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Asymptotic stability of small ground states for NLS under
random perturbations

Nicolas Camps

Abstract. We consider the cubic Schrödinger (NLS) equation on the Euclidean space perturbed by
a short-range potential V . The presence of a negative simple eigenvalue for ��C V gives rise to a
curve of small and localized nonlinear ground states that yield some time-periodic solutions known
to be asymptotically stable in the energy space. We study the persistence of these coherent states
under rough perturbations. We shall construct a large measure set of small scaling-supercritical solu-
tions below the energy space that display some asymptotic stability behaviors. The main difficulty
is the need to handle the interactions of localized and dispersive terms in the modulation equations.
To do so, we use a critical-weighted strategy to combine probabilistic nonlinear estimates in critical
spaces based on Up , V q (controlling higher-order terms) with some local energy decay estimates
(controlling lower-order terms). We also revisit in the perturbed setting the analysis of Bényi, Oh,
and Pocovnicu (2015) on the probabilistic global well-posedness and scattering for small super-
critical initial data. We use a distorted Fourier transform and semiclassical functional calculus to
generalize probabilistic and bilinear Strichartz estimates.
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1. Introduction

In this paper we consider the cubic Schrödinger equation perturbed by a short-range poten-
tial in the Euclidean space of dimension d � 3:´

i@t C� D �j j
2 C V ;

 jtD0 D  0:
(NLS)

2020 Mathematics Subject Classification. Primary 35B40; Secondary 42B10, 42B37, 35A01, 35B35,
35P30 35Q51, 35Q55, 35R60.
Keywords. NLS, probabilistic Cauchy theory, distorted Fourier transform, asymptotic stability.

https://creativecommons.org/licenses/by/4.0/


N. Camps 1262

The constant �, whose sign dictates whether the nonlinearity is focusing or defocusing,
will play no role since we look at small initial data. Hence, we shall fix � D 1. The short-
range potential V , whose properties are detailed below, is assumed to be in the Schwartz
class �.Rd /. Our main result concerns the case when d D 3 and �.H/ D ¹e0º [ �c.H/
with no resonance at zero, and where e0 < 0 is a simple negative eigenvalue with posi-
tive and normalized eigenfunction �0. Then the 1-dimensional eigenspace spanned by �0
bifurcates around zero to a family of small and localized nonlinear ground states. These
ground states satisfy the elliptic equation

.� � V C jQj2/Q D EQ; (1.1)

and are written in the form

Q.z/ D z�0 C q.z/; E.z/ D e0 C e.z/; (1.2)

where z is the complex modulation parameter. They give rise to periodic solutions to
(NLS) of the form u.t; x/ D e�itE Q.x/. Soffer and Weinstein [44], followed by Pillet
and Wayne [40] and Gustafson et al. [31] addressed the problem of asymptotic stability of
these small ground states in the energy space. More precisely, any small local solution  
to (NLS) in H1.R3/ is global and can be decomposed into

 .t/ D Q.z.t//C �.t; z.t//; (1.3)

where the radiation term � satisfies a time-dependent orthogonality condition (see (1.7)).
In large time, asymptotic stability holds in the sense that z.t/ has a limit as t goes to
infinity, and �.t/ scatters in H1.R3/. This result is a particular instance of the so-called
soliton resolution conjecture (see [48] for a general presentation). Our aim is to prove that
the asymptotic stability property of these coherent states still holds at very low regularity,
in a supercritical regime where we have a local probabilistic flow.

Before we present our main result, we recall that the critical exponent sc for the
homogeneous (NLS) equation (with V D 0) is the regularity exponent for which the homo-
geneous Sobolev norm is invariant under the scaling

u�.t; x/ D �
�1u.��2t; ��1x/; u0;�.x/ D �

�1u0.�
�1x/:

For the cubic Schrödinger equation in Rd , we have sc D d�2
2

. In light of the conservation
laws of mass and energy,

M. /.t/ D

Z
Rd

j .t; x/j2 dx;

E. /.t/ D

Z
Rd

1

2
jr .t; x/j2 C

�

4
j .t; x/j4 C V j .t; x/j2 dx;

we say that the problem is mass-critical when sc D 0 and energy-critical when sc D
1. There exists a vast literature on the Cauchy theory for (NLS) and we refer to the
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books [9,19,24,47] or to the surveys [28,29] and the references therein for a general pre-
sentation. Note that the equation is energy-subcritical for d D 3, and we have a local flow
for s 2 Œ1=2; 1�, where sc D 1=2. On the other hand, in the scaling-supercritical regime
where s < sc , the local Cauchy problem for (NLS) is known to be ill posed (see [18,20]).
Nevertheless, the probabilistic Cauchy theory initiated by Bourgain [7] and developed by
many authors since then provides some large measure sets made of scaling-supercritical
initial data u!0 in H s.Rd / for s < sc that give rise to local solutions to (NLS) of the form
 D u! C v. Here, u! D e�itH u!0 is the propagation of u!0 under the linear flow and
v is a solution to the cubic Schrödinger equation with a random forcing term, but with
v.0/ D 0.

1.1. Main result

We consider (NLS) in dimension d D 3 with small randomized initial data that lie in
H s.R3/ \ Ran Pc.H/ for some s 2 .1=4; 1=2�, where Pc.H/ is the projection onto the
continuous spectral subspace for H , and we assume that �.H/ D ¹e0º [ �c.H/ with no
resonance at zero, where e0 < 0 is a simple negative eigenvalue. We generalize the result
of [4] in the presence of such a potential by first constructing a local probabilistic flow, and
extending to a global flow. Then we prove that at each time of the evolution, the solution
decouples into a sum of a ground state and a radiation term that scatters at infinity.

More precisely, we fix s 2 .1=4; 1=2�, a function u0 in H s and a small parameter �.
Then we perform the Wiener randomization procedure on u0 as detailed in Section 3.1,
and we get a large measure set z�� made of rough and small initial data u!0 2H s.R3/with
improved Strichartz estimates. These initial data give rise to global solutions to (NLS) in
the form (1.3) that display an asymptotic stability dynamic.

Theorem 1.1 (Probabilistic asymptotic stability of small ground states). Assume that H
has no resonance at zero and that �.H/D ¹e0º [ �c.H/ with e0 < 0 a simple eigenvalue.
There exist a set z�� and ı0 such that for all  0 with k 0kH1=2 < ı0 and all ! 2 z�� , the
initial value problem´

i@t C� D j j
2 C V ; .t; x/ 2 R �R3;

 jtD0 D �u
!
0 C  0;

(1.4)

admits a unique global-in-time solution  of the form

 .t/ D � eit.��V / u!0 C v.t/; where v 2 C.R;H1=2.R3//:

Moreover, the solution uniquely resolves into .t/DQ.z.t//C �.t/, and there exist zC 2
C and a final state �C 2 H1=2.R3/ \ Ran.Pc/ such that

lim
t!C1

z.t/ exp
�
i

Z t

0

E.z/ d�

�
D zC;

lim
t!C1

k� � e�itH .�u!0 C �C/kH1=2.R3/ D 0:

(1.5)
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Remark 1.2. The measure of the set z�� of initial with improved Strichartz estimates is
all the more large since �ku0kH s is small. There exist C; c > 0 such that for all u0 and
� > 0,

P.� n z��/ � C exp.�c��2ku0k�2H s.R3/
/:

Remark 1.3. We have conditional uniqueness for v in the critical space defined in (4.13),
and embedded into L1.R;H1=2/. Hence, v gains some regularity and lies in a space
where there exists a deterministic Cauchy theory.

By taking u0 D 0 in the statement of Theorem 1.1 and using persistence of regu-
larity, we may extend the deterministic result of [31] to the intercritical regime, where
1=2 � s � 1.

Corollary 1.4 (Deterministic asymptotic stability). For 1=2 � s � 1, there exists ı0 > 0
such that for all k 0kH s � ı0, the Cauchy problem (NLS) with initial data  0 has a
unique global solution  2 C.RIH s/ that resolves into  .t/ D Q.z.t// C �.t/, and
asymptotic stability (1.5) holds in H1=2.

1.2. Background

1.2.1. Asymptotic stability for small solitons in the energy space. Previous results
on the asymptotic stability of small ground states hold for initial data  0 in the energy
space H1.R3/, where (NLS) is known to be well posed. Soffer and Weinstein proved
in [44] that the equation displays some multichannel scattering for small and localized
data in the energy space. More precisely, any initial data small in H1.R3/ \ L1x.R

3/

gives rise to a global solution that resolves into a fixed ground state and a radiation
term whose L6x.R

3/-norm decays to zero, as well as some of its L2x.R
3/-weighted norm

(see [44, Theorem 4.1]). By the use of the center stable manifold method, Pillet and Wayne
then extended this result in [40] to the case where the initial data are localized in some
L2x.R

3/-weighted spaces rather than in L1x.R
3/. While these works impose some fixed

orthogonality conditions to the modulation parameters, Gustafson, Nakanishi, and Tsai
introduced a time-dependent orthogonality condition that leads to an asymptotic stability
result in H1.R3/ ([31, Theorem 1.7]) without any assumption on the decay of the initial
data, and the radiation term scatters in H1.R3/. A natural question is whether the asymp-
totic stability holds true below the energy space. Indeed, we still have a local flow for
1=2 � s � 1, and a local probabilistic flow for 1=4 < s < 1=2. We note that our proof
does not use any decay assumption on the initial data. In addition, the randomized initial
are not likely to decay for a general u0 (see the discussion in Section 3.1.1).

1.2.2. Probabilistic well-posedness theory. Even though the Cauchy problem (NLS) is
in general ill posed for scaling-supercritical initial data below H1=2.R3/, the probabilistic
method can provide some large measure sets of initial data that give rise to global-in-time
solutions. Many works were done in this direction for different dispersive PDEs after the
pioneer work of Bourgain [7] for the NLS equation on T2, followed by the work of Burq
and Tzvetkov on the nonlinear wave equation (NLW) on a three-dimensional compact
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Riemannian manifold without a boundary [16, 17]. The idea is to find a randomization
procedure which improves some Strichartz estimates on the free evolution of the random-
ized data, but does not improve their regularity.

To extend local well-posedness below the scaling-critical Sobolev space, the strategy
consists in decomposing the solution into  D u! C v where u! WD e�itH u!0 is the linear
evolution of the randomized data. The remaining term v is smoother and satisfies (NLS)
with a stochastic forcing term:´

i@t �H D N . /;

 jtD0 D  0 C u
!
0 ;

,

´
i@tv �Hv D N .v C u!/;

vjtD0 D  0:
(1.6)

In addition, we need to solve equation (1.6) for v in a well-chosen subspace of C.I;H sc /

by a contraction mapping argument. Thanks to its random structure, the linear evolution
of the randomized data u! displays some enhanced integrability properties that make it
possible to gain regularity on the stochastic Duhamel term. After that, we globalize the
local solutions by using the Bourgain invariant measure argument in the case of Td , or
by using a priori estimates on some critical norm of v.

The general randomization procedure consists in finding a well-chosen decomposition
of the initial data and in decoupling the terms of this decomposition by multiplying each of
them by some independent random variables ¹gn.!/ºn centered around zero. Then, taking
averages cancels interference and therefore improves the integrability of the data. There
exist many versions of the randomization procedure, and we refer the interested reader to
the survey [6] and the references therein for a detailed presentation. One has to distinguish
between two cases. In the confining case where the physical space is a compact manifold,
or when the equation contains a confining potential, we consider the decomposition u!0 DP
n gn.!/un en.x/, where ¹enº is an orthonormal basis made of eigenfunctions of the

Schrödinger operator. In the Euclidean case, the Schrödinger operator does not provide
such a natural decomposition, and we use instead unit-scale frequency decomposition
on Wiener cubes (see [4, 5, 25, 50]), or microlocal decomposition (see [10, 13, 39]). In
some specific cases, we can also use a compactifying transformation such as the Lens
transform for NLS (see [14, 15]) or the Penrose transform for NLW (see [23]) to apply in
the Euclidean setting variants of the Bourgain invariant measure argument. Nevertheless,
it must be emphasized that the probabilistic method used in the aforementioned works
concerns perturbations of the zero solution and ends up with asymptotic results like global
well-posedness and scattering for small data or in the defocusing case.

Still, Kenig and Mendelson recently addressed in [37] the problem of asymptotic sta-
bility of large solitons for the quintic focusing wave equation with randomized radial
initial data. They introduced a randomization procedure based on the distorted Fourier
transform adapted to the linearized operator around a soliton, and proved some intricate
kernel estimates due to the presence of a resonance at zero for this operator. Then, Bring-
mann showed the stability of the ODE blow-up for the radial energy-critical NLW in
four dimensions under random perturbations below the energy space [11]. However, for
nonlinear focusing Schrödinger equations the asymptotic stability around solitons is more
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subtle. Indeed, the solitons for (NLS) with V D 0 are stable when the nonlinearity is small
and the critical exponent is negative. Hence, we cannot run the probabilistic strategy since
the smoother term v, which is expected to lie in the critical space C.RIH sc .Rd //, cannot
serve as a substitute for the conservation laws. In addition, the linearized operator around
the soliton is not self-adjoint. We refer to [22, 48] and the references therein for a general
insight on the results and techniques about stability of solitons for NLS.

1.2.3. Schrödinger equation with a short-range potential. The study of dispersive
PDEs with a potential is a very general problem. For instance, a potential can arise in
the modulation equations obtained to address stability problems around soliton solutions
by the analytic method (see [48]). There exists a vast literature about Schrödinger equa-
tions perturbed by a localized potential (see for instance [26, 27, 41]). These works rely
on the use of a distorted Fourier transform FV , which is the analogue adapted to H of
the Fourier transform. When it exists, the distorted Fourier transform defines a partial iso-
metric map onto L2ac.R

d / that conjugates H with the operator of multiplication by j�j2.
Additionally, the distorted Fourier transform is related to the wave operators W˙. We
refer the interested reader to the seminal work of Agmon [1], grounded on the previous
works [2, 35]. In the probabilistic context, we shall follow the strategy used by Kenig and
Mendelson for the quintic focusing NLW in [37] to provide a randomization procedure
based on a distorted frequency decomposition. This randomization procedure commutes
with the flow e�itH and is therefore suited to the underlying linear dynamic of (NLS). In
the present work we consider the Schrödinger equation perturbed by a potential in order
to generate a curve of small nonlinear ground states, and our analysis is easier than in [37]
since we can assume no resonance at zero. Let us now make the assumptions made on V
precise.

Assumptions on the potential. We assume V is a real-valued potential in the Schwartz
class �.Rd IR/. We write

H WD ��C V; H0 D ��:

Note that V is short range in the sense of Agmon: there exists � > 0 such that the operator

u 2 H2.Rd / 7! .1C jxj/1C�V u 2 L2.Rd /

is a compact operator. Namely, H is H0-compact. Hence, H admits a unique self-adjoint
realization on L2.Rd / with domain D.H/ D H2.Rd / and has the same essential spec-
trum as H0, which is the half-line Œ0;C1/. In addition, Agmon proved in [1] that if V is
short range then the spectrum of H is given by

�.H/ D �p.H/ [ �ess.H/ D �p.H/ [ Œ0;C1/;

where �p.H/ (the discrete spectrum of H ) is a countable set made of eigenvalues with
finite multiplicity. We have the spectral decomposition

L2.Rd / D L2ac.R
d /˚ L2p.R

d /;
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where L2p.R
d / is the space spanned by the associated eigenvectors and L2ac.R

d / is
the absolute continuous spectral subspace for H . In what follows, we assume that V is
generic, in the sense that

(i) �p.H/ � .�1; 0/;

(ii) 0 is not a resonance for H .

We refer to [26] and the references therein for precise discussions about optimal assump-
tions on V . In the present work, we assume extra regularity on V to get the global-in-time
local smoothing estimates of [43, Proposition 1.33]. We also choose to take V smooth
in order to derive a bilinear estimate for perturbed linear Schrödinger evolutions based
on semiclassical functional calculus, that does not rely on an explicit structure theory for
wave operators (see [3,34]). The assumption that V is in �.Rd / is far from being optimal
and is made for simplicity.

1.3. Organization of the paper

1.3.1. Spectral theory. We present in Section 2 the basic properties of the distorted
Fourier transform, and its connections with wave operators and functional calculus. Under
our assumptions on��C V , the distorted Fourier transform is a unitary operator onto the
continuous spectral subspaceL2c.R

d / that provides very useful frequency decompositions
adapted to the perturbed framework. Indeed, the distorted Fourier multipliers involved in
these decompositions commute with the perturbed linear flow e�itH . In particular, they
preserve the continuous spectral subspace Ran.Pc/. We state an analogue of the Fourier
multiplier theorem for this transformation that follows from the Lp-boundedness of wave
operators, and we also stress that distorted Fourier multipliers by radial functions coincide
with spectral multipliers defined by the functional calculus on self-adjoint operators. Then
we shall briefly revisit some nonlinear tools, such as the Littlewood–Paley inequality, in
order to perform standard harmonic analysis techniques for nonlinear dispersive PDEs in
the perturbed setting.

