
Hd

+
n
+,d−

n
−

(d(t2 − 4a)), if t2 − 4a � 0;

0, otherwise.
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Proof. Set

d := d ·
(
t2

4
− a
)

= (x♮)2.

If d = 0, then x ∈ k and Kx = B1. Thus by by Lemma 2.8. we have

vol(K×
x \K×

x,A/k
×
A ) ·

∫

K×
x,A\B

×
1,A

ϕΛ(b
−1xb) d×b

= vol(B×
1 \B×

1,A/k
×
A ) · ϕΛ(0)

= 2 · 1− q
2

= vol(O×
B1,A

/O×
A ) ·Hd

+
n
+,d−

n
−

(0).

Now, suppose d 6= 0. From (3.6) and Lemma 3.6 one has that

∫

K×
x,p\B

×
1,p

ϕΛ,p(b
−1
p xbp) d

×bp =

∫

K×
x,p\B

×
1,p

ϕ♮
p(b

−1
p x♮bp) d

×bp

and

∫

K×
x,∞\B×

1,∞

ϕΛ,∞(b−1
∞ yxb∞) d×b∞

= 1̟O∞(yt) ·
∫

K×
x,∞\B×

1,∞

ϕ♮
∞

(
b−1
∞ ·

yx♮√
d
· b∞

)
d×b∞.

Write d = d0
∏

p p
2cp , where d0 is square-free. Applying Corollary B.2 and B.3,

we get

∫

K×
x,p\B

×
1,p

ϕ♮
p(b

−1
p x♮bp) d

×bp =
vol(O×

B1,p
/O×

p )

vol(O×
d0,p

/O×
p )

·
cp∑

ℓp=0

#

(
O×

d0,p

O×
d0p

2ℓp ,p

)
· e(Od0p

2ℓp ,p, OB1,p),

and
∫

K×
x,∞\B×

1,∞

ϕ♮
∞

(
b−1
∞ ·

yx♮√
d
· b∞

)
d×b∞

=
1

e∞(Kx/k)
·

vol(O×
B1,∞

/O×
∞)

vol(O×
Kx,∞

/O×
∞)

·
{
1, if k(

√
d)/k is imaginary and ord∞(y2(t2 − 4a)) ≥ 2;

0, otherwise.
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Note that that condition k(
√
d)/k is imaginary is equivalent to t2 − 4a ≺ 0

and forces that 2 deg t ≤ deg a. Since our assumption deg a + 2 ≤ 2 ord∞(y)
guarantees that yt ∈ ̟O∞ and ord∞(y2(t2 − 4a)) ≥ 2, we have

∫

K×
x,∞\B×

1,∞

ϕΛ,∞(yb−1
∞ xb∞) d×b∞ =

1

e∞(Kx/k)
·

vol(O×
B1,∞

/O×
∞)

vol(O×
Kx,∞

/O×
∞)

·
{
1, if t2 − 4a ≺ 0;

0, otherwise.

Finally, recall by Proposition 2.1 that

vol(K×
x \K×

x,A/k
×
A ) =

h(d0)

w(d0)
· e∞(Kx/k) · vol(O×

Kx,∞
/O×

∞) ·
∏

p

vol(O×
d0,p

/O×
p )

and notice that for each non-zero prime ideal p of A we have

e(Od0p
2ℓp ,p, OBp

) = ed
+
n
+,d−

n
−

p (ℓp)

by Lemma A.1 and A.2 and (2.2). Hence when t2 − 4a ≺ 0, we conclude that

vol(K×
x \K×

x,A/k
×
A ) ·

(
∏

p

∫

K×
x,p\B

×
1,p

ϕΛ,p(b
−1
p xbp) d

×bp

)

·
∫

K×
x,∞\B×

1,∞

ϕΛ,∞(yb−1
∞ xb∞) d×b∞.

= vol(O×
B1,A

/O×
A ) ·

h(d0)

w(d0)
·
∏

p




cp∑

ℓp=0

#

(
O×

d0,p

O×
d0p

2ℓp ,p

)
· ed

+
n
+,d−

n
−

p (ℓp)




= vol(O×
B1,A

/O×
A ) ·Hd

+
n
+,d−

n
−

(d(t2 − 4a)),

where the last equality follows from Proposition 2.5.

Notice that two elements x1, x2 ∈ Va belong to the same B×
1 -orbit if and only

if Tr(x1) = Tr(x2). From the equation (3.11) and Proposition 3.8, we conclude
that:

Theorem 3.9. Given a ∈ A and y ∈ k×∞ with deg a + 2 ≤ 2 ord∞(y), the
following equality holds:

I∗(a, y;ϕΛ) = vol(O×
B1,A

/O×
A ) · |y|2∞ ·

∑

t∈A
t2�4a

Hd
+
n
+,d−

n
−

(d(t2 − 4a)).
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3.3 Alternative expression of the Fourier coefficients

For y ∈ k×∞ and a ∈ A with deg a+2 ≤ 2 ord∞(y), from the equation (3.4) one
may express I∗(a, y;ϕΛ) as

I∗(a, y;ϕΛ) = |y|2∞ ·
∫

B×
1 \B×

1,A/k
×
A

(
∑

x∈Va

ϕΛ(yb
−1xb)

)
d×b.

Let Â :=
∏

p
Op and OB̂1

:= OB1 ⊗A Â. From the strong approximation
theorem one has the following bijection:

O×
B1
\B×

1,∞/k
×
∞ ←→ B×

1 \B×
1,A/k

×
AO

×

B̂1
. (3.12)

Let Λa := Λ ∩ Va. The above bijection leads to

I∗(a, y;ϕΛ) = |y|2∞vol(O×

B̂1
/Â×) (3.13)

·
∫

O×
B1

\B×
1,∞/k×

∞

(
∑

x∈Λa

ϕΛ,∞(yb−1
∞ xb∞)

)
d×b∞.

Let

Γ = Γ0,F (n) :=

{(
a b
c d

)
∈ GL2(OF )

∣∣∣∣ ad− bc ∈ F×
q , c ≡ 0 mod n

}
.

Define an action ⋆ of Γ on Λ by:

γ ⋆ x := γxγ∗ · det(γ)−1, ∀γ ∈ Γ, x ∈ Λ.

Then for a non-zero a ∈ A, Λa is invariant under the action of Γ. Moreover,
given x ∈ Λa, let

Bx := {b ∈Mat2(F ) | xb∗ = b̄x}.
The stablizer of x via the action ⋆ in Γ coincides with Γx := B×

x ∩ Γ , whence

Λa =
∐

x∈Γ\Λa

(Γ/Γx) ⋆ x,

and
(Γ/Γx) ⋆ x =

∐

γ∈O×
B1

\Γ/Γx

(
O×

B1
/(O×

B1
∩ Γγ⋆x)

)
⋆ (γ ⋆ x).

