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Degenerate stability of some Sobolev inequalities

Rupert L. Frank

Abstract. We show that on S1.1=
p
d � 2/ � Sd�1.1/ the conformally invariant Sobolev inequal-

ity holds with a remainder term that is the fourth power of the distance to the optimizers. The fourth
power is best possible. This is in contrast to the more usual vanishing to second order and is moti-
vated by work of Engelstein, Neumayer and Spolaor. A similar phenomenon arises for subcritical
Sobolev inequalities on Sd . Our proof proceeds by an iterated Bianchi–Egnell strategy.

1. Introduction and main results

1.1. Motivation

In a fundamental paper, Bianchi and Egnell [4] answer a question by Brézis and Lieb [8]
and show that the Sobolev inequality on Rd holds with a remainder term involving the
distance to the optimizers. More precisely, for some cd > 0 and all u 2 PH 1.Rd /,

kruk22 � Sdkuk
2
2d=.d�2/ � cd inf

Q2Q
kr.u �Q/k22: (1)

Here Sd denotes the optimal constant in the Sobolev inequality on Rd and Q the set
of its optimizers. Importantly, the right-hand side in (1) involves the square of the dis-
tance to the set of optimizers, and simple examples show that this is best possible, in the
sense that the inequality does not hold with a right-hand side equal to a constant times
kruk2�˛2 infQ2Q kr.u �Q/k

˛
2 for ˛ < 2.

In the last two decades there has been an abundance of stability results for various
functional inequalities. Examples include, for instance, isoperimetric inequalities [16,
21, 26, 31], Lp-Sobolev inequalities [15, 27, 28, 37], fractional Sobolev inequalities [11],
Gagliardo–Nirenberg inequalities [6], Brunn–Minkowski, concentration and rearrange-
ment inequalities [13, 23–25, 30], eigenvalue inequalities [1, 7, 10, 33, 36], solutions to
elliptic equations with critical exponents [17, 18, 22], Young’s inequality [14] and the
Hausdorff–Young inequality [12]. Many of these works use strategies inspired by the
paper of Bianchi–Egnell and in essentially all works (exceptions being [23, 28] and one
version of a refined Hölder inequality in [10]), the remainder term is quadratic in the
distance to the optimizers.
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Our work is motivated by the recent paper [20] of Engelstein, Neumayer and Spolaor
concerning a quantitative version of a Sobolev-type inequality in conformal geometry. We
recall that given a closed manifold M of dimension d � 3 and a class C of conformally
equivalent metrics, there is a constant Y.M; C/ > �1 such that for all g 2 C and all
u 2 H 1.M/,

Eg Œu� � Y.M;C/kuk
2
L2d=.d�2/.M;vg /

:

Here,

Eg Œu� WD

Z
M

�
jrguj

2
g C

d � 2

4.d � 1/
Rgu

2
�
dvg ; (2)

with Rg the scalar curvature of .M; g/. The quantities .4.d � 1/=.d � 2//Eg Œu� and
kuk

2d=.d�2/

L2d=.d�2/.M;vg /
have the geometric meaning of the total scalar curvature and the vol-

ume, respectively, of the metric u4=.d�2/g. The main result of [20] is that, if .M;C/ is
not conformally equivalent to the round sphere, then there are constants c > 0 and ˛ � 2,
depending on .M;C/, such that for all 0 � u 2 H 1.M/,

Eg Œu� � Y.M;C/kuk
2
L2d=.d�2/.M;vg /

� c inf
Q2Q

ku �Qk˛
H1

kuk˛�2
H1

:

Remarkably, while generically (in a sense made precise in [20]) one can take ˛ D 2, there
are examples in any dimension d � 3 where one needs to take some ˛ � 4. The simplest
of these examples is

M D S1
�

1p
d�2

�
� Sd�1.1/ (3)

with its standard product metric. Here, Sn.r/ � RnC1 denotes the n-dimensional sphere
of radius r > 0.

The proof in [20] proceeds via a Łojasiewicz inequality and, as far as we see, does not
easily provide a specific value of ˛ for a given .M;C/. Therefore we think it is of interest
to determine the optimal ˛ in example (3). It turns out that ˛ D 4, so this provides one of
the few examples of a stability estimate with an optimal, nonquadratic remainder term.

We believe that the underlying phenomenon and our way of handling it is of some
interest even beyond the concrete example (3). The basic reason why there is no quadratic
stability is that the minimizer is degenerate in the sense that there is a zero mode of the
Hessian of the minimization problem that does not come from symmetries of the set of
minimizers. The reason why there is quartic stability is that a secondary nondegeneracy
condition is satisfied. We stress that this reason for degenerate stability is different from
that in the case of the Lp-Sobolev inequality for 2 < p < d [28].

The way we deal with the zero mode of the Hessian and the secondary nondegeneracy
condition can be thought of as an iterated Bianchi–Egnell strategy. Namely, while Bianchi
and Egnell project on the nearest optimizer, we do the same, but then zoom further in
and project on the nearest zero-mode of the Hessian. This argument bears some vague
resemblance to how in [29] we handled an asymptotic minimization situation where the
expected leading term vanishes. We have not encountered this kind of argument in the
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context of stability of functional inequalities and we hope that it will be of use in related
problems.

The argument, except for the verification of the secondary nondegeneracy condition,
is of a general nature, but we refrain from trying to formulate it abstractly. Instead, we
illustrate it in three different circumstances of increasing technical difficulty.

1.2. Main results

We fix 2 < q <1 and set

S WD
.2�/2

q � 2
:

Then, for all u 2 H 1.R=Z/,Z 1

0

..u0/2 C Su2/ dt � S

�Z 1

0

jujq dt

�2=q
: (4)

The constants in this inequality are optimal and equality holds if and only if u is constant.
These facts are well known and we provide references before Lemma 4.

The following theorem answers the stability question for this inequality involving the
H 1 distance to the set of optimizers, that is, the set of constant functions.

Theorem 1. Let 2 < q < 1. Then there is a constant cq > 0 such that for all u 2
H 1.R=Z/,

Z 1

0

..u0/2 C Su2/ dt � S

�Z 1

0

jujq dt

�2=q
� cq

�R 1
0

�
.u0/2 C S

�
u �

R 1
0
uds

�2�
dt
�2

R 1
0
..u0/2 C Su2/ dt

:

Remarks. (a) Note thatZ 1

0

�
.u0/2 C S

�
u �

R 1
0
uds

�2�
dt D infc2R

R 1
0

�
..u � c/0/2 C S.u � c/2

�
dt;

so the right-hand side in the theorem involves an H 1 distance of u to the set of
optimizers.

(b) The right-hand side is the fourth power of the distance to the set of optimizers. In
Remark 7 we show that the power 4 is best possible.

(c) Just like in the proof of the Bianchi–Egnell inequality (1) in [4], we will argue by
compactness and do not get a computable value of cq .

