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Existence and regularity of weak solutions for a fluid
interacting with a non-linear shell in three dimensions

Boris Muha and Sebastian Schwarzacher

Abstract. We study the unsteady incompressible Navier–Stokes equations in three dimensions
interacting with a non-linear flexible shell of Koiter type. This leads to a coupled system of non-
linear PDEs where the moving part of the boundary is an unknown of the problem. The known
existence theory for weak solutions is extended to non-linear Koiter shell models. We introduce
a priori estimates that reveal higher regularity of the shell displacement beyond energy estimates.
These are essential for non-linear Koiter shell models, since such shell models are non-convex (with
respect to terms of highest order). The estimates are obtained by introducing new analytical tools
that allow dissipative effects of the fluid to be exploited for the (non-dissipative) solid. The regularity
result depends on the geometric constitution alone and is independent of the approximation proce-
dure; hence it holds for arbitrary weak solutions. The developed tools are further used to introduce
a generalized Aubin–Lions-type compactness result suitable for fluid–structure interactions.

1. Introduction

Fluid–structure interactions (FSI) are everyday phenomena with many applications, for
example in aeroelasticity [16] and biomedicine [4]. Mathematically, FSI problems are
described by coupling fluid equations with elasticity equations. The analysis of FSI prob-
lems is challenging and attractive mainly due to the following properties. First, the result-
ing system of non-linear PDEs is of hyperbolic–parabolic type with the coupling taking
place at the fluid–structure interface. Second, the fluid domain is an unknown of the prob-
lem, i.e. the resulting problem is a moving boundary problem. In this paper we study the
coupling of the three-dimensional (3D) incompressible Navier–Stokes equations with the
evolution of the non-linear Koiter shell equation. Our main result is that any finite-energy
weak solution to the considered FSI problem satisfies an additional regularity property
on its interval of existence (see Theorem 1.2). More precisely, we show that the elastic
displacement belongs to the Bochner space L2t .H

2Cs
x / \ H 1

t .H
s
x/ for all s < 1

2
. Here

H s denotes the standard fractional Sobolev space (for a precise definition of a fractional
Sobolev space, see Section 2.3). In particular, due to respective embedding theorems, the
elastic displacement is Lipschitz continuous in the space variable for almost every moment
of time. We use this result to show the existence of weak solutions to a fluid–non-linear
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Koiter shell interaction problem (see Theorem 1.1). Since the non-linear Kotier shell equa-
tions are quasi-linear with non-linear coefficients depending on the terms of leading order
in the energy, the additional structure regularity estimate is crucial for the compactness
argument in the construction of a weak solution. The main idea behind the regularity the-
orem is to use the fluid dissipation and the coupling conditions to prove the additional
regularity estimate for the structure displacement. The realization of this idea is techni-
cally challenging. It includes the development of a comprehensive analysis to construct a
solenoidal extension and smooth approximations for the time-changing domain with clear
(local) dependence on the regularity of the boundary values and the boundary itself. The
approach is quite general and thus seems suitable for further applications related to the
analysis of variable geometries. In fact, the present result has already been applied; please
see [6, 40, 43].

Fluid–structure interaction has been an increasingly active area of research in mathe-
matics in the last 20 years. Due to the overwhelming number of contributions in the area,
in this brief literature review we just mention analytic results that are most relevant for
our work. Existence results for weak solutions for FSI problems where the incompress-
ible Navier–Stokes equations are coupled with a lower-dimensional elasticity model (e.g.
plate or shell laws) have been obtained in [10, 22, 25, 31, 34, 35]. The corresponding exis-
tence result for compressible fluid flow was proved in [7]. All mentioned results on the
existence of weak solutions are valid up to the time of possible self-intersection of the
domain. To our knowledge, the number of regularity estimates for long time solutions is
rather limited. Recently, some significant results on strong solutions for large initial data
and a two-dimensional fluid interacting with a one-dimensional solid have been obtained;
see [23, 24]. For a three-dimensional fluid interacting with a three-dimensional elastic
body, see [26, 27] for global results with small initial data and structural damping. The
theory of local-in-time strong solutions for 3D–3D FSI problems is rather well developed;
see recent results in [5,29,38] and references within. We wish to emphasize that in all these
works the structure equations were linear. For an FSI problem with non-linear structure,
the theory is far less developed. The existence of a weak solution to the FSI problem with
a Koiter membrane energy that includes non-linearities of lower order and a leading-order
linear regularizing term was proved in [36]. Short time or small data existence results in
the context of strong solutions for various non-linear fluid–structure models have been
obtained in [11,12,15,39]. Finally, we wish to mention some results in the static case that
can be found in [19, 21].

The role of fluid dissipation on the qualitative properties of the solution is one of the
central questions in the area of fluid–structure interactions and related systems, and has
been studied by many authors; see e.g. [3,20,44] and references within. We present here a
new technique that allows dissipation features to be transferred from the fluid equation to
the non-linear hyperbolic elastic displacement. We wish to point out that better regularity
cannot be expected for a non-linear hyperbolic PDE with arbitrarily smooth right-hand
sides and initial data. It is the coupling with a dissipative equation that allows this better
regularity.
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1.1. The coupled PDE

We first discuss the Koiter shell model (see e.g. [13,28]) which describes the evolution of
the elastic boundary of the fluid domain. Let � � R3 be a domain such that its boundary
� D @� is parameterized by a C 3 injective mapping 'W ! ! R3, where ! � R2. To
simplify notation we assume in this paper that the boundary of � can be parameterized
by a flat torus ! D R2=Z2 which corresponds to the assumption of periodic boundary
conditions for the structure displacement. We consider the periodic boundary conditions
just to avoid unnecessary technical complications (see Remark 1.4). An example of such
a domain is a cylindrical domain (see Figure 1) with periodic boundary condition for
the fluid velocity on the inlet/outlet part of the boundary. Namely, in this setting we can
identify the inlet and the outlet parts of the boundary, and thus the fluid domain is a three-
dimensional torus, which fits our framework.

Figure 1. An example of the deformed cylindrical domain.

We denote tangential vectors at any point '.y/ as

a˛.y/ D @˛'.y/; ˛ D 1; 2; y 2 !:

The unit normal vector is given by

n.y/ D
a1.y/ � a2.y/
ja1.y/ � a2.y/j

:

The surface area element of @� is given by dS D ja1.y/ � a2.y/j dy. We assume that
the domain deforms only in the normal direction and denote by �.t; y/ the magnitude of
the displacement. This reflects the situation when the fluid pressure is the dominant force
acting on the structure, in which case it is reasonable to assume that the shell is deforming
in the normal direction. In this case the deformed boundary can be parameterized by the
following coordinates:

'�.t; y/ D '.y/C �.t; y/n.y/; t 2 .0; T /; y 2 !: (1.1)



B. Muha and S. Schwarzacher 1372

We wish to emphasize that this restriction is standard in the majority of mathematical
works on the analysis of weak solutions, mainly due to severe technical difficulties asso-
ciated with the analysis of the case where the full displacement is taken into account.
The deformed boundary is denoted by ��.t/ D '�.t; !/. It is a well-known fact from
differential geometry (see e.g. [30]) that there exist ˛.�/; ˇ.�/ > 0 such that for �.y/ 2
.˛.�/; ˇ.�//, '�.t; �/ is a bijective parameterization of the surface ��.t/ and it defines a
domain ��.t/ in its interior such that @��.t/ D ��.t/. Moreover, there exists a bijective
transformation �.t; �/W�!��.t/. For more details on the geometry see Section 2.1 and
Definition 2.1.

We denote the moving domain in the following way:

.0; T / ���.t/ WD
[

t2.0;T /

¹tº ���.t/:

The non-linear Koiter model is given in terms of the differences of the first and the second
fundamental forms of ��.t/ and � which represent membrane forces and bending forces
respectively. These forces are summarized in its potential – the Koiter energy EK.t; �/.
The definition of the potential is taken from [14, Section 4]. For a precise definition and
the derivation of the energy for our coordinates, see (2.8) below. Let LK� be the L2-
gradient of the Koiter energy EK.t; �/, h be the (constant) thickness of the shell and %s
the (constant) density of the shell. Then the respective momentum equation for the shell
reads

%sh@
2
t �CLK� D g; (1.2)

where g is the momentum forces of the fluid acting on the shell.
The fluid flow is governed by the incompressible Navier–Stokes equations:

%f .@tuC .u � r//u D div � .u; p/ in .0; T / ���.t/; (1.3)

div u D 0 in .0; T / ���.t/; (1.4)

where � .u;p/D�pIC 2� symru is the fluid stress tensor and %f the (constant) density
of the fluid.

The fluid and the structure are coupled via kinematic and dynamic coupling conditions.
We prescribe a no-slip kinematic coupling condition which means that the fluid and the
structure velocities are equal on the elastic boundary:

u.t;'�.t; y// D @t�.t; y/n.y/; y 2 !: (1.5)

The dynamic boundary condition states that the total force in the normal direction on the
boundary is zero:

g.t; y/ D �� .u; p/.t;'�.t; y//n.�.t; y// � n.y/; y 2 !; (1.6)

where n.�.t; y// D @1'�.t; y/ � @2'�.t; y/ is defined as a weighted vector pointing in
the direction of the outer normal to the deformed domain at point '�.t; y/; the weight is
exactly the Jacobian of the change of variables from Eulerian to Lagrangian coordinates.
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We may summarize and state the full fluid–structure interaction problem: find .u; �/
such that

%f .@tuC .u � r//u D div � .u; p/ in .0; T / ���.t/;

div u D 0 in .0; T / ���.t/;

%sh@
2
t �CLK� D �.� .u; p/ ı '�/n.�/ � n in .0; T / � !;

u ı '� D @t�n in .0; T / � !;

u.0; �/ D u0 in ��.0/;

�.0/ D �0; @t�.0/ D �1 in !:

(1.7)

The solution of the above coupled system formally satisfies the following energy equality:

d

dt

�%f
2
ku.t/k2

L2.��.t//
C
h%s

2
k@t�.t/k

2
L2.!/

C EK.t; �/
�

D �2�

Z
��.t/

jsymruj2: (1.8)

Due to the fact that the Koiter shell equation is non-linear – more precisely, since the
curvature change is measured with respect to the deformed geometry – the H 2-coercivity
of the Koiter energy can become degenerate. This is quantified by the estimate shown in
Lemma 4.3 below. At such a degenerate instant, the given existence and regularity proofs
break down. This is a phenomenon purely due to the non-linearity of the Koiter shell equa-
tions. Indeed, in the case when the leading-order term of the elastic energy is quadratic
(i.e. the equation is linear or semi-linear), this loss of coercivity is a priori excluded.

1.2. Main results

Let us now state the main theorems of the paper. The first main theorem is the existence
of solutions to the non-linear Koiter shell model.

Theorem 1.1. Assume that @� 2 C 3; �0 2 H 2.!/; �1 2 L
2.!/ and u0 2 L2.��0/, and

�0 is such that ��0 has no self-intersection and .�0/ ¤ 0. Moreover, we assume that the
compatibility condition u0j��0 D �1n is satisfied. Then there exists a weak solution .u; �/
on the time interval .0; T / to (1.7) in the sense of Definition 2.3.

Furthermore, one of the following is true: either T D C1, or the structure self-
intersects, or .�/ ¤ 0, i.e. the H 2-coercivity of the structure energy degenerates, where
 is defined in Definition 2.1 below.

The second main theorem says that all possible solutions in the natural existence class
satisfy better structural regularity properties.

Theorem 1.2. Let .u; �/ be a weak solution to (1.7) in the sense of Definition 2.3. Then
the solution has the additional regularity properties � 2 L2.0; T IH 2Cs.!// and @t� 2
L2.0; T IH s.!// for s 2 .0; 1

2
/. Moreover, it satisfies the regularity estimate

k�kL2.0;T IH2Cs.!// C k@t�kL2.0;T IH s.!// � C1

with C1 depending on @�, C0 and the H 2-coercivity size .�/.
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Remark 1.3 (On the coercivity parameter .�/). Here we briefly discuss the dependence
of the constant C1 in Theorem 1.2 on the coercivity parameter .�/. The detailed analysis
can be viewed in Section 4. First, one can use the energy inequality to deduce that � is
continuous in space and time; see Lemma 4.2. The coercivity constant .�/ is explicitly
calculated in Lemma 4.3, where it is shown that .�/ continuously depends on �. Con-
sequently (depending on the initial state), coercivity in H 2 holds at least for some time
interval. In particular, on this time interval, constant C1 in Theorem 1.2 depends only on
@� and C0. If the solution then did not reach a state of degeneracy ..�/ D 0) or self-
intersection, then it can be (iteratively) prolonged. In order to derive the estimate for the
prolonged solution, one should revise the dependencies in Theorem 1.2 and this is the
reason why in Theorem 1.2 the constant C1 depends on .�/. Note, in particular, that in
some cases .�/ can be explicitly computed; see Examples 1 and 2 in the next section,
where very natural conditions for the exclusion of degeneracy are computed.

