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1 Introduction

Adjoint functor theorems (AFTs) typically characterize left (resp. right) adjoint
functors which are defined on suitable cocomplete (resp. complete) categories.
A natural necessary (and sometimes also sufficient) condition in these theorems
is that the functor preserves small colimits (resp. small limits). Familiar and
important examples of this type of AFT in ordinary category theory include:
Freyd’s General and Special Adjoint Functor Theorems (GAFT and SAFT)
(see, for example, [14]) and the Left and Right Adjoint Functor Theorems in
the context of locally presentable categories (see [1]).
Most of these adjoint functor theorems have been generalized to the context of
∞-categories [12, 16]. AFTs are especially useful in higher category theory be-
cause providing an adjoint by an explicit construction is practically impossible
in general in this context – when such a construction is possible, this usually
arises from an explicit model-dependent construction in a stricter context (e.g.
model categories, simplicial categories, etc.). Lurie [12] generalized the AFTs
for locally presentable categories to presentable ∞-categories. In our previous
work [16], we proved two versions of the GAFT for ∞-categories [16, Theo-
rems 3.2.5 and 3.2.6], a special version of the SAFT [16, Theorem 4.1.3], and
we showed that these also recover Lurie’s AFTs for presentable ∞-categories
[16, Section 4]. All these results are still in the context of (finitely) cocomplete
(resp. complete) ∞-categories.
On the other hand, a different type of adjoint functor theorem arises in the
context of Brown representability [4, 10, 16]. These AFTs characterize left
adjoint functors which are defined on suitable ordinary categories that are
typically not finitely cocomplete. Important examples of such categories, which
satisfy Brown representability, include the homotopy categories of presentable
stable ∞-categories [13, 16]. These categories admit small coproducts, but
only weak pushouts in general. The AFT in this case characterizes left adjoint
functors in terms of the preservation of small coproducts and weak pushouts
(see, for example, [16, Section 5]).

The question naturally arises whether there are more general AFTs which ap-
ply to higher (= (n, 1)-)categories that are not necessarily finitely cocomplete
(resp. complete). Our first goal in this paper is to prove generalizations of
the GAFTs in [16] to suitable n-categories (= (n, 1)-categories) that are not
necessarily finitely cocomplete (resp. finitely complete). The motivating ex-
ample is the homotopy n-category of a (finitely) cocomplete (resp. complete)
∞-category. We recall that the homotopy n-category hnC of an ∞-category C

is the n-category which is obtained from C after truncating its mapping spaces
at level n – this is the usual homotopy category when n = 1. The general con-
struction and the properties of the homotopy n-category were studied in [12].
Homotopy n-categories were studied further in [17] in connection with a higher
categorical notion of weak (co)limit that was introduced mainly for this pur-
pose. Similarly to the usual homotopy category, the homotopy n-category hnC
of a (co)complete ∞-category C does not admit all small (co)limits in gen-
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AFTs and Higher Brown Representability 1371

eral, but it does admit better (= higher) weak (co)limits as n grows. The
general properties of the homotopy n-categories suggest the following class of
n-categories as a convenient context for refined versions of the GAFTs (see [17,
Section 3]).

Definition (Definition 2.2.1). Let n ≥ 1 be an integer or n =∞. A (finitely)
weakly complete n-category is an n-category C which admits small (finite) prod-
ucts and weak pullbacks of order (n− 1). (There is an obvious dual notion of
a (finitely) weakly cocomplete n-category.)

The definition and properties of higher weak (co)limits will be reviewed and
developed further in Section 2. We note that the homotopy n-category of
a (finitely) complete ∞-category is a (finitely) weakly complete n-category.
Moreover, a (finitely) weakly complete ∞-category is simply a (finitely) com-
plete ∞-category. We emphasize here the special double role of n in the defi-
nition: a k-category C is a (finitely) weakly complete n-category, for n > k, if
and only if C is a (finitely) complete k-category. Thus, the definition essentially
distinguishes the various categorical levels.

Our main adjoint functor theorems (Theorem 3.3.2 and Theorem 3.3.3) general-
ize the corresponding GAFTs for∞-categories in [16, Theorems 3.2.5 and 3.2.6]
to (finitely) weakly complete n-categories. We refer to Section 3 and Defini-
tion 3.3.1 for the precise definitions of the h-initial object condition and of the
solution set condition that appear in the statements below.

Theorem (n-GAFTfin – Theorem 3.3.2). Let G : D→ C be a functor between
n-categories, where n ≥ 1 is an integer or n =∞. Suppose that D is a finitely
weakly complete n-category. Then G admits a left adjoint if and only if G
preserves finite products, weak pullbacks of order (n − 1), and satisfies the h-
initial object condition.

Theorem (n-GAFT – Theorem 3.3.3). Let G : D → C be a functor between
n-categories, where n ≥ 2 is an integer or n =∞. Suppose that D is a locally
small weakly complete n-category and that C is 2-locally small. Then G admits
a left adjoint if and only if G preserves small products, weak pullbacks of order
(n− 1), and satisfies the solution set condition.

Let us emphasize here again the special double role of n in these statements: the
choice of n both specifies the context for D and C and determines appropriate
conditions for G; the combination of both functions of n plays an important
role in the proofs. As a consequence, we note that each of these two theorems
states a separate assertion for each n.
The GAFTs of [16] – as well as Freyd’s GAFT – are the special cases of the
above statements for n =∞. The general strategy for the proofs of n-GAFTfin

and n-GAFT is comparable to the strategy used for the proofs of GAFTfin and
GAFT in [16], but there are some interesting differences, too, since the proofs
of these refined statements have a stronger homotopy-theoretic (or obstruction-
theoretic) flavor. Since the property that a functor G : D → C admits a left
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adjoint is equivalent to the existence of initial objects (c → G(d)) in the slice
∞-categories Gc/ for every c ∈ C (see Proposition 3.1.2), these theorems will be
obtained as consequences of suitable criteria for the existence of initial objects –
Lemma 3.2.5 (Criterion A) and Lemma 3.2.9 (Criterion B), respectively. These
criteria and the proofs of the n-GAFTs are discussed in Section 3. Moreover,
as a consequence of the n-GAFTs, we also obtain the following result about
detecting adjoint functors at the level of the (ordinary) homotopy category
(this generalizes [16, Theorem 3.3.1]).

Theorem (Theorem 3.3.5). Let D be a finitely weakly complete n-category
and C an n-category, where n ≥ 1 is an integer or n = ∞. Let G : D → C be
a functor which preserves finite products and weak pullbacks of order (n − 1).
Then G admits a left adjoint if and only if h(G) : h(D) → h(C) admits a left
adjoint.

Even though the n-GAFTs produce refinements of the GAFTs in [16] for suit-
able n-categories which do not admit all small (co)limits, they still do not fully
address the connection with the AFTs that arise from Brown representability.
Our second goal in this paper is to study a Brown representability context for
higher (homotopy) categories and identify classes of (homotopy) n-categories
which satisfy Brown representability – this is done in Section 4. Brown rep-
resentability for n-categories is defined in terms of the following n-categorical
version of Brown’s original conditions. We denote here by S<n the n-category
of (n− 1)-truncated objects in the ∞-category of (small) spaces S.

Definition (Definition 4.1.1). Let C be a locally small weakly cocomplete n-
category, where n ≥ 1 is an integer or n = ∞. We say that C satisfies Brown
representability if for any given functor F : Cop → S<n, the following holds: F
is representable if (and only if) F satisfies the conditions (B1)–(B2) below.

(B1). For any small coproduct
∐
i∈I xi in C, the canonical morphism in S<n

F

(
∐

i∈I

xi

)
−→

∏

i∈I

F (xi)

is an equivalence.

(B2). For every weak pushout in C of order (n− 1)

x //

��

y

��
z // w

the canonical morphism in S<n

F (w) −→ F (y)×F (x) F (z)

is (n− 1)-connected.
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This definition restricts for n = 1 to the familiar Brown representability context
for ordinary categories (see, for example, [10, 16]). An analogous 2-categorical
Brown representability context was also considered recently in [2]. Let us em-
phasize again that this definition singles out a class of n-categories which is
specific to each n. Similarly to classical Brown representability, the property
that an n-category C satisfies Brown representability is closely related to an
AFT for C. This connection is explained in the following proposition.

Proposition (Proposition 4.1.3). Let C and D be locally small n-categories,
where n ≥ 1 is an integer or n = ∞. Suppose that C is a weakly cocomplete
n-category and satisfies Brown representability. Then a functor F : C → D

admits a right adjoint if and only if F satisfies the following properties:

(B1′). F preserves small coproducts.

(B2′). F preserves weak pushouts of order (n− 1).

We introduce in Section 4 a class of weakly cocomplete n-categories, called
compactly generated n-categories, and prove the following Brown representabil-
ity theorem in the context of n-categories.

Theorem (Theorem 4.2.11). Let C be a compactly generated n-category, where
n ≥ 1 is an integer or n =∞. Then C satisfies Brown representability.

The notion of a compactly generated n-category contains some subtleties; we
refer to Subsection 4.2 for the precise definition. Examples include the homo-
topy n-category of a finitely presentable ∞-category if n ≥ 2, and the homo-
topy n-category of a finitely presentable stable ∞-category for any n ≥ 1. The
strategy for the proof of this Brown representability theorem for n-categories is
comparable to Brown’s original proof method, but various types of refinements
of this method are required in order to apply to the n-categorical context; these
make essential use of higher weak colimits in combination with the properties
(B1)–(B2). The representability of a functor F : Cop → S<n is equivalent to
the existence of an initial object (or “universal element”) (∗ → F (c)) in F∗/.
For the existence of an initial object in this context, we formulate a third
general criterion for initial (or terminal) objects which applies specifically to
n-categories with a set of compact objects that jointly detect equivalences –
see Lemma 4.2.12 (Criterion C).

Let us also remark that our previous results on Brown representability for ∞-
categories in [16] are essentially special cases of the theorem above for n = 1.
The purpose of the results in [16, Section 5] was indeed to identify classes of∞-
categories whose (ordinary) homotopy categories satisfy Brown representability.
We refer to the relevant remarks in Section 4 for more detailed explanations.

Since the class of n-categories which satisfy Brown representability is closed un-
der localizations (Proposition 4.1.9), we obtain the following result as a corol-
lary.
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Corollary (Corollaries 4.3.2 and 4.3.3). Let C be a presentable ∞-category
and let D be a locally small n-category, where n ≥ 1 is an integer or n =∞.

(1) Suppose that C is stable. Then hnC satisfies Brown representability. As
a consequence, a functor F : hnC→ D admits a right adjoint if and only
if F preserves small coproducts and weak pushouts of order (n− 1).

(2) Suppose that n ≥ 2. Then hnC satisfies Brown representability. As a
consequence, a functor F : hnC → D admits a right adjoint if and only
if F preserves small coproducts and weak pushouts of order (n− 1).

Note that this adjoint functor theorem for n = ∞ recovers the left adjoint
functor theorem for presentable ∞-categories [12, Corollary 5.5.2.9(1)], [16,
Section 4]. Thus, we obtain a collection of Brown representability theorems
for hnC, 1 ≤ n ≤ ∞, which bridges the gap between the classical Brown
representability theorems (e.g., for suitable triangulated categories) and the
left adjoint functor theorem for presentable ∞-categories.

Conventions and terminology. As in [16], we work in a model V of
ZFC-set theory which contains an inaccessible cardinal. We use the associated
Grothendieck universe U ∈ V to distinguish between small and large sets. More
specifically, a set is called small if it belongs to U. Our results do not depend
on these set-theoretical assumptions in any essential way; these are used as a
convenient and standard convention.

A simplicial set is a functor K : ∆op → SetV. A simplicial set K : ∆op → SetV
is small if Kn ∈ U for each [n] ∈ ∆op. An ∞-category (= quasi-category) is
essentially small if it is (Joyal) equivalent to a small simplicial set. An ∞-
category C is called locally small if for every small set S of objects in C, the
full subcategory of C spanned by S is essentially small (see [12, 5.4.1]).

An ∞-category is (finitely) complete (resp. cocomplete) if it admits all limits
(resp. colimits) indexed by small (finite) simplicial sets. For a simplicial set K,
we will often use the notation K⊲ for K ∗∆0 and K⊳ for ∆0 ∗K.

For n ≥ 0, a map f : X → Y between spaces (= Kan complexes) is called
n-connected if π0(f) is surjective and for every x ∈ X the induced morphism
πk(f, x) is an isomorphism if k < n and an epimorphism if k = n – this is the
classical convention. Every map is (−1)-connected. A space X is n-connected
if the map (X → ∗) is (n+ 1)-connected. More generally, a simplicial set X is
called n-connected if it is weakly equivalent to an n-connected Kan complex.
A space X is n-truncated if πk(X, x) = 0 for all x ∈ X and k > n.

We will use the term n-category in the sense of [12, 2.3.4]; this is a model
for (n, 1)-categories in the context of quasi-categories. For an ∞-category C,
we denote its homotopy n-category by hnC. We will usually use the standard
notation h(C) to denote the usual homotopy category when n = 1. S will
denote the ∞-category of (small) spaces and S<n ⊂ S the full subcategory of
(n− 1)-truncated spaces. S<n is equivalent to an n-category.
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2 Higher weak (co)limits

2.1 Recollections

Higher weak (co)limits are simultaneously a higher categorical generalization of
ordinary weak (co)limits and a weakening of the notion of (co)limits in higher
categories. We review the definition of higher weak (co)limits and some of their
basic properties from [17, Section 3].
First we recall that a space (= Kan complex) X is k-connected, for some k ≥
−1, if it is non-empty and πi(X, x) ∼= 0 for every x ∈ X and i ≤ k. Every
space X is (−2)-connected. A space X is (−1)-connected (resp. 0-connected,
∞-connected) if it is non-empty (resp. connected, contractible).

Definition 2.1.1. Let C be an ∞-category and let t ≥ −1 be an integer or
t =∞.

(1) An object x ∈ C is called weakly initial of order t if the mapping space
mapC(x, y) is (t− 1)-connected for every object y ∈ C.

(2) An object x ∈ C is called weakly teminal of order t if the mapping space
mapC(y, x) is (t− 1)-connected for every object y ∈ C.

Proposition 2.1.2. Let C be an ∞-category and let t > 0 be an integer or
t = ∞. The full subcategory C′ of C which is spanned by the weakly initial
(resp. weakly terminal) objects of order t is either empty or a t-connected
∞-groupoid.
In particular, any two weakly initial (resp. weakly terminal) objects of order
t > 0 are equivalent. (This fails in general for t = −1, 0.)

Proof. See [17, Proposition 3.4, Remarks 3.5 and 3.8].

Lemma 2.1.3. Let p : C → D be a left or right fibration and let t ≥ −1 be an
integer or t = ∞. Then p has (t − 1)-connected fibers if and only if for every
0 ≤ k ≤ t, every lifting problem of the form

∂∆k C

∆k D

p

admits a diagonal filler.
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Proof. This generalizes [12, Lemma 2.1.3.4] which treated the case t =∞. The
same proof as in [12, Lemma 2.1.3.4] applies to the more general case.

