DOCUMENTA MATH. 1321

ON CrLASS NUMBER RELATIONS AND INTERSECTIONS

OVER FuNcCTION FIELDS
JIA-WEI GUuo AND Fu-TsuN WEI

Received: July 28, 2021
Revised: March 4, 2022

Communicated by Takeshi Saito

ABSTRACT. The aim of this paper is to study class number relations
over function fields and the intersections of Hirzebruch-Zagier type
divisors on the Drinfeld-Stuhler modular surfaces. The main bridge
is a particular “harmonic” theta series with nebentypus. Using the
strong approximation theorem, the Fourier coefficients of this series
are expressed in two ways; one comes from modified Hurwitz class
numbers and another gives the intersection numbers in question.
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1 INTRODUCTION

1.1 CLASSICAL STORY

Given a negative integer d with d =0 or 1 mod 4, let h(d) be the proper ideal
class number of the imaginary quadratic order Oy with discriminant d. Put
w(d) := #(0])/2. The classical Kronecker-Hurwitz class number relation says
that for a non-square n € N,

Z 3 M = S max(m,n/m).  (1.1)

t2<4n d2|(t2 —4n) m|n

One can derive the above identity via “modular polynomial”, i.e. the defining
equation of the graph of the Hecke correspondence T}, n € N, on the modular
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curve X of full level (cf. [14]). In particular, the quantity in (1.1) is equal to
the “finite part” of the intersection number of the divisors T and T, on the
surface X x X. Taking the “infinite part” (from cuspidal intersections) into
account, the total intersection number of T7 and 7T, becomes

T - T, = 20(n),

where o(n) := -, m is precisely the n-th Fourier coefficient of the weight-
two Eisenstein series (normalized so that the first Fourier coefficient equals
to 1). This provides a very concrete example in the following connections:

{Class numbers} {Intersections}

\/

{Fourier coefficients}

In the celebrated work of Hirzebruch and Zagier [17], the whole theory on the
ground of the Hilbert modular surfaces associated with real quadratic fields
is well-established. More precisely, they express the intersections of certain
special divisors in terms of Hurwitz class numbers, and show that the generat-
ing function associated with these intersection numbers is actually a particular
Eisenstein series with nebentypus. The interpretations for the Fourier coeffi-
cients of Eisenstein series, which have been generalized to the “Kudla-Millson”
theta integrals (cf. [22] and [24]) on the quotients of symmetric spaces for or-
thogonal and unitary groups, are viewed as geometric Siegel- Weil formula and
have various applications (cf. [20], [6], [23], [21], and [9]). Moreover, connections
with the class numbers make it possible to compute explicitly the intersections
in question (cf. [17] and [9]).

The purpose of this paper is to attempt an exploration of this phenomenon
in the function field setting, and to derive a Hirzebruch-Zagier style geometric
interpretation for the class number relations in the world of positive character-
istic.

1.2 DRINFELD-STUHLER MODULAR CURVES

Let A =TF,[f], the polynomial ring with one variable 6 over a finite field F, with
q elements, and let k& be the field of fractions of A. Let ko, be the completion
of k with respect to the “degree valuation” (cf. Section 2.1), and denote by Cy
the completion of a chosen algebraic closure of ks,. The Drinfeld half plane is
$) = Co — koo, equipped with the Mdbius left action of GLg (ko). Let B be
a quaternion algebra over k which is split at co (i.e. B ®p koo = Mata(koo)),
and Op be an Eichler A-order in B of type (n*,n~) (cf. Section 2.3). Then
the embedding B* < GLj(ks) induces an action of I'(n*,n™) := Of on $.
The quotient space
X(nt,n7) = T(n",n7)\H
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is called the Drinfeld-Stuhler modular curve for T(n™,n~). When B = Maty(k),
the group I'(n™,n~) coincides (up to conjugations) with the congruence sub-
group

To(nt) = {(‘c‘ Z) € GLy(A)

and the compactification of X (n™,n™) is the so-called Drinfeld modular curve
for To(n™).

CEOmOdﬂ+},

Remark 1.1. As in the classical case, the study of Drinfeld modular polynomi-
als in [1], [2], and [19] give an analogue of the Kronecker-Hurwitz class number
relation for “imaginary” quadratic A-orders (cf. [41] and [36]). Also, the con-
nection with the intersections of the Hecke correspondence on the Drinfeld
modular curves is derived in [41] when ¢ is odd. Moverover, these intersection
numbers appear in the Fourier expansion of the “improper” Eisenstein series on
GL2(kso) which is introduced by Gekeler (cf. [10] and [11]). Thus, a parallel
story for the Kronecker-Hurwitz case over rational function fields is developed.
We may also expect to see these connections when the base field k is an arbi-
trary global function field.

1.3 HIRZEBRUCH-ZAGIER-TYPE DIVISORS

From now on, we always assume that ¢ is ODD. Fix a monic square-free 0 € A
with even degree. Then the quadratic field F' := k(\/0) is real over k, (i.e. the
infinite place of k is split in F'). The embedding F — F Q koo = koo X koo
induces

CLy(F) < GLa(kso) X GLa(koo),

providing an action of GLy(F) on $iF := H X 9. Let Op be the integral closure
of Ain F. Given a monic n € A, put

Lo, p(n) := {<Z Z) € GLy(OF) | ad — bc € IFqX and ¢ = 0 mod n} .

The Drinfeld-Stuhler modular surface for T p(n) is
So,r(n) := o r(n)\Hr,

which is a coarse moduli scheme for the so-called Frobenius-Hecke sheaves (with
additional “level-n structure”) introduced by Stuhler in [34].
We are interested in the intersections between the “Hirzebruch-Zagier-type di-

b) € Matq(F),

visors” on Sy r(n) which are defined as follows. For z = (Z d

__(d =D ,fd Y
T = (—c a> and 1z = <c’ d’)’
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where for every o € F, o is the conjugate of o under the action of the non-
trivial element in Gal(F/k). Consider the involution * on Maty(F) defined
by

« (0 1/m\_, (0 1\ [ d -l _fa b
¥ = (1 0 )x (n 0) = (nb’ Y , Yr= e d € Mato(F).
Let A be the following A-lattice of rank 4:
A = {z €Maty(Op) | 2" =z}

- {(zﬂ’ 5)

We have a left action of ' :=I'g p(n) on A by

a,de A, 560F}.

yxx=yry* - (dety)™t, €Ty r(n)and x € A.
For each x in A with detx # 0, let
B, :={b € Maty(F) | 2b* = bz} and T, :=BSNT.

From Lemma 3.11, we know that B, is an indefinite quaternion algebra over k
(i.e. unramified at the infinite place of k), whence the quotient C, := I';\$
becomes the Drinfeld-Stuhler modular curve for I';,. Put

0 1)\._
Sm.—(n O)x.

The embedding from § into $r defined by (z — (z, Syz)) gives rise to a (rigid
analytic) morphism f, : C; — So,r(n), and we set

Zac = fz,*(cx)a

the push-forward divisor of f, on Sp (n). For non-zero a € A, the Hirzebruch-
Zagier divisor of discriminant a is:

Z(a) = Z Z,,  where Ay :={z € A | det(x) = a}.
z€T\Ag

Notice that by Lemma 3.11 we may identify B; with the quaternion algebra

o,n
(’T) =k+4+ ki+ kj+kij with i? =0, j2:n, and ji = —ij.

In particular, suppose that n is square-free and coprime to 0. Write n = nt.n~
and 0 = 0% - 97, where for each prime factor p of n* (resp. 9%) we have the
Legendre quadratic symbol (%) = +1 (resp. (%) = +1). Then B is ramified
precisely at the prime factors of 9 n~ and Op, := ByNMat2(Op) is an Eichler
A-order of type (07n™,07n7) in B;. Hence C; is actually the Drinfeld-Stuhler
modular curve for ['(d+tn™, 97 n~). We pick Z; as our “base” divisor on Sy r(n),
and determine the intersection number of Z; and Z(a) for non-zero a € A in
the following theorem:
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THEOREM 1.2. Given a square-free n € Ay coprime to 0, suppose that
deg(d™n~) > 0. The intersection number of Z, and Z(a) for non-zero a € A
is equal to

2 Z(a)=2- Y H"V (0(t? - 4a)).

teA
t2 —4a=<0

Here for d € A, we write d < 0 if d = 0 or k(\/d) is an “imaginary”
quadratic extension of k (i.e. the infinite place of k does not split in k(\/d)),
and HY'®' 2 (d) is the modified Hurwitz class number in Definition 2.4 and
Remark 2.6.

We point out that when a € A is a square, the intersection number 2 - Z(a)
includes the self-intersection Z; - Z1, which is defined to be an analogue of the
“Euler characteristic” of Z; in Definition 4.8.

To establish the equality in Theorem 1.2, the main bridge is the theta integral
I(-; pa) associated with a particular chosen Schwartz function pa, see (3.5) and
(3.7) in Section 3.1. Our strategy is briefly sketched as follows. Notice that
using adelic language, we may express very naturally the a-th Fourier coefficient
of I(-; ) for a given non-zero a € A in terms of the modified Hurwitz class
numbers (cf. Theorem 3.9). On the other hand, the strong approximation
theorem (for the indefinite quaternion algebra ramified precisely at the prime
factors of n™) leads to an alternative expression of the a-th Fourier coefficient of
I(:;on) (cf. Theorem 3.14), which enables us to connect the Fourier coefficient
with the intersection number Z; - Z(a) (Theorem 4.7 and Corollary 4.10). This
completes the proof.

The theta integral I(-; ) has nice invariant property and transformation law
(cf. Proposition 3.7). In particular, the crucial choice of the “infinite compo-
nent” pa o in (3.7) is a key ingredient in bridging two sides of the equality in
Theorem 1.2. More precisely, as the place oo of k is non-archimedean, we apply
the Eichler’s theory of local optimal embeddings in Appendix A and B to ensure
that our choice of pa  kills all the contributions of the K, in Lemma 3.2 when
K, is a real quadratic field (cf. the equation (3.12)). This part is completely
different from the classical case. Meanwhile, the choice of ¢4 o provides as
well the “harmonicity” of I(-;pa) (cf. Lemma 3.16). This allows us to extend
I(-;pa) to a “Drinfeld-type” automorphic form on GL3(k) (an analogue of
weight-2 modular forms over function fields, see Remark 3.15 and [12]) with

nebentypus character (3) for Fél)(an) :=T(dn)NSLy(A), cf. Proposition 3.17.