Our second result is a higher-dimensional version of Theorem 1. Let d � 2 and 2 <
q < 2d=.d � 2/. Then, for all u 2 H 1.Sd /,Z

Sd

�
jruj2 C

d

q � 2
u2
�
d! �

d

q � 2
jSd j1�2=q

�Z
Sd
jujq d!

�2=q
: (5)
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The constants in this inequality are optimal and equality holds if and only if u is constant.
We provide references for these facts before Lemma 12. Here is the analogue of Theorem 1
for this inequality.

Theorem 2. Let d � 2 and 2 < q < 2d=.d � 2/. Then there is a constant cd;q > 0 such
that for all u 2 H 1.Sd /,Z

Sd

�
jruj2 C

d

q � 2
u2
�
d! �

d

q � 2
jSd j1�2=q

�Z
Sd
jujq d!

�2=q
� cd;q

�R
Sd
�
jruj2 C d

q�2

�
u � jSd j�1

R
Sd ud!

�2�
d!
�2R

Sd
�
jruj2 C d

q�2
u2
�
d!

:

Remarks. The same remarks (a), (b) and (c) on Theorem 1 are relevant here, too. Opti-
mality is proved in Remark 15.

Our third and final result concerns example (3). In this case it is known, and implicitly
contained in Schoen’s work [38] (see Lemma 8 below), that for all u 2 H 1.M/,

Eg Œu� � Y

�Z
M

juj2d=.d�2/ dvg

�.d�2/=d
;

with optimal constant

Y WD
.d � 2/2

4

� 2�
p
d � 2

jSd�1j
�2=d

D
.d � 2/2

4
.Volg.M//2=d :

Moreover, equality is attained if and only if u is a constant. Here Eg is as in (2) and we
note that Rg D .d � 1/.d � 2/. Our stability result reads as follows.

Theorem 3. Let d � 3 and let M D S1. 1p
d�2

/ � Sd�1.1/ with its standard product
metric. Then there is a constant cd > 0 such that for all u 2 H 1.M/,

Eg Œu� � Y

�Z
M

juj2d=.d�2/ dvg

�.d�2/=d
� cd

�
Eg
�
u � .Volg.M//�1

R
M
udvg

��2
Eg Œu�

:

Remarks. The same remarks (a), (b) and (c) on Theorem 1 are relevant here. In particular,
since Rg is a positive constant, Eg Œu� is equivalent to kuk2

H1 and the infimum of Eg Œu �

c� over all c 2 R is attained for u D .Volg.M//�1
R
M
u dvg . Optimality is proved in

Remark 11.

The remainder of this paper consists of three sections, devoted to the proofs of Theo-
rems 1, 3 and 2, respectively. We will provide all the details in the first case and focus on
the additional difficulties in the second and third cases.

2. Proof of Theorem 1

In this section we prove degenerate stability for the family of one-dimensional Sobolev
inequalities. The basic idea of the proof will be an iterated Bianchi–Egnell strategy. We
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will work throughout in the real Hilbert space H 1.R=Z/ with the inner product derived
from the norm

kuk WD

�Z 1

0

..u0/2 C Su2/ dt

�1=2
: (6)

This norm depends through S on the fixed parameter 2 < q <1. We abbreviate

Nu WD

Z 1

0

udt

and we denote the Lq-norm on R=Z by kukq .
Inequality (4) appears in an equivalent form involving an ultraspherical operator in the

work of Bakry and Émery [2, pp. 204–205]. Earlier, [32, Appendix B] (see also [5, Corol-
lary 6.2]) considered the Euler–Lagrange equation of the higher-dimensional analogue of
(4). Their argument, which works and, in fact, simplifies in the one-dimensional context,
shows that equality holds only for constants; see also [19]. Inequality (4) also appears in
[3, Theorem 4], where it is deduced from [34], and an inspection of its proof again shows
that equality holds only for constants.

Lemma 4. Let .un/ � H 1.R=Z/ be a sequence with kunk2 D S and kunkq ! 1. Then,
along a subsequence,

un D �n.1C rn/;

where �n 2 R, rn 2 H 1.R=Z/ and, for a � 2 ¹C1;�1º,

�n ! �; krnk ! 0;

Z 1

0

rn dt D 0: (7)

Proof. Since .un/ is bounded in H 1.R=Z/, it is bounded in C 1=2.R=Z/ and is therefore
equicontinuous. Thus, after passing to a subsequence, .un/ converges weakly in H 1 and
uniformly to a function u 2 H 1.R=Z/. By lower semicontinuity, we have kuk2 � S and,
by uniform convergence, kukq D limn!1 kunkq D 1. Thus, necessarily, kuk2D S and un
converges strongly inH 1.R=Z/ to u. Moreover, u is a minimizer in the Sobolev inequality
and therefore, by the above discussion, u is constant. Since kukq D 1, we have u D � for
a � 2 ¹C1;�1º. We now set

�n WD un; rn WD
un

un
� 1:

By the above-mentioned convergence properties, �n ! � and rn ! 0 in H 1.

In what follows an important role is played by the function

g.t/ WD cos.2�t/

and its translates. The reason for this is that g is a zero mode of the Hessian of the mini-
mization problem.
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Lemma 5. Let .un/ � H 1.R=Z/ be a sequence with kunk2 D S and

kunk
2 � Skunk

2
q

kun � unk2
! 0: (8)

Then, along a subsequence,

un D �n
�
1C �n.g.� � tn/CRn/

�
;

where �n; �n 2 R, tn 2 R=Z, Rn 2 H 1.R=Z/ and, for a � 2 ¹C1;�1º,

�n ! �; �n ! 0; kRnk ! 0

and Z 1

0

Rn dt D

Z 1

0

Rn cos 2�.t � tn/ dt D
Z 1

0

Rn sin 2�.t � tn/ dt D 0:

Proof. Since kun � unk2 D infc2R kun � ck
2 � kunk

2 D S , assumption (8) implies that
kunkq! 1. Therefore the previous lemma is applicable and, along a subsequence, we can
decompose un D �n.1C rn/ as described there.