1.3.2. Probabilistic and bilinear Strichartz estimates for the inhomogeneous Schrö-
dinger evolution. First, we generalize the refined global-in-time Strichartz estimates for
randomized data from [4, Lemma 2.3]. To do so, we introduce a distorted Wiener decom-
position by using distorted Fourier multipliers localized on unit cubes (whereas standard
Fourier multipliers are used in the flat case). As mentioned above, the reason for this is
to come with a randomization that commutes with e�itH and that preserves Ran Pc.H/.
Proposition 3.2 yields a large measure set z� of initial data in Ran Pc.H/ that display
refined Strichartz estimates. In order to revisit the standard proof written in [4], we use
the variant of the Bernstein estimate for distorted Fourier multipliers (2.12) presented in
Section 2. Furthermore, we stress that since u!0 is in Ran.Pc/ we can apply the local
smoothing property (2.7) for e�itH . For all these reasons, randomization adapted with a
distorted frequency decomposition turns out to be the best suited to the dynamic of (NLS).
Nevertheless, the distorted Fourier transform does not change a product into a product
of convolution. Therefore, the nonlinear analysis is more intricate in this setting, and



N. Camps 1268

we cannot generalize bilinear estimates so easily. Still, we prove an extended version
of the bilinear Strichartz estimate from Bourgain to the inhomogeneous case with V in
the Schwartz class. Our proof does not rely on a structure formula for the wave operator,
and we use instead semiclassical functional analysis to intertwine Fourier and distorted
Fourier multipliers. More precisely, we quantify the interactions between functions of the
form '.N�1H/ and '.M�1H0/ in order to intertwine localization with respect to H and
H0. Then we decompose the perturbed evolution e�itH into a superposition of free evo-
lution eit� of flat-Fourier localized data, and we apply the original Bourgain estimate for
the free evolution eit�, as well as local energy decay.

1.3.3. Probabilistic global existence and scattering on the continuous spectral sub-
space. The purpose of Section 4 is to lay the foundations for the analysis conducted in
Section 5 of the stability of small nonlinear ground states under rough and randomized
perturbations. First, we recall the definitions and key properties of critical spaces of func-
tions from an interval I to H

d�2
2 .Rd /, written X

d�2
2 .I /. This space is built upon the

space of functions of finite q-variation V q and its predual, the atomic space U p . Next,
we generalize [4, Theorem 1.2] to the perturbed framework in order to understand the
dynamic for solutions to (NLS) projected on the continuous spectral subspace for H . To
do so, we shall specify and develop slightly the random nonlinear estimates derived in [4].
We obtain the following result.

Theorem 1.5. Assume thatH has no resonance nor eigenvalue at zero. Let sd D d�1
dC1
� sc

and s 2 .sd ; sc �. For all ! 2 z�� and 0 2H
d�2
2 .Rd /\Ran.Pc/ small enough, the Cauchy

problem ´
i@t C .� � V / D Pc.j j

2 /;

 jtD0 D �u
!
0 C  0

(NLSc)

admits a unique global-in-time solution  in the class

� e�itH u!0 CX
d�2
2 Œ0;1/ � C.Œ0;1/;H s.Rd / \ Ran.Pc//:

In addition, there exists vC 2 H
d�2
2 .Rd / \ Ran.Pc/ such that

lim
t!C1

k � e�itH �u!0 C vCk
H

d�2
2 .Rd /

D 0:

Remark 1.6. If the pure point spectrum of ��C V is empty then Pc D Id and (NLSc)
is (NLS). By time reversibility of (NLS) the same results hold true for negative times,
and conditional uniqueness holds in the following sense: let v1, v2 be two solutions in
X

d�2
2 .0;1/. If there exists t 2 Œ0;1/ such that v1.t/ D v2.t/ then v1 � v2.

In Section 5, we consider perturbed solutions of (NLS) around a ground state in the
form QC �. In particular, the radiation term � satisfies a nonlinear Schrödinger equation
with a stochastic forcing term that contains localized and linear terms. The main difficulty
is that the higher-order terms are handled in critical spaces, while the localized lower-
order ones can only be controlled in weighted Sobolev spaces by the use of some local



Asymptotic stability under random perturbations 1269

smoothing estimates. Therefore, we shall present in Proposition 4.15 a critical-weighted
strategy that gives a way to perform nonlinear analysis in critical spaces and in weighted
spaces simultaneously. In dimension d D 3, our analysis shows that this technique also
gives an alternative version of Theorem 1.5 where global existence and uniqueness for
the nonlinear part of the solution hold in V 2 intersected with the weighted Sobolev space
L2t .RIH

1;�1=2�.R3//. A similar approach for the Korteweg–de Vries equation can be
found in [38].

1.3.4. Outline of the proof of Theorem 1.1. Let us now present the framework and
some notation used in [31]. In what follows, we identify C ' R2 with z D z1 C iz2 D
.z1; z2/. For convenience, we denote the operator Dz f .z/ WD .@z1f .z/; @z2f .z// acting
on C seen as a real vector space of dimension 2 endowed with the real scalar product
h.z1; z2/; .z

0
1; z
0
2/i D z1z

0
1C z2z

0
2. Then we construct a local probabilistic flow for (NLS),

and we decompose the solution at each time in the form (1.3) with the following time-
dependent orthogonality condition imposed for the radiation term �.z/:

�.z/ 2 Hc.z/ WD
®
� 2 L2.R3/ j

R
hi�; @z1Q.z/i D

R
hi�; @z2Q.z/i D 0

¯
: (1.7)

In particular, observe that Hc.0/ D Ran.Pc/ D L
2
c.R

3/. In broad outline, we ask for � to
be orthogonal to the center manifold of ground states at each time, and this has for effect to
cancel some linear terms in the modulation equations (5.8). Note that these orthogonality
conditions are all the more natural since any small function � in L2.R3/ can actually be
decomposed into

� D Q.z/C �; (1.8)

where z 2 C and � 2 Hc.z/ satisfies (1.7) (see [31, Lemma 2.3]). Furthermore, the
decomposition (1.8) is explicit and Pp.�/, the discrete part of �, can be expressed as a
function of Pc.�/ and z. Indeed, for each z small enough there exists a bijective operator
R.z/WHc.0/! Hc.z/ written in Lemma 5.4 such that

� D R.z/Pc.�/:

We introduce � D Pc.�/ � �u
! . Since u! is in Ran.Pc/, we have that � 2 Ran Pc, and

Pp.�/ D .R.z/ � I /.�u! C �/:

Therefore, the evolution reduces to a system with two degrees of freedom z and �:

 D Q.z/C �.z/; �.z/ D R.z/.�u! C �.z//: (1.9)

The aim is to obtain some global a priori estimates for .�; m.z//, solution to the cou-
pled system of modulation equations (5.8), (5.10), where m.z/ denotes a bijective gauge
defined in (5.7). By injecting the ansatz (1.9) into the equation (NLS), we see that � sat-
isfies the perturbed Schrödinger equation with a stochastic forcing term (5.10). It has the
form

i@t� C .� � V /� D F.�;Q.z/; z; �u
!/;
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and stress that the forcing term contains some linear terms with respect to � and its com-
plex conjugate N�. The main difficulty is to prove scattering with these linear terms. Indeed,
they are time dependent, and they are not self-adjoint perturbations of H . Hence, we can
not absorb them in the left-hand side in order to get a perturbed operator as studied in our
framework. We rather need to consider linear terms as source terms. Fortunately, these
terms come with powers ofQ or �0 which are small in H2 and localized. Hence, we shall
use local energy decay to control them. On the other hand, we need the critical spaces
based on U 2 and V 2 to control the term N .u! C �/. Consequently, we shall exploit the
aforementioned critical-weighted strategy (see Proposition 4.15) to simultaneously cope
with the localized and critical terms and to get the desired a priori estimate on �.

The dynamic of m.z/ is governed by an ODE that arises as when differentiating the
orthogonality conditions (1.7) with respect to time. As explained above, orthogonality
conditions (1.7) cancel terms which are linear with respect to �. Hence, the obtained ODE
contains terms which are at least quadratic in �. Since the local smoothing estimate con-
trols some global-in-time and weighted quadratic norms of �, a global-in-time control of
Pm.z/ in L1t .R/ follows from the analysis of the ODE and yields the convergence result

written in (1.5).
Eventually, the analysis leads to the global a priori estimates on � and m.z/ stated

in Proposition 5.9, from which we deduce global existence by the use of a continuity
argument. The desired asymptotic dynamic also follows from these a priori estimates.

Notation. Let s;� 2R. We denote a Sobolev space by H s.Rd /, and we define a weighted
Sobolev space by

L2;� .Rd / D
®
u j hxi�u 2 L2.Rd /

¯
; H1;� .Rd / D

®
u j hxi�u; hxi�ru 2 L2.Rd /

¯
:

The projection onto the continuous spectral subspace L2c.R
d / for H is written Pc, and

Pp D I�Pc D . � j �0/�0 is the projection onto the pure point subspace for H . Note that

Ran.Pc/ D L
2
c.R/ D Hc.0/;

where spaces Hc.z/ encode the orthogonality conditions (1.7) to the ground state mani-
fold. We write as e�itH D e�itH Pc the perturbed Schrödinger evolution projected on the
continuous spectral subspace, whereas eit� D e�itH0 is the free Schrödinger evolution.
For I � R, the space-time Lebesgue space Lqt .I IL

p
x .Rd // is written LqtL

r
x.I /, or LqtL

r
x

when the dependence on I is clear. Given a Borel function f WRC ! C, we denote the
operators defined by the usual functional calculus by f .H0/ and f .H/ D f .H/Pc.H/.
In particular, we define the Littlewood–Paley multipliers (see (2.16)) around the dyadic
frequency N 2 2N by

�Nu D '.N
�1H0/; …N D

X
K�N

�Ku; z�N D '.N
�1H/; z…N D

X
K�N

z�Ku:

Given a function mWRd ! C we denote the distorted Fourier multiplier F �V Pc.H/mFV
by Mm.H/ (see Definition 2.7), where FV is the distorted Fourier transform (see Propo-
sition 2.6). Given a function u0 in L2c.R

d /, we define its Wiener randomization by u!0 in
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Definition 3.1, and u! D e�itH u!0 is the linear propagation of the randomized data by the
under perturbed flow.

2. Spectral theory for generic short-range Schrödinger operators

In this section we present well-known facts about functional calculus on perturbed Schrö-
dinger operators which give rise to a natural framework to work with ��C V and �� all
together. First, we collect some definitions and basic properties of wave operators, such as
the intertwining property as well as their Lp-boundedness. As a consequence, we will see
how dispersive estimates known for free Schrödinger evolution carry over to the perturbed
setting. Additionally, we recall the construction of a distorted Fourier transform based on
the limiting absorption principle. We shall see how the wave operators connect this trans-
formation to the usual – or flat – Fourier transform, and lead to a useful generalization of
the Fourier multiplier theorem. Some of the results we state here may not hold true in low
dimensions d < 3.

2.1. Wave operators and the intertwining property

The wave operators are defined by the strong limit

W˙ D s-lim
t!˙1

eitH e�itH0 in B.L2.Rd //:

They aim at understanding scattering of Schrödinger operators �� C V by comparing
the asymptotic behavior of e�itH with the asymptotic behavior of e�itH0 . We say that the
wave operators are asymptotically complete if

(i) W˙ is bounded and surjective from L2.Rd / onto L2ac.R
d /;

(ii) �sc.H/ D ;, and hence L2ac.R
d / D L2c.R

d /.

Agmon proved in [1] that the wave operators W˙ exist and are asymptotically complete
under the decaying assumption hxi1C�V 2 L1.Rd /. Consequently, wave operators are
partial isometries onto L2c in this case, that is,

W˙�W˙ D I; W˙W˙� D Pc :

It follows from the definition that

e�itH W˙ DW˙ e�itH0 :

This leads to the so-called intertwining property: for any Borel function f WR! C,

H Pc DW˙H0 W˙�; f .H/Pc DW˙ f .H0/W˙�; (2.1)

where f .H/ and f .H0/ are defined by the functional calculus on self-adjoint operators.
In a seminal paper [49], Yajima proved the W k;p.Rd / boundedness for wave operators
when some extra regularity and decay on V and F .V / are assumed. We state the result in
Lp.Rd /, since we do not need more in our study.
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Proposition 2.1 (Lp-bound of wave operators, [49, Theorem 1.1]). Let V be a generic
potential with some regularity and decaying assumptions detailed in [49], and 1 � p �
C1. The wave operators W˙ can be extended to bounded operators in Lp.Rd /: there
exists Cp such that for all f in L2.Rd / \ Lp.Rd /,

kW˙ f kLp.Rd / � Cpkf kLp.Rd /: (2.2)

Given 1 � p; q � C1, it follows from the intertwining property (2.1) and from the
Lp bound (2.2) that f .H/ and f .H0/ have equivalent norms on B.Lp.Rd /; Lq.Rd //.
There exists Cp;q such that for any Borel function f WR! C,

C�1p;qkf .H/kB.Lp ;Lq/ � kf .H0/kB.Lp ;Lq/ � Cp;qkf .H/kB.Lp ;Lq/:

One striking but straightforward consequence of Proposition 2.1 is the generalization of
the dispersive estimate to perturbed linear Schrödinger evolutions.

Proposition 2.2 (Dispersive estimate for perturbed Schrödinger evolution). Let V be a
potential as in Proposition 2.1, 2 � p � C1 and q such that 1=p C 1=q D 1. There
exists a constant Cp such that for all f 2 L2.Rd / \ Lq.Rd / and t 2 R n ¹0º,

ke�itH Pc f kLp.Rd / � C
p
jt j�d.1=2�1=p/kf kLq.Rd /: (2.3)

By the T T � argument, we deduce from the above dispersive estimate the global-in-time
Strichartz estimate for the perturbed linear evolution: for all Schrödinger admissible pairs
2 � q; r � 1, with 3 � d and 2

q
C

d
r
D

d
2

,

ke�itH Pc f kLqt .RILrx.Rd // � Cq;r;dkf kL2.Rd /: (2.4)

This result was originally proved in [36], under the assumption that H has no eigen-
value nor resonance at zero, and that V satisfies the decay condition

jV.x/j . hxi�2�� for some 0 < �:

2.2. Distorted Fourier multipliers

In order to refine the perturbed Strichartz estimates of Proposition 2.2 for randomized
initial data as in [4], we have to use unit-scale decomposition of the frequency space
adapted to the operator ��C V . More precisely, we need to set out a distorted Fourier
transform that conjugates the operator H with multiplication by j�j2, and to generalize
the Fourier multiplier theorem. To construct such a transformation, the usual strategy is to
determine some generalized plane waves e.x; �/ that are perturbations of the plane waves
eix�� and that formally satisfy the Helmholtz equation

.��C V / e. �; �/ D j�j2 e. �; �/; (2.5)

with the asymptotic condition

v.x; �/ WD e.x; �/ � eix�� D Ojxj!1.jxj�1/;
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as well as the Sommerfeld radiation condition

r.@r � i j�j/v.x; �/ ����!
jxj!0

0:

Equation (2.5) cannot be solved in L2.Rd / since j�j2 is in the essential spectrum of H .
However, this equation can be solved in weighted spaces by a procedure called the limiting
absorption principle. This principle states that the resolvent R.z/ WD .H � z/�1, which
is bounded from L2.Rd / to H2.Rd / and which defines an analytic operator-valued func-
tion on C n Œ0;C1/, can be extended to the boundary of its domain of definition in the
following sense.

Proposition 2.3 (Limiting absorption principle, [1, Theorem 4.2]). Let �> 0 and ı > 1=2.
The sequence

lim
z!�

Im.z/>0

R.z/ DW RC.�/

converges in B.hxi�ıL2.Rd /; hxiıH2.Rd // endowed with the uniform operator norm
topology.

Then the existence of a family of distorted plane waves follows from the above lim-
iting absorption principle. Indeed, the solutions to equation (2.5) satisfy the Lippman–
Schwinger equation

e.x; �/ D eix�� �RC.j�j2/.V eix��/: (2.6)

Proposition 2.4 (Generalized plane wave, [1, Theorem 5.1]). There exists a measurable
function e in L2loc.R

d � .Rd n ¹0º// such that for every fixed � in Rd n ¹0º, the function
e. �; �/ belongs to H 2

loc.R
d / \ C.Rd / and is a solution to equation (2.5) in H 2

loc.R
d /.

See [35] for further properties of the generalized plane waves when V is regular.
Another important consequence of the limiting absorption principle is the local smoothing
estimate, or local energy decay, for the perturbed linear Schrödinger evolution. We state a
version taken from [43, Proposition 1.33] where some extra regularity and decay assump-
tions on V are required. This local smoothing effect and its transferred version into the
space U 2 is a key ingredient in the proof of Theorem 1.1 when we study the perturbations
around the ground state.