In other words, we have the following theorem (cf. Theorem 3.18):

THEOREM 1.3. Under the assumptions in Theorem 1.2, there exists a Drinfeld-
type automorphic form 9 on GLa(ks) with nebentypus character (5) for the

congruence subgroup Fél)(an) whose Fourier expansion is given as follows: for

DOCUMENTA MATHEMATICA 27 (2022) 1321-1368



1326 J.-W. Guo, F.-T. WEI

(x,y) € koo X kX,

X
I <35 1)Iy|oo~ —vlZ)+ > (81 Z(@)de(az)
deg a+2 < ardoo (1)

Here:
o | |oo is the absolute value on ko, normalized so that |0~ = ¢,

o Y : koo — C* is a fized additive character on ke defined in Sec-
tion 2.1.1,

o Vvol(Zy) := —2H* """ 27" (0) (cf. Remark 2.6).
Remark 1.4.

(1) The theory of the geometric interpretation of the Fourier coefficients of
automorphic forms as the corresponding intersection numbers are devel-
oped quite general over number fields (cf. [24] and [9]). One may expect a
similar phenomenon occurs in the positive characteristic world, however,
there are many technical issues needed to be carried out. Since this work
is the first attempt to study the connection between class number rela-
tions and intersection numbers via this approach over the function field
side, we include all the details for the sake of completeness.

(2) The technical assumption “deg(d n~) > 0” in Theorem 1.2 implies that
B is a division algebra, whence the Drinfeld-Stuhler modular curve C;
has no “cusps”. Therefore there are no contributions of the “cuspidal inter-
sections” to Z; - Z(a) in Theorem 1.2 and Theorem 1.3. When 9 n~ =1,
this argument would need to be adjusted by “regularizing the theta in-
tegral I(-;pa)” as in [9], and the cuspidal intersections for Z; - Z(a) in
a suitable “compactification of the surface Sp r(n)” should be taken into
account. However, due to a lack of studies in the literature for these two
technical issues in the function field context, we make this assumption in
Theorem 1.2 first. The general case will be explored in future work.

1.4 CONTENT

The contents of this paper go as follows:

o (Preliminaries.) In Section 2.1, we set up basic notations used throughout
this paper. The modified Hurwitz class number and the needed properties
are reviewed in Section 2.2. The Tamagawa measures on the groups ap-
pearing in this paper are given in Section 2.1.1, 2.2, and 2.3, respectively.
The definition of the Weil representation and theta series are recalled in
Section 2.4.
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o (Fourier coefficients of theta series.) In Section 3, we take a particular
Schwatz function ¢, associated with the A-lattice A, and express the
Fourier coefficients of the theta integral I(-; ¢ ) explicitly in terms of the
modified Hurwitz class numbers in Theorem 3.9. In Section 3.4, we show
the harmonicity of I(-; ) and extend it to a Drinfeld-type automorphic
form 95 on GLa(koo) in Proposition 3.17.

o (Class number relations and intersections.) In Section 4, we first intro-
duce the Hirzebruch-Zagier-type divisors on the Drinfeld-Stuhler mod-
ular surfaces. Pulling back these divisors in the “fine coverings” of the
surfaces, the projection formula in Proposition 4.4 enables us to interpret
the intersection number Z; - Z, as a a “double-coset summation” in The-
orem 4.7 and Lemma 4.9. Together with the alternative expression of the
Fourier coefficients of I(-;¢,) in Theorem 3.14, we prove Theorem 1.2
and Theorem 1.3 in the end.

o (Appendix: local optimal embeddings.) The needed results in Eichler’s
theory of local optimal embeddings are recalled in Appendix A, and we
express the technical local integrals used in Theorem 3.9 by the number
of local optimal embeddings in Appendix B.
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2 PRELIMINARIES

2.1 BASIC SETTINGS

Let F; be a finite field with g elements. Throughout this paper, we always
assume ¢ to be opD. Let A :=F,[f], the polynomial ring with one variable ¢
over Fg, and k := F,(6), the field of fractions of A. Let oo be the infinite place
of k, i.e. the place corresponding to the “degree” valuation ord., defined by

orde (%) .= degh — dega, Va,be A with b 0.
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The associated absolute value on k is normalized by |a|s = ¢~ °"d=(®) for
every o € k. Let koo be the completion of & with respect to |+ |, which can
be identified with the Laurent series field F,(6~1)). Put w := 671, a fixed
uniformizer at oo, and Ou := F,[w], the valuation ring in ku.

Let A be the set of monic polynomials in A. By abuse of notations, we identify
A, with the set of non-zero ideals of A. In particular, for a € A, we put

lall == #(A/a) (= [a]eo).
Given a non-zero prime ideal p of A, the normalized absolute value associated
with p is:
jady = lIpl| =@, Ya € k.
Here ord, () is the order of a at p for every o € k. The completion of k with
respect to | - |, is denoted by ky, and put O, the valuation ring in k,. We also
refer the non-zero prime ideals of A to the finite places of k.

Let kp := H; ky, the adele ring of k. The maximal compact subring of ky is
denoted by O,. The adelic norm |- |5 on the idele group k) is:

|(0‘v>v|A = H |0‘v|va v(av)v € kjg'

2.1.1 ADDITIVE CHARACTER AND TAMAGAWA MEASURE

Let p be the characteristic of k and 9 : koo — C* be the additive character
defined by: for ), a;@" € koo,

Yoo (Z w) = exp (P Tracer, s, ().

The conductor of 14, is @20 and 1o, (A) = 1. Since

ka =k + <koo xH0p> and kN <Hop> = A,
p p

we may extend 1o, uniquely to an additive character ¢ : ky — C* so that
P(a) =1forall a € k+ ((@*0Ox) x [, Op) and wykw = thoo. Put by = zpykp
for each finite place p of k, which is a non-trivial additive character on k, with
trivial conductor.

For each place v of k, let dx, be the “self-dual” Haar measure on k,, with respect
to ¥y, i.e.

vol(Oy,dx,) =1 for each finite place p of k&, and vol(Ou,dzrs) = g.
Define the Haar measure d*x, on k. by

q AT oo

q—1 . |$00|oo-

SN I

P el 1l

The Tamagawa measure on k; (with respect to ) is d*x =[], d* z,.

d* Too =
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2.2 IMAGINARY QUADRATIC FIELDS AND CLASS NUMBERS

A quadratic field extension K/k is called imaginary if the infinite place of k
does not split in K. Let Ky := K ®g ks and Tg/p := Ky — ks be the trace
map induced by the field trace map. Then the Tamagawa measure on K
(with respect to the additive character ¢ o Tf;) and the one on k; induce a
Haar measure d” o on the quotient group K /k; . More precisely, let Ok (resp.
Ok..) be the integral closure of A (resp. O ) in K (resp. Koo := K ®p ko). For
each non-zero prime ideal p of A, put K; := K ®j, ky and O, := Og ®a Oy.
We normalize the Haar measure d* ¢, on K /k) for each place of v by

vol(O5¢, /O5) = [|pl| /UM and vol(O_/OX) = /=B (2.1)

Here e,(K/k) is the ramification index of the place v of k in K. Then d*a =
IL, d* .

PROPOSITION 2.1. Let K be an imaginary quadratic field over k, and Ok be
the integral closure of A in K. Let A(Og [A) be the discriminant ideal of Ok
over A, h(Ok) be the class number of Ok, and put w(Ok ) = #(0x)/(qg—1).
We have

VIR /1) = e (/) [T vol 0% /O7)
_ h(OK) 1/eco —1/2
= B el /) I AOx /A,

Proof. As A is a principal ideal domain, one gets
kio=k - (k3 < [T 05).
p
Thus the exact sequence

) KOXOXHpOIX(p KX~(K§O><HpOIX<p)

1— — —
Ff k% % T1, OF K- (k% < T1, 05)

implies

Vol( KX\ K Jk2) vol(KX\Kg J(kZ x Ho;))
p

| AENK S <L 0F,) 1(&; <TI, o;(p)
#(05/F;) <1, 05 )

The result then follows from

#(ENE /(KX <1, 0%,))  h(Ok)
#(Ox /FF) w(Ok)
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and

X
vol (KOXOX—I_L’OKP>

vol(KZ kX)) - | | vol(OF% /OX)
kgo % Hp O;< 1;[ Ky P

= exc(K/k) - ¢!/ e=EM A0k /4|71,

The last equality follows from (2.1) and

VOl(KZ/kZ) = eso(K/k) - vol(Of . /0%), A(Ok/A) = I I b.
prime p<JA
ramified in K

O

Remark 2.2. Let sk : k*\ky — {1} be the quadratic Hecke character associ-
ated with K/k, and let L(s,<x) be the L-function of ¢x. It is known that (cf.
[4, Section 2.2], see also [31, Theorem 5.9])

h(Ok)

L(1,¢x) = w q- (q(l—ex(K/k))/Q . HA(OK/A)||_1/2) . W.

#(Fq)
The above proposition says in particular that
vOl(K”\K S Jk;) =2 L(1,5k).
Recall the following fact (cf. [28, section I (12.12) Theorem)]):

LEMMA 2.3. For each A-order O in an imaginary quadratic extension K of k,
let h(O) be the proper ideal class number of O and w(O) := #(0*)/(q¢ — 1).

Then o
HO) _ MOw) 11, (O
wo) ~ wow) 11 < 0; ) |

Here Op := O ®4 Ay for every non-zero prime ideal p of A.

For d € A, we write d < 0 if the quadratic extension k(v/d) is imaginary
over k. Given d € A with d < 0, denote by Og := A[V/d], h(d) := h(O4), and
w(d) == w(Oy).