Therefore we may rewrite (3.13) as follows:

Lemma 3.10. For a ∈ A and y ∈ k×∞ with deg a+ 2 ≤ 2 ord∞(y),

I∗(a, y;ϕΛ) = |y|2∞ · vol(O×

B̂1
/Â×)

·
∑

x∈Γ\Λa

∑

γ∈O×
B1

\Γ/Γx

∫

(O×
B1

∩Γγ⋆x)\B
×
1,∞/k×

∞

ϕΛ,∞(yb−1
∞ (γ⋆x)b∞) d×b∞.

Documenta Mathematica 27 (2022) 1321–1368



Class Number Relations and Intersections 1347

To determine the integral inside the above summation, we need the following
lemmas:

Lemma 3.11. Given a non-zero a ∈ A and x ∈ Λa, Bx is a quaternion algebra
over k which is isomorphic to:

(
d, an

k

)
:= k + ki+ kj+ kij, where i2 = d, j2 = an, and ji = −ij.

Proof. Write x =

(
d1 β
−nβ′ d2

)
where d1, d2 ∈ A and β ∈ OF with d1d2 +

nββ′ = a. Take

U :=





(
1 0

nβ′ d1

)
, if d1 6= 0;

(
d2 −β
0 a

)
, if d1 = 0 and d2 6= 0 ;

(
−1 β

nβ nβ2

)
, if d1 = d2 = 0.

Then

xU := UxU∗ =

(
1 0
0 a

)
·





d1, if d1 6= 0;

ad2, if d1 = 0 and d2 6= 0;

2a, if d1 = d2 = 0.

It is straightforward to check that Bx = U−1BxUU and

BxU =

{(
α β

anβ′ α′

) ∣∣∣∣ α, β ∈ F
}
.

Thus

Bx
∼= BxU

∼=
(
d, an

k

)
.

Remark 3.12. Observe that Bx = B1 if and only if x ∈ k×. In this case, a is a
square in A, and Γx = O×

B1
.

Lemma 3.13. Let a ∈ A and y ∈ k×∞ with a 6= 0 and deg a + 2 ≤ 2 ord∞(y).
Take x ∈ Va.

(1) If Bx = B1, then Γx = Γ1 and

∫

(Γ1∩Γx)\B
×
1,∞/k×

∞

ϕΛ,∞(yb−1
∞ xb∞) d×b∞ =

1− q
2
· vol(Γ1\B×

1,∞/k
×
∞).
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(2) If Bx 6= B1, then Bx ∩B1 = Kx, and
∫

(Γ1∩Γx)\B
×
1,∞/k×

∞

ϕΛ,∞(yb−1
∞ xb∞) d×b∞

= vol(O×
B1,∞

/O×
∞) ·





q − 1

#(Γ1 ∩ Γx)
, if Kx/k is imaginary;

0, otherwise.

Proof. When Bx = B1, we get x ∈ k× with x2 = a. Thus the condition
deg a+ 2 ≤ 2 ord∞(y) implies

ϕΛ,∞(yb−1
∞ xb∞) = 1− q + 1

2
=

1− q
2

, ∀b∞ ∈ B×
1,∞.

Hence the assertion (1) holds.

For (2), the integral vanishes unless Kx/k is imaginary. In this case, Γ1 ∩Γx is
a finite subgroup of K×

x , and
∫

(Γ1∩Γx)\B
×
1,∞/k×

∞

ϕΛ,∞(yb−1
∞ xb∞) d×b∞

=
vol(K×

x,∞/k
×
∞)

#(Γ1 ∩ Γx)
·
∫

K×
x,∞\B×

1,∞

ϕ♮
∞

(
(y
√
d)b−1

∞ x♮b∞
)
d×b∞

= vol(O×
B1,∞

/O×
∞) · q − 1

#(Γ1 ∩ Γx)
.

The last equality follows from Corollary B.3.

The bijection (3.12) implies that

vol(O×

B̂1
/Â×) · vol(Γ1\B×

1,∞/k
×
∞) = vol(B×

1 \B×
1,A/k

×
A ) = 2.

Hence by Lemma 2.8 we get

1− q
2
·
vol(Γ1\B×

1,∞/k
×
∞)

vol(O×
B1,∞

/O×
∞)

=
1− q
2
· 2

vol(O×
B1,A

/O×
A )

= Hd
+
n
+,d−

n
−

(0). (3.14)

For non-zero x ∈ Λ, put

ι(x) :=





Hd
+
n
+,d−

n
−

(0), if Bx = B1;
q − 1

#(Γ1 ∩ Γx)
, if Kx/k is imaginary;

0, otherwise.

(3.15)

Define
I(x) :=

∑

γ∈Γ1\Γ/Γx

ι(γ ⋆ x). (3.16)

From Lemma 3.10, Lemma 3.13, (3.14), (3.15) and (3.16), we then obtain:
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Theorem 3.14. Given a ∈ A and y ∈ k×∞ with a 6= 0 and 2 ord∞(y)+2 ≥ deg a,
we have:

I∗(a, y;ϕΛ) = vol(OB×
1,A
/O×

A ) · |y|2∞ ·
∑

x∈Γ\Λa

I(x).

In Section 4, the above theorem enables us to connect the Fourier coefficients
of the theta integral I(g;ϕΛ) with the intersection numbers of the “Hirzebruch-
Zagier-type divisors” on the “Drinfeld-Stuhler modular surfaces”.

3.4 Extension of I(g;ϕΛ)

Let

K∞ :=

{(
a b
c d

)
∈ GL2(O∞)

∣∣∣∣ c ≡ 0 mod ̟

}

and

Γ0(dn) :=

{(
a b
c d

)
∈ GL2(A)

∣∣∣∣ c ≡ 0 mod dn

}
.

Put K1
∞ := K∞∩SL2(k∞) and Γ1

0(dn) := Γ0(dn)∩SL2(A) and recall (3.8). From
the strong approximation theorem, the natural embedding SL2(k∞) →֒ SL2(kA)
induces the following bijection

Γ1
0(dn)\ SL2(k∞)/K1

∞ ←→ SL2(k)\ SL2(kA)/K1
0(dn∞).

This allows us to view I(g;ϕΛ) as a function on SL2(k∞)/K1
∞ satisfying

I(γg∞;ϕΛ) = χd(γ)I(g∞;ϕΛ), ∀g∞ ∈ SL2(k∞) and γ ∈ Γ1
0(dn).