Proposition 2.1.4. Let C be an ∞-category, x ∈ C an object, and let t ≥ −1
be an integer or t = ∞. We denote by p : Cx/ → C (resp. q : C/x → C) the
associated left (resp. right) fibration. Then the following hold:

(1) x ∈ C is weakly initial of order t if and only if every lifting problem, where
0 ≤ k ≤ t,

∂∆k Cx/

∆k C

p

admits a diagonal filler.

(2) x ∈ C is weakly terminal of order t if and only if every lifting problem,
where 0 ≤ k ≤ t,

∂∆k C/x

∆k C

q

admits a diagonal filler.

Proof. This follows directly from Lemma 2.1.3.

Definition 2.1.5. Let C be an∞-category,K a simplicial set, and let f0 : K →
C be a K-diagram in C.

(1) A weakly initial object f ∈ Cf0/ of order t is called a weak colimit of f0
of order t.

(2) A weakly terminal object f ∈ C/f0 of order t is called a weak limit of f0
of order t.

The following proposition gives several equivalent characterizations of higher
weak (co)limits.

Proposition 2.1.6. Let C be an ∞-category and let t ≥ −1 be an integer
or t = ∞. Let K be a simplicial set and let f : K⊲ → C be a cone on f0 =
f|K : K → C with cone object x ∈ C. We denote by p : Cf/ → Cf0/ the associated
left fibration. Then the following are equivalent:

(a) f is a weak colimit of f0 of order t.
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(b) The fibers of p : Cf/ → Cf0/ are (t− 1)-connected.

(c) For every object y ∈ C, the canonical restriction map

mapC(x, y) ≃ mapCK⊲ (f, cy)→ mapCK (f0, cy)

is t-connected. (cy denotes respectively the constant diagram at y ∈ C.)

(d) For 0 ≤ k ≤ t, every lifting problem

∂∆k Cf/

∆k Cf0/

p

admits a diagonal filler.

An analogous statement holds also for weak limits: Suppose that f : K⊳ → C

is a cone on f0 = f|K : K → C with cone object x ∈ C and let q : C/f → C/f0

denote the associated right fibration. Then the following are equivalent:

(a) f is a weak limit of f0 of order t.

(b) The fibers of q : C/f → C/f0 are (t− 1)-connected.

(c) For every object y ∈ C, the canonical restriction map

mapC(y, x) ≃ mapCK⊳ (cy, f)→ mapCK (cy, f0)

is t-connected. (cy denotes respectively the constant diagram at y ∈ C.)

(d) For 0 ≤ k ≤ t, every lifting problem

∂∆k C/f

∆k
C/f0

q

admits a diagonal filler.

Proof. (a) ⇔ (b) is obvious. For (a) ⇔ (c), see [17, Proposition 3.9]. (b) ⇔
(d) is an easy consequence of Lemma 2.1.3 (cf. Proposition 2.1.4).

Example 2.1.7. Every object x ∈ C is weakly initial (resp. weakly terminal)
of order (−1). More generally, any cone f : K⊳ → C (resp. f : K⊲ → C) on
a K-diagram f0 = f|K : K → C is a weak limit (resp. weak colimit) of f0 of
order (−1).

Documenta Mathematica 27 (2022) 1369–1420



1378 H. K. Nguyen, G. Raptis, C. Schrade

Example 2.1.8. Suppose that C is (the nerve of) an ordinary category. An
object x ∈ C is weakly initial (resp. weakly terminal) of order 0 if and only if x
is weakly initial (resp. weakly terminal) in the usual sense. Similarly, a weak
(co)limit in C of order 0 is exactly a weak (co)limit in the usual sense.

Example 2.1.9. An object x ∈ C is weakly initial (resp. weakly terminal) of
order ∞ if and only if x is initial (resp. terminal). A cone f : K⊳ → C (resp.
f : K⊲ → C) on a K-diagram f0 = f|K : K → C is a weak limit (resp. weak
colimit) of f0 of order ∞ if and only if f is a limit (resp. colimit) of f0.

Remark 2.1.10. The last example has the following useful variation; for sim-
plicity, we formulate this only for weak colimits. Suppose that C is an n-
category (see [12, 2.3.4]). If f : K⊲ → C is a weak colimit of f0 = f|K : K → C

of order t ≥ n, then f is a colimit diagram. This is because Cf0/ is an n-
category (see [12, Corollary 2.3.4.10]) and the mapping spaces in an n-category
are (n− 1)-truncated.

2.2 Weakly (co)complete n-categories

Weakly (co)complete n-categories determine a class of n-categories which
lies between weakly (co)complete (ordinary) categories and (co)complete ∞-
categories.

Definition 2.2.1. Let C be an ∞-category and let n ≥ 1 be an integer or
n =∞.

(1) C is a (finitely) weakly cocomplete n-category if C is an n-category which
admits small (finite) coproducts and weak pushouts of order (n− 1). In
this case, we also say that C is (finitely) weakly n-cocomplete.

(2) C is a (finitely) weakly complete n-category if C is an n-category which
admits small (finite) products and weak pullbacks of order (n − 1). In
this case, we also say that C is (finitely) weakly n-complete.

Note that a (finitely) weakly cocomplete ∞-category is (finitely) cocom-
plete and every (finitely) cocomplete n-category is also (finitely) weakly n-
cocomplete.
While it is convenient to state the definition in terms of (co)products and
pushouts/pullbacks, weakly (co)complete n-categories admit also further weak
(co)limits of variable orders. The following proposition explains more gener-
ally what other higher weak (co)limits can be deduced from the existence of
(co)products and higher weak pullbacks/pushouts.

Proposition 2.2.2. Let C be an ∞-category which admits small (finite) prod-
ucts (resp. coproducts) and weak pullbacks (resp. weak pushouts) of order t.
Then for every small (finite) simplicial set K of dimension d ≤ t+2, C admits
weak K-limits (resp. weak K-colimits) of order (t− d+ 1).
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Proof. This is shown by induction on the dimension d of the simplicial set K
using [17, Proposition 3.10]. We sketch the details for completeness. First,
the claim is obvious when K is empty and for d = 0 (and any t). Assume
by induction that the claim holds when the dimension is less than d and let
K → C be a K-diagram indexed by a d-dimensional small (finite) simplicial
set K, where 0 < d ≤ t+ 2. We have a pushout diagram

⊔
I ∂∆

d //

��

skd−1(K)

��⊔
I ∆

d // K

where I is the (small/finite) index set of the non-degenerate d-simplices of K.
By the inductive assumption, the respective restrictions of K → C to skd−1(K)
and

⊔
I ∂∆

d admit weak limits of order (t − (d − 1) + 1) ≥ 0. Moreover, the
composite diagram

⊔
I ∆

d → K → C admits a limit cone; this is given by
the product of the limits coming from each I-component ∆d → C, which exist
because ∆d has an initial object. Then the result follows from [17, Proposi-
tion 3.10]

The main motivation for the definition of (finitely) weakly cocomplete (resp.
complete) n-categories comes from the following class of examples.

Example 2.2.3. Let C be a (finitely) cocomplete (resp. complete)∞-category.
Then the homotopy n-category hnC is (finitely) weakly n-cocomplete (resp.
n-complete) [17, Proposition 3.20, Corollary 3.22].

We refer to [17, Sections 3 and 6.1–6.2] for more details about the properties
of higher weak (co)limits in higher homotopy categories.

Remark 2.2.4. It is important to observe the role of n in Definition 2.2.1
and how this definition singles out a distinguished class of n-categories which
is specific to each n ≥ 1. An n-category can always be regarded as an (n +
1)-category, but a weakly (finitely) cocomplete n-category C is not a weakly
(finitely) cocomplete (n+1)-category in general – this happens only when C is
(finitely) cocomplete.

2.3 Higher weak (co)limits and slice ∞-categories

It is generally known how to identify appropriate (co)limits in slice∞-categories
in terms of (co)limits in the underlying ∞-category. The purpose of this sub-
section is to establish analogous inheritance properties of higher weak colimits
under passing to appropriate slice ∞-categories.

Proposition 2.3.1. Let C be an ∞-category and let t ≥ 0 be an integer or
t = ∞. Let K be a d-dimensional simplicial set and f : K → C a K-diagram
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in C. We denote by p : Cf/ → C (resp. q : C/f → C) the associated left (resp.
right) fibration.

Let L be a simplicial set. Then the following statements hold:

(1) Assume that d ≤ t and suppose that g : L⊳ → Cf/ is a cone on g0 =
g|L : L→ Cf/ such that p ◦ g : L⊳ → C is a weak limit of p ◦ g0 of order t.
Then g is a weak limit of order (t− d− 1).

(2) Assume that d ≤ t and let g0 : L → Cf/ be an L-diagram. Suppose that

g : L⊳ → C is a weak limit of order t of the composition L
g0
→ Cf/

p
→ C.

Then we can lift g to a weak limit of g0 in Cf/ of order (t− d− 1).

(3) Suppose that g : L⊳ → Cf/ is a weak limit of order t of an L-diagram

g0 = g|L : L→ Cf/, where t ≥ 1. Assume that the diagram L
g0
→ Cf/

p
→ C

admits a weak limit of order (t + d + 1). Then this weak limit is given

(up to equivalence) by the composition L⊳
g
→ Cf/

p
→ C.

Analogous statements also hold for weak colimits in C/f :

(1) Assume that d ≤ t and suppose that g : L⊲ → C/f is a cone on g0 =
g|L : L → C/f such that q ◦ g : L⊲ → C is a weak colimit of q ◦ g0 of
order t. Then g is a weak colimit of order (t− d− 1).

(2) Assume that d ≤ t and let g0 : L → C/f be an L-diagram. Suppose that

g : L⊲ → C is a weak colimit of order t of the composition L
g0
→ C/f

q
→ C.

Then we can lift g to a weak colimit of g0 in C/f of order (t− d− 1).

(3) Suppose that g : L⊲ → C/f is a weak colimit of order t of an L-diagram

g0 = g|L : L → C/f , where t ≥ 1. Asume that the diagram L
g0
→ C/f

q
→ C

admits a weak colimit of order (t+d+1). Then this weak colimit is given

(up to equivalence) by the composition L⊲
g
→ C/f

q
→ C.

Proof. (1): By Proposition 2.1.6, it suffices to prove that for every diagram as
follows, where 0 ≤ k ≤ t− d− 1,

∂∆k (Cf/)/g

∆k (Cf/)/g0

there is a diagonal filler which makes the diagram commutative. Equivalently,
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it suffices to prove that the associated adjoint lifting problem

K ∗ ∂∆k
C/p◦g

K ∗∆k C/p◦g0

admits a diagonal filler. Note that the dimension of K ∗ ∆k is ≤ t. Then
Proposition 2.1.6(d) shows that a diagonal filler exists since p ◦ g is a weak
limit of order t in C by assumption.
(2): Using (1), we only need to show that we can lift g along p : Cf/ → C to a
cone on g0. By adjunction, this amounts to finding a diagonal filler that makes
the following diagram commutative:

∅ C/g

K C/p◦g0 .

Here the bottom morphism is defined by g0 and the right vertical map is the
canonical right fibration (note that p ◦ g0 = g|L). Since g is a weak limit of
order t and the dimension d of K is ≤ t, this diagonal filler exists by Proposi-
tion 2.1.6(d).

(3): Let h : L⊳ → C be a weak limit of L
g0
→ Cf/

p
→ C of order (t+d+1). By (2),

we may lift this along p to a weak limit h : L⊳ → Cf/ of order t. The two weak
limits h and g of g0 : L → Cf/ are of order ≥ 1 by assumption. Thus, they

must be equivalent by Proposition 2.1.2. As a consequence, the cone h is also
equivalent to the image of the weak limit g under p, that is, the composition

L⊳
g
→ Cf/

p
→ C.

Corollary 2.3.2. Let C be an ∞-category, x ∈ C an object, and let t ≥ 0
be an integer or t = ∞. We denote by p : Cx/ → C (resp. q : C/x → C) the
associated left (resp. right) fibration.

(1) Let L be a simplicial set and g0 : L→ Cx/ an L-diagram in Cx/. Then a
weak limit of p ◦ g0 : L→ C of order t lifts to a weak limit of g0 of order
(t− 1).

(2) Let L be a simplicial set and g0 : L→ C/x an L-diagram in C/x. Then a
weak colimit of q ◦ g0 : L → C of order t lifts to a weak colimit of g0 of
order (t− 1).

Remark 2.3.3. Consider the following special case (for L = ∅): If x ∈ C is

weakly initial of order t, then (x
id
→ x) ∈ C/x is weakly initial of order (t− 1) –
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this can easily be deduced directly from the definition of a weakly initial object.
This special case shows that the estimates of Corollary 2.3.2 are best possible
in general. For example, if C is (the nerve of) an ordinary category and x ∈ C is

weakly initial (of order 0), then (x
id
→ x) ∈ C/x is not weakly initial (of order 0)

in general (this happens, for example, in the case where C is the category of
non-empty sets and x is a set with two elements).

2.4 Higher weak (co)limits and pullbacks of ∞-categories

It is well known how (co)limits in pullbacks of ∞-categories (along (co)limit–
preserving functors) are related and induced from (co)limits in the correspond-
ing ∞-categories (see, for example, [12, Lemma 5.4.5.5]). The following propo-
sition establishes an analogous property for higher weak (co)limits in pullbacks
of ∞-categories.

Proposition 2.4.1. Let K be a simplicial set and let

A B

C D

γ

β

ψ

φ

be a homotopy pullback of ∞-categories (with respect to the Joyal model struc-
ture). Suppose that B and C admit weak K-limits of orders tB and tC respec-
tively, and φ sends weak K-limits of order tC to weak K-limits of order tD.

Let t := min(tB, tC, tD − 1) and let H0 : K → A be a K-diagram in A.

(1) A cone H : K⊳ → A is a weak limit of H0 of order t if β ◦H : K⊳ → B

is a weak limit of β ◦H0 of order tB and γ ◦H : K⊳ → C is a weak limit
of γ ◦H0 of order tC. The converse also holds if t ≥ 1 and ψ sends weak
K-limits of order tB to weak K-limits of order tD.

(2) Suppose that tD ≥ 1 and ψ sends weak K-limits of order tB to weak
K-limits of order tD. Then A admits weak K-limits of order t.

An analogous dual statement holds also for weak colimits in A.

Proof. We will apply the characterization of higher weak (co)limits from Propo-
sition 2.1.6(c). Let x ∈ A be the cone object of the cone H and let a ∈ A be
an arbitrary object. Then we have the following diagram in the ∞-category of
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spaces, in which the two horizontal squares are pullback squares:

mapA(a, x) mapB(β(a), β(x))

mapC(γ(a), γ(x)) mapD(φ(γ(a)), φ(γ(x)))

map
AK (ca, H0) map

BK (cβ(a), βH0)

map
CK (cγ(a), γH0) map

DK (cφ(γ(a)), (φγ)H0).