We now expand the terms in the Sobolev inequality to “quadratic order”. We use the
fact that, uniformly for � 2 R,

j1C � jq D 1C q� C
1

2
q.q � 1/�2 CO.j� jmin¹3;qº

C j� jq/:

Thus,

junj
q
D j�nj

q
�
1C qrn C

1

2
q.q � 1/r2n CO.jrnj

min¹3;qº
C jrnj

q/
�

and

kunk
q
q D j�nj

q

�
1C

1

2
q.q � 1/

Z 1

0

r2n dt CO.krnk
min¹3;qº
q /

�
:

(Here we used the facts that rn has mean value zero and that krnkq ! 0.) Thus,

kunk
2
q D �

2
n

�
1C .q � 1/

Z 1

0

r2n dt CO.krnk
min¹3;qº
q /

�
:

On the other hand, again by the mean value zero property,

kunk
2
D �2n.S C krnk

2/:

Putting this together, we obtain

kunk
2
� Skunk

2
q D �

2
n

�Z 1

0

..r 0n/
2
� S.q � 2/r2n/ dt CO.krnk

min¹3;qº
q /

�
: (9)
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Since kun � unk2 D �2nkrnk
2, the expansion (9) shows that assumption (8) is equiva-

lent to R 1
0
..r 0n/

2 � S.q � 2/r2n/ dt

krnk2
! 0:

The kernel of the quadratic form in the numerator is spanned by g.t/ D cos 2�t and
sin 2�t . On the orthogonal complement of this kernel and the negative direction corre-
sponding to constants, the quadratic form is equivalent to k � k2. Thus, if we define

˛n WD 2

Z 1

0

rn cos 2�t dt; ˇn WD 2

Z 1

0

rn sin 2�t dt;

and sn by
rn D ˛n cos 2�t C ˇn sin 2�t C sn;

then Z 1

0

sn dt D

Z 1

0

sn cos 2�t dt D
Z 1

0

sn sin 2�t dt D 0

and

krnk
2
D
1

2
..2�/2 C S/.˛2n C ˇ

2
n/C ksnk

2 and
ksnk

2

krnk2
! 0:

We set
�n WD

q
˛2n C ˇ

2
n; Rn WD

snp
˛2n C ˇ

2
n

:

The fact that krnk ! 0 implies �n ! 0 and the fact that ksnk=krnk ! 0 implies
kRnk ! 0. Finally, we choose tn 2 R=Z such that

˛np
˛2n C ˇ

2
n

cos 2�t C
ˇnp

˛2n C ˇ
2
n

sin 2�t D cos 2�.t � tn/ D g.t � tn/

and obtain the claimed decomposition.

Lemma 6. Let .un/ � H 1.R=Z/ be a sequence with kunk2 D S and kunkq ! 1. Then

lim inf
n!1

kunk
2.kunk

2 � Skunk
2
q/

kun � unk4
�
.q C 2/.q � 2/

12.q � 1/
: (10)

The key point of this lemma is that the right-hand side of (10) is strictly positive. While
the precise value of the constant is not important for the proof of Theorem 1, we will show
in Remark 7 that it is best possible.

Proof of Lemma 6. Step 1. We pass to a subsequence along which the lim inf in (10) is
realized. By Lemma 4 and its proof, kun � unk ! 0. Therefore, if lim infn!1.kunk2 �
Skunk

2
q/=kun � unk

2 > 0, then the left-hand side of (10) is equal to C1. Thus, in the
following we assume that lim infn!1.kunk2 � Skunk2q/=kun � unk

2 D 0.
By Lemma 5, after passing to a subsequence, we can write

un D �n
�
1C �n.g. � � tn/CRn/

�
;
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where �n, �n, tn and Rn are as in that lemma. By translation invariance, we may also
assume that tn D 0.

Step 2. We now expand the terms in the Sobolev inequality to “quartic order”. We use the
fact that for all � 2 Œ1=2; 3=2�, say,

j1C � jq D 1C q� C
1

2
q.q � 1/�2 C

1

6
q.q � 1/.q � 2/�3

C
1

24
q.q � 1/.q � 2/.q � 3/�4 CO.�5/:

Since�n.gCRn/ tends to zero inH 1.R=Z/ and therefore inL1, for all sufficiently large
n, we have j�n.g C Rn/j � 1=2 and therefore the above bound is applicable. Recalling
the orthogonality conditions, we obtain

kunk
q
q D j�nj

q

�
1C

1

2
q.q � 1/�2n.kgk

2
2 C kRnk

2
2/C

1

2
q.q � 1/.q � 2/�3n

Z 1

0

g2Rn dt

C
1

24
q.q � 1/.q � 2/.q � 3/�4nkgk

4
4 CO.j�nj

3
kRnk

2
C j�nj

5/

�
:

Here we estimated, using the Schwarz inequality,ˇ̌̌̌
�4n

Z 1

0

g3Rn dt

ˇ̌̌̌
D O.j�nj

3
kRnk

2
C j�nj

5/:

Consequently,

kunk
2
q D �

2
n

�
1C .q � 1/�2n.kgk

2
2 C kRnk

2
2/C .q � 1/.q � 2/�

3
n

Z 1

0

g2Rn dt

C
1

12
.q � 1/.q � 2/.q � 3/�4nkgk

4
4 �

1

4
.q � 2/.q � 1/2�4nkgk

4
2

C O.j�nj
3
kRnk

2
C j�nj

5/

�
:

On the other hand, because of the orthogonality conditions,

kunk
2
D �2n.S C �

2
nkgk

2
C �2nkRnk

2/:

Putting this together, we obtain

��2n .kunk
2
� Skunk

2
q/

D �2n.kgk
2
� S.q � 1/kgk22/

C �2n

�
kRnk

2
� S.q � 1/kRnk

2
2 � S.q � 1/.q � 2/�n

Z 1

0

g2Rn dt

�
C �4n

�1
4
S.q � 2/.q � 1/2kgk42 �

1

12
S.q � 1/.q � 2/.q � 3/kgk44

�
CO.j�nj

3
kRnk

2
C j�nj

5/:
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Using Z 1

0

g2 dt D
1

2
;

Z 1

0

g4 dt D
3

8
;

we can simplify this expansion to

��2n .kunk
2
� Skunk

2
q/

D �2n

�
kRnk

2
� S.q � 1/kRnk

2
2 � S.q � 1/.q � 2/�n

Z 1

0

g2Rn dt

�
C �4n

.q C 1/.q � 1/.q � 2/

32
S CO.j�nj

3
kRnk

2
C j�nj

5/:

Step 3. It remains to get a lower bound on the term that is quadratic plus linear in Rn. We
expand Rn into a Fourier series,

Rn.t/ D

1X
kD2

.ak cos 2�kt C bk sin 2�kt/:

(For notational simplicity, we do not reflect the dependence of the ak and bk on n.) Note
that by the orthogonality conditions there are no terms involving a0, a1 or b1. We haveZ 1

0

.R0n/
2 dt D

1

2

1X
kD2

.2�k/2.a2k C b
2
k/ and

Z 1

0

g2Rn dt D
1

4
a2:

Therefore,

kRnk
2
� S.q � 1/kRnk

2
2 � S.q � 1/.q � 2/�n

Z 1

0

g2Rn dt � C j�nj kRnk
2

D
1

2

1X
kD2

..2�k/2 � S.q � 2//.a2k C b
2
k/ � S.q � 1/.q � 2/

1

4
�na2

�
C

2
j�nj

1X
kD2

..2�k/2 C S/.a2k C b
2
k/

D
q � 2

2
S

� 1X
kD2

.k2 � 1/.a2k C b
2
k/ �

q � 1

2
�na2

� C j�nj

1X
kD2

�
k2 C

1

q � 2

�
.a2k C b

2
k/

�
D
q � 2

2
S

���
3 � C j�nj

�
4C

1

q � 2

��
a22 �

q � 1

2
�na2

�
C

�
3 � C j�nj

�
4C

1

q � 2

��
b22

C

1X
kD3

�
.k2 � 1/ � C j�nj

�
k2 C

1

q � 2

��
.a2k C b

2
k/

�
:
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Since �n ! 0, we have for n large enough, uniformly in k � 2,