We shall extend I(·;ϕΛ) to a function ϑΛ on GL2(k∞)/k×∞K∞ which is
“Drinfeld-type”, i.e. the following harmonic property holds: for g∞ ∈ GL2(k∞)
we have

ϑΛ(g∞) + ϑΛ

(
g∞

(
0 1
̟ 0

))
= 0 =

∑

κ∈GL2(O∞)/K∞

ϑΛ(g∞κ).

Remark 3.15. Let f be a Drinfeld-type automorphic form on GL2(k∞)/k×∞K∞.
The harmonicity of f implies that f is invariant by the “Iwahori” Hecke operator
at ∞, i.e. for g∞ ∈ GL2(k∞),

∑

ǫ∈Fq

f

(
g∞

(
π∞ ǫ
0 1

))
= f(g∞).

Viewed as analogue to classical weight-two modular forms, Drinfeld-type au-
tomorphic forms are objects of great interest in the study of function field
arithmetic. We refer the readers to [12], [3], [4], and [37]) for further discus-
sions.

Let w∞ :=

(
0 1
̟ 0

)
. We first prove that:
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Lemma 3.16. Given g∞ ∈ SL2(k∞), the following equality holds:

∑

κ∈SL2(O∞)/K1
∞

I(g∞κ;ϕΛ) = 0 =
∑

κ∈SL2(O∞)/K1
∞

I(g∞w
−1
∞ κw∞;ϕΛ).

Proof. Notice that 1̂L∞ = 1L∞ and 1̂L′
∞

= q−1 · 1L̃∞
, where

L̃∞ :=

{(
a b
c d

)
∈ Mat2(O∞)

∣∣∣∣ a, c, d ∈ ̟O∞

}
.

Thus ωV,∞(κ)1L∞ = 1L∞ for every κ ∈ SL2(O∞), and

∑

κ∈SL2(O∞)/K1
∞

ωV,∞(κ)1L′
∞

= 1L∞∪w∞L∞w−1
∞

+ 1L∞∩w∞L∞w−1
∞

= 1L∞ + 1w∞L∞w−1
∞
.

Therefore

∑

κ∈SL2(O∞)/K1
∞

I(g∞κ;ϕΛ)

= (q + 1) · I(g∞;⊗pϕΛ,p ⊗ 1L∞)

− q + 1

2
· I
(
g∞;⊗pϕΛ,p ⊗

(
1L∞ + 1w∞L∞w−1

∞

))

= (q + 1) · I(g∞;⊗pϕΛ,p ⊗ 1L∞)− q + 1

2
· 2 · I(g∞;⊗pϕΛ,p ⊗ 1L∞)

= 0.

Similarly, let

L′′
∞ :=

(
̟O∞ O∞

̟O∞ O∞

)
.

Then

∑

κ∈SL2(O∞)/K1
∞

ωV,∞

(
w∞κw

−1
∞

)
1L∞ = q ·

∑

κ∈SL2(O∞)/K1
∞

1κL′′
∞κ−1

and

∑

κ∈SL2(O∞)/K1
∞

ωV,∞(w∞κw
−1
∞ )1L′

∞
= q ·

(
1L′′

∞
+ 1w∞L′′

∞w−1
∞

)
.
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Therefore
∑

κ∈SL2(O∞)/K1
∞

I
(
g∞w∞κw

−1
∞ ;ϕΛ

)

=
∑

κ∈SL2(O∞)/K1
∞

q · I
(
g∞;⊗pϕΛ,p ⊗ 1κL′′

∞κ−1

)

− q + 1

2
· q · I

(
g∞;⊗pϕΛ,p ⊗

(
1L′′

∞
+ 1w∞L′′

∞w−1
∞

))

= (q + 1) · q · I
(
g∞;⊗pϕΛ,p ⊗ 1L′′

∞

)
− q + 1

2
· q · 2 · I

(
g∞;⊗pϕΛ,p ⊗ 1L′′

∞

)

= 0.

Let
GL+

2 (k∞) := {g ∈ GL2(k∞) | ord∞(det g) ≡ 0 mod 2}.
The natural inclusion SL2(k∞) →֒ GL2(k∞) gives a bijection

SL2(k∞)/K1
∞ ←→ GL+

2 (k∞)/k×∞K∞.

Thus I(·;ϕΛ) can be viewed as a function on GL+
2 (k∞)/k×∞K∞. For g∞ in

GL2(k∞), define ϑΛ(g∞) by:

ϑΛ(g∞) :=
2

vol(O×
BA
/O×

A )
·
{
I(g∞;ϕΛ), if g∞ ∈ GL+

2 (k∞);

−I(g∞w∞;ϕΛ), otherwise.
(3.17)

The above lemma implies immediately that:

Proposition 3.17. The function ϑΛ on GL2(k∞)/k×∞K∞ satisfies the har-
monic property, i.e. for g∞ ∈ GL2(k∞),

ϑΛ(g∞) + ϑΛ(g∞w∞) = 0 =
∑

κ∈GL2(O∞)/K∞

ϑΛ(g∞κ).

Moreover, for γ ∈ Γ
(1)
0 (dn) we have

ϑΛ(γg∞) = χd(γ) · ϑΛ(g∞), ∀g∞ ∈ GL2(k∞).

Here for γ =

(
a b
dnc d

)
∈ Γ

(1)
0 (dn), χd(γ) is equal to the Legendre quadratic

symbol
(
d
d

)
.

Proof. The second assertion follows directly from Proposition 3.7. To show the
harmonicity of ϑΛ, by definition we get immediately that

ϑΛ(g∞) + ϑΛ(g∞w∞) = 0.
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Moreover, suppose g∞ ∈ GL+
2 (k∞). Then by Lemma 3.16, one has

∑

κ∈GL2(O∞)/K∞

ϑΛ(g∞κ) =
2

vol(O×
BA
/O×

A )
·

∑

κ∈SL2(O∞)/K1
∞

I(g∞κ;ϕΛ) = 0.

When g∞ /∈ GL+
2 (k∞), by Lemma 3.16 again we get

∑

κ∈GL2(O∞)/K∞

ϑΛ(g∞κ)

=
−2

vol(O×
BA
/O×

A )
·

∑

κ∈SL2(O∞)/K1
∞

I
(
(g∞w∞)w−1

∞ κw∞;ϕΛ

)

= 0.

Therefore the proof is complete.