Remark 1.4. Since here @� is assumed to be a manifold without boundary, there is no
boundary condition for �. We restrict ourselves to this case just for technical simplicity.
The proof for the case where only a part of the boundary is elastic (see e.g. [7, 31]), with
the appropriate Dirichlet boundary conditions, is completely analogous. In particular, the
regularity estimate Theorem 1.2 is valid for the case of non-periodic shells and the proof
can be adapted without any significant complications by using the zero extension of � to
the whole boundary.

Remark 1.5. In the proof of Theorem 1.2 we use the no-slip coupling condition (1.5)
to transfer the fluid regularity to the structure. Here the exact form of the structure equa-
tion (1.2) is not essential. Therefore the proof can be easily adapted to different structure
models as long as we have that the corresponding structure energy is coercive in the
H 2 norm. In particular, our result implies respective estimates for weak solutions to sev-
eral FSI problems that have already been studied in the literature, and mentioned in the
introduction, e.g. [10,22,31,34,36]. The geometric condition .�/¤ 0 is needed forH 2-
coercivity in the non-linear setting. Clearly, H 2-coercivity is satisfied independently of
.�/ when the leading-order term in the Koiter energy is quadratic. Hence, in the case
when the structure equation is linear or semi-linear, the regularity result is valid until a
self-intersection is approached.

1.3. Novelty and significance

The main novelty is the improved regularity of the elastic displacement. In particular,
it allows the threshold between Lipschitz and non-Lipschitz domains to be overcome.
This critical step has caused a significant amount of effort in previous works [10, 22, 31,
34, 36]. The regularity uses classical differential quotient techniques applied to the non-
linear structure equation. The impact of the fluid on the structure, which is rather implicit
in the framework of weak equations, is problematic. Here, newly developed extension
operators are developed that are certainly of independent value (see Proposition 3.3). Of
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critical technical difficulty are commutator estimates for the time-dependent extension of
a difference quotient (see Lemma 3.5).

The power of the newly introduced method to gain higher regularity for the structure
allows us to prove the existence of weak solutions for fluids interacting with non-linear
Koiter shells. These more physical models have not been in reach for the theory of weak
solutions that may exist for arbitrarily long times. The mathematical reason is that the
respective energies are highly non-linear and non-convex. The extra regularity estimate,
however, allows us to derive sequences that converge strongly to the solution with respect
to the highest order of the operator. This is the reason why no linearity or convexity
assumptions are needed anymore to pass to the limit within the non-linear stress tensor
of the structure equation.

For previous results, the limit passage of the convective term in the Navier–Stokes
equations was the main effort [10,22,31,34,36]. The limit passage usually relies on com-
pactness results of Aubin–Lions type. The variable geometry make its application highly
technical. In Section 5 we rewrite the celebrated result in a form that we believe to be suit-
able for coupled systems (see Theorem 5.1). Indeed, it can be applied to systems where
the solution space depends on the solution itself. This section can be seen as the second
main technical novelty.

The interval of existence is potentially arbitrarily large. The interval of existence is
restricted to cases where the geometry degenerates. However, the minimal interval of
existence depends on the reference geometry (which defined the shell model) and can
be arbitrarily large for some commonly used models. We demonstrate this by providing
explicit bounds for two popular reference geometries in Section 2.1: namely the cases
where the reference geometry is a sphere or a cylinder.

The method seems very suitable to be adapted for further interaction problems. Possi-
ble future applications for FSI problems are in the fields of membrane energies, compress-
ible fluids, tangential displacements, uniqueness issues and/or numerical analysis. In two
space dimensions or in the regime of low Reynolds numbers, the method inherits great
potential to further improve the regularity theory for the FSI problems [23]. However, due
to the lack of a global regularity result for the fluid equations in three dimensions, we do
not expect it is possible to further improve the regularity of the shell. In this sense our
regularity result for the shell displacement can be viewed as optimal.

This is the point to mention that some applications of our results are already available.
Firstly, in [40] the additional regularity for weak solution to linear plates is used in order to
obtain weak–strong uniqueness results. In the case of three-dimensional fluids, the proof
depends crucially on the extra regularity obtained here. Secondly, the results were used
recently in [6], where Koiter shells are coupled to polymer fluids. Thirdly, we wish to
mention work in progress on heat-conducting fluids [8], where the Navier–Stokes–Fourier
system is considered. In order to obtain an energy equality, which is an essential part of
the concept of weak solutions, compactness of the elastic solid energy is crucial. Hence,
this result also depends sensitively on the regularity techniques presented here. Finally,
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our methodology for the regularity estimate was also used in the proof of a weak–strong
uniqueness result for FSI problems with compressible fluid [43].

Outline of the paper. The next section first derives the Koiter energy with respect to our
chosen coordinates, gives two explicit examples of Koiter energies with respective geo-
metric restrictions on ˛.�/, ˇ.�/, .�/ and introduces the definition of a weak solution
for fluid–structure interactions. Section 3 is the technical heart of the paper since there the
solenoidal extension and approximation operators are introduced. In Section 4 we give
the proof of the regularity result Theorem 1.2. Section 5 provides a new version of the
Aubin–Lions compactness result that reveals the connection between the existence of suit-
able extensions and compactness results for fluid–structure interactions involving elastic
shells. Finally, in Section 6 we show Theorem 1.1; the existence is shown by combining
the extra regularity of the shell with the compactness theory.

2. Weak solutions

2.1. The elastic energy

Coordinates. Here we follow the strategy of [31, Section 2] by introducing the following
coordinates attached to the reference geometry �, which are well defined in the tubular
neighborhood of @� (see e.g. [30, Section 10] and Figure 2 for an illustration).

Figure 2. Cross section of a cylindrical domain, its deformation and corresponding coordinate
system.

Definition 2.1. Let x be a point in the neighborhood of @�. We define the distance param-
eter with respect to the reference point

y.x/ D arg miny2! jx � '.y/j; s.x/ D .x � y.x// � n.x/

and the projection p.x/ D '.y.x//.
We define the numbers ˛.�/, ˇ.�/ so that .˛.�/; ˇ.�// is the largest open interval

such that numbers s.x/, p.x/, y.x/ are uniquely defined over ¹'.y/C sn W y 2 !; s 2
.˛.�/; ˇ.�//º.
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For � > 0 we introduce the indicator mapping �� 2 C1.R/, such that

��.s/ D 1 for s 2 .˛.�/C �;1/; ��.s/ D 0 for s � ˛.�/C
�

2
and � 0� � 0:

We set
S� D

®
'.y/C sn.y/ W .s; y/ 2 Œ˛.�/C �; ˇ.�/ � �� � !

¯
:

Further
Q�
D S� [� and Q� D � n S� :

In particular, we have clear information on the support of the derivative:

A� WD
®
'.y/C sn.y/ W .s; y/ 2 Œ˛.�/C �=2; ˛.�/C �� � !

¯
� supp

�
� 0�.s.�//

�
:

For �.y/ 2 .˛.�/C �; ˇ.�/� �/, this allows us to introduce the mapping  �.t; �/W�!
��.t/ by

z 7!
�
1 � ��.s.z//

�
z C ��.s.z//

�
p.z/C

�
�.y.z//C s.z/

�
n.y.z//

�
;

and  �1� .t; �/W��.t/ ! � by

x 7!
�
1 � ��.s.x//

�
x C ��.s.x//

�
p.x/C

�
s.x/ � �.y.x//

�
n.y.x//

�
:

Moreover, we define

ˆW .˛.�/C �; ˇ.�/ � �/ � ! ! S� ; ˆ.s; y/ D '.y/C n.y/s:

The function’s dependence on ' and � is smooth and invertible. This implies that

 � ıˆW .˛.�/C �; 0/ � ! ! ��;  � ıˆ.s; y/ D '.y/C .s C ��.s/�.y//n.y/:

Finally, we define the following geometric quantity depending on @� and �:

.�/D
1

ja1 � a2j

�
ja1 � a2j C �.n � .a1 � @2nC @1n� a2//C �2n � .@1n� @2n/

�
: (2.1)

Remark 2.2. The numbers ˛.�/, ˇ.�/ do not have to be small. For example, if � is a
ball or a cylinder with radius R, then .˛.�/; ˇ.�// D .�R;1/. The geometric quantity
.�/ is connected to the H 2-coercivity of the non-linear structure energy and its meaning
is clarified in Lemma 4.3 and Remark 4.4.

Derivation of the elastic energy. The non-linear Koiter model is given in terms of the
differences of the first and the second fundamental forms of ��.t/ and � . The tangent
vectors to the deformed boundary are given by

a˛.�/ D @˛'� D a˛ C @˛�nC �@˛n; ˛ D 1; 2: (2.2)



B. Muha and S. Schwarzacher 1378

Therefore, the components of the first fundamental form of the deformed configuration
are given by

a˛ˇ .�/D a˛.�/ � aˇ .�/D a˛ˇ C @˛�@ˇ�C �.a˛ � @ˇnC aˇ � @˛n/C �2@˛n � @ˇn: (2.3)

We define the change of metric tensor G .�/:

G˛ˇ .�/ D a˛ˇ .�/ � a˛ˇ D @˛�@ˇ�C �.a˛ � @ˇnC aˇ � @˛n/C �2@˛n � @ˇn: (2.4)

The normal vector to the deformed configuration is given by

n.�/ D a1.�/ � a2.�/ D ja1 � a2jnC @2�.a1 � nC �@1n � n/
C @1�.n � a2 C �n � @2n/C �.a1 � @2nC @1n � a2/
C �2.@1n � @2n/: (2.5)

Notice that n.�/ is not a unit vector. We follow our reference literature [14] and use the
following tensor R (denoted by R# in [14, Section 4]) which is some non-normalized
variant of the second fundamental form to measure the change of curvature:

R˛ˇ .�/ D
1

ja1 � a2j
@˛aˇ .�/ � n.�/ � @˛aˇ � n; ˛; ˇ D 1; 2: (2.6)

Finally, we define the elasticity tensor in the classical way [14, Theorem 3.2]:

AE D
4��

�C 2�
.A W E/AC 4�AEA; E 2 Sym.R2�2/: (2.7)

Here A is the contravariant metric tensor associated with @� (see e.g. [14, Section 2] for
the precise definition of A), and � > 0, � > 0 are the Lamé constants. The Koiter energy
of the shell is given by

EK.t; �/ D
h

4

Z
!

AG .�.t; �// W G .�.t; �// dy C
h3

48

Z
!

AR.�.t; �// W R.�.t; �// dy; (2.8)

where h is the thickness of the shell. In order to simplify the notation we introduce the
following forms connected to the membrane and bending effects in the variational formu-
lation:

am.t; �; �/ D
h

2

Z
!

AG .�.t; �// W G 0.�.t; �//� dy; (2.9)

ab.t; �; �/ D
h3

24

Z
!

AR.�.t; �// W R0.�.t; �//� dy; (2.10)

where G 0 and R0 denote the Fréchet derivatives of G and R respectively. Therefore, the
elastodynamics of the shell is given by the following variational formulation:

h%s
d

dt

Z
!

@t�.t; �/� dy C am.t; �; �/C ab.t; �; �/

D

Z
!

g� dy on .0; T /, � 2 W 2;p.!/; (2.11)
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where %s is the structure density, g is the density of area force acting on the structure and
p > 2. We denote the elasticity operator by LK which is formally given by

hLK�; �i D am.t; �; �/C ab.t; �; �/; � 2 W 2;p.!/: (2.12)

Next we give some examples for which we can calculate our restrictive numbers ˛.�/,
ˇ.�/ and .�/.

Example 1: Cylindrical Koiter shell. The parameterization of the reference cylinder is
given by '.�; z/D .R cos �;R sin �; z/, .�; z/ 2 ! D .0; 2�/� .0; 1/, where R > 0 is the
radius of the cylinder. We compute

a1.�; z/ D .�R sin �;R cos �; 0/; a2.�; z/ D .0; 0; 1/; n.�; z/ D .cos �; sin �; 0/:

The corresponding contravariant metric tensor is given by AD
�
1=R2 0
0 0

�
. The deformation

of the cylindrical boundary is given by

'�.�; z/ D .R cos � C �.�; z/ cos �;R sin � C �.�; z/ sin �; z/:

Straightforward calculation yields

a1.�/ D
�
1C

1

R

�
a1 C ��n; a2.�/ D a2 C �za3;

n.�/ D .RC �/n � �z.RC �/a2 C
��

R
a1:

Therefore, the change of metric tensor is given by

G .�/ D

�
.RC �/2 C �2

�
�R2 ���z

���z 1C �2z

�
and the change of curvature tensor by

R.�/ D

 
.1C �

R
/��� �

1
R
.�CR/2 � 2

�2
�

R
CR .1C �

R
/��z �

1
R
���z

.1C �
R
/��z �

1
R
���z .1C �

R
/�zz

!
:

Here .˛.�/; ˇ.�// D .�R;1/ and .�/ D 1C �
R

.