DEFINITION 2.4. For square-free n™,n~ € Ay with gcd(n™,n~) = 1, recall the
following modified Hurwitz class number

s 3 e LOAS ) IL0-{57)

deay pln-
c2|d

Here
1, if either p split in k(v/d) or p? | d;

d
{E} =< —1, if p is inert in k(+v/d) and ord,(d) = 0;
0, if ord,(d) = 1.
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Write

d=do-[]p*,
p

where dy € A is square-free (and ¢, = 0 for almost all irreducible p € A, ). For
each irreducible p € A, and integer £, with 0 < /¢, < ¢, put

20
H[{do’; p}, if p | nE;

1

n +

ep " (L) = (2.2)

otherwise.

3

We provide the following expression for the modified Hurwitz class numbers in
later use:

PROPOSITION 2.5. Given d € A with d <0, write d = do [, p2¢. Then

@ = T IS #( do >~es**“<ep>

p |0<e,<cy dop“p p

Proof. For £ = ({y), € [[, Z with 0 < £, < cp, put

() :=do [ [ .
P

Therefore

e - 3 M (e {42) (- (2]
- 2 () e
T2 e (a) e

Remark 2.6. For convention, we put

Y (0) = _qil TT Al +0 TT Atell = 1)

plnt pln~

This number is related to a volume quantity with respect to the “Tamagawa
measure” on quaternion algebras in the next subsection.
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2.3 TAMAGAWA MEASURE ON QUATERNION ALGEBRAS

Let B be an indefinite quaternion algebra over k (i.e. By := B ® koo is not
division). Put Ba := B ®y ka. Let Tr : By — ka be the reduced trace map.
Choose a Haar measure db = HU db, on By which is self-dual with respect to
the additive character ¥ o Tr. More precisely, for each non-zero prime ideal p
of A, let R, be a maximal Op-order in By, := B ®j, ky. Then

1/|lpll, if B is ramified at p;

vol(Ry,db,) = { )

, otherwise.

Let Op__ be a maximal Ou.-order in By,. Then vol(Op_, dbs) = ¢*.

Let Nr: B — k. be the reduced norm map. For each non-zero prime ideal p
of A, we take the Haar measure d*b, on By defined by

Il dby,
d*by = . )
Pl =1 [Nx(bp)lp

In particular, the following lemma holds:

LEMMA 2.7.

vol(R . d*by) = (1 1 ) . {1/(|p| —1), if B is ramified at p;

IRFEVARE!

, otherwise.

Proof. Suppose p is ramified in B, we may take 7, € R, so that 7, is a maximal
two-sided ideal of Ry, and R, /7, R, is a quadratic field extension of F,,. Hence

vol(Ry dby) = ([Pl — 1) -vol(1 + 7y Ry, d*by)

el _
= (||p||2 - 1) : HPH 1 : VOl(ﬂ-PRp’dbP)

p _
R el

1 1
=(1-—). ,
< |Ip||2) [[pll =1

When p is unramified in B, we may identify B, with Mats(k,) and R, with
Mat2(Oy). In particular, one has

R;/(l +pR,) = GLy(Fy).
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Therefore
vol(Ry, d”by) = ([Ipll* = D)(I[plI> = [[p]l) - vol(1 + pRy, d*by)

= (el = (el — 1ol - 2 oi(pr,, dby)

Ipll =1
_ 2 2 el e
= (Ipll* =D UlplI” = [I»l) T el
1

=1-—.

[l

O
Similarly, put
- o

" g1 |Nr(boo)loo
Then following the same argument in the above lemma, we get

vol(OF_,d*bs) = ¢* — ¢°.

The Tamagawa measure d*b on B[ is the Haar measure satisfying that for
every compact open subgroup K =[], K, of B}, one has

vol(KC, d*b) = [ [ vol(KC,, d*by).

Let n~ € A, be the product of the primes at which B is ramified and n* € A
be a square-free polynomial coprime to n~. Let Op be an Eichler A-order of
type (nT,n7) in B, i.e. Op is an A-order in B satisfying that for each non-zero
prime p of A, Op, := Op ®40), is the unique maximal Op-order in By if p [ n~;
and

b
Op, = {<CCL d> € Mats(0,)

Let Op, :=[],OB,. Then:

¢ =0 mod pord"(“+)} ifpfn.

LEMMA 2.8. The Tamagawa measures on By and k; induces a Haar measure
on B /k} so that

V01(O§A/Ol§) _ (¢q—1)(¢* - 1) _ g—1

Lot (Pl + D TTppe-(loll = 1)~ H 0 (0)°

Proof. For each non-zero prime ideal p of A, let R, be a maximal Oy-order
containing Op, . As n™T is square-free, we have

[pll+1, ifp|n®;
1, otherwise.

#(Ry /O0p,) = {
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Thus
(bl = 1), itp |-
vol(o]ép):(l—w)- V(I +1), ifp | nt:

1, otherwise.

Notice that

1 \ ! 1
1-——) =—" Re(s)>1.
H( |p|s) =g el

p

Therefore we obtain

and

vol(Of )

vol(05,/00) = o5y 11

- S ) 1 )

P pnt
(¢—1)(*—1)
[T (el + D I - (el = 1)
q—1
_Hnﬂn* (0)

vol(OF )
vol(Oy)

Q

The last equality follows directly from the definition of H nfn” (0) in Re-
mark 2.6. 0

Remark 2.9. The Haar measure on B} /k; induced by the Tamagawa measures
on B} and on k} satisfies (cf. [40, Theorem 3.3.1])

vol(B*\B} k) = 2.

2.4  WEIL REPRESENTATION AND THETA SERIES

Let (V,Qv) be a non-degenerat quadratic space over k, and suppose that n :=
dimg (V) is even. For each place v of k, let V(k,) :=V &y k, and S(V(k,)) be
the space of Schwartz function on V (k).

DEFINITION 2.10. The Weil representation wy,, of SLa(k,) x O(V)(k,) on
S(V(ky)), where O(V) is the orthogonal group of (V,Qv), is given by (cf.
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[13, Theorem 2.22|): for ¢ € S(V (k,)),

(1) wyp(h)d(x) = d(h™ L), heO(V)(ky);

® o g ﬁ‘)qs — Q@) - @), € ks
® o ) 2) = lauld - xvulan) - oana),  ay €k
@ () é) £ (V) - B()

Here:

o v = ( (=1)*2det V), is the quadratic character associated with V,
where (-, ), is the Hilbert quadratic symbol,

det V := det({zi, x;)1<i j<n) € k™ /(k*)? ()% :={a* | a € k*})

for any basis {1, ...,2,} of V and (-,-)v is the bilinear form on V asso-
ciated with Qv ;

e ¢,(V) is the following Weil index:

V)= /L $o(Qu (2)) dz

where L, is a sufficiently large O,-lattice in V' (k, ), and the Haar measure
dz is self-dual with respect to the pairing

(@, y) = Yo({z,9)v),  Va,y € V(ky);

. qAﬁ(x) is the Fourier transform of ¢ (with respect to the self-dual Haar
measure):

3a) = / () (. 9)v) dy.
V(ks)

The (global) Weil representation of SLa(ks) x O(V)(ka) on the Schwartz space
S(V(ka)), where V(kp) :=V ® ka, is

Wy = QuWy,p-

Remark 2.11. For each place v of k, one has that €, (V)% = xv,(—1). Moreover,
the Weil reciprocity says that (cf. [38, Proposition 5]):

HEU(V) =1
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Given ¢ € S(V(ka)), the theta series associated with  is:
O(g,hs¢) =Y (wv (g, h)p) (), V(g,h) € SLa(ka) x O(V)(ka).  (2.3)
eV

Then for every v € SLa(k), g € SLa(ka) h € O(V)(ka), and ¢ € S(V(ka)) we
have
©(1g; h; ) = O(g, h; 9).

Given a € k and y € k}, let:

-1
0% (a,y; h; ¢) :=/ S} ((g " ) i 90) Y(—au) du,
E\ka Y

where the Haar measure du is normalized so that vol(k\ ks, du) = 1. For u € ka,
one has the following Fourier expansion (cf. [39, p. 19])

-1
© ((g nyl ) & 90) = 0% (a.y;hip)i(au).
ack

We shall focus on particular quadratic spaces with degree 4 coming from quater-
nion algebras, and study the Fourier coefficients of the theta integrals associated
with special Schwartz functions.

3 THETA SERIES WITH NEBENTYPUS

Fix a square-free 0 € A, with degd even. Let F' = k(1/9). For each o € F, the

Galois conjugate of « (over k) is denoted by o/. Given z = (CCL Z) € Mato(F),

__(d =D ,fd Y
T = (—c a> and 1z = <c’ d’)'

Given n € A4, let * be the involution on Maty(F') defined by: for € Maty(F),
« (0 1/n\_, (0 1\ [ d —/n
T (1 0)“’” (n 0><—nb’ d )

Vi={z € Maty(F) |z =2} and Qv :=det|,.

put

Let

Then (V, Qv ) is a quadratic space with degree 4 over k. In concrete terms, we

have 8
a
v={( 3)

In particular, take the following basis of V:

{60) 6 1) (o) (s )b
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one gets det V = 16n%0 = 0 € k> /(k*)2. As dimg (V) = 4, for each place v of k
one has that
Xvo(ay) = (ay,0),  Va, € k.

From now on, we make the following assumptions:
ASSUMPTION 3.1.
(1) The polynomial n € A, is square-free and coprime to 0.

(2) Write n = nt -n~ (resp. 0 = 9+ - 97), where each prime factor p of n
(resp. %) satisfies that the Legendre quadratic symbol (%) = +1 (resp.

(%) = +1). Then deg(d@ n~) > 0.