The vertical maps are the canonical maps from Proposition 2.1.6(c). The bot-
tom square is a pullback because A

K is a homotopy pullback of the induced
diagram of ∞-categories: (CK → DK ← BK). By assumption and Proposi-
tion 2.1.6, the three front/solid vertical maps are tC-connected, tD-connected,
and tB-connected, respectively. Contemplating the long exact sequence of ho-
motopy groups (for pullbacks of spaces) shows that the last (dashed) vertical
map is t-connected. This proves the first part of (1).

For the converse in (1), suppose that H : K⊳ → A is a weak K-limit of H0

of order t. Since t ≥ 1, by assumption, it follows that tB, tC, tD ≥ 1. Let
H ′ : K⊳ → B be a weak K-limit of β ◦H0 of order tB and H ′′ : K⊳ → C a weak
K-limit of γ ◦ H0 of order tC. By assumption, the cones ψ ◦ H ′ and φ ◦ H ′′

are weak K-limits of order ≥ 1, and therefore, by Proposition 2.1.2, they are
equivalent. Then H ′, H ′′ and ψ◦H ′ ≃ φ◦H ′′ induce a cone H̃ : K⊳ → A on H0.
Using (1), H̃ is a weak K-limit of H0 of order t. Since t ≥ 1, Proposition 2.1.2

implies that the cones H and H̃ are equivalent and then the desired result
follows.

For (2), suppose that H0 : K → A is a K-diagram in A. Proceeding as in the
previous argument above, we may extend this to a cone H : K⊳ → A such that
β ◦H is a weak K-limit of β ◦H0 of order tB and γ ◦H is a weak K-limit of
γ ◦H0 of order tC. Then it follows from (1) that H : K⊳ → A is a weak K-limit
of H0 of order t, proving (2).

Remark 2.4.2. In the proof of the first part of Proposition 2.4.1(1), we do not
need the assumption that B and C admit general weak K-limits (of orders tB
and tC).

Corollary 2.4.3. Let K be a simplicial set and let D be an ∞-category which
admits weak K-limits of order t, where t ≥ 0 is an integer or t =∞. Suppose
that G : D → C is a functor that preserves weak K-limits of order t. Then
the ∞-category Gx/ has weak K-limits of order (t − 1) for any object x ∈ C.
(There is an analogous dual statement for weak colimits in G/x.)

Proof. We recall that the ∞-category Gx/ is defined by the (homotopy) pull-
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back:

Gx/ Cx/

D C.

q p

G

Let H0 : K → Gx/ be a K-diagram. By assumption, the induced diagram
q ◦H0 in D has a weak limit H ′ : K⊳ → D of order t. Since G preserves weak
K-limits of order t, the cone G◦H ′ : K⊳ → C is again a weak K-limit of order t.
By Corollary 2.3.2, there is a lift of G ◦H ′ to a weak K-limit H ′′ : K⊳ → Cx/

of order (t − 1). The cones H ′ and H ′′ induce a cone H : K⊳ → Gx/ on H0.
Finally, by applying Proposition 2.4.1 (and Remark 2.4.2), we conclude that
the induced cone H : K⊳ → Gx/ is a weak K-limit of H0 of order (t− 1).

Remark 2.4.4. Similarly to Remark 2.3.3, it is easy to see that the estimate
in Corollary 2.4.3 is best possible in general (consider, for example, the case
where G : ∆0 → C is the inclusion of a weakly terminal object of order 0
and K = ∅). For a different example, suppose that D is (the nerve of) an
ordinary category with weak pushouts (of order 0) and let G : Dop → Set be a
representable functor. Note that G preserves weak pullbacks (of order 0). Then
the category G∗/, that is, the category of elements associated to G, admits only
weak pullbacks of order (−1) in general, that is, cones of this type exist but
have no additional properties.

3 Adjoint functor theorems

3.1 Adjoint functors

We recall the definition of adjoint functors between ∞-categories as well as
some standard criteria for recognising adjoint functors (see [12, 5.2] and [6,
Chapter 6] for a detailed exposition).

For a map of simplicial sets q : M → ∆1 we write M0 (resp. M1) for the fiber
over 0 ∈ ∆1 (resp. the fiber over 1 ∈ ∆1). The map q is called bicartesian if it
is both cartesian and cocartesian. Note that in this case q determines functors
M0 →M1 and M1 →M0, essentially uniquely.

Definition 3.1.1. Let C and D be ∞-categories. An adjunction between C

and D consists of a bicartesian fibration q : M→ ∆1 and equivalences C ≃M0

and D ≃M1. These data determine functors, essentially uniquely,

F : C→ D

and

G : D→ C.

Then we say that F is left adjoint to G (resp. G is right adjoint to F ).
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A different characterization of adjoint functors between ∞-categories, which is
analogous to the usual definition of an adjunction in ordinary category theory,
is as follows: Given a pair of functors F : C ⇄ D : G, F is left adjoint to G if
and only if there is a natural transformation

u : idC → G ◦ F

such that the composition

mapD(F (c), d)
G
→ mapC(G(F (c)), G(d))

u∗

→ mapC(c,G(d))

is a weak equivalence for all c ∈ C and d ∈ D. The natural transformation u

is the unit transformation of the adjunction and it can be constructed using
the bicartesian properties of the adjunction (see [12, Proposition 5.2.2.8]). If it
exists, an adjoint of a functor is uniquely determined [12, Proposition 5.2.6.2].

We will make use of the following useful characterizations for the recognition
of adjoint functors.

Proposition 3.1.2. Let G : D → C be a functor between ∞-categories. Then
the following are equivalent:

(1) The functor G admits a left adjoint.

(2) The ∞-category Gc/ has an initial object for every object c ∈ C.

(3) The functor
mapC(c,G(−)) : D→ S

is corepresentable for every object c ∈ C.

Dually, we have the following statement:
Let F : C → D be a functor between ∞-categories. Then the following are
equivalent:

(1) The functor F admits a right adjoint.

(2) The ∞-category F/d has a terminal object for every object d ∈ D.

(3) The functor
mapD(F (−), d) : Cop → S

is representable for every object d ∈ D.

Proof. This characterization is obtained in [6, Proposition 6.1.11]. It is also
a reformulation of [12, Lemma 5.2.4.1] using [12, Proposition 4.4.4.5] and [12,
Propositions 4.2.1.5 and 4.2.1.6].

Left adjoint functors preserve colimits and right adjoint functors preserve limits
(see [12, Proposition 5.2.3.5], [6, Proposition 6.2.15]). As the next proposition
shows, this property of adjoint functors extends to higher weak (co)limits.
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Proposition 3.1.3. Let F : C ⇄ D : G be an adjunction between ∞-categories.
Let K be a simplicial set and let t ≥ −1 be an integer or t = ∞. Then the
following hold:

(1) The left adjoint functor F preserves weak K-colimits of order t.

(2) The right adjoint functor G preserves weak K-limits of order t.

Proof. We just prove (1), since the proof of (2) is completely analogous. Let
H : K⊲ → C be a weak colimit of order t on a diagram H0 := H |K : K → C; let
x ∈ C denote the cone object of H . Recall that the adjunction F : C ⇄ D : G
induces an adjunction on functor ∞-categories:

FX : CX ⇄ D
X : GX

for any simplicial set X . Moreover, the adjunction equivalences on mapping
spaces are natural in X (see [6, Theorem 6.1.22]). This implies that for every
object y ∈ D there is commutative diagram in the homotopy category of spaces
as follows,

mapD(F (x), y) mapDK⊲ (F ◦H, cy) mapDK (F ◦H0, cy)

mapC(x,G(y)) mapCK⊲ (H, cG(y)) mapCK (H0, cG(y)),

≃ ≃

≃

≃

≃

where the vertical maps are the adjunction equivalences, the left horizontal
maps are the restrictions along the inclusion of the cone point, and the right
horizontal maps are the restrictions along the inclusion K ⊂ K⊲; cy (resp.
cG(y)) denotes the constant diagram at y ∈ D (resp. G(y) ∈ C). By Proposi-
tion 2.1.6, the lower horizontal composition is t-connected, therefore the upper
horizontal composition is also t-connected. Applying Proposition 2.1.6 again,
we conclude that the cone F ◦H : K⊲ → D is a weak colimit of order t on the
diagram F ◦H0 : K → D.

3.2 Criteria for the existence of initial objects

In this subsection, we will establish some general criteria for the existence
of initial objects in an n-category. These criteria are essentially refinements
and direct generalizations of analogous criteria that appeared in our previous
work [16], but there are also some interesting differences, especially, in the
proofs of these generalizations. Based on the characterizations of adjoint func-
tors in Proposition 3.1.2, the criteria of this subsection will be used later to
obtain new adjoint functor theorems for n-categories. As usual, there are dual
statements to the results of this section, concerning criteria for the existence
of terminal objects as well as corresponding dual adjoint functor theorems; we
will refrain from stating these explicitly in order to simplify the exposition.

We begin by defining the following properties of objects in an∞-category which
are weak versions of the property of being an initial object (cf. [16, Section 2]).
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Definition 3.2.1. Let C be an ∞-category.

(1) A collection of objects S in C is called weakly initial if for every object
y ∈ C, there is x ∈ S such that mapC(x, y) is non-empty. An object x ∈ C

is weakly initial if the set S = {x} is weakly initial. (In other words, x is
weakly initial in C of order 0.)

(2) An object x ∈ C is hypoinitial if there is a cone Cx : C
⊳ → C on the

identity id : C→ C with cone object x.

(3) An object x ∈ C is h-initial if x is weakly initial of order 1, that is, if the
mapping space mapC(x, y) is non-empty and connected for any y ∈ C.

We collect below some easy observations about the comparison between these
different notions:

(a) Every initial object satisfies the properties in (1)–(3) above. (For (2), see
also Proposition 3.2.7.)

(b) Every hypoinitial or h-initial object is also weakly initial.

(c) An object in C is h-initial if and only if it is initial in h(C).

Example 3.2.2. Let C be an ∞-category with an initial object 0. Then an
object x ∈ C is hypoinitial if (and only if) there is a morphism f : x → 0
in C. To see this, it suffices to consider the limit cone C⊳ → C on the identity
id : C → C with cone object 0 and form the essentially unique cone which is
obtained by precomposition with the morphism f . Thus, a hypoinitial object
need not be initial or h-initial in general.

Example 3.2.3. Let C be the (ordinary) category of non-empty sets. Then
every object x ∈ C is weakly initial, but C does not contain any hypoinitial or
(h-)initial objects. To see this, note that if Cx : C

⊳ → C were a cone manifesting
x ∈ C as a (hypo)initial object, then each of its components Cx(y) : x→ y would
have to factor through every inclusion {∗} → y, which is impossible. Thus, a
weakly initial object does not ensure the existence of a hypoinitial object in
general.

Example 3.2.4. Let C be the (ordinary) category of pointed sets which contain
at least two elements. Every object x ∈ C is hypoinitial (and therefore also
weakly initial) because x is the cone object of the cone with zero maps as
components. However, C does not have an initial object.

The previous elementary examples demonstrate some of the basic differences
between these different notions. Our goal in this subsection is to prove that
a weakly initial (resp. hypoinitial, h-initial) object implies under appropriate
assumptions the existence of an initial object. These will provide useful criteria
for the existence of initial objects.

The first criterion is concerned with the comparison between h-initial and initial
objects (cf. [16, Proposition 2.2.2]).
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Lemma 3.2.5 (Criterion A). Let C be an n-category, where n ≥ 1 is an integer
or n = ∞. Suppose that C admits weak K-limits of order 0 for every finite
simplicial set K of dimension ≤ n− 1. Then an object x ∈ C is h-initial in C

if and only if x ∈ C is initial in C.

Proof. An initial object is obviously h-initial. For the converse, let x ∈ C be
an h-initial object and let y ∈ C be an arbitrary object. We are required to
prove that the mapping space mapC(x, y) is contractible. Since C is an n-

category, it is enough to show that mapC(x, y)
Sk

is connected for 0 ≤ k < n.
By assumption, the objects of C admit weak cotensors with Sk (of order 0) for
all 0 ≤ k < n. (See [12, 4.4.4] for the dual notion of tensoring with a space
defined as an example of a colimit.) In other words, using Proposition 2.1.6,
this means that for each such k ≤ n − 1, the constant Sk-diagram at y ∈ C

admits a cone with cone object yS
k
w , such that the following canonical map is

surjective:

π0(mapC(x, y
Sk
w ))→ π0(mapC(x, y)

Sk

).

Since x ∈ C is h-initial, the domain of this surjective map is a singleton. This
implies that the target must also be a singleton, which means that the space

mapC(x, y)
Sk

is connected.

Example 3.2.6. Suppose that C is an n-category which admits finite products
and weak pullbacks of order (n− 2). Then, by Proposition 2.2.2, for any finite
simplicial set K of dimension d, the n-category C admits weakK-limits of order
(n− 1− d). In particular, C satisfies the assumptions of Lemma 3.2.5.

The comparison between the notions of initial and hypoinitial objects is ex-
plained further in the following proposition. We denote by N

op the opposite
category associated with the poset of non-negative integers with its usual or-
dering.

Proposition 3.2.7. Let C be an ∞-category.

(1) An object x ∈ C is initial if and only if there is a cone Cx : C
⊳ → C on

the identity id : C → C with cone object x ∈ C, such that the component
at x, that is, the associated morphism in C,

Cx(x) : x→ x,

is an equivalence. Moreover, in this case, the cone Cx is a limit of the
identity id : C→ C.

(2) Suppose that x ∈ C is hypoinitial and let Cx : C
⊳ → C be a cone on the

identity id : C → C with cone object x. Then the component of Cx at
x ∈ C, that is, the associated morphism

Cx(x) : x→ x,

is an idempotent in C.
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(3) Suppose that C admits weak N
op-limits of order 1. Then C has a hypoini-

tial object if and only if C has an initial object.

Proof. (1) The first claim follows from [11, Proposition 4.2] or [18, Lemma 4.2.3]
(see also [16, Proposition 2.1.1]). The second claim is shown in [16, Proposi-
tion 2.1.1].

(2): Let Idem denote the nerve of the category with one object X and one
(non-identity) idempotent morphism e : X → X as defined in [12, 4.4.5]. We
are required to construct a functor Idem → C which sends X to x ∈ C and e

to the morphism Cx(x). This functor will be constructed inductively on the
skeletal filtration of Idem. The simplicial set Idem contains exactly one non-
degenerate simplex σn in each simplicial degree n ≥ 0; σn corresponds to the
string of n copies of e. Note that each of the faces of σn, n ≥ 1, is given by the
(n− 1)-simplex σn−1.
First we define a diagram F (1) : sk1(Idem) → C that sends σ0 (i.e., the object
X) to x ∈ C and σ1 (i.e., the morphism e) to Cx(x). For n > 1, assuming
that the diagram F (n−1) : skn−1(Idem) → C has already been constructed, we
define an extension

F (n) : skn(Idem)→ C

by sending σn to the following n-simplex of C:

F (n)(σn) : ∆
n ∼= ∆0 ∗∆n−1 id∗F (n−1)(σn−1)

−−−−−−−−−−−→ ∆0 ∗ C
Cx−−→ C.