Proposition 2.5 (Global-in-time local smoothing estimate for H , [43, Proposition 1.33]).
Under our assumptions made on V , and for  a solution to the forced Schrödinger equa-
tion

i@t C .� � V / D F;  jtD0 D  0;

we have the following global-in-time control of the local energy of  :Z
R
kPc. /k

2
H1;�1=2� dt .V k 0k2H1=2.Rd /

C

Z
R
kF.t/k2

L
2;1=2C
x

dt: (2.7)
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The next step is to define a distorted Fourier transform from the generalized plane
waves constructed in the above paragraph. Since H may have some pure point spectrum
in our assumptions, the operator we get is only a partial isometry with range L2c.R

d /.

Proposition 2.6 (Distorted Fourier transform, [1, Theorem 5.1]). There exists a partial
isometry FV from L2.Rd / to L2c.R

d / which diagonalizes H on H2.Rd /. For all f 2
H2.Rd /,

.��C V /f D .F �VMj j2FV /f:

Moreover, for any f in L2.Rd / the following representation formula holds in L2.Rd /:

FV f .�/ D .2�/
�d=2 lim

n!1

Z
jxj<n

e.x; �/f .x/ dx; (2.8)

F �V f .x/ D .2�/
�d=2 lim

n!1

Z
jxj<n

e.x; �/Pc.H/f .�/ d�: (2.9)

Furthermore, we have
WC D F �V F : (2.10)

Thanks to the distorted Fourier transform we are now able to define some analogues
of the Fourier multipliers, which commute with H .

Definition 2.7. Let mWRd ! C be a function in L1. The distorted Fourier multiplier

Mm.H/ WD F �V m.�/FV (2.11)

is a bounded operator on L2.Rd /, where m.�/ denotes the operator u 2 L2
�
7! mu. We

have
kMm.H/kB.L2.Rd // � kmkL1.Rd /:

It follows from equation (2.10) that

W�CMm.H/WC D Mm.H0/;

where Mm.H0/ is the usual Fourier multiplier by m. Hence, we deduce from the Lp

boundedness of the wave operator W˙ mentioned in Proposition 2.1 that Mm.H/ is
bounded on Lp.Rd / if and only if Mm.H0/ is bounded on Lp.Rd /. As a consequence
of this principle, we generalize the Fourier multiplier theorem and its variations to the
perturbed linear Schrödinger evolution.

Lemma 2.8. Let mWRd ! C be a function in L1.Rd / supported on a compact set E.
Given q in Œ2;C1�, there exists a constant C D C.q; V; kmkL1/ such that for all f in
L2.Rd /,

kMm.H/f kLq � C jEj
1
2�

1
q kf kL2 : (2.12)

Proof. Let f be a function in L2.Rd /. We have

j.F �mF /f .x/j D

ˇ̌̌̌Z
E

ei��x m.�/F f .�/ d�
ˇ̌̌̌

� kmkL1.Rd /ke. �; �/kL1 jEj
1
2 kf kL2 : (2.13)
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Then (2.12) for Mm.H0/ (i.e. when V D 0) follows from complex interpolation, and we
deduce the estimate for Mm.H/ from the intertwining property (2.1) and from the Lp-
bound (2.2) on W˙.

Similarly, one can generalize the Mikhlin multiplier theorem (see[46, Theorem 3.2])
to the perturbed setting.

Lemma 2.9 (Mikhlin multiplier theorem). Let mWRd n ¹0º ! C be a multiplier and 1 <
p < C1. Assume that for all ˛ in Nd such that 0 � j˛j � d�1

2
C 1,

jD˛ m.�/j � C˛j�j�˛: (2.14)

Then
km.H/f kLp.Rd / . C˛kf kLp.Rd /:

As a consequence of the Mikhlin multiplier theorem, we show that the Sobolev spaces
defined with H or H0 are equivalent.

Lemma 2.10. Let 1 < p < C1 and 0 � s. There exists C D C.s; p; d/ such that for all
f in �.Rd /,

C�1kh
p
H0i

sf kLp � kh
p
H isf kLp � Ckh

p
H0i

sf kLp :

Proof. Let q be the conjugated exponent of p. Let us show that h
p
H0i

sh
p
H i�s can be

extended to a bounded operator in B.Lp/.1 We proceed by using complex interpolation
and duality in Lp . Take f , g in �.Rd / such that the support of Of is compact, and note
that such functions are dense in Lp . Next, we consider the map

F W z 7!
�
f j ez

2

h
p
H0i

z
h
p
H i�zg

�
with domain D D

®
z 2 C j 0 < Re.z/ < 2n

¯
for a given n 2 N. We see that F is a

function that is analytic on D and continuous on the closure of D. Moreover, it follows
from the Mikhlin multiplier theorem and its distorted version (2.14) that for f in Lp with
1 < p <1 and ı in R we have

jF.eiı/j . kf kLpkgkLq :

Indeed,

kh
p
H0i

iıf kLp . .1C jıj/N kf kLp ; kh
p
H iiıf kLp . .1C jıj/N kf kLp :

Note that the constant can be made independent of ı thanks to the term e�ı
2

that arises
from the function ez

2
. In addition, the distorted version of the Mikhlin multiplier theorem

and the fact that V is in � yield

kh
p
H0i

2n
h
p
H i�2nkB.Lp/ .

X
iCjCkDn

kV iH kV j h
p
H i�2nkB.Lp/ D Cn;p < C1;

1The proof provides the same result for the operator h
p
H ish

p
H0i

�s .



N. Camps 1276

and we deduce from this that

jF.e2nCiı/j . kf kLpkgkLq :

Using the three lines lemma, we prove that jF.z/j . kf kLpkgkLq on Dn uniformly in n,
and the density of functions like f and g in Lp and Lq yields the desired result.

A straightforward consequence of Lemma 2.10 is the generalization to the perturbed
setting of the fractional Leibniz rule.

Lemma 2.11 (Fractional Leibniz rule). Let 1 < p;p1; p2; q1; q2 <C1; 1p D
1
p1
C

1
p2
D

1
q1
C

1
q2

, and let 0 � s. Assume that f , g are in �.Rd /. Then

kh
p
H is.fg/kLp . kh

p
H isf kLp1 kgkLp2 C kh

p
H isgkLq1 kf kLq2 :

We prove in the next lemma that if m is a radial function, the Fourier multiplier by
m is precisely the spectral multiplier defined by the functional calculus on self-adjoint
operators.

Lemma 2.12. If there exists a Borel function f WR! C such thatm.�/D f .j�j2/ for all
� in Rd , then

Mm.H/ D f .H/: (2.15)

Proof. Let us first write the result for the free Laplacian H0, that is, F �mF D f .H0/.
By an approximation argument, the proof reduces to the cases where f is a Schwartz
function. In this setting, f .H0/ is given by the formula

f .H0/ D

Z
R

eitH0 Of .t/ dt; where eitH0 D F � eit j � j
2

F :

By applying the Fourier inversion formula for f , we have

f .H0/ D F �
�Z

R
eit j � j

2
Of .t/ dt

�
F D F �f .j � j2/F D Mm.H0/:

Hence,
F f .H0/F

�
D Mm.H0/:

Also, the intertwining property (2.1) and equation (2.10) give

f .H/ DWC f .H0/W�C D F �V F f .H0/F
�FV D F �V Mm FV D Mm.H/:

2.3. Application to the distorted Littlewood–Paley theory

There exists a nonnegative radial function  in C1.Rd / such that ' D  �  .2� / is
supported on ¹x 2 Rd j 1

2
� jxj � 2º and satisfies for all x in Rd n ¹0º,X

N22Z

'.N�1x/ D 1:
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This partition of unity provides frequency decomposition on dyadic annuli for functions f
inL2.Rd / called the Littlewood–Paley decomposition. We consider such a decomposition
for both the flat Fourier transform and the distorted one:

f D
X
N22Z

�Nf D ��1f C
X
N22N

�Nf; (2.16)

where �N WD '.N�1H0/ is the spectral multiplier around frequencies of size N for H0
as well as

f D
X
N22Z

z�Nf D z��1f C
X
N22N

z�Nf; (2.17)

where z�N WD '.N�1H/. Note that the Bernstein estimates are still true in the perturbed
setting, as a consequence of the intertwining property, and of the Lp bound on the wave
operators. For 1� p � q �1, s � 0 there exist Cp;q and Cp;s and such that for allN � 1,

kz�Nf kLq.Rd / � Cp;qN
d. 1p�

1
q /kz�Nf kLp.Rd /;

kz�Nf kW s;p.Rd / � Cp;sN
s
kz�Nf kLp.Rd /:

(2.18)

Given f in L2.Rd /, the associated distorted Littlewood–Paley square function is defined
by

ƒf .x/ D

� X
N22Z

j z�Nf .x/j
2

�1=2
:

One can see from Plancherel’s theorem that the L2.Rd /-norm of the Littlewood–Paley
square function is equivalent to the L2.Rd /-norm of the function itself. The so-called
Littlewood–Paley square function theorem extends this result to the Lp.Rd /-norms for
1 < p <1. We state a generalized version of this theorem in the perturbed framework.

Proposition 2.13. For 1 < p < C1 and f in Lp.Rd /, the Littlewood–Paley square
function ƒf is in Lp.Rd /, and

kƒf kLp.Rd / � kf kLp.Rd /: (2.19)

The constant involved in the above equivalence only depends on p and on the cutoff func-
tion  used in the Littlewood–Paley decomposition.

We outline the classical proof (see [46, Theorem 5]) that relies on the Mikhlin mul-
tiplier theorem from Lemma 2.9. The strategy is to randomize the sum �f with inde-
pendent Rademacher variables, and to use Khinchin’s estimates to reduce the proof to the
L2-case. As mentioned above, this case is a straightforward consequence of Plancherel’s
theorem.

Proof of Proposition 2.13. Let us fix 1 < p < C1 and f in L2.Rd / \ Lp.Rd /. Take
."N /N22Z a sequence of independent Rademacher variables on a probability space
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.�;A; P/, i.e. "N � U.¹�1; 1º/. Next we define the random Fourier multiplier for !
in � and � in Rd by

m!.�/ D
X
N22Z

"N .!/'.N
�1�/:

Since '.N�1� / is supported on frequencies of size � N , the random multiplier m! satis-
fies the Mikhlin assumption: for all � in Rd and ˛ a multi-index,

jD˛m!.�/j �
X
N22Z

N�j˛jj.D˛ '/.N�1�/j � C˛j�j�j˛j:

In addition, m! is a radial multiplier, and it follows from Lemmas 2.12 and 2.9 that

km!.H/f kLp.Rd / � kf kLp.Rd /: (2.20)

That being said, Khinchin’s estimate claims that�
1 �

1

p

�1=2�X
n

jcnj
2

�1=2
.
�

E
ˇ̌̌̌X
n

"N .!/cn

ˇ̌̌̌p�1=p
; (2.21)

and yields

ƒf D

� X
N22Z

j z�Nf j
2

�1=2
.
�

E
ˇ̌̌̌ X
N22Z

"N .!/z�Nf

ˇ̌̌̌p�1=p
. .Ejm!.H/f jp/1=p:

By taking the Lp.Rd /-norm on both sides and by using (2.20), we have

kƒf kLp.Rd / . Ekm!.H/f kLp.Rd / . kf kLp.Rd /:

We prove the reverse inequality by duality.

3. Probabilistic and bilinear Strichartz estimates in the perturbed
setting

3.1. Wiener randomization with respect to the distorted Fourier transform

Let us now detail how to adapt the Wiener randomization for the operator ��C V and
to generalize probabilistic Strichartz estimates. This will be made possible thanks to the
distorted Fourier transform presented in the section above. We shall follow the framework
detailed by [4], which can be adapted with no difficulty to the perturbed case.

3.1.1. Wiener decomposition on unit cubes. We denote the unit cube Œ�1; 1�d by Q0
and the translated cube centered around n 2 Zd by Qn D Q0 C n. Then we take a
well-chosen bump function  supported on Q0 that provides a partition of unity on the
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frequency space, that is,
P
n2Zd  . � � n/ � 1, and we define the Wiener decomposition

of a function in L2.Rd / as
f D

X
n2Zd

M n.H/f; (3.1)

where we defined the distorted Fourier multiplier M n.H/ in (2.11). After that, we con-
sider a probability space .�;A;P/ and a sequence of mean-zero complex-valued random
variables .gn/n2Zd of laws .�n/n2Zd , with uniform bound:ˇ̌̌̌Z

R
e
x d�n.x/

ˇ̌̌̌
� ec


2

for all n in Zd and 
 in R: (3.2)

Such a bound is satisfied by Gaussian random variables, Bernoulli variables, or indeed any
random variables with compactly supported distributions. We also assume that .Re.gn/;
Im.gn//n2Zd are independent variables.

Definition 3.1. The Wiener randomization of a function u0 in L2.Rd / is

u!0 WD
X
n2Zd

gn.!/M n.H/u0: (3.3)

Khinchin’s inequality asserts that�
E
ˇ̌̌̌X
n

gn.!/cn

ˇ̌̌̌p�1=p
.
p
p

�X
n

jcnj
2

�1=2
for .cn/ 2 `2, 1 � p < C1; (3.4)

and we deduce from it that the randomization procedure improves integrability and pre-
serves regularity. Namely, for all 2 � p < C1 and s in R there exist some constants
0 < c, 0 < C such that for all 0 < ˛, u in L2.Rd /, and v in H s.Rd / we have

P.ku!kLp.Rd / > �/ � C e
�c�2kuk�2

L2.Rd / ; P.kv!kH s.Rd / > �/ � C e
�c�2kuk�2

Hs .Rd / :

We emphasize that the procedure does not improve regularity provided that the distribution
�n does not concentrate around zero when n goes to1, i.e. u!0 2 H s.Rd / nH sC.Rd /
almost surely when u0 2H s.Rd / nH sC.Rd / (see [16, Lemma B.1]). As for the possible
gain of decay, we use the independence of the ¹gnºn2Zd , and we observe that for � > 0,

E.kjxj�u!0 k
2
L2x
/ D

X
.n;m/2Z2d

E.gngm/
Z
jxj2� M n.H/u0M m.H/f dx

D

X
n2Zd

kjxj� M n.H/u0k
2
L2x.Rd /

diverges if we assume thatX
n2Zd

kjxj� M n.H/u0k
2
L2x.Rd /

D C1: (3.5)
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Hence, kjxj�u!0 kL2.Rd / diverges in L2.�/ when u0 is chosen such that (3.5) holds. This
indicates that the randomization does not gain decay in general.2 Still, the initial data
 0 D u

!
0 C v0 in the Cauchy problem (1.4) does not decay for a general v0 in H1=2. In

addition, we do not use any decay of the data in our arguments to prove Theorem 1.1.

3.1.2. Improved probabilistic Strichartz estimates. Let us now recall how to improve
the Strichartz estimates (2.3) for data randomized according to the distorted Wiener pro-
cedure (3.3) (see [4, Lemma 2.3]).

Proposition 3.2 (Improved global-in-time Strichartz estimate). Given a Schrödinger
admissible pair .q; r/ as in Proposition 2.2, a real number Qr with r � Qr < C1, and
a function f 2 H s.Rd / for some s � 0, there exist constants 0 < C , 0 < c such that

P
�
kh
p
H is e�itH u!0 kLqt .RILQrx.Rd // > �

�
� C exp.�c�2kf k�2

H s
x.Rd /

/: (3.6)

Consequently, kh
p
H is e�itH u!0 kLqt .RILQrx.Rd // < C1 almost surely when f is in H s .

The strategy of the proof is to exploit the enhanced space integrability of Wiener ran-
domized data. More precisely, the unit-scale frequency components n.H/f benefit from
better integrability (uniformly in n) thanks to the distorted Fourier multiplier theorem,
while the randomization procedure cancels interference between these different pieces
 n.H/f . Hence, the space integrability of e�iH u!0 is improved and one can apply the
deterministic Strichartz estimate for the admissible pair .q; r/. The main point of our revis-
ited proof is that the distorted Fourier transform commutes with the perturbed linear flow
e�itH , and satisfies the unit-scale Bernstein estimate of Lemma 2.8.