(67

By = {b € Maty(F) | b* = b} = {<no[;/ ﬂ,>

a,f e F} . (32)

We may identify B; with the quaternion algebra

o,n
(’T) =k 4+ ki+ kj + kij, where i? = 0, j2 =n,ij = —ji,

Vo o 0 1

where i corresponds to < 0 — \/5) and j corresponds to <11 0>' Under

Assumption 3.1, we observe that Bj is the indefinite division quaternion algebra
over k ramified precisely at prime factors of 07 n~.

Consider the following left exact sequence
1— k* — B — SO(V),
where the map from B;* into SO(V) is defined by
b hy = (x> bxb™ '), Vbe By,

Given ¢ € S(V(ka)), we are interested in the following theta integral:
1(g:¢) :=/ O(g, he; ) d*b, Vg € SLa(A). (3-3)
BY\By, [k}

For a € k and y € k;, let (the a-th Fourier coefficient of I)

1
I(a,y; @) = /k\k I <<g uyyfl > ;<p> Y(—au) du.

Vo={z eV |Qv(z)=a}.

Put

‘We obtain that:
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LEMMA 3.2. Fora € k and y € A*, we have

Flaye) = Wi -@os 3 (vouK;\K;,A/kg)

z€B;\Va
/ o(yb~xb) dxb>.
K?,A\\Bi/\

Here (y,0)a =[], (yv,0) when we write y = (y,)» € ky , Ky is the centralizer
of x in By, and K, p = K, Q@ ka.

Proof. By definition, we get

I*(a,y; )

-1
- / / © <<y W, > 7hb;90> d*b| (—au) du
K\ka | JBI\BJ, /K] 0y
-1
B / / Z <wV (y " > 80) (b~ tab) | Y(—au)du| d*b.
By \le,A/kg k\ka 0 y

zeV
For z € V and b € B}, it is straightforward to check that

<wv (g 1;?/__11> w) (b~ ab) = Y(uQv (@) - (4,0)a - |yl - @y - b~ ab).

[ 6(u0u@) - p-an = {é i Qv(e) = a
K\ ks ,

otherwise,

we have that

> (wv (g “yy_f) 90) (b—lwb>> b(—au) du

/k\k‘*\“ (mEV

= 2 @ 0)a- Y oy b"ab),
xeV,

where V, := {z € V| Qv (z) = a}. Therefore,

(Z o(y - b%cb)) d*b.  (3.4)

xeV,

*(a,5:9) = |yl - (4,0) /

BI\B{\/k;
Note that for z € V,, the stablizer of x in B;* under the conjugation is K.
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Hence
Ma,yie) = Wi-@da Y, / oy -b~"ab)d*b
z€B;\Va KB, /K]
= - o (v )
z€B;\Va
/ go(y-b_lzb)dxb>,
K;:(,A\\le,/\
and the proof is complete. O

Remark 3.3. Suppose ¢ is a pure-tensor, i.e. ¢ = ®,,, where @, € S(V(k,)).
Then for x € V, the following equality holds:

/ o(yb~ xb) de—H/ o (yuby Y by ) d* by.
KX \By, KX, \BJ,

We shall choose a particular pure-tensor Schwartz function py = ®,pp. €
S(V (ka)) so that the associated Fourier coefficients can be expressed in terms
of modified Hurwitz class numbers.

3.1 PARTICULAR SCHWARTZ FUNCTION

Recall the definitions of V in (3.1) and B; in (3.2), and note that the trace
map Tr : Mato(F) — F restricting to V gives a k-linear functional on V. For

x eV, put
T
oh = <x_r§:c)> Vo e B,

where BY is the space of of pure quaternions in By, i.e.
BY ={be B|Tr(b) = 0}.
Then the centralizer of x in Bj is

K - k(z%), a quadratic field over k if % # 0;
* By, otherwise.

LEMMA 3.4. For a € k, two elements x1 and x2 in V, belong to the same orbit
of By (under the conjugation action) if and only if Tr(z1) = Tr(z2).

Proof. Tt is clear that Tr(x;) = Tr(z2) if 21 and z2 belong to the same orbit of
Bj*. Conversely, suppose Tr(z1) = Tr(zz2). As

a=Qy(x)=

Ve e Vg,
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the condition Tr(z) = Tr(z,) says that (z%)2 = (23)2 € k. Thus there exists
an isomorphism over k between two subfields k(z?) and k(z}) of By sending
xi to xg Extending this isomorphism to an inner automorphism of Bj, there

exists b € B so that bz 1b~! = z}. Therefore

baybt = b <@ n j—%) pr = Tloa) | f/—% .
m
Take
A == Maty(Op) NV = {(g,n g) a,d€ A, Be OF}
and

OB1 = MatQ(OF) N Bl = { <ﬁ0fﬂ (f/>

Oz,ﬂGOF}.

It is direct to check that Op, is an Eichler A-order in B; of type (07nt,07n™)
and u"lzu € A for every 2 € A and u € Ogl. For each non-zero prime ideal p

of A, put Ay :=A®4 Oy and AE, =03, , ={b€O0p,, | Tr(b) = 0}. Then:
LEMMA 3.5. For z, € V(ky) with Qv (zp) € O, we have that
zy € Ay if and only if Tr(zy) € Op and xi € Ai.

Proof. It is straightforward to check that when z, € Ay, one has Tr(z,) € O,
and J:E, € AE,. Conversely, suppose Tr(z,) € O, and J:E, IS AE,. Write

awd B .
xi: (ﬁ’n —a\/ﬁ) with a € Op and 3 € Opp := Op ®4 Oy,

and t = Tr(zp) € Op. Then

2 (xi,)2 t2  ad + Nrp/p(f)n
Qv(xp)—z——a —Z—f——a € Oy.

Since n is coprime to d, we obtain that Nrp/x(3)/0 € Oy and so 8 = /0 - 3 for
some f3 € Or,p (as 0 is square-free). Therefore

ot m (t)24+a B
x”2+\5<—3n t/2—a>€A”'
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We choose two special Schwartz functions for each place of k as follows. For
each non-zero prime ideal p of A we take

Yap i=1a, € S(V(kp)) and gaf, = lAi € S(BY,)- (3.5)
The above lemma says that for z, € V(k,) with Qv (z,) € O,, we have
oap(zp) =1 ifand only if Tr(z) € O, and gai (zi) =1. (3.6)

As 0 is monic with even degree, the field F' is real over k, i.e. the infinite
place oo of k splits in F. Fix an embedding F < ko, which induces a k.-
algebra isomorphism

Bl,oo = Bl Rk koo = MatQ(koo)

As the natural decomposition

1 Tr(z)  af
V=k®—- B] CMaty(F), x= —
\/5 1 2( ) 2 \/S

induces an isomorphism V (ko) & B1 oo (as quadratic spaces over ko). Take

Lo i=w-Maty(Ox) and LI := {<(CL Z) € Lo

ceE wQOOO} .
Via the identification V(koo) = B1 0o = Mata (koo ), we may view Lo, and L.
as two Oso-lattices in V' (ks ). Choose

+1
PA,00 1= 1Loc — qT . 1[/00 S S(V(koo) (37)

and

qg+1
Sﬁhoo = 1Lgo - T ! ]'L'o’.f’ € S(Bf,oo)v

where LS, = Lo N BY , and L3S = L, N BY . It is straightforward to check
that:

LEMMA 3.6. For z € V(ks), one has that

orm) = oo (1) 5 ().

Our particular Schwartz function ¢ € S(V(ka)) is chosen to be:
on = (®pPap) ® Paco € S(V(ka)).

Let
K (amoo) = {(‘c‘ Z) € SLy(On)

¢ =0 mod Dnoo} , (3.8)
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and let xo : K§(0noo) — {£1} be the quadratic character defined as follows:

for each k = (LCL Z) € K§(dnoo) with d = (dy)y € Oa (and so d, € O for

each prime factor p of 0),
d
v =1(3)
plo

The following transformation law of the corresponding theta integral I(-; o)
holds:

PROPOSITION 3.7. Given v € SLa(k), g € SL2(ka) and r € K{(dnoo), we have
I(vgk;oa) = xo (k) - (g5 ¢a)-

Proof. From the definition of the theta integral in (3.3) and the theta series in
(2.3), we have that for v € SLa(k), g € SLa(ks) and & € K} (onoo),

I(vgr;a) = / O(vgk, hy; )d*b
BI\B;y, /K

/ @(g,hb;wv(n)cp)dxb
BI\B;, [k

=I(g;wv(K)pr).

It suffices to show that wy (k)pa = Xo(k) - pa for every k = (ky), € Kf(dn00).
As @, is a pure-tensor, this can be checked “locally”; i.e. for each place v of k,

write K, = (ZU ZU> and we need
v v

(%V) if v =p|0;

(3.9)
1, otherwise.

Wy (Ke)PAw = QA - {

0
(1 u”), u, € O,. Hence for (av b”) € SLy(0,) with ¢, = 0 mod v,

0 1 Cy  dy
-1
N

one has d, € O, and

ay by\ (1 bydyt\ [(dyt 0 0 1\ (1 —d,le,

¢ dy) \O 1 0 d, -1 0 0 1
Dealing with the case when v | 9noco and v  dnoo separately, the equality (3.9)
then follows from straightforward calculations. O

Given a place v of k, notice that SLo(O,) is generated by (_01 1> and

—_ O

This transformation law implies in particular that for a € k, y € k', o € k*,

e €0), and u € Oy, we have
(Ea O)A I (a_Qaa aye; (PA) =TI (aa Y; (PA) =1I" (aa Y; (PA) : Q/J(GQQU) (310)
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Since A = F,[6)] is a principal ideal domain, one has that
K=k (k% x ] 0)-
poo

From the first equality in (3.10), it suffices to consider I*(a,y; pa) for y € kX.
In this case, the second equality in (3.10) (when varying w in Oy ) implies that

I"(a,y;00) =0 unless a € A with dega + 2 < 2ord(y).
Next, we shall express I*(a, y; pa) in terms of the modified Hurwitz class num-
bers.
3.2 FOURIER COEFFICIENTS OF I(g;¢p)

Let y € k% and a € A with dega + 2 < 2o0rds(y). As 9 is monic with even
degree, one gets that (y,0)oc = 1. By Lemma 3.2 and Remark 3.3, we have
that

I"(a,yson) = ok D [Vol(KzX\KﬁA/’fg) (3.11)
r€B\V,

' (H/ @A,p(bplsz)dxbp> / P00 (Y00 Tboo) dbo |
o JEZ\BT, Koo \B1 o

For x € V,, with Tr(z) =t € A, one has that

Thus

" {k(zh) ~ k(o2 — 4a)), ifx ¢k

By, otherwise.