Example 2: Spherical shell. Strictly speaking, the sphere does not fit in our framework
since it does not have a global parameterization. However, this assumption was introduced
just for technical simplicity and can be easily removed by working with local coordinates.
In this example we consider an elastic sphere with holes around north and south poles. On
these holes we prescribe the boundary condition for the fluid flow, e.g. inflow/outflow or
Dirichlet. The shell is clamped on the boundary of the holes (see Figure 1 for illustration).
More precisely, the parameterization is given by

'.�; �/ D R.cos � sin�; sin � sin�; cos�/; .�; �/ 2 w D .0; 2�/ � .a; � � a/;
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where R > 0 is the radius of the sphere, and a > 0 is the parameter determining the size
of the holes. We compute the tangent and normal vectors to the reference configuration

a1 D �R.sin � sin�; cos � sin�; 0/;

a2 D R.cos � cos�; sin � cos�;� sin�/;

n D �.cos � sin�; sin � sin�; cos�/:

The contravariant metric tensor is given by A D
�
1=R2 sin2 � 0

0 1=R2

�
, and the deformation of

the cylindrical boundary by

'�.�; �/ D .R � �.�; �//.cos � sin�; sin � sin�; cos�/:

We calculate the tangent and normal vectors to the deformed configuration:

a1.�/ D
�
1 �

�

R

�
a1 C ��n; a2.�/ D

�
1 �

�

R

�
a2 C ��n;

n.�/ D .R � �/2 sin�n �
�
1 �

�

R

�� ��

sin�
a1 C �� sin�a2

�
:

The change of the metric tensor is given by

G .�/ D

 
�2
�
C .sin�/2�.� � 2R/ ����

���� �2� C .R � �/
2 �R2

!
:

Finally, the components of the change of curvature tensor are given by

R11.�/ D
1

2R2

�
�2�3 sin2 � C �2.6R sin2 � C �� sin 2� C 2��� /

� 2�.3R2 sin2 � CR�� sin 2� C 2�2� C 2R��� /

CR.R�� sin 2� C 4�2� C 2R��� /
�
;

R12.�/ D R21.�/

D
� �R

R2

�
�� .R cot� � � cot� � 2��/C ���.� �R/

�
;

R22.�/ D
1

R2

�
��3 C �2.3RC ���/CR.2�

2
� CR���/ � �.2�

2
� CR.3RC 2���//

�
:

The clamped boundary conditions are �D @��D 0, � D a;� � a. Since we will take finite
differences of order less than 1, we can extend � by zero (over the poles) and complete all
estimates related to the regularity. Here .˛.�/; ˇ.�// D .�1; R/ and .�/ D .��R/2

R2
.

2.2. Weak coupled solutions

We use here the standard notation of Bochner spaces related to Lebesgue and Sobolev
spaces. We will use bold letters for vector-valued functions in three dimensions. Usually
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we take y 2 ! to be a two-dimensional variable and x a three-dimensional variable. In
order to define weak solutions, let us first define the appropriate function spaces:

V�.t/ D
®
u 2 H 1.��.t// W div u D 0

¯
;

VF D L
1.0; T IL2.��.t/// \ L

2.0; T IV�.t//;

VK D L
1.0; T IH 2.!// \W 1;1.0; T IL2.!//;

VS D
®
.u; �/ 2 VF � VK W u.t;'�.t; �// D @t�.t; �/n.�.t; �//

¯
;

VT D
®
.q; �/ 2 VF � VK W q.t;'�.t; �// D �.t; �/n.�.t; �//;

@tq 2 L2.0; T IL2.��.t///
¯
:

(2.13)

Here VS and VF are solution space and test space respectively. Even though for � 2 VK ,
��.t/ is not necessarily a Lipschitz domain, the traces used in definitions (2.13) and (3.3)
are well defined; see [31, Corollary 2.9] (see also [10, 33]). We introduce the concept of
a solution which we will consider here. Observe that from this point on we normalize all
physical constants �s D �f D h D � D � D 1 for notational simplicity since the proofs
require just positivity of these constants. We emphasize that the restrictions on existence
and regularity are only of a geometrical nature. This can be quantified by ˛.�/ and ˇ.�/
depending only on the reference geometry, and .�/ depending on the reference geometry
and on the particular magnitude and direction of the displacement, but not on the above
physical constants.

Definition 2.3 (Weak solution). We call .u; �/ 2 VS a weak solution of problem (1.7) if
it satisfies the energy inequality (2.15) and for every .q; �/ 2 VT the following equality
holds in D 0.0; T /:

d

dt

Z
��.t/

u � q dx C
Z
��.t/

.�u � @tq � u˝ u W rqC 2 symru W symrq/ dx

C
d

dt

Z
!

@t�� dy �

Z
!

@t�@t� C am.t; �; �/C ab.t; �; �/ dy D 0; (2.14)

Furthermore, the initial values �0, �1, u0 are attained in the respective weakly continuous
sense.

By formally multiplying (1.7)1 by u and (1.7)2 by @t�, integrating over ��.t/ and !
respectively, integrating by parts and using the coupling conditions (1.7)4, we obtain the
following energy inequality (see e.g. [10,34] for details of the computations related to the
change of the domain and the convective term):

1

2
ku.t/k2

L2.��.t//
C
1

2
k@t�.t/k

2
L2.!/

C EK.t; �/C 2

Z t

0

Z
.��.t//

jsymruj2 dx dt

�
1

2
ku0k2L2.��0 / C

1

2
k�1k

2
L2.!/

C EK.0; �0/ DW C0: (2.15)
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2.3. Fractional spaces

In this paper, we use the standard definitions of Bochner spaces related to Lebesgue and
Sobolev spaces. In particular, we consider fractional Sobolev spaces and Nikolskii spaces.
We recall their definitions here.

For ˛ 2 .0; 1/ (the order of derivative) and q 2 Œ1;1/ (the exponent of integrability)
we say that g 2 W ˛;q.A/, for a domain A � Rd , if its norm

kgk
q

W ˛;q.A/
WD

�Z
A

Z
A

jg.x/ � g.y/jq

jx � yjnC˛q
dx dy

� 1
q

C

�Z
A

jg.x/jq dx

� 1
q

is finite. Fractional Sobolev spaces can be extended to higher order. For ˛ 2 Œk; k C 1/
with k 2 N it is said that g 2 W ˛;q.A/ if all partial derivatives of order up to k are in
W ˛�k;q.A/. In the particular case q D 2 we use the abbreviation

H s.A/ � W s;2.A/ for s 2 Œ0;1/:

We say that g 2 N ˛;q.A/ if its norm

kgkN ˛;q.A/ WD sup
i2¹1;:::;dº

sup
h¤0

�Z
Ah

ˇ̌̌g.x C hei / � g.x/
jhj˛�1h

ˇ̌̌q
dx

� 1
q

C

�Z
A

jg.x/jq dx

� 1
q

;

where ei is the i th unit vector and Ah D ¹x 2 A W dist.x; @A/ > hº is finite. Nikolskii
spaces are closely related to fractional Sobolev spaces W ˛;q.A/. Let us just mention that
for 0 < ˛ < ˇ < 1 and a bounded domain A we have

W ˇ;q.A/ � N ˇ;q.A/ � W ˛;q.A/:

Recall also that for fractional Sobolev spaces an embedding theorem is available for a
Lipschitz domain A � Rn. Therefore, for g 2 N ˇ;q.A/ and 0 < ˛ < ˇ < 1 we have for
˛q < n that

kgk
L

nq
n�˛q .A/

� c1kgkW ˛;q.A/ � c2kgkN ˇ;q.A/; (2.16)

and for ˛q > n,
kgk

C
˛� nq .A/

� c1kgkW ˛;q.A/ � c2kgkN ˇ;q.A/: (2.17)

For the above estimates and more detailed study on the given function spaces we refer
to [1, Chapter 7] and [42]. The Nikolskii spaces are very popular in the analysis of PDEs,
since their definition via difference quotients is rather easy to handle. Namely, we intro-
duce for g 2 L1.!/ and h ¤ 0,

Ds
h;e.g/.x/ WD

g.x C he/ � g.x/

jhjs�1h
for any (unit) vector e 2 R2:

In the following, we will omit mentioning the direction e since it is never of relevance and
write Ds

h
.q/.y/ WD Ds

h;e
.q/.y/ for an arbitrary direction e. At this point we just wish to

mention that these expressions satisfy the summation-by-parts formulaZ
!

Ds
h;e.g/.y/q.y/ dy D �

Z
!

g.y/Ds
�h;e.q/.y/ dy

for all periodic functions g 2 Lp.!/ and q 2 Lp
0

.!/ with p 2 Œ1;1�.
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For a vector field gWA! Rd , we say that g 2 W ˛;p.A/ if gi 2 W ˛;p.A/ for all i 2
¹1; : : : ; dº. Finally we denote

W
˛;p

div .A/ D
®
g 2 W ˛;p

div .A/ W div.g/ D 0 in a distributional sense
¯
:

3. Solenoidal extensions and smooth approximations

In this section we construct a divergence-free extension operator from .0; T / � @� to
.0; T /���.t/. The construction is based on the ideas of the construction in [31, Proposi-
tion 2.11]. In contrast to the approach there we will use the celebrated Bogovskiı̆ theorem
in place of the steady Stokes operator. We use the following theorem that can be found
in [18, Section 3.3] and in [17, Appendix 10.5].

Theorem 3.1. Let the domain � be uniformly Lipschitz. There exists a linear opera-
tor BogW yC10 .�/! C10 .�/

d , with the property div.Bog.f // D f , which extends from
yW
k�1;p
0 .�/! W

k;p
0 .�/ for 1 < p <1 and k 2 ¹0; 1; 2; : : : º, such that

kBog.f /kW k;p.�/ � Ckf k yW k�1;p.�/
; k 2 Z; (3.1)

where C is an absolute constant depending only on the Lipschitz constant. Here we use
the notation yC10 .�/ D ¹f 2 C

1
0 .�/ W

R
�
f dx D 0º, and for l � 0, yW l;p

0 .�/ D ¹f 2

W
l;p
0 .�/ W

R
�
f dx D 0º, yW �l;p0 .�/D ¹f 2 VW �l;p.�/ W hf; 1i D 0º, where VW �l;p.�/

is defined via the norm

kf k
VW �l;p.�/

D sup
¹�2W l;p0 .�/W
k�k

W l;p
0D1º

hf; �i:

Within this section we assume that �W Œ0; T � � ! ! R is such that there exist ˛� , ˇ�
such that

˛.�/C � � ˛� � �.t; y/ � ˇ� � ˇ.�/ � � for all .t; y/ 2 Œ0; T � � !: (3.2)

Moreover, in this section we use c or C as generic constants which may change their
sizes in different instances. Since their dependence on the geometry is relevant for our
arguments, it will always be given explicitly in the statements of the results.

The first step is to introduce a solenoidal extension operator. However, since all func-
tions defined on the boundary do not necessarily allow for a solenoidal extension, we first
need to construct a suitable corrector. We use the coordinates introduced in Definition 2.1.
For ease of readability we define for a function �W! ! R,

Q�W @�! R with Q�.p.x// D Q�.x/ WD �.y.x//:

In our solenoidal extension the Bogovskiı̆ theorem will be applied to

S �
2
n S� DW A� :
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Observe that A� is a C 2 domain that contains the support of the function .p; s/ 7!
� 0�.pC s Qn.p// from Definition 2.1.

Next we introduce the following weighted mean value over that set. Let � 2 L1.A�/,
� � 0, and

R
A�
�.x/ dx > 0 be a given weight. Then

h i� WD

R
A�
 .x/�.x/ dxR
A�
�.x/ dx

for  2 L1.A�/:

We will denote

��.t; x/ WD e
.s.x/��.t;y.x/// div.n.p.x///� 0�.s.x// � 0; (3.3)

which has compact support in A� and satisfies (uniformly in t )

c1 � k��kL1.A�/ � c2k��kL1.A�/ � c3

for some positive constants c1 � c2 � c3 depending just on � and the upper and lower
bounds of �.

Corollary 3.2 (Corrector). Let (3.2) be satisfied. Then the corrector map

K�WL
1.!/! R; � 7!K�.�/ D hQ�i�� D

R
A�

Q�.p.x//��.t; x/ dxR
A�
��.t; x/ dx

satisfies the following estimates for q 2 Œ1;1�:

kK�.�/kLq.0;T / � Ck�kLq.0;T IL1.!//; (3.4)

k@t K�.�/kLq.0;T / � C
�
k@t�kLq.0;T IL1.!// C k�@t�kLq.0;T IL1.!//

�
; (3.5)

whenever the right-hand side is finite. Here C depends only on ˛� , ˇ� and �.

Proof. The estimates in Lq.0; T / are immediate by the uniform bounds of �� and � . In
order to estimate the time derivative, we use the calculation

@t h�.t/i��.t/ D �
1

k��.t/k
2
L1

Z
A�

@t��.t/ dx

Z
A�

Q�.t/��.t/ dx

C
1

k��.t/kL1

Z
A�

@t Q�.t/��.t/ dx C
1

k��.t/kL1

Z
A�

Q�.t/@t��.t/ dx:

The estimate now follows using @t�� D �@t��� and by the uniform bounds of �� and � .