By the definition of this inductive process, we observe that the faces of F (n)(σn)
are given by F (n−1)(σn−1), therefore F (n) is well-defined. This completes the
inductive construction of F (n) : skn(Idem) → C for all n ≥ 0. Passing to
the colimit of the skeletal filtration of Idem, we obtain the required functor
F : Idem→ C.

(3): It follows from (1) that every initial object is hypoinitial. Conversely, let
x ∈ C be a hypoinitial object and let Cx : C

⊳ → C be a cone on the identity
id : C → C with cone object x. We denote by e : x → x the component of Cx
at x ∈ C.
Let Spine∞ denote the infinite spine

Spine∞ := ∆1 ∐∆0 ∆1 ∐∆0 ...,

and note that this is Joyal equivalent to N. Using our assumptions on C, the
Spineop∞-diagram in C,

E : · · · x x x,
e e e

admits a weak limit of order 1, denoted by

yE : (Spineop∞)⊳ → C,
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where y ∈ C is the cone object. We will show that y ∈ C is an initial object
using the characterization in (1). The 0-th/bottom component of the cone yE

is a morphism
i : y → x

(Since e is idempotent by (2), it is easy to show that any other component
of yE is canonically identified with i. In particular, [i] = [e] ◦ [i] in h(C).) We
may postcompose i with the cone Cx to obtain a new cone on the identity
id : C→ C, denoted by

Cy : C
⊳ → C,

whose cone object is y ∈ C. In particular, y is hypoinitial. Therefore, by (1),
it suffices to show that the component Cy(y) : y → y of the cone Cy at y is an
equivalence. Let Cy(x) : y → x denote the component of Cy at x. It follows
by direct inspection that [Cy(x)] = [e] ◦ [i], as a consequence of the definition
of Cy. But [e] ◦ [i] = [i], so [Cy(x)] = [i].
Consider a new cone xE on E, defined by

xE : ∆0 ∗ Spineop∞
id∗E
−−−→ ∆0 ∗ C

Cx−−→ C

whose cone object is x ∈ C. Moreover, the cone xE is a weak limit of E of
order 0. To see this, we appeal to the characterization of Proposition 2.1.6 and
claim that the canonical map (defined by the cone xE)

mapC(z, x)→ limSpineop∞mapC(z, x) (*)

is 0-connected for any z ∈ C. This holds because the canonical map (*) can
be identified up to homotopy with the retraction associated with the idempo-
tent on the space mapC(z, x) which is defined by composition with e (see [12,
4.4.5.10–4.4.5.15] for more details).
There is a morphism (unique up to homotopy) of cones xE → yE defined by
the following diagram:

∆0 ∗ (∆0 ∗ Spineop∞)
id∗yE
−−−−→ ∆0 ∗ C

Cx−−→ C.

Let r : x → y denote the associated morphism between cone objects. (By
construction, this is just Cx(y). In particular, we have [e] = [i] ◦ [r].)
There is also a morphism of cones yE → xE, since xE is a weak limit of
order 0. This morphism may not be unique, but we may choose this so that
the associated morphism of cone objects is i : y → x. To see this, note that
precomposition of xE with i defines a cone yE′ with cone object y, as well as
a morphism of cones yE′ → xE. In order to identify yE′ and yE, we observe
that the space of cones on E with cone object y is given by the retract

limSpineop∞mapC(y, x) ⊆ mapC(y, x).

Thus, two such cones are equivalent if and only if their components are homo-
topic. This is obviously satisfied by the pair of cones yE′ and yE.
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The composite morphism yE → xE → yE is (non-canonically) equivalent to
the identity morphism, since yE is a weak limit of order 1. In particular,
[r] ◦ [i] = idy.
Combining these observations, we conclude the following identification ofCy(y):

[Cy(y)] = [r] ◦ [Cy(x)] = [r] ◦ [i] = idy.

In particular, Cy(y) is an equivalence, and therefore y is initial in C by the
characterization in (1).

Example 3.2.8. Example 3.2.4 shows that the additional assumption in Propo-
sition 3.2.7(3) is required.

The following statement provides conditions under which a weakly initial set
implies the existence of a hypoinitial object. Moreover, combined with Propo-
sition 3.2.7, it gives our second criterion for the existence of initial objects.

Lemma 3.2.9 (Criterion B). Let C be a locally small n-category, where n ≥ 1
is an integer or n =∞. Suppose that C has small products and weak pullbacks
of order (n− 2). Then the following statements hold:

(1) C has a small weakly initial set if and only if C has a hypoinitial object.

(2) Suppose that C has weak N
op-limits of order 1. Then C has a small weakly

initial set if and only if C has an initial object.

For the proof of Lemma 3.2.9, we will need the following technical fact which
is a generalization of [12, Lemma 5.4.5.10]. First we recall some terminology.
We say that a functor F : C → D between ∞-categories is a (categorical) n-
equivalence if the induced functor hn(F ) : hnC → hnD is an equivalence of n-
categories. More generally, we say that a map f : X → Y of simplicial sets is a
categorical n-equivalence if it induces an n-equivalence between the associated
∞-categories, that is, after fibrant replacement in the Joyal model category.
The class of n-equivalences of simplicial sets defines a left Bousfield localization
of the Joyal model category whose fibrant objects are the ∞-categories which
are equivalent to an n-category (see [5]).

Lemma 3.2.10. Let X be an (n− 1)-connected simplicial set, n ≥ 1. Then the
canonical inclusion map

j : ∆0 ∗X ∪X X ∗∆0 → ∆0 ∗X ∗∆0

is a categorical n-equivalence.

For the proof of Lemma 3.2.10, we will make use of the model for mapping
spaces which was introduced and developed in the work of Dugger–Spivak [7, 8].
We recall that a necklace is a simplicial set of the form

T = ∆n0 ∨∆n1 ∨ · · · ∨∆nk
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where ni ≥ 0 and where the final vertex of ∆ni is identified with the initial
vertex of ∆ni+1 for each 0 ≤ i ≤ k − 1. Every necklace T is equipped with a
map ∂∆1 → T which sends 0 to the initial vertex α of the necklace T and 1 to
the final vertex ω ∈ T . The category N ec of necklaces is the full subcategory
of SSet∗,∗ = (∂∆1 ↓ SSet) which is spanned by the necklaces. In other words, a
map of necklaces is a map between the underlying simplicial sets that preserves
both basepoints.

Let SCat denote the category of simplicial categories (or simplicially enriched
categories) and let C : SSet→ SCat denote the left adjoint of the coherent nerve
functor N∆ (see [12, 1.1.5], [7]). By [7, Theorem 5.3], given a simplicial set X
and x, y ∈ X , there is a canonical (zigzag of) weak equivalence(s) of simplicial
sets:

Map
C(X)(x, y) ≃ N(N ec ↓ Xx,y) (*)

where (Xx,y : ∂∆
1 → X) ∈ SSet∗,∗ denotes the simplicial set X with x, y ∈ X

as basepoints – sending 0 ∈ ∂∆1 to x and 1 ∈ ∂∆1 to y – and N(N ec ↓ Xx,y)
is the usual nerve of the ordinary slice category of necklaces over the object
Xx,y ∈ SSet∗,∗ (this is the same as J/Xx,y

where J : N ec→ SSet∗,∗ denotes the
inclusion functor).

Moreover, as a consequence of fundamental well-known properties of the ad-
junction (C, N∆), the mapping space Map

C(X)(x, y) is canonically weakly equiv-
alent to the mapping space from x to y in the ∞-category associated to X (see
[12, 2.2], [8]).

Proof of Lemma 3.2.10. Consider the induced functor between the associated
simplicial categories

C(j) : M = C(∆0 ∗X ∪X X ∗∆0)→ N = C(∆0 ∗X ∗∆0)

where C is the rigidification functor which is left adjoint to the coherent nerve
functor N∆. Based on well-known properties of the adjunction (C, N∆) [12, 8],
the claim in the lemma is equivalent to the claim that the functor C(j) is
essentially surjective and induces π∗-equivalences on all mapping spaces for
∗ ≤ (n− 1) (and all basepoints).

The functor C(j) is bijective on objects. The set of objects consists of the left
cone object 0, the 0-simplices x ∈ X , and the right cone object 1. The mapping
spaces of N are easy to identify:

(i) MapN(0, x) is weakly contractible for any x ∈ X .

(ii) MapN(x, 1) is weakly contractible for any x ∈ X .

(iii) For x, y ∈ X , MapN(x, y) is equivalent to the mapping space in the ∞-
category associated with X .

(iv) MapN(0, 1) is weakly contractible.
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To see (i)–(iv), it suffices to identify these mapping spaces with the mapping
spaces in the ∞-category ∆0 ∗ C ∗ ∆0 where C denotes a fibrant replacement
of X in the Joyal model category; this also uses well-known properties of the
adjunction (C, N∆) (see [12, 2.2], [8]).
On the other hand, the mapping spaces of the simplicial category

M = C(∆0 ∗X ∪X X ∗∆0) ∼= C(∆0 ∗X) ∪C(X) C(X ∗∆
0)

are identified as follows:

(i)′ MapM(0, x) is weakly contractible for any x ∈ X .

(ii)′ MapM(x, 1) is weakly contractible for any x ∈ X .

(iii)′ For x, y ∈ X , MapM(x, y) is equivalent to the mapping space in the
∞-category associated with X .

To see (i)′–(iii)′, it suffices to observe that these mapping spaces in the pushout
M agree with the corresponding mapping spaces in C(∆0 ∗X), C(X), or C(X ∗
∆0), and the latter mapping spaces can be identified similarly to (i)–(iv) above.
Moreover, it is easy to see from the identifications in (iii) and (iii)′ that C(j)
induces weak equivalences on mapping spaces MapM(x, y) ≃ MapN(x, y) for
all x, y ∈ X .
The situation is different for the mapping space MapM(0, 1), which is not
weakly contractible in general. In order to identify this mapping space, we
will make use of the model via necklaces (*) from [7]. Let us write X̃0,1 for
∆0 ∗ X ∪X X ∗ ∆0 equipped with the two basepoints given by the cone ob-
jects. According to [7, Theorem 5.3], the mapping space MapM(0, 1) is weakly
equivalent to

N(N ec ↓ X̃0,1).

Let N ec′ denote the full subcategory of SSet which is spanned by necklaces
(after forgetting the basepoints). There is a functor ψ : (N ec ↓ X̃0,1)→ (N ec′ ↓

X) which sends (T, b : T → X̃0,1) to (TX = b−1(X), b|TX
: TX → X) – note

that TX is a full connected simplicial subset of T and therefore again a necklace.
We claim that the induced map

N(ψ) : N(N ec ↓ X̃0,1)→ N(N ec′ ↓ X)

is a weak equivalence of simplicial sets. By Quillen’s Theorem A (see, for
example, [12, Corollary 4.1.3.3]), it suffices to prove that for every (S, q : S →
X) ∈ (N ec′ ↓ X), the slice category ψ/(S,q) has weakly contractible nerve.
This slice category can be identified more explicitly as follows. Let us write
S̃0,1 = ∆0 ∗ S ∪S S ∗ ∆0 for brevity (with basepoints given by the two cone
objects). Then we consider the following functors:

The functor ν : ψ/(S,q) −→ (N ec ↓ S̃0,1). An object in ψ/(S,q) is given by

an object (T, b : T → X̃0,1) in (N ec ↓ X̃0,1) together with a morphism in
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(N ec′ ↓ X):

TX = b−1(X)
u //

b|TX
%%▲

▲▲
▲▲

▲▲
▲▲

▲
S

q
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

X.

The functor ν sends an object (T, b;u) to the object (T, c : T → S̃0,1) in (N ec ↓

S̃0,1) defined by

c : T → ∆0 ∗ TX ∪TX TX ∗∆
0 id∗u∪u∗id
−−−−−−→ ∆0 ∗ S ∪S S ∗∆

0 = S̃0,1

where the first map sends b−1(0) to 0, b−1(1) to 1, and it is the canonical
inclusion on TX . (It is helpful to recall here that the join functor ∗ : SSet/∂∆1 →
SSet/∆1 is the right adjoint of the pullback functor i∗ : SSet/∆1 → SSet/∂∆1 ,
where i : ∂∆1 → ∆1 is the boundary inclusion.)

The functor µ : (N ec ↓ S̃0,1) −→ ψ/(S,q). This sends an object (T, c : T → S̃0,1)
to the object (T, b;u) which consists of

(T, b : T
c
−→ S̃0,1

id∗q∪q∗id
−−−−−−→ X̃0,1) ∈ (N ec ↓ X̃0,1)

and the morphism in (N ec′ ↓ X):

TX = c−1(S)

b|TX
%%▲

▲▲
▲▲

▲▲
▲▲

▲

c|c−1(S)
// S

q
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

X.

It is easy to see that the functors ν and µ are inverse equivalences of categories.
As a consequence, N(ψ/(S,q)) ≃ N(N ec ↓ S̃0,1). The simplicial set N(N ec ↓

S̃0,1) models the mapping space from 0 to 1 in (the ∞-category associated
to) ∆0 ∗ S ∪S S ∗ ∆0. Using [12, Lemma 5.4.5.10], this mapping space is
weakly contractible since the necklace S is weakly contractible. It follows that
N(ψ/(S,q)) is weakly contractible for every (S, q) ∈ (N ec′ ↓ X), and therefore,

N(ψ) : N(N ec ↓ X̃0,1)→ N(N ec′ ↓ X) is a weak equivalence, as claimed.
Lastly, it remains to identify N(N ec′ ↓ X). There is an inclusion functor

τ : (∆ ↓ X)→ (N ec′ ↓ X)

of those necklaces in X of the form ∆k → X . We claim that τ induces a weak
equivalence of simplicial sets after passing to the nerves. By Quillen’s Theo-
rem A (see, for example, [12, Corollary 4.1.3.3]), it suffices to prove that the slice
category τ/(T,b) has weakly contractible nerve for every object (T, b : T → X)
in (N ec′ ↓ X). Note that this slice category can be identified with the slice
category (∆ ↓ T ). Since N(∆ ↓ T ) is weakly equivalent to T and T is weakly

Documenta Mathematica 27 (2022) 1369–1420



AFTs and Higher Brown Representability 1395

contractible, we can then conclude that N(τ) is a weak equivalence. Also, the
simplicial set N(∆ ↓ X) is weakly equivalent to X .
In conclusion, the mapping space MapM(0, 1) is weakly equivalent to X .
Since X is (n − 1)-connected by assumption, this completes the proof of the
lemma.