As the Eichler A-order Op, is of type (07 n™,07n™), applying Eichler’s theory
of local optimal embeddings in Appendix A and B we obtain that:

PROPOSITION 3.8. Given a € A and y € kX with dega + 2 < 2ords(y). Take
x € Ag and put t = Tr(z) € A. We have that (recall Definition 2.4)

VOl(K;N\K )y /Ky ) - <H /Kx

/ DA 00 (Yot Tboo) d* b
Koo \B{ o

- m,pw;lsz)d%p)

HY W0 (12 — 4a)),  if t% — 4a < 0;

0, otherwise.

= vol(OglA/Og) . {
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d:=0- <§a) = (z%)2.

If d =0, then x € k and K, = By. Thus by by Lemma 2.8. we have

Proof. Set

VOl(KN\K X, k) - / oa (b ab) d*b
’ K \BY,
= vol(BI\By,/ky) - ¢a(0)
_ 9174
2

= vol(OF, ,/OF) - H* ™" 7 (o).

Now, suppose d # 0. From (3.6) and Lemma 3.6 one has that

/ @A,p(bglxbp) d*by = / @i(bglxhbp) d”by
Ko \By, K \B1,

and

/ A .00 (Dot Y2boo ) d* boo
Kﬂz(,ao\leoo

b
1 yz <
= 1.0 (yt / o (bml : —-boo> d*be.
(vt) KXa\BX NG

Write d = dj Hp p2¢»  where dj is square-free. Applying Corollary B.2 and B.3,
we get

n 1 g y vol(Og,  /Oy)
Pp(by aby) d by = wlOX TOX)
KZX\BY, Vo (Odmp/Op )
= O;mp
Z# — -e(Odopzzr,’p,OBlwp),
£,=0 dop?“r ,p
and

:
O [ iy )de
s0()0 o oo o0

/K;w\Blﬁw < Vo

1 vol(Og, _/O%)
 eno(Ku/k) vol(OF, /OX)
. {1, if k(v/d)/k is imaginary and orde (y%(t* — 4a)) > 2;

0, otherwise.

DOCUMENTA MATHEMATICA 27 (2022) 1321-1368



CLASS NUMBER RELATIONS AND INTERSECTIONS 1345

Note that that condition k(v/d)/k is imaginary is equivalent to t> — 4a < 0
and forces that 2degt < dega. Since our assumption dega + 2 < 2ordy (y)
guarantees that yt € @Oy and orde (y%(t? — 4a)) > 2, we have

1 vol(Op, _/0%)
eoo(Ko/k) vol(O) _/OX)

/ On 00 (Yb Thoo) d¥boy =
KX oo \BY

1, ift?—4a<0;
0, otherwise.

Finally, recall by Proposition 2.1 that

h(do)
w(do)

Vol(K\K 2 k) = eo(Ko k) -vol(OF_/0%) - T vol(©}; ,/05)
p

and notice that for each non-zero prime ideal p of A we have
o nT o 0"
e(Ogyp2er 5:0B,) = € R ()

by Lemma A.1 and A.2 and (2.2). Hence when t? — 4a < 0, we conclude that

VOl(KNK S /Ky (H/KX Pa.p(by taby) d* bp)

: / @Am(yb;olxboo) d*beo
KX oo\BX

( H Z # (Oxdo, ) .ezﬂﬁ,a’n*(gp)

£p=0 dop™*? ,p
- mmgmﬂawﬂﬁ“ﬂnwa—wa

= Vol(Og1 A/Q@

where the last equality follows from Proposition 2.5. o

Notice that two elements z1,z2 € V, belong to the same B{-orbit if and only
if Tr(x1) = Tr(z2). From the equation (3.11) and Proposition 3.8, we conclude
that:

THEOREM 3.9. Given a € A and y € kX with dega + 2 < 2ord(y), the
following equality holds:

% +n+
I*(a,y;00) = vol(Of5, 4 /OF) [yl - Y H> ™ " (3(t* — 4a)).
teEA
t2 <4a
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3.3 ALTERNATIVE EXPRESSION OF THE FOURIER COEFFICIENTS

For y € kX and a € A with dega + 2 < 2ordw(y), from the equation (3.4) one
may express [*(a,y; pa) as

I*(a,y; 1) = |y|§o~/ <Z (,OA(ybll'b)> d*b.
BT\BEA/kX €V,

Let A := Hp O, and Op, := Op, ®a A. From the strong approximation
theorem one has the following bijection:

OEI\B o/ k% — B{\By A/k OX (3.12)
Let A, := ANV,. The above bijection leads to
I"(a,y;00) = |y|§ovol(0§l/gx) (3.13)

. / <Z gpmoo(yboolxboo)) d*bo
OF \BI o /kX

TEAN,

Let

T = T (n) = {(‘CL Z) € GLo(Op)

ad — bcEIF ,c()modn}.

Define an action * of I on A by:
yxx=yry*-det(y)”, VyeT, xcA.

Then for a non-zero a € A, A, is invariant under the action of I"'. Moreover,
given x € A,, let B
B, :={b € Maty(F) | b* = bz}.

The stablizer of x via the action % in I' coincides with I'y, := B NI' |, whence
A= J] (@/Tu)xz
€T\ Aq

and
/) xe= ] (ogl/(ogl N Fv*r)) X (7% 7).

YEOE \I/Ts
Therefore we may rewrite (3.13) as follows:

LEMMA 3.10. Fora € A and y € kX with dega + 2 < 2ordeo(y),
I*(a,y; pa) = lyl2 - vol(0% /A%)

zz/x

2€M\Aa y€OF \T/T. By

P00 (Yoo (Y% T)boc) d™ b
AT e \BJ o /RS
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To determine the integral inside the above summation, we need the following
lemmas:

LEMMA 3.11. Given a non-zero a € A and x € Ay, B, is a quaternion algebra
over k which is isomorphic to:

0,an
<Ta> = k4 kit kj+kij, wherei? =0, j2 = an, and ji = —ij.

Proof. Write & = ( ‘ilﬁ, dﬁ > where di, do € A and 8 € Op with dids +
- 2
nB8 = a. Take

1
if dy # 0;
H,B/ dla 1 17é
d _
U:= > ﬂ, ifdy=0and ds #0 ;
0 a
—1
p . ifdy=dy=0.
n3 np?

Then
dy, if dy # 0;
oy =UzU* = ((1) 2) << ady, ifd; =0 and dy # 0;
2a, if di =dy =0.

It is straightforward to check that B, = U _1BmUU and

a
By = {<anﬁ’ a’>

B, =B, = (O,k?n).

a,ﬁeF}.

Thus

O

Remark 3.12. Observe that B, = B if and only if x € k™. In this case, a is a
square in A, and ', = Of, .

LEMMA 3.13. Let a € A and y € kX with a # 0 and dega + 2 < 2orde(y).
Take x € V,.

(1) If By = By, then 'y, =T and

1 _
P oo (Y0 Tboc) 4 bow = — 9 VolT I\ B o kL)

/(Flﬂl“z)\le,oo/kéo
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(2) If By # By, then By N By = K,, and

/ DA 00 (Y Thoo ) d*bso
(T1NTe)\BY o /k%
q— . . .
— ,  if K. /k is imaginary;
= vol(Of _/O%) - #(I'1NTy) f B/ gy
’ 0, otherwise.

Proof. When B, = B;, we get x € kX with 2> = a. Thus the condition
dega + 2 < 2ords(y) implies

1 1-—
P00 (Yoo Whoo) = 1 = % =1, Wb € Bl
Hence the assertion (1) holds.

For (2), the integral vanishes unless K, /k is imaginary. In this case, I'y N T, is
a finite subgroup of K, and

/ @Aﬁoo(ybgolzboo)dxboo
(T AT\ BY o /K%
vol(K 7 o /k)

_ , . i Vo bz lzh x
= oo (V)b 7000 ) d” boo
#([T1NTy) /K;OC\BIXOO #% (Vo) )

-1
= vol(0F, _/O%) o=

#(1NTy)
The last equality follows from Corollary B.3. O
The bijection (3.12) implies that
vol(O% /AX) - vol(T1\ B} o /k%%) = vol(BI \ B}, /k}) = 2.
Hence by Lemma 2.8 we get

1—q volT'\By/kX) 1—¢ 2

— - — HY"TRTRT ) (3.14
2 vol(Op, /0%) 2 wvol(Ogp, ,/0F) ). 3.14)

For non-zero x € A, put

HY'™W'27n(0), if B, = By;

—1
v(x) == m, if K, /k is imaginary; (3.15)
0, otherwise.
Define
I(z) := Z Ly *x). (3.16)
YEM\TI'/T,

From Lemma 3.10, Lemma 3.13, (3.14), (3.15) and (3.16), we then obtain:
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THEOREM 3.14. Givena € A andy € kX witha # 0 and 2 orde (y)+2 > dega,
we have:

I*(a,y;02) =vol(Opx JOF)-lyls - D Z(@).
h zelM\A,

In Section 4, the above theorem enables us to connect the Fourier coefficients
of the theta integral I(g; ¢, ) with the intersection numbers of the “Hirzebruch-
Zagier-type divisors” on the “Drinfeld-Stuhler modular surfaces”.

3.4 EXTENSION OF I(g;@a)
Let
a b
Koo i= {(C d) S GLQ(OOO)

To(on) = {(‘c‘ Z) € GLa(A)

Put KL := KooNSLa (koo ) and T'(0n) := To(on)NSLa(A) and recall (3.8). From
the strong approximation theorem, the natural embedding SLa (ks ) < SLa(ka)
induces the following bijection

CEOmodw}

and

cOmoan}.