Proposition 3.3 (Solenoidal extension). Let (3.2) be satisfied and �2L1.0;T IW 1;2.!//.
Then there exists a linear solenoidal extension operator

Test�W
®
� 2 L1.0; T IW 1;1.!// WK�.�/ � 0

¯
! L1.0; T IW 1;1.Q

�
2 //;
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such that divTest�.� �K�.�//D 0 for all � 2L1.0;T IW 1;1.!// and .Test�.� �K�.�//;

� �K�.�// 2 VT for � 2 VK .
Moreover, Test�.� �K�.�//.t; x/ D 0 for .t; x/ 2 .0; T / �Q �

2
and it satisfies the

following estimates for q 2 Œ1;1�, p 2 .1;1/ and l 2 N:

kTest�.��K�.�//kLq.0;T ILp.Q
�
2 //
� Ck�kLq.0;T ILp.!//; (3.6)

kTest�.��K�.�//kLq.0;T IW 1;p.Q
�
2 //

� C
�
k�kLq.0;T IW 1;p.!//Ck�r�kLq.0;T ILp.!//

�
; (3.7)

k@t Test�.��K�.�//kLq.0;T ILp.Q
�
2 //

� C
�
k@t�kLq.0;T ILp.!//Ck�@t�kLq.0;T ILp.!//

�
; (3.8)

kr
2 Test�.��K�.�//kLq.0;T ILp.Q

�
2 //

� C
�
kr

2�kLq.0;T ILp.!//Ck�r
2�kLq.0;T ILp.!//

�
C C

�
kjr�j jr�jkLq.0;T ILp.!//

C k�jr�j2kLq.0;T ILp.!//
�
;

k@tr Test�.��K�.�//kLq.0;T ILp.Q
�
2 //

� C
�
k@tr�kLq.0;T ILp.!//Ck�@tr�kLq.0;T ILp.!//

�
C C

j@t�j jr�j C jr�j j@t�j
C j�@t�j jr�j


Lq.0;T ILp.!//

;

k@ln Test�.��K�.�//kLq.0;T IW 1;p.Q
�
2 //

� CkTest�.�/kLq.0;T IW 1;p.Q
�
2 //
; (3.9)

whenever the right-hand side is finite. Here C depends only on ˛� , ˇ� and �.

Proof. Construction. The construction relies exclusively on the reference geometry,
namely on S� defined in Definition 2.1. Hence to keep the notation compact we will omit
the dependence on the time variable t . Moreover, without loss of generality we assume
that K�.�/ D 0, since otherwise we replace � by � �K�.�/, for which we have

K�.� �K�.�// D

R
A�
. Q� �K�.�//�� dxR

A�
�� dx

D

R
A�

Q��� dxR
A�
�� dx

�K�.�/ D 0:

Hence, once the estimates are valid for �, such that K�.�/ D 0, the estimates follow by
Corollary 3.2, and also for the case K�.�/ ¤ 0.

First observe that for the coordinates s.x/, p.x/ introduced in Definition 2.1 we find

rs.x/ D @ns.x/n and rp.x/ D .@�i .p.x//p.x//iD1;:::;d�1
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and (independent of s.x/)

div.n.p// D
d�1X
iD1

@�i .p/n.p/ � �i .p/:

For y 2 ! and x 2 S� we find, by the assumption on �, that y D y.x/ if and only if
p.x/ D '.y/ and so (wherever well defined)

@n.p/y.x/ D 0 and so @n.p/�.y.x// � 0:

Next we introduce the operator

Test�.�/.x/ WD e.s.x/��.y.x/// div.n.p.x/// Q�.p.x//��.s.x//n.p.x//:

Observe that for x 2 �� \ S� we find

Test�.�/.x/ D e.s.x/��.y.x/// div.n.p.x/// Q�.p.x//n.p.x//:

In particular, for x 2 @�� we find s.x/ D �.y.x// and hence

Test�.�/.x/ D n.p.x//�.y.x//; x 2 @��:

Using that @n.p.x//f .x/ D �@sf .p; s/ we find for x 2 Q
�
2 \ S� ,

div.Test�.�/.x// D r
�
e.s.x/��.y.x/// div.n.p.x/// Q�.p.x//

�
� n.p.x//

C e.s.x/��.t;y.x/// div.n.p.x/// Q�.p.x// div.n.p.x///

D �@s
�
e.s.x/��.y.x/// div.n.p.x/// Q�.p.x//

�
C e.s.x/��.y.x/// div.n.p.x/// Q�.p.x// div.n.p.x///
D 0:

On A� we find (by the same calculations) that

div.Test�.�/.x// D �e.s.x/��.t;y.x/// div.n.p.x/// Q�.p.x//� 0�.s.x//;

which has compact support in A� . Moreover,Z
A�

div.Test�.�/.x// dx D �
Z

A�

��.x/ Q�.p.x// dx D 0:

Since A� is by assumption a C 2 domain, we can apply the Bogovskiı̆ operator, which we
denote by Bog� , on this domain. We define

Test�.�/.x/ WD Test�.�/.x/ � Bog�.div.Test�.�///.x/:
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Estimates. The estimates are quite standard, relying on the regularity of ', namely on
the C 2-regularity of @�. We give some details of the estimate in order to show a clear
dependence on �.

We start with the estimates of the time derivative of Test�.�/. We calculate

@t Test�.�/ D @tTest�.�/ � Bog�.@t div.Test�.�///:

The Bogovskiı̆ operator is well defined due to the fact that (formally)Z
��.t/

@t div.Test�.�// dx D
Z

A�

@t div.Test�.�// dx

D @t

�Z
A�

div.Test�.�// dx
�
D 0:

We calculate further,

@tTest�.�/.t; x/

D e.s.x/��.t;y.x/// div.n.p.x///@t�.t; y.x//n.p.x//

� div.n.p.x///@t�.t; y.x//e.s.x/��.t;y.x/// div.n.p.x///�.t; y.x//n.p.x//;

which implies the following pointwise estimate for @tTest�.�/:

j@tTest�.�/.t; x/j � c.j@t�.t;p.x//j C j@t�.t;p.x//j j�.t;p.x//j/; (3.10)

where the constant only depends on �, ˛� , ˇ� and the C 2-regularity of @�. For the sake
of better understanding we demonstrate that the assumption K�.�/ D 0 is indeed without
loss of generality. We estimate

j@tTest�.� �K�.�//.t; x/j

� c
�
j@t�.t;p.x//j C j@t�.t;p.x//j.j�.t;p.x//j C k�.t/kL1/
C k@t�.t/�.t/kL1

�
: (3.11)

In order to estimate the Bogovskiı̆ part we find by Theorem 3.1 (with a constant just
depending on the Lipschitz constant of A�) thatBog�

�
@t div

�
Test�.� �K�.�//

��
Lp.��/

D
Bog�

�
@t div

�
Test�.� �K�.�//

��
Lp.A�/

� c
div

�
@tTest�.� �K�.�//

�
yW �1;p.A�/

D c
@tTest�.� �K�.�//


Lp.A�/

;

and so the estimate of @tTest�.� �K�.�// follows by (3.11).
The estimates of rTest�.� �K� �/, r2Test�.� �K� �/ and @trTest�.� �K� �/

are analogous and we skip the details here. Observe that due to the compact support of
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div.Test�.� �K�.�///, by the Gauss theorem we find thatZ
��.t/

r
l div.Test�.� �K� �// dx D 0 D

Z
��.t/

@tr
l div.Test�.� �K� �// dxI

hence Bog� is always well defined.
Clearly, the normal derivatives of the constructed function Test�.� �K�.�// depend

on the estimates of the derivatives of �� and not on the regularity of the derivatives of �.
Since the Bogovskiı̆ theorem transfers the regularity to Test�.� �K�.�// with no further
loss, (3.9) follows with according dependencies on the higher-order derivatives of �� .

We include the following corollary that will be necessary for our compactness result
(see Section 5).

Corollary 3.4 (Smooth solenoidal extension). Let a; r 2 Œ2;1�, p; q 2 .1;1/ and s 2
Œ0; 1�. Assume that � 2Lr .Œ0;T �IW 2;a.!//\W 1;r .Œ0;T �ILa.!//, such that ˛.�/C � �
˛� � � � ˇ� � ˇ.�/ � �.

Let b 2W s;p.!/ and take .b/ı as a smooth approximation of b in !. ThenE�;ı.b/ WD
Test�..b/ı �K�..b/ı// satisfies all the regularity of Proposition 3.3. In particular,

kE�.t/;ı.b/ � Test�.b �K�.b//kLp.Q
�
2 /
� ck.b/ı � bkLp.!/

and
k@tE�.t/;ı.b/kLr .0;T ILa.Q

�
2 //
� ck.b/ı@t�.t/kLr .0;T ILa.!//

uniformly in t 2 .0; T /.

We include the following technical lemma, that will be necessary for the regularity
result.

Lemma 3.5. Let p; Qa 2 .1;1/ such that p0 < Qa � dp0

d�p0
if p0 < d , and p0 < Qa < 1

otherwise, and let the assumptions of Proposition 3.3 be satisfied. Assume additionally

that � 2 C 0;� .!/ \W 1;
Qap

Qap�Qa�p .!/ and u 2 W 1;p0.��/. Then the above constructed test
function satisfiesˇ̌̌̌Z

��

u � Test�.Ds
h;e� �K�.D

s
h;e�// dx

ˇ̌̌̌
(3.12)

�
�
h��s C kDs

h;e�k
W
1;

Qap
Qap�Qa�p .!/

�
kukW 1;p0 .��/

k�kLp.!/

and in the case @t� 2 Lp.!/,ˇ̌̌̌Z
��

u � @t Test�.Ds
h;e� �K�.D

s
h;e�// dx

ˇ̌̌̌
� c

��
h��s C kDs

h;e�k
W
1;

Qap
Qap�Qa�p .!/

�
k@t�kLp.!/kukW 1;p0 .��/

C kjDs
h;e�.t/j j@t�jkLQa.!/kukW 1;p0 .��/

C kDs
h;e�.t/kL1.!/k@t�.t/kL1.!/kukW 1;p0 .��/

�
: (3.13)

The constants depend only on ˛� , ˇ� , � and (linearly) on k�kC 1;� .!/.
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Proof. In the following we use the abbreviation ıhf .y/ D .f .y C eih/ � f .y// for i D
1; 2. Moreover, since all estimates are done pointwise in time, we omit the dependence
on t of � and �� . First, since the support of Test�.ıh� �K�.ıh�// is S �

2
, we can use the

coordinates .p; s/ on the full support of Test�.ıh� �K�.ıh�//. We will use the change of
coordinates  � ıˆW! � .˛C �=2; 0�!�� in order to be able to do integration by parts.
HenceZ

��

u � Test�.ıh� �K�.ıh�// dx

D

Z 0

˛C�=2

Z
!

�
u � Test�.ıh� �K�.ıh�//

�
ı  � ıˆjdet.r. � ıˆ//j dy ds:

We will use the following abbreviations for the sake of a better overview:

˛ D ˛.�/; Q.s; y/ WD jdet.r. � ıˆ/.s; y//j;

Q��.s; y/ WD e
.s��.y/ divx.n.y///� 0�.s/ Q.s; y/:

Hence, we calculate

k��kL1.A�/ K�.ıh�/ D

Z ˛C�

˛C�=2

Z
!

�� ı  � ıˆıh�jdet.r. � ıˆ//j dy ds

DW

Z ˛C�

˛C�=2

Z
!

ıh�.y/ Q��.s; y/ dy ds

D

Z ˛C�

˛C�=2

Z
!

�.y/ıh Q��.s; y/ dy ds;

where we used the summation by parts formula for finite differences. Therefore,

ıh� �K�.ıh�/ D ıh.� �K�.�// �

R ˛C�
˛C�=2

R
!
�.y/ıh. Q��/ dy

k��kL1.A�/

:

And so

Test�.ıh� �K�.ıh�// ı  � ıˆ.s; y/

D ıh
�
Test�.� �K�.�// ı  � ıˆ.s; y/

�
� ıh.e

.s��.y/ divx.n.y////��.s/.� � h�i�� /n.y/

� e.s��.y/ divx.n.y//��.s/.� � h�i�� /ıh.n.y//

� e.s��.y/ divx.n.y///��.s/

R ˛C�
˛C�=2

R
!
�.y/ıh. Q��/ dy ds

k��kL1.A�/

n.y/

DW ıh.Test�.�/ ı  � ıˆ.s; y//C T1 C T2 C T3:
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Partial summation and Hölder’s inequality imply thatˇ̌̌̌Z
��

u � Test�.ıh� �K�.ıh�// dx

ˇ̌̌̌
�

ˇ̌̌̌Z 0

˛C�=2

Z
!

u ı  � ıˆ � ıhTest�.� �K�.�// ı  � ıˆ Q dy ds

ˇ̌̌̌
C

ˇ̌̌̌Z 0

˛C�=2

Z
!

.u ı  � ıˆ � .T1 C T2 C T3// Q dy ds

ˇ̌̌̌
C

ˇ̌̌̌Z
A�

u � Bog�
�
div
�
Test�.ıh� �K�.ıh�//

��
dx

ˇ̌̌̌
D .I/C .II/C .III/:

Recall, that p0 < Qa � dp0

d�p0
(if p < d and no upper bound otherwise). Observe that

jıh�j � ch
� ; j j C jr. � ıˆ/j � c.1C jr�j/ and jıh Q j � cjıhr�j

and

jıhu ı  � ıˆj �
ˇ̌̌̌
u. � ıˆ.x C h// � u. � ıˆ.x//
 � ıˆ.x C h/ �  � ıˆ.x/

ˇ̌̌̌
j � ıˆ.x C h/ �  � ıˆ.x/j

� ch�
«  �ıˆ.xCh/

 �ıˆ.x/

jruj ds:

We estimate .I/ using partial integration, the above inequality, Hölder’s inequality for
1
p
C

1
Qa
C
Qap�p�Qa
Qap

D 1 and Sobolev embedding:

.I/ D
ˇ̌̌̌Z 0

˛C�=2

Z
!