Proof of Proposition 3.2. We write the proof for s D 0. The large deviation bound (3.6) is
deduced from an estimate on the moments of the random variable ke�itHu!0 kLqt .RILQrx.Rd //.
To get such an estimate, we take p with max.q; Qr/ < p and we use the Minkowski inequal-
ity to get

E.ke�itH u!0 k
p

L
q
t .RIL

Qr
x.Rd //

/1=p � ke�itH u!0 kLqt .RILQrx.Rd IL
p
!.�///

:

At fixed .t; x/ 2 R �Rd , it follows from Khinchin’s inequality (3.4) that

ke�itH u!0 kLp!.�/ D




X
n2Zd

gn.!/ e�itH M n.H/f






L
p
!.�/

.
p
pkM n.H/ e�itH f k`2n.Zd /:

Hence, we use the Minkowski inequality once again with 2 � min.q; Qr/, and get

E.ke�itH u!0 k
p

L
q
t .RIL

Qr
x.Rd //

/1=p .
p
pkM n.H/ e�itH f k`2n.Zd ILqt .RILQrx.Rd ///: (3.7)

2Since kjxj�
P
n M n u0k

2
L2
¤
P
nkjxj

� M n u0k
2
L2x

, we are not able to reproduce the proof of [16,
Lemma B.1], and to preclude any gain of decay by our randomization procedure almost surely.
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Next we use the distorted Fourier multiplier Lemma 2.8 at fixed t with Qr , r and the unit-
scale multiplier � 7! e�it j�j

2
 .� � n/ (in particular, the volume of the support does not

depend on n):

ke�itH M n.H/f kLQrx.Rd / .r;Qr ke�itH M n.H/f kLrx.Rd /:

Now we apply the deterministic global-in-time Strichartz estimate for the perturbed Schrö-
dinger evolution (2.3) with the admissible pair .q; r/ and we get

ke�itH M n.H/f kLqt .RILrx.Rd // . kM n.H/f kL2x.Rd /:

Hence, there exists 0 < C such that

E.ke�itH u!0 k
p

L
q
t .RIL

Qr
x.Rd //

/1=p .
p
p kM n.H/f k`2nL2x.Zd�Rd / �

p
p Ckf kL2x.Rd /:

To conclude, we apply the Markov inequality to get

P.ke�itH u!0 kLqt .RILQrx.Rd // > �/ � .
p
p C��1kf kL2x.Rd //

p:

After that we choose p such that
p
p WD e�1.C��1kf kL2x /

�1 and we distinguish the cases
max.q; Qr/ < p or not.

Given 0 < �;R we define the set

z��;R D
[
.q;Qr/

®
! 2 � j k�u!kLqt LQrx.R�Rd / � R

¯
; (3.8)

where the union is taken over a finite number of pairs .q; Qr/, as in Proposition 3.2, that
occur in the nonlinear analysis presented in the Section 4. It follows from (3.6) that there
exist 0 < c; C such that for all 0 < �;R,

P.� n z��;R/ � C exp.�R2��2ku0k�2H s /:

When R is an irrelevant universal constant we denote this set by z�� .

3.2. Bilinear estimate for the perturbed Schrödinger evolution

Bourgain’s bilinear estimate states that givenN ,M two dyadic numbers withN �M and
u0; v0 in L2.Rd / localized in the Fourier space, say supp Ou0 �

®
j�j . N

¯
and supp Ov0 �®

j�j �M
¯
, we have

k.eit� u0/.eit� v0/kL2t;x.R�Rd / . N
d�1
2 M�

1
2 ku0kL2x.Rd /kv0kL2x.Rd /: (3.9)

We refer to [8, Lemma 5] for the original proof of this result, and to [21] for a more
detailed proof. Basically, the proof relies on Plancherel’s formula, on the explicit form of
the free Schrödinger flow, and on the multiplicative property of the flat Fourier transform.
As mentioned in the first section, the distorted Fourier transform does not have such a
property. That being said, we propose to generalize (3.9) to the perturbed case, and we
consider the interaction of two initial data localized by perturbed Littlewood–Paley pro-
jectors z�N , z�M introduced in (2.17) that evolve under the linear flow e�itH .
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Proposition 3.3 (Bilinear estimate for perturbed linear Schrödinger evolutions). Given
N , M two dyadic integers, we have that for all u0; v0 2 L2.Rd /,

k.e�itH z�Nu0/.e�itH z�Mv0/kL2t;x.R�Rd /

. N
d�1
2 M�

1
2 kz�Nu0kL2x.Rd /k

z�Mv0kL2x.Rd /: (3.10)

The general strategy of our proof is to reduce (3.10) to (3.9). To do so, we use a per-
turbative argument that relies on the Duhamel formula that connects the free evolution to
the perturbed one. More precisely, givenN ,K two dyadic numbers and uD e�itH z�Nu0
a solution to the perturbed linear Schrödinger equation with initial data localized around
a distorted Fourier frequency of size N , we have

�Ku.t/ D eit��K z�Nu0 � i
Z t

0

ei.t��/��K.V u.�// d�: (3.11)

Hence, we will need to estimate some space-time Lebesgue norms of terms such as
�K.V z�N e�itH u0/.

3.2.1. Semiclassical functional calculus. This section is devoted to the statement of
some lemmas used in the proof of Proposition 3.3. When studying the interactions of a
solution localized around a high frequency N � 1 with other solutions, we introduce the
small parameter h D N�1 to place ourselves in the semiclassical analysis framework that
provides precise asymptotic expansions with respect to h. This strategy, which can essen-
tially be used when V is smooth, provides an easy but efficient way to intertwine Fourier
and distorted Fourier localization. For the convenience of the reader, we detail some nota-
tion and results from semiclassical analysis (we refer to [51] for a general presentation).
The Weyl quantization of a given symbol a 2 C1.R2d / is

Oph.a/u.x/ WD .2�h/
�2d

“
Rd�Rd

ei
.x�y/��
h a

�x C y
2

; �
�
u.y/ dy d�: (3.12)

It defines an operator acting on �.Rd / and for instance h2H0 D Oph.j�j
2/, h2H D

Oph.j�j
2 C h2V /. Moreover, if the symbol a is in the class

S.1/ WD
®
a.h/ 2 C1.R2d / j 8˛; ˇ 2 Nd ; suph2Œ0;1/ sup�2R2d j@˛x@

ˇ

�
a.�/j <1

¯
;

we can extend Oph.a/ to a bounded operator on L2.Rd / thanks to the Calderon–Vaillan-
court theorem, which yields

kOph.a/kB.L2.Rd // .
X

j˛j�6dC2

hj˛j=2k@˛x;�akL1.R2d /: (3.13)

Moreover, given a and b two symbols in the class S.1/, there exists a symbol c also in
S.1/ such that Oph.a/ ı Oph.b/ D Oph.c/. In addition, c has an explicit semiclassical
asymptotic expansion of the form

c.�/ D a.�/b.�/ � h
i

2
¹a; bº.�/C � � �

C
1

.n � 1/Š

� ih
2

�n�1
a.!.
 �
D;
�!
D//n�1b.�/CO.hn/�.Rd /; (3.14)
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where a!.
 �
D;
�!
D/b.�/ WD .@�0a.�0/@x1b.�1/ � @�1b.�1/@x0a.�0//j�0D�1D�. The symbol

c is written c DW .a#hb/. In particular, we observe from (3.13) and (3.14) that whenever a
and b are in S.1/ with disjoint supports then

Oph.a/ ı Oph.b/ D O.h
1/B.L2.Rd //: (3.15)

We can now state an approximation result of spectral multipliers by pseudo-differential
operators. This result comes from [42], and was extended to more general multipliers in
[45]. We choose to write a version presented in the context of compact manifolds in [12,
Proposition 2.1]. The proof relies on the so-called Helffer–Sjöstrand formula and can be
rewritten in our setting with no difficulty.

Lemma 3.4. Let � in C1c .R/ be a smooth cutoff function. There exists a sequence of
symbols .cj /j�0 in S.1/ such that for every h 2 .0; 1�, n 2 N, and 0 � � � n,



�.h2H/ � X

0�j�n�1

hj Oph.cj /






B.L2.Rd /;H� .Rd //

.n;� hn: (3.16)

In addition, for .x; �/ 2 R2d ,

c0.x; �/ D �.j�j
2/; cj .x; �/ D

X
k�2

1

.k � 1/Š
�.k�1/.j�j2/qj;k.x; �/;

where the finite sum representing cj is made of functions qj;k which are polynomials of
degree less than 2.k � 1/ in the frequency variable �, and they are Schwartz functions
with respect to the space variable x.

We emphasize that supp cj �
®
.x; �/ 2 R2d j j�j2 2 supp �

¯
. Hence, we can approx-

imate z�N WD '.N�1H/ by pseudo-differential operators supported on frequencies of
size N . Since the Fourier multiplier �K WD '.K�1H0/ is already a pseudo-differential
operator localized on frequencies of size K, we can use the semiclassical asymptotic
expansion (3.14) to see that �K z�N is negligible when 1 � jK � N j. Namely, for all
s;� 2R and 0<˛ there existsCs;�;˛ such that for allN D 2n andKD 2k with 3� jk � nj,

k�K z�N kB.H�s ;H� / � Cs;�;˛2
�˛max.n;k/: (3.17)

Therefore one can intertwine localization with respect to the spectral Littlewood–Paley
multiplier for H and H0 up to a negligible term. The next lemma, written in light of
equation (3.11), encapsulates the above discussion.

Lemma 3.5. For any ˛ 2 N, there exists C D C.˛; V / > 0 depending on some weighted
norms of V and its derivatives3 such that for any dyadic integerK D 2k and f 2 L2x.R

d /

we have � X
jk�lj�3

k�K.V�Lf /k
2
L2x

�1=2
� CK�˛khxi�2f kL2x : (3.18)

3More precisely, our brutal computations give C . khri 3d2 C3˛.hxi2V /kL2x , but they are far from being
optimal.
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Note that we decided to exploit not only the localization in frequency, but also the
decay of V in order to use the local smoothing effect later on.

Proof of Lemma 3.5. We prove that there exists C˛ > 0 depending on weighted norms of
the potential V and its derivatives such that for all L D 2�l with 3 � jk � l j, we have

k�K.V�Lf /kL2x � C2
�2˛max.k;l/

khxi�2f kL2x : (3.19)

Let us first consider the case when k C 3 � l . Plancherel’s formula yields

k�K.V�Lhxi
2f /kL2.Rd /

D sup
kgk

L2.Rd /
�1

ˇ̌̌̌“
Rd�Rd

'.K�1�/'.L�1�/ yV .� � �/hr�i
2 Of .�/ Og.�/ d� d�

ˇ̌̌̌
;

where we used that Fx!�hxi
2f � hr�i

2Fx!�f . Integrating by parts4 with respect to �
gives

k�K.V�Lhxi
2f /kL2.Rd /

D sup
kgk

L2.Rd /
�1

ˇ̌̌̌“
Rd�Rd

'.K�1�/hr�i
2.'.L�1�/ yV .� � �// Of .�/ Og.�/ d� d�

ˇ̌̌̌
:

Since 'K (resp. 'L) is supported on 2k�1 � j�j � 2kC1 (resp. 2l�1 � j�j � 2lC1), we
have 2l�2 � j� � �j on the support of the integrand. Therefore, for all 0 � ı we have that
1 � 2�ı.l�2/j� � �jı , and the right-hand side of the above estimate satisfies

RHS . 2�ı.l�2/
“

Rd�Rd

ˇ̌
'.K�1�/j� � �jıhr�i

2
�
O'.L�1�/ yV .� � �/

�
Of .�/ Og.�/

ˇ̌
d� d�

. 2�ı.l�2/khriı.hxi2V /kL2xkf kL2xkgkL2xk'.K
�1
� /kL2

�

� C.V /2�ı.l�2/C
d
2 kkf kL2x � C.V /2

�˛l
kf kL2x ;

by choosing ı � d
2
C 3˛, and by using Cauchy–Schwarz and Plancherel. In the case when

l C 3 � k, the same computations yield

k�K.V�Lhxi
2f /kL2.Rd / � C.V /2

�ı.k�2/C d
2 kkf kL2x � C.V /2

�˛k
kf kL2x ;

provided that ı � 3d
2
C 3˛. We finish the proof of estimate (3.18) by summing over L.

3.2.2. Proof of bilinear estimate for perturbed Schrödinger evolutions. We now come
to the proof of Proposition 3.3 itself. From now on, we use the notation

u.t/ WD e�itH z�Nu0; v.t/ WD e�itH z�Mv0:

4We stress that the operator hr�i2� 1C
Pd
iD1 @

2
�i

is a local operator and has no effect on the frequency
localization � � L.
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Step 1: Reduction to the case where initial data are flat Fourier localized. First, we
reduce Proposition 3.3 to the following proposition where the initial data are also localized
by flat Fourier multipliers. In what follows, �K is the projector around a frequency K,
�.N is the projector on frequencies below 25N and ��M is a fattened projector around
frequency M . Given N , M two dyadic numbers, we write

u.t/ WD e�itH z�Nu0; v.t/ WD e�itH z�Mv0;

where z�N , z�M are the distorted Fourier multipliers around frequencies N , M as defined
in (2.17).

Proposition 3.6. There exists C > 0 such that for any time interval I �R and any dyadic
integers N , M with N �M , we have

kuvkL2t;x.I /
� k�.Nu��MvkL2t;x.I /

C

� X
K>25N

k�Ku��Mvk
2
L2t;x.I /

�1=2
CN

d�1
2 M�

1
2 
.I /: (3.20)

For any interval I and for any partition R D
S
` I`, we have


.I / � Ckz�Nu0kL2xk
z�Mv0kL2x ;�X

`


.I`/
2

�1=2
� Ckz�Nu0kL2xk

z�Mv0kL2x :
(3.21)

Proof. We introduce the fattened projector ��M , a flat Fourier multiplier Q'.M�1H0/ by
a smooth cutoff function Q' chosen such that .1 � Q'/' � 0. Under this assumption, we
deduce from Lemma 3.4 that for all � 2 R and for all ˛ 2 N,

k.1 ���M /z�MkB.L2.Rd ;H� .Rd /// .˛;� M�˛: (3.22)

Then v is decomposed into v D ��Mv C .1 ���Mv/, and

uv D u��Mv C u.1 ���M /v: (3.23)

We deduce from Cauchy–Schwarz, Sobolev embedding, the Strichartz estimate, and
(3.22) that the second term on the right-hand side of (3.23) is negligible:

ku.1 ���M /vkL2t;x.I /
� kukL4t;x.I /

k.1 ���M /vkL4t;x.I /

. N
d
12 kukL4tL3x.I /

khri
d
12 .1 ���M /vkL4tL3x.I /

� C˛M
�˛C d

12N
d
12 kz�Nu0kL2xk

z�Mv0kL2x :

Choosing ˛ D d
12
C

1
2

, writing


.I / D .N
d�1
2 M�

1
2 /�1ku.1 ���M /vkL2t;x.I /

;

and, by using subadditivity, we easily obtain (3.21). Finally, (3.20) follows from a
Littlewood–Paley decomposition of u in the first term on the right-hand side of (3.23).
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Step 2: Replacing the perturbed evolution e�itH by the free one eit�. To prove Propo-
sition 3.6, it remains to estimate the first two terms on the right-hand side of (3.20). The
idea is to use Bourgain’s estimate (3.9) in the free case. To do so, we shall understand how
to describe the perturbed evolution e�itH in terms of eit�. For this purpose, we see V as a
forcing term, and we follow the proof of the inhomogeneous bilinear estimate from [21].
Before that, we prove the following lemma that we will use to estimate the Duhamel term
that comes from the potential, seen as the forcing term in what follows.

Lemma 3.7. For all ˛ 2 N, there exists C D C.˛; V / such that for all dyadic integer K,
N and all u0 2 L2x we have�Z

R
k�K.V z�N e�itH u0/k2L2x d�

�1=2
� C

´
K�˛kz�Nu0kL2x if K � 25N;

kz�Nu0kL2x if K . N:
(3.24)

Proof. In the case when K . N , we just apply the local smoothing (2.7). Otherwise, we
need to gain a negative power of K. To do so, we fix K > 25N and we do a Littlewood–
Paley decomposition of z�N e�itH u0:

k�K.V z�N e�itH u0/k2L2x �
X
jl�kj�3

k�K.V�L z�N e�itH u0/k2L2x

C

X
jl�kj�2

k�K.V�L z�N e�itH u0/k2L2x

D AC B:

Estimate of term A. We use Lemma 3.5 applied with f D z�N e�itH u0 to getX
jl�kj�3

k�K.V�L e�itH z�N e�itH u0/k2L2x � CıK
�˛
khxi�2 e�itH z�Nu0k2L2x :

Then we conclude by the local smoothing estimate (2.7) for e�itH thatZ
R

X
jl�kj�3

k�K.V�L e�itH z�N e�itH u0/k2L2x dt

� C˛K
�˛

Z
R
khxi�2 e�itH z�Nu0k2L2x dt

� C˛K
�˛
kz�Nu0kL2x :

Estimate of term B . We use (3.17) and the endpoint Strichartz estimate for e�itH , which
is the Strichartz estimate (2.4) with the admissible pair .2; 2d

d�2
/. Let us fix l such that

jk � l j � 2 and write

k�K.V�L z�N e�itH u0/kL2x D sup
kgk

L2x�1

j.�K.V�L z�N e�itH u0/ j g/L2x j

D j.e�itH z�Nu0 j z�N�L.V�Kg//L2x j:
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By Hölder and Sobolev embedding, we have

k�K.V�L z�N e�itH u0/kL2x � ke
�itH z�Nu0k

L
2d
d�2
x

k.z�N�L/V�KgkLdx

� ke�itH z�Nu0k
L

2d
d�2
x

k.z�N�L/V�Kgk
H

d�2
2

x

: (3.25)

Since jk � nj � 5 and jl � kj � 2, we have jn � l j � 3. Therefore, we can apply (3.17)
and get

k.z�N�L/V�Kgk
H

d�2
2

.˛ K�˛kV�KgkL2x .˛ K�˛kgkL2x :

Hence, we conclude from (3.25) that

k�K.V�L z�N e�itH z�Nu0/kL2x .˛ K�˛kgkL2xke
�itH z�Nu0k

L
2d
d�2
x

.˛ K�˛ke�itH z�Nu0k
L

2d
d�2
x

;

and the endpoint Strichartz estimate (2.4) for e�itH yieldsZ
R

X
jk�lj�2

k�K.V�L z�N e�itH z�Nu0/k2L2x .˛ K�˛
Z

R
ke�itH z�Nu0k2

L
2d
d�2
x

dt

.˛ K�˛kz�Nu0k2L2x :

This proves the estimate for term B , and finishes the proof of Lemma 3.7.