['g(0n)\ SLa (koo ) /KL, +— SLa(k)\ SLa(ka) /K5 (on00).
This allows us to view I(g; o) as a function on SLa (ks )/KL, satisfying

I(vgoo; a) = Xo (M1 (goo; PA)s  Vgoo € SLa(kuo) and « € I'g(om).

We shall extend I(;¢p) to a function ¥p on GLa(kso)/kX Koo which is
“Drinfeld-type”, i.e. the following harmonic property holds: for goo € GL2(kso)
we have

tnax) +0n (00 (2 5))=0= X dalaar)

kEGL2(0x0) /Koo

Remark 3.15. Let f be a Drinfeld-type automorphic form on GLz (ks )/kZ Koo-
The harmonicity of f implies that f is invariant by the “Iwahori” Hecke operator
at 00, i.e. for goo € GLa (ko ),

Pl (9= (5 5)) = Flam

Viewed as analogue to classical weight-two modular forms, Drinfeld-type au-
tomorphic forms are objects of great interest in the study of function field
arithmetic. We refer the readers to [12], [3], [4], and [37]) for further discus-
sions.

Let weo := <0 1>. We first prove that:
w 0
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LEMMA 3.16. Given goo € SLa(ks), the following equality holds:

> I(gookiipn) =0 = > I(goow ! Kwoo; 1)
KESLa(One) /KL KESLs (One) /KL

oo

Proof. Notice that 1, _ =1, and iyx =q ' 1; , where

oo

T = {(‘c‘ Z) € Mats(Oa)

Thus wy,e (k)1 =11, for every k € SL2(O), and

oo

a,c,dEwOoo}.

-1
oo Woo

E quoo(’i)ll/oo = ]‘LOOUwooLoow;,1 + ]‘LaoﬁwooL
KESLa(0oe) /KL,

=1, +1 1.

oo wooLocwco

Therefore

> I(gooks; #n)

RESLa(0n0) /KL,

= (¢ +1) I(goo; @pipn,p @1L,.)

+1
— o (g @pns @ (Lo + 1, ) )

q+1
= (q+1)  I(goo; @pprp @ 11..) — —— -

= 0.

2 1(goo; @pipap ® 1)

Similarly, let
"o W0 Ooo
L = <w0w ow)'
Then

Z WV, 00 (woo’iw;ol) ]-LOo =q- Z ]-KL’O’onfl

#ESLa(0oo) /KL, KESL2 (000 ) /KL,

and

Z WV,oo(woon;ol)lL;o =q- (1LZ,’O + 1wagcw;l) :
KESL2(0ss) /KL,
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Therefore
Y I (gooweokwylipn)
K€ESL2(Oos) /KL,

= > g1 (goo; Opoap @ Loy 1)
RESLa(0n0)/KL,

q+1
T I(goo; QpPap @ (lL;; + lwngcw;l) )

+1
— (g4 1) g T (Goo; @ppap @ 1pn ) — L= g2 T (goo: @ppnp @ 111 )

2
= 0.

Let
GL3 (kso) := {g € GLa(ks) | ordso(det g) = 0 mod 2}.

The natural inclusion SLa (ko) < GLa (ko) gives a bijection
SLa(kao) /KL, +— GLT (koo)/ kX Koo

Thus I(-;¢) can be viewed as a function on GLJ (kso)/kX Keo. For go in
GL2(koo), define ¥4 (goo) by:

Ia(goc) == (3.17)

vol(Og, /Ox) | —I(gooWoo;pa),  otherwise.

2 {I(goo;w), if goo € GLJ (koo );
The above lemma implies immediately that:

PROPOSITION 3.17. The function 95 on GLg(koo)/kXKso satisfies the har-
monic property, i.e. for goo € GLa(koo),

19/\(900) + 19A(goow00) =0= Z 19/\(900%)'
KEGL2 (0O ) /Koo

Moreover, for v € Fél)(bn) we have

IA(V9oo) = Xo(7) - Ia(9o0)s V9o € GLa(koo)-

Here for v = (Oic Z) c Fél)(an); Xo(7) is equal to the Legendre quadratic

symbol (%) .

Proof. The second assertion follows directly from Proposition 3.7. To show the
harmonicity of ¥, by definition we get immediately that

191\(900) + ﬂA(goowoo) =0.
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Moreover, suppose goo € GLJ (ks ). Then by Lemma 3.16, one has

> Ir(gooks) = S > I(gooki; oa) = 0.

X X\
KEGL2 (0o ) /Koo vol(Og, /OF) RESL(0o0) /KL,

When goo ¢ GL3 (koo), by Lemma 3.16 again we get

Z 19/\(900%)

k€GL2(0x) /Ko
-2
= - . I((gooWoo )W 30 Koo A )
X X Z oo Yoo [e'e) [o'eR)
Vol(OBA/OA) £ SLa (O /KL
=0.
Therefore the proof is complete. O

In conclusion:

THEOREM 3.18. We extend I(-;on) to a Drinfeld-type automorphic form 9,
on GLa(keo) for the congruence subgroup T'y(dn) with nebentypus xo», whose
Fourier expansion is: for (x,y) € koo X kZ,

N (g ”1”) =Y Y. 2. 3 HTUY (0(2 — 4a)) | - oo a).

acA teA
deg a+2<ordoo () t2=4a

Remark 3.19. The above construction of 5 gives us a way to produce Drinfeld-
type automorphic forms on GLz(ks) with non-trivial nebentypus, which is
different from the theta series given in [32], [29], [3], or [4].

4 INTERSECTIONS OF THE HIRZEBRUCH-ZAGIER-TYPE DIVISORS

4.1 DRINFELD-STUHLER MODULAR CURVES

Let Co, be the completion of a chosen algebraic closure of ko,. The Drinfeld
half plane is
ﬁ = (COO - kOO;

which is equipped with the Mdbius action of GLa(kuo):

a b az+b a b

We recall the analytic construction of Drinfeld-Stuhler modular curves as fol-
lows. Let B be an indefinite quaternion algebra over k, and n~ € Ay be the
product of the primes at which B is ramified. Take a square-free n* € A,
coprime to n~, and let Op be an Eichler A-order in B of type (n*,n™7). Fix
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an isomorphism B ®j, ks = Mats(ks), which embeds T'(n™,n™) := O into
GL2 (ks ) as a discrete subgroup. This induces an action of O} on the Drinfeld
half plane . Let

X(nt,n7) :=T(n",n")\»,
which is a rigid analytic space (compact if B is division). From the moduli inter-
pretation of X (n™,n™) (which parametrizes the “%-elliptic sheaves with addi-
tional level-n™ structure”, cf. [25] and [30]), we may identify X (n* n™) (rigidly
analytically) with the C.-valued points of a smooth curve (projective if B is
division) over Cu, called the Drinfeld-Stuhler modular curve for T'(nt n™).
For our purpose, we shall only use the analytic description of X (n*,n™).
Notice that when B = Mats(k), every Eichler A-order Op of type (n*,1) is
equal (up to conjugation) to

{<CCL Z) € Mata(A)

and so I'(n™, 1) coincides with the congruence subgroup

To(nt) = {(‘CL Z) € GLy(4)

The “compactification”

cOmodnJr},

CEOmodn+}.

Xo(nt) == Fo(n)\(ﬁ U Pl(k:))
is called the Drinfeld modular curve for To(n™) (cf. [12]).

4.2 DRINFELD-STUHLER MODULAR SURFACE

Let @ € A, be square-free with degd even and F = k(1/2). Identifying F,, :=
F @4, koo = koo X koo, we denote the image of a € F in k2, by (a,a’) (o is the
Galois conjugate of « over k). Let Hr := H X §, equipped with the M&bius
action of GLa(koo)?. The above embedding F < ko X koo gives GLo(F) —
GLa (koo )?, which induces an action of GLa(F) on $r. In concrete terms, for

9= (Z Z) € GLa(F) and 2z = (21, 22) € HF, we have

. <az1 +b a’zg—i—b’)
g 7= )

cz14+d’ dz+d

For n € A4, recall that

a b
Foﬁp(ﬂ) = {<C d) S GLQ(OF)
The Drinfeld-Stuhler modular surface for T p(n) is

So,r(n) :=To r(n)\Hr.

ad —bc € F, cOmodn}.
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From the work of Stuhler [34], Sp,r(n) is a moduli space of the so-called
“Frobenius-Hecke sheaves” (an analogue of the Hilbert-Blumenthal abelian sur-
faces in the classical case) with additional “level-n structure”. This provides the
algebraic structure of the surface Sy r(n). For our purpose, we only consider
So,r(n) as arigid analytic space, and study the intersections of the “Hirzebruch-
Zagier-type” divisors on Sp r(n).

4.3 HIRZEBRUCH-ZAGIER-TYPE DIVISORS

Recall in Section 3 that
V={zxeMaty(F) |2* =2} and A=V NMatz(Op).

Given z € A with det(x) # 0, let C, := I';\$, the Drinfeld-Stuhler modular
curve for I'; (where T, is the stabilizer of z in I' = I'g p(n) via the action x).

Put
0 1\ _
Sy = (n 0) T.

The closed immersion $ — $Hp defined by (z — (z,S;%)) induces a (rigid
analytic) proper morphism f; : C; — Sor(n). We put X, := f;(C;) and
Zy = fz+(Cy), the pushforward divisor of C, under f, on Sp p(n). Let

T,:={ye Lo p(n) | v*z = +x}.
Then [[', : Ty] = 1 or 2, and:
LEMMA 4.1. For x € A with deg(z) # 0, one has
Z, =0, 1) - X

Proof. We need to show that the proper morphism f; : C; — X, has degree
equal to [I'y : T'y].

Let 21, 29 € C; be two points with f,(z1) = fz(22) € X,. Take representatives
Z1 = (21,8:21) and Z» = (22, S5,22) of z; and z3 on $Hp, respectively. There
exists v € I' so that

21 =77, ie. (21,S:21) = (v22,7 Ss22).