In conclusion:

Theorem 3.18. We extend I(·;ϕΛ) to a Drinfeld-type automorphic form ϑΛ
on GL2(k∞) for the congruence subgroup Γ1

0(dn) with nebentypus χd, whose
Fourier expansion is: for (x, y) ∈ k∞ × k×∞,

ϑΛ

(
y x
0 1

)
= |y|∞ ·

∑

a∈A
deg a+2≤ord∞(y)


2 ·

∑

t∈A
t2�4a

Hd
+
n
+,d−

n
−(

d(t2 − 4a)
)

 · ψ∞(ax).

Remark 3.19. The above construction of ϑΛ gives us a way to produce Drinfeld-
type automorphic forms on GL2(k∞) with non-trivial nebentypus, which is
different from the theta series given in [32], [29], [3], or [4].

4 Intersections of the Hirzebruch-Zagier-type divisors

4.1 Drinfeld-Stuhler modular curves

Let C∞ be the completion of a chosen algebraic closure of k∞. The Drinfeld
half plane is

H := C∞ − k∞,
which is equipped with the Möbius action of GL2(k∞):

(
a b
c d

)
· z :=

az + b

cz + d
, ∀

(
a b
c d

)
∈ GL2(k∞), z ∈ H.

We recall the analytic construction of Drinfeld-Stuhler modular curves as fol-
lows. Let B be an indefinite quaternion algebra over k, and n− ∈ A+ be the
product of the primes at which B is ramified. Take a square-free n+ ∈ A+

coprime to n−, and let OB be an Eichler A-order in B of type (n+, n−). Fix
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an isomorphism B ⊗k k∞ ∼= Mat2(k∞), which embeds Γ(n+, n−) := O×
B into

GL2(k∞) as a discrete subgroup. This induces an action of O×
B on the Drinfeld

half plane H. Let
X(n+, n−) := Γ(n+, n−)\H,

which is a rigid analytic space (compact ifB is division). From the moduli inter-
pretation of X(n+, n−) (which parametrizes the “B-elliptic sheaves with addi-
tional level-n+ structure”, cf. [25] and [30]), we may identify X(n+, n−) (rigidly
analytically) with the C∞-valued points of a smooth curve (projective if B is
division) over C∞, called the Drinfeld-Stuhler modular curve for Γ(n+, n−).
For our purpose, we shall only use the analytic description of X(n+, n−).
Notice that when B = Mat2(k), every Eichler A-order OB of type (n+, 1) is
equal (up to conjugation) to

{(
a b
c d

)
∈Mat2(A)

∣∣∣∣ c ≡ 0 mod n+
}
,

and so Γ(n+, 1) coincides with the congruence subgroup

Γ0(n
+) :=

{(
a b
c d

)
∈ GL2(A)

∣∣∣∣ c ≡ 0 mod n+
}
.

The “compactification”

X0(n
+) := Γ0(n)\

(
H ∪ P1(k)

)

is called the Drinfeld modular curve for Γ0(n
+) (cf. [12]).

4.2 Drinfeld-Stuhler modular surface

Let d ∈ A+ be square-free with deg d even and F = k(
√
d). Identifying F∞ :=

F ⊗k k∞ ∼= k∞ × k∞, we denote the image of α ∈ F in k2∞ by (α, α′) (α′ is the
Galois conjugate of α over k). Let HF := H × H, equipped with the Möbius
action of GL2(k∞)2. The above embedding F →֒ k∞ × k∞ gives GL2(F ) →֒
GL2(k∞)2, which induces an action of GL2(F ) on HF . In concrete terms, for

g =

(
a b
c d

)
∈ GL2(F ) and ~z = (z1, z2) ∈ HF , we have

g · ~z =
(
az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
.

For n ∈ A+, recall that

Γ0,F (n) =

{(
a b
c d

)
∈ GL2(OF )

∣∣∣∣ ad− bc ∈ F×
q , c ≡ 0 mod n

}
.

The Drinfeld-Stuhler modular surface for Γ0,F (n) is

S0,F (n) := Γ0,F (n)\HF .
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From the work of Stuhler [34], S0,F (n) is a moduli space of the so-called
“Frobenius-Hecke sheaves” (an analogue of the Hilbert-Blumenthal abelian sur-
faces in the classical case) with additional “level-n structure”. This provides the
algebraic structure of the surface S0,F (n). For our purpose, we only consider
S0,F (n) as a rigid analytic space, and study the intersections of the “Hirzebruch-
Zagier-type” divisors on S0,F (n).

4.3 Hirzebruch-Zagier-type divisors

Recall in Section 3 that

V = {x ∈Mat2(F ) | x∗ = x} and Λ = V ∩Mat2(OF ).

Given x ∈ Λ with det(x) 6= 0, let Cx := Γx\H, the Drinfeld-Stuhler modular
curve for Γx (where Γx is the stabilizer of x in Γ = Γ0,F (n) via the action ⋆).
Put

Sx :=

(
0 1
n 0

)
x̄.

The closed immersion H → HF defined by (z 7→ (z, Sxz)) induces a (rigid
analytic) proper morphism fx : Cx → S0,F (n). We put Xx := fx(Cx) and
Zx := fx,∗(Cx), the pushforward divisor of Cx under fx on S0,F (n). Let

Γ̂x := {γ ∈ Γ0,F (n) | γ ⋆ x = ±x}.

Then [Γ̂x : Γx] = 1 or 2, and:

Lemma 4.1. For x ∈ Λ with deg(x) 6= 0, one has

Zx = [Γ̂x : Γx] ·Xx.

Proof. We need to show that the proper morphism fx : Cx → Xx has degree
equal to [Γ̂x : Γx].
Let z1, z2 ∈ Cx be two points with fx(z1) = fx(z2) ∈ Xx. Take representatives
~z1 = (z1, Sxz1) and ~z2 = (z2, Sxz2) of z1 and z2 on HF , respectively. There
exists γ ∈ Γ so that

~z1 = γ · ~z2, i.e. (z1, Sxz1) = (γz2, γ
′Sxz2).

Thus

z1 = γz2 = γ((γ′Sx)
−1Sx)z1 =

(
(γ ⋆ x)x̄

)
z1.

When z1 is in “general position”, e.g. the stabilizer of z1 in GL2(F ) is F×, one
has (γ ⋆ x)x̄ ∈ F×. Taking the determinant of (γ ⋆ x)x̄, we obtain γ ⋆ x = ±x,
which says that γ ∈ Γ̂x. Therefore the result holds.
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Suppose now that n satisfies Assumption 3.1. We shall study the number of
intersections of Z1 and Zx by lifting to a “fine covering” of S0,F (n). More
precisely, for m ∈ A+, we let

ΓF (m) :=

{
γ ∈ GL2(OF )

∣∣∣∣ γ ≡
(
1 0
0 1

)
mod m

}
.