Let us fix an interval I � R. Without loss of generality, we assume that 0 2 I and,
given a dyadic integer K, we write the Duhamel formula as follows:

�Ku.t/ D eit��K z�Nu0 � i
Z t

0

ei.t��/��K.V u.�// d�;

��Mv.t/ D eit���M z�Mv0 � i
Z t

0

ei.t��/���M .V v.�// d�:
(3.26)

Then we write

F.t/ D

Z t

0

e�i���K.V u.�// d�; G.t/ D

Z t

0

e�i����M .V v.�// d�:

Using decomposition (3.26) and developing the product, we obtain

k�Ku��MvkL2t;x.I /
� keit�.�K z�Nu0/ eit�.��M z�Mv0/kL2t;x.I /

C keit� F.t/ eit�.��M z�Mv0/kL2t;x.I /

C keit�.�K z�Nu0/ eit�G.t/kL2t;x.I /

C keit� F.t/ eit�G.t/kL2t;x.I /

D I1 C I2 C I3 C I4: (3.27)
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Proof of Proposition 3.3. It remains to estimate each term in the above decomposition.

Estimate of term I1. We can directly use the bilinear estimate (3.9) for the free evolu-
tion to estimate I1, where we have the interaction of two free Schrödinger evolutions of
frequency-localized data. For any interval I ,

keit�.�K z�Nu0/ eit�.��M z�Mv0/kL2t;x.I /

� keit�.�K z�Nu0/ eit�.��M z�Mv0/kL2t;x.R/

. N
d�1
2 M�

1
2 k�K z�Nu0kL2xk

z�Mv0kL2x

. C.K;N /N
d�1
2 M�

1
2 kz�Nu0kL2xk

z�Mv0kL2x ;

where we have from (3.17) that for any ˛, there exists C˛ such that for all N , K,

C.K;N / D

´
1 if K . N;

C˛K
�˛ if K � 25N:

(3.28)

Moreover, we can use subadditivity to deduce that for any partition
S
` I` D R,�X

`

keit�.�K z�Nu0/ eit�.��M z�Mv0/k2L2t;x.Il /

�1=2
. C.K;N /kz�Nu0kL2xk

z�Mv0kL2x

as well. To estimate the other terms in (3.27), we shall use Lemma 3.5 and exploit the local
smoothing effect to get some global-in-time estimates. From now on we fix an interval I
of size jI j � 1, and see how to handle terms I2, I3, and I4.

Estimate of term I2. We use Minkowski and the bilinear estimate (3.9) for the free
Schrödinger equation to get

keit� F.t/ eit�.��M z�Mv0/kL2t;x.I /

D





eit�
�Z t

0

e�i���K.V u.�// d�
�

eit�.��M z�Mv0/





L2t;x.I /

�

Z
I

keit�
�
e�i���K.V u.�//

�
eit�.��M z�Mv0/kL2t;x.I / d�

. K
d�1
2 M�

1
2

Z
I

ke�i���K.V u.�//kL2xk
z�Mv0kL2x d�

. K
d�1
2 M�

1
2

�Z
I

k�K.V z�N e�i�H u0/k2L2x d�
�1=2
kz�Mv0kL2x ;

where we used the assumption that jI j � 1. If K � 25N , we apply Lemma 3.7 to have

K
d�1
2 M�

1
2

�Z
I

k�K.V z�N e�i�H u0/k2L2x d�
�1=2

. K
d�1
2 �˛M�

1
2 kz�Nu0kL2xk

z�Mv0kL2x . K�1M�
1
2 kz�Nu0kL2xk

z�Mv0kL2x ;
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by choosing ˛ D d�1
2
� 1. Otherwise, K � 25 and we use Minkowski, we apply the

bilinear estimate (3.9) and the local smoothing estimate (2.7) to get

keit� F.t/ eit�.��M z�Mv0/kL2t;x.I /

.
Z
I

keit�
�
e�i���.N .V u.�//

�
eit�.��M z�Mv0/kL2t;x.I / d�

. N
d�1
2 M�

1
2

�Z
I

kV e�i�H z�Nu0k2L2x d�
�1=2
kz�Mv0kL2x

. N
d�1
2 M�

1
2 kz�Nu0kL2xk

z�Mv0kL2x :

Estimate of term I3. Similarly, we apply the bilinear estimate (3.9) and Minkowski to
get

keit�.�K z�Nu0/ eit�G.t/kL2t;x.I /

D





eit�.�K z�Nu0/ eit�
�Z t

0

e�i����M .V v.�// d�
�





L2t;x.I /

. K
d�1
2 M�

1
2 k�K z�Nu0kL2x

Z
I

k��M .V e�i�H z�Mv0/kL2x d�:

It follows from (3.17) that

K
d�1
2 k�K z�Nu0kL2x . K�1kz�Nu0kL2x :

Moreover, we deduce from the fact that jI j � 1 and from the local smoothing estimate
(2.7) thatZ

I

k��M .V e�i�H z�Mv0/kL2x d� .
�Z

I

kV e�i�H z�Mv0k2L2x d�
�1=2

. kz�Mv0kL2x :

Estimate of term I4. We use Minkowski and (3.9) to get

keit� F.t/ eit�G.t/kL2t;x.I /

D





eit�
�Z t

0

e�i���K.V u.�// d�
�

eit�
�Z t

0

e�i����M .V v.�// d�
�





L2.I /

�

“
I�I



eit�
�
e�i�1��K.V u.�1//

�
eit�

�
e�i�2���M .V v.�2//

�


L2t;x

d�1 d�2

. K
d�1
2 M�

1
2

�Z
I

k�K.V z�N e�i�H u0/kL2x d�
�

�

�Z
I

k��M .V z�M e�i�H v0/kL2x d�
�
:

Then we conclude, as in cases I2 and I3, by using Lemma 3.5 and the local smoothing
estimate (2.7). We complete the proof of Proposition 3.6 in the case when jI j � 1 by



N. Camps 1290

summing over K. To prove the global estimate when I D R, we consider a partitionS
` I` made of intervals of size jI`j � 1. Then we exploit the subadditivity property of the

L2-norm, that is,

kf kL2t .R/
�

�X
`

kf k2
L2t .I`/

�1=2
for a given function f 2 L2.R/. Moreover, when estimating terms I2, I3, and I4, we use
that the estimate (3.24) from Lemma 3.7 is global in time. This is a consequence of the
local smoothing effect.

4. Probabilistic scattering on the continuous spectral subspace

The probabilistic nonlinear a priori estimates and other partial results, such as the critical-
weighted strategy presented in this section, will be reused in the next when proving
Theorem 1.1. Here, we choose to state and to prove Theorem 1.5 from a pedagogical
perspective, before addressing the proof of the main theorem. We recall that we search
for a solution of (NLSc), which is (NLS) projected on the continuous spectral subspace,
in the form  D �u! C v where u! D e�itH u!0 and where v, which lies in a critical
space embedded into L1.RIH sc .Rd //, is a solution to the cubic NLS equation with a
stochastic forcing term 8<: i@tv �Hv D Pc N .�u! C v/;

vjtD0 D  0 2 H sc .Rd /:
(4.1)

For the sake of completeness, we first recall definitions and essential properties of critical
spaces introduced by [32, 33]. See also ([30], pp. 49–67) for an expository presentation.
These spaces of functions from an interval I � R to a Hilbert space H are constructed
upon V q , U p spaces. Roughly speaking, they can be seen as the extensions of Bourgain
spaces X s;b for b D 1=2, they embed into L1.R;H s/, and are well behaved with respect
to sharp cutoff functions in time. Furthermore, they are well suited for global-in-time a
priori estimates thanks to the duality argument detailed in Section 4.1.2, while Bourgain
spaces are rather used for local-in-time estimates.

4.1. Critical spaces

From now on, the Hilbert space H is L2.Rd / unless otherwise specified. We fix a real
number 1 � q <C1 and an interval I D .a; b/ with �1� a < b �C1 and we denote
the collection of finite partitions of I by Z:

Z WD
®
¹tkºkD0;:::;K j a D t0 < t1 < � � � < tK D b

¯
:
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4.1.1. Definitions and embeddings.

Definition 4.1 (Functions of bounded q-variation). The set V q.I / contains functions
vW I ! H endowed with the norm

kvkV q.I / WD sup
¹tkº

K�1
kD0
2Z

� KX
kD1

kv.tk/ � v.tk�1/k
q

H

�1=q
:

Functions in V q have one-sided limits everywhere, and they may have at most count-
ably many discontinuities. In what follows, we consider the closed subspace V qrc made of
right-continuous functions v in V q with limt!�1 v.t/D 0. We still write them V q D V

q
rc .

Next we introduce the predual space of V q (in a sense detailed in Section 4.1.2), namely
the atomic space U p with 1

p
C

1
q
D 1.

Definition 4.2 (Atomic space U p). A function aW I ! H is a p-atom if there exists a
partition ¹tkºkD0;:::;K in Z and ¹�kºkD0;:::;K�1 some elements in H such that

a.t/ D

KX
kD1

1Œtk�1;tk/.t/�k�1;
K�1X
kD0

k�kk
p

H
� 1:

The atomic space U p.I / is the set of functions uW I ! H endowed with the norm

kukUp.I / WD inf
®
k.�j /k`1 j u D

P
j�1 �jaj for some U p-atoms .aj /

¯
: (4.2)

Functions in U p are right-continuous, they admit left limits everywhere, and they may
have at most countably many discontinuities. As we shall see in the next paragraph, U p is
the predual space of V q when 1

p
C

1
q
D 1.

Proposition 4.3 (Embeddings, [32, Proposition 2.2 and Corollary 2.6]).

For 1 � p < q <1,
U p ,! V p ,! U q ,! L1t .I;H /: (4.3)

Let us take from [4] the continuity property of these norms, which is particularly
crucial when one wants to use some bootstrap argument.

Lemma 4.4 (Time continuity, [4, Lemma A.6]). Let J D Œa; b/ and let u 2 U p.J / \
C.J IH s

x.R
3//, v 2 V q.J / \ C.J IH s

x.R
3//. The following mappings are continuous:

t 2 J ! kukUp Œa;t/; t 2 J ! kvkV q Œa;t/:

4.1.2. Duality argument. There exists a unique bilinear map BWU p � V q!C such that

B.u; v/ D
KX
iD1

.u.ti / � u.ti�1/ j v.ti //

when u is a right-continuous step function with associated partition ¹tkºKkD0 such that
u.t0/ WD u.a/ D 0 and when v is a function in V q . We have

jB.u; v/j . kukU qkvkV p :
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Moreover,
v 2 V q 7! B. �; v/ 2 .U p/�

is a surjective isometry, and

kvkV q D sup
u2Up

kukUp�1

jB.u; v/j; kukUp D sup
u2V q

kukV q�1

jB.u; v/j: (4.4)

The second estimate follows from the Hahn–Banach theorem. Furthermore, if @tu 2
L1.I / we have the explicit formula

B.u; v/ D
Z
I

.@tu j v/ dt: (4.5)

We refer to [32] and [33] for proofs and details.

Definition 4.5 (Function spaces adapted to linear propagators). (i) We define by

U
p
H .I / WD e�itH .U p.I /\L1.I IRan Pc//; V

q
H .I / WD e�itH .V q.I /\L1.I IRan Pc//

the critical spaces adapted to the perturbed linear propagator. They are Banach spaces
when endowed with norms

kukUpH
WD keitH ukUp ; kvkV qH WD ke

itH vkV q :

We have similar definitions for the spaces U p� and V q� adapted to the free evolution eit�.

(ii) The spaces DU p and DU pH are defined by

DU p D
®
f D @tu j u 2 U

p; f .aC/ D 0
¯
;

DU
p
H D e�itH

®
f D e�itH @tu j u 2 U p; f .aC/ D 0

¯
:

These spaces are endowed with norms

kf kDUp D kukUp ; kf kDUpH
D keitH ukUp :

Spaces DV q and DV qH are defined in the same way.

Remark 4.6. Here, @t has to be understood in the sense of distributions on I . Let us recall
that for distributions in one dimension, @tu D 0 implies that u is constant, and thus we
note that there is no ambiguity in the above definition, since we imposed the condition
limt!a f D 0.

The definitions of DU pH and DV qH are motivated by the need to control the Duhamel
integral representation of a solution u to a forced Schrödinger equation. Namely, given f
in L1t .I;H / and u such that ´

i@tu �Hu D f;

ujtD0D u0;
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the Duhamel formulation reads

u.t/ D e�itH u0 � i
Z t

0

e�i.t��/H f .�/ d�:

Consequently, we get

kukUpH
� ku0kH C kf kDUpH

D ku0kH C





Z t

0

ei�H f .�/ d�





Up
:

Furthermore, it follows from the duality argument (4.4) that

kf kDUpH
D





e�itH
Z t

0

ei�Hf .�/ d�






U 2H

D sup
kvkV q�1

ˇ̌̌̌
B
�Z t

0

ei�H f .�/ d�; v
�ˇ̌̌̌
:

Since f is in L1t .I;H / we apply the explicit formula for B (4.5) to get

kf kDUpH
D sup
kvk

V
q
H
�1

ˇ̌̌̌Z
I

.f j v/ d�

ˇ̌̌̌
: (4.6)

The corresponding formula for DV qH can also be deduced from (4.4):

kf kDV qH
D sup
kuk

U
p
H
�1

ˇ̌̌̌Z
I

.f j u/ d�

ˇ̌̌̌
: (4.7)

4.1.3. Transferred linear and bilinear estimates.

Proposition 4.7. For q > 2 and r with 2
q
C

d
r
D

d
2

and 2.d C 2/ � dp we have the
following estimates:

(i) Linear Strichartz estimates:

kvkLqt .RILrx.Rd // . kvkV 2H ; (4.8)

kvkLpt;x.R�Rd / . kh
p
H i

d
2�

dC2
p vkV 2H

: (4.9)

(ii) Bilinear Strichartz estimate: Let N , M be two dyadic numbers, then

kz�Nuz�MvkL2t;x.R�Rd / . N
d�2
2

�N
M

� 1
2�

kz�NukV 2H
kz�MvkV 2H

: (4.10)

Proof. To prove the embedding (4.8), we first deduce from the global-in-time Strichartz
estimate (2.4) that for any Schrödinger admissible pair .p; q/ the mixed Lebesgue space
L
q
tL

r
x embeds into U q , which embeds into V 2 provided that 2 < q (see Proposition 4.3).

Estimate (4.9) follows from (4.8) and from the Bernstein estimate (2.18). We refer to [4,
Lemma 3.3] and the references therein to see how to transfer the bilinear estimate (3.10)
into the space V 2H .
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In order to derive probabilistic nonlinear estimates, we consider the Duhamel inte-
gral representation of the solution to (NLSc). Provided that the nonlinear forcing term
Pc N .v C �u!/ lies in L1.R;H

d�2
2 /, it follows from the duality argument (4.6) that the

U 2H -norm of the solution u to (4.1) can be estimated by

kvk
U 2H .H

d�2
2 /
� k 0kH1=2 sup

kwk
V 2
H
�1

“
R�Rd

h
p
H i

d�2
2 .Pc N .v C �u!//w dt dx:

If we proceed to a Littlewood–Paley decomposition of each term uj that occurs in the
forcing term, we are reduced to estimate sums of multilinear integrals of the form

IN1;N2;N3;N4 D

“
R�Rd

h
p
H i

d�2
2 .z�N1u1

z�N2u2
z�N3u3/

z�N4w dx dt; (4.11)

where each term uj can be either u! , v, or their complex conjugate for j 2 ¹1; 2; 3º,
and w is in V 2H with norm less than 1. Although Pc N .v C �u!/ does not a priori lie in
L1.R;H

d�2
2 /, it follows from Bernstein and Strichartz estimates that we have

z…N Pc N .v C �u!/ 2 L1.I;H
d�2
2 / (4.12)

for any dyadic number N , as observed in [4]. It turns out that the estimates on multi-
linear integrals obtained by the authors are uniform in N . Hence, we have to estimate
z…N v rather than v, and to use a space slightly smaller than U 2H which keeps track of the
frequency cutoff.