Thus
21 =722 = Y((V'S2) ' Sa) 21 = ((y % 2)T) 21

When 27 is in “general position”, e.g. the stabilizer of z; in GLy(F') is F*, one
has (y xx)Z € F*. Taking the determinant of (y % 2)Z, we obtain v x x = +z,
which says that v € T';. Therefore the result holds. o
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Suppose now that n satisfies Assumption 3.1. We shall study the number of
intersections of Z; and Z, by lifting to a “fine covering” of Sp p(n). More
precisely, for m € A, we let

I'p(m) = {’y € GL2(Op) ‘ v = ((1) (1)) mod m}.
Choose m so that n? divides m. Then
Pr(m)* = {" | 7 € Tp(m)} C Tr(n).
Consider the finite morphism
m: Trm)\Hp =: Sp(m) - So p(n).

For z € A with det(z) # 0, let 9, := {(2,5:2) | 2 € H} C Hr. Observe that
Ve = Hyxe for all v € T p(n). Let X, be the image of ), in Sp(m) under
the canonical map from $r onto Sp(m). Let

[,(m):=T,NCp(m) and C, :=T,(m)\$.
We have:

LEMMA 4.2. Assume n®det(x) divides m. Then the identification between §) =
9. induces an isomorphism f, : Cy = X,.

Proof. Notice that the defining equation of §), in $r makes it smooth every-
where. As each point in $F has trivial stabilizer in I'r(m), we may identify
a sufficiently small admissible open neighborhood of a given point in ) with
the corresponding affinoid subdomains in Sp(m). This assures the smoothness
of )~(1 Therefore it suffices to show that the morphism from fz : 6‘1 — )~(1 is
a bijection.

The surjectivity of f, comes directly from the definition. On the other hand, let
z1 and 22 be two points on C, so that fz(il) = fm(ig). Take representatives
Z1 = (21,5z21) and Za = (22, 5;22) of 21 and 25 on £, respectively. Then
there exists v € I'p(m) so that 21 = - 25, i.e.

(Zlv Szzl) = (7227 ’Y/SIZ2)-
Thus
21 = Yzp = (W(V’SI)_lSI)zl = ((7*:1:)50),21.
Since n? det(z) divides m, we obtain that

(yxx)z™t = y(zy* ™) -det(y) "t € Tr(n), ie. (yxz)z™* ((1) (1)) mod n.
As it fixes z1 € ), we obtain that
(yxx)z™l =1, ie y*x=uz.

Hence v € ', NTp(m) = T';(m). In other words, the morphism f. is bijective,
and the proof is complete. O
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4.4 FORMULA OF INTERSECTIONS

Let o € A with det(x) # 0, and m € A, with n?det(z) | m. We first verify the
transversality of the intersections of X; and X, on Sp(m).

LEMMA 4.3. Suppose )~(1 #+ )ZI Then )~(1 and )~(I intersect transversally.

Proof. 1t suffices to check that the preimages of )?1 and )~(m in 9 intersect
transversally. Since v$), = £, for every v € I', it is reduced to show the
transversality of the intersection of £, and £, when = ¢ A.

Suppose Z = (z,512) = (z,5;2) € H1 N Hy. Write x = < h ﬁ) with

/
dy,ds € A, B € Op, and put a := det(z) = dids + n35" # 0. Thnei g’czd2: z, i.e.
doz — B
wiztd
Thus nf3'22 + (d; — d2)z + 8 = 0. Multiplying 3 on both sides we get
(a — dids)2? + (dy — dy)Bz + 5% = 0. (4.1)

On the other hand, the tangent vectors of Z along 1 and ., respectively, are

1 —a
(o) o ()

If these two vectors coincide, we get az? = (d2z — 3)?, which says that
(a — d3)2* 4 2d28z — % = 0. (4.2)
Suppose 5 # 0. As z € §, comparing equations (4.1) and (4.2) we get
a—dydy=—(a—d3) and dy —dy = —2dy,

which imply @ = 0 and cause a contradiction. Hence 3 = 0 and a = d1d> = d3.
Since a # 0, we have dy = dy. Therefore, x € A and $, = 91 also cause a
contradiction. As $), # 1, the two tangent vectors much be different, i.e. the
intersection of $, and $; at Z must be transversal. O

Let Z, be the prime divisor associated with X, on Sp(m). We get

m(Z,) = [Ty : Ty(m) -FX] - Z,.

q

From the above lemmas, the intersection number of Z; and Z, is determined
in the following:

PROPOSITION 4.4. Given x € A with det(x) # 0, suppose Z1 # Z,. Choose
m € Ay so that n?det(x) | m. The intersection number of Z1 and Z, is equal
to

g1 212,
22y = . : . Z S
[T1:Ti(m)] - [ : Ty (m)] YED/TF(m)
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Proof. Observe that Z; is a Q-Cartier divisor on Sp p(n). Thus the result
is a rigid-analytic version of the projection formula (cf. [26, Remark 2.13 in
Chapter 9]) for the intersection of Z; and Z, = m,(Z,). We include the
argument here for completeness.

Let I' = Iy p(n). Given z € A with det(z) # 0, the normalization of the
irreducible curve X, is isomorphic to fz \$. Notice that for each z € X1 N X,,
take z; and z, be two lifts of z in X 1 and )ZI, respectively. The intersection
multiplicity of X; and X, at z is actually equal to

_ (g—1)-#Stabp(z1)
~ #Staby (21) - # Staby (2,)”

mz(XlaXx)

Indeed, let m, := W’X c X, = X, As X is a Q-Cartier divisor on Sy r(n),
we have the following equality (between Q-divisors on X, ):

1

Xl = degm,

e (15(X1] ) € Divg(Xy) := Q ®z Div(Xy).

Let i.(D) (resp. iz, (D)) be the multiplicity of a Q-divisor D on X, (resp. D
on X,) at z (resp. Z,). Take v € T" so that vz, = Z;. We then obtain that

q—1

mz(Xl,Xz) = iz(X1|Xm) = #ESTA(E) . Z.gm (W;(X1|XT))
I\~
= Faby =0
= Fotay, ) 2 (7 k)
q— 1 #Stabr(,%l)

#Stabp (2,) # Stabg (21)
Now, consider the disjoint union

P = H XNT’Y}}I

NET /Ty T (m)

which maps surjectively to X7 N X, via the finite morphism 7 on each compo-
nent (we denote this surjection & — X;NX, by 7). For each point z € X1NX,,
the pre-image of z in ® has cardinality equal to

# Stabr (21 )

[fl : Stabfl (21) -y (m)] : m
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Thus the cardinality of ® can be expressed as

S #FinaE)

~€T /T, -T'r(m)

= Y #@'(®)

ze€X1NX,
N B #Stabr‘(%l)
_ [Ty« Stabg, (21) - Th(m)] - e———~
ZE);WXI ' # Stabfr (zz)
R (¢ —1) - # Stabp ()
. X
[[1:Ti(m)Fr] ze;;mx #Stabs (21) - # Stabfm (22)
Cis D] >0 ma(X, Xo)
z€X1NXy
Therefore
22 = DD D) Y ma(XX)
zeX1NX,
[fl : Fl] : [fx : Fz] X X
_ [0 . X1 X,

€T /T, T g (m)

S EE
= : . . Z1 Y2y,
[Ty [ To(m)] 2

where the last equality holds as X, and 7)?1(: )?7*1) intersect transversally
for every v € T. O

PROPOSITION 4.5. Let x € A with det(z) # 0, and m € Ay so that n? det(z)
divides m. Given v € I, suppose Z, # vZ,. We have

22, = Z #(H1 N 079Hz)-
Yo ET1(MN\L'p (M) /Tyrz (M)
Proof. Tt suffices to show that the union

H1 NYvHz (C HF)
Yo €1 (M)\I'F(m)/Tuz(m)

is disjoint and in bijection with the intersection points of X, and WJN(CE under
the canonical map Hr — Sp(m).

The surjectivity is straightforward. On the other hand, given ~1,v2 € T'p(m)
and z; € $H1 Nv;vH, for i = 1,2, write

—

Zi = (2i,512:) = (yiywi, iy Sew;)  with z;,w; € § for i =1,2.
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Suppose the image of Z; and 25 coincides in Sp(m), i.e. there exists 79 € I'p(m)
so that (z1,5121) = (Y022, 7(S1%2). Then degyy =1 and

Siz1 = S122 = 15175 21,

which says (Y07y$)z1 = z1. From our choice of m, we get voy5 € I'r(ndet(x))
which fixes z;. This implies o5 = 1. As detyy = 1, we have that v = 9o,
whence

Yo €1 N Fp(m) = Fl(m)

Moreover, let
3 =797 072y € Tp(m)  (as Tp(m) is normal in T).
We get det v3 = 1 and (w1, Spw1) = (Yswa, ¥4Szw2), which says
(3 - T~ 1937w = wr.
Similarly, from our choice of m we get 3 - Z71v5% € T'r(n) and fixes w;. Thus
v3-Z " v3Z =1, which shows that xv; = Y32 (as detyz = 1).
Therefore v3 € I'y NTp(m) = T'y(m). In conclusion, we have
- (Y™ =002,

i.e. v and 72 represents the same double cosets in I'y (m)\I'p(m) /T, (m). This
assures the injectivity and completes the proof. O

LEMMA 4.6. Given x € A with det(z) # 0. For v € T with v$, # $H1 one has
M Ny, ={Z=(2,%%2) | (yxx) -z =z}

Consequently, put

i) 1 if K. /k is an imaginary quadratic field extension;
(x) =
0  otherwise.

Then
#(H1N7H2) =2 (7 * ).

Proof. Given Z € $1 Ny9,, write 2= (z,512) = (yw, v Szw) for z,w € H. We

get

V' Sy Tz =+ Spw = S, 2.