Choose m so that n2 divides m. Then

ΓF (m)∗ := {γ∗ | γ ∈ ΓF (m)} ⊂ ΓF (n).

Consider the finite morphism

π : ΓF (m)\HF =: SF (m) ։ S0,F (n).
For x ∈ Λ with det(x) 6= 0, let Hx := {(z, Sxz) | z ∈ H} ⊂ HF . Observe that
γHx = Hγ⋆x for all γ ∈ Γ0,F (n). Let X̃x be the image of Hx in SF (m) under
the canonical map from HF onto SF (m). Let

Γx(m) := Γx ∩ ΓF (m) and C̃x := Γx(m)\H.
We have:

Lemma 4.2. Assume n2 det(x) divides m. Then the identification between H ∼=
Hx induces an isomorphism f̃x : C̃x ∼= X̃x.

Proof. Notice that the defining equation of Hx in HF makes it smooth every-
where. As each point in HF has trivial stabilizer in ΓF (m), we may identify
a sufficiently small admissible open neighborhood of a given point in HF with
the corresponding affinoid subdomains in SF (m). This assures the smoothness
of X̃x. Therefore it suffices to show that the morphism from f̃x : C̃x → X̃x is
a bijection.
The surjectivity of f̃x comes directly from the definition. On the other hand, let
z̃1 and z̃2 be two points on C̃x so that f̃x(z̃1) = f̃x(z̃2). Take representatives
~z1 = (z1, Sxz1) and ~z2 = (z2, Sxz2) of z̃1 and z̃2 on Hx, respectively. Then
there exists γ ∈ ΓF (m) so that ~z1 = γ · ~z2, i.e.

(z1, Sxz1) = (γz2, γ
′Sxz2).

Thus
z1 = γz2 =

(
γ(γ′Sx)

−1Sx

)
z1 =

(
(γ ⋆ x)x̄

)
z1.

Since n2 det(x) divides m, we obtain that

(γ ⋆ x)x−1 = γ(xγ∗x−1) ·det(γ)−1 ∈ ΓF (n), i.e. (γ ⋆ x)x−1 ≡
(
1 0
0 1

)
mod n.

As it fixes z1 ∈ H, we obtain that

(γ ⋆ x)x−1 = 1, i.e. γ ⋆ x = x.

Hence γ ∈ Γx ∩ ΓF (m) = Γx(m). In other words, the morphism f̃x is bijective,
and the proof is complete.
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4.4 Formula of intersections

Let x ∈ Λ with det(x) 6= 0, and m ∈ A+ with n2 det(x) | m. We first verify the
transversality of the intersections of X̃1 and X̃x on SF (m).

Lemma 4.3. Suppose X̃1 6= X̃x. Then X̃1 and X̃x intersect transversally.

Proof. It suffices to check that the preimages of X̃1 and X̃x in HF intersect
transversally. Since γHx = Hγ⋆x for every γ ∈ Γ, it is reduced to show the
transversality of the intersection of H1 and Hx when x /∈ A.

Suppose ~z = (z, S1z) = (z, Sxz) ∈ H1 ∩ Hx. Write x =

(
d1 β
−nβ′ d2

)
with

d1, d2 ∈ A, β ∈ OF , and put a := det(x) = d1d2 + nββ′ 6= 0. Then x̄z = z, i.e.

d2z − β
nβ′z + d1

= z.

Thus nβ′z2 + (d1 − d2)z + β = 0. Multiplying β on both sides we get

(a− d1d2)z2 + (d1 − d2)βz + β2 = 0. (4.1)

On the other hand, the tangent vectors of ~z along H1 and Hx, respectively, are
(
1,− 1

nz2

)
and

(
1,

−a
n(d2z − β)2

)
.

If these two vectors coincide, we get az2 = (d2z − β)2, which says that

(a− d22)z2 + 2d2βz − β2 = 0. (4.2)

Suppose β 6= 0. As z ∈ H, comparing equations (4.1) and (4.2) we get

a− d1d2 = −(a− d22) and d1 − d2 = −2d2,

which imply a = 0 and cause a contradiction. Hence β = 0 and a = d1d2 = d22.
Since a 6= 0, we have d1 = d2. Therefore, x ∈ A and Hx = H1 also cause a
contradiction. As Hx 6= H1, the two tangent vectors much be different, i.e. the
intersection of Hx and H1 at ~z must be transversal.

Let Z̃x be the prime divisor associated with X̃x on SF (m). We get

π∗(Z̃x) = [Γx : Γx(m) · F×
q ] · Zx.

From the above lemmas, the intersection number of Z1 and Zx is determined
in the following:

Proposition 4.4. Given x ∈ Λ with det(x) 6= 0, suppose Z1 6= Zx. Choose
m ∈ A+ so that n2 det(x) | m. The intersection number of Z1 and Zx is equal
to

Z1 · Zx =
q − 1

[Γ1 : Γ1(m)] · [Γx : Γx(m)]
·

∑

γ∈Γ/ΓF (m)

Z̃1 · γZ̃x.
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Proof. Observe that Z1 is a Q-Cartier divisor on S0,F (n). Thus the result
is a rigid-analytic version of the projection formula (cf. [26, Remark 2.13 in
Chapter 9]) for the intersection of Z1 and Zx = π∗(Z̃x). We include the
argument here for completeness.

Let Γ = Γ0,F (n). Given x ∈ Λ with det(x) 6= 0, the normalization of the
irreducible curve Xx is isomorphic to Γ̂x\H. Notice that for each z ∈ X1 ∩Xx,
take z̃1 and z̃x be two lifts of z in X̃1 and X̃x, respectively. The intersection
multiplicity of X1 and Xx at z is actually equal to

mz(X1, Xx) =
(q − 1) ·#StabΓ(z̃1)

#StabΓ̂1
(z̃1) ·#StabΓ̂x

(z̃x)
.

Indeed, let πx := π
∣∣
X̃x

: X̃x → Xx. As X1 is a Q-Cartier divisor on S0,F (n),
we have the following equality (between Q-divisors on Xx):

X1

∣∣
Xx

=
1

deg πx
· πx,∗

(
π∗
x(X1

∣∣
Xx

)
)
∈ DivQ(Xx) := Q⊗Z Div(Xx).