Definition 4.8. The critical space X
d�2
2 .I / is the space made of tempered distributions

uW I ! H
d�2
2 .Rd / \ Ran.Pc/ such that kuk

X
d�2
2 .I /

is finite, where

kuk
X
d�2
2 .I /

WD

� X
N22N

N d�2
kz�Nuk

2
U 2H .I /

�1=2
: (4.13)

We also define DX
d�2
2 .I / by replacing the U 2H .I /-norm in (5.11) by the DU 2H .I /-norm.

Remark 4.9. In the case of V 2H it follows from Definition 4.1 and from the almost orthog-
onality property of the Littlewood–Paley decomposition that

kh
p
H i

d�2
2 vkV 2H .I /

�

� X
N22N

N d�2
kz�N vk

2
V 2H .I /

�1=2
: (4.14)

4.2. Probabilistic nonlinear estimates

Thanks to the probabilistic and bilinear improved Strichartz estimates for the perturbed
operator obtained in Section 3 and their transferred versions collected in Proposition 4.7,
we are now able to reproduce in the perturbed framework the same analysis conducted
by [4]. We get the following probabilistic nonlinear estimates.
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Proposition 4.10. Let 0 < �, 0 < R, and I D .a; b/ with �1 � a < b � C1. For all
v 2 X

d�2
2 .I / and ! 2 z��;R (see (3.8)) we have

sup
2N

N
d�2
2 k z…N .N .v C �u!//kDU 2H .I /

. k 0kH1=2 C kvk
3
V 2H .I /

CR3; (4.15)

as well as the Lipschitz estimate, for all v; v0 2 V 2H .I /,

sup
2N

N
d�2
2 k z…N .N .v0 C �u!/ �N .v C �u!//kDU 2H .I /

. .kvk2
V 2H .I /

C kv0k2
V 2H .I /

CR2/kv0 � vkV 2H .I /
:

4.2.1. Contribution of terms like v2u! with high-low interactions. We illustrate the
case-by-case analysis performed in [4] for the flat Laplacian, and we transpose it to the
perturbed setting. In order to be as brief as possible, we choose to detail one enlightening
case. We consider the high-high-low regime, where

v1 D z�N1v; v2 D z�N2v; u!3 D
z�N3u

! ; w4 D z�N4w;

and
N1 � N

1
d�1
3 � N2 � N3; N4 � N:

5

We refer to [4, Proposition 4.1] for the other subcases. As we explained in a previous
paragraph, the proof of Proposition 4.10 consists in getting some a priori estimates on
multilinear integrals of the form (4.11). Under the assumption made on the frequencies,
the main term is the one where the derivatives fall onto z�N3v3. Hence, it follows from the
Hölder inequality that6ˇ̌̌̌“

R�Rd

h
p
H i

d�2
2 .v1v2�u

!
3 /
z�N4w dx dt

ˇ̌̌̌
. N

d�2
2

3 kv2k
L

2.dC2/
d

t;x

k�u!3 kLdC2t;x
kv1w4kL2t;x

. N
d�2
2

3 N
d�1
2 �

1 N
� 12C

4 kv2kV 2H
k�u!3 kLdC2t;x

kv1kV 2H
kw4kV 2H

. C.N1; N2; N3; N4/.N
d�2
2

2 kv2kV 2H
/.N s

3k�u
!
3 kLdC2t;x

/.N
d�2
2

1 kv1kV 2H
/kw4kV 2H

;

with

C.N1; N2; N3; N4/ D N
d�2
2 �s

3 N
d�1
2 �0�

d�2
2

1 N
� d�22
2 N

� 12C0

4

. N
d�2
2 �sC

1
2.d�1/

� d�2
2.d�1/

� 12C0

3 DW N ı�s
3 :

5For convenience, we define ƒN D
®
.N1; N2; N3; N4/ j N1 � N

1
d�1
3 � N2 � N3; N4 � N

¯
.

6For a dyadic number N we shall denote small positive (resp. negative) powers of N by NC0 (resp.
N�0).
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We used the transferred Strichartz estimate (4.8) to control the term v1 and the transferred
bilinear estimate (4.10) to control the term with v2w4. Note that under the assumption that
d�1
dC1
�
d�2
2
< s, we have

ı D
d � 3

d � 1
�
d � 2

2
C 0 <

d � 1

d C 1
�
d � 2

2
< s:

Therefore, since the highest frequency comes with a negative power we are able to apply
Schur’s test and to sum over N1, N2, N4. To sum over the dyadic numbers N3, we first
use Hölder, X

N322N

N ı�s
3 N s

3k
z�N3�u

!
k
LdC2t;x

� N ı�sC0

� X
N322N

N�03

� dC1
dC2

kN s
3
z�N3�u

!
k
`dC2N3

LdC2t;x

. N ı�sC0
kN s

3
z�N3�u

!
k
LdC2t `dC2N3

LdC2x

. N ı�sC0
kN s

3
z�N3�u

!
k
LdC2t `2N3

LdC2x
;

and we deduce from the Littlewood–Paley inequality (2.19) and probabilistic Strichartz
estimate (3.6) that for ! 2 z��;R,X
N322N

N ı�s
3 N s

3k
z�N3�u

!
k
LdC2t;x

. N ı�sC0
kh
p
H iıC�u!k

LdC2t;x
. N ı�sC0R: (4.16)

Hence, X
N3

“
R�Rd

jh
p
H i

d�2
2 .v1v2�u

!
3 /w4j dx dt

. N ı�sC0R.N
d�2
2

1 kv1kV 2H
/.N

d�2
2

2 kv2kV 2H
/kw4kV 4H

:

It follows from Schur’s test (see [4, Lemma 3.6]) thatX
ƒN

“
R�Rd

jh
p
H i

d�2
2 .v1v2�u

!
3 /w4j dx dt

. RkN
d�2
2

1 v1k`2N1V
2
H
kN

d�2
2

2 v2k`2N2V
2
H
kw4k`2N4V

2
H
;

and the contribution of the integral (4.11) in this case is less than

sup
kwk

V 2
H
�1

Rkh
p
H i

d�2
2 vk2

V 2H
kwkV 2H

. Rkh
p
H i

d�2
2 vk2

V 2H
:

Remark 4.11. As observed in [4], there is at least a portion of kh
p
H is�u!kLpt;x

, with p 2®
4; d C 2; 6dC2

dC4

¯
, that bounds from above the multilinear integrals where u! occurs (see
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for instance (4.16) where p D d C 2). Hence, it follows from the probabilistic Strichartz
estimate (3.6) and from the monotone convergence theorem that for all ! 2 z�,

lim
jI j!0

k�u!kLpt;x.I�Rd / D 0:

In the vv Nv-case, we also have

sup
kwk

V 2
H
�1

ˇ̌̌̌Z
I

Z
Rd

1I .t/.h
p
H i

d�2
2 v/v2w dx dt

ˇ̌̌̌
� kh
p
H i

d�2
2 vk

L

2.dC2/
d

t;x .I�Rd /

kvk2
LdC2t;x .I�Rd /

; (4.17)

where the right-hand side of (4.17) is uniformly bounded by the global-in-time critical
X

d�2
2 .R/-norm. Hence, the left-hand side of (4.17) also goes to zero when jI j ! 0 (in

order to prove continuity or local well-posedness) or when I � Œt;1/ with t !C1 (in
order to prove scattering). Consequently, we have in that case,

lim
I
kN .vC �u!/kDU 2H .I /

D 0 whenever jI j ! 0 or I � Œt;1/ with t !C1: (4.18)

4.3. Proof of Theorem 1.5

We are now ready to extend the probabilistic global Cauchy theory for (NLS) to the case
where we have a short-range potential, and when the equation is projected onto the con-
tinuous spectral subspace.

Global existence. We denote the interval Œ0;1/ by I and we introduce the Banach space

BR D
®
v 2 X

d�2
2 .I / \ C.I;H

d�2
2 / j kvk

X
d�2
2 .0;1/

� R
¯

for a fixed small R > 0, as well as the operator

T W v 2 BR 7!

�
t 7! e�itH  0 � i

Z t

0

e�i.t��/H Pc.N .v C �u!// d�

�
:

It follows from the a priori estimates collected in Proposition 4.10 that for all v in BR,

kT vk
X
d�2
2 .0;1/

� ke�itH  0k
X
d�2
2 .0;1/

C kPc.N .v C �u!//k
DX

d�2
2 .0;1/

� k 0k
H

d�2
2
C 2C1R

3;

and that for all v, v0 in BR,

kT .v0/ � T .v/k
X
d�2
2 .0;1/

� kPc.N .v0 C �u!/ �N .v C �u!//k
DX

d�2
2 .0;1/

� 3C2R
2
kv0 � vk

X
d�2
2 .0;1/

:

Hence, T is a contraction mapping on BR provided that

2C1R � 1=2; 3C2R � 1=2; and k 0k
H

d�2
2
� R=2:
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With this fixed R D R0, we write z�� D z��;R0 , the set defined in (3.8). It satisfies

P.� n z��/ � C exp.�Qc��2ku0k�2H s /

where Qc D cR�20 is a universal constant.

Continuity and scattering. Let v be a solution to (NLSc) with random initial data asso-
ciated with an ! 2 z�� . We need to show that the limit of 	.t/ exists in H

d�2
2 when t

goes to infinity, where

	.t/ WD

Z t

0

ei�H Pc.N .v C �u!// d�:

We use the Cauchy criterion, and choose t1; t2 2 .0;1/ with, say, t1 < t2. We denote the
interval .t1; t2/ by I . It follows from (4.18) in Remark 4.11 that

k	.t2/ � 	.t1/k
H

d�2
2
� kPc.N .v C �u!//k

X
d�2
2 .I /

�������!
t1;t2!C1

0:

This yields scattering with

vC WD

Z 1
0

ei�H Pc.N .v C �u!// d� 2 H
d�2
2 .Rd /;

and the same argument applied when jI j ! 0 proves that T v is in C.I;H
d�2
2 /.

Uniqueness. We use a connectedness argument. Let v1, v2 be two solutions to (NLSc) in
the space X

d�2
2 Œ0;1/. Define AD

®
t 2 Œ0;1/ j v1.t/D v2.t/

¯
. By continuity in time, A

is closed. Let t 2 A and, for small � , we define I D .t � �; t C �/ if t > 0, or I D Œ0; �/
otherwise. It follows from Remark 4.11 that

kv2 � v1k
X
d�2
2 .I /

D o.�/kv2 � v1k
X
d�2
2 .I /

:

Hence, v2 D v1 on I if � is small enough, which proves that A is open. We conclude that
A D Œ0;1/ whenever A is nonempty, and this finishes the proof of Theorem 1.5.

4.4. Local smoothing and the critical-weighted strategy

First, we transfer to U 2H the local smoothing effect stated in Proposition 2.5

Proposition 4.12 (Local smoothing in U 2). In U 2H .H
1=2/ the local smoothing estimate

reads Z
R
kPc.u/k

2
H1;�1=2� dt .V kuk2U 2H .H1=2/

: (4.19)

The proof is straightforward and follows from the transference principle and from
Proposition 2.5 with F D 0. Note in particular that the result is true when V D 0 and
when the space U 2H is replaced by U 2�.
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Remark 4.13. Estimate (4.19) means thatU 2H .H
1=2/ embeds intoL2t .RIH

1;�1=2�.Rd //
and we can deduce from this and from the duality argument (4.6) that

L2t .RIL
2;1=2C
x / ,! DV 2H .H

1=2/: (4.20)

Indeed, provided that f 2 L1.R; L2x/, we have

kh
p
H i1=2f kDV 2H

D sup
kuk

U2
H
�1

ˇ̌̌̌Z
R
.h
p
H i1=2f j u/ dt

ˇ̌̌̌
D sup
kuk

U2
H
�1

ˇ̌̌̌Z
R
.f j h

p
H i1=2u/ dt

ˇ̌̌̌
� sup
kuk

U2
H
�1

khxi1=2Cf kL2t;x
khxi�1=2�h

p
H i.h

p
H i�1=2u/kL2t;x

� sup
kuk

U2
H
�1

khxi1=2Cf kL2t;x
kukU 2H

. kf k
L2t .RIL

2;1=2C
x /

:

The general case follows from the density of step functions in V p (see the proof in [30,
Lemma 4, p. 56]). Furthermore, embedding (4.3) directly yields the other dual embedding

DU 2H .H
1=2/ ,! DV 2H .H

1=2/: (4.21)

Remark 4.14. In light of the nonlinear analysis performed in Section 4.2, we shall use
the slightly better estimateZ

R
kPc ukH1;�1=2� dt . sup

2N

N 1=2
k z…NukU 2H

:

Let us denote the Schwartz class by �.Rd / and the space of tempered distributions by
� 0.Rd /, and deduce the refined estimate above from (4.19) and duality. Given u 2

H1;�1=2�, we have

kPc ukH1;�1=2� D sup
'2�
k'kL2�1

j.Pc u j hxi
�1=2�

h
p
H i'/j:

Since hxi�1=2�h
p
H i' 2 �.Rd / and u D limN!1

z…Nu in � 0.Rd /, we have

kPc ukH1;�1=2� D sup
'2�
k'kL2�1

j. lim
N!1

z…Nu j hxi
�1=2�

h
p
H i'/j

� sup
2N

k z…NukH1;�1=2� :

4.4.1. Critical-weighted strategy. The next proposition details the critical-weighted
strategy. As explained in the introduction, this strategy makes it possible to handle both
linear and nonlinear terms that arise in the stability equation around a ground state. We
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state two versions of this strategy. The first one is suited to the operator �� and has an
interest in itself. One can use it when V u is not absorbed by the linear operator, but when
it is seen instead as a source term. The second version is suited to the dynamic around the
nonlinear ground states, when V is absorbed by the linear operator so that e�itH preserves
Ran Pc and the decomposition of the phase space from Lemma 5.4. This second version
plays a key role in the proof of Theorem 1.1. See also [38] for a similar approach in the
context of the Korteweg–de Vries equation.

Proposition 4.15. Let u be a solution to the forced7 Schrödinger equation´
i@tuC .� � V /u D f C g;

ujtD0 D u0:
(4.22)

There exists C D C.V / depending on weighted Sobolev norms of V such that for all
u 2 Ran Pc.H/,

kukV 2�.H1=2/ C kukL2t .RIH1;�1=2�/

� C.ku0kH1=2 C sup
2N

N 1=2
k…Nf kDU 2�

C kgk
L2t .RIL

2;1=2C
x /

/; (4.23)

kukV 2H .H1=2/ C kukL2t .RIH1;�1=2�/

� C.ku0kH1=2 C sup
2N

N 1=2
k z…Nf kDU 2H

C kgk
L2t .RIL

2;1=2C
x /

/: (4.24)

Remark 4.16. We prove the estimate with sup2Nk z…Nf kDU 2 instead of kf kDU 2 in
order to use (4.15).