.k2 � 1/ � C j�nj
�
k2 C

1

q � 2

�
> 0:

Under this assumption and abbreviating

�n WD 3 � C j�nj
�
4C

1

q � 2

�
> 0;

we can bound

kRnk
2
� S.q � 1/kRnk

2
2 � S.q � 1/.q � 2/�n

Z 1

0

g2Rn dt � C j�nj kRnk
2

�
q � 2

2
S
�
�na

2
2 �

q � 1

2
�na2

�
D
q � 2

2
S�n

��
a2 �

q � 1

4�n
�n

�2
�
.q � 1/2

16�2n
�2n

�
� �

.q � 1/2.q � 2/

32�n
S�2n D �

.q � 1/2.q � 2/

96
S�2n CO.j�nj

3/:

To summarize, we have shown that

��2n .kunk
2
� Skunk

2
q/

� S�4n

� .q C 1/.q � 1/.q � 2/
32

�
.q � 1/2.q � 2/

96

�
CO.j�nj

5/

D S�4n
.q C 2/.q � 1/.q � 2/

48
CO.j�nj

5/:

On the other hand, we have, by the orthogonality conditions,

�4n D
kun � unk

4

�4n.kgk
2 C kRnk2/2

D
4

.q � 1/2S2
kun � unk

4.1C o.1//:

Inserting this into the previous bound, we get the claimed asymptotic inequality.

Remark 7. The bound in Lemma 6 is best possible, both with respect to the power 4 and
with respect to the constant on the right-hand side. Indeed, it is saturated as "! 0 for
u" D 1 C "g C "2h with h.t/ WD ..q � 1/=12/ cos 4�t . In the notation of the previous
proof, this corresponds to �" D " and R" D ".hC o.1//. The function h is chosen in such
a way that the square that is completed in the previous proof (Step 3) vanishes to leading
order.

We are finally in position to prove our first main result.

Proof of Theorem 1. We argue by contradiction and assume that for some fixed 2 < q <
1, no such cq > 0 exists. Then there is a sequence .un/ � H 1.R=Z/ such that

kunk
2.kunk

2 � Skunk
2
q/

kun � unk4
! 0: (11)

By homogeneity we may assume that kunk2 D S , which implies kunkq � 1.
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Using kun � unk2 D infc kun � ck2 � kunk2 D S we obtain

lim inf
n!1

kunk
2.kunk

2 � Skunk
2
q/

kun � unk4
� lim inf

n!1
.1 � kunk

2
q/:

Combining this with (11), we deduce that kunkq ! 1. Therefore, Lemma 6 is applicable
and yields (10), which contradicts (11).

Let us briefly review the previous proof and emphasize its main aspects. Lemma 4
is a standard ingredient in a Bianchi–Egnell-type proof. It decomposes a sequence as an
optimizer plus a small remainder. Lemma 5 is an iteration of this, where now the remainder
rn is decomposed as a main term, namely a zero mode, plus a secondary remainder Rn.
The proof again follows the Bianchi–Egnell strategy of expanding to second order, but the
crucial difference now is that the linear operator that appears has a kernel that is not due to
symmetries of the set of optimizers. In Lemma 6 we expand the “energy” to fourth order.
The key step is the completion of the square, which determines the leading order of the
remainderRn in terms of the zero mode. This is the function h in Remark 7. The problem-
specific aspect of this proof is that to order �2n, the “energy gain” by introducing Rn,
namely, S.q � 1/2.q � 2/=96, is strictly smaller than the “energy loss” due to the presence
of g, namely, S.qC 1/.q � 1/.q � 2/=32. We think of this as a secondary nondegeneracy
condition. By the validity of the Sobolev inequality, we know that the gain is not larger
than the loss. Since it is strictly smaller, we obtain a stability inequality with a quartic
remainder. If the secondary nondegeneracy condition would not be satisfied and we had
equality, we could try to iterate again and to expand further. From this point of view the
Łojasiewicz inequality in [20] says that this procedure stops after finitely many iterations.

3. Proof of Theorem 3

For d � 3 we consider the manifold

M D S1
�

1p
d�2

�
� Sd�1.1/

with its standard metric. Since Rg D .d � 1/.d � 2/, we have

kuk2 WD Eg Œu� D

Z 2�=
p
d�2

0

Z
Sd�1

�ˇ̌̌@u
@s

ˇ̌̌2
C jrSd�1uj

2
C
.d � 2/2

4
u2
�
d! ds:

We will abbreviate q D 2d=.d � 2/ and denote the Lq.M; dvg/-norm by kukq .
We intentionally use the same symbols k � k and k � kq as in the previous section. We

hope that this underlines the common features of the proofs, rather than creates confusion.

Lemma 8. Let .un/ � H 1.M/ be a sequence with kunk2 D Y and kunkq ! 1. Then,
along a subsequence,

un D �n.1C rn/
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where �n 2 R, rn 2 H 1.M/ and, for a � 2 ¹C1;�1º,

�n ! �.Volg.M//�1=q; krnk ! 0;

Z
M

rn dvg D 0:

This lemma can essentially be considered as known. Let us show how it can be
deduced from results in the literature.

Proof of Lemma 8. We get an upper bound on the Yamabe constant by taking a constant
trial function. The resulting upper bound is strictly smaller than the Sobolev constant
on the sphere or equivalently on Rd , namely Sd in (1). Consequently, Lions’s theorem
[35, Theorem 4.1] is applicable and yields relative compactness inH 1.M/ of minimizing
sequences. (Note the typo in the statement in [35, Theorem 4.1]: the relative compactness
requires a strict “binding” inequality.) In particular, there is a minimizer. By general argu-
ments, any minimizer is either nonnegative or nonpositive. Without loss of generality, we
can restrict ourselves to nonnegative minimizers.

To complete the proof of the lemma, we need to show that the only minimizers are
constants. We consider the Euler–Lagrange equation satisfied by a minimizer and follow
Schoen [38]. By the maximum principle, any nonnegative, nontrivial solution of the Euler–
Lagrange equation is positive. Then, as shown in [9] using the moving plane method, any
positive solution depends only on the variable s. Now, an ODE analysis shows that the
only positive solutions are constants. It is at this last step that the value 1=

p
d � 2 of the

radius of the sphere enters.