Let iz(D) (resp. iz̃x(D̃)) be the multiplicity of a Q-divisor D on Xx (resp. D̃
on X̃x) at z (resp. z̃x). Take γ ∈ Γ so that γz̃x = z̃1. We then obtain that

mz(X1, Xx) = iz(X1

∣∣
Xx

) =
q − 1

#StabΓ̂x
(z̃x)

· iz̃x

(
π∗
x(X1

∣∣
Xx

)
)

=
q − 1

#StabΓ̂x
(z̃x)

· iz̃x

(
π∗(X1)

∣∣
X̃x

)

=
q − 1

#StabΓ̂x
(z̃x)

· iz̃1

(
π∗(X1)

∣∣
γX̃x

)

=
q − 1

#StabΓ̂x
(z̃x)

· #StabΓ(z̃1)

#StabΓ̂1
(z̃1)

.

Now, consider the disjoint union

Φ :=
∐

γ∈Γ/Γ̂x·ΓF (m)

X̃1 ∩ γX̃x

which maps surjectively to X1 ∩Xx via the finite morphism π on each compo-
nent (we denote this surjection Φ ։ X1∩Xx by π̃). For each point z ∈ X1∩Xx,
the pre-image of z in Φ has cardinality equal to

[Γ̂1 : StabΓ̂1
(z̃1) · Γ1(m)] · #StabΓ(z̃1)

#StabΓ̂x
(z̃x)

.
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Thus the cardinality of Φ can be expressed as

∑

γ∈Γ/Γ̂x·ΓF (m)

#(X̃1 ∩ γX̃x)

=
∑

z∈X1∩Xx

#
(
π̃−1(z)

)

=
∑

z∈X1∩Xx

[Γ̂1 : StabΓ̂1
(z̃1) · Γ1(m)] · #StabΓ(z̃1)

#StabΓ̂x
(z̃x)

= [Γ̂1 : Γ1(m)F×
q ] ·

∑

z∈X1∩Xx

(q − 1) ·#StabΓ(z̃1)

#StabΓ̂1
(z̃1) ·#StabΓ̂x

(z̃x)

= [Γ̂1 : Γ1(m)F×
q ] ·

∑

z∈X1∩Xx

mz(X1, Xx).

Therefore

Z1 · Zx = [Γ̂1 : Γ1] · [Γ̂x : Γx] ·
∑

z∈X1∩Xx

mz(X1, Xx)

=
[Γ̂1 : Γ1] · [Γ̂x : Γx]

[Γ̂1 : Γ1(m)F×
q ]

·
∑

γ∈Γ/Γ̂x·ΓF (m)

#(X̃1 ∩ γX̃x)

=
q − 1

[Γ1 : Γ1(m)] · [Γx : Γx(m)]
·

∑

γ∈Γ/ΓF (m)

Z̃1 · γZ̃x,

where the last equality holds as X̃1 and γX̃x(= X̃γ⋆x) intersect transversally
for every γ ∈ Γ.

Proposition 4.5. Let x ∈ Λ with det(x) 6= 0, and m ∈ A+ so that n2 det(x)

divides m. Given γ ∈ Γ, suppose Z̃1 6= γZ̃x. We have

Z̃1 · γZ̃x =
∑

γ0∈Γ1(m)\ΓF (m)/Γγ⋆x(m)

#(H1 ∩ γ0γHx).

Proof. It suffices to show that the union

⋃

γ0∈Γ1(m)\ΓF (m)/Γγ⋆x(m)

H1 ∩ γ0γHx (⊂ HF )

is disjoint and in bijection with the intersection points of X̃1 and γX̃x under
the canonical map HF → SF (m).
The surjectivity is straightforward. On the other hand, given γ1, γ2 ∈ ΓF (m)
and ~zi ∈ H1 ∩ γiγHx for i = 1, 2, write

~zi = (zi, S1zi) = (γiγwi, γ
′
iγ

′Sxwi) with zi, wi ∈ H for i = 1, 2.
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Suppose the image of ~z1 and ~z2 coincides in SF (m), i.e. there exists γ0 ∈ ΓF (m)
so that (z1, S1z1) = (γ0z2, γ

′
0S1z2). Then deg γ0 = 1 and

S1z1 = γ′0S1z2 = γ′0S1γ
−1
0 z1,

which says (γ0γ
∗
0 )z1 = z1. From our choice of m, we get γ0γ∗0 ∈ ΓF (n det(x))

which fixes z1. This implies γ0γ∗0 = 1. As det γ0 = 1, we have that γ∗0 = γ̄0,
whence

γ0 ∈ Γ1 ∩ ΓF (m) = Γ1(m).

Moreover, let

γ3 = γ−1γ−1
1 γ0γ2γ ∈ ΓF (m) (as ΓF (m) is normal in Γ).

We get det γ3 = 1 and (w1, Sxw1) = (γ3w2, γ
′
3Sxw2), which says

(γ3 · x̄−1γ∗3 x̄)w1 = w1.

Similarly, from our choice of m we get γ3 · x̄−1γ∗3 x̄ ∈ ΓF (n) and fixes w1. Thus

γ3 · x̄−1γ∗3 x̄ = 1, which shows that xγ∗3 = γ̄3x (as det γ3 = 1).

Therefore γ3 ∈ Γx ∩ ΓF (m) = Γx(m). In conclusion, we have

γ1 · (γγ3γ−1) = γ0γ2,

i.e. γ1 and γ2 represents the same double cosets in Γ1(m)\ΓF (m)/Γγ⋆x(m). This
assures the injectivity and completes the proof.

Lemma 4.6. Given x ∈ Λ with det(x) 6= 0. For γ ∈ Γ with γHx 6= H1 one has

H1 ∩ γHx = {~z = (z, S1z) | (γ ⋆ x) · z = z}.

Consequently, put

ι̃(x) :=

{
1 if Kx/k is an imaginary quadratic field extension;

0 otherwise.

Then
#(H1 ∩ γHx) = 2 · ι̃(γ ⋆ x).

Proof. Given ~z ∈ H1 ∩ γHx, write ~z = (z, S1z) = (γw, γ′Sxw) for z, w ∈ H. We
get

γ′Sxγ
−1z = γ′Sxw = S1z.

Thus

z = γS−1
x γ′−1S1z = γx̄−1(S−1

1 γ′−1S1) · z
= γx(S−1

1 γ̄′S1) · z = (γ ⋆ x) · z.

Documenta Mathematica 27 (2022) 1321–1368



1360 J.-W. Guo, F.-T. Wei

Conversely, given z ∈ H so that (γ ⋆ x) · z = z, we obtain γ′Sxγ
−1z = S1z. Let

w = γ−1z. Then

~z := (z, S1z) = (γw, γ′Sxw) ∈ H1 ∩ γHx.