.ıh.u ı  � ıˆ/ � Test�.� �K�.�// ı  � ıˆ/ Q

C .u ı  � ıˆ/ � .Test�.� �K�.�// ı  � ıˆ/ ıh Q dy ds

ˇ̌̌̌
� ch�kukW 1;p0 .��/

k�kLp.!/ C ckukLQa.��/k�kLp.!/kıh�k
W
1;

Qap
Qap�Qa�p .!/

� c
�
h� C kıh�k

W
1;

Qap
Qap�Qa�p .!/

�
kukW 1;p0 .��/

k�kLp.!/: (3.14)

We further estimate .II/ by using, in a rather straightforward manner, the fact that jıhgj �
h�kgk

0;�
C :

jT1 Q j � c.hC jıh�j/.j�j Q C jh�iQ��
Q��j/ � ch

� .j�j Q C jh�iQ��
Q��j/;

jT2 Q j � ch.j�j Q C jh�iQ��
Q��j/;

jT3 Q j � c
j Q��j

k��kL1.A�/

k�kLp.!/kıh�kW 1;p0 .�/:
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This implies

2X
iD1

Z 0

˛C�=2

Z
!

jTi Q j
p dy ds � ch�pk�k

p

Lp.!/

�
1C
kQ��k

p

Lp
0
.A�/

kQ��k
p

L1.A�/

�
;

Z 0

˛C�=2

Z
!

jT3 Q j
p dy ds � c

kQ��k
p

Lp.Œ˛C�=2;0��!/

k��k
p

L1.A�/

k�k
p

Lp.!/
kıh�k

p

W 1;p0 .!/
:

Hence, we find by Hölder’s and Poincaré’s inequalities that

.II/ � ckukLp0 .��/
3X
iD1

kTi QkLp..˛C�=2;0/�!/

� c.h� C kıh�kW 1;p0 .!//k�kLp.!/kukW 1;p0 .��/
: (3.15)

The estimates of .I/ and .II/ allow us to estimate the Bogovskiı̆ term .III/. This is possible
since due to Theorem 3.1 and due to the compact support of � 0 in A� we find

.III/ WD
ˇ̌˝

u;Bog�
�
div
�
Test�.ıh� �K�.ıh�//

��˛ˇ̌
� kukW 1;p0 .A�/

Bog�
�
div
�
Test�.ıh� �K�.ıh�//

��
VW �1;p.A�/

� ckukW 1;p0 .A�/

div
�
Test�.ıh� �K�.ıh�//

�
VW �2;p.A�/

� ckukW 1;p0 .A�/
kTest�.ıh� �K�.ıh�//k VW �1;p.A�/

:

Now take q 2 W 1;p0

0 .A�/, with kqkW 1;p0 .A�/
� 1 arbitrary. From the calculations above,

i.e. by replacing u by q in (3.14) and (3.15) we find

hTest�.ıh� �K�.ıh�//; qi

D

Z 0

˛C�=2

Z
!

�
ıh
�
Test�.� �K�.�//

�
� q
�
ı  � ıˆ Q dy ds

C

3X
iD1

Z ˛C�

˛C�=2

Z
!

Ti � q ı  � ıˆ Q dy ds

D

Z 0

˛C�=2

Z
!

�
Test�.� �K�.ıh�// ı  � ıˆ � ıh.q ı  � ıˆ Q/ dy ds

�
C

3X
iD1

Z ˛C�

˛C�=2

Z
!

Ti � q ı  � ıˆ Q dy ds

� c.h� C kıh�k
W
1;

Qap
Qap�Qa�p .!/

/k�kLp.!/:

So

.III/ � ckukW 1;p0 .A�/
kTest�.ıh� �K�.ıh�//k VW �1;p.A�/

� ckukW 1;p0 .A�/

�
h� C kıh�k

W
1;

Qap
Qap�Qa�p .!/

�
k�kLp.!/:
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This finishes the proof of (3.12). For the time derivative we use the fact that

@t .ıh� �K�.ıh�// D .ıh@t� �K�.ıh@t�// �
hıh Q�.t/i��

k��.t/kL1

Z
A�

@t��.t/ dx

C
1

k��.t/kL1

Z
A�

ıh Q�.t/@t��.t/ dx

DW .ıh@t� �K�.ıh@t�//CK.t/; (3.16)

and hence

@tTest�.ıh� �K�.ıh�//.t; x/

D �.s.x//e.s.x/��.t;y.x/// div.n.p.x///�ıh.@t�/ �K�.ıh.@t�//.t; y.x//n.p.x//
�

� �.s.x// div
�
n.p.x//

�
@t�.t; y.x//e

.s.x/��.t;y.x/// div.n.p.x///

� .ıh� �K�.ıh�//.t; y.x//n.p.x//

� �.s.x// div
�
n.p.x//

�
e.s.x/��.t;y.x/// div.n.p.x///K.t/n.p.x//

D .A/C .B/C .C/:

The estimate of .A/ follows by (3.12). We proceed with the straightforward estimates

j.B/j � cj@t�.t; y.x//j
�
jıh.�.t; y.x///j C kıh.�.t//kL1.A�/

�
and

j.C/j � kıh�.t/kL1.!/k@t�.t/kL1.!/ C kjıh�.t/j j@t�jkL1.!/:

Hence we find, by (3.12), the estimates of .B/ and .C/, Hölder’s inequality and Sobolev
embedding, thatˇ̌̌̌Z

��

u � @tTest�.ıh� �K�.ıh�// dx

ˇ̌̌̌
�
�
h� C kıh�k

W
1;

Qap
Qap�Qa�p .!/

�
k@t�kLp.!/kukW 1;p0 .��/

C ckukLQa.��/kıh�@t�kLQa0 .!/

� c
��
h� C kıh�k

W
1;

Qap
Qap�Qa�p .!/

�
k@t�kLp.!/

C .kjıh�jj@t�jkLQa.!/ C kıh�.t/kL1.!/k@t�.t/kL1.!//
�
kukW 1;p0 .��/

:

The Bogovskiı̆ part will be estimated once more in the form of negative norms using that

sup
kqk

W1;p
0
.A� /
�1

h@tTest�.ıh� �K�.ıh�//; qi

� c
��
h� C kıh�k

W
1;

Qap
Qap�Qa�p .!/

�
k@t�kLp.!/ C kıh�.t/kL1.!/k@t�.t/kL1.!/

C kjıh�.t/j j@t�jkLQa.!/
�
;

which finishes the proof.
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4. The regularity result

4.1. Estimates for the structure

In this section we explore the consequences of the energy inequality (1.8).

Lemma 4.1 (Uniform Korn inequality). For every u 2 VF such that u.t;'�.t; �// D �n
the following Korn equality holds:

kruk2
L2��.t/

D 2ksymruk2
L2��.t/

: (4.1)

Proof. We follow the idea from [10, Lemma 6] and computeZ
��.t/

jsymruj2 dx D
1

2

�Z
��.t/

jruj2 dx C

Z
��.t/

r
T u W ru dx

�
:

Therefore it remains to show that the second term is zero:Z
��.t/

r
T u W ru dx D

2X
i;jD1

Z
��.t/

@jui@iuj dx

D �

2X
i;jD1

Z
��.t/

@j @iuiuj dx C

Z
@��.t/

@juiniuj dS D

Z
@��.t/

.ru/n � u dS:

Now using the no-slip condition (1.5) and the incompressibility condition we deduce thatR
@��.t/

.ru/n � u dS D 0 (see [31, Lemma A.5]) and therefore Korn’s equality holds.

In the following we exploit the energy estimate (2.15). In particular, the number C0,
which depends only on the initial conditions, always refers to this energy bound.

Lemma 4.2. Let .u; �/ be such that energy inequality (2.15) is satisfied. Then � 2

L1.0; T IW 1;4.!// and k�k
L1t W

1;4
x
� cC0, where c depends only on '.

Proof. The boundedness of k�kL1t L2x follows directly from the energy inequality (2.15).
Now we use [13, Theorem 3.3-2] to conclude that by the definition of A and (2.15),Z

!

jG .�.t; �//j2 dy � c

Z
!

AG .�.t; �// W G .�.t; �// dy � cC0;

where the constant c just depends on the Lamé constants and the geometry of @�. If
@˛n ¤ 0 we may use the bound for G˛˛.�/ and (2.4) to get the bounds for k@˛�.t/kL4.!/
and k�.t/kL4.!/ uniform in t . Using these bounds, (2.4) again and the bound for Gˇˇ .�/
above for ˇ ¤ ˛ we finish the proof.

If @1n D @2n D 0, we get the bound for kr�kL4 directly from (2.4) and the bounded-
ness of

R
!
jG .�.t; �//j2. However, since k�kL1t L2x is also bounded (using the bounds on

@t� in (1.8)), the lemma follows also by the Poincaré inequality.
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Lemma 4.3. Let .u; �/ be such that the energy inequality (2.15) is satisfied. Then if
.�/ ¤ 0 we have �.t/ 2 H 2.!/. Moreover,

sup
t2Œ0;T �

Z
!

2.�/jr2�j2 dy � cC0;

where c depends only on '.

Proof. We can again use [13, Theorem 3.3-2] and work with bounds onR. From (2.2) we
compute

@ˇa˛.�/ D @2˛ˇ'C @
2
˛ˇ�nC @˛�@ˇnC @ˇ�@˛nC �@2˛ˇn; ˛; ˇ D 1; 2: (4.2)

Using (2.2), (2.5), (2.6) and the definition of  from Definition 2.1 we have

R˛ˇ .�/ D
1

ja1 � a2j
@2˛ˇ�

�
ja1 � a2j C �.n � .a1 � @2nC @1n � a2//

C �2n � .@1n � @2n/
�
C P0.�;r�/

DW .�/@2˛ˇ�C P0.�;r�/; (4.3)

where P0 is a polynomial of order 3 in � and r� such that all terms are at most quadratic
in r�, and the coefficients of P0 depend on '.

From Lemma 4.2 we gain, in particular by Sobolev embedding, that k�kL1t L1x and
kr�kL1t L4x

are bounded by the energy. Therefore

sup
t2Œ0;T �

Z
!

2.�/jr2�j2 dy � c.kRkL1t L2x
C kP0.�;r�/kL1t L2x

/ � cC0:

Remark 4.4. By definition we know that .�/ > 0, as long as

�.n � .a1 � @2nC @1n � a2//C �2n � .@1n � @2n/ > �
1

ja1 � a2j
: (4.4)

Therefore, since .�0/ > 0, it follows that there exists a c2 (depending on ' only) such
that if k�� �0kL1t L1x � c2, then (4.4) is satisfied and hence .�/ > 0. Finally, the energy
estimate allows us to deduce directly (combining theL1t W

1;4
x and theW 1;1

t L2x estimate),
that depending on the initial configuration there is a minimal time interval .0;T / for which
k� � �0kL1t L1x � c2 is always satisfied.

Similarly to the previous lemma, let us write the form ab defined by (2.9) as the sum
of the bilinear form in second derivatives plus the remainder. We calculate the Fréchet
derivative of R:

R˛ˇ .�/� D .�/@
2
˛ˇ � C .�/@

2
˛ˇ�C P

0
0.�;r�/�:
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Therefore, we have

ab.t; �; �/ D
h3

24

Z
w

�
A..�/r2�/ W ..�/r2�/CA..�/r2�/ W ..�/r2�/

C
�
A..�/r2�/ W P 00.�;r�/� CA.P0.�;r�// W ..�/r

2�/
�

CA.P0.�;r�// W ..�/r
2�/CA.P0.�;r�// W P

0
0.�;r�/�

�
dy

D a1b.�I r
2�;r2�/C a2b.�;r

2�I �/C a3b.�;r�;r
2�I �;r�/

C a4b.�;r�I r�;r
2�/C a5b.�;r�; �;r�/: (4.5)

We take � D Ds
�h
Ds
h
�, 0 < s < 1=2, and obtain the following estimates.