Compared to the previous section, we slightly change the definition of g. Now it
denotes the function, depending only on the coordinate s in the first factor of M ,

g.s/ WD cos.
p
d � 2 s/:

Lemma 9. Let .un/ � H 1.M/ be a sequence with kunk2 D Y and

kunk
2 � Y kunk

2
q

kun � unk2
! 0:

Then, along a subsequence,

un D �n
�
1C �n.g.� � sn/CRn/

�
;

where �n; �n 2 R, sn 2 R=. 2�p
d�2

Z/, Rn 2 H 1.M/ and, for a � 2 ¹C1;�1º,

�n ! �.Volg.M//�1=q; �n ! 0; kRnk ! 0

andZ
M

Rn dvg D

Z
M

Rn cos
p
d � 2.s � sn/ dvg D

Z
M

Rn sin
p
d � 2.s � sn/ dvg D 0:
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Proof. The proof of this lemma is essentially the same as that of Lemma 5. The relevant
quadratic form is nowZ

M

.jrgr j
2
g C

.d � 2/2

4
r2/ dvg � .q � 1/Y.Volg.M//�1C2=q

Z
M

r2 dvg

D

Z
M

.jrgr j
2
g � .d � 2/r

2/dvg :

Its kernel is spanned by g.s/D cos.
p
d � 2s/ and sin.

p
d � 2s/. Therefore we can argue

as before.

Lemma 10. Let .un/ � H 1.M/ be a sequence with kunk2 D Y and kunkq ! 1. Then

lim inf
n!1

kunk
2.kunk

2 � Y kunk
2
q/

kun � unk4
�
.q C 2/.q � 2/

12.q � 1/
:

Proof. Step 1. The proof for d D 3; 4 follows exactly the lines of that of Lemma 6.
Indeed, in these dimensions one has q D 2d=.d � 2/ � 4 and therefore one can expand
junj

q to fourth order even without using the L1 convergence in Lemma 6. For d > 4,
however, one has q D 2d=.d � 2/ < 4 and therefore the quartic expansion of junjq is
problematic. To overcome this issue, we first decompose un as in Lemma 9 and then we
further decompose

Rn D Sn C Tn with Sn.s/ WD jSd�1j�1
Z

Sd�1
Rn.s; !/ d!:

The function Tn has the property that for any function ' of s alone,Z
M

'.s/Tn dvg D 0: (12)

By orthogonality,
kRnk

2
D kSnk

2
C kTnk

2;

so kRnk ! 0 implies kSnk ! 0 and consequently Sn ! 0 in L1. This will allow us to
argue for Sn like we did in the proof of Lemma 6. But first we need to get rid of the term
Tn, and we do this by a spectral gap estimate.

Step 2. Let us set (assuming without loss of generality that sn D 0)

un D Qun C �n�nTn with Qun WD �n.1C �n.g C Sn//:

Then, by a quadratic estimate as in the proofs of Lemmas 5 and 9,

kunk
q
q D k Qunk

q
q C

1

2
q.q � 1/�2n�

2
n

Z
M

j Qunj
q�2T 2n dvg

CO.j�nj
q
j�nj

min¹3;qº
kTnk

min¹3;qº
q /:
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Note that the term linear in Tn cancels by (12) with ' D j Qunjq�2 Qun. We also used the fact
that kTnkq . kTnk ! 0. Consequently,

kunk
2
q D k Qunk

2
q C .q � 1/�

2
nk Qunk

�qC2
q �2n

Z
M

j Qunj
q�2T 2n dvg

CO.�2nj�nj
min¹3;qº

kTnk
min¹3;qº
q /:

In order to simplify the term quadratic in Tn, we need some rough expansions of Qun.
Using kg C Snkq . 1 one finds without much effort that

j�nj
�q
k Qunk

q
q D Volg.M/CO.j�nj/

and
j�nj

�qC2

Z
M

j Qunj
q�2T 2n dvg D

Z
M

T 2n dvg CO.j�nj
min¹1;q�2º

kTnk
2
q/:

Thus,

k Qunk
�qC2
q

Z
M

j Qunj
q�2T 2n dvg D .Volg.M//�1C2=q

Z
M

T 2n dvg

CO.j�nj
min¹1;q�2º

kTnk
2
q/:

On the other hand, because of the orthogonality conditions,

kunk
2
D k Qunk

2
C �2n�

2
nkTnk

2: (13)

Putting this together, we obtain

��2n .kunk
2
� Y kunk

2
q/ D �

�2
n .k Qunk

2
� Y k Qunk

2
q/

C �2n

�
kTnk

2
� .q � 1/Y.Volg.M//�1C2=q

Z
M

T 2n dvg CO.j�nj
min¹1;q�2º

kTnk
2
q/

�
:

Just like in the proof of Lemma 9, the term quadratic in Tn involves the operator ��g �
.d � 2/. Since, by (12), Tn is orthogonal to its kernel, which is spanned by g.s/ D
cos.
p
d � 2 s/ and sin.

p
d � 2 s/, and to its negative spectral subspace, which is spanned

by the constant function, we have

kTnk
2
� .q � 1/Y.Volg.M//�1C2=q

Z
M

T 2n dvg & kTnk2

with an implicit constant depending only on d . Thus, if n is large enough, the error term
O.j�nj

min¹1;q�2ºkTnk
2
q/ can be absorbed and we conclude that

kunk
2
� Y kunk

2
q � k Qunk

2
� Y k Qunk

2
q :

Moreover, we note that

kun � unk
2
D k Qun � Qunk

2
C �2n�

2
nkTnk

2:
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Since
k Qun � Qunk

2
D �2n�

2
n.kgk

2
C kSnk

2/ � �2n�
2
nkgk

2;

and kTnk2 ! 0, we conclude that

kun � unk
2
D k Qun � Qunk

2.1C o.1//:

Finally, by (13), kunk � k Qunk. To summarize, we have shown that

kunk
2.kunk

2 � Y kunk
2
q/

kun � unk4
�
k Qunk

2.k Qunk
2 � Y k Qunk

2
q/

k Qun � Qunk4
.1C o.1//:

(With more effort one can show that the o.1/ error on the right-hand side is not necessary,
but we will not need this.)

Step 3. From this point on, the proof is exactly the same as that of Lemma 6. In fact,
one does not even have to redo that argument; one can simply argue by scaling. Note
that Qun are functions depending only on the variable s 2 S1. 1p

d�2
/. If we set Qun.s/ D

vn.s
p
d � 2=.2�//, then vn is one-periodic and

k Qunk
2.k Qunk

2 � Y k Qunk
2
q/

k Qun � Qunk4
D
kvnk

2.kvnk
2 � Skvnk

2
q/

kvn � vnk4
;

where on the right-hand side k � k stands for the norm (6) of functions in H 1.R=Z/ with
S D .2�/2=.q � 2/. The claimed bound now follows from that in Lemma 6.