Thus

2 o= A8, Y T Sz =z (ST TS 2
= qx(Sflﬁ'Sl) cz=(y*xx)- 2.
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Conversely, given z € §) so that (yx ) -2z = z, we obtain v/ S,y 'z = S12. Let
w = vy~ 'z. Then

—

Z:=(z,512) = (yw,7' Syw) € H1 NYH,.

This shows the first equality. Note that from the assumption that v, # 91,

Z) with a,b,c,d € F — ko,. Observe
that (y*z) - 2z = z if and only if the column vector (z,1)* is an eigen-vector of
~ % with respect to the eigen-value ¢z + d. This implies that K, = k(z) is an

imaginary quadratic field over k, whence the second equality holds. O

the element yxx ¢ k™. Write yxx = (CCL

4.5 (GEOMETRIC INTERPRETATION OF THE FOURIER COEFFICIENTS OF 1,

For non-zero x € A, recall the number «(z) defined in (3.15). Given v € I" with
V9 # H1 (which implies B.., # B1), observe that for v; € I'1, and 7, € T,
one has

e x @) =iy xz) = #(C1 N Te) - u(y*2) /(g — 1)
We are now able to express the intersection number Z; - Z, as follows:

THEOREM 4.7. Given x € A with det x # 0. Suppose Z1 # Z,, or equivalently,
yxx &k for every v € T. Then

Z-Z, = 2 Z Ly *x).
YEM\L/T,

Proof. From Proposition 4.5 and Lemma 4.6 we have

q—1

T ) )] 2
qg—1 Z -

= : : : 2 i(y*x)

Ly Ta(m)] - Uy« T (m)] ~ET: (m\T'/Tx (m)

q—1 -

= Z ——— 2 i(y*x)

’YEF1\F/Fm #(Fl N w*z)
= 2. Z Ly * ).

YEM\L/T,

O

We now define the self-intersection number of Z; (following [17, p. 84]). First,
put

vol(X1) := fm~H T () (4.3)
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and
vol(21) = [Ty :Ty]-vol(Xy) = —2H* " 2 " (0). (4.4)

For each point z € Xy, take a lift Z € $1, and let

# (Stabr(2))
#(Stabg (2))”

Ty 1=

We set the following “Pliicker-type” number:

a1
1) = ey e

DEFINITION 4.8. The self-intersection number of Z; is then defined to be:
Zl . Zl = [fl 2F1]2 . <V01(X1> + Z /,Lz(X1>> .
zeX

LEMMA 4.9. We may express the self-intersection number of Z1 as follows:

21-21:2- Z L(’y*l)
~yEr\I'/T

Proof. Given v € I, notice that yx1 € k if and only if v € fl. As T’y is normal
in I'y, one has

2 Z y*x1) = 2- Z tyx1)+2- Z tfyx1)

’YEFl\F/Fl ’Ylefl/rl ’YErl\AF/Fl
R3S

= DDy BT 0) 420 Y (v,

~E€P\I/Tq
Vel
Because of (4.3), the result holds if we show
T D 2 > (X)) = 200 > ulyxD). (4.5)
zeX, YEr\I'/Tq
REANT

Take m € A, with n? | m. Adapting the argument in the proof of Proposi-
tion 4.4 (which we omit the details), we get

~ qg—1 ~ ~

T : 142 X)) = — . Z1 2.

INERY ; pz(X1) [y : Tp(m))? FZ 1721
z 1 YEL /T p(m)

v¢ly
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From Proposition 4.5 and Lemma 4.6, we have

Y 242 = > 2-7(yx1)

YEL/T p(m) YET (m)\I'/T (m)
YT Y€
ry:r 2 -1
_ D) DT S G
a- 1 YET\I'/T'q #(Fl n F’y*l)

¢l

. [Fl : Fl (m)]2
YEDI\T/T'y

¢l
Therefore the equality (4.5) follows and the proof is complete. O

For non-zero a € A, consider the following Hirzebruch-Zagier-type divisor

:ZZZ.

M\Ag

From (3.16), Theorem 3.14, Theorem 4.7, Lemma 4.9, Theorem 3.9 and (4.4),
we finally arrive at:

COROLLARY 4.10. Given non-zero a € A andy € k% with dega < 2ordo(y) +
2, we have

lylZ

vol(Opx /On)™" - T"(a,y50n) = =

(21- Z2(a)),

and

vol(O BY, JOx) " - T7(0,y;00) =

2
% -vol(Z7).

Remark 4.11. From Theorem 3.18, we may express the Fourier expansion of
the Drinfeld-type automorphic form ¢4 defined in (3.17) in terms of the corre-
sponding intersection numbers: for (x,y) € kX X keo,

VA (g 916) = [yl - [—VOl(Z1) + > (21 2(a) - Yoo (az)

0#acA
deg a+2<ordoo (¥)

Therefore in our case, ¥4 plays the same role as Gekeler’s improper Eisen-
stein series in the Kronecker-Hurwitz class number relation over function fields
discussed in Remark 1.1.

A LOCAL OPTIMAL EMBEDDINGS

Here we recall the needed properties of local optimal embeddings from a
quadratic order into a hereditary order of a quaternion algebra over a local
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field. Further details are referred to [35, Chapter 2, Section 3] and [3, Chap-
ter 5, Section 1.1].

Let (L, |- |z) be a non-archimedean local field, and Oy, be the ring of integers
in L. Given a separable quadratic algebra E over L and a quaternion algebra D
over L together with a fixed embedding ¢ : £ < D, it is known that every
embedding from F into D must be conjugates of ¢ by elements of D*. Let O
be an Op-order in E and Op a maximal Op-order in D. Put

£(0,0p) :={beD* |b"*EbNOp = b~ *Ob},

where we identify F as a subalgebra of D via «. For a € E, b € £(O,Op), and
k € OF, one has
a-b-ke&0,0p).

Moreover, the following result holds (cf. [35, Chapter 2, Theorem 3.1 and 3.2]):
LEMMA A.l. (1) Let Og be the mazimal O -order in E. Then
e(Op,0p) = # (E*\E(Op, Op)/Op)
2, if D is division and E/L is inert;
=10, if D is division and E/L is split;
1

,  otherwise.
(2) If O C Og, then
e(0,0p) := # (E*\E(0,0p)/Op) = {(1): Zfilz)erif)ij:}mm;
Suppose D is not division (i.e. D = Maty(L)). Let O), be a hereditary Op-order
in Op. Put
£(0,0p) :={beD* | b 'EbN Oy = b~ Ob}.
Then for a € E, b€ £(0,0%), and &’ € (O})*, one has
a-b-r €E(0,0%).
Moreover (cf. [35, Chapter 2, Theorem 3.2]):
LEmMA A2. (1)

0, if E/L is inert;
e(Op,0p) := #(E*\E(Og, 0p)/(05)*) =< 1, if E/L is ramified;
2, 4f E/L is split.

(2) If O C Og, then
e(0,0p) == #(E*\E(0,0p)/(0p)") = 2.
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B SPECIAL LOCAL INTEGRALS

Given ¢ € Z>o, put O(c) := O, + 7§ Op, where 7y, € O, is a uniformizer in L.

For x € E\L, we can find a unique ¢; € Z>¢ if x € Og so that Op[z] = O(cy);

and put ¢, := —1if z ¢ Og. Let D° be the space of pure quaternions in D, i.e.
D°:={be D] Tr(b) =0}.

Put 0% := Op ND° and O} := O, ND°. We observe that:

LEMMA B.1. Given x € E\L with Tr(z) = 0, one has

Cx

10% (b_l.’L'b) = Z 15(0(@),OD)(b)’
£=0

Moreover, if D is not division, then
—1 o =
]_O/_bo (b :L'b) = Z 18(0(@),05)(17)'
(=0

Proof. Notice that £ (O(¢),Op) and € (O(¢'),Op) are disjoint if £ # ¢'. Thus
for b € D* one has

Z 15(0(!),0@)(1)) =0or 1.
=0
Suppose the value is 1, i.e. b € £(O(¢y), Op) for some 0 < £y < ¢,. Then
x € Olz] = O(e,) € O(fy) C ENbOpb~' C bOpb~*.
Since Tr(z) = 0, we get b~ 'ab € 0, ie. 1oy (b xb) = 1.
Conversely, let b € D* with 1pg (b~'xb) = 1. Then z € bO2b™", which implies
O(cz) € ENbOpb~t. Thus there exists £y with 0 < ¢y < ¢, such that
ENbOpb™ = O(4y).

which means that b € £(O({y), Op). Therefore

> Le0().00)(b) = Le(t).00)(b) = 1.
£=0

O

Suppose Haar measures of D* and E* are chosen, respectively. The above
lemma leads to:
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COROLLARY B.2. For x € E\L with Tr(z) =0, one has

1(0F) &
1ob—1xbde—V° D) ( ) o), Op).
[y 1050720 s X €(0(0), 0n)
Suppose D 1is not division, then
_ 1(0F) & OF
1 0(b~lab)d"b = Y2/D) #< E>-e(9€,0’.
/EX\DX or (b12b) s 2# (agr) .00
Proof. Given 0 < ¢ < ¢,, one has
(O
VOl(EX\E(O(F), Op)) = 3 vol(Op)

vol(E* NbOXb—1)
bEEX\E(O(L),0p) /0%

_ vol(Op) (& .
~ vol (0F) # (O(E)X) (0(6), Op)

Thus
1og (b~ ab) d*b = E / le(o(e),0p)(b) d™b
/EX\DX P — JEx\Dx (©10).0r)

vol(O oo
vol(O Z # (

+) €(0(6).00).

Let gz be the cardinality of the residue field of L. Since

vol(0O%) = -vol(OF),

qr +1
combining Lemma A.1, Lemma A.2, and Corollary B.2 we obtain:

COROLLARY B.3. Suppose D is not division. Then for x € Og\Op with
Tr(xz) =0, one has

_ qr +1 _
/E (10% (b 1.Tb) - D) . 10950 (b 1.Tb)) dxb
X\ DX

1 vol(Og)
= < e(E/L) vol(OF)

0, otherwise.

if £ is a field;

Here e(E/L) is the ramification index of E/L.
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