Lemma 4.5. Let � 2 H 2.!/ such that .�/ ¤ 0. Then for every h > 0, 0 < s < 1=2 the
following inequality holds:

ab.t; �;D
�s
h D

s
h�/ � kD

s
hr

2�kL2.!/ � C.k�kH2.!//:

Proof. Since all estimates in this lemma are uniform in t for simplicity of notation, we
omit the t variable in this proof. First we use the fact that since ! � R2, Sobolev embed-
ding implies kDs

h
�kL1 � ck�kH2.!/ and kDs

�h
Ds
h
�kL1.!/ � ck�kH2.!/. Due to Sobolev

embedding the estimate is uniform in h for all s 2 .0; 1=2/. This and the integration by
parts formula for finite differences can be used to estimate a1

b
:

a1b.�I r
2�;r2Ds

�hD
s
h�/ � C

Z
!

jDs
hr

2�j2 dy � CkDs
h.�/

2
kL1kr

2�kL2kD
s
hr

2�kL2

�
C

2
kDs

hr
2�k2

L2
� CkDs

h.�/
2
k
2
L1kr

2�k2
L2

�
C

2
kDs

hr
2�k2

L2
� C.k�kH2.!//:

Similarly, since kDs
�h
Ds
h
�kL1.!/ � k�kH2.!/ uniformly, we estimate

ja2b.�;r
2�;Ds

�hD
s
h�/j � C.k�kH2.!//:

To estimate a3
b

we first notice that kP0.�;r�/kL2 � Ck�kL1kr�k2L4 � C.k�kH2.!//.
Moreover,

kP 00.�;r�/D
s
h�kL2 � Ck�kL1kr�kL4krD

s
h�kL4 � C.k�kH2.!//:

Now we can use integration by parts and Young’s inequality in the same way as in the
estimate for a1

b
to get

ja3b.�;r�;r
2�IDs

�hD
s
h�;rD

s
�hD

s
h�/ �

C

8
kDs

hr
2�k2

L2
C C.k�kH2.!//:

The estimate for a4
b

is done in an analogous way by integration by parts and using

kDs
hP0.�;r�/kL2 � k�kL1k�kW 1;4krDs

h�kL4 � C.k�kH2.!//:
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Hence,

ja4b.�;r�I rD
s
�hD

s
h�;r

2Ds
�hD

s
h�/j �

C

8
kDs

hr
2�k2

L2
C C.k�kH2.!//:

Finally, the last term a5
b

is a lower-order term and is easily estimated using the same
inequalities:

ja5b.�;r�;D
s
�hD

s
h�;rD

s
�hD

s
h�/j � C.k�kH2.!//:

4.2. Closing the estimates – Proof of Theorem 1.2

In this section we finish the proof of Theorem 1.2. Observe first that due to the Sobolev
embedding theorem and due to the trace theorem [7, Lemma 2.4], we find for all � 2 .0; 1/
and all s 2 .0; 1

2
/,

k�kL1.0;T IC 0;� .!// � ck�kL1.0;T IH2.!//;

k@t�kL2.0;T IH s.!// � ckukL2.0;T IH1.��//:

Assume that s 2 .0; 1
2
/ and take�

Test� .Ds
�hD

s
h� �K�.D

s
�hD

s
h�//;D

s
�hD

s
h� �K�.D

s
�hD

s
h�/
�

as a test function in (2.14) and integrate from 0 to T . The test function is admissible by
construction; see Proposition 3.3. The estimates of the forms am and ab connected to the
elastic energy follow directly by Lemma 4.5. Indeed, since K�.D

s
�h
Ds
h
�/ is constant in

the space direction and hence does not change the estimate of the derivatives of � we find
(using the uniform bounds on ��) that

inf
!
.2.�//ab

�
t; �; .D�sh D

s
h� �K�.D

s
�hD

s
h�//

�
� kDs

hr
2�kL2.!/ � C.k�kH2.!//:

Hence we are left to estimate the term coming from the structure inertia. Using partial
integration and Corollary 3.2, we findZ T

0

ˇ̌̌̌Z
!

@t�@t .D
s
�hD

s
h� �K�.D

s
�hD

s
h�// dy

ˇ̌̌̌
dt

D

Z T

0

ˇ̌̌̌Z
!

@t�D
s
�h

�
@t .D

s
h� �K�.D

s
h�//

�
dy

ˇ̌̌̌
dt

D

Z T

0

ˇ̌̌̌Z
!

.Ds
h@t�/

2
�Ds

h@t�@t K�.D
s
h�/ dy

ˇ̌̌̌
dt

� ck@t�k
2
L2.0;T IH s.!//

C

Z T

0

k@t�kW 1;s.!/.k@t�kW 1;s.!/ C k@t�kL2.!/kr�kL2.!// dt

� ck@t�k
2
L2.0;T IH s.!//

C cT k@t�k
2
L1.0;T IL2.!//

kr�k2
L1.0;T IL2.!//

� ckuk2
L2.0;T IH1.��.t///

C cT k@t�k
2
L1.0;T IL2.!//

kr�k2
L1.0;T IL2.!//

� cC 20 :
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Here, in the last estimate, we used the trace theorem [7, Lemma 2.4] and the coupling
condition (1.5). Notice that this term cannot be estimated in a purely hyperbolic problem
and that here it is essential to use the coupling and the fluid dissipation.

Let us next prove the estimates related to the fluid part. From Proposition 3.3 and the
energy inequality (2.15) we have the following estimate:

kr Test� .Ds
�hD

s
h� �K�.D

s
�hD

s
h�//kL1.0;T IL2.��.t///

� C.kDs
�hD

s
h�kL1.0;T IH1.!// C k.D

s
�hD

s
h�/r�kL1.0;T IL2.!///

� C.k�kL1.0;T IH2.!// C kD
s
�hD

s
h�kL1.0;T IL1.!//kr�kL1.0;T IL2.!///

� C.k�kL1.0;T IH2.!// C k�k
2
L1.0;T IH2.!//

/

� C.C0 C C
2
0 /:

This allows us to estimate the integrals:ˇ̌̌̌Z T

0

Z
��.t/

�
�u˝ u W r Test� .Ds

�hD
s
h� �K�.D

s
�hD

s
h�//

C symru W symr Test�Ds
�hD

s
h�
�
dx

ˇ̌̌̌
� kr Test�Ds

�hD
s
h�kL1.0;T IL2.��.t///

� .kruk2
L2.0;T IL2.��.t///

C krukL2.0;T IL2.��.t////

� C.C0 C C
2
0 /
2:

The most difficult estimate is the one involving the distributional time derivative of v. It
can be estimated using Lemma 3.5; indeed, by defining p D 2D p0 and Qa D 6 we get that
Qap

Qap�Qa�p
D 3. Hence, using the fact that 1

2
C

1
3
D

5
6

and

3

2
�
2

3
D
5

6
< 1 D 2 �

2

2
and so W

3
2 ;3.!/ � W 2;2.!/;

we find by Hölder’s inequality and Sobolev embedding that for every � 2 .0; 1/ there is a
constant c, such that

.I/ D
ˇ̌̌̌Z T

0

Z
��.t/

u � @t Test�.Ds
�hD

s
h� �K�.D

s
�hD

s
h�// dx

ˇ̌̌̌
� c

�
h��s C kDs

h�kL1.0;T IW 1;3.!//

�
kukL2.0;T IW 1;2.��.t///k@tD

s
h�kL2.0;T IL2.!//

C ckukL2.0;T IW 1;2.��.t///kD
s
�hD

s
h�@t�kL2.0;T IL6=5.!//:

Hence, choosing � D s, we find

.I/ � c.1C k�kL1.0;T IW 3=2;3.!///kukL2.0;T IW 1;2.��.t///k@tD
s
h�kL2.0;T IL2.!//

C ckukL2.0;T IW 1;2.��.t///k@t�kL1.0;T IL2.!//kD
s
�hD

s
h�kL2.0;T IL3.!//
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� c.1C k�kL1.0;T IW 2;2.!///kukL2.0;T IW 1;2.��.t///k@tD
s
h�kL2.0;T IL2.!//

C ckukL2.0;T IW 1;2.��.t///k@t�kL1.0;T IL2.!//k�kL2.0;T IW 1;3.!//

� cC0.C0 C C
2
0 /;

and the estimate of the time-derivative term is complete. The result follows by combining
the obtained estimates.

5. Compactness rewritten

We introduce the following version of the celebrated Aubin–Lions compactness lemma [2,
32]. The version below is tailored to be applicable for coupled systems of PDEs like the
fluid–structure interaction which we are studying in this paper. The key point is to fully
decouple the compactness assumption in space and the compactness assumption in time.
We emphasize this fact by showing that under appropriate conditions the product of two
weak convergent sequences decouples in the limit. It in some sense unifies ideas from
time-space decoupling with compensated compactness approaches of div-curl type (see
e.g. [9] for some further discussion on that matter).

In this context, the most difficult property to capture is the compactness assumption in
time. Commonly it is given in the form of a uniform bound on the time derivative in a cer-
tain dual space or more precisely a uniform continuity assumption in time. What turns out
to be the key observation is that it suffices only to extract the uniform continuity proper-
ties over a suitable approximation of its argument. In the theorem below, requirement (3)
summarizes the time-compactness assumption. As can be seen, no function space appears.
The assumption is that the pairing of the continuity in time for gn is uniform with respect
to a given suitable approximation of fn.

This non-function-space-type requirement is necessary for the application in the con-
text of fluid–structure interactions. Indeed, the weak time derivative of an approximate
sequence @t�", v" is defined merely over a non-linear coupled space that changes both
with respect to time and with respect to the approximation parameter " itself.

Theorem 5.1. LetX ,Z be two Banach spaces such thatX 0 �Z0. Assume fnW .0;T /!X

and gnW .0; T /! X 0. Moreover, assume the following:

(1) Weak convergence: for some s 2 Œ1;1� we have that fn
�
* f in Ls.X/ and

gn
�
* g in Ls

0

.X 0/.

(2) The approximability condition is satisfied: for every ı 2 .0; 1� there exists an
fn;ı 2 L

s.0; T IX/ \ L1.0; T IZ/, such that for every " 2 .0; 1/ there exists a
ı" 2 .0; 1/ (depending only on ") such that

kfn � fn;ıkLs.0;T IX/ � " for all ı 2 .0; ı"�

and for every ı 2 .0; 1� there is a C.ı/ such that

kfn;ıkL1.0;T IZ/ dt � C.ı/:
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Moreover, we assume that for every ı there is a function fı and a subsequence
such that fn;ı

�
* fı in Ls.X/.

(3) Equicontinuity of gn: for every " > 0 and ı > 0 there exist an n";ı and a �";ı > 0,
such that for all n � n";ı and all � 2 .0; �";ı �,Z T��

0

ˇ̌̌̌« �

0

hgn.t/ � gn.t C s/; fn;ı.t/iX 0;X ds

ˇ̌̌̌
dt � ":

(4) The compactness assumption is satisfied: X 0 ,!,! Z0. More precisely, every uni-
formly bounded sequence in X 0 has a strongly converging subsequence in Z0.

Then there is a subsequence, such thatZ T

0

hfn; gniX;X 0 dt !

Z T

0

hf; giX;X 0 dt:

Remark 5.2 (Modification for applications). With regard to our application it seems
somehow natural to replace (3) by the following condition:

.30/ The equicontinuity of gn. We require that there exist an ˛ 2 .0; 1� and a sequence
An that is uniformly bounded in L1.Œ0; T �/, such that for every ı > 0 there exist
a C.ı/ > 0 and an nı 2 N such that for � > 0 and a.e. t 2 Œ0; T � ��,

sup
n�nı

ˇ̌̌̌« �

0

hgn.t/ � gn.t C s/; fn;ı.t/iX 0;X ds

ˇ̌̌̌
� C.ı/�˛.An.t/C 1/:

Here .30/ implies (3) by integration over Œ0; T � �� and an appropriate choice of �ı;".

Remark 5.3 (Classic Aubin–Lions lemma). Let us explain how Theorem 5.1 relates to
the classic Aubin–Lions lemma. The simplest case is whenZ is a compact subspace ofX ,
f 2 L2.Z/ and @tgn 2 L2.Z0/. In this case one may take fn;ı D fn and find for s < t ,

jhgn.t/ � gn.s/; fm.t/ij D

ˇ̌̌̌Z t

s

h@tgn.�/ifm.t/ d�

ˇ̌̌̌
� kfm.t/kZ

Z t

s

k@tgn.�/kZ0 d�

� cjt � sj
1
2 kfm.t/kZ ;

with c D k@tgnkL2.0;T IZ0/. The classic Gelfand triple is then the particular case when X
is a Hilbert space. Since then Z �� X � Z0 implies the same argument as above.

The generalization to allow that Z is independent of the regularity of fn is essentially
some hidden interpolation result (also known as the Ehrling property). Here, classically,
one can use convolution estimates to show that a mollifier in one space is uniformly close,
while in the other (smaller space) they are merely bounded. One standard example is
the periodic solutions over the torus Q and X D H a

per.Q/ and Z D H c
per.Q/, such that

fn 2 H
b
per.Q/ uniformly with a < b < c. Then convolution with the standard mollifying

kernel  ı implies that kf � f �  ıkH r
per.Q/

� Cıs�rkf kH s
per.Q/

which implies precisely
the properties required in (2) above. This shows that condition (2) can be seen as a “spatial



B. Muha and S. Schwarzacher 1400

compactness” condition in the Aubin–Lions lemma (or more generally in Simon’s com-
pactness theorem [41]). Condition (3) could be viewed as a “temporal compactness”, i.e.
as equicontinuity of time shifts in the weaker space Z0.

Remark 5.4 (Function spaces). Since we do not assume that Z is dense in X , an addi-
tional clarification of condition (4) is required. Let xZk�kXD X \Zk�kX be the closure ofZ
with respect to X and . xZk�kX /0 its dual (with respect to X as pivot space). Then condition
(4) has meaning in the sense of . xZk�kX /0 ,!,! Z0.