We are now ready to prove Lemma 3.2.9 (Criterion B) on the comparison
between weakly initial sets and (hypo)initial objects.

Proof of Lemma 3.2.9 (Criterion B). We first prove (1). As remarked
earlier, a hypoinitial object is clearly weakly initial, so one direction is obvious.
Conversely, suppose that C has a small weakly initial set S. We denote by CS

the full subcategory of C which is spanned by the objects in S. Note that CS

is essentially small since C is locally small. We will prove the following two
claims:

(i) The inclusion ι : CS → C admits a cone ι⊳ : C⊳S → C.

(ii) The inclusion ι : CS → C is coinitial (see [12, 4.1.1], [16, 2.4] for the
definition and properties of coinitial maps).

Assuming (ii), it follows that the canonical “restriction” functor C/id → C/ι is
an equivalence of ∞-categories. Assuming (i), there is a cone ι⊳ which defines
an object in C/ι. Then this can be lifted to an object in C/id, that is, a cone
on the identity id : C→ C, as required. Thus, the proof of (1) will be complete
once we prove (i) and (ii).

Proof of (i). Since C admits small products and weak pullbacks of order (n−2),
it follows by Proposition 2.2.2 that every diagram K → C, where K is a small
simplicial set of dimension ≤ n, admits a cone. Without loss of generality, we
may assume that CS is small. Then there exists a cone F : ∆0 ∗ skn(CS) → C

on the restriction of ι to the n-skeleton of CS ,

skn(CS) ⊂ CS
ι
−→ C.

In order to extend this cone to a cone on ι, we need to find a diagonal filler in
the following diagram:

∆0 ∗ skn(CS) ∪skn(CS) CS C.

∆0 ∗ CS

This extension problem is (uniquely) solvable, since C is an n-category and
∆0 ∗ CS is obtained from ∆0 ∗ skn(CS) ∪skn(CS) CS by attaching simplices of
dimension ≥ n+ 2. This proves (i).

Proof of (ii). By [12, Theorem 4.1.3.1], the claim is equivalent to the claim
that the slice ∞-category ι/x is weakly contractible for every x ∈ C. For this,
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it suffices to prove the following assertion: every map K → ι/x, where K is a
finite simplicial set, factors through a weakly contractible simplicial set. We
will first prove this assertion in two special cases: (a) when the dimension of K
is less than n, and (b) when K is (n − 1)-connected; then we will deduce the
general case for a finite simplicial set K.
Case (a): Suppose that the dimension ofK is < n. Our assumptions on C imply
that every L-diagram L → C, where L is a small simplicial set of dimension
≤ n, admits a cone (see Proposition 2.2.2). We claim that for every K-diagram
f : K → ι/x, there is an extension ∆0 ∗ K → ι/x. Let f : K → ι/x be such a
diagram and consider the corresponding K-diagram in C/x,

K
f
−→ ι/x = CS ×C C/x

ι′
−→ C/x.

The adjoint of ι′f is a (right) cone K ∗∆0 → C in C with cone object x ∈ C.
Since the dimension of K ∗∆0 is ≤ n, the last conic diagram extends to a (left)
cone F : ∆0 ∗K ∗∆0 → C. Then the adjoint of F , also denoted here by

F : ∆0 ∗K → C/x,

is a cone on ι′f with some (underlying) cone object y ∈ C. Since S is weakly
initial in C, there is s ∈ S and a morphism u : s→ y in C. Precomposition of F
with the morphism u yields a new (left) cone on ι′f ,

Fs : ∆
0 ∗K → C/x,

with cone object s ∈ S. Since CS is a full subcategory of C, the diagram

∆0 ∗K
Fs−→ C/x

q
−→ C

factors through the inclusion CS ⊂ C. Thus, the cone Fs lifts to a cone on f ,

∆0 ∗K → ι/x,

which proves the claim. The simplicial set ∆0 ∗ K is weakly contractible, so
this concludes the proof in Case (a).
Case (b): Suppose that K is (n−1)-connected. It follows from our assumptions
on C that any L-diagram L→ C, where L is a small simplicial set of dimension
≤ n, admits a cone (see Proposition 2.2.2). In fact, this conclusion holds for
any small simplicial set L and L-diagram f : L→ C. To see this, note that the

composite diagram skn(L) ⊂ L
f
−→ C admits a cone by Proposition 2.2.2, and

this cone can then be extended to a cone on f using that C is an n-category and
the same argument as in the proof of (i) above. So for any map f : K → ι/x,
the composite map

K
f
−→ ι/x

q′

−→ CS
ι
−→ C (*)

admits a cone F : ∆0 ∗ K → C. Here q′ : ι/x = CS ×C C/x → CS denotes the
right fibration which is the pullback of the canonical right fibration q : C/x → C.
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Let y ∈ C denote the cone object of F . Since S is weakly initial, there is s ∈ S
and a morphism u : s → y in C. This morphism can be extended essentially
uniquely to a morphism of cones Fs → F on the diagram (*), where s is the
cone object of Fs. Moreover, since CS is a full subcategory of C, the cone Fs
factors through the inclusion ι : CS → C. Thus, we obtain a (left) cone (also
denoted) Fs : ∆

0∗K → CS on the diagram q′f with cone object s ∈ CS . On the
other hand, the adjoint of the diagram f gives a (right) cone Fx : K ∗∆0 → C

on the diagram (*) with cone object x ∈ C. The cones Fs and Fx determine
the following diagram in C,

∆0 ∗K ∪K K ∗∆0 Fs∪Fx−−−−→ C. (**)

The inclusion map

j : ∆0 ∗K ∪K K ∗∆0 → ∆0 ∗K ∗∆0

is a categorical n-equivalence by Lemma 3.2.10. Therefore, since C is an n-
category, it follows that (**) extends along the inclusion j. Hence we obtain a
diagram

∆0 ∗K ∗∆0 → C

whose left cone is Fs and the right cone object is x ∈ C. Thus, the adjoint
diagram defines a cone on f ,

∆0 ∗K → ι/x.

Since the simplicial set ∆0 ∗K is weakly contractible, this completes the proof
in Case (b).
Suppose now that K is an arbitrary finite simplicial set and let K → ι/x be a
K-diagram. Using the result of Case (a) above, the composite diagram

skn−1(K) ⊂ K → ι/x

factors through a weakly contractible simplicial set C. As a consequence, K →
ι/x extends also to a diagram on the pushout L := K ∪skn−1(K) C; in other
words, we have a diagram as follows,

skn−1(K) //

��

K //

��

ι/x

C // L := K ∪skn−1(K) C

77♦
♦

♦
♦

♦
♦

♦

where L is (n−1)-connected (since skn−1(K)→ K is (n−1)-connected). Using
the result of Case (b), the induced diagram L → ι/x factors further through
a weakly contractible simplicial set. This factorization produces the required
factorization of K → ι/x through a weakly contractible simplicial set.
This proves (ii) and also completes the proof of (1).

(2) is a consequence of (1) and Proposition 3.2.7.
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Corollary 3.2.11. Let C be a locally small n-category, where n ≥ 3 is an
integer or n = ∞. Suppose that C has small products and weak pullbacks of
order (n − 2). Then C has a small weakly initial set if and only if C has an
initial object.

Proof. Note that N
op is Joyal equivalent to its spine, that is, the union of the

1-simplices (k + 1 → k) for k ≥ 0, which is a 1-dimensional simplicial set.
By Proposition 2.2.2, for any 1-dimensional simplicial set K, C admits weak
K-limits of order (n − 2) ≥ 1. So C admits weak N

op-limits of order 1. Then
the result follows directly from Lemma 3.2.9(2).

Example 3.2.12. Corollary 3.2.11 fails for n = 1. For a counterexample, let X
be a set with two elements, consider the (ordinary) category SetX/ of sets
under X , and let C be the full subcategory of SetX/ spanned by the non-initial
objects. Then C inherits small products from SetX/. This uses the observation
that a product of a (small) family of objects (X → Xi)i∈I in SetX/ is initial
if and only if exactly one of the objects is initial and every other object is
terminal. Moreover, C admits a hypoinitial object: simply consider any object
(X → Y ) in SetX/ with a retraction (Y → X) (under X) and use the retraction
map to define the required cone C

⊳ → C (cf. Example 3.2.2). This cone can
be used to define weak pullbacks (or general weak limits) of order (−1) for any
diagram in C. Thus, C satisfies the assumptions of Corollary 3.2.11 and has a
weakly initial object, but C does not have an initial object.

Example 3.2.13. Corollary 3.2.11 fails also for n = 2. For a counterexample,
let X be a set with two elements, regarded as an object in the ∞-category S
of spaces, and consider the homotopy 2-category h2(SX/) of spaces under X .
Let C denote the full subcategory of h2(SX/) spanned by the non-initial objects.
Then C inherits small products from SX/. Similarly to Example 3.2.12, this uses
the observation that a product of a (small) family of objects (X → Xi)i∈I in
SX/ (or h2(SX/)) is initial if and only if exactly one of the objects is initial and
every other object is terminal. To see the existence of weak pullbacks of order 0,
note first that h2(SX/) admits weak pullbacks of order 1 (Example 2.2.3) and
a square in C is a weak pullback of order 1 if (and only if) it is so in h2(SX/).
Hence it remains to construct weak pullbacks of order 0 for diagrams in C

(B,X → B)

��
(A,X → A) // (C,X → C)

which have the initial object (X,X
id
−→ X) as weak pullback of order 1 in

h2(SX/). Consider any object (Y, i : X → Y ) in C with a retraction r : Y → X ;
this defines a morphism to the initial object (X, idX) in h2(SX/). Then pre-
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composition with r gives a square in C:

(Y, i : X → Y ) //

��

(B,X → B)

��
(A,X → A) // (C,X → C).

The fact that (X, idX) is a retract of (Y, i) in h2(SX/) readily implies that the
last square is a weak pullback of order 0. Thus, C satisfies the assumption of
Corollary 3.2.11 and the object (Y, i : X → Y ) is weakly initial in C (of order 0),
by using the retraction r, but C does not have an initial object.

3.3 Adjoint functor theorems for n-categories

The characterization of adjoint functors in Proposition 3.1.2 translates the
problem of the existence of a right (left) adjoint to an associated problem
about the existence of a terminal (initial) object. Using our two criteria for the
existence of initial objects (Lemmas 3.2.5 and 3.2.9), we can now formulate two
general adjoint functor theorems for functors between n-categories. These theo-
rems generalize and refine the general adjoint functor theorems for∞-categories
shown in [16] and provide useful characterizations of adjoint functors G : D→ C

between n-categories when D is weakly n-complete. The characterizations are
given in terms of the following properties which were also considered for the
adjoint functor theorems in [16].

Definition 3.3.1. Let C and D be ∞-categories and let G : D → C be a
functor.

(1) We say that G satisfies the h-initial object condition if the slice ∞-
category Gc/ admits an h-initial object for every c ∈ C.

(2) We say that G satisfies the solution set condition if the slice ∞-category
Gc/ admits a small weakly initial set for every c ∈ C.

The first adjoint functor theorem builds on Criterion A (Lemma 3.2.5) and
generalizes [16, Theorem 3.2.6].

Theorem 3.3.2 (n-GAFTfin). Let G : D→ C be a functor between n-categories,
where n ≥ 1 is an integer or n = ∞. Suppose that D is a finitely weakly
complete n-category. Then G admits a left adjoint if and only if G preserves
finite products, weak pullbacks of order (n−1), and satisfies the h-initial object
condition.

Proof. By Proposition 3.1.2, G is a right adjoint if and only if Gc/ has an initial
object for every c ∈ C.
If G is a right adjoint, then G clearly satisfies the h-initial object condition.
Moreover, G preserves finite products and weak pullbacks of order (n − 1) by
Proposition 3.1.3.
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Conversely, suppose that G preserves finite products and weak pullbacks of
order (n − 1), and Gc/ admits an h-initial object for every c ∈ C. The case
n = 1 is obvious, so we may assume that n ≥ 2. By Corollary 2.4.3, the slice n-
category Gc/ admits finite products and weak pullbacks of order (n−2). Thus,
using Proposition 2.2.2, it follows that Gc/ admits weak K-limits of order 0 for
any finite simplicial set K of dimension ≤ n− 1 (see Example 3.2.6). Then the
result follows from Lemma 3.2.5 (Criterion A).

The second adjoint functor theorem builds on Lemma 3.2.9 (Criterion B) and
generalizes [16, Theorem 3.2.5]. We recall from [16] that an∞-category C is 2-
locally small if for every pair of objects x, y ∈ C, the mapping space mapC(x, y)
is locally small [16, Definition 3.2.4].

Theorem 3.3.3 (n-GAFT). Let G : D→ C be a functor between n-categories,
where n ≥ 2 is an integer or n =∞. Suppose that D is a locally small weakly
complete n-category and C is 2-locally small. Then G admits a left adjoint if
and only if G preserves small products, weak pullbacks of order (n − 1), and
satisfies the solution set condition.

Proof. By Proposition 3.1.2, G is a right adjoint if and only if Gc/ admits an
initial object for every c ∈ C. Therefore, if G is a right adjoint, then G clearly
satisfies the solution set condition. Moreover, G preserves small products and
weak pullbacks of order (n− 1) by Proposition 3.1.3.
Conversely, suppose that G preserves small products and weak pullbacks of
order (n− 1), and the slice n-category Gc/ admits a small weakly initial set for
every c ∈ C. By Corollary 2.4.3, the slice n-categoryGc/ admits small products
and weak pullbacks of order (n− 2). Moreover, Gc/ is locally small since D is
locally small and C is 2-locally small (see [16, Lemma 3.2.8]). Then, for n ≥ 3,
Corollary 3.2.11 implies that Gc/ has an initial object for every c ∈ C, and
therefore G admits a left adjoint.
As we pointed out in Example 3.2.13, Corollary 3.2.11 fails in general for
n = 2, so we will need a separate argument for n = 2. Even though Gc/
only admits weak N

op-limits of order 0 in this case (using Proposition 2.2.2 or
Corollary 2.4.3), the proof will be similar to the proof of Proposition 3.2.7(3).
(Essentially, this proof still works in this case because the weak N

op-limits of
order 0 in Gc/ can be constructed by lifting weak N

op-limits of order 1 in D

and the canonical left fibration q : Gc/ → D detects equivalences.)
By Lemma 3.2.9(1), the ∞-category Gc/ admits a hypoinitial object for every
c ∈ C. So there is cone Cu : G

⊳
c/ → Gc/ on the identity functor with cone object

denoted by (x, u : c → G(x)) ∈ Gc/. By Proposition 3.2.7(2), the component
Cu(x, u) of the cone Cu at (x, u : c→ G(x)) is an idempotent morphism:

Cu(x, u) = (e, σ) : (x, u : c→ G(x))
(e,σ)
−−−→ (x, u : c→ G(x))

where e : x → x is idempotent in D and σ : (u : c → G(x)) → (u : c → G(x))
denotes the associated idempotent in Cc/. Proceeding as in the proof of Propo-

Documenta Mathematica 27 (2022) 1369–1420



AFTs and Higher Brown Representability 1401

sition 3.2.7(3), we consider the Spineop∞-diagram in Gc/,

E : · · ·
(e,σ)
−−−→ (x, u)

(e,σ)
−−−→ (x, u)

(e,σ)
−−−→ (x, u),

which admits a weak limit of order 0, denoted by

(y,v)E : (Spineop∞)⊳ → Gc/,

where (y, v : c → G(y)) ∈ Gc/ denotes the cone object. Following Corol-
lary 2.4.3, this weak limit (of order 0) is constructed by taking a weak limit of
order 1, denoted yE : (Spineop∞)⊳ → D, of the induced diagram in D,

E : Spineop∞
E
−→ Gc/

q
−→ D,

with cone object y ∈ D, and then lifting it appropriately to Gc/. The 0-

th/bottom component of the cone (y,v)E is a morphism

(i, τ) : (y, v)→ (x, u).