Remark 11. The bound in Lemma 10 is best possible, both with respect to the power 4
and with respect to the constant on the right-hand side. This follows from Remark 7 by
the same scaling as at the end of the previous proof.

Theorem 3 follows from Lemma 10 in the same way as Theorem 1 follows from
Lemma 6. We omit the details.

4. Proof of Theorem 2

We fix d � 2 and 2 < q < 2d=.d � 2/ and abbreviate, in this section,

kuk2 WD

Z
Sd

�
jruj2 C

d

q � 2
u2
�
d!

and

Y WD
d

q � 2
jSd j1�2=q :

Moreover, kukq will denote the Lq-norm on Sd and Nu D jSd j�1
R

Sd ud!.
Let us briefly comment on the history of inequality (5). By symmetric decreasing

rearrangement, it suffices to prove the inequality for functions that depend only on !dC1
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and the resulting inequality was shown in the work of Bakry and Émery [2, pp. 204–205].
As mentioned before Lemma 4, the inequality appears explicitly in the work of Bidaut-
Véron and Véron [5, Corollary 6.2], who also show that equality holds only for constants.
Their work builds upon [32, Appendix B]. In addition, like (4), inequality (5) appears in
[3, Theorem 4], from which one can also deduce the cases of equality.

Lemma 12. Let .un/ � H 1.Sd / be a sequence with kunk2 D Y and kunkq ! 1. Then,
along a subsequence,

un D �n.1C rn/;

where �n 2 R, rn 2 H 1.Sd / and, for a � 2 ¹C1;�1º,

�n ! � jSd j�1=q; krnk ! 0;

Z
Sd
rn d! D 0:

Proof. The argument is the same as in the proof of Lemma 4, except that one replaces
Arzelà–Ascoli’s compactness theorem by Rellich’s. We omit the details.

Lemma 13. Let .un/ � H 1.Sd / be a sequence with kunk2 D Y and

kunk
2 � Y kunk

2
q

kun � unk2
! 0:

Then, along a subsequence,

un D �n.1C �n.en � ! CRn//;

where �n; �n 2 R, en 2 Sd , Rn 2 H 1.M/ and, for a � 2 ¹C1;�1º,

�n ! � jSd j�1=q; �n ! 0; kRnk ! 0

and, for all j D 1; : : : ; d C 1,Z
Sd
Rn d! D

Z
Sd
Rn!j d! D 0:

Proof. The proof of this lemma is essentially the same as those of Lemmas 5 and 9. The
relevant quadratic form is nowZ

Sd

�
jrr j2 C

d

q � 2
r2
�
d! � .q � 1/

d

q � 2

Z
Sd
r2 d! D

Z
Sd
.jrr j2 � dr2/ d!:

The kernel of this quadratic form is spanned by spherical harmonics of degree 1, that is,
by !1; : : : ; !dC1. Therefore we can argue as before.

Lemma 14. Let .un/ � H 1.Sd / be a sequence with kunk2 D Y and kunkq ! 1. Then

lim inf
n!1

kunk
2.kunk

2 � Y kunk
2
q/

kun � unk4
�
.d C 1/.q � 2/.2d � q.d � 2//

2.d C 2/.d C 3/.q � 1/
: (14)
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Note that the expression on the right-hand side is positive since q < 2d=.d � 2/. Its
vanishing for q D 2d=.d � 2/ if d � 3 is consistent with the fact that in the Bianchi–
Egnell inequality (1) (and in its equivalent sphere version), one takes the infimum over the
.d C 2/-dimensional manifold of optimizers, whereas for q < 2d=.d � 2/ we are taking
the infimum only over the one-dimensional set of constants. Note also that the constant in
(14) coincides with the corresponding expression in Lemma 6 for d D 1.

Proof of Lemma 14. Step 1. The proof is similar to those of Lemmas 6 and 14. As in
those proofs we can pass to a subsequence along which the lim inf in (14) is realized and
we may assume that lim infn!1.kunk2 � Y kunk2q/=kun � unk

2 D 0.
By Lemma 13, after passing to a subsequence and after a rotation, we can write

un D �n.1C �n.g CRn//; (15)

where �n, �n and Rn are as in that lemma and g.!/ D !dC1.

Step 2. We now restrict ourselves to the simpler case where d D 2; 3 and 4 � q <
2d=.d � 2/. Then we can expand j1C � jq to fourth order in � and obtain as in the proof
of Lemma 6, recalling the orthogonality conditions,

kunk
q
q D j�nj

q

�
jSd j C

1

2
q.q � 1/�2n.kgk

2
2 C kRnk

2
2/

C
1

2
q.q � 1/.q � 2/�3n

Z
Sd
g2Rn d!

C
1

24
q.q � 1/.q � 2/.q � 3/�4nkgk

4
4

CO.j�nj
3
kRnk

2
C j�nj

5/

�
:

Consequently,

kunk
2
q D �

2
njS

d
j
2=q

�
1C .q � 1/�2njS

d
j
�1.kgk22 C kRnk

2
2/

C .q � 1/.q � 2/�3njS
d
j
�1

Z
Sd
g2Rn d!

C
1

12
.q � 1/.q � 2/.q � 3/�4njS

d
j
�1
kgk44

�
1

4
.q � 2/.q � 1/2�4njS

d
j
�2
kgk42

C O.j�nj
3
kRnk

2
C j�nj

5/

�
:

On the other hand, because of the orthogonality conditions,

kunk
2
D �2n

� d

q � 2
jSd j C �2nkgk

2
C �2nkRnk

2
�
:
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Putting this together, we obtain

��2n .kunk
2
�Y kunk

2
q/ D �

2
n

�
kgk2 �

d.q � 1/

q � 2
kgk22

�
C �2n

�
kRnk

2
�
d.q � 1/

q � 2
kRnk

2
2 � d.q � 1/�n

Z
Sd
g2Rn d!

�
C �4n

�d
4
.q � 1/2jSd j�1kgk42 �

d

12
.q � 1/.q � 3/kgk44

�
CO.j�nj

3
kRnk

2
C j�nj

5/:

Using
1

d

Z
Sd
jrgj2 d! D

Z
Sd
g2 d! D

1

d C 1
jSd j;Z

Sd
g4 d! D

3

.d C 1/.d C 3/
jSd j;

(16)

we can simplify this expansion to

��2n .kunk
2
� Y kunk

2
q/ D �

2
n

�
kRnk

2
�
d.q � 1/

q � 2
kRnk

2
2 � d.q � 1/�n

Z
Sd
g2Rn d!

�
C �4n

d.q � 1/.q C d/

2.d C 1/2.d C 3/
jSd j C O.j�nj

3
kRnk

2
C j�nj

5/:

Step 3. It remains to get a lower bound on the term that is quadratic plus linear in Rn. We
expand Rn into spherical harmonics,

Rn.t/ D

1X
`D2

X
m

a`;mY`;m:

Here, for each `, .Y`;m/m is an L2.Sd /-orthonormal basis of (real) spherical harmon-
ics of degree `. The index m runs through a finite set whose cardinality depends on `,
but which will not be important for us. The only thing we will use is that the space of
spherical harmonics of degree 0 is spanned by constant functions and that of degree 1 by
!1; : : : ; !dC1.