Proof of Theorem 5.1. In this proof we will produce for every " > 0 an n" 2 N, a �" > 0
with �" ! 0 for "! 0 and a subsequence of hfn; gniX;X 0 such thatˇ̌̌̌Z T��"

0

hfn; gniX;X 0 � hfm; gmiX;X 0 dt

ˇ̌̌̌
� "

for all n; m � n". This then allows to construct the desired converging subsequence by
taking a discrete sequence "i ! 0 and a respective diagonal argument.

Hence for " > 0, we may choose ı" in such a way that, for all ı 2 .0; ı"�,

kfn � fn;ıkLs.0;T IX/ � ": (5.1)

Next we fix �";0 > 0 and n";0 such that, for all � 2 .0; �";0�,

sup
n�n";0

Z T��

0

ˇ̌̌̌« �

0

hgn.t/ � gn.s/; fn;ı.t/iX 0;X ds

ˇ̌̌̌
dt � ": (5.2)

Fix N 2 N such that �" WD T
N
� �";0. For k 2 ¹0; : : : ; N � 1º and n 2 N we define

gkn D

« .kC1/�

k�

gn.s/ ds:

This implies by Jensen’s inequality,

kgknkX 0 �

« .kC1/�

k�

kgn.s/kX 0 ds;

and so we define for the given �",

g�"n .t/ WD g
k
n for t 2 Œk�"; .k C 1/�"/:

Since
sup

Œk�";.kC1/�"�
�Œ0;T �

sup
n2N
kgknkX 0 �

C

�"
;

we find by the compactness assumption, that we can find a subsequence for which there
exists an n";1, such that

sup
k

kgkn � g
k
mkZ0 � "0 for all n;m > n";1: (5.3)
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In particular, there exist g�" and a subsequence such that g�"n ! g�" strongly in
L1.0; T IZ0/. Clearly, by the uniform bounds we find that g� 2 Ls

0

.X 0/.
At this point �" and ı" are fixed. Hence we may define

"0 WD
"

C.ı"/
;

where C.ı"/ is defined via (2). Therefore, we find an n" 2 N, such that for all n;m � n",ˇ̌̌̌Z T

0

hfn;ı" ; g
�"
n � g

�"
mi dt

ˇ̌̌̌
X;X 0
� kfn;ı"kL1.0;T IZ/kg

�"
n � g

�"
mkL1.0;T IZ0/ � ": (5.4)

Now all preparation has been made in order to estimateˇ̌̌̌Z T��"

0

hfn.t/; gn.t/iX;X 0 � hfm.t/; gm.t/iX;X 0 dt

ˇ̌̌̌
�

ˇ̌̌̌Z T��"

0

hfn;ı".t/; gn.t/iX;X 0 � hfm;ı".t/; gm.t/iX;X 0

ˇ̌̌̌
C

ˇ̌̌̌Z T��"

0

hfn.t/ � fn;ı".t/; gn.t/iX;X 0 � hfm.t/ � fm;ı".t/; gm.t/iX;X 0 dt

ˇ̌̌̌
�

ˇ̌̌̌Z T��"

0

hfn;ı".t/; gn.t/iX;X 0 � hfm;ı".t/; gm.t/iX;X 0

ˇ̌̌̌
C 2":

We estimate the right-hand side:

.I/ WD
Z T��"

0

hfn;ı".t/; gn.t/iX;X 0 � hfm;ı".t/; gm.t/iX;X 0 dt

D

Z T��"

0

hfn;ı".t/; gn.t/ � g
�"
n .t/iX;X 0 dt C

Z T��"

0

hfn;ı".t/; g
�"
n .t/ � g

�"
n .t/iX;X 0 dt

C

Z T��"

0

hfm;ı".t/ � fn;ı".t/; g
�"
m.t/iX;X 0 dt

�

Z T��"

0

hfm;ı".t/; gm.t/ � g
�"
n .t/iX;X 0 dt

D

N�2X
kD0

Z .kC1/�"

k�"

« �"

0

hfn;ı".t/; gn.t/ � gn.s/iX;X 0 ds dt

C

N�2X
kD0

Z .kC1/�"

k�"

hfn;ı".t/; g
k
n � g

k
miX;X 0 dt

C

N�2X
kD0

Z .kC1/�"

k�"

hfm;ı".t/ � fn;ı".t/; g
k
miX;X 0 dt

�

N�2X
kD0

Z .kC1/�"

k�"

« �"

0

hfm;ı".t/; gm.t/ � gm.s/iX;X 0 ds dt

D .II/C .III/C .IV/C .V/:
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First observe that .II/ and .V/ can be estimated using the equicontinuity condition, namely
(5.2). Term .III/ is estimated using the compactness condition, namely (5.4). Finally, for
.IV/ we deviate and apply (5.4) a second and third time:

.IV/ D
Z T

0

hfm;ı" � fn;ı" ; g
�"
miX;X 0 dt

D

Z T

0

hfm;ı" � fn;ı" ; g
�"iX;X 0 C hfm;ı" � fn;ı" ; g

�"
m � g

�"iX;X 0 dt

�

ˇ̌̌̌Z T

0

hfm;ı" � fn;ı" ; g
�"iX;X 0

ˇ̌̌̌
C 2":

Now we take another subsequence of fn;ı" 2 L
s.X/ that converges weakly�. Hence we

may eventually increase n" one last time (depending on g�" ) and find that for this subse-
quence and n;m � n",

j.IV/j � 3":

This finishes the proof.

6. The existence result

6.1. The approximate system

In this section we construct approximate solutions .u"; �"/ 2 VS , �" 2 L1.0; T IH 3.!//

which satisfy the following weak formulation:

d

dt

Z
��.t/

u" � q dx C
Z
��.t/

.�u" � @tq � u" ˝ u" W rqC symru" W symrq/ dx

C
d

dt

Z
!

@t�
"� dy �

Z
!

@t�
"@t� dy C am.t; �

"; �/C ab.t; �
"; �/

C "

Z
!

r
3
x�
"
W r

3
x� dy D 0; (6.1)

where " > 0 is a regularizing parameter, and with initial conditions �0, �1, u0. In this
section we prove the following theorem:

Theorem 6.1. There exists a T > 0 just depending on @� and the initial data, such that
for every " 2 .0; 1� there exists a weak solution .u"; �"/ to the regularized problem (6.1).
Moreover, the weak solution satisfies the following uniform in " estimate:

ku"kVF C k�
"
kVS C k�

"
kL2.0;T IN s;2.!// � C (6.2)

for every (fixed) s < 5
2

, with C depending only on @� and the initial conditions.

The existence of regularized solutions can be proved following the ideas and tech-
niques introduced in [36]. The problem solved in [36] is actually very similar to the



Existence and regularity of fluid–structure interactions with non-linear shell 1403

regularized system above since there the existence of a solution to an FSI problem with
the structure being an elastic shell with non-linear Koiter membrane energy without bend-
ing energy, but with a (linear) regularization term of fourth order is shown. In order to
be able to treat the non-linear bending energy in an analogous way we have to include
a sixth-order regularization term. Another difference comes from the fact that in [36] a
cylindrical geometry is considered. Nevertheless, the introduced existence scheme does
not depend on the geometry of the problem and more general geometries can be handled
by combining the existence proof with the estimates in this paper and in [31]. To avoid
lengthy repetitions of the arguments analogous to [36] here, we summarize the main steps
of the construction of a weak solution with emphasis on the differences coming from the
non-linear bending term and the setting of more general geometries. The main steps of the
construction are the following:

(1) Arbitrary Lagrangian–Eulerian formulation. We reformulate the problem in a
fixed reference domain � using a suitable change of variables. This approach is popu-
lar in numerics and the change of variables is called an arbitrary Lagrangian–Eulerian
(ALE) mapping. The formulation in the fixed reference domain is called the ALE formu-
lation of the FSI problem. We use the mapping  � (introduced in Definition 2.1) as an
ALE mapping.

(2) Construction of the approximate solutions. We construct the approximate solutions
using time discretizations and operator splitting methods. We use the Lie splitting strategy
(also known as Marchuk–Yanenko splitting) to decouple the FSI problem.

(3) Uniform estimates. Let �t > 0 be the time-discretization parameter. We show that
the constructed approximate solutions satisfy uniform bounds with respect to �t (and ")
in the energy function spaces. We identify weak and weak� limits.

(4) Compactness. We prove that the set of approximate solutions is compact in suitable
norms. By using the compactness we prove that a limit of the sequence of approximate
solutions is a weak solution to the regularized FSI problem. Here we use a generalization
of the Aubin–Lions–Simon lemma from [37] for discrete-in-time solutions adapted to
moving domain problems.

Since a solution is constructed by decoupling the problem, the largest difference from
[36] is in the second step, where in the structure subproblem we also include the non-
linear bending energy. However, we will show that the bending term can be discretized in
an analogous way to the membrane term. Other steps are analogous to [36] using sixth-
order regularization. For the convenience of the reader, we will describe the details of the
time discretization of the structure subproblem with corresponding uniform estimates in
the time-discretization parameter �t . We conclude this chapter with a description of the
compactness step. Generally, for more details of the procedure we refer the reader to [36].

In the rest of the subsection we fix the regularizing parameter " and drop superscripts
" in .u"; �"/ since there is no chance of confusion.
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Construction of discrete approximations. The main problem in the construction of an
approximate solution is how to discretize the Fréchet derivatives of G and R to obtain
the discrete analogue of R0.�/@t� D @tR.�/. In [36] this was achieved by using the fact
that the first fundamental form was a polynomial of order 2 of � and r�, which was a
consequence of the cylindrical geometry. Here we consider a more general geometry, so
we need to develop a more general approach.

For a given end-time T , we fix �t as the time step, such that Œ0; T � D Œ0; N�t� for
some N 2 N. Now let .�n/NnD1 be a given time-discrete solution and Q� be the piecewise
linear function in time such that Q�.n�t/ D �n. Then we have

R0. Q�/
�nC1 � �n

�t
D R0. Q�/@t Q� D @tR. Q�/ on Œn�t; .nC 1/�t�:

Notice that the expression R0. Q�/@t Q� is a third-order polynomial in the t variable, so we
can compute its integral

R .nC1/�t
n�t

by using the Newton–Cotes formula. Hence, by defining

N�nC1 WD �nC1C�n

2
we find the approximations ofG 0.�/� andR0.�/� in the following way:

G 0.�nC1; �n/� WD 1
3
.G 0.�n/C 4G 0. N�nC1/CGnC1/� (6.3)

and

R0.�nC1; �n/� WD 1
3
.R0.�n/C 4R0. N�nC1/CRnC1/�: (6.4)

By straightforward calculation it follows that

G 0.�nC
1
2 ; �n/

�nC
1
2 � �n

�t
D �t

Z .nC1/�t

n�t

d

dt
G . Q�/ D

1

�t
.G .�nC

1
2 / �G .�n//;

which is the correct substitute for “@tG .�/ D G 0.�/@t�”. Analogously we find as the
substitute for “@tR.�/ D R0.�/@t�”,

R0.�nC
1
2 ; �n/

�nC
1
2 � �n

�t
D

1

�t
.R.�nC

1
2 / �R.�n//:

These identities will be used to derive a semi-discrete uniform energy inequality. First we
define the sequence of approximate solutions by solving the following problems.

Structure subproblem. Find .vnC
1
2 ; �nC

1
2 / 2 .H 2

0 .!/ \H
3.!//2 such thatZ

!

�nC
1
2 � �n

�t
� dy D

Z
!

vnC
1
2� dy;

Z
!

vnC
1
2 � vn

�t
 dy C

1

2

Z
!

AG .�nC
1
2 / W G 0.�nC

1
2 ; �n/ dy

C
1

24

Z
!

AR.�nC
1
2 / W R0.�nC

1
2 ; �n/ dy C "

Z
!

r
3�nC

1
2r

3 dy D 0;

(6.5)

for all .�;  / 2 L2.!/ � .H 2
0 .!/ \H

3.!//.
The existence of a solution to the above problem follows by Schaefer’s fixed point

theorem, as was demonstrated in [36, Proposition 4]).
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Fluid subproblem. The fluid problem stays the same as in [36] (which is the advantage of
the operator splitting method). Since the domain deformation is calculated in the structure
subproblem and does not change in the fluid subproblem, we set �nC1 D �nC

1
2 , and define

.unC1; vnC1/ 2 V
�n

F � L
2.!/ by requiring that for all .q; �/ 2 V

�n

F � L
2.!/ such that

qj� D �n, the following weak formulation holds:Z
�

J n
�unC1 � un

�t
� qC

1

2

�
.un � wnC

1
2 / � r�

n�
unC1 � q

�
1

2

�
.un � wnC

1
2 / � r�

n�
q � unC1

�
dx

C
1

2

Z
�

J nC1 � J n

�t
unC1 � q dx C 2

Z
�

J nD�
n

.u/ W D�
n

.q/ dx

C

Z
!

vnC1 � vnC
1
2

�t
� dy D 0

with r�
n
� unC1 D 0, unC1

j�
D vnC1n. Here r� is the transformed gradient, wnC1=2 is the

ALE velocity (i.e. the time discretization of @t �n ; see Definition 2.1) and J nD detr �n
is the Jacobian of the transformation from ��n to the reference configuration �. Please
observe that the above system is a linear equation on a fixed domain and it is solvable as
long as J n > 0 by the Lax–Milgram lemma. One can see that no self-intersection implies
J n > 0.