Proof of Proposition 4.15. Estimate (4.24) is slightly easier to prove since we do not have
to control the term V u which is absorbed by the left-hand side in (4.22). Also, the local
smoothing estimates we use are the same for �� and ��C V provided that u in Ran.Pc/

so we only write the proof of (4.23). To that end, we pass the term V u on the right-hand
side of equation (4.22), ´

i@tuC�u D f C g C V u;

ujtD0D u0:

By definition of the space DV 2�, the Duhamel formulation gives

kukV 2�.H1=2/ . sup
2N

k…Nf kDV 2�.H1=2/ C kgkDV 2�.H1=2/ C kV ukDV 2�.H1=2/

. sup
2N

N 1=2
k…Nf kDU 2�

C kgk
L2t .RIL

2;1=2C
x /

C kV uk
L2t .RIL

2;1=2C
x /

: (4.25)

7Here, f (resp. g) has to be thought of as a nonlinear term controlled in the critical space (resp. a linear
and localized term controlled in a weighted L2 space).
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Note that we used the dual embedding (4.21) to control …Nf in DU 2� and the local
smoothing dual embedding (4.20) to control g and V u. As for the weighted norm of u,
we decompose it into u D v C w where v;w 2 Ran Pc.H/ and are solutions to´

i@tv C�v D f; i@tw C .� � V /w D g � V v;

vjtD0D 0; wjtD0D u0:

To control u inL2t .RIH
1;�1=2�.R3//we first control the weighted norm of v and then the

weighted norm of w. To do so, we apply the transferred local smoothing estimate (4.19)
with V D 0:

kvkL2t .RIH1;�1=2�/ � sup
2N

k…N vkL2t .RIH1;�1=2�/

. sup
2N

N 1=2
k…N vkU 2�

D sup
2N

N 1=2
k…Nf kDU 2�

: (4.26)

Afterwards, we use the fact that w 2 Pc.H/ and we apply the local smoothing estimate
for H :

kwkL2t .RIH1;�1=2�/ . ku0kH1=2 C kgk
L2t .RIL

2;1=2C
x /

C kV vk
L2t .RIL

2;1=2C
x /

: (4.27)

To estimate the second term on the right-hand side, we use the fact that V is localized:

kV vk
L2t .RIL

2;1=2C
x /

. khxi1CV kL1x .Rd /kvkL2t .RIL
2;�1=2�
x /

� C.V /kvkL2t .RIH1;�1=2�/

� C.V / sup
2N

N 1=2
k…Nf kDU 2�

; (4.28)

where we used (4.26) to get the last inequality. By collecting estimates (4.27) and (4.28)
we obtain

kwkL2t .RIH1;�1=2�/ .V ku0kL2x C sup
2N

2N k…Nf kDU 2�
C kgk

L2t .RIL
2;1=2C
x /

: (4.29)

Finally, we deduce from (4.26) and (4.29) the estimate for u in the weighted space:

kukL2t .RIH1;�1=2�/ . ku0kH1=2 C sup
2N

2N k…Nf kDU 2�
C kgk

L2t .RIL
2;1=2C
x /

: (4.30)

It remains to control V u in V 2�.H
1=2/ to close estimate (4.25). This is again a consequence

of the fact that V is localized, and we proceed as in (4.28) to get

kV uk
L2t .RIL

2;1=2C
x /

.V kukL2t .RIH1;�1=2�/: (4.31)

We conclude by injecting (4.31) and (4.30) into (4.25) to control u in V 2�.H
1=2/.
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5. Probabilistic asymptotic stability for small ground states

From now on, we fix the dimension d D 3 and we make the extra assumption that �.H/D
¹e0º [ �c.H/ where e0 < 0 is a simple negative eigenvalue with positive and normalized
eigenfunction �0. We recall that �c.H/ D Œ0;C1/, with no resonance nor eigenvalue at
zero.

Since complex conjugate and numerical constants play no role in what follows, we
might sometimes drop them from the notation for the sake of clarity. We will also drop
the dependence on time in the notation and write kD˛z Qk WD suptkD

˛
z Q.z.t//k, as well

as O.z/ WD O.supt jz.t/j/.

5.1. Local existence

First, let us briefly transpose the probabilistic Cauchy theory, at least locally in time, to
our setting where the Schrödinger operator ��C V has some discrete spectrum. More
precisely, we prove that under smallness assumptions on the H1=2-norm of the initial data
 0, (NLS) still admits a unique local solution in the form

 .t/ D �u!.t/C v.t/; v 2 H1=2:

Indeed, the discrete part of the solution does not contribute in short time, and we shall
be able to reproduce the scheme developed in Section 4, with the same gain of regularity
for the nonlinear part of the solution. Note that by time reversibility, we only consider
forward-in-time solutions in what follows.

Proposition 5.1 (Local existence). There exist ı0 > 0 and c > 0 such that for all T . 1,
all ˛0 2 C, �0 2 Ran Pc\H1=2 with

kv0kH1=2 C j˛0j < ı0;

and all ! 2 z��;R with R D cı0, the Cauchy problem (NLS) with data

 .t0/ D �u
!
0 C �0 C ˛0�0

admits a unique solution  on Œt0; t0 C T / in the form

 .t/ D �u!.t/C v.t/; v 2 C.Œt0; t0 C T /IH
1=2/:

Uniqueness holds for Pc v 2 X
1=2.0; T / and .v j �0/ 2 L1t .0; T /.

We recall the set of random initial data with improved Strichartz estimates defined
in (3.8). In light of the above proposition, we fix R D cı0 from now on, and take an initial
value u!0 that corresponds to some ! in z��;cı0 . We also recall that � is much smaller
than R.

Proof of Proposition 5.1. For simplicity, we assume that t0D0. At each time t , we decom-
pose v.t/ into v.t/ D �.t/C ˛.t/�0, with �.t/ D Pc v.t/, and ˛.t/ D .v.t/ j �0/. Then
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 is solution to (NLS) if and only if .�; ˛/ are solutions to the coupled system´
i@t� C .� � V /� D Pc N .�u! C � C ˛�0/;

�.0/ D �0;

and ´
i P̨ C e0˛ D .N .�u! C � C ˛�0/ j �0/;

˛.0/ D ˛0:

It follows from the Duhamel formulation that solving the above system reduces to finding
a fixed point for the map � D .�1; �2/, where

�1.�/.t/ D e�itH �0 � i
Z t

0

e�i.t��/H Pc N .�u!.�/C �.�/C ˛.�/�0/ d�;

�2.˛/.t/ D eie0t ˛0 � i
Z t

0

ei.t��/e0
�
N .�u!.�/C �.�/C ˛.�/�0/

ˇ̌
�0
�
d�:

Given T > 0 and A to be chosen later on, we search for a fixed point for � in the Banach
space

ET;A D
®
.�; ˛/ 2 X1=2.0; T / � L1..0; T /IC/ j k�kX1=2.0;T / C sup0�t�T j˛.t/j � A

¯
:

In this setting, we have the following a priori estimates: given .�; ˛/ 2 ET;A,

k�1.�/kX1=2.0;T / � Ck�0kH1=2 C C.1C T
1=5/.A3 CR3/ (5.1)

and
sup
0�t�T

j�2.˛/.t/j � ˛0 C C.1C T /.A
3
CR3/: (5.2)

Under our assumptions, we now fix AD R D 2C0ı0 DW cı0 and the above estimates yield

k�1.�/kX1=2.0;T / C sup
0�t�T

j�2.˛/.t/j � C0.ı0 C A
3
C T 1=2/ � 2C0ı0;

provided that ı0C0 < 1=2, and where C0 D C0.k�0kH1 ; kjxj�1=2��kL1x /. This proves
that � preserves the space ET;A. Let us briefly explain how we obtained estimates (5.1)
and (5.2). To prove (5.1), we first note that the terms without the discrete part ˛�0 are
handled by the analysis conducted in Section 4.1, globally in time. Therefore, by dropping
the complex conjugate from the notation, it remains to control some terms of the form

.˛�0/
3; .˛�0/

2.�u! C �/; ˛�0.�u
!
C �/2:

To handle the terms without any power of the linear part u! , we use the Leibniz rule and
we obtain

k.˛�0/
3
k
DX

1=2
H .0;T /

C k.˛�0/
2�k

DX
1=2
H .0;T /

C k.˛�0/�
2
k
DX

1=2
H .0;T /

. T . sup
0�t�T

j˛.t/j3k�0k
3
H1=2 C k�kX1=2H .0;T /

/ . TA3:



N. Camps 1304

As for the terms with some power of u! , we can use the Leibniz rule and the local smooth-
ing estimate (2.7) as follows. We do a Littlewood–Paley decomposition of each term in
the definition of the X1=2-norm: given a fixed N 2 2N , we denote by N1, N2, N3 the
frequencies at which �0, u! , u! are localized.

Case ˛�0.u
!/2. We consider the worst case where �0, which is the smoothest term,

comes with the lowest frequency N1 � N2 � N3. In the high-low-low case, when we
have N2 � N3, z�N3u

! cannot absorb all the derivatives, and we need to use the local
smoothing effect. To that end, we apply Hölder with 1 D 1

2
C

1
5
C

3
10

to get

N 1=2
kPN .˛�0.�u

!/2/kU 2H .0;T /

� �2N
1=2
3 sup
kwk

V 2
H
.0;T /
�1

ˇ̌̌̌Z T

0

Z
R3

˛.t/z�N1�0
z�N2u

! z�N3u
!w dx dt

ˇ̌̌̌
. sup
0�t�T

j˛.t/jN
1=2
3 k
z�N1�0

z�N3�u
!
kL2t;x Œ0;T /

k�u!kL5t;x Œ0;T /
kwkV 2H

. Akhxi1=2C�0kL1x N
1=2
3 khxi

�1=2� z�N3�u
!
kL2t;x.0;T /

k�u!kL5t;x Œ0;T /
:

Then we use the probabilistic Strichartz estimate (5.14) for the L5t;x-norm and the local
smoothing effect (2.7) to get

N 1=2
kPN .˛�0.�u

!/2/kU 2H .0;T /
. Akz�N3�u

!
0 kL2x

R . A�R . A3 CR3;

since � has to be chosen much smaller than R in (3.8) for the probability of the bad set of
initial data to be small.8

Case .˛�0/
2u!. Similarly, we assume thatN1 �N2 �N3 and do the same computations

with ˛.t/�0 instead of �u! . The only difference is that

k˛�0kL5t;x Œ0;T /
� AT 1=5k�0kL5x :

This yields

N 1=2
kPN .˛�0/

2�u!kU 2H .0;T /
. T 1=5A2� . T 1=5.A3 CR3/:

Then we obtain (5.1) by summing over N1, N2, N3, and N as in Section 4.1. To get
estimate (5.2), we just use Hölder, the endpoint Strichartz estimate, and the embedding
L3t ..0; T /IL

4
x/ ,! X0H .0; T /:

sup
0<t<T

ˇ̌̌̌Z t

0

ei.t��/e0
�
N .�u!.�/C �.�/C ˛.�/�0/

ˇ̌
�0
�
d�

ˇ̌̌̌
.
Z T

0

Z
R3

.j�.�; x/C �u!.�; x/j3 C j˛.�/�0.x/j
3/j�0.x/j dx d�

8In this case, note that the estimates do not depend on T .
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. k�0kL2x

�Z T

0

k�.�/C �u!k3
L6x
d�

�
C T sup

0<t<T

j˛.t/j3k�0k
4
L4x

. C.�0/.khri
1=4�k3

L3tL
4
x
C k�hri1=4u!k3

L3tL
4
x
C TA3/:

By the embedding L3t ..0; T /IL
4
x/ ,! X0H .0; T /, the right-hand side satisfies

RHS . C.�0/.k�k
3

X
1=4
H .0;T /

C �3ku0k
3
H1=4 C TA

3/

. C.�0/.1C T /.A
3
CR3/:

This finishes the proof of estimates (5.1) and (5.2). The proof of the Lipschitz estimates
for � follows similarly, and establishes the contraction mapping property for � .

5.2. Nonlinear ground states

Before we establish the main global estimates on the local flow constructed in the above
subsection, we collect from [31] some properties of the curve of nonlinear ground states
that bifurcates from the eigenspace spanned by �0. In particular, we will be able to decom-
pose the solution into a ground state plus a radiation term at each time, where the radiation
term will be shown to scatter in the last paragraph. First, we recall how the ground states
are constructed.

Lemma 5.2 (Nonlinear ground states, [31, Lemma 2.1]). There exists ı > 0 small enough
such that for all z 2C with jzj � ı, there exists a nonlinear ground stateQ andE solution
to

.� � V C jQj2/Q D EQ (5.3)

in the form
Q.z/ D z�0 C q.z/; E.z/ D e0 C e.z/:

We have uniqueness for .q; e/ in the class®
.q; e/ 2 .H2

\ Ran.Pc// �R j kqkH2 � ı; jej � ı
¯
:

Thanks to the gauge invariance of the nonlinear part,

Q.z ei˛/ D Q.z/ ei˛; E.z/ D E.jzj/:

In addition, q and its derivatives are small in H2.R3/:

q D O.z3/; DzQ D O.z2/; D2z q D O.z/: (5.4)

The first two derivatives of e are also small and satisfy

jDz ej D O.z/; jD2z ej D O.1/: (5.5)

The following elliptic estimates on some Sobolev weighted norms of the ground states
and its derivatives with respect to the parameter z are crucial, and our arguments heavily
rely on the smallness of these quantities.
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Lemma 5.3 (Weighted elliptic estimates for the derivatives of ground states, [31]). There
exists ı > 0 such that for all jzj < ı and all k 2 ¹1; 2º we have

khxikqkH2.R3/ D O.z
3/;

khxik DzQkH2.R3/ D O.z
2/:

(5.6)

We recall that the generalized continuous spectral spaces Hc.z/ parametrized by z
were introduced to encode orthogonality conditions (1.7):

Hc.z/ WD
®
� 2 L2.R3/ j

R
hi�; @z1Qi D

R
hi�; @z2Qi D 0

¯
:

In particular, note that Ran.Pc/ corresponds to Hc.0/. The following result ([31, Lemma
2.2]) yields a bijection from Hc.0/ to Hc.z/. This useful correspondence reduces the
dynamic of � in ansatz (1.9) to the dynamic of its continuous spectral part �.

Lemma 5.4 (Continuous spectral subspace comparison). There exists ı > 0 such that any
function  2 L2.R3/ can be uniquely decomposed into

 D Q.z/C �; � 2 Hc.z/:

If k kH s � ı for some s � 0 then � 2 H s and k�kH s C jzj . k kH s . Moreover, for all
jzj � ı there exists a bijective operator

R.z/WHc.0/! Hc.z/;

u 7! uC ˛.z/.u/�0:

Here, ˛.z/u is a solution to

ƒ.z/˛.z/u D hiu;DzQi;

with

ƒ.z/ D

�
0 �1

1 0

�
C

�
h�0; Im.@z2q/i �h�0;Re.@z2q/i
h�0; Im.@z1q/i h�0;Re.@z1q/i

�
DW

�
0 �1

1 0

�
C 
.z/:

Finally, R.z/ � I is compact and continuous in the operator norm on any space Y that
satisfies H�2 � Y � H2.

5.3. Global a priori estimates

Now that we have a local-in-time solution  for small initial data, we need to obtain
some global estimates on � to extend it as a global solution and understand its asymptotic
behavior. First, we recall that in a small neighborhood of 0 the solution can be uniquely
decomposed into

 D Q.z/C �;
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where � satisfies the time-dependent orthogonality conditions �.t/ 2 Hc.z.t//. In what
follows, the continuous spectral part of the nonlinear part9 of the solution is denoted by �:

� D Pc.�/ � e�itH �u!0 2 Hc.0/:

Then we deduce from Lemma 5.4 that � D R.z/.Pc �/ so that the solution decouples into

 D Q.z/C � D Q.z/C R.z/.�u! C �/:

In particular, we note that

Pc.�/ D �u
!
C �; Pp.�/ D .R.z/ � I /Pc.�/ D ˛.z/Pc.�/�0 D ˛.z/.�u

!
C �/�0:

In what follows, we fix ı > 0 as in Lemmas 5.3, 5.4 and ı0 > 0 as in the local existence
result from Proposition 5.1. Then we take � and ı0 < ı such that

k�kL2 C jzj � ı
0
) k kH s � ı:

The goal is to obtain some global bounds on � in a critical space contained inL1t H
1=2
x and

on z to prove that the solution stays small. Then we bootstrap the local existence result
to obtain global existence, and further exploit the global estimates to prove asymptotic
stability. We denote by m the following gauge transformation of the parameter z:

m.z/ D z exp
�
i

Z t

0

E.z/.�/ d�

�
: (5.7)

It turns out that m is the interesting evolution parameter. Indeed, if we assume orthogo-
nality conditions (1.7) to hold then m solves the ODE8<:

d

dt
m.z/ D Pz C iE.z/z D �A.z; �/�1hF;DzQi;

m.z/jtD0D z0;

(5.8)

where for j; k 2 ¹1; 2º we have

A.z; �/j;k D hi Dj Q;DkQi C hi�;Dj DkQi D j � k CO.ı2/: (5.9)

The forcing term is

F D F.z; �/ D Pc.N .QC �/ � jQj2� �Q2
N�/:

Remark 5.5. As a consequence of (5.4), the matrixA is invertible provided that ı is small
enough.

9We emphasize that the so-called linear part of the solution u!.t/ D e�itH u!0 lies in Hc.0/ at each
time t , since u0 is in Hc.0/ and the randomization preserves this space, as well as the flow e�itH .
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Remark 5.6. If we drop numerical constants and complex conjugate in the notation, we
can write

F D �3 CQ�2:

In particular, we observe that orthogonality conditions (1.7) canceled the terms which
are linear in �. Since we do not control the L1-in-time norm of the radiation term, we
could not have handled these linear terms. That is why the time-dependent orthogonality
conditions are crucial.

Remark 5.7. Since E.z/ D E.jzj/ D E.jm.z/j/ we have that Nz D m.m.z//. Hence, m
is a bijective operator, so we can recover z from m.z/.