For notational simplicity, we do not reflect the dependence of the a`;m on n. Note that
by the orthogonality conditions there are no terms involving ` D 0 and ` D 1. We haveZ

Sd
jrRnj

2 d! D

1X
`D2

X
m

`.`C d � 1/a2`;m and
Z

Sd
R2n d! D

1X
`D2

X
m

a2`;m:

Moreover, since !2
dC1
� 1=.d C 1/ is a spherical harmonic of degree 2 and since, by (16),Z

Sd

�
!2dC1 �

1

d C 1

�2
d! D

2d

.d C 1/2.d C 3/
jSd j;
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we can assume, without loss of generality, that

Y2;0.!/ D

s
.d C 1/2.d C 3/

2d jSd j

�
!2dC1 �

1

d C 1

�
:

Thus, since Rn D 0,Z
Sd
g2Rn d! D

Z
Sd

�
!2dC1 �

1

d C 1

�
Rn d! D

s
2d jSd j

.d C 1/2.d C 3/
a2;0:

Therefore,

kRnk
2
�
d.q � 1/

.q � 2/
kRnk

2
2 � d.q � 1/�n

Z
Sd
g2Rn d! � C j�nj kRnk

2

D

1X
`D2

X
m

.`.`C d � 1/ � d/a2`;m � d.q � 1/�n

s
2d jSd j

.d C 1/2.d C 3/
a2;0

� C j�nj

1X
`D2

X
m

�
`.`C d � 1/C

d

q � 2

�
a2`;m

D

��
d C 2 � C j�nj

�
2.d C 1/C

d

q � 2

��
a22;0

� d.q � 1/�n

s
2d jSd j

.d C 1/2.d C 3/
a2;0

C

X
m¤2

�
d C 2 � C j�nj

�
2.d C 1/C

d

q � 2

��
a22;m

C

1X
`D3

X
m

�
`.`C d � 1/ � d � C j�nj

�
`.`C d � 1/C

d

q � 2

��
a2`;m

�
:

Since �n ! 0, we have for n large enough, uniformly in ` � 2,

`.`C d � 1/ � d � C j�nj
�
`.`C d � 1/C

d

q � 2

�
> 0:

Under this assumption and abbreviating

�n WD d C 2 � C j�nj
�
2.d C 1/C

d

q � 2

�
> 0;

we can bound

kRnk
2
�
d.q � 1/

.q � 2/
kRnk

2
2 � d.q � 1/�n

Z
Sd
g2Rn d! � C j�nj kRnk

2

� �na
2
2;0 � d.q � 1/�n

s
2d jSd j

.d C 1/2.d C 3/
a2;0
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D �n

��
a2;0 �

d.q � 1/

2�n

s
2d jSd j

.d C 1/2.d C 3/
�n

�2
�
d2.q � 1/2

4�2n

2d jSd j

.d C 1/2.d C 3/
�2n

�
� �

d2.q � 1/2

4�n

2d jSd j

.d C 1/2.d C 3/
�2n

D �
d2.q � 1/2

4.d C 2/

2d jSd j

.d C 1/2.d C 3/
�2n CO.j�nj

3/:

To summarize, we have shown that

��2n .kunk
2
� Y kunk

2
q/ � �

4
n

� d.q � 1/.q C d/
2.d C 1/2.d C 3/

�
d3.q � 1/2

2.d C 1/2.d C 2/.d C 3/

�
jSd j

CO.j�nj
5/

D �4n
d.q � 1/.2d � .d � 2/q/

2.d C 1/.d C 2/.d C 3/
jSd j CO.j�nj

5/:

On the other hand, we have, by the orthogonality conditions and (16),

�4n D
kun � unk

4

�4n.kgk
2 C kRnk2/2

D
.d C 1/2

.q � 1/2Y 2
kun � unk

4.1C o.1//:

Inserting this into the previous bound, we get the claimed asymptotic inequality. This
completes the proof in the case 4 � q < 2d=.d � 2/.

Step 4. In the remainder of the proof we deal with the technical problems arising in the
case where q < 4. Just like in the proof of Lemma 10, the problem is the expansion of
j1C � jq to fourth order in � , for which we need �n.gCRn/ to tend to zero in L1. While
this may, in general, not be the case, in the proof of Lemma 10 we got around this problem
by noting that the L1 convergence holds for the spherical mean and the remainder can be
controlled by a spectral gap estimate.

In the present situation we will try to adapt the same proof and also argue by inte-
grating out variables, but the new difficulty will be that the resulting one-dimensional
function does not converge in L1 uniformly over its interval of definition. This problem
can be overcome by dealing with the boundary and the bulk separately.

To be more specific, consider un as in (15) and then further decompose

Rn D Sn C Tn with Sn.!dC1/ WD jSd�1j�1
Z

Sd�1
Rn.
p

1 � !2dC1�; !dC1/ d�:

In words, Sn is obtained fromRn by averaging over the spheres ¹..1�!2
dC1

/1=2�;!dC1/2

Sd W � 2 Sd�1º orthogonal to the edC1-axis, parametrized by their height !dC1. The
function Tn has the property that for any function ' of !dC1 alone,Z

Sd
'.!dC1/Tn d! D 0: (17)
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By orthogonality,
kRnk

2
D kSnk

2
C kTnk

2;

so kRnk ! 0 implies kSnk ! 0. The difficulty compared to the proof of Lemma 10 is
that this does not imply that kSnk1 ! 0. To be more explicit,

kSnk
2
D jSd�1j

Z �

0

��
@� .Sn.cos �//

�2
C

d

q � 2
Sn.cos �/2

�
sind�1 � d�

and we note that the weight sind�1 � degenerates at the boundary. Before dealing with this
problem, we get rid of the term Tn essentially in the same way as in the proof of Lemma
10.

Step 5. Let us set

un D Qun C �n�nTn with Qun WD �n.1C �n.g C Sn//:

Then by an expansion to second order, similarly as before,

��2n .kunk
2
� Y kunk

2
q/ D �

�2
n .k Qunk

2
� Y k Qunk

2
q/

C �2n

�
kTnk

2
� .q � 1/Y jSd j�1C2=q

Z
Sd
T 2n d! CO.j�nj

min¹1;q�2º
kTnk

2
q/

�
:

Just like in the proof of Lemma 13, the term quadratic in Tn involves the operator
��Sd � d . The kernel of this operator is spanned by !1; : : : ; !dC1 and its negative
spectral subspace is spanned by constants. We claim that Tn is orthogonal to all these
functions. For constants and !dC1 this follows from (17), and for !1; : : : ; !d it follows
from the fact that bothRn and Sn are orthogonal to these. As a consequence of the orthog-
onality relations, we have

kTnk
2
� .q � 1/Y jSd j�1C2=q

Z
Sd
T 2n d! & kTnk2

with an implicit constant depending only on d . Thus, if n is large enough, the error term
O.j�nj

min¹1;q�2ºkTnk
2
q/ can be absorbed and we conclude that

kunk
2
� Y kunk

2
q � k Qunk

2
� Y k Qunk

2
q :

Continuing to argue as in the proof of Lemma 10 we arrive at

kunk
2.kunk

2 � Y kunk
2
q/

kun � unk4
�
k Qunk

2.k Qunk
2 � Y k Qunk

2
q/

k Qun � Qunk4
.1C o.1//:

This accomplishes our goal of removing the term Tn.