Since (e, σ) is an idempotent morphism, it follows that any other component
of (y,v)E is canonically identified with (i, τ). In particular, [i] = [e] ◦ [i] in
h(D). We may postcompose (i, τ) with the cone Cu to obtain a new cone on
the identity id : Gc/ → Gc/, denoted by

Cv : G
⊳
c/ → Gc/,

whose cone object is (y, v) ∈ Gc/. In particular, (y, v) is hypoinitial in Gc/.
Therefore, using the characterization in Proposition 3.2.7(1), it suffices to show
that the component of the cone Cv at (y, v)

Cv(y, v) : (y, v)→ (y, v)

is an equivalence. Equivalently, it suffices to show that the associated morphism
in D,

Cv(y) = q(Cv(y, v)) : y → y,

is an equivalence. As in the proof of Proposition 3.2.7(3), we consider a new
cone (x,u)E on E, defined by

(x,u)E : ∆0 ∗ Spineop∞
id∗E
−−−→ ∆0 ∗Gc/

Cu−−→ Gc/

whose cone object is (x, u) ∈ Gc/. There is a morphism of cones (x,u)E → (y,v)E

defined by the following diagram:

∆0 ∗ (∆0 ∗ Spineop∞)
id∗(y,v)E
−−−−−−→ ∆0 ∗Gc/

Cu−−→ Gc/.

Let (r, ρ) : (x, u) → (y, v) denote the associated morphism between the cone
objects. By construction, this is just Cu(y, v). In particular, we have [e] =
[i] ◦ [r] in h(D).
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There is also a morphism of cones (y,v)E → (x,u)E, which we may choose so
that the associated morphism of cone objects is (i, τ) : (y, v) → (x, u). To see
this, note that precomposition of (x,u)E with (i, τ) defines a cone (y,v)E′ with
cone object (y, v) as well as a morphism of cones (y,v)E′ → (x,u)E. In order to
identify (y,v)E′ with (y,v)E, we observe that the space of cones on E with cone
object (y, v) is given by the retract

limSpineop∞mapGc/
((y, v), (x, u)) ⊆ mapGc/

((y, v), (x, u)).

Thus, two such cones are equivalent if and only if their components are homo-
topic. This is satisfied by the pair of cones (y,v)E′ and (y,v)E.
The composite morphism of cones (y,v)E → (x,u)E → (y,v)E induces an en-
domorphism yE → yE of a weak N

op-limit of order 1 in D. Thus, the latter
morphism is (non-canonically) equivalent to the identity morphism; in partic-
ular, [r] ◦ [i] = idy. Combining these observations, we conclude the following
identification of Cv(y):

[Cv(y)] = [q(Cv(y, v))] = [q(r, ρ)] ◦ [q(Cv(x, u))] = [r] ◦ ([e] ◦ [i]) = [r] ◦ [i] = idy.

In particular, Cv(y) is an equivalence, and therefore so is Cv(y, v). This shows
that (y, v) is initial in Gc/ by the characterization in Proposition 3.2.7(1).
Thus, we have shown that Gc/ admits an initial object for every c ∈ C, and so
it follows that G admits a left adjoint.

Example 3.3.4. Theorem 3.3.3 fails for n = 1. For a counterexample, let
h(S) be the (ordinary) homotopy category of spaces and let G : h(S)op → Set
be a retract of a representable functor homh(S)(−, X) (hyporepresentable in
the sense of [10]) which is not representable. Examples of such functors arise
from idempotents e : X → X in h(S) which do not split (see [9]). Then G

preserves small products and weak pullbacks (of order 0) because these prop-
erties are closed under retracts (of functors) and representable functors have
these properties. Moreover, F satisfies the solution set condition. To see this,
let R : homh(S)(−, X) → G denote the retraction in the category of functors;
then observe that for every set S, the object in GS/ which is given by the
composition of the map

S −→ homh(S)(
∏

s∈S

X,X), s 7→ (
∏

s∈S

X
ps
−→ X)

followed by the map

R(
∏

s∈S

X) : homh(S)(
∏

s∈S

X,X) −→ G(
∏

s∈S

X)

defines a weakly initial object (in fact, this is also hypoinitial). Indeed, since
there is a section i : G→ homh(S)(−, X), every object (Y, h : S → G(Y )) ∈ GS/
yields an associated collection of morphisms {(i(Y ) ◦ h)s : Y → X}s∈S and the
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induced canonical morphism Y →
∏
s∈S X defines a (natural) morphism to

(Y, h). Thus, G satisfies the assumptions of Theorem 3.3.3, but G does not
admit a left adjoint since it is not representable.

Following [16], an interesting application of these adjoint functor theorems
is the following result showing that adjoint functors can often be detected
on the (ordinary) homotopy category. The following theorem generalizes [16,
Theorem 3.3.1].

Theorem 3.3.5. Let D be a finitely weakly complete n-category and C an n-
category, where n ≥ 1 is an integer or n = ∞. Let G : D → C be a functor
which preserves finite products and weak pullbacks of order (n − 1). Then G

admits a left adjoint if and only if h(G) : h(D)→ h(C) admits a left adjoint.

Proof. We recall from Proposition 3.1.2 that G admits a left adjoint if and only
if Gc/ admits an initial object for every c ∈ C.
Note first that if G admits a left adjoint, then obviously so does h(G).
Conversely, suppose that h(G) admits a left adjoint. The case n = 1 is obvious,
so we may assume that n ≥ 2. By Corollary 2.4.3, Gc/ has finite products and
weak pullbacks of order (n− 2) for every c ∈ C. By assumption, h(G)c/ has an
initial object for every c ∈ C. It is easy to see that the canonical functor

h(Gc/)→ h(G)c/

is surjective on objects, full, and conservative (see the proof of [16, Theo-
rem 3.3.1]).
Moreover, we claim that for every pair of morphisms in h(Gc/),

f, g : (d, c→ G(d)) ⇒ (d′, c→ G(d′)),

there is a morphism

uf,g : (d
′′, c→ G(d′′))→ (d, c→ G(d)) such that f ◦ uf,g = g ◦ uf,g.

To see this, note first that Gc/ admits weak equalizers of order (n− 2). This is
because cones on a diagram of the form (α, β : ∗⇒ •) are identified with cones

on the associated diagram (•
∆
−→ •× •

(α,β)
←−−− ∗), and Gc/ admits products and

weak pullbacks of order (n − 2) (or we may apply Proposition 2.2.2 directly).
By Proposition [17, Proposition 3.20], the canonical functor Gc/ → h(Gc/)
sends these higher weak equalizers to weak equalizers of order 0. It follows
that h(Gc/) admits weak equalizers (of order 0), which shows our claim above
about the existence of uf,g.
Applying [16, Lemma 3.3.2], we conclude that the functor h(Gc/) → h(G)c/
preserves and detects initial objects. Thus, Gc/ has an h-initial object and then
the result follows directly from Theorem 3.3.2.

Example 3.3.6. Let D be a complete ∞-category and consider the canonical
functor γn : D→ hnD. By [17, Corollary 3.22], the functor γn preserves small
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products and weak pullbacks of order (n − 1). However, γn does not admit a
left adjoint unless D is equivalent to an n-category and γn is an equivalence.
To see this, note that if γn happens to be a right adjoint, then it must preserve
finite limits, and then the conclusion follows from [17, Corollary 3.22]. This
example demonstrates the role of n in the assumptions of Theorem 3.3.5.

Remark 3.3.7. We mention the following weaker version of Theorem 3.3.5,
which can be obtained from Theorem 3.3.3 instead of Theorem 3.3.2 (cf. [16,
Remark 3.3.3]). Let D be a locally small weakly complete n-category and C a
2-locally small n-category, where n ≥ 2 is an integer or n =∞. Let G : D→ C

be a functor which preserves small products and weak pullbacks of order (n−1).
Then G admits a left adjoint if and only if h(G) : h(D) → h(C) admits a left
adjoint. For the proof, note that Gc/ admits a small weakly initial set if and
only if h(G)c/ admits a small weakly initial set (see [16, Proposition 3.2.2]),
and then apply Theorem 3.3.3.

Similarly to [16, Corollary 3.3.5], we deduce the following corollary as a conse-
quence of Theorem 3.3.5.

Corollary 3.3.8. Let D be a finitely weakly complete n-category and C an
n-category, where n ≥ 1 is an integer or n = ∞. Let G : D → C be a functor
which preserves finite products and weak pullbacks of order (n− 1). Then G is
an equivalence if and only if h(G) : h(D)→ h(C) is an equivalence.

4 Higher Brown representability

4.1 Preliminaries

Let C be a locally small n-category, where n ≥ 1 is an integer or n = ∞. We
write mapC(x, y) to denote a functorial model for the (small) mapping space of
morphisms from x to y in C (see [6, 12]). Note that this is an (n− 1)-truncated
∞-groupoid [12, Proposition 2.3.4.18].
We recall that S denotes the ∞-category of (small) spaces and S<n ⊂ S the
full subcategory of S that is spanned by the (n− 1)-truncated spaces.

A functor F : Cop → S<n is representable if it is equivalent to a functor of
the form mapC(−, x) : C

op → S<n for some object x ∈ C. Every representable
functor satisfies the conditions (B1)–(B2) below.

Definition 4.1.1. Let C be a locally small weakly cocomplete n-category (see
Definition 2.2.1), where n ≥ 1 is an integer or n =∞. We say that C satisfies
Brown representability if for any given functor F : Cop → S<n, F is repre-
sentable if (and only if) the following conditions are satisfied.

(B1). For any small coproduct
∐
i∈I xi in C, the canonical morphism in S<n

F

(
∐

i∈I

xi

)
−→

∏

i∈I

F (xi)
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is an equivalence.

(B2). For every weak pushout in C of order (n− 1)

x //

��

y

��
z // w

the canonical morphism in S<n

F (w) −→ F (y)×F (x) F (z)

is (n− 1)-connected.

We remark that the Brown representability context of Definition 4.1.1 is more
general than the one in our previous work [16, Section 5] in two different
respects. First, the present context aims to generalize Brown representabil-
ity from ordinary homotopy (1-)categories to higher homotopy (n-)categories,
whereas the Brown representability context of [16, Definition 5.1.1] was con-
cerned with ordinary categories which arise as homotopy 1-categories of suit-
ably nice∞-categories. Second, we focus here directly on the abstract notion of
a weakly cocomplete n-category, as a convenient axiomatization of the proper-
ties of homotopy n-categories of cocomplete∞-categories, without the assump-
tion of a model given by a cocomplete ∞-category (cf. [16, Definition 5.1.1]).

Remark 4.1.2. If I is the empty set, then property (B1) says that F sends
the initial object of C to a contractible space. Note that we have not assumed
that C is pointed in general. If C happens to be pointed, then every functor F
satisfying (B1) is canonically pointed, i.e., it factors canonically through the
category of pointed (n− 1)-truncated spaces.

The next proposition explains the connection between Brown representability
and adjoint functor theorems (cf. [16, Proposition 5.1.3]).

Proposition 4.1.3. Let C and D be locally small n-categories, where n ≥ 1
is an integer or n = ∞. Suppose that C is a weakly cocomplete n-category
and satisfies Brown representability. Then a functor F : C→ D admits a right
adjoint if and only if F satisfies the following properties:

(B1′). F preserves small coproducts.

(B2′). F preserves weak pushouts of order (n− 1).

Proof. The functor F admits a right adjoint if and only if for every d ∈ D, the
associated functor

YF,d : C
op → S<n, c 7→ mapD(F (c), d),
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is representable (see Proposition 3.1.2). Suppose that F satisfies (B1′)–(B2′).
Since F satisfies (B1′), it follows that the above functor YF,d satisfies (B1).
Using Proposition 2.1.6, YF,d also satisfies (B2), because F satisfies (B2′).
Since C satisfies Brown representability by assumption, it follows that YF,d
is representable for any d ∈ D, and therefore F admits a right adjoint.
Conversely, suppose that F is a left adjoint. Then it preserves coproducts and
weak pushouts of order (n− 1) by Proposition 3.1.3.

The last proposition has some special significance when C happens to admit all
small colimits, especially, in the case n = 1.

Corollary 4.1.4. Let C and D be locally small n-categories, where n ≥ 1
is an integer or n = ∞. Suppose that C is cocomplete and satisfies Brown
representability. Then the following statements for a functor F : C → D are
equivalent:

(a) F admits a right adjoint.

(b) F preserves small colimits.

(c) F satisfies (B1′)–(B2′).

The following corollary generalizes [16, Corollary 5.1.4].

Corollary 4.1.5. Let C be a locally small cocomplete ∞-category such that
either the associated weakly cocomplete n-category hnC satisfies Brown repre-
sentability for some n ≥ 1, or C itself satisfies Brown representability. Then C

is complete.

Proof. Let K be a small simplicial set and let c : C→ CK denote the constant
K-diagram functor. We need to show that c admits a right adjoint for any K.
Since colimits in CK are computed pointwise, it follows that c preserves small
colimits (see [12, Corollary 5.1.2.3] or [6, Corollary 6.2.10]). Moreover, CK is
again locally small (see [12, Example 5.4.1.8]).
If C satisfies Brown representability, then c admits a right adjoint by Proposi-
tion 4.1.3 (for n =∞).
Suppose that hnC satisfies Brown representability for some n ≥ 1. Since c

preserves small colimits, it follows that the functor hn(c) : hnC→ hn(C
K) pre-

serves small coproducts and weak pushouts of order (n − 1). This uses the
fact that the canonical functor γn : C → hnC (resp. γn : C

K → hn(C
K)) pre-

serves small coproducts and sends pushouts to weak pushouts of order (n− 1)
[17, Proposition 3.20, Corollary 3.22]. (In the special case n = 1, note that
it suffices to show that h(c) preserves some choice of weak pushout for each
diagram.) Then, applying Proposition 4.1.3, we conclude that hn(c) admits a
right adjoint, therefore h(c) : h(C) → h(CK) admits a right adjoint, too. Then
the result follows from Theorem 3.3.5 applied to the functor c : C → C

K (see
also [16, Theorem 3.3.1 and Remark 3.3.3]).
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Similarly to the proof of Corollary 4.1.5, we may more generally combine Propo-
sition 4.1.3 and Theorem 3.3.5 and use [17, Proposition 3.20] to obtain the
following (cf. [16, Theorem 4.1.3, Corollary 5.1.5]):

Corollary 4.1.6. Let C and D be locally small n-categories, where n ≥ 1 is
an integer or n = ∞. Suppose that C is a weakly cocomplete n-category such
that the weakly cocomplete k-category hkC satisfies Brown representability for
some 1 ≤ k ≤ n. Then a functor F : C→ D admits a right adjoint if and only
if F preserves small coproducts and weak pushouts of order (n− 1).