This shows the first equality. Note that from the assumption that γHx 6= H1,

the element γ⋆x /∈ k×. Write γ⋆x =

(
a b
c d

)
with a, b, c, d ∈ F →֒ k∞. Observe

that (γ ⋆ x) · z = z if and only if the column vector (z, 1)t is an eigen-vector of
γ ⋆ x with respect to the eigen-value cz + d. This implies that Kx

∼= k(z) is an
imaginary quadratic field over k, whence the second equality holds.

4.5 Geometric interpretation of the Fourier coefficients of ϑΛ

For non-zero x ∈ Λ, recall the number ι(x) defined in (3.15). Given γ ∈ Γ with
γHx 6= H1 (which implies Bγ⋆x 6= B1), observe that for γ1 ∈ Γ1, and γx ∈ Γx

one has

ι̃((γ1γγx) ⋆ x) = ι̃(γ ⋆ x) = #(Γ1 ∩ Γγ⋆x) · ι(γ ⋆ x)/(q − 1).

We are now able to express the intersection number Z1 · Zx as follows:

Theorem 4.7. Given x ∈ Λ with detx 6= 0. Suppose Z1 6= Zx, or equivalently,
γ ⋆ x /∈ k for every γ ∈ Γ. Then

Z1 · Zx = 2 ·
∑

γ∈Γ1\Γ/Γx

ι(γ ⋆ x).

Proof. From Proposition 4.5 and Lemma 4.6 we have

Z1 · Zx =
q − 1

[Γ1 : Γ1(m)] · [Γx : Γx(m)]
·

∑

γ∈Γ/ΓF (m)

Z̃1 · γZ̃x

=
q − 1

[Γ1 : Γ1(m)] · [Γx : Γx(m)]
·

∑

γ∈Γ1(m)\Γ/Γx(m)

2 · ι̃(γ ⋆ x)

=
∑

γ∈Γ1\Γ/Γx

q − 1

#(Γ1 ∩ Γγ⋆x)
· 2 · ι̃(γ ⋆ x)

= 2 ·
∑

γ∈Γ1\Γ/Γx

ι(γ ⋆ x).

We now define the self-intersection number of Z1 (following [17, p. 84]). First,
put

vol(X1) := − 2

[Γ̂1 : Γ1]
·Hd

+
n
+,d−

n
−

(0) (4.3)
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and

vol(Z1) := [Γ̂1 : Γ1] · vol(X1) = −2Hd
+
n
+,d−

n
−

(0). (4.4)

For each point z ∈ X1, take a lift z̃ ∈ H1, and let

rz :=
#
(
StabΓ(z̃)

)

#
(
StabΓ̂1

(z̃)
) .

We set the following “Plücker-type” number:

µz(X1) :=
q − 1

#(StabΓ(z̃))
·
(
rz(rz − 1)

)
.

Definition 4.8. The self-intersection number of Z1 is then defined to be:

Z1 · Z1 := [Γ̂1 : Γ1]
2 ·
(
−vol(X1) +

∑

z∈X1

µz(X1)

)
.

Lemma 4.9. We may express the self-intersection number of Z1 as follows:

Z1 · Z1 = 2 ·
∑

γ∈Γ1\Γ/Γ1

ι(γ ⋆ 1).

Proof. Given γ ∈ Γ, notice that γ ⋆ 1 ∈ k if and only if γ ∈ Γ̂1. As Γ1 is normal
in Γ̂1, one has

2 ·
∑

γ∈Γ1\Γ/Γ1

ι(γ ⋆ 1) = 2 ·
∑

γ1∈Γ̂1/Γ1

ι(γ ⋆ 1) + 2 ·
∑

γ∈Γ1\Γ/Γ1
γ/∈Γ̂1

ι(γ ⋆ 1)

= [Γ̂1 : Γ1] ·
(
2Hd

+
n
+,d−

n
−

(0)
)
+ 2 ·

∑

γ∈Γ1\Γ/Γ1
γ/∈Γ̂1

ι(γ ⋆ 1).

Because of (4.3), the result holds if we show

[Γ̂1 : Γ1]
2 ·
∑

z∈X1

µz(X1) = 2 ·
∑

γ∈Γ1\Γ/Γ1
γ/∈Γ̂1

ι(γ ⋆ 1). (4.5)

Take m ∈ A+ with n2 | m. Adapting the argument in the proof of Proposi-
tion 4.4 (which we omit the details), we get

[Γ̂1 : Γ1]
2 ·
∑

z∈X1

µz(X1) =
q − 1

[Γ1 : Γ1(m)]2
·

∑

γ∈Γ/ΓF (m)

γ/∈Γ̂1

Z̃1 · γZ̃1.
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From Proposition 4.5 and Lemma 4.6, we have
∑

γ∈Γ/ΓF (m)

γ/∈Γ̂1

Z̃1 · γZ̃1 =
∑

γ∈Γ1(m)\Γ/Γ1(m)

γ/∈Γ̂1

2 · ι̃(γ ⋆ 1)

=
[Γ1 : Γ1(m)]2

q − 1
·

∑

γ∈Γ1\Γ/Γ1
γ/∈Γ̂1

q − 1

#(Γ1 ∩ Γγ⋆1)
· 2 · ι̃(γ ⋆ 1)

=
[Γ1 : Γ1(m)]2

q − 1
· 2 ·

∑

γ∈Γ1\Γ/Γ1
γ/∈Γ̂1

ι(γ ⋆ 1).

Therefore the equality (4.5) follows and the proof is complete.

For non-zero a ∈ A, consider the following Hirzebruch-Zagier-type divisor

Z(a) :=
∑

Γ\Λa

Zx.

From (3.16), Theorem 3.14, Theorem 4.7, Lemma 4.9, Theorem 3.9 and (4.4),
we finally arrive at:

Corollary 4.10. Given non-zero a ∈ A and y ∈ k×∞ with deg a ≤ 2 ord∞(y)+
2, we have

vol(OB×
1,A
/OA)

−1 · I∗(a, y;ϕΛ) =
|y|2∞
2
· (Z1 · Z(a)) ,

and

vol(OB×
1,A
/OA)

−1 · I∗(0, y;ϕΛ) = −
|y|2∞
2
· vol(Z1).

Remark 4.11. From Theorem 3.18, we may express the Fourier expansion of
the Drinfeld-type automorphic form ϑΛ defined in (3.17) in terms of the corre-
sponding intersection numbers: for (x, y) ∈ k×∞ × k∞,

ϑΛ

(
y x
0 1

)
= |y|∞ ·


−vol(Z1) +

∑

06=a∈A
deg a+2≤ord∞(y)

(
Z1 · Z(a)

)
· ψ∞(ax)


 .