Step 6. It remains to deal with the failure of L1 convergence of Sn. We first assume that
d > 2 to present the argument in the cleanest way. Then, for any function v 2 H 1.Sd /
that depends only on !dC1,

jv.!/j.ı.!/�.d�2/=2kvk;where ı.!/WD dist.!; ¹.0; : : : ; 0;C1/; .0; : : : ; 0;�1/º/. (18)
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This follows, for instance, from the well-known inequality, valid for all radialw2 PH 1.Rd /,

jw.x/j . jxj�.d�2/=2krwk2:

Indeed, in obvious notation,

jw.r/j D

ˇ̌̌̌Z 1
r

w0.s/ ds

ˇ̌̌̌
�

�Z 1
r

s�dC1 ds

Z 1
r

.w0.s//2sd�1 ds

�1=2
:

This implies (18) either by a localization argument or by stereographic projection.
As a consequence of (18), there is a constant C > 0, depending only on d , such that if

ı.!/ � C j�nj
2=.d�2/, then j�n.g.!/C Sn.!//j � 1=2. (Here we also used kg C Snk .

1.) Thus, if we set
C WD

®
! 2 Sd W ı.!/ < C j�nj

2=.d�2/
¯
;

then, by the same arguments as in the proof of Lemma 6,

j�nj
�q

Z
Sd nC

j Qunj
q d! D

Z
Sd nC

�
1C q�n.g C Sn/C

1

2
q.q � 1/�2n.g C Sn/

2
�
d!

C

Z
Sd nC

�1
6
q.q � 1/.q � 2/�3n.g

3
C 3g2Sn/

C
1

24
q.q � 1/.q � 2/.q � 3/�4ng

4
�
d!

CO.j�nj
3
kSnk

2
C j�nj

5/:

On the other hand, in C we expand to second order,

j�nj
�q

Z
C

j Qunj
q d! D

Z
C

�
1C q�n.g C Sn/C

1

2
q.q � 1/�2n.g C Sn/

2
�
d!

CO

�
j�nj

min¹3;qº
Z

C

jg C Snj
min¹3;qº d! C j�nj

q

Z
C

jg C Snj
q d!

�
:

Let us bound the remainder term. We let 1 � p � 2� D 2d=.d � 2/. (We will later choose
p Dmin¹3; qº and p D q.) Using the fact that g is bounded and thatH 1 embeds into L2

�

,
we obtain

j�nj
p

Z
C

jg C Snj
p d! . j�njp

�Z
C

jgjp d! C

Z
C

jSnj
p d!

�
. j�njp.jC j C jC j.2

��p/=2�
kSnk

p
2�/

� j�nj
pC2�

C j�nj
2�
kSnk

p
2� :

Here we used jC j � j�nj2
�

. A similar argument shows thatZ
C

�1
6
q.q � 1/.q � 2/�3n.g

3
C 3g2Sn/C

1

24
q.q � 1/.q � 2/.q � 3/�4ng

4
�
d!

D O.j�nj
3C2�

C j�nj
2C2�
kSnk2�/:
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To summarize, we have

j�nj
�q

Z
C

j Qunj
q d! D

Z
C

�
1C q�n.g C Sn/C

1

2
q.q � 1/�2n.g C Sn/

2
�
d!

C

Z
C

�1
6
q.q � 1/.q � 2/�3n.g

3
C 3g2Sn/

C
1

24
q.q � 1/.q � 2/.q � 3/�4ng

4
�
d!

CO.j�nj
min¹3;qºC2�

C j�nj
2�
kSnk

min¹3;qº
2� C j�nj

2C2�
kSnk2�/:

Adding this to the expansion on Sd n C and using the orthogonality conditions, we finally
obtain

j�nj
�q
k Qunk

q
q D jS

d
j C

1

2
q.q � 1/�2n.kgk

2
2 C kSnk

2
2/

C
1

2
q.q � 1/.q � 2/�3n

Z
Sd
g2Sn d!

C
1

24
q.q � 1/.q � 2/.q � 3/�4nkgk

4
4

CO.j�nj
3
kSnk

2
C j�nj

2�
kSnk

min¹3;qº
2� C j�nj

5
C j�nj

min¹3;qºC2�/:

Here we slightly simplified the error terms, using j�nj2C2
�

kSnk2� . j�nj3kSnk2 C
j�nj

1C2�2� and 1C 2 � 2� > 5.
The upshot is that we have almost the same bound as in the case q � 4, except that the

remainder j�nj kRnk2 there is now replaced by j�nj3kSnk2 C j�nj2
�

kSnk
min¹3;qº
2� and the

remainder j�nj5 there is now replaced by j�nj5 C j�njmin¹3;qºC2� . These replacements,
however, do not affect the proof. Indeed, the only thing that was important about the first
remainder was that it was o.�2n/kRnk

2 and about the second remainder that it was o.�4n/.
This is satisfied in the present case and therefore one can proceed in the same way as
before.

Step 7. Finally, we briefly address the necessary changes for d D 2. In this case, inequal-
ity (18) holds only with ı.!/�˛ for arbitrarily small ˛ > 0, but not with ˛ D 0. Moreover,
H 1 is embedded into Lr for arbitrarily large r <1, but not for r D 1 D 2�. Thus, if
one follows the above proof, these two issues imply that the remainder estimates in the
expansion of k Qunk

q
q become worse by a factor j�nj�" for arbitrarily small " > 0. This,

however, is still enough to conclude the proof along the same lines.

Remark 15. The bound in Lemma 14 is best possible, both with respect to the power 4
and with respect to the constant on the right-hand side. Indeed, it is saturated as "! 0

for u" D 1C "gC "2h with h.!dC1/ WD .d.q � 1/=.2.d C 2///.!2dC1 � 1=.d C 1//. In
the notation of the previous proof, this corresponds to �" D " and R" D ".hC o.1//. The
function h is chosen in such a way that the square that is completed in the previous proof
(Step 3) vanishes to leading order.
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Theorem 2 follows from Lemma 14 in the same way as Theorem 1 follows from
Lemma 6. We omit the details.
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