Now we define the approximate solutions as a piecewise constant functions in time:

u�t .t; �/ D un�t ; ��t .t; �/ D �
n
�t ; v�t .t; �/ D v

n
�t ;

v��t .t; �/ D v
n� 12
�t for t 2 Œn�t; .nC 1/�t�:

(6.6)

Uniform estimates in �t. The following proposition gives us the uniform boundedness
of the approximate solutions defined by (6.6). It is a consequence of [36, Lemma 8] com-
bined with Lemmas 4.2 and 4.3.

Proposition 6.2. Let �t > 0. Then the approximate solutions defined by (6.6) satisfy the
following estimate:

ku�tkL1t L2x C ku�tkL2tH1
x
C k��tkL1t H2

x

C kv�tkL1t L2x
C kv��tkL1t L2x

C
p
"k��tkL1t H3

x
� C; (6.7)

where C depends on the data only. Moreover, there exists a T > 0 independent of�t such
that no self-intersection is approached.

Proof. The proof can be directly adapted from [36, Lemma 8] combined with Lemmas 4.2
and 4.3. In particular, we find by the uniform L1t H

2
x estimates of ��t that k��tkL1t .L1x /

is uniformly bounded with constants just depending on @� and the initial condition.
Moreover, since v��t is bounded in L1t L

2
x we can use the interpolation inequality for

Sobolev spaces to show that there exists T > 0 such that ��t satisfies (4.4) and J�t > 0
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in Œ0; T �, uniformly in �t (and "); cf. [36, Proposition 9]. In particular, @���t has no
self-intersection on Œ0; T �.

Let us denote by u, �, v and v� the corresponding weak or weak� limits of �t ! 0.
From [36, Lemma 11] it follows that v D v�.

Compactness for �t ! 0. First, we prove the strong convergence of the sequence ��t .
This is a consequence of the uniform boundedness of the discrete time derivatives
k
�nC1��n

�t
kL2.!/ and the boundedness of ��t in L1.0; T IH 3.!//. By using the classi-

cal Arzelà–Ascoli theorem for piecewise affine interpolation we get, as in [34, Lemma 3],
that

��t ! � in L1.0; T IH s.!// for s 2 .0; 3/:

This is enough to pass to the limit in the terms connected to the elastic energy. In order to
pass to the limit in the convective term and the terms connected to the moving boundary we
need strong L2 convergence of .u�t ; v�t /. This is the most delicate part of the existence
proof, where one has to use the uniform convergence of ��t and the fact that the fluid
dissipates higher frequencies of the structure velocities.

In the current case this follows by a version of the Aubin–Lions–Simon lemma adapted
for problems with a moving boundary [37, Theorem 3.1. and Section 4.2]. Hence, by
passing to the limit we find a T > 0 such that for every fixed " > 0 there exists a weak
solution to (6.1).

6.2. Proof of Theorem 1.1

In this subsection we first collect the necessary a priori estimates (which essentially follow
from the regularity theorem) and then pass to the limit with "! 0. Here the establishment
of the non-linearity in the convective term is (as usually) the most delicate part.

Uniform estimates in ". We use the test function

.q; �/ D
�
Test�.Ds

�hD
s
h�
"
�K�.D

s
�hD

s
h�
"//;Ds

�hD
s
h�
"
�K�.D

s
�hD

s
h�
"/
�

in (6.1) in an analogous way to the proof of Theorem 1.2. In combination with the energy
estimates we obtain the following uniform regularity estimate for all (fixed) s < 1

2
:

k�"kL1.0;T I.H2\
p
"H3/.!// C k@t�

"
kL1.0;T IL2.!//

C k�"kL2.0;T IN 2Cs;2.!// C k@t�
"
kL2.0;T IN s;2.!// � C: (6.8)

Passing with " ! 0. From the (classic) Aubin–Lions lemma we obtain

�" ! � in L2.0; T IH s.!// \ L1.0; T IH s�1=2.!// for s < 5=2: (6.9)

In particular, �" ! � in L2.0; T IH 2.!// \ L1.0; T IL1.!//, which is enough to pass
to the limit in the elastic terms; see (4.5) for the highest-order terms. The existence result
is completed once we can show that (for a subsequence) .@t�"; u"/! .@t�; u/, since this
allows us to establish all non-linearities in the limit equation and the existence is complete.
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The proof of the L2 convergence of the velocities is known to be the most delicate
part of the construction of weak solutions in the framework of FSI in the incompressible
regime; see [22, 31, 37]. Here we present a more universal approach based on the refor-
mulation of the Aubin–Lions lemma (Theorem 5.1) combined with the extension operator
presented in Corollary 3.4.

Lemma 6.3. There exists a strongly converging subsequence "n ! 0 such that

.@t�
"n ;u"n/! .�;u/

in L2tL
2
x .

Proof. The strong convergence follows from Theorem 5.1. Actually we will apply the the-
orem twice: first for the boundary compactness and then for the interior compactness. We
denote by n�"n the unit outer normal of��"n . From div Test�"n .@t�"n �K�"n .@t�

"n//D 0

we conclude that

K�"n .@t�
"n/

Z
@��"n

n.y.x// � n�"n .x/ dx D
Z
@��"n

u"n � n�"n .x/ dx D 0;

since div u"n D 0 and u"n.x/ D @t�
"n.y.x//n.p.x// for x 2 @��"n . Since �"n.p.x//

is a graph over the surfaces � (see Figure 2) which has a well-defined tangent plane
almost everywhere, we conclude that n.y.x// � n�"n .x/ > 0 a.e.; this implies that
K�"n .@t�

"n/ D 0. And consequently Test�"n .@t�"n/ is well defined:Z T

0

k@t�
"nk

2
L2.!/

C ku"nk2
L2.��"n

dt D

Z T

0

h@t�
"n ; @t�

"ni C hu"n ;Test�"n .@t�"n/i dt

C

Z T

0

hu"n ;u"n � Test�"n .@t�"n/i dt

DW .In/C .IIn/:

For these two terms we will show the convergence separately using Theorem 5.1. The
convergence implies that

k@t�
"nkL2tL

2
x
C ku"n���"n kL2tL2x ! k@t�kL2tL2x C ku���kL2tL2x ;

which implies, by the uniform convexity ofL2, the strong convergence .@t�";u"/! .�;u/
and the lemma is proved.

For the first term .In/, we define

gn D .@t�
"n ;u"n���"n / and fn D .@t�

"n ;Test�"n .@t�"n//;

and apply Theorem 5.1 using the spaces X D L2.!/ �H�s.Q�/ and consequently X 0 D
L2.!/ �H s.Q�/. The space Z D H s0.!/ �H s0.Q�/ for 0 < s < s0 < 1

4
. Also, with

respect to time, we work in the setting of Hilbert spaces, which means that all Lebesgue
exponents are 2. Further, we recall the smooth extension E�"n .t/;ı introduced in Corol-
lary 3.4 and denote .@t�"n/ı WD @t�"n �  ı . This allows us to define

fn;ı WD ..@t�
"n/ı ; E�"n ;ı.@t�

"n//:



B. Muha and S. Schwarzacher 1408

Next let us check the assumptions of Theorem 5.1 and Remark 5.2. First observe that
[31, Proposition 2.28] and (6.8) imply that gn is uniformly bounded inL2t .H

s
x/ (for s� 1

4
).

Hence, assumptions (1) follow in a rather straightforward manner by weak compactness in
Hilbert spaces. Next, (2) follows by Corollary 3.4 and the standard estimates for mollifiers:

kfn � fn;ıkL2.Q�/ � ck@t�
"n �  ı � @t�

"nkL2.!/ � Cı
s
k@t�

"nkH s.!/:

Hence we are left to check .30/. As usual for equicontinuity in time, this is a consequence
of the weak formulation of problem (6.1). For � 2 Œt; t C �� (using the solenoidality and
the matching of the extension) we have

jhgn.t/ � gn.�/; fn;ı.t/ij

D

ˇ̌̌̌Z
Q�
.u"n.t/���"n .t/ � u"n.�/���"n .�// �E�"n .t/;ı.@t�

"n.t// dx

C

Z
!

.@t�
"n.t/ � @t�

"n.�//.@t�
"n.t//ı dy

ˇ̌̌̌
D

ˇ̌̌̌Z
Q�

u"n.t/���"n .t/ �E�"n .t/;ı.@t�
"n.t// � u"n.�/���"n .�/ �E�"n .�/;ı.@t�

"n.t// dx

C

Z
!

.@t�
"n.t/ � @t�

"n.�//.@t�
"n.t//ı dy

ˇ̌̌̌
C

ˇ̌̌̌Z
Q�

u"n.�/���"n .�/ �
�
E�"n .�/;ı.@t�

"n.t// �E�"n .t/;ı.@t�
"n.t//

�
dx

ˇ̌̌̌
DW .A1/C .A2/:

First observe that by Corollary 3.4,

.A2/ �

Z
ju"n.�/j���"n .�/ �

Z �

t

j@sE�"n .s/;ı.@t�
"n.t//j ds dx

� cku"n.�/kL2.��"n .�//k@t�
"n.@t�

"n/ıkL1t .L2x/
j� � t j

1
2 � C.ı/�

1
2 ;

where we used the uniform L1t L
2
x estimates of u"n and @t�"n multiple times. Second, by

the weak formulation (6.1), we find

.A1/ D

ˇ̌̌̌Z t

�

Z
��

�u"n.s/ � @sE�"n .s/;ı.@t�"n.t//

C .symru"n.s/ � u"n.s/˝ u"n.s// W rE�"n .s/;ı.@t�"n.t// dx

C

Z
!

am
�
t; �"n ; .@t�

"n.t//ı
�
C ab

�
t; �"n ; .@t�

"n/ı
�

C "nr
3�"n.s/ W r3.@t�

"n.t//ı dy ds

ˇ̌̌̌
� C.ı/

�
ku"nkL2.t;tC� IW 1;2C1/.��"n /

.k@t�
"nkL1t .L

2
x/
C k�"nkL1t .H2

xC"H
3
x /
/

C k�"nkL2.t;tC� IW 1;1.!//ku"nk2L1.0;T IL2.��"n //
�
jt � � j

1
2

� C.ı/�
1
2 :
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This implies .30/, namelyˇ̌̌̌« tC�

t

hgn.t/ � gn.�/; fn;ı.t/i d�

ˇ̌̌̌
� C.ı/�

1
2 :

This finishes the proof of the convergence of the .In/ term. For the second term .IIn/,
we again apply Theorem 5.1. Here we set

gn D u"n���"n and fn D .u"n � Test�"n .@t�"n//���"n :

We apply Theorem 5.1 with the spaces X D H�s.Q�/ and consequently X 0 D H s.Q�/

for some s 2 .0; 1
4
/. Further, we define Z D L2.Q�/. Please observe that we may extend

all involved quantities by zero to be functions overQ� . Finally, we again set all Lebesgue
exponents to 2. Similarly to the first term, again the main effort is the construction of
the right mollification. Indeed, assumptions (1) and (4) follow by standard compactness
arguments. In particular, for assumption (1) it has been shown in [31, Proposition 2.28]
that gn is uniformly bounded in H s.Q�/ (if s � 1

4
). For (2) we use the fact that fn has a

zero trace on @��"n .t/. First, let ı > 0 be given. We take nı large enough and �ı > 0 small
enough, such that

sup
n�nı

sup
�2.t��ı ;tC�ı /
\Œ0;T �

k�.t; x/ � �"n.�; x/k1 � ı: (6.10)

Second, we fix 0< s0 < s and " > 0. By [31, Lemma A.13] there exists a �" and a sequence
Qfn;ı , such that supp. Qfn;ı.t// � ��"n .t/�3ı for all 3ı � �", that is divergence-free and
kf � Qfn;ık.H�s0 .Q�// � "kf kL2.Q�/. We mollify this solenoidal function to define

fn;ı D Qfn;ı �  ı where  is the standard mollifier in space:

Then this definition implies .30/ by a standard mollification estimate. Indeed, choosing

kfn � fn;ıkH�s.Q�/ � k Qfn;ı � fn;ıkH�s.Q�/ C k Qfn;ı � fnkH�s0 .Q�/

� cıs�s0k Qfn;ıkH�s0 .Q�/ C "kfnkL2.Q�/

� c"kfnkL2.Q�/

for ı small enough, depending on s � s0. By the properties of the mollification and (6.10),
observe that supp.fn;ı/ � ��"n .t/�2ı � ��"m .�/, which implies that fn;ı.t/ can be used
as a test function on the fluid equation alone over the interval Œt; t C �� for t 2 Œ0; T � ��.
Hence .30/ follows exactly along the lines of the above estimates using the weak formu-
lation (6.1). Notice that here we will work just with the fluid equation since the traces of
the test function are zero at the moving interface.

End of the proof of Theorem 1.1. The a priori estimates and the above compactness
arguments guarantee that for given initial conditions there is a minimal time interval T > 0
for which a weak solution exists (see Remark 4.4). Once the solution is established we can
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repeat the argument (by using �.T /, @t�.T /, u.T / as initial conditions) until either a self-
intersection is approached or a degeneracy of the H 2-coercivity is violated (namely if
.�.t; x//! 0 for some t ! T ).
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