Remark 4.1.7. Given a locally small weakly cocomplete n-category C, note
that a functor F : Cop → S<n is representable if the functor F op : C → Sop<n is
a left adjoint. Assuming that C satisfies Brown representability, the converse
holds for representable functors mapC(−, x) which send weak pushouts of order
(n− 1) to weak pullbacks of order (n− 1). (Note that weak pullbacks of order
(n− 1) in S<n for n ≥ 2 are just pullbacks in the complete ∞-category S<n.)

Example 4.1.8. Let C be a locally small cocomplete ∞-category. The canon-
ical functor γn : C → hnC preserves small coproducts and weak pushouts of
order (n − 1) (see [17, Proposition 3.20, Corollary 3.22]). However, γn does
not admit a right adjoint in general – even if C satisfies Brown representabil-
ity. This example demonstrates the importance of the double function of n in
Proposition 4.1.3.

Our main results in this section will show examples of n-categories which sat-
isfy Brown representability; these are discussed in the following subsections.
We note first the following elementary inheritance property of Brown repre-
sentability that will allow us to generate new examples from old ones.
We recall that a functor L : C → D between ∞-categories is a (Bousfield)
localization of C if L admits a right adjoint which is fully faithful [12, 5.2.7].
We also say that D is a (Bousfield) localization of C if there is a localization
functor L : C→ D.

Proposition 4.1.9. Let C be a locally small weakly cocomplete n-category
that satisfies Brown representability and let D be an n-category. Suppose that
L : C → D is a localization of C. Then D is a locally small weakly cocomplete
n-category and satisfies Brown representability.

Proof. We may assume that i : D ⊂ C is a full subcategory and L : C→ D is the
left adjoint to the inclusion functor. It is clear that D is again a locally small
n-category. Moreover, since a weak colimit in D can be computed by applying
the left adjoint L to a weak colimit in C (Proposition 3.1.3), it follows that D

is also weakly n-cocomplete. Therefore it remains to prove that D satisfies
Brown representability. Given a functor F : Dop → S<n that satisfies (B1)–

(B2), the composite functor Cop Lop

→ Dop F
→ S<n also satisfies (B1)–(B2) (again

by Proposition 3.1.3). Since C satisfies Brown representability by assumption,
the functor F ◦ Lop is representable by some object x ∈ C. Moreover, the
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composite functor F ◦Lop obviously sends L-equivalences to equivalences. This
implies that x is L-local, therefore x ≃ iL(x). Thus, F is representable by the
object L(x) ∈ D.

4.2 Compactly generated n-categories

In this subsection, we introduce the class of compactly generated n-categories
and prove that these satisfy Brown representability. Compactly generated n-
categories define a convenient general context for a Brown representability the-
orem for abstract n-categories, that is, for n-categories which do not necessar-
ily arise as homotopy n-categories. The definition of a compactly generated
n-category is inspired by related definitions from the various classical Brown
representability contexts for ordinary categories [10, 15] or for homotopy (1-)
categories of ∞-categories with special properties [13, 16].

Definition 4.2.1. Let C be a locally small ∞-category. A set of weak gener-
ators of C is a (small) set of objects G that jointly detect equivalences, i.e., a
morphism f : x→ y in C is an equivalence if and only if the canonical morphism

mapC(g, x)
f∗

// mapC(g, y)

is an equivalence for every object g ∈ G.

Remark 4.2.2. Some expository comments about the terminology may be
useful here. First, weak generators should not be confused with the strictly
stronger notion which refers to a set of objects that generate C under filtered
colimits.
Second, in the case of ordinary categories, it differs also from the familiar notion
of a set of objects which distinguish parallel arrows. The latter property follows
from the property in Definition 4.2.1 when C admits equalizers.
Third, the related notion of a set of objects that detect whether the canonical
morphism to the terminal object (x → ∗) is an equivalence is strictly weaker
in general. For example, the collection of spheres {Sn}n≥0 is not a set of weak
generators in the homotopy category of spaces [10, 3], but the spheres obviously
detect whether a space is weakly contractible. These two properties of a set
of objects are equivalent for the homotopy n-category of a stable ∞-category.
This uses the fact that a morphism in a stable ∞-category is an equivalence if
and only if its (co)fiber is a zero object.
Finally, the definition of weak generators in an ∞-category C used in [16,
Definition 5.2.1] corresponds to the definition of weak generators in h(C) in the
sense of Definition 4.2.1. We recall that the Brown representability context of
[16] presupposed an underlying locally small cocomplete ∞-category, whereas
now we do not assume that our candidate locally small n-category C arises as
the homotopy n-category of a locally small cocomplete ∞-category.

Proposition 4.2.3. Let C be a locally small ∞-category which admits finite
colimits. The following are equivalent:
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(a) C has a set of weak generators.

(b) hnC has a set of weak generators for some n ≥ 1.

(c) hnC has a set of weak generators for every n ≥ 2.

(d) h2C has a set of weak generators.

If C is stable, then (a)–(d) are also equivalent to:

(e) h(C) has a set of weak generators.

Proof. The implications (e) ⇒ (d) ⇒ (c) ⇒ (b) ⇒ (a) are obvious. (a) ⇒ (d):
Let G denote a set of weak generators in C. We may assume that G is closed
under tensoring of objects with Sk for any k ≥ 0. Let f : x→ y be a morphism
in C such that the map

maph2C
(g, x)

f∗
−→ maph2C

(g, y)

is an equivalence for every object g ∈ G. Since G is closed under tensoring
with Sk, it follows that the (horizontal) map

maph2C
(g ⊗ Sk, x)

f∗

≃
//

≃

��

maph2C
(g ⊗ Sk, y)

≃

��

maph2S(S
k,mapC(g, x))

f∗
// maph2S(S

k,mapC(g, y))

is an equivalence for any g ∈ G and k ≥ 0. (Here we have used the notation Sk

for the associated∞-groupoid in S.) The collection of spheres {Sk}k≥0 defines
a set of weak generators in h2S [3]. So the map

mapC(g, x)
f∗
−→ mapC(g, y)

is an equivalence for every object g ∈ G, and this implies that f is an equiva-
lence. This completes the proof of (a) ⇒ (d). An analogous argument shows
(a) ⇒ (e): if C is stable, the spheres {Sk}k≥0 detect already in h(S) whether
the map of (infinite loop) spaces

mapC(g, x)
f∗
−→ mapC(g, y)

is an equivalence, because the components of the mapping spaces are simple in
this case.

Next we consider a flexible and general notion of compactness for objects in an
∞-category. Recall that N denotes the ∞-category associated with the poset
of non-negative integers with its usual ordering.
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Definition 4.2.4. Let C be a locally small ∞-category which admits weak N-
colimits of order (−1) and suppose that every diagram T : N → C is equipped
with a distinguished cone T ⊲ : N⊲ → C with cone object colimwT . An object
x ∈ C is compact (with respect to these distinguished cones) if for every diagram
T : N→ C, the canonical map

colimi∈NmapC(x, T (i))→ mapC(x, colim
wT )

is an equivalence.

The distinguished cones will normally be given by weak colimits of order t ≥ 0.
This choice is unique up to (non-canonical) equivalence when t > 0. For t = 0,
compactness is to be understood as in [10], that is, it is defined in terms of
weak N-colimits T ⊲ (of order 0) which have been chosen and fixed once and for
all in advance. Definition 4.2.4 generalizes this notion to ∞-categories which
are equipped with a choice of a distinguished cone for each N-diagram.

Example 4.2.5. Let C be a locally small ∞-category which admits filtered
colimits. An object x ∈ C is compact (in the sense of Definition 4.2.4) if x ∈ C

is finitely presentable (also called compact in [12]), that is, if the representable
functor mapC(x,−) preserves filtered colimits. In this case, the distinguished
cones of Definition 4.2.4 are taken to be the N-colimits. In addition, x ∈ hnC
is also compact (in the sense of Definition 4.2.4), where the distiguished cones
are taken to be the weak N-colimits (of order (n − 1)) that arise from lifting
each N-diagram to C and taking the N-colimit in C.

Remark 4.2.6. The above definition of compactness differs from the notion
of h-compactness in [16, 5.2] which applied to locally small ∞-categories with
N-colimits and their homotopy (1-)categories. The present definition gener-
alizes to ∞-categories the corresponding definition in [10] (restricted here to
N-diagrams).

Note that this notion of compactness can be used in the context of weakly
cocomplete n-categories because these admit weak N-colimits of order (n− 1).
In particular, these weak colimits are unique up to (non-canonical) equivalence
when n > 1. (To see this, first recall that the ordinary category N is Joyal
equivalent to the one-dimensional simplicial set given by its spine Spine∞, and
then conclude by applying [17, Proposition 3.10] to the case of the skeletal
decomposition of Spine∞ or by applying directly Proposition 2.2.2.) In fact,
this is the main reason why we restrict to compactness only with respect to
N-diagrams instead of considering more general diagrams indexed by larger
ordinals (cf. [10]). Thus, we may make the following assumption concerning
compactness in a weakly cocomplete n-category.

Assumption. When n > 1, compactness in a weakly cocomplete n-category
is defined unambiguously with respect to the weak N-colimits of order (n− 1).
When n = 1, the notion will generally depend on a choice of weak N-colimits
of order 0, which is tacitly assumed.

Documenta Mathematica 27 (2022) 1369–1420



AFTs and Higher Brown Representability 1411

Definition 4.2.7. (Compactly generated n-category) Let n ≥ 1 be an integer
or n =∞. A locally small n-category C is called compactly generated if C is a
weakly cocomplete n-category and has a set of weak generators G consisting of
compact objects.

Remark 4.2.8. The terminology of Definition 4.2.7 slightly clashes with our
definition of a compactly generated ∞-category in [16]. The definition in [16,
5.2] specifies a class of locally small cocomplete ∞-categories in terms of the
properties of their homotopy categories, whereas Definition 4.2.7 does not pre-
suppose that C arises as the homotopy n-category of a cocomplete∞-category.
The two definitions are related simply as follows: given a compactly generated
∞-category C in the sense of [16], then h(C) is a compactly generated 1-category
in the sense of Definition 4.2.7.

Here are some of the main examples of compactly generated n-categories.

Example 4.2.9. A finitely presentable ∞-category admits a set of weak gen-
erators given by the finitely presentable objects. Thus, for any n ≥ 2, the
homotopy n-category of a finitely presentable ∞-category is compactly gener-
ated (as an n-category). This follows from Proposition 4.2.3 and Examples 2.2.3
and 4.2.5. Note that this class of examples includes also the ordinary locally
finitely presentable categories. Also, for any n ≥ 2, the homotopy n-category
of the ∞-category of spaces S is compactly generated and the set of spheres
{Sk}k≥0 defines a set of compact weak generators (see [3]). More generally,
for any small simplicial set K and n ≥ 2, the homotopy n-category of the
∞-category SK is also a compactly generated n-category.

Example 4.2.10. The homotopy n-category of a finitely presentable stable
∞-category is a compactly generated n-category for any n ≥ 1 – again this
follows from Proposition 4.2.3 and Examples 2.2.3 and 4.2.5. In particular,
the homotopy n-category of the stable ∞-category of spectra Sp is compactly
generated for any n ≥ 1. More generally, for any small simplicial set K and
n ≥ 1, the homotopy n-category of the ∞-category SpK is also a compactly
generated n-category (cf. [16, Example 5.2.5]).

The following result is our main Brown representability theorem in this section.
This result is a generalization to n-categories of Heller’s Brown representability
theorem for ordinary categories [10], restricted to the compactly generated case.
It also generalizes the Brown representability theorem for (2, 1)-categories (or
categories enriched in groupoids) that was proved in [2].

Theorem 4.2.11. Let C be a compactly generated n-category, where n ≥ 1 is
an integer or n =∞. Then C satisfies Brown representability.

The proof of this theorem is based on (the dual of the) following criterion for
the existence of terminal objects. The proof of this criterion is somewhat long
and technical, but it is essentially a generalization of familiar arguments from
the classical proof of the Brown representability theorem.
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Lemma 4.2.12 (Criterion C). Let C be a locally small n-category, where n ≥ 1
is an integer or n = ∞. Suppose that C admits small coproducts and weak
pushouts of order (n − 2). In addition, suppose that C has a set of weak gen-
erators G which consists of compact objects (with respect to a choice of distin-
guished cones as in Definition 4.2.4). Then C has a terminal object.

Proof. For each g ∈ G and 0 ≤ m ≤ n, let c∂g : ∂∆
m → C and cg : ∆

m → C

denote the constant diagrams at g ∈ C. By our assumptions on C and Propo-
sition 2.2.2, there is a weak colimit C∂g (resp. Cg) of c∂g (resp. cg) of order
(n− 2)− (m− 1) + 1 = (n−m), with cone object denoted by g ⊗ ∂∆m (resp.
g ⊗∆m). We may choose Cg to be again the constant diagram, in which case
g ⊗∆m is equivalent to g and Cg is a colimit of cg. The cone C∂g is unique up
to (non-canonical) equivalence for m < n. In addition, there are morphisms
C∂g → Cg (as cones on diagrams defined on ∂∆m), which restrict to morphisms
of cone objects, denoted img : g ⊗ ∂∆m → g ⊗ ∆m. These morphisms exist –

and are unique up to homotopy when m < n –, since C∂g is a weak colimit of
order ≥ 0 for any m ≤ n.

Let S denote the set of morphisms img for all g ∈ G and 0 ≤ m ≤ n.