Therefore in our case, ϑΛ plays the same role as Gekeler’s improper Eisen-
stein series in the Kronecker-Hurwitz class number relation over function fields
discussed in Remark 1.1.

A Local optimal embeddings

Here we recall the needed properties of local optimal embeddings from a
quadratic order into a hereditary order of a quaternion algebra over a local
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field. Further details are referred to [35, Chapter 2, Section 3] and [3, Chap-
ter 5, Section 1.1].

Let (L, | · |L) be a non-archimedean local field, and OL be the ring of integers
in L. Given a separable quadratic algebra E over L and a quaternion algebra D
over L together with a fixed embedding ι : E →֒ D, it is known that every
embedding from E into D must be conjugates of ι by elements of D×. Let O
be an OL-order in E and OD a maximal OL-order in D. Put

E(O, OD) := {b ∈ D× | b−1Eb ∩OD = b−1Ob},

where we identify E as a subalgebra of D via ι. For α ∈ E, b ∈ E(O, OD), and
κ ∈ O×

D , one has
α · b · κ ∈ E(O, OD).

Moreover, the following result holds (cf. [35, Chapter 2, Theorem 3.1 and 3.2]):

Lemma A.1. (1) Let OE be the maximal OL-order in E. Then

e(OE , OD) := #
(
E×\E(OE , OD)/O

×
D

)

=





2, if D is division and E/L is inert;

0, if D is division and E/L is split;

1, otherwise.

(2) If O ( OE, then

e(O, OD) := #
(
E×\E(O, OD)/O

×
D

)
=

{
0, if D is division;

1, otherwise.

Suppose D is not division (i.e. D ∼= Mat2(L)). Let O′
D be a hereditary OL-order

in OD. Put

E(O, O′
D) := {b ∈ D× | b−1Eb ∩O′

D = b−1Ob}.

Then for α ∈ E, b ∈ E(O, O′
D), and κ′ ∈ (O′

D)
×, one has

α · b · κ′ ∈ E(O, O′
D).

Moreover (cf. [35, Chapter 2, Theorem 3.2]):

Lemma A.2. (1)

e(OE , O
′
D) := #(E×\E(OE , O

′
D)/(O

′
D)

×) =





0, if E/L is inert;

1, if E/L is ramified;

2, if E/L is split.

(2) If O ( OE, then

e(O, O′
D) := #(E×\E(O, O′

D)/(O
′
D)

×) = 2.
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B Special local integrals

Given c ∈ Z≥0, put O(c) := OL + πc
LOE , where πL ∈ OL is a uniformizer in L.

For x ∈ E\L, we can find a unique cx ∈ Z≥0 if x ∈ OE so that OL[x] = O(cx);
and put cx := −1 if x /∈ OE . Let Do be the space of pure quaternions in D, i.e.

Do := {b ∈ D | Tr(b) = 0}.

Put Oo
D := OD ∩ Do and O′,o

D := O′
D ∩Do. We observe that:

Lemma B.1. Given x ∈ E\L with Tr(x) = 0, one has

1Oo
D
(b−1xb) =

cx∑

ℓ=0

1E(O(ℓ),OD)(b),

Moreover, if D is not division, then

1O′,o
D
(b−1xb) =

cx∑

ℓ=0

1E(O(ℓ),O′
D)(b).

Proof. Notice that E (O(ℓ),OD) and E (O(ℓ′),OD) are disjoint if ℓ 6= ℓ′. Thus
for b ∈ D× one has

cx∑

ℓ=0

1E(O(ℓ),OD)(b) = 0 or 1.

Suppose the value is 1, i.e. b ∈ E(O(ℓ0),OD) for some 0 ≤ ℓ0 ≤ cx. Then

x ∈ O[x] = O(cx) ⊂ O(ℓ0) ⊂ E ∩ bODb
−1 ⊂ bODb

−1.

Since Tr(x) = 0, we get b−1xb ∈ O◦
D, i.e. 1O◦

D
(b−1xb) = 1.

Conversely, let b ∈ D× with 1O◦
D
(b−1xb) = 1. Then x ∈ bO◦

Db
−1, which implies

O(cx) ⊂ E ∩ bODb
−1. Thus there exists ℓ0 with 0 ≤ ℓ0 ≤ cx such that

E ∩ bODb
−1 = O(ℓ0).

which means that b ∈ E(O(ℓ0),OD). Therefore

cx∑

ℓ=0

1E(O(ℓ),OD)(b) = 1E(O(ℓ0),OD)(b) = 1.

Suppose Haar measures of D× and E× are chosen, respectively. The above
lemma leads to:
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Corollary B.2. For x ∈ E\L with Tr(x) = 0, one has

∫

E×\D×

1Oo
D
(b−1xb) d×b =

vol(O×
D)

vol(O×
E )
·

cx∑

ℓ=0

#

(
O×

E

O(ℓ)×
)
· e(O(ℓ), OD).

Suppose D is not division, then

∫

E×\D×

1O′,o
D
(b−1xb) d×b =

vol(O′×
D )

vol(O×
E )
·

cx∑

ℓ=0

#

(
O×

E

O(ℓ)×
)
· e(O(ℓ), O′

D).

Proof. Given 0 ≤ ℓ ≤ cx, one has

vol(E×\E(O(ℓ),OD)) =
∑

b∈E×\E(O(ℓ),OD)/O×
D

vol(O×
D)

vol(E× ∩ bO×
Db

−1)

=
vol(O×

D)

vol
(
O×

E

) ·#
( O×

E

O(ℓ)×
)
· e (O(ℓ),OD) .

Thus

∫

E×\D×

1O◦
D
(b−1xb) d×b =

cx∑

ℓ=0

∫

E×\D×

1E(O(ℓ),OD)(b) d
×b

=
vol(O×

D)

vol(O×
E )
·

cx∑

ℓ=0

#

( O×
E

O(ℓ)×
)
· e (O(ℓ),OD) .

Let qL be the cardinality of the residue field of L. Since

vol(O′×
D ) =

1

qL + 1
· vol(O×

D),

combining Lemma A.1, Lemma A.2, and Corollary B.2 we obtain:

Corollary B.3. Suppose D is not division. Then for x ∈ OE\OL with
Tr(x) = 0, one has

∫

E×\D×

(
1Oo

D
(b−1xb)− qL + 1

2
· 1O′,o

D
(b−1xb)

)
d×b

=





1

e(E/L)
· vol(O×

D)

vol(O×
E )
, if E is a field;

0, otherwise.

Here e(E/L) is the ramification index of E/L.
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