To get the evolution equation for �, we inject the ansatz (1.9) into (NLS) and we
use the fact that Q is a solution to (5.3). This yields that the radiation term � solves the
equation

i@t�C .� � V /� D N .QC �/ �N .Q/ � i DzQ. Pz C iEz/:

By projecting the above equation on the continuous spectral subspace, and noting that
Pc.DzQ/ D Dz q, we get´

i@t� C .� � V /� D Pc.N .QC �/ �N .Q// � i Dz q Pm.z/ DW f C g;

�jtD0D �0;
(5.10)

where we decomposed the forcing term into the sum of a nonlinear term f and a localized
term g. More precisely, we choose to collect in f the higher-order nonlinear terms N .�C

�u!/ as well as the modulation term:

f D Pc.N .� C �u!// � i Dz q Pm.z/:

On the other hand, g contains the localized lower-order terms which involve at least a
power of Q or of Pp.�/:

g D Pc.Q
2�CQ�2 C jPp.�/j

2 Pp.�//:

To get some global-in-time bounds on �, we then follow the critical-weighted strategy
detailed in Proposition 4.15, and we are reduced to control f in DU 2H .H

1=2/ and g in
L2t .RIL

2;1=2C
x /. Hence, given an interval I � R where the solution is defined, we will

control � in the critical-weighted space

X.I / D V 2H .I IH
1=2
x / \ L2t .I IH

1;�1=2�
x .Rd //; (5.11)

endowed with its natural norm, and Pm in L1t .I /. The aim is to get bounds that are inde-
pendent of I .
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5.3.1. Global-in-time a priori estimates on � and Pm. In the following lemma, we prove
some preliminary estimates on the radiation term � that will be needed in the analysis. We
recall that z��;cı0 is the set defined in (3.8) made of randomized initial data which display
some improved Strichartz estimates, with R D cı0 (see Proposition 5.1).

Lemma 5.8 (Preliminary estimates). Take ! 2 z��;R and let �, z, � be as in ansatz (1.9).
For any interval I � Œ0;1/,

k�k
L2.I IL

2;�1=2�
x /

. k�kX.I / C �ku0kL2.R3/; (5.12)

k�kL4tL4x.I�R3/ . k�kX.I / CR: (5.13)

Proof. We can estimate the discrete part of � by its continuous part. Indeed, we recall that

jPp.�/j D j.R� I/.z/.� C u!/j . j�0jj.� C u! j DzQ/j: (5.14)

Hence,

kPp.�/kL2t .I IL
2;�1=2�
x /

� khxi�1=2��0kL2xkhxi
1=2C DzQkL1x k� C �u

!
k
L2t .I IL

2;�1=2�
x /

. khxiDzQkL1t .I IH2/k� C �u
!
k
L2t .I IL

2;�1=2�
x /

. k�kX C �ku0kL2x ;

where we used the local smoothing estimate (2.7) to control the weighted norm of the
perturbed linear propagation u! in the last inequality, as well as the fact that ku0kL2x �
ku!0 kL2x : To prove (5.13) we apply Hölder in (5.14) and use Sobolev embedding for
k�0kL4.R3/. We obtain

k.R� I/.� C �u!/kL4tL4x . k�0kH3=4k� C �u
!
kL4tL

4
x
kDzQkL4=3x :

Applying Hölder once again, we get

kDzQkL4=3x �
�Z

R3

hxi�3C dx

�1=3
khxi3=4C DzQkL2x . khxi2 DzQkL2x :

Then it follows from (5.6) that

k.R� I/.�C �u!/kL4tL4x . khxi2DzQkL1t L2xk�C �u
!
kL4tL

4
x

. k�kL4tL4x C �ku
!
kL4tL

4
x
:

Note that we used the Sobolev weighted estimate (5.6) on DzQ. To control the determin-
istic term � in L4t;x , we use Sobolev embedding, the Strichartz estimate for the admissible
pair .4; 3/, and the transference principle in V 2H . Since we choose ! 2 z��;R we can use
the improved global-in-time Strichartz estimate (3.6) to control the random term u! and
obtain

k� C �u!kL4tL4x
. kh
p
H i1=4�kL4tL3x

CR . kh
p
H i1=4�kV 2H

CR . k�kX CR:

This gives both the desired estimate for the discrete part of � and its continuous part
� C �u! , and finishes the proof of Lemma 5.8.
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We can now state and prove the main global-in-time a priori estimate.

Proposition 5.9 (Global a priori estimates). There exists C D C.�0/ such that for all
intervals I � R, for all ! 2 z��;R, and  0 2 H1=2, if

 D Q.z/C � D Q.z/C R.z/.�u! C �/;  jtDt0 D �u
!
0 C  0;

is a solution to (NLS) on I with k�0kH1=2 C jz0j � ı0, k�kX.I / � ı0, supt2I jzj � ı
0,

then10

k�kX.I / � C.k�k
3
X.I / CR

3
C jz0j

3
C k Pm.z/k3

L1.I /
C k�0kH1=2/; (5.15)

k Pm.z/kL1.I / � C.k�k
3
X.I / CR

3
C jz0j

3
C k Pm.z/k3

L1.I /
/: (5.16)

Proof of (5.15). It follows from weighted-critical estimate (4.24) that

k�kX . k�0kH1=2 C sup
2N

N 1=2
k z…Nf kDU 2H

C kgk
L2t .RIL

2;1=2C
x /

:

We recall that f D N .� C u!/C i DzQ Pm.z/ and we observe that z…Nf 2 L
1.I;H1=2/

as explained in (4.12). Hence, we apply the probabilistic nonlinear estimate (4.15) on the
continuous spectral subspace stated in Section 4 to get that for all ! 2 z��;R,

sup
2N

N 1=2
k z…NN .� C u!/kDU 2H

. k�k3X CR
3:

To handle the modulation term, we observe that Pc.DzQ/ D DzQ, and we deduce from
the duality argument between U 2 and V 2 detailed in Remark 4.13 that

kDzQ.z/ Pm.z/kDU 2H � sup
kvk

V 2
H
�1

Z
R
.DzQ Pm.z/ j v/ dt

� sup
kvk

V 2
H
�1

kvkL1t L2x
kDzQ.z/kL1t L2xk Pm.z/kL1t

D kDzQ.z/kL2xk Pm.z/kL1t ;

where we used the embedding V 2 ,! L1t .RIL
2
x/. Consequently,

sup
2N

N 1=2
k z…N DzQ.z/ Pm.z/kDU 2H . kDzQkH1=2k Pm.z/kL1t

D O.z2/k Pm.z/kL1t
:

Note that we used (5.4) to control kDz QkH1=2 . Now we need to estimate the localized
lower-order terms collected in g, defined in (5.10):

kgk
L2t .RIL

2;1=2C
x /

� kPc.Q
2�/k

L2t .RIL
2;1=2C
x /

C kPc.Q�
2/k

L2t .RIL
2;1=2C
x /

C kjPp.�/j
2 Pp.�/kL2t .RIL

2;1=2C
x /

:

10We recall that ı0 < ı is chosen such that k kH s � ı. This forces the solution to remain small and
allows us to apply Lemmas 5.3 and 5.4.
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It follows from (5.6) and (5.12) that

kPc.Q
2�/k

L2t .RIL
2;1=2C
x /

� khxi1=2CQk2L1x k�kL2t .RIL
2;�1=2�
x /

. kzk2L1t .k�kX C �ku0kL2x /:

Similarly, (5.6) and (5.13) yield

kPc.Q�
2/k

L2t .RIL
2;1=2C
x /

� khxi1=2CQkL1x k�k
2
L4tL

4
x

. kzkL1t .k�kX CR/
2 . kzk3L1t C k�k

3
X CR

3:

To conclude we recall that

jPp.�/j . j�0j jh� C u! ;DzQij3;

and therefore

kjPp.�/j
2 Pp.�/kL2t .RIL

2;1=2C
x /

. k�0kL2;1=2Cx

�Z
R
h� C u! ;DzQi6

�1=2
.
�Z

R
h� C u! ;DzQi2

�1=2
sup

R
jh� C u! ;DzQij2

. khxiDzQkL2xk� C u
!
k
L2t .RIL

2;�1=2�
x /

k� C u!kL1t L2x
kDzQkL2x

. .k�kX C �ku0kL2x /
3 . k�k3X C �

3
ku0k

3
L2x
:

Proof of (5.16). We recall that

j Pm.z/j . jh�3;DzQij C jhQ�2;DzQij:

We apply the Cauchy–Schwarz inequality firstly in space and then in time to getZ
R
jh�3;DzQij dt � khxi1=2CDzQkL1x

Z
R
khxi�1=2��kL2xk�k

2
L4t;x

dt

. khxiDzQkH2k�k
L2t .RIL

2;�1=2�
x /

k�k2
L4t;x

:

By using estimate (5.6) on the weighted norm of Dz Q D J�0 C Dz Q and estimates of
Lemma 5.8 on �, we conclude thatZ

R
jh�3;DzQij dt . .k�kX C �ku0kL2/.k�kX CR/

2 . k�k3X C �
3
ku0k

3
L2
CR3:

Similarly, we haveZ
R
jhQ�2;DzQij dt � khxi1=2CQkL1khxi1=2CDzQkL1khxi�1�k2L2tL2x

. khxiQkH2khxiDzQkH2k�k2
L2t .RIL

2;�1=2�
x /

. kzkL1t .k�k
2
X C �

2
ku0k

2
L2
/ . kzk3L1t C k�k

3
X C �

3
ku0k

3
L2
:

This concludes the proof of Proposition 5.9.
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5.4. Proof of Theorem 1.1

Now that we have a local solution with some global a priori estimates both on the radi-
ation term � and on the modulation parameter z, we shall be able to prove global well-
posedness, and then deduce from these global estimates asymptotic stability.

Global existence and uniqueness. It remains to finely tune the parameters that appear in
Proposition 4.10. First, we take ı0 such that the local existence result of Proposition 5.1
holds true, R D cı0. Then, if the solution exists up to a certain time T , we prove that

k�kXŒ0;T / C k Pm.z/kL1Œ0;T / � ı
0
) k�kXŒ0;T / C k Pm.z/kL1Œ0;T / �

ı0

2
: (5.17)

Indeed, we have from (5.15) and (5.16) that

k�kXŒ0;T / �C.2.ı
0/3C .cı0/

3
C ı30 C ı0/; k Pm.z/kL1Œ0;T / �C.2.ı

0/3C .cı0/
3
C ı30/:

The a priori estimate (5.17) follows if we choose ı0 even smaller, say such that ı0 �
.4C /�1ı0, and ı0 . .c3C/�1=2. Then we use a continuity argument (see Lemma 4.4) and
prove that the solution is global, with the bounds

k�kX.R/ C k Pm.z/kL1.R/ � ı
0:

Since Pm.z/ lies in L1Œ0;1/, the convergence of the modulation parameter follows imme-
diately. There exists zC 2 C such that

lim
t!C1

m.z/.t/ D zC:

Note that jzj converges, and hence E.z/ is also convergent.

Scattering. We turn to the proof of the so-called completeness property of the flow,
which is the fact that the radiation part � scatters. To this end, we first prove scattering
for � D Pc.�/ � �u

! by following the proof of the scattering from Theorem 1.5 we gave
in Section 4. We recall that � is a solution to (5.10), and we prove that the Cauchy criterion
is satisfied:

lim
t1;t2!C1

ke�it1.��V / �.t1/ � e�it2.��V / �.t2/kH1=2.R3/ D 0:

Indeed, by the Duhamel integral formulation,

ke�it1.��V / �.t1/ � e�it2.��V / �.t2/kH1=2.R3/ � kf C gkDV 2.t1;t2/:

As observed in Remark 4.11, it follows from the proof of Proposition 5.9 that there exists
a constant C depending on some norms of the solution such that

kf C gkDV 2H .t1;t2/
� kf C gkDU 2H .t1;t2/

� C.k�kX.t1;C1/; k Pm.z/kL1t .t1;C1/
; ku!kLqt ..t1;C1/ILrx/

/; (5.18)
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and C goes to zero when t1 goes toC1. Hence, the Cauchy criterion is satisfied and there
exists �C 2 H1=2 \ Ran.Pc/ such that

lim
t!C1

k�.t/ � e�itH .�u!0 C �C/kH1=2.R3/ D 0:

It remains to prove that the discrete part of � goes to zero when t goes to infinity. First,
the weak convergence of

e�itH .�u!0 C �/ �����*
t!C1

0 in H1=2.R3/

follows from the Riemann–Lebesgue theorem and Plancherel’s formula for the distorted
Fourier transform. Then we use the compactness of the operator R� I from H1=2.R3/ to
C stated in Lemma 5.4 to get

lim
t!C1

Pp.�/ D lim
t!C1

.R� I/ e�itH .�u!0 C �/ D 0 in H1=2.R3/:

This concludes the proof of Theorem 1.1 with �C D �C.

A. Weighted elliptic estimates for the ground states

We show how to prove estimates of Lemma 5.3 for the ground states Q.z/ and its deriva-
tive. For the convenience of the reader we recall the equations satisfied by e, q, D e, Dz q
(see [31, A.4]), and we omit numerical constants as well as complex conjugate from the
notation. The nonlinear ground state Q.z/ D z�0 C q and E.z/ D e0 C e are a solution
to (1.1), and they satisfy

.H � e0/q D �Pc N .Q/C eq;

ez D .�0 j N .Q//:
(A.1)

We recall that N .u/D juj2u, Dz D .@z1 ; @z2/ and we use the notation JDDz.z/D .1; i/.
Then, if we differentiate the above expressions with respect to z, we obtain

.H � e0/DzQ D �Pc Dz N .Q/C qDz e C eDzQ;

z Dz e C J e D .�0 j Dz N .Q//;
(A.2)

with

Dz N .Q/ D Q2.J�0 C DzQ/

D O.z2/ in H2:

Proof of Lemma 5.3. We first prove the estimate for q in H1 with weight hxi. Given a
Schwartz function ', we have

.H � e0/hxi' D Œ��; hxi�' C hxi.H � e0/'

D �
2x � r'

hxi
�
3C 2jxj2

hxi3
' C hxi.H � e0/': (A.3)
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Then we multiply (A.3) by hxi N' and we integrate over R3 to obtain

kr.hxi'/k2
L2
� e0khxi'k

2
L2

D

Z
R3

�
hxi2V.x/C 3C

3C 2jxj2

hxi2

�
j'.x/j2 dx C .hxi2.H � e0/' j '/: (A.4)

Since the first term on the right-hand side is equivalent to k'k2
L2

, it suffices to handle the
second term. Formally, taking ' D q and using (A.1), we have

.hxi.H � e0/q j hxiq/ D .�Pc N .Q/C eq j hxi2q/

D �.N .Q/ j hxi2q/C .�0 j N .Q//.�0 j hxi
2q/C ekhxiqkL2 :

Since q D O.z3/ in H2 (see (5.4)) we have

j.N .Q/ j hxi2q/j C j.�0 j N .Q//.�0 j hxi
2q/j . jzj6.khxiqk2

L2
C C.khxi2�0kL1//:

Therefore, we deduce from (A.4) that

kr.hxiq/k2
L2
� .e0 C e C C jzj

6/khxiqk2
L2

. kqk2
L2
C jzj6C.khxi2�0kL1/:

To conclude we observe that there exists 
 > 0 and c
 > 0 such that E.z/ D e0 C e.z/ <
�cı for all jzj � ı. Next, we just mention that the estimate for the weight hxi2 follows
similarly, using that

Œ��; hxi2�' D 4x � r' C 6':

Let us now derive the estimate with the weight hxi in H2 for Dz q. To this end, we first
differentiate (A.3) with respect to xk and we get

.H � e0/@k.hxi'/C .@kV /hxi' D @k.Œ��; hxi�/' C @k.hxi.H � e0/'/:

In addition, we multiply by @k.hxi N'/ on both sides, and we integrate over R3 to see that

kr.@khxi'/k
2
L2
� e0k@khxi'k

2
L2
D �

Z
R3

�
V @k.hxi'/C @k.Œ��; hxi�/'

�
@k.hxi N'/ dx

C
�
@k.hxi.H � e0//'

ˇ̌
@k.hxi'/

�
: (A.5)

Since

@k.Œ��; hxi�/' D �2
�@k'
hxi
C
x � @kr'

hxi
� xk

x � r'

hxi3

�
C .3C 2jxj2/

3xk'

hxi5
�
4xk'

hxi3
� .3C 2jxj2/

@k'

hxi3
;

we haveˇ̌̌̌Z
R3

�
V @k.hxi'/C @k.Œ��; hxi�/'

�
@k.hxi N'/ dx

ˇ̌̌̌
. khxi'k2

H1 C k'k
2
H2 :



Asymptotic stability under random perturbations 1315

Moreover, by using (5.4), (5.5), (A.2), and the estimates for q and Dz q with weight hxi
in H1 already proved in the first part of the proof, we show thatˇ̌�

@k.hxi.H � e0//'
ˇ̌
@k.hxi'/

�ˇ̌
� C.�0/jzj

4:

Hence,
kr.@khxi'/k

2
L2
� .e0 C e.z//k@khxi'k

2
L2

. C.�0/jzj
4:

This concludes the proof since e0 C e.z/ � �c
 < 0 for 
 small enough and jzj � 
 .
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