Step 1: Existence of G-terminal objects. We say that an object x ∈ C is G-
terminal if mapC(g, x) is contractible for every g ∈ G. Our first goal is to prove
that every object c ∈ C admits a morphism (uc : c→ x) to a G-terminal object
x ∈ C. The construction of the morphism uc is essentially based on a small
object argument with respect to the set of morphisms S. More precisely, given
an object c ∈ C, we will construct a diagram x• : N→ C inductively as follows.
Set x0 = c. Assuming that x• has been constructed for • < k, we define
xk−1 → xk by considering a weak pushout of order (n − 2) (this is unique up
to equivalence when n > 2):

∐
0≤m≤n

∐
g∈G

∐
Tm,g

g ⊗ ∂∆m

��

// xk−1

��∐
0≤m≤n

∐
g∈G

∐
Tm,g

g ⊗∆m // xk

where Tm,g denotes a set of morphisms (g ⊗ ∂∆m → xk−1), one from each ho-
motopy class. The top morphism is defined by these morphisms in the obvious
way – this uses that C admits small coproducts. This morphism suffices in order
to extend the diagram x• to all • ≤ k. Therefore, we obtain by induction the
required diagram x• : N→ C. Let x• : N

⊲ → C be the distinguished cone on x•
(Definition 4.2.4) and let x∞ denote the cone object. Then it suffices to prove
that x∞ is G-terminal. By construction, the mapping space mapC(g, x∞) is
non-empty for every g ∈ G. Therefore, it suffices to prove that for every g ∈ G
and m ≤ n, any map ∂∆m → mapC(g, x∞) is homotopically constant. Note
that there is an equivalence

colimi∈NmapC(g, xi)
≃
→ mapC(g, x∞)
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since g is compact with respect to the distinguished cone x•. Therefore, a map

a : ∂∆m → mapC(g, x∞)

factors up to homotopy through a map ai : ∂∆
m → mapC(g, xi). Since g⊗∂∆m

is a weak colimit of order (n−m), the map ai is induced (up to homotopy) by
a morphism ãi : g ⊗ ∂∆m → xi in Tm,g – this morphism ãi is unique up to ho-
motopy when m < n (see Proposition 2.1.6). By construction, the composition

g ⊗ ∂∆m ãi→ xi → xi+1

factors (in a preferred way) through img : g ⊗ ∂∆m → g ⊗ ∆m ≃ g. As a
consequence, the composition

∂∆m ai→ mapC(g, xi)→ mapC(g, xi+1)

factors (in a preferred way) through ∂∆m ⊆ ∆m ≃ ∗. This shows that x∞ is
indeed G-terminal, and completes the construction of the morphisms uc, for any
c ∈ C. In particular, the argument shows the existence of G-terminal objects
in C (e.g. by taking c to be the initial object of C).

Step 2: Uniqueness of G-terminal objects. We first note that every morphism
x → y between G-terminal objects in C is an equivalence. This is an obvious
consequence of the fact that G is a set of weak generators. Now suppose that
x and y are G-terminal objects in C. Consider the coproduct z := x ⊔ y in C

and the morphism uz : z → w to a G-terminal object w ∈ C, as constructed in
Step 1. Then the composite morphisms (x → z → w) and (y → z → w) are
morphisms between G-terminal objects, therefore they are equivalences. This
shows that x and y are indeed equivalent in C.

Step 3: G-terminal objects are terminal. Let x ∈ C be a G-terminal object. We
claim that the mapping space mapC(c, x) is contractible for any c ∈ C. Note
that the mapping space mapC(c, x) is non-empty as a consequence of Steps 1
and 2. Then it suffices to show that every map a : ∂∆m → mapC(c, x), where
m ≤ n, is homotopically constant. It will be convenient to use the model for
the mapping space mapC(c, x) defined by the pullback square:

mapC(c, x) //

��

C
∆1

��
∆0

(c,x)
// C× C.

(This has the correct homotopy type when C is an∞-category by [12, Corollary
4.2.1.8].)

Then we may assume that the map a arises from a diagram ã : K → C, whereK
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is defined by the pushout of simplicial sets

∂∆m × ∂∆1 //

��

∂∆m ×∆1

��
∆0 × ∂∆1 // K.

Note that K has two 0-simplices, which we denote by 0 and 1, and the dia-
gram ã sends 0 to c ∈ C and 1 to x ∈ C. The diagram ã admits a weak colimit
ã⊲ : K⊲ → C of order (n−1)−dim(K) = n−m−1 ≥ −1 (see Proposition 2.2.2).
Let z denote the cone object and let h : x→ z denote the corresponding mor-
phism to the cone object. Consider a morphism uz : z → w to a G-terminal
object, as constructed in Step 1. By the arguments in Step 2, the composition

(f : x
h
−→ z

uz−→ w) is an equivalence. Thus, the map a is homotopically constant
if and only if the composition

∂∆m a
→ mapC(c, x)

f◦−
−−−→ mapC(c, w)

is homotopically constant. Replacing K by an ∞-category if so desired, this
composite diagram can be identified with the composition

∂∆m → mapK(0, 1)
ã
→ mapC(c, x)

f◦−
−−−→ mapC(c, w). (*)

Further, assuming that K is replaced by an ∞-category (denoted also by K),
we see that since ã⊲ extends ã, the composition with the morphism to the cone
object (h : x→ z) yields a homotopy commutative diagram of spaces:

mapK(0, 1)
ã //

(1→∗)◦−

��

mapC(c, x)

(h : x→z)◦−

��
mapK⊲(0, ∗)

ã⊲ // mapC(c, z).

So the composition (*) factors up to homotopy through the contractible map-
ping space mapK⊲(0, ∗) ≃ ∗, therefore, the composition (*) is homotopically
constant. This completes the proof that x is terminal in C.

Proof of Theorem 4.2.11. Let F : Cop → S<n be a functor which satis-
fies (B1)–(B2). Then it suffices to show that the ∞-category F∗/ admits an
initial object; indeed this property is a necessary and sufficient criterion for
the representability of F by Proposition 3.1.2(2)⇔(3). Note that F∗/ is locally
small and equivalent to an n-category. Moreover, F∗/ admits small products
by Corollary 2.4.3. It suffices then to show that F∗/ satisfies the rest of the
assumptions of (the dual of) Lemma 4.2.12 (Criterion C). The desired result
would then follow directly by applying that lemma.
We show first that F∗/ admits weak pullbacks of order (n − 2) – this does
not follow from Corollary 2.4.3 because F does not preserve weak pullbacks of

Documenta Mathematica 27 (2022) 1369–1420



AFTs and Higher Brown Representability 1415

order (n− 1) in general! To see the existence of these weak pullbacks, consider
a diagram in F∗/ depicted as follows:

(c2, x2 ∈ F (c2))

��
(c1, x1 ∈ F (c1)) // (c0, x0 ∈ F (c0))

where the notation (c, x ∈ F (c)) refers to the object (c, ∗
x
−→ F (c)). More

specifically, this diagram consists of a diagram in C

c0 //

��

c2

c1

together with a square/cone in S<n

∆0 x2 //

x1

��

x0

##❍
❍❍

❍❍
❍❍

❍❍
❍ F (c2)

��
F (c1) // F (c0).

We may form a weak pushout of order (n− 1) in C:

c0 //

��

c2

��
c1 // c

and lift the canonical map ∆0 → F (c1)×F (c0)F (c2) along the (n−1)-connected
map F (c)→ F (c1)×F (c0) F (c2). We obtain in this way a cone on our original
diagram in F∗/

(c, x ∈ F (c)) //

��

(c2, x2 ∈ F (c2))

��
(c1, x1 ∈ F (c1)) // (c0, x0 ∈ F (c0)).

We claim that this square is a weak pullback of order (n − 2). By Proposi-
tion 2.1.6, this holds if for any (c′, x′ ∈ F (c′)), the canonical map of mapping
spaces in F∗/

map((c′, x′), (c, x)) → map((c′, x′), (c1, x1))×map((c′,x′),(c0,x0)) map((c′, x′), (c2, x2))
(*)
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is (n− 2)-connected. Using that F∗/ is a (homotopy) pullback of∞-categories,

we have an identification of its mapping spaces,

map((c′, x′), (c, x)) ≃ mapC(c, c
′)×map(F (c′),F (c)) map((F (c′), x′), (F (c), x)),

and similarly for the other mapping spaces in (*). Thus, we have a pullback
square of spaces

map((c′, x′), (c, x))

��

// map(c, c′)

��
∆0 x // F (c)

(**)

where the right vertical map is given by applying F and evaluating at x′ ∈
F (c′). There are of course similar pullbacks for the other 3 terms in (*).
Therefore we may identify (*) with the induced map between vertical fibers
(over x ∈ F (c)) in the following square:

map(c, c′) //

��

map(c1, c
′)×map(c0,c′) map(c2, c

′)

��
F (c) // F (c1)×F (c0) F (c2).

Since both horizontal maps are (n− 1)-connected, it follows that the induced
map between the fibers is (n− 2)-connected, as required. This shows that F∗/

admits weak pullbacks of order (n− 2).

We show next that the opposite ∞-category of F∗/ admits a set of weak gen-
erators. Consider the following set of objects in F∗/,

G′ = {(g, x ∈ F (g)) | g ∈ G and x : ∗ → F (g)},

where G denotes a set of weak generators in C. Then it is easy to see using
(**) that G′ defines a set of weak generators in the opposite∞-category of F∗/,
since G is a set of weak generators in C by assumption.

Lastly, we claim that the objects in G′ are compact in the opposite of F∗/. To
see this, we must first clarify the relevant choice of distinguished N-cones in
the opposite of F∗/. Let T : N→ (F∗/)

op be an N-diagram, depicted as follows

(t0, x0)→ (t1, x1)→ · · · → (tn, xn)→ · · ·

The composite diagram N
T
−→ (F∗/)

op → C has a distinguished cone
T ⊲
C
: N⊲ → C, which is given by a (distinguished) weak N-colimit of order

(n− 1):

t0 → t1 → · · · → tn → · · · → t∞.
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Equivalently, the weak N-colimit T ⊲
C

is determined by a weak pushout in C of
order (n− 1) (‘telescope construction’):

⊔
i∈N

(ti ⊔ ti) //

��

⊔
i∈N

ti

��⊔
i∈N

ti // t∞.

(***)

Consider the induced tower in S<n which is obtained after applying F ,

F (t0)← F (t1)← · · · ← F (tn)← · · · ← F (t∞).

Since F satisfies (B1) and (B2), it follows from (***) that the canonical map
of spaces

F (t∞)→ limi∈NopF (ti)

is (n− 1)-connected. In particular, it is 0-connected, so we may choose a point
x∞ ∈ F (t∞) and extend the tower of pointed spaces induced by T ,

(F (t0), x0)← (F (t1), x1)← · · · ← (F (tn), xn)← · · · ,

to a cone of pointed spaces

(F (t0), x0)← (F (t1), x1)← · · · ← (F (tn), xn)← · · · (F (t∞), x∞)

that simultaneously lifts (the opposite of) T ⊲
C
. This cone and the cone T ⊲

C

determine a distinguished cone in (F∗/)
op on the N-diagram T . This process

defines the choice of distinguished cones on N-diagrams in the opposite ∞-
category of F∗/.
It is easy to see that the objects of G′ are compact (with respect to the distin-
guished N-cones constructed above) by using the description of the mapping
spaces in (**) and the assumption that G consists of compact objects in C.
Indeed, a distingushed N-cone in the opposite of F∗/ consists of a distinguished
weak N-colimit in C of order (n− 1),

t0 → t1 → · · · → tn → · · · → t∞,

together with a compatible sequence of points xi ∈ F (ti) for all i = 0, 1, . . . ,∞.
To see that an object (g, x) ∈ G′ is compact in (F∗/)

op, we need to show that the
canonical map involving mapping spaces in F∗/ (note the change of variance!)

colimi∈Nmap((ti, xi), (g, x))→ map((t∞, x∞), (g, x))

is an equivalence. Using (**), the last map of spaces is obtained from the
equivalence

colimi∈Nmap(g, ti)
≃
−→ map(g, t∞),

viewed as a map over F (g), by passing to the fibers over x ∈ F (g).
This completes the proof that the opposite ∞-category of F∗/ satisfies the as-
sumptions of Lemma 4.2.12. So, by Lemma 4.2.12, the ∞-category F∗/ admits
an initial object, therefore F is representable.
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Remark 4.2.13. We clarify that [16, Theorem 5.2.7] is not the special case
of Theorem 4.2.11 for n = ∞ – this issue about the terminology was also
pointed out in Remark 4.2.8. Instead, [16, Theorem 5.2.7] is a special case of
Theorem 4.2.11 for n = 1.

Example 4.2.14. By Theorem 4.2.11 and Example 4.2.9, the homotopy n-
category of a finitely presentable ∞-category satisfies Brown representability
for any n ≥ 2.

Example 4.2.15. By Theorem 4.2.11 and Example 4.2.10, the homotopy n-
category of a finitely presentable stable ∞-category satisfies Brown repre-
sentability for any n ≥ 1.

Corollary 4.2.16. Let D be an n-category which is a localization of a com-
pactly generated n-category, where n ≥ 1 is an integer or n = ∞. Then D

satisfies Brown representability.

Proof. This follows directly from Theorem 4.2.11 and Proposition 4.1.9.

4.3 Presentable ∞-categories

We will use the following general structure theorem for presentable ∞-
categories from [12, 13]:

Theorem 4.3.1. Every presentable (stable) ∞-category is equivalent to a lo-
calization of a finitely presentable (stable) ∞-category.
As a consequence, the homotopy n-category of a presentable (stable)∞-category
is equivalent to a localization of the homotopy n-category of a finitely pre-
sentable (stable) ∞-category.

Proof. The general case follows from [12, Theorem 5.5.1.1]. The stable case
follows from [13, Proposition 1.4.4.9].

Combining Theorem 4.3.1 with our previous results, we obtain the following
general class of examples of locally small weakly cocomplete n-categories which
satisfy Brown representability (cf. Corollary 4.2.16).

Corollary 4.3.2. Let n ≥ 1 be an integer or n =∞.

(1) Suppose that C is a presentable stable ∞-category. Then hnC satisfies
Brown representability.

(2) Suppose that C is a presentable ∞-category. Then hnC satisfies Brown
representability for any n ≥ 2.

Proof. By Theorem 4.3.1 and Proposition 4.1.9, it suffices to prove (1)–(2) in
the case where the∞-category C is finitely presentable. This is the special case
of Theorem 4.2.11 for the Examples 4.2.14 and 4.2.15.
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We note that Corollary 4.3.2(2) fails for n = 1, e.g., it fails for the usual
homotopy category of spaces (see [10]). Combining Corollary 4.3.2 and Corol-
lary 4.1.3, we obtain the following left adjoint functor theorem for homotopy
n-categories of presentable ∞-categories.

Corollary 4.3.3. Let C be a presentable ∞-category and let D be a locally
small n-category, where n ≥ 1 is an integer or n =∞.

(1) Suppose that C is stable. Then a functor F : hnC → D admits a right
adjoint if and only if F preserves small coproducts and weak pushouts of
order (n− 1).

(2) Suppose that n ≥ 2. Then a functor F : hnC→ D admits a right adjoint
if and only if F preserves small coproducts and weak pushouts of order
(n− 1).

Note that the case n = ∞ recovers the left adjoint functor theorem for pre-
sentable ∞-categories [12, Corollary 5.5.2.9(1)], [16, Section